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Abstract

This paper presents a variationally consistent an exponential shear deformation theory for the bi-directional bend-
ing and free vibration analysis of thick plates. The theory presented herein is built upon the classical plate theory.
In this displacement-based, refined shear deformation theory, an exponential functions are used in terms of thick-
ness co-ordinate to include the effect of transverse shear deformation and rotary inertia. The number of unknown
displacement variables in the proposed theory are same as that in first order shear deformation theory. The trans-
verse shear stress can be obtained directly from the constitutive relations satisfying the shear stress free surface
conditions on the top and bottom surfaces of the plate, hence the theory does not require shear correction factor.
Governing equations and boundary conditions of the theory are obtained using the dynamic version of principle
of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed
numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined
theories and exact theory to show the efficiency of proposed theory. Results obtained by using proposed theory are
found to be agree well with the exact elasticity results. The objective of the paper is to investigate the bending and
dynamic response of thick isotropic square and rectangular plates using an exponential shear deformation theory.
c© 2012 University of West Bohemia. All rights reserved.
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1. Introduction

The wide spread use of shear flexible materials has stimulated interest in the accurate prediction
of structural behavior of thick plates. Thick beams and plates, either isotropic or anisotropic,
basically form two and three dimensional problems of elasticity theory. Reduction of these
problems to the corresponding one and two dimensional approximate problems for their analysis
has always been the main objective of research workers. The shear deformation effects are more
pronounced in the thick plates when subjected to transverse loads than in the thin plates under
similar loading. These effects are neglected in classical plate theory. In order to describe the
correct bending behavior of thick plates including shear deformation effects and the associated
cross sectional warping, shear deformation theories are required. This can be accomplished by
selection of proper kinematics and constitutive models. These theories can be classified into
two major classes on the basis of assumed fields: Stress based theories and displacement based
theories. In stress based theories, the stresses are treated as primary variables. In displacement
based theories, displacements are treated as primary variables.

Kirchhoff [5, 6] developed the well-known classical plate theory (CPT). It is based on the
Kirchhoff hypothesis that straight lines normal to the undeformed midplane remain straight and
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normal to the deformed midplane. In accordance with the kinematic assumptions made in the
CPT all the transverse shear and transverse normal strains are zero. The CPT is widely used
for static bending, vibrations and stability of thin plates in the area of solid structural mechan-
ics. Since the transverse shear deformation is neglected in CPT, it cannot be applied to thick
plates wherein shear deformation effects are more significant. Thus, its suitability is limited to
only thin plates. First-order shear deformation theory (FSDT) can be considered as improve-
ment over the CPT. It is based on the hypothesis that the normal to the undeformed midplane
remain straight but not necessarily normal to the midplane after deformation. This is known
as FSDT because the thicknesswise displacement field for the inplane displacement is linear
or of the first order. Reissner [13, 14] has developed a stress based FSDT which incorporates
the effect of shear and Mindlin [9] employed displacement based approach. In Mindlin’s the-
ory, transverse shear stress is assumed to be constant through the thickness of the plate, but
this assumption violates the shear stress free surface conditions on the top and bottom surfaces
of the plate. Mindlin’s theory satisfies constitutive relations for transverse shear stresses and
shear strains by using shear correction factor. The limitations of CPT and FSDTs forced the
development of higher order shear deformation theories (HSDTs) to avoid the use of shear cor-
rection factors, to include correct cross sectional warping and to get the realistic variation of the
transverse shear strains and stresses through the thickness of plate. The higher order theory is
developed by Reddy [12] to get the parabolic shear stress distribution through the thickness of
plate and to satisfy the shear stress free surface conditions on the top and bottom surfaces of the
plate to avoid the need of shear correction factors. Comprehensive reviews of refined theories
have been given by Noor and Burton [10] and Vasil’ev [17], whereas Liew et al. [8] surveyed
plate theories particularly applied to thick plate vibration problems. A recent review papers are
presented by Ghugal and Shimpi [1] and Kreja [7]. The effect of transverse shear and transverse
normal strain on the static flexure of thick isotropic plates using trigonometric shear deforma-
tion theory is studied by Ghugal and Sayyad [2]. Shimpi and Patel [15] developed two variable
refined plate theory for the static flexure and free vibration analysis of isotropic plates; however,
theory of these authors yields the frequencies identical to those of Mindlin’s theory. Ghugal and
Pawar [3] have developed hyperbolic shear deformation theory for the bending, buckling and
free vibration analysis of thick shear flexible plates. Karama et al. [4] has proposed exponential
shear deformation theory for the multilayered beam structures. Exact elasticity solution for bidi-
rectional bending of plates is provided by Pagano [11], whereas Srinivas et. al. [16] provided
an exact analysis for Vibration of simply supported homogeneous thick rectangular plates.

In this paper a displacement based an exponential shear deformation theory (ESDT) is used
for the bi-directional bending and free vibration analysis of thick isotropic square and rect-
angular plates which includes effect of transverse shear deformation and rotary inertia. The
displacement field of the theory contains three variables as in the FSDT of plate. The theory is
shown to be simple and more effective for the bending and free vibration analysis of isotropic
plates.

2. Theoretical formulation

2.1. Isotropic plate under consideration

Consider a plate made up of isotropic material as shown in Fig. 1. The plate occupies a region
given by Eq. (1):

0 ≤ x ≤ a, 0 ≤ y ≤ b, −h/2 ≤ z ≤ h/2. (1)
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Fig. 1. Plate geometry and co-ordinate system

2.2. Assumptions made in the proposed theory

1. The displacement components u and v are the inplane displacements in x and y — di-
rections respectively and w is the transverse displacement in z-direction. These displace-
ments are small in comparison with the plate thickness.

