
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1323 | https://doi.org/10.1007/s42452-019-1359-6

Research Article

Bending, buckling and free vibration of nonlocal FG‑carbon 
nanotube‑reinforced composite nanobeams: exact solutions

Vahid Borjalilou1 · Ehsan Taati1 · Mohamad Taghi Ahmadian1

© Springer Nature Switzerland AG 2019

Abstract

This paper investigates the bending, buckling and free vibration behaviors of functionally graded carbon nanotube-
reinforced composite (FG-CNTRC) nanobeams by considering small-scale effect. The governing equations of motion of a 
Timoshenko beam under a general loading are derived utilizing the nonlocal elasticity theory. The equations governing 
bending and stretching behavior of CNTRC nanobeams are uncoupled to a fifth-order ordinary differential equation with 
respect to the rotation of cross-section for the static cases of bending and buckling. This uncoupling makes it possible 
to develop exact solutions for transverse deflection and buckling load of CNTRC nanobeams. Using differential operator 
method, the decoupled sixth-order differential equations in terms of the kinematic variables are obtained for vibration 
analysis. By setting the coefficients matrix in the corresponding system of homogenous algebraic equations to zero, 
an algebraic frequency equation is derived. Finally, based on the presented closed-form solutions, parametric studies 
are carried out to assess the effects of CNT distribution, nonlocal parameter and type of boundary conditions on the 
deflection, buckling and natural frequency of CNTRC nanobeams. Findings show that nonlocal effect on the mechanical 
behavior of nanobeams is strongly dependent on boundary conditions and loadings. It is seen that cantilever nanobe-
ams become harder by taking into account nonlocal effect, contrary to clamped and simply supported nanobeams. In 
addition, the influence of CNT distribution on the mechanical behavior of cantilever beams is more significant than that 
of simply supported and clamped beams.

Keywords FG-carbon nanotube-reinforced composite beams · Nonlocal elasticity theory · Buckling analysis · Free 
vibration · Small-scale effects

1 Introduction

1.1  Small‑scale effect

The small-scale effect, which has been justified by various 
empirical observations of mechanical behavior in small-
scale structures [1–3], plays a crucial role in optimal design 
of micro- and nanoelectromechanical systems (MEMS and 
NEMS) e.g. atomic force microscopes, chemical sensing 
device, actuators, and pumps. Owing to lack of the length 
scale parameters in its constitutive equations, the classi-
cal continuum theory cannot appropriately estimate the 

design parameters of micro- and nanostructures such as 
natural frequencies, maximum deflections and buckling 
loads. Consequently, several nonclassical continuum the-
ories have been proposed to account for the small-scale 
effect on the mechanical behavior of small-scale structures 
and eliminate the differences between results determined 
by theoretical and experimental methods [3–5]. Concern-
ing the submicron structures, the dispersion phenomenon 
which is the consequence of long-range intermolecular 
forces, was detected in propagations of waves with short 
wavelengths in elastic bodies [5–7]. To capture long-range 
effects, Eringen [6] considered that the nonlocal strain of 
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points under translational motion is the same with that 
of the classical theory, but the stress at a point is relevant 
to the strain in a region near that point. In recent years, 
researchers’ attention has been devoted to survey static 
[8–12], vibration [13, 14], buckling and postbuckling 
[15–17], dynamic [18–21] and thermomechanical [22–26] 
behavior of micro-and nanostructures according to the 
nonclassical continuum theories such as the nonlocal, 
modified couples stress and modified strain gradient 
theories.

1.2  Carbon nanotubes reinforced composites

The initial idea of carbon nanotubes (CNTs), as a type 
of novel materials with excellent thermal, electrical and 
mechanical properties especially low density, extraordi-
nary strength and corrosion resistance was proposed by 
Iijima [27]. By tradition, composites reinforced by carbon, 
glass, aramid or basalt fibers have a wide range of appli-
cations in structural systems in civil, mechanical, marine, 
aerospace engineering and many other modern industries. 
Recently, CNTs which can provide good interfacial bonds, 
have been utilized instead of traditional fibers for the rein-
forcement of matrix phases in composites. One of major 
applications of CNTs is to design nanosensors owing to 
their exceptional mechanical properties which leads to a 
reachable ultrahigh frequency range up to the terahertz 
order and a possible ultrahigh sensitivity. In order to ana-
lyze the mechanical behavior of CNT reinforced compos-
ites and simulate their effective material properties, vari-
ous experiments and theoretical techniques have been 
presented namely, molecular dynamics (MD) simulation 
[28, 29], representative volume element (RVE) [30], rule of 
mixture [31–33], and experimentations [34–36]. In recent 
decade, many demands have been raised for production of 
multilayer MEMS and NEMS with variable properties which 
are used in thermal environment [37]. Consequently, man-
ufacturing technologies were extended to make function-
ally graded (FG) layers in micron and submicron dimen-
sions with the desired electrical and mechanical properties 
at their bottom and top sides. Therefore, many research-
ers have focused on the thermal [38–40] and mechanical 
[41–44] behavior of FG micro- and nanostructures. With 
the rapid advancement of manufacturing technology, 
CNTs are used as the favorite reinforcements for polymer 
nanolayers utilized in different engineering applications.