2. The in-plane displacement u in x-direction and v in y-direction each consist of two parts:

(a) a displacement component analogous to displacement in classical plate theory of
bending;

(b) displacement component due to shear deformation which is assumed to be exponen-
tial in nature with respect to thickness coordinate.

3. The transverse displacement w in z-direction is assumed to be a function of x and y
coordinates.

4. The plate is subjected to transverse load only.

2.3. The proposed plate theory

Based upon the before mentioned assumptions, the displacement field of the proposed plate
theory is given as below:

u(x, y, z, t) = −z
∂w(x, y, t)

∂x
+ f(z)φ(x, y, t),

v(x, y, z, t) = −z
∂w(x, y, t)

∂y
+ f(z)ψ(x, y, t), (2)

w(x, y, z, t) = w(x, y, t),

where f(z) = z exp
[
−2

(
z
h

)2]
.

Here u, v and w are the displacements in the x, y and z-directions respectively. The expo-
nential function in terms of thickness coordinate [f(z)] in both the inplane displacements u and
v is associated with the transverse shear stress distribution through the thickness of plate. The
functions φ and ψ are the unknown functions associated with the shear slopes.
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2.4. Superiority of the present theory

The present theory is a displacement-based refined theory, and refined shear deformation the-
ories are known to be successful techniques for improving the accuracy of displacement and
stresses. The kinematics of the present theory is much richer than those of the higher order
shear deformation theories available in the literature, because if the exponential term is ex-
panded in power series, the kinematics of higher order theories are implicitly taken into account
to good deal of extent. Exponential function has all even and odd powers in its expansion unlike
sine function which have only odd powers.

2.5. Strain-displacement relationships

Normal strains (εx and εy) and shear strains (γxy, γyz, γzx) are obtained within the framework
of linear theory of elasticity using the displacement field given by Eq. (2).

εx =
∂u

∂x
= −z

∂2w

∂x2
+ f(z)

∂φ

∂x
,

εy =
∂v

∂y
= −z

∂2w

∂y2
+ f(z)

∂ψ

∂y
,

γxy =
∂u

∂y
+

∂v

∂x
= −2z

∂2w

∂x∂y
+ f(z)

(
∂φ

∂y
+

∂ψ

∂x

)
, (3)

γzx =
∂u

∂z
+

∂w

∂x
=

df(z)

dz
φ,

γyz =
∂v

∂z
+

∂w

∂y
=

df(z)

dz
ψ.

2.6. Stress-strain relationships

For a plate of constant thickness, composed of isotropic material, the effect of transverse normal
stress σz on the gross response of the plate is assumed to be negligible in comparison with
inplane stresses σx and σy. Therefore, for a linearly elastic material, stresses σx and σy are
related to normal strains εx and εy and shear stresses τxy, τyz and τzx are related to shear strains
γxy, γyz and γzx by the following constitutive relations:

σx =
E

1− μ2
(εx + μεy) =

E

1− μ2

[
−z

∂2w

∂x2
+ f(z)

∂φ

∂x

]
+

μE

1− μ2

[
−z

∂2w

∂y2
+ f(z)

∂ψ

∂y

]
,

σy =
E

1− μ2
(εy + μεx) =

μE

1− μ2

[
−z

∂2w

∂x2
+ f(z)

∂φ

∂x

]
+

E

1− μ2

[
−z

∂2w

∂y2
+ f(z)

∂ψ

∂y

]
,

τxy = Gγxy =
E

2(1 + μ)

[
−2z

∂2w

∂x∂y
+ f(z)

(
∂φ

∂y
+

∂ψ

∂x

)]
, (4)

τzx = Gγzx =
E

2(1 + μ)

df(z)

dz
φ, τyz = Gγyz =

E

2(1 + μ)

df(z)

dz
ψ.

3. Governing equations and boundary conditions

Using the Eqs. (2)–(4) and the principle of virtual work, variationally consistent governing
differential equations and associated boundary conditions for the plate under consideration can
be obtained. The dynamic version of principle of virtual work when applied to the plate leads
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to

z=h/2∫
z=−h/2

y=b∫
y=0

x=a∫
x=0

[σxδεx + σyδεy + τyzδγyz + τzxδγzx + τxyδγxy] dx dy dz− (5)

y=b∫
y=0

x=a∫
x=0

q(x, y) δw dx dy + ρ

z=h/2∫
z=−h/2

y=b∫
y=0

x=a∫
x=0

[
∂2u

∂t2
δu+

∂2v

∂t2
δv +

∂2w

∂t2
δw

]
dx dy dz = 0,

where symbol δ denotes the variational operator. Employing Green’s theorem in Eq. (5) succes-
sively, we obtain the coupled Euler-Lagrange equations, which are the governing equations and
the associated boundary conditions of the plate. The governing differential equations in-terms
of stress resultants are as follows:

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ q = I1

∂2w

∂t2
− I2

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)
+ I3

(
∂3φ

∂x∂t2
+

∂3ψ

∂y∂t2

)
,

∂Nsx

∂x
+

∂Nsxy

∂y
−NTcx = −I3

∂3w

∂x∂t2
+ I4

∂2φ

∂t2
, (6)

∂Nsy

∂y
+

∂Nsxy

∂x
−NTcy = −I3

∂3w

∂y∂t2
+ I4

∂2ψ

∂t2
.

The boundary conditions at x = 0 and x = a obtained are of the following form:

either Vx = 0 or w is prescribed,
either Mx = 0 or ∂w

∂x
is prescribed,

either Nsx = 0 or φ is prescribed,
either Nsxy = 0 or ψ is prescribed.