1.3  A literature review on CNTRC beams

Some studies accomplished on the bending, buckling 
and vibration behavior of CNTRC beams are reviewed 
here. By employing the Euler–Bernoulli beam theory 
and von Kármán geometric nonlinearity, Rafiee et al. [45] 

analyzed large-amplitude free vibrations of FG-CNTRC 
beams with surface-bonded piezoelectric layers in ther-
mal environment and subjected to an input voltage. 
To solve the governing equations of the piezoelectric 
CNTRC beams, they applied the Galerkin method in con-
junction with the multiple time scales method. Ke et al. 
[46] surveyed dynamic stability behavior of Timoshenko 
FG-CNTRC beams under axial loading. In their work, the 
material properties of FG-CNTRCs have been assumed to 
be determined corresponding to the rule of mixture. In 
order to solve three governing equations for assessment 
of the dynamic stability characteristics, they utilized the 
differential quadrature (DQ) method. In the work of Ansari 
et al. [47], by taking into account the von Kármán geomet-
ric nonlinearity, forced vibration behavior of Timoshenko 
CNTRC beams has been studied. They discretized the non-
linear governing equations and associated boundary con-
ditions via the generalized differential quadrature (GDQ) 
method and then employed a Galerkin-based numerical 
technique to reduce the set of nonlinear partial differ-
ential equations into a time-varying set of Duffing-type 
ordinary ones. By implementing finite element method 
(FEM), dynamic analysis of Timoshenko and Euler–Ber-
noulli FG nanocomposite beams reinforced by randomly 
oriented carbon nanotubes under a moving load has been 
conducted by Yas and Heshmati [48]. They modelled the 
material properties via the Eshelby–Mori–Tanaka approach 
on the basis of an equivalent fiber. By defining the temper-
ature-dependent material properties of fibers and poly-
meric matrix through a refined rule of mixture, Jam and 
Kiani [49] presented responses of Timoshenko FG-CNTRC 
beams subjected to the action of an impacting mass. To 
derive time history deflection, they used the conventional 
polynomial Ritz method together with the Runge–Kutta 
method. By applying the p-Ritz method to extract natural 
frequencies, Lin and Xiang [50] explored the linear free 
vibration of FG-CNTRC beams based on the first order and 
third order shear deformation theories. Shen and Xiang 
[51] carried out an investigation on the large amplitude 
vibration, nonlinear bending and thermal postbuckling 
behavior of CNTRC beams resting on an elastic founda-
tion in thermal environments. They derived the motion 
equations of CNTRC beams by means of a higher order 
shear deformation beam theory and solved them by utiliz-
ing a two-step perturbation procedure. By accounting for 
the von Kármán geometric nonlinearity effect, Rafiee et al. 
[52] assessed thermal post-buckling behavior of Euler–Ber-
noulli CNTRC beams with surface-bonded piezoelectric 
layers. Based on the first-order shear deformation beam 
theory with von-Kármán geometric nonlinearity, Wu et al. 
[53] conducted an analysis on the thermal post-buckling 
behavior of FG-CNTRC beams subjected to in-plane tem-
perature change incorporating the effect of imperfection 
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sensitivity. In their study, generic imperfection function 
has been used to describe different possible imperfections 
such as sine type, global and localized imperfections. They 
solved the governing differential equations with the aid of 
DQ method in conjunction with modified Newton–Raph-
son technique. Yas and Samadi [54] carried out the free 
vibration and buckling analysis of Timoshenko CNTRC 
beams resting on an elastic foundation. In this work, to 
figure out natural frequencies and buckling loads, the 
governing equations have been solved through the GDQ 
method for beams with different boundary conditions.

1.4  Present study

From the abovementioned literature review, it is revealed 
that researches reported on the mechanical analysis of 
CNTRCs have been conducted on the basis of classical 
continuum theory, which is not able to account for small-
scale effect. In addition, to solve governing equations pre-
sented in previous investigations, semi-analytical methods 
such as Ritz and Galerkin methods or numerical methods 
have been implemented. The main contribution of current 
study is to develop size-dependent exact solutions for 
bending, buckling and free vibration of FG-carbon nano-
tube-reinforced composite nanobeams in the framework 
of nonlocal elasticity theory. Material properties of FG-
CNTRCs are assumed to be graded in the thickness direc-
tion and computed via extended rule of mixture. Based 
on the nonlocal elasticity theory and Timoshenko beam 

model, dynamic equilibrium equations of CNTRC nanobe-
ams with arbitrary boundary conditions are derived. For 
bending and buckling analysis, the bending and stretch-
ing coupled equations of CNTRC nanobeams are reduced 
to a decoupled fifth-order ordinary differential equation 
with respect to rotation of cross-section which can be 
solved exactly. For free vibration analysis, the differen-
tial operator method is applied to obtain the decoupled 
sixth-order differential equations governing the in-plane 
displacement, transverse deflection and the rotation of 
cross-section. A system of homogenous algebraic equa-
tions is obtained for arbitrary boundary conditions and 
the frequency equation is derived by setting coefficients’ 
matrix to zero. Detailed numerical results are provided to 
discuss the effects of CNT distribution, nonlocal parameter, 
aspect ratio and boundary conditions on the deflection, 
buckling and natural frequency of FG-CNTRC nanobeams.

2  Theoretical formulation

2.1  Problem definition

Consider a beam composed of CNTs and an isotropic 
matrix with length L , width b and thickness h , as shown 
in Fig. 1a. Also, the uniform distribution (UD) of CNTs and 
functionally graded (FG) CNTs, whose volume fraction 
is continuously varied through the thickness direction, 
are depicted in Fig. 1b. Moreover, a Cartesian coordinate 

Fig. 1  A carbon nanotube rein-
forced composite nanobeam
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system (x, y, z) is defined to indicate the components of 
displacement vector (u

1
 , u

2
 , u

3
) in these directions. Accord-

ing to Timoshenko beam model, the displacement com-
ponents are given by:

where u(x, t) is the in-plane displacement component 
(z = 0) in the length direction and w(x, t) is the transverse 
displacement. Also, �(x, t) is the rotation of cross-section 
about the y-axis. Meanwhile, the variable t is time and z is 
the distance from mid-plane.