(7)

The boundary conditions at y = 0 and y = b obtained are of the following form:

either Vy = 0 or w is prescribed,
either My = 0 or ∂w

∂y
is prescribed,

either Nsxy = 0 or φ is prescribed,
either Nsy = 0 orψ is prescribed.

(8)

Reaction at the corners of the plate is of the following form:

either Mxy = 0 or w is prescribed. (9)

The stress resultants in the governing equations [Eq. (6)] and boundary conditions [Eqs. (7)–(9)]
are given as:

(Mx,My,Mxy) =

∫ h/2

−h/2

(σx, σy, τxy)z dz, (Nsx, Nsy, Nsxy) =

∫ h/2

−h/2

(σx, σy, τxy)f(z) dz,

(NTcx, NTcy) =

∫ h/2

−h/2

(τzx, τyz)
df(z)

dz
dz, (10)

Vx =
∂Mx

∂x
+ 2

∂Mxy

∂y
, Vy =

∂My

∂y
+ 2

∂Mxy

∂x
.
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The governing differential equations in-terms of unknown displacement variables used in the
displacement field (w, φ and ψ) obtained are as follows:

D1

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
−D2

(
∂3φ

∂x3
+

∂3φ

∂x∂y2
+

∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)
+

I1
∂2w

∂t2
− I2

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)
+ I3

(
∂3φ

∂x∂t2
+

∂3ψ

∂y∂t2

)
= q,

D2

(
∂3w

∂x3
+

∂3w

∂x∂y2

)
−D3

(
∂2φ

∂x2
+

(1− μ)

2

∂2φ

∂y2

)
+ (11)

D4φ−D3
(1 + μ)

2

∂2ψ

∂x∂y
− I3

∂3w

∂x∂t2
+ I4

∂2φ

∂t2
= 0,

D2

(
∂3w

∂y3
+

∂3w

∂x2∂y

)
−D3

(
(1− μ)

2

∂2ψ

∂x2
+

∂2ψ

∂y2

)
+

D4ψ −D3
(1 + μ)

2

∂2φ

∂x∂y
− I3

∂3w

∂y∂t2
+ I4

∂2ψ

∂t2
= 0.

The associated consistent boundary conditions in-terms of unknown displacement variables
obtained along the edges x = 0 and x = a are as below:

either D1

[
∂3w

∂x3
+ (2− μ)

∂3w

∂x∂y2

]
−

D2

[
∂2φ

∂x2
+ (1− μ)

∂2φ

∂y2
+

∂2ψ

∂x∂y

]
− I2

∂3w

∂x∂t2
− I3

∂3φ

∂t2
= 0 or w is prescribed,

either D1

(
∂2w

∂x2
+ μ

∂2w

∂y2

)
−D2

(
∂φ

∂x
+ μ

∂ψ

∂y

)
= 0 or

∂w

∂x
is prescribed, (12)

either D2

(
∂2w

∂x2
+ μ

∂2w

∂y2

)
− 2D3

(
∂φ

∂x
+ μ

∂ψ

∂y

)
= 0 or φ is prescribed,

either D3

(
∂ψ

∂x
+

∂φ

∂y

)
−D2

∂2w

∂x∂y
= 0 or ψ is prescribed.

The associated consistent boundary conditions in-terms of unknown displacement variables
obtained along the edges y = 0 and y = b are as below:

either D1

[
∂3w

∂y3
+ (2− μ)

∂3w

∂x2∂y

]
−

D2

[
∂2ψ

∂y2
+ (1− μ)

∂2ψ

∂x2
+

∂2φ

∂x∂y

]
− I2

∂3w

∂y∂t2
− I3

∂3ψ

∂t2
= 0 or w is prescribed,

either D1

(
μ
∂2w

∂x2
+

∂2w

∂y2

)
−D2

(
μ
∂φ

∂x
+

∂ψ

∂y

)
= 0 or

∂w

∂y
is prescribed, (13)

either D3

(
∂ψ

∂x
+

∂φ

∂y

)
−D2

∂2w

∂x∂y
= 0 or φ is prescribed,

either D2

(
μ
∂2w

∂x2
+

∂2w

∂y2

)
− 2D3

(
μ
∂φ

∂x
+

∂ψ

∂y

)
= 0 or ψ is prescribed.
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The boundary condition in-terms of unknown displacement variables (w, φ and ψ) obtained
along the corners of plate is:

either 2D1
∂2w

∂x∂y
−D2

(
∂φ

∂y
+

∂ψ

∂x

)
= 0 or w is prescribed, (14)

where constants Di and Ii appeared in governing equations and boundary conditions are as
follows:

D1 =
Eh3

12(1− μ2)
, D2 =

A0E

(1− μ2)
, D3 =

B0E

(1− μ2)
, D4 =

C0E

2(1 + μ)
, (15)

I1 = ρh, I2 =
ρh3

12
, I3 = ρA0, I4 = ρB0 (16)

and

A0 =

∫ h/2

−h/2

zf(z) dz, B0 =

∫ h/2

−h/2

f 2(z) dz, C0 =

∫ h/2

−h/2

[
df(z)

dz

]2
dz. (17)

4. Illustrative examples

Example 1: Bending analysis of isotropic plates subjected to uniformly distributed load

A simply supported isotropic square plates occupying the region given by the Eq. (1) is con-
sidered. The plate is subjected to uniformly distributed transverse load, q(x, y) on surface
z = −h/2 acting in the downward z-direction as given below:

q(x, y) =

∞∑
m=1

∞∑
n=1

qmn sin
(mπx

a

)
sin

(nπy
b

)
, (18)

where qmn are the coefficients of Fourier expansion of load, which are given by

qmn = 16q0
mnπ2 for m = 1, 3, 5, . . . , and n = 1, 3, 5, . . . ,

qmn = 0 for m = 2, 4, 6, . . . , and n = 2, 4, 6, . . . .
(19)

The governing differential equations and the associated boundary conditions for static flexure
of square plate under consideration can be obtained directly from Eqs. (6)–(9). The following
are the boundary conditions of the simply supported isotropic plate.

w = ψ = Mx = Nsx = 0 at x = 0 and x = a, (20)

w = φ = My = Nsy = 0 at y = 0 and y = b. (21)

Example 2: Bending analysis of isotropic plates subjected to sinusoidal load progress

A simply supported square plates is subjected to sinusoidal load progress in both x and y di-
rections, on surface z = −h/2, acting in the downward z direction. The load is expressed
as:

q(x, y) = q0 sin
(πx

a

)
sin

(πy
b

)
, (22)

where q0 is the magnitude of the sinusoidal loading at the centre.

Example 3: Bending analysis of isotropic plate subjected to linearly varying load

A simply supported square plate is subjected to linearly varying transverse load (q0x/a). The
intensity of load is zero at the edge x = 0 and maximum (q0) at the edge x = a. The
magnitude of coefficient of Fourier expansion of load in the Eq. (18) is given by qmn =
−(8q0/mnπ2) cos(mπ).
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4.1. The closed-form solution

The governing equations for bending analysis of plate (static flexure), discarding all the terms
containing time derivatives becomes:

D1

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
−D2

(
∂3φ

∂x3
+

∂3φ

∂x∂y2
+

∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)
= q,

D2

(
∂3w

∂x3
+

∂3w

∂x∂y2

)
−D3

(
∂2φ

∂x2
+

(1− μ)

2

∂2φ

∂y2

)
+D4φ−D3

(1 + μ)

2

∂2ψ

∂x∂y
= 0, (23)

D2

(
∂3w

∂y3
+

∂3w

∂x2∂y

)
−D3

(
(1− μ)

2

∂2ψ

∂x2
+

∂2ψ

∂y2

)
+D4ψ −D3

(1 + μ)

2

∂2φ

∂x∂y
= 0.

The following is the solution form for w(x, y), φ(x, y), and ψ(x, y) satisfying the boundary
conditions perfectly for a plate with all the edges simply supported:

w(x, y) =

∞∑
m=1

∞∑
n=1

wmn sin
(mπx

a

)
sin

(nπy
b

)
,

φ(x, y) =

∞∑
m=1

∞∑
n=1

φmn cos
(mπx

a

)
sin

(nπy
b

)
, (24)

ψ(x, y) =
∞∑

m=1

∞∑
n=1

ψmn sin
(mπx

a

)
cos

(nπy
b

)
,

where wmn, φmn and ψmn are unknown coefficients, which can be easily evaluated after substi-
tution of Eq. (24) in the set of three governing differential Eq. (23) resulting in following three
simultaneous equations, in case of sinusoidal load m = 1 and n = 1,

K11wmn +K12φmn +K13ψmn = qmn,

K12wmn +K22φmn +K23ψmn = 0, (25)

K13wmn +K23φmn +K33ψmn = 0,

where

K11 = D1π
4

(
m4

a4
+

n4

b4
+ 2

m2n2

a2b2

)
, K12 = −D2π

3

(
m3

a3
+

mn2

ab2

)
,

K13 = −D2π
3

(
n3

b3
+

m2n

a2b

)
, K22 = D3π

2

(
(1− μ)

2

n2

b2
+

m2

a2

)
+D4, (26)

K23 = D3
(1 + μ)

2

mnπ2

ab
, K33 = D3π

2

(
(1− μ)

2

m2

a2
+

n2

b2

)
+D4.

Having obtained the values of wmn, φmn and ψmn from above set of Eqs. (25) and (24), one can
then calculate all the displacement and stress components within the plate using displacement
field given by Eq. (2) and stress strain relationships given by Eq. (4).

4.2. Computation of displacements and inplane stresses

Substituting the final solution for w(x, y), φ(x, y) and ψ(x, y) in the displacement field, the final
displacements (u, v and w) can obtained and using strain-displacement relations, final strains
(εx, εy, γxy, γyz and γzx) can be obtained. Finally, the inplane stresses (σx, σy and τxy) could
be obtained by using stress-strain relations (constitutive relations) as given by the Eq. (5). Non-
dimensional displacements are represented as ū, v̄ and w̄, whereas non-dimensional inplane
stresses are represented as σ̄x, σ̄y and τ̄xy.
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4.3. Computation of transverse shear stresses

The transverse shear stresses τzx and τyz can be obtained either by using the constitutive rela-
tions [Eq. (4)] or by integrating equilibrium equations with respect to the thickness coordinate.
Equilibrium equations of three-dimensional elasticity, ignoring body forces, can be used to ob-
tain transverse shear stresses. These equations are:

∂σx

∂x
+

∂τxy
∂y

+
∂τzx
∂z

= 0 and
∂τxy
∂x

+
∂σy

∂y
+

∂τyz
∂z

= 0. (27)

Integrating Eq. (27) both w.r.t the thickness coordinate z and imposing the following boundary
conditions at top and bottom surfaces of the plate

[τzx]z=±h/2 = 0, [τyz ]z=±h/2 = 0, (28)

expressions for τzx and τyz can be obtained satisfying the requirements of zero shear stress con-
ditions on the top and bottom surfaces of the plate. Non-dimensional transverse shear stresses
are represented as τ̄zx and τ̄yz. Further it may be noted that τzx and τ̄zx obtained by constitutive
relations are indicated by τCR

zx and τ̄CR
zx and when they are obtained by using equilibrium equa-

tions, are indicated by τEE
zx and τ̄EE

zx . In case of isotropic plate u = v, σx = σy and τzx = τyz.