2.1.1  Carbon nanotube‑reinforced composites

Here, the effective material properties of Carbon nano-
tube-reinforced composites (CNTRCs) are estimated using 
the extended rule of mixture which considers the size-
dependence of nanostructures. In the first step, the CNT 
volume fraction V

cnt
 for UD-CNTRC beams and two types 

of FG-CNTRC beams are as follows:

In the view of Eq. (2b), it can be readily concluded that 
the top and bottom surfaces of an FGX-CNTRC beam are 
CNT-rich while the mid-plane of an FGO-CNTRC beam is 
CNT-rich. The parameter V∗

cnt
 appearing in Eq. (2) is the 

total volume fraction of a CNTRC beam determined by 
the following:

where M
cnt

 is the mass fraction of CNTs. Also, and �
m

 
denote the densities of CNT and matrix, respectively. 
Note that the total CNT volume fractions of UD- and FG-
CNTRC beams given in Eq. (2) are exactly same. Taking 
into account the size-dependence of nanostructures, the 
extended rule of mixture is used to estimate the effective 
material properties of CNTRCs as follows:

where Ecnt
11

 , Ecnt
22

 , E
m

 , Gcnt

12
 , G

m
 , V cnt

12
 , and v

m
 are Young’s mod-

uli, shear moduli and Poisson’s ratios. Also, superscript or 

(1)u1 = u(x, t) + z �(x, t), u2 = 0, u3 = w(x, t)

(2a)UD ∶ V
cnt

= V
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cnt

(2b)
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|z|
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(
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)
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cnt
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)
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, v12 = V
cnt
v
cnt

12
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m
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,

(4b)� = V
cnt
�
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+ V
m
�
m

subscript cnt and m stand for CNTs and the matrix, respec-
tively. �

cnt
 , �

m
 , V

cnt
 and V

m
 are the densities and volume 

fractions of CNTs and the matrix. It is to be noticed that 
the volume fractions are related as V

cnt
+ V

m
= 1 with each 

other. Also, �
i
 ’s (for i = 1, 2, 3) are the CNT efficiency param-

eters considering the size-dependent effects.

2.1.2  Nonlocal elasticity theory

According to the nonlocal elasticity theory [5–7], the 
stress tensor at a point x of an elastic body depends on 
the strain tensor at all other points of body. On the basis 
of atomic theory of lattice dynamics and experimental 
observations on phonon dispersion, the nonlocal stress 
tensor � at point x can be expressed as follows:

In Eq. (5), the nonlocal modulus is denoted by the ker-
nel function, K (|x� − x|, �) , in which |x� − x| is the distance 
(in Euclidean norm) and � represents a material constant 
that depends on internal and external characteristic 
lengths. Also, �

(

x
′
)

 is the classical, macroscopic stress 
tensor at point x′ given by the generalized Hooke’s law:

where � and � are the fourth-order elasticity and strain 
tensor, respectively. The symbol: refers to the ‘double-dot 
product’. The nonlocal constitutive relation of a Hookean 
solid is defined using the constitutive relations given in 
Eqs. (5) and (6). Equation (5) denotes the weighted average 
of the strain field in the whole body related to the stress 
field at a point x . Since solving of the elasticity problems 
is effortful via integral constitutive relation in Eq. (5), an 
equivalent differential form of the integral constitutive 
relation is generally applied to model different problems. 
The differential form of nonlocal constitutive relations for 
an elastic body is written as below:

where � is the nonlocal parameter given by:

In Eq. (7b), e
0
 is a material constant, and a and l  denote the 

internal and external characteristic lengths, respectively.

2.2  Motion equations

Here, motion equations of carbon nanotube-reinforced 
composite beams under axial and transverse loading are 
derived based on the nonlocal elasticity theory. To this 

(5)�(x) = ∫
V

K (||x
� − x||, �)�(x

�)dx
�

(6)�(x�) = �(x�) ∶ �(x�)

(7a)(1 − �∇2)�(x) = �(x) ∶ �(x)

(7b)� = (� l)2 and � =
e0a

l
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purpose, the nonzero strain components of a Timoshenko 
beam are as follows:

It is worth mentioning that the shear correction factor is 
required to compensate for the error of Timoshenko beam 
model which is due to the assumption of constant shear 
stress. Also, the shear correction factor is a multifunction of 
different variables such as the material, geometric param-
eters, the type of load and boundary conditions. Based on 
the continuum mechanics theory for a linear elastic body, 
the strain energy of the Timoshenko beam is given by [23, 
24]:

where N
xx

 , M
xx

 and Qx are, respectively the in-plane force, 
bending moment and transverse shear force resultants of 
a carbon nanotube-reinforced composite beam which are 
obtained using the nonlocal elasticity theory as follows:

where, the stiffness coefficients appearing in (10) are 
defined by:

Here, K
S
 is the shear correction factor. Applying the inte-

gration by parts technique, the variation of strain energy 
in (9) can be rewritten as follows:

The variation of kinematic energy for a carbon nanotube-
reinforced composite beam is expressed as follows:
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dz . The variation of 

kinematic energy can be expressed as follows:

Using the integration by parts on time ( t ), the variation of 
kinematic energy is rewritten as follows:

Finally, the variation of external work done by the trans-
verse load per unit length with arbitrary distribution is given 
by:

Applying the integration by parts, the variation of exter-
nal work is rewritten as follows:

Substituting for the variations of strain energy, kinematic 
energy and external work from (12), (15) and (17) into the 
Hamilton principle 

(

∫ ∫ ∫ (�U + �T − �W)dV = 0
)

 results 

(13)

T =
1

2 ∫
A

L

∫
0

�(z)