Example 4: Free vibration analysis of isotropic plates

The following is the solution form of w(x, y, t), φ(x, y, t), and ψ(x, y, t) for free vibration
analysis satisfying the boundary conditions (time dependent), perfectly for a plate with all the
edges simply supported:

w =
∞∑

m=1

∞∑
n=1

wmn sin
(mπx

a

)
sin

(nπy
b

)
sinωmnt,

φ =

∞∑
m=1

∞∑
n=1

φmn cos
(mπx

a

)
sin

(nπy
b

)
sinωmnt, (29)

ψ =

∞∑
m=1

∞∑
n=1

ψmn sin
(mπx

a

)
cos

(nπy
b

)
sinωmnt,

where wmn is the amplitude of translation and φmn and ψmn are the amplitudes of rotations. ωmn

is the natural frequency. The governing equations for free vibration of simply supported square
and rectangular plate can be obtained by setting the applied transverse load q(x, y) equal to zero
in the set of Eq. (11). Substitution of solution form [Eq. (29)] into the governing equations of
free vibration [Eqs. (11)] of plate results in following three simultaneous equations:

D1

(
m4π4

a4
+ 2

m2n2π4

a2b2
+

n4π4

b4

)
wmn −

D2

(
m3π3

a3
+

mn2π3

ab2

)
φmn −D2

(
n3π3

b3
+

m2nπ3

a2b

)
ψmn − (30)

ω2

(
I1 + I2

m2π2

a2
+ I2

n2π2

b2

)
wmn + ω2

mnI3
mπ

a
φmn + ω2

mnI3
nπ

b
ψmn = 0,
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−D2

(
m3π3

a3
+

mn2π3

ab2

)
wmn +

(
D3

m2π2

a2
+D3

(1− μ)

2

n2π2

b2
+D4

)
φmn + (31)

D3
(1 + μ)

2

mnπ2

ab
ψmn + ω2

mnI3
mπ

a
wmn − ω2

mnI4φmn = 0,

−D2

(
n3π3

b3
+

m2nπ3

a2b

)
wmn +D3

(1 + μ)

2

mnπ2

ab
φmn + (32)

(
D3

n2π2

b2
+D3

(1− μ)

2

m2π2

a2
+D

)
ψmn + ω2

mnI3
nπ

b
wmn − ω2

mnI4ψmn = 0.

Eqs. (30)–(32) are written in following matrix form:(
[K]− ω2

mn[M ]
)
{Δ} = 0, (33)

where [K] is stiffness matix, [M ] is mass matix and {Δ} is amplitude vector. The elements of
stiffness matrix are given in Eq. (26). Elements of mass matrix and amplitude vector are given
below:

M11 =

(
I1 + I2

m2π2

a2
+ I2

n2π2

b2

)
, M12 = −I3

mπ

a
, M13 = −I3

nπ

b
, (34)

M22 = I4, M23 = 0, M33 = I4, M21 = M12, M31 = M13,

{Δ}T = {wmn φmn ψmn}. (35)

Following material properties of isotropic plates are used:

E = 210GPa, μ = 0.3, G =
E

2(1 + μ)
and ρ = 7 800 kg/m3, (36)

where E is the Young’s modulus, G is the shear modulus, μ is the Poisson’s ratio and ρ is
density of the material.

5. Numerical results and discussion

5.1. Numerical results

Results obtained for displacements, stresses and natural frequencies will now be compared
and discussed with the corresponding results of higher order shear deformation theory (HSDT)
of Reddy [12], trigonometric shear deformation theory (TSDT) of Ghugal and Sayyad [2],
hyperbolic shear deformation theory (HPSDT) of Ghugal and Pawar [3], classical plate theory
(CPT) of Kirchhoff [5,6], first order shear deformation theory (FSDT) of Mindlin [9], the exact
elasticity solution for bidirectional bending of plate Pagano [11] and exact elasticity solution
for free vibrational analysis of plate Srinivas et. al. [16]. The numerical results are presented in
the following non-dimensional form for the purpose of presenting the results in this paper.

ū =
uE2

qhS3
, w̄ =

100Ew

qhS4
, (σ̄x, τ̄xy) =

(σx, τxy)

qS2
, (τ̄zx) =

(τzx)

qS
, ω̄mn = ωmnh

√
ρ/G, (37)

where S(a/h) =Aspect Ratio. The percentage error in result of a particular theory with respect
to the result of exact elasticity solution is calculated as follows:

% error =
value by a particular theory-valueby exact elasticity solution

value by exact elasticity solution
× 100. (38)
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Table 1. Comparison of non-dimensional inplane displacement (ū) at (x = 0, y = b/2, z = ±h/2),
transverse displacement (w̄) at (x = a/2, y = b/2, z = 0), inplane normal stress (σ̄x) at (x = a/2,
y = b/2, z = ±h/2), inplane shear stress (τ̄xy) at (x = 0, y = 0, z = ±h/2) and transverse shear stress
τ̄zx at (x = 0, y = b/2, z = 0) in isotropic square plate subjected to uniformly distributed load

S Theory Model ū w̄ σ̄x τ̄xy τ̄CR
zx τ̄EE

zx

4 Present ESDT 0.079 5.816 0.300 0.223 0.481 0.472
Reddy [12] HSDT 0.079 5.869 0.299 0.218 0.482 0.452
Ghugal and Sayyad [2] TSDT 0.074 5.680 0.318 0.208 0.483 0.420
Ghugal and Pawar [3] HPSDT 0.079 5.858 0.297 0.185 0.477 0.451
Mindlin [9] FSDT 0.074 5.633 0.287 0.195 0.330 0.495
Kirchhoff [5, 6] CPT 0.074 4.436 0.287 0.195 – 0.495
Pagano [11] Elasticity 0.072 5.694 0.307 – 0.460 –