[

(

�u
1

�t

)2

+

(

�u
2

�t

)2

+

(

�u
3

�t

)2
]

dz dA

=
1

2

L

∫
0

[

I
1

(

�u

�t

)2

+ 2I
2

(

��

�t

)

(

�u

�t

)

+ I3

(

��

�t

)2

+ I
1

(

�w

�t

)2

]

dz

(14)

�T =

L

∫
0

{[

I
1

�u

�t
+ I

2

��

�t

]

�

(

�u

�t

)

+

[

I
3

��

�t
+ I

2

�u

�t

]

�

(

��

�t

)

+ I
1

�w

�t
�

(

�w

�t

)

}

dz

(15)

�T =

L

∫
0

�

�t

{[

I
1

�u

�t
+ I

2

��

�t

]

�u

+

[

I
3

��

�t
+ I

2

�u

�t

]

�� + I
1

�w

�t
�w

}

dz

−

L

∫
0

{[

I
1

�2u

�t2
+ I

2

�2�

�t2

]

�u

+

[

I
3

�2�

�t2
+ I

2

�2u

�t2

]

�� + I
1

�2w

�t2
�w

}

dz

(16)�W =

L

∫
0

[

q(x, t)�w + P
�w

�x
�

(

�w

�x

)]

dx

(17)�W =

L

∫
0

[

q(x, t) − P
�
2w

�x2

]

�w dx + P
�w

�x
�w

|
|
|
|

x=L

x=0



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1323 | https://doi.org/10.1007/s42452-019-1359-6

in the motion equations of a carbon nanotube-reinforced 
composite beam subjected transverse load as follows:

Using the fundamental lemma of calculus of variations, the 
boundary conditions involve specifying one element of 
each of the two pairs ( N

xx
 , �u ), ( M

xx
 , �� ) and ( Qx − P�w∕�x

,�w).
In order to obtain the frequency responses of CNTRC 

beams, it is required to write the motion equations in 
the terms of kinematic variables and stiffness coeffi-
cients. To this end, substituting for �N

xx
∕�x from (18a) 

into Eq. (10a) results in:

By eliminating Qx between the governing equations 
given in (18b) and (18c), one can readily obtain

Substituting for �2M
xx
∕�x2 from Eq. (20) into Eq. (10b) 

results in:

By substitution of �Qx∕�x from Eq. (18c) into Eq. (10c), 
one can get:

2.3  Exact solutions

The optimal design of beams has an important role 
for development of MEMS and NEMS technology. The 
mechanical parameters including maximum deflection 
and stress, buckling load and frequency responses are 
selected as design variables in different applications. 
In this section, exact solutions for bending, buckling 
and vibration behavior of CNTRC beams with arbitrary 

(18a)�u ∶

�N
xx

�x
− I1

�2u

�t2
− I2

�2�

�t2
= 0,

(18b)�� ∶

�Mxx

�x
− Qx − I2

�2u

�t2
− I3

�2�

�t2
= 0,

(18c)�w ∶
�Qx

�x
+ q(x, t) − P

�
2w

�x2
− I1

�
2w

�t2
= 0,

(19)N
xx
= A

11

�u

�x
+ B

11

��

�x
+ �

[

I
1

�3u

�t2�x
+ I

2

�3�

�t2�x

]

(20)

�2Mxx

�x2
+ q(x, t) − P

�2w

�x2
− I1

�2w

�t2
− I2

�3u

�t2�x
− I3

�3�

�t2�x
= 0

(21)

Mxx = B11
�u

�x
+ D11

��

�x
+ �

[

−q(x, t) + P
�2w

�x2
+ I1

�2w

�t2

+ I2
�3u

�t2�x
+ I3

�3�

�t2�x

]

(22)Qx = A
55

(

� +
�w

�x

)

+ �

[

−
�q

�x
+ P

�3w

�x3
+ I

1

�3w

�t2�x

]

.

boundary conditions are developed which can be used 
in the conceptual design.

2.3.1  Bending and buckling behavior

Here, the bending problem of CNTRC beams under arbi-
trary transverse loading q(x) and constant axial force P is 
investigated to find the displacement field variables u(x) , 
�(x) , and w(x) . To this end, Eq. (18a) is integrated to yield 
(ignoring kinematic terms):

where P is a constant value of axial load. It is to be noticed 
that the kinematic terms appearing in the motion equa-
tions and the stress resultants are neglected for study of 
bending and buckling behavior. In the view of Eq. (23), 
term du∕dx is obtained by solving of Eq. (19) as follows:

Upon substitution of Eq. (24) into Eq. (21), one can get

By substituting of M
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 and Qx from Eqs. (21) and (22) into 
(18b), ensuing equation may be solved for dw∕dx to get
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d2�

dx2

}]

(28)a
1
P
d5𝜓

dx5
+ (a

2
− a

3
P)

d3𝜓

dx3
+ P

d𝜓

dx
+ q̄(x) = 0

(29a)

a1 =
�

A55

(

D11 −

B
2

11

A11

)

, a2 = D11 −

B
2

11

A11

,

a3 = � +
1

A55

(

D11 −

B
2

11

A11

)
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By integrating Eq. (26) results in

where D
0
 is an integration constant.