10 Present ESDT 0.075 4.658 0.289 0.204 0.494 0.490
Reddy [12] HSDT 0.075 4.666 0.289 0.203 0.492 0.486
Ghugal and Sayyad [2] TSDT 0.073 4.625 0.307 0.195 0.504 0.481
Ghugal and Pawar [3] HPSDT 0.074 4.665 0.289 0.193 0.489 0.486
Mindlin [9] FSDT 0.074 4.670 0.287 0.195 0.330 0.495
Kirchhoff [5, 6] CPT 0.074 4.436 0.287 0.195 – 0.495
Pagano [11] Elasticity 0.073 4.639 0.289 – 0.487 –

Table 2. Comparison of non-dimensional inplane displacement (ū) at (x = 0, y = b/2, z = ±h/2),
transverse displacement (w̄) at (x = a/2, y = b/2, z = 0), inplane normal stress (σ̄x) at (x = a/2,
y = b/2, z = ±h/2), inplane shear stress (τ̄xy) at (x = 0, y = 0, z = ±h/2) and transverse shear stress
τ̄zx at (x = 0, y = b/2, z = 0) in isotropic square plate subjected to sinusoidal load

S Theory Model ū w̄ σ̄x τ̄xy τ̄CR
zx τ̄EE

zx

4 Present ESDT 0.046 3.748 0.213 0.114 0.238 0.236
Reddy [12] HSDT 0.046 3.787 0.209 0.112 0.237 0.226
Ghugal and Sayyad [2] TSDT 0.044 3.653 0.226 0.133 0.244 0.232
Ghugal and Pawar [3] HPSDT 0.047 3.779 0.209 0.112 0.236 0.235
Mindlin [9] FSDT 0.044 3.626 0.197 0.106 0.159 0.239
Kirchhoff [5, 6] CPT 0.044 2.803 0.197 0.106 – 0.238
Pagano [11] Elasticity 0.049 3.662 0.217 – 0.236 –

10 Present ESDT 0.044 2.954 0.200 0.108 0.239 0.238
Reddy [12] HSDT 0.044 2.961 0.199 0.107 0.238 0.229
Ghugal and Sayyad [2] TSDT 0.044 2.933 0.212 0.110 0.245 0.235
Ghugal and Pawar [3] HPSDT 0.044 2.959 0.199 0.107 0.237 0.238
Mindlin [9] FSDT 0.044 2.934 0.197 0.106 0.169 0.239
Kirchhoff [5, 6] CPT 0.044 2.802 0.197 0.106 – 0.238
Pagano [11] Elasticity 0.044 2.942 0.200 – 0.238 –
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Table 3. Comparison of inplane displacement (ū) at (x = 0, y = b/2, z = ±h/2), transverse displace-
ment (w̄) at (x = a/2, y = b/2, z = 0), inplane normal stress (σ̄x) at (x = a/2, y = b/2, z = ±h/2),
inplane shear stress (τ̄xy) at (x = 0, y = 0, z = ±h/2) and transverse shear stress τ̄zx at (x = 0,
y = b/2, z = 0) in isotropic square plate subjected to linearly varying load

S Theory Model ū w̄ σ̄x τ̄xy τ̄CR
zx τ̄EE

zx

4 Present ESDT 0.0396 2.908 0.150 0.111 0.240 0.236
Reddy [12] HSDT 0.039 5 2.935 0.150 0.109 0.241 0.226
Ghugal and Sayyad [2] TSDT 0.037 0 2.840 0.159 0.104 0.241 0.210
Ghugal and Pawar [3] HPSDT 0.039 5 2.929 0.148 0.092 0.239 0.225
Mindlin [9] FSDT 0.037 0 2.817 0.144 0.097 0.165 0.247
Kirchhoff [5, 6] CPT 0.037 0 2.218 0.144 0.097 – 0.247
Pagano [11] Elasticity 0.036 0 2.847 0.153 – 0.230 –

10 Present ESDT 0.037 5 2.329 0.144 0.102 0.247 0.245
Reddy [12] HSDT 0.037 5 2.333 0.144 0.101 0.246 0.243
Ghugal and Sayyad [2] TSDT 0.036 5 2.313 0.153 0.097 0.252 0.241
Ghugal and Pawar [3] HPSDT 0.037 0 2.332 0.144 0.096 0.245 0.243
Mindlin [9] FSDT 0.037 0 2.335 0.143 0.097 0.165 0.248
Kirchhoff [5, 6] CPT 0.037 0 2.213 0.143 0.097 – 0.248
Pagano [11] Elasticity 0.036 5 2.320 0.144 – 0.244 –

Fig. 2. Through thickness variation of inplane dis-
placement of isotropic plate subjected to uniformly
distributed load for aspect ratio 4

Fig. 3. Through thickness variation of transverse
displacement of isotropic plate subjected to uni-
formly distributed load for aspect ratio 4

Fig. 4. Through thickness variation of inplane nor-
mal stress of isotropic plate subjected to uniformly
distributed load for aspect ratio 4

Fig. 5. Through thickness variation of transverse
shear stress of isotropic plate subjected to uni-
formly distributed load for aspect ratio 4
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Fig. 6. Through thickness variation of inplane dis-
placement of isotropic plate subjected to single sine
load for aspect ratio 4

Fig. 7. Through thickness variation of transverse
displacement of isotropic plate subjected to single
sine load for aspect ratio 4

Fig. 8. Through thickness variation of inplane nor-
mal stress of isotropic plate subjected to single sine
load for aspect ratio 4

Fig. 9. Through thickness variation of transverse
shear stress of isotropic plate subjected to single
sine load for aspect ratio 4