2.3.1.1 Bending problem For bending problem ( P = 0 ), the 
decoupled governing equation is simplified as follows:

Finally, the general solution of the fourth-order differ-
ential equation in (31) is obtained to be

where C
i
 ’s are three integration constants which are deter-

mined by imposing the appropriate boundary conditions 
at x = 0 and x = L . Substituting for � from Eq. (32a) into 
Eq. (30) results in

Here, three types of CNTRC beams with different bound-
ary conditions are defined as follows

where

(29b)q̄(x) =

[

1 − 𝜇
d2

dx2

]

q(x)

(30)w =
1

A
55

(

D
11
−

B2
11

A
11

)

d�

dx
− ∫ �dx + D

0

(31)
d3𝜓

dx3
= −

1

a
2

q̄(x)

(32a)� = C
0
+ C

1
x + C

2
x2 + �p(x)

(32b)𝜓p(x) = −
1

a
2
∭ q̄(x)dxdxdx

(33a)

w =
1

A
55

(

D
11
−

B2
11

A
11

)

[

C
1
+ 2C

2
x
]

−

[

C
0
x + C

1

x2

2
+ C

2

x3

3

]

+ D
0
+ wp(x)

(33b)wp(x) =
1

A
55

(

D
11
−

B2
11

A
11

)

d�p

dx
− ∫ �pdx

(34a)
Doubly clamped (CC) ∶ w = � = 0 at x = 0 and L

(34b)

Doubly simply supported (SS) ∶ w = 0 and

d𝜓

dx
=

1

a2

̄̄q(x) at x = 0 and L

(34c)

Cantilever (CF) ∶

{

w = 0 and 𝜓 = 0 at x = 0

𝜓 +
dw

dx
=

1

A55

d ̄̄q

dx
and

d𝜓

dx
=

1

a2

̄̄q at x = L

(35)q(x) = �q(x).

2.3.1.2 Buckling problem For buckling analysis ( q = 0 ), 
the decoupled governing equation in (28) is simplified as 
follows:

The solution of Eigen-value differential equation in (36) 
is obtained to be:

where,

Substituting Eq. (37) into Eq. (30) yields

It is to be noted that if the function of mode shapes 
is assumed to be harmonic, hence it is concluded that 
D
0
= D

1
= 0 . Furthermore, the buckling load P

cr
 can be cal-

culated by vanishing the coefficients matrix in the system 
of homogenous algebraic equations which is formed by 
imposing the boundary conditions. Therefore, the buck-
ling load of CNTCR beams with each type of boundary 
conditions can be computed as follows:

Here, two types of CNTRC beams with different bound-
ary conditions are defined as follows

2.3.2  Free vibration behavior

In this section, an exact solution for the free vibration 
behavior of CNTRC beams is developed. First, substitut-
ing for stress resultants from (19), (21) and (22) into (18) 
results in the nonlocal motion equations of CNTRC beams 
in terms of displacement components as follows:

(36)a
1
P
d5
�

dx5
+ (a

2
− a

3
P)

d3
�

dx3
+ P

d�

dx
= 0

(37)�(x, P) = D1 + C1e
�1x + C2e

−�1x + C3e
�2x + C4e

−�2x

(38)

�1,2 =

�

−a2 + a3P ±
√

Δ

2a1P
in which Δ = (a2 − a3P)

2 − 4a1P
2

(39)

w =
a
2

A
55

[

�
1

(

C
1
e
�1x − C

2
e
−�1x

)

+ �
2

(

C
3
e
�2x − C

4
e
−�2x

)]

− D
1
x −

1

�
1

(

C
1
e
�1x − C

2
e
−�1x

)

−
1

�
2

(

C
3
e
�2x − C

4
e
−�2x

)

+ D
0

(40)[A]4×4 {C}4×1 = 0

(41a)
Doubly clamped (CC) ∶ w = � = 0 at x = 0 and L

(41b)

Doubly simply supported (SS) ∶ w = 0 and

a2

d�

dx
+ �P

d2w

dx2
= −

B
11

A11

P at x = 0 and L

(42a)𝛿u ∶ A11

𝜕2u

𝜕x2
+ B11

𝜕2𝜓

𝜕x2
− ∇̄

[

I1
𝜕2u

𝜕t2
+ I2

𝜕2𝜓

𝜕t2

]

= 0,
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In Eq. (42), we have ∇̄ = 1 − 𝜇d2∕dx2 . To obtain the free 
vibration responses, the components of displacement vector 
can be proposed as follows:

in which, � is the natural frequency. Next, substituting 
Eq. (43) into Eq. (42) results in:

(42b)

𝛿𝜓 ∶ B11
𝜕2u

𝜕x2
+ D11

𝜕2𝜓

𝜕x2
− A55

(

𝜓 +
𝜕w

𝜕x

)

− ∇̄

[

I2
𝜕2u

𝜕t2
+ I3

𝜕2𝜓

𝜕t2

]

= 0,

(42c)𝛿w ∶ A
55

(

𝜕𝜓

𝜕x
+

𝜕2w

𝜕x2

)

− ∇̄

[

−q + I
1

𝜕2w

𝜕t2

]

= 0

(43){u,� ,w} = {U(x),� (x), W(x)}ei�t

(44a)

�u ∶ (A
11
− �2

I
1
�)

d2U

dx2
+ (B

11
− �2

I
2
�)

d2�

dx2
+ �2(I

1
U + I

2
� ) = 0

(44b)

�� ∶ (B
11
− �2

I
2
�)

d2U

dx2
+ (D

11
− �2

I
3
�)

d2�

dx2

+ A
55

(

� +
dW

dx

)

+ �2(I
2
U + I

3
� ) = 0

Based on the operator differential method [55], a system 
of linear algebraic equations is obtained in the following 
form:

Solving the system of algebraic equations appearing in 
(45) using Cramer’s rule results in:

where, a
i
 ’s are defined as follows:

The general solution of Eq. (46) is expressed as follows:

(44c)�w ∶ A
55
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dx
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55
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(46b)a
1
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dx6
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2
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3
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4
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d6U
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3
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4
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I3𝜇) − (B11 − 𝜔2
I2𝜇)

2
]

Bi = ciCi , B̄i = − ciC̄i , Di = diBi = diciCi , D̄i = di B̄i = − d̄iciCi W(x) =

3
∑

i=1

(

Cie
𝜆ix + C̄ie

−𝜆ix
)

a2 = − (A11 − 𝜔2
I1𝜇)

[

(A55 − I1𝜔
2𝜇)(𝜔2

I3 − A55) + I1𝜔
2(D11 − 𝜔2

I3𝜇) + A
2

55

]

− (A55 − I1𝜔
2𝜇)

[

I1𝜔
2(D11 − 𝜔2

I3𝜇) − I2𝜔
2(B11 − 𝜔2

I2𝜇)
]

+ (B11 − 𝜔2
I2𝜇)

[

𝜔2
I2(A55 − I1𝜔

2𝜇) + I1𝜔
2(B11 − 𝜔2

I2𝜇)
]

a3 = −𝜔2
I1

[

(A55 − I1𝜔
2𝜇)(𝜔2

I3 − A55) + I1𝜔
2(D11 − 𝜔2

I3𝜇) + A
2

55

]

− 𝜔2
I1

[

(A11 − 𝜔2
I1𝜇)(𝜔

2
I3 − A55) − I2𝜔

2(B11 − 𝜔2
I2𝜇)

]

+ 𝜔2
I2

[

𝜔2
I2(A55 − I1𝜔

2𝜇) + I1𝜔
2(B11 − 𝜔2

I2𝜇)
]

a4 = −𝜔2
I1

[

(A11 − 𝜔2
I1𝜇)(𝜔

2
I3 − A55) − (I2𝜔

2)2
]

(48a)W(x) =

3
∑

i=1

(

C
i
e
𝜆ix + C̄

i
e
−𝜆ix

)

(48b)𝛹 (x) =

3
∑

i=1

(

B
i
e
𝜆ix + B̄

i
e
−𝜆ix

)



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1323 | https://doi.org/10.1007/s42452-019-1359-6 Research Article

where �
i
 ’s are the roots of characteristic equation 

(

a
1
�
3

i
+ a

2
�
2

i
+ a

3
�
i
+ a

4
= 0

)

 and we have

Furthermore, the natural frequencies can be calcu-
lated by vanishing the coefficients matrix in the system 
of homogenous algebraic equations which is formed by 
imposing the boundary conditions. Therefore, the natural 
frequencies of CNTCR beams with each type of boundary 
conditions can be computed as follows:

Here, two types of CNTRC beams with different bound-
ary conditions are defined as follows

3  Numerical results and discussion

In Sect. 3.1, the parametric studies of bending behavior 
of SS, CC and CF-supported CNTRC beams subjected to 
transverse loads with uniform and sinusoidal distribu-
tions are presented. In Sects. 3.2 and 3.3, the effects of 
nonlocal parameter, CNT volume fraction and boundary 
conditions on the buckling values and natural frequen-
cies of CNTRC beams are studied. To obtain the numeri-
cal results, the matrix of CNTRC material are assumed 
to be poly(methyl methacrylate) (PMMA) with material 
properties E

m
= 2.5 GPa , �

m
= 0.3 and �

m
= 1190 kg/m

3 . 
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𝜆ix + D̄

i
e
−𝜆ix
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(49a)
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(50)[A]6×6 {C}6×1 = 0

(51a)
Doubly clamped (CC): u = w = � = 0 at x = 0 and L

(51b)
Doubly simply supported (SS): u = w = 0 and

Mxx = 0 at x = 0 and L.

In addition, a (10, 10) armchair SWCNT is selected as 
the reinforcement component with material properties 
E
cnt

11
= 5646.6 GPa ,  Ecnt

22
= 7080GPa ,  Gcnt

12
= 1944.5 GPa , 

�
cnt

12
= 0.175 and �

cnt
= 2100 kg/m

3 [50]. Also, the CNT effi-
ciency parameters for three values of volume fractions 
are given in Table 1. Moreover, the numerical value of 
the shear correction factor is taken to be 5/6. By letting 
the nonlocal parameter � equal to zero, the numerical 
results of CNTRC Timoshenko beams are obtained in the 
framework of the classical continuum theory. In order to 
present the numerical results, the dimensionless quanti-
ties of deflection, buckling load and natural frequency 
are defined as follows:

where q = q
0
 for uniform load and q = q

0
sin

(

�x

L

)

 for sinu-

soidal load.

3.1  Bending behavior

Figure 2 depicts the effect of three types of CNT distri-
butions on the bending behavior of an CNTRC beam 
with simply-supported (SS), clamped–clamped (CC) and 
cantilever (CF) boundary conditions which is subjected 
a uniform transverse load using the nonlocal theory 
(

� = 2 nm
2
)

 . The geometrical ratios of beam and CNT 
volume fraction are assumed to be L∕h = 10 , b∕h = 1 and 
V∗

cnt
= 0.12 . It is seen that among the CNTRC beams with 

any boundary conditions, FGO-CNTRCs and FGX-CNTRCs 
exhibit the maximum and minimum values of normal-
ized deflection, respectively. The effect of CNT distribu-
tion on the bending behavior of CNTRC beams is more 
significant when the stiffness of supports decreases 
especially for cantilever beams.