Fig. 10. Through thickness variation of inplane dis-
placement of isotropic plate subjected to linearly
varying load for aspect ratio 4

Fig. 11. Through thickness variation of transverse
displacement of isotropic plate subjected to linearly
varying load for aspect ratio 4
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Fig. 12. Through thickness variation of inplane
normal stress of isotropic plate subjected to linearly
varying load for aspect ratio 4

Fig. 13. Through thickness variation of transverse
shear stress of isotropic plate subjected to linearly
varying load for aspect ratio 4

5.2. Discussion of results

Example 1: Table 1 shows the comparison of maximum displacements and stresses for the
isotropic plate subjected to uniformly distributed load. The present theory and other higher
order theories overestimate the results of inplane displacement as compared to those of exact
solution. Through thickness variation of inplane displacement for isotropic plate subjected to
uniformly distributed load is shown in Fig. 2. The value of maximum transverse displacement
by present theory (ESDT), HPSDT and HSDT overestimate it by 2.142%, 2.880% and 3.073%
for aspect ratio 4 and 0.409%, 0.560% and 0.582% for aspect ratio 10 respectively. TSDT
gives the results which are in close agreement with exact value as compared to the theories of
Kirchhoff and Mindlin for both aspect ratios. Variation of maximum transverse displacement
with aspect ratio is shown in Fig. 3. Maximum values of inplane normal stress obtained by
Present theory and HSDT are in close agreement with exact solution for aspect ratio 4, whereas
yields exact value of it for aspect ratio 10. However CPT and FSDT underestimate the result by
6.51% for aspect ratio 4.

Its through thickness distribution is shown in Fig. 4. As exact elasticity solutions for inplane
shear stress are not available, the results are compared with the other higher order theories,
and corresponding values of FSDT and CPT. Present theory is in close agreement with the
available solution in the literature. The transverse shear stress can be obtained directly by
constitutive relations and equilibrium equations. The examination of Table 1 also reveals that
the present theory overestimates the transverse shear stress by 4.656% than the exact elasticity
solution when obtained using constitutive relation and underestimates the same by 2.608% when
obtained using equilibrium equation for aspect ratio 4 (see Fig. 5). For aspect ratio 10, the
results of transverse shear stresses, obtained by constitutive relations and equilibrium equation
are in close agreement with the elasticity solution.

Example 2: The displacements and stresses for isotropic plate subjected to sinusoidal load are
presented in Tables 2. The result of inplane displacement predicted by present theory and HSDT
is identical for the aspect ratio 4 (overestimated by 6.976%), whereas HPSDT overestimates it
by 9.302%. Inplane displacement predicted by TSDT is in excellent agreement for both the
aspect ratios. Its variation through thickness of the plate is shown in Fig. 6.
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Table 4. Comparison of natural bending mode frequencies (ω̄w) and thickness shear mode frequencies
(ω̄φ and ω̄ψ) of simply supported isotropic square plates (S = 10)

a/b ω̄ (m,n) Exact Present Ghugal and Reddy Mindlin CPT
[16] [ESDT] Sayyad [2] [12] [9] [5, 6]

1.0 ω̄w (1, 1) 0.093 2 0.093 1 0.093 3 0.093 1 0.093 0 0.095 5
(1, 2) 0.222 6 0.222 3 0.223 1 0.221 9 0.221 9 0.236 0
(1, 3) 0.417 1 0.416 3 0.418 4 0.415 0 0.414 9 0.462 9
(2, 2) 0.342 1 0.341 5 0.343 1 0.340 6 0.340 6 0.373 2
(2, 3) 0.523 9 0.522 8 0.525 8 0.520 8 0.520 6 0.595 1
(2, 4) 0.751 1 0.749 9 0.754 2 0.745 3 0.744 6 0.892 6
(3, 3) 0.688 9 0.687 4 0.691 7 0.683 9 0.683 4 0.809 0
(4, 4) 1.088 9 1.087 2 1.094 5 1.078 5 1.076 4 1.371 6

ω̄φ (1, 1) 3.172 9 3.162 6 3.172 9 3.174 9 3.173 0 –
(1, 2) 3.219 2 3.209 1 3.219 1 3.221 2 3.219 3 –
(1, 3) 3.294 9 3.285 1 3.294 9 3.296 9 3.295 1 –
(2, 2) 3.264 8 3.254 9 3.264 8 3.266 8 3.265 0 –
(2, 3) 3.339 6 3.329 9 3.339 6 3.341 5 3.339 7 –
(2, 4) 3.441 4 3.432 0 3.441 4 3.443 3 3.441 6 –
(3, 3) 3.412 6 3.403 1 3.412 6 3.414 5 3.412 8 –
(4, 4) 3.609 4 3.600 4 3.609 4 3.611 2 3.609 6 –

ω̄ψ (1, 1) 3.246 5 3.242 8 3.246 9 3.255 5 3.253 8 –
(1, 2) 3.393 3 3.399 4 3.394 0 3.412 5 3.411 2 –
(1, 3) 3.616 0 3.638 1 3.617 8 3.651 7 3.651 0 –
(2, 2) 3.529 8 3.545 5 3.531 2 3.558 9 3.558 0 –
(2, 3) 3.739 3 3.770 9 3.741 4 3.784 8 3.784 2 –
(2, 4) 4.003 7 4.057 6 4.008 2 4.072 0 4.072 0 –
(3, 3) 3.931 0 3.978 6 3.935 1 3.992 8 3.992 6 –
(4, 4) 4.401 3 4.494 4 4.410 2 4.509 2 4.509 8 –

Table 5. Comparison of natural bending mode frequencies (ω̄w) of simply supported isotropic rectangular
plates (S = 10)

a/b ω̄ (m,n) Exact Present Ghugal and Reddy Mindlin CPT
[16] [ESDT] Sayyad [2] [12] [9] [5, 6]√