The variations of normalized deflection versus the 
normalized length for SS, CC and CF-supported FGX-
CNTRC beams ( h = b = 0.1 L = 1 nm and V∗

cnt
= 0.12 ) 

under a uniform transverse load, predicted by the clas-
sical (� = 0) and nonlocal 

(

� = 2and 4 nm2
)

 theories, are 
compared in Fig. 3. It is observed that the small-scale 
effect on the mechanical behavior of nanobeams is 
strongly dependent on the boundary conditions at 
the beam ends. Contrary to bending behavior of SS-
supported nanobeams, the normalized deflections of 

(52a)w̄ = w
384EmI

5q
0
L4

(52b)P̄ = P
L
2

𝜋2E
m
I

(52c)�̄� = 𝜔
L
2

𝜋2

√

𝜌
m
A

E
m
I

Table 1  CNT efficiency 
parameters for different values 
of CNT volume fraction

V∗

cnt
�
1

�
2

�
3

0.12 0.137 1.022 0.715

0.17 0.142 1.626 1.138

0.28 0.141 1.585 1.109
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Fig. 2  The variations of transverse displacement of an CNTRC beam 
with different distribution forms of CNTs

Fig. 3  The variations of transverse displacement of an CNTRC beam 
for different values of �
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cantilever beams decrease by considering the nonlocal-
ity effect. For the case of only uniform transverse load-
ing (P = 0 and q = q

0
) , the results predicted by classical 

and nonlocal theories are exactly same with each other, 
due to the terms including nonlocal parameter ( � ) in the 
governing equations [please see Eqs. (28)–(30)] are van-
ished and such terms do not exist in clamped–clamped 
boundary conditions given in (34a).

In Table  2, the effects of CNT volume fraction and 
boundary conditions on the maximum normalized 
deflections of FGX-CNTRC beams ( L∕h = 10 and b∕h = 1 ) 
subjected to two uniform ( q = q

0
 ) and sinusoidal 

( q = q
0
sin

(

�x

L

)

 ) distributions of transverse loads are 

studied using the nonlocal theory ( � = 2 nm
2 ). For vari-

ous values of V∗

cnt
 and each type of boundary conditions, 

the maximum normalized deflection of FGX-CNTRC 
beams subjected to the uniform transverse loading are 
larger than those caused by the sinusoidal distribution 
of transverse load. The differences between the results 
of uniform and sinusoidal distributions become larger as 
the stiffness of supports reduces especially for clamped-
free boundary conditions.

3.2  Buckling behavior

The normalized buckling loads of SS, and CC-supported 
CNTRC beams with L∕h = 10 and b∕h = 1 predicted by the 
classical (� = 0) and nonlocal (� = 2 and 4 nm2) theories 
are compared in Table 3, for various values of V∗

cnt
 and CNT 

distribution. The highest increase in the normalized buck-
ling loads of CNTRC beams is observed in the FGX distribu-
tion of CNT. Also, it is seen that the stiffness of FGO-CNTRC 
beams with any boundary conditions is the smallest for 

different values of V∗

cnt
 and � . From Table 3, it can be con-

cluded that the boundary conditions, distribution form 
of CNT and nonlocal parameter, respectively have the 
most influence on the buckling values. Compared to the 
classical theory, the nonlocal theory predicts the smaller 
values for buckling loads of nanobeams with SS and CC 
supports, as expected from the results presented in the 
previous section.

In Fig. 4, the variations with the aspect ratio ( L∕h ) of 
normalized buckling loads of SS and CC supported CNTRC 
nanobeams (b∕h = 1) are shown for three types of CNT 
distributions (UD, FGX and FGO) using the nonlocal the-
ory 

(

� = 2 nm
2
)

 . For both SS and CC supports, it is seen 
that when L∕h rises, values of normalized buckling load 
increase first and finally approach a constant value which 
is equal to the result predicted by Euler–Bernoulli beam 
theory. For SS support the values of L∕h , at which the 
results of Timoshenko and Euler–Bernoulli beam models 
are exactly same, are smaller than those of CC support.

In Fig. 5, the variations with aspect ratio of normalized 
buckling loads of the FGX-CNTRC nanobeams (b∕h = 1 and 
V∗
cnt

= 0.12) predicted by the classical (� = 0) and nonlo-
cal 

(

� = 4 nm
2
)

 theories are compared for both SS and CC 
supports. Comparing Fig. 5a, b, it is observed that the non-
locality effect on the normalized buckling loads is much 
smaller in comparison with that of boundary conditions. 
When the aspect ratio ( L∕h ) decreases, the differences 
between the normalized buckling loads predicted by the 

Table 2  The maximum normalized deflections of SS, CC and CF-
supported FGX-CNTRC beams under uniform and sinusoidal trans-
verse loads for different values of V∗

cnt
 based on the nonlocal theory 

( � = 2 nm
2)

V∗

cnt
Boundary  
conditions

Maximum normalized deflection, 
w̄ × 10

Uniform load Sinusoidal load

0.12 SS 0.515866 0.463104

CC 0.340608 0.332083

CF 2.781312 1.692826

0.17 SS 0.323635 0.288384

CC 0.203674 0.198682

CF 1.786445 1.083878

0.28 SS 0.242150 0.219264

CC 0.168422 0.164122

CF 1.271270 0.777062

Table 3  The normalized buckling loads of SS and CC-supported 
CNTRC beams for different values of V∗

cnt

V∗

cnt
Boundary 
conditions

�

(

nm
2
)

The normalized buckling load, P̄

UD FGX FGO

0.12 SS 0 17.2929 20.3867 12.1347

2 15.8712 19.0337 10.8132

4 14.6655 17.8492 9.7513

CC 0 26.2252 27.9262 22.6468

2 22.1666 24.3697 18.3146

4 19.3101 21.9048 14.9908

0.17 SS 0 27.2229 32.7365 18.6032

2 24.8201 30.3636 16.4684

4 22.8070 28.3115 14.7732

CC 0 43.0812 46.5554 36.6469

2 35.9902 40.1306 29.1923

4 30.9776 35.6381 23.6794

0.28 SS 0 36.0119 43.0624 26.5113

2 33.3770 40.5028 23.7818

4 31.1014 38.2304 21.5618

CC 0 51.4341 56.6634 47.0009

2 44.2744 50.1305 38.3292

4 39.2666 45.6468 31.8491
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classical continuum and nonlocal theories become more 
significant. However, the differences between results of SS 
and CC-supported nanobeams are decreased based on the 
classical and nonlocal theories.

3.3  Free vibration behavior

In Table 4, the normalized natural frequencies of SS and 
CC-supported CNTRC beams ( L∕h = 10 and b∕h = 1 ) pre-
dicted by the classical (� = 0) and nonlocal (� = 2 and 
4 nm

2) theories are compared for different distributions 
and volume fractions of CNTs. From numerical results, it is 
readily concluded that the normalized natural frequencies 
of CNTRC nanobeams with FGX, UD and FGO distributions, 

respectively become larger for both supports. Also, it is 
seen that the normalized natural frequencies of SS and CC-
supported nanobeams become smaller when the nonlocal 
parameter increases. Compared to results given in Tables 3 
and 4, it is found that the variations with boundary con-
ditions, V∗

cnt
 and � of the normalized natural frequencies 

are smaller in the comparison with those of dimensionless 
buckling loads.

Figure  6 shows the variation of normalized natural 
frequency versus the aspect ratio for UD, FGX and FGO- 
nanobeams (b/h = 1 and V∗

cnt
= 0.12) with SS and CC 

supports based on the nonlocal theory 
(

� = 2 nm
2
)

 . For 
both boundary conditions and various distributions of 
CNTs, it is seen that the ascending curves of normalized 
natural frequency converge to the values predicted by 

Fig. 4  The variations with aspect ratio of dimensionless buckling 
loads of an CNTRC beam ( b∕h = 1 ) with different distribution forms 
of CNTs

Fig. 5  The variations with aspect ratio of dimensionless buckling 
loads of an CNTRC beam ( b∕h = 1 ) with different distribution forms 
of CNTs
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Euler–Bernoulli beam model. Similar to buckling behavior 
of CNTRC nanobeams, the maximum and minimum values 
of normalized natural frequency belong to FGX and FGO 
CNTRC beams, respectively.

In Fig. 7, the variations with aspect ratio (L∕h) of the nor-
malized natural frequency predicted by the classical (� = 0) 
and nonlocal 

(

� = 4 nm
2
)

 theories are compared for FGX-
CNTRC nanobeams (b/h = 1 and V∗

cnt
= 0.12) with SS and CC 

supports. It is observed that the difference of nonlocal and 
classical dimensionless natural frequencies diminishes with 
increase of L∕h for both boundary conditions. From Figs. 5 
and 7, it is concluded that the effect of supports on the 
values of normalized buckling loads is more significant in 
comparison with normalized natural frequencies.

4  Conclusion

In this study, exact solutions for bending, buckling 
and free vibration of CNTRC nanobeams with arbitrary 
boundary conditions considering the nonlocal parame-
ter are developed. The material properties of FG- CNTRCs 
are assumed to be graded through the thickness direc-
tion according to several distributions namely UD, FGX 
and FGO. The solution presented in this study can be 
employed as a benchmark to evaluate the nonlocal 
effect on mechanical behavior of CNTRC nanostructures. 

Effects of boundary conditions, geometric ratios, distri-
bution of CNT volume fraction and nonlocal parameter 
on transverse deflection, buckling load, and natural 
frequency of UD, FGX, and FGO-CNTRC nanobeams are 
studied. Findings are summarized as follows:

• Among the considered CNT distributions, FGX distribu-
tion results in the stiffest behavior for nanobeam, while 
FGO distribution leads to the most flexible behavior.

• For the cantilever beams, the influence of CNT distribu-
tion on bending CNTRC beams is more significant than 
simply supported and clamped beams.

• Due to nonlocal effect, softening and hardening phe-
nomenon take place for the simply supported and can-
tilever beams, respectively.

• For bending analysis of CC-supported nanobeams 
under uniform transverse loading, the normalized 

Table 4  The normalized natural frequencies of SS and CC-sup-
ported CNTRC beams for different values of V∗

cnt

V∗

cnt
Boundary 
conditions

�

(

nm
2
)

Normalized natural frequency, 
�̄�

UD FGX FGO

0.12 SS 0 3.9765 4.3188 3.3288

2 3.6340 3.9468 3.0421

4 3.3670 3.6569 2.8186

CC 0 5.0116 5.1578 4.7252

2 4.5787 4.6968 4.3030

4 4.2350 4.3547 3.9853

0.17 SS 0 4.9034 5.3787 4.0507

2 4.4811 4.9154 3.7018

4 4.1519 4.5544 3.4299

CC 0 6.3347 6.5492 5.9378

2 5.7719 5.9693 5.4058

4 5.3433 5.5251 4.9947

0.28 SS 0 5.4426 5.9528 4.6670

2 4.9738 5.4400 4.2650

4 4.6084 5.0404 3.9517

CC 0 6.6306 6.9484 6.4450

2 6.0621 6.3254 5.8664

4 5.6087 5.827 5.4301

Fig. 6  The variations with aspect ratio of dimensionless natural fre-
quencies of an CNTRC beam ( b∕h = 1 ) with different distribution 
forms of CNTs
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deflections predicted by the classical and nonlocal 
elasticity theories are exactly the same.

• Softening takes place as the nonlocal effect is consid-
ered in the buckling and free vibration analysis of nano-
beams with SS and CC supports.

• As L∕h increases, the nonlocal and classical natural fre-
quencies for SS and CC beams approach to each other.
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