2 ω̄w (1, 1) 0.070 4 0.070 4 0.070 5 0.070 4 0.070 3 0.071 8
(1, 2) 0.137 6 0.137 6 0.139 3 0.137 4 0.137 3 0.142 7
(1, 3) 0.243 1 0.243 3 0.243 8 0.242 6 0.242 4 0.259 1
(1, 4) 0.380 0 0.380 3 0.381 1 0.378 9 0.378 2 0.418 2
(2, 1) 0.201 8 0.201 7 0.202 3 0.204 1 0.201 2 0.212 8
(2, 2) 0.263 4 0.263 9 0.264 2 0.262 8 0.262 5 0.282 1
(2, 3) 0.361 2 0.363 9 0.362 3 0.360 1 0.359 5 0.395 8
(2, 4) 0.489 0 0.492 8 0.490 6 0.487 4 0.486 1 0.551 3
(3, 1) 0.398 7 0.398 5 0.399 9 0.397 5 0.396 7 0.440 6
(3, 2) 0.453 5 0.455 2 0.455 0 0.452 0 0.450 9 0.507 3
(3, 3) 0.541 1 0.546 5 0.543 1 0.539 2 0.537 5 0.616 8
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The maximum central deflection for single sine load obtained by the present theory over-
estimates the value by 2.348% than the exact. TSDT yields the value very closed to the exact
value, whereas HPSDT overestimates it by 3.194%. HSDT is in error by 3.413%. The FSDT
underestimates the value of maximum transverse deflection by 0.983%, whereas CPT underes-
timates the same by 23.45% as compared to exact value due to the neglect of shear deformation
for aspect ratio 4. For aspect ratio 10, the value of maximum transverse displacement by present
theory overestimate it by 0.407%, HPSDT overestimate it by 0.577%, whereas TSDT underes-
timates it by 0.306%, and HSDT and FSDT overestimate it by 0.645% and 0.271% respectively.
For the same aspect ratio, CPT underestimates the value by 4.758%. Fig. 7 shows the variation
of transverse displacement with aspect ratio of the plate. The present theory underestimates
inplane normal stress by 1.483%, HPSDT underestimates it by 3.686%. TSDT overestimates
it by 4.147%, whereas HSDT and FSDT underestimate it by 3.686%, and 9.216% respectively
for aspect ratio 4. It is observed that the values of present theory and other theories are in
close agreement with those of exact solution for aspect ratio 10. The through thickness dis-
tribution of this stress is shown in Fig. 8. The transverse shear stress obtained by constitutive
relations are much closed to those of elasticity solution for aspect ratio 4 and 10. The present
theory predicts exact value of transverse shear stress for aspect ratios 4 and 10 using equations
of equilibrium. HSDT and TSDT underestimate the transverse shear stress for both the as-
pect ratios. HPSDT underestimate the transverse shear stress for aspect ratio 4 and yield exact
value of it for aspect ratio 10. The variation of this stress through the thickness is presented in
Fig. 9.

Example 3: The numerical results of displacements and stresses of simply supported square
plate subjected to linearly varying load are presented in Table 3 and found in excellent agree-
ment with exact solution. Through thickness variations of displacements and stresses are shown
in Figs. 10–13.

Example 4: Table 4 shows comparison of non-dimensional bending mode frequencies and thick-
ness shear mode frequencies for simply supported isotropic square plates. The non-dimensional
frequency corresponding to bending mode is denoted by ω̄w. From the examination of Table 4,
it is observed that the present theory (ESDT) yields excellent values of bending frequencies for
all modes of vibration as compared to those of exact results. The value of bending frequencies
for fundamental mode predicted by ESDT and HSDT are identical. TSDT overestimates the
bending frequency for fundamental mode. HSDT underestimates the bending frequencies for
higher modes. FSDT yields the lower values of bending frequency for all modes of vibration
compared to those of other higher order and exact results, whereas CPT yields the higher values
for this frequency. The non-dimensional frequency corresponding to thickness-shear modes are
denoted by ω̄φ and ω̄ψ. The proposed ESDT shows excellent results for thickness shear mode
frequency ω̄φ for higher modes. HSDT yields the higher values of this frequency compared
to those of present and exact theories. Results for thickness shear mode frequency (ω̄φ) ob-
tained by FSDT is not satisfactory for higher modes. Thickness-shear mode frequencies (ω̄ψ)
for square plate predicted by ESDT shows good accuracy of results, whereas HSDT and FSDT
overestimates the same. Comparison of non-dimensional bending mode frequency (ω̄w) of sim-
ply supported isotropic rectangular plate is presented in Table 5. For rectangular plate, ESDT
and HSDT show exact value for the bending frequency when m = 1, n = 1. FSDT underes-
timates the bending frequencies for rectangular plate, whereas CPT overestimates the same for
fundamental mode.
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6. Conclusions

From the study of bending and free vibration analysis of thick isotropic plates by using expo-
nential shear deformation theory (ESDT), following conclusions are drawn:

1. The results of displacements and stresses obtained by present theory for the all loading
cases are in excellent agreement with those of exact solution.

2. The results of displacements and stresses when plate subjected to linearly varying load
are exactly half of those when plate subjected to uniformly distributed load

3. The frequencies obtained by the present theory for bending and thickness shear modes of
vibration for all modes of vibration are in excellent agreement with the exact values of
frequencies for the simply supported square plate.

4. The frequencies of bending and thickness shear modes of vibration according to present
theory are in good agreement with those of higher order shear deformation theory for sim-
ply supported rectangular plate. This validates the efficacy and credibility of the proposed
theory.
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