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Abstract: Horizontal wells, extended-reach wells, and multi-branch wells were often used to exploit
subsea oil and gas efficiently. However, during the sand control screen completion of those wells, the
sand control screen pipe was easily deformed. Failure occurred when passing through the bending
section due to the large bending section in the wellbore trajectory. A parametric analysis model of the
screen pipe was established based on ABAQUS and Python software under pure bending load first.
Then, deformation patterns and mechanisms were identified and discussed. The effects of parameters
on the screen pipe bending deformation patterns and the ultimate moment were analyzed. Finally, an
empirical formula for calculating the ultimate moment of the screen pipe was established. The results
showed that the deformation of the screen pipe was complex, and three deformation patterns were
related to the hole parameters. Due to an increase in the diameter and number of circumferential
and axial holes, the ultimate moment of the screen pipe gradually decreased, and the circumferential
holes had a more significant effect on the ultimate moment than the axial holes. The established
empirical formula could accurately calculate the ultimate moment of the screen pipe, and the average
difference between the formula and numerical simulation results was 3.25%.

Keywords: sand control screen pipes; pipe bending; deformation patterns; screen pipe empirical formula

1. Introduction

Considering onshore oil and gas resource depletion, attention had been gradually
focused on offshore oil exploration and development. However, sand production problems
were often encountered during offshore and onshore unconsolidated sandstone reservoir
development [1–3]. Excessive sand production in reservoir formations during exploitation
reduces the production and damages the production equipment [4–6]. Therefore, it was
necessary to adopt reasonable sand control measures to prevent excess sand from entering
the wellbore. Currently, sand control screen pipes were the leading sand control equipment
in fields. During the development of onshore and offshore oilfields, it is necessary to run
sand control screens pipe to prevent massive formation sand production. For offshore
screen pipes completion, the screen pipes enter the production formation of oil and gas
through the riser and wellbore from the well head of the offshore platform. The screen
enters the formation through the curved well section of the horizontal well is one of the
processes of offshore screen completion. The screen pipe is made by perforating the pipe
according to certain rules, and its shape is similar to the complete pipe. The geometry and
hole parameters of screen pipes are designed according to operating conditions and oil and
gas production. Commonly used materials for screen pipes are K55, J55, N80 steel, and so
on. The base pipe made of perforated pipes was the main component of the sand control
screen pipes to bear the loading.
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With the increase in oil and gas production and consequent economic benefits, horizon-
tal wells, extended reach wells, and multi-branch wells were often used on-site. Those well
types could expand the exploitation scope of oil and gas wells without offshore platform re-
strictions. However, the well trajectories of those well types had a large, curved section [7,8],
as shown in Figure 1. During the sand control screen completion of those wells, the screen
pipes encounter a large bending load when entering the formation through the curved
section [9,10], as shown in Figure 1. Because a complete pipe perforates the base of the
screen pipe, the holes reduce the bearing capacity of the screen pipe, as shown in Figure 1.
Moreover, the screen pipes may be bent and damaged due to the formation collapse or
formation settlement during the production process. Since the acidic component exists
in oil and gas in formation, the screen pipes were corroded. The longer the production
time, the more serious the corrosion of the screen pipe was, and the bending strength
performance of the screen pipes decreased. Plastic deformation and fracture occurred
around the screen pipe body and hole when the pipe was subjected to a large bending
load. This results in the failure of the sand control screen, which considerably threatened
the average production of oil and gas wells. Therefore, it was necessary to analyze the
deformation behavior of a screen pipe under a bending load and calculate the ultimate
bending strength.
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The research activities on the ultimate bending moment of intact and corroded pipes
under bending loads were relatively mature. The main research approaches include the
finite element method, experimental tests, and analytical treatment. Compared with the
previous research object, the structure of the screen pipe was more complex. The bending
deformation mechanism of the screen pipe under bending load needed to be clarified, and
the lack of a corresponding formula for calculating the ultimate bending moment of the
screen pipe caused difficulties in evaluating the ultimate strength.

Chen et al. [11] proposed a simplified method for predicting the ultimate bending
strength of a pipeline based on Hencky’s total strain theory. The results showed that the
simplified model was consistent with the experimental results in predicting the ultimate
bending capacity of steel pipes, and the strain-hardening effect significantly influenced the
ultimate bending capacity of steel pipes. Adam et al. [12] established a nonlinear finite
element model (FEM) of the plastic buckling of cylindrical metal tubes and shells under a
bending load using ABAQUS software. They compared the applicability and economy of
continuous and shell finite elements in simulating the pipe-bending deformation. Chen
et al. [13] established a theoretical model of the residual bending strength of a corroded
screen pipe under combined internal pressure and axial load. They analyzed the influence
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of different corrosion shapes on the residual strength of the pipe. Using ABAQUS, Kumar
et al. [14] established a FEM of the buckling of cylindrical shells under a pure bending load.
They analyzed the influence, sensitivity, and impact of steel strain hardening models on
the bending behavior of cylindrical shells. Moreover, using ABAQUS, Erling et al. [15,16]
also established a FEM for a pipeline with a peripheral surface crack under a pure bending
load and combined bending load and internal pressure. They analyzed the evolution law
of the crack tip opening of the cracked pipeline and the effects of crack depth, length,
diameter–thickness ratio, and material hardening on the fracture response. Behrouz [17]
analyzed the influence of corrosion depth and shape on the strength of corroded pipes
under combined internal pressure and bending load based on experiments and FEMs.
Based on numerical simulation data, Hieu et al. [18] established an empirical formula for
the ultimate bending capacity of pipes with corrosion defects under axial loads. Sjors [19,20]
analyzed the ultimate bending capacity of spiral-welded steel tubes based on experiments
and FEMs. Limam A et al. [21,22] analyzed the inelastic wrinkling of intact tubes and
the effect of local dents on the collapse curvature of pipes under combined bending and
internal pressure with experiment and FEM method. Fu Guangming et al. [23] and Peng
Yudan [24] established finite element model of the screen pipes under external pressure
and combined external pressure and bending load with the finite element method, and
the influence of different parameters on the collapse strength of the screen pipes was
analyzed, and the corresponding calculation formula for the collapse strength of the screen
pipes were established. Kyriakides and Corona [25] and Karampour and Albermani [26]
studied the plastic bending strength of pipes under bending load based on experiment
and finite element method, and the results of simulation and experiment were compared.
Karampour [27] studied the lateral buckling of pipelines with nonlinear soil pipe interaction
based on the finite element analysis method, and an analytical solution for lateral buckling
of pipes with a single defect was proposed. Taheri et al. [28] analyzed the linear eigenvalue
bucking and nonlinear post bucking of sandwich pipes under bending loads based on
the finite element method, and the influence of structural parameters of sandwich pipes
on pre-bucking, bucking, and post bucking responses was analyzed. Binazir et al. [29]
analyzed the linear bifurcation and geometrically nonlinear behavior of pipe in pipe under
bending loads based on experiments and finite element methods and proposed a formula
for calculating the ultimate bending moment of pipe in pipe.

In the present work, a FEM of the bending deformation of a screen pipe under pure
bending was established based on ABAQUS and Python script. The sand control screen
pipe’s bending deformation patterns and mechanism were discussed in detail, and the
influence of the screen pipe and hole arrangement parameters on the bending deforma-
tion and ultimate moment of the screen pipe were analyzed. Furthermore, an empirical
formula for calculating the ultimate moment of the screen pipe under a bending load
was established.

2. Numerical Simulation Model of the Sand Control Screen Pipe under Bending
2.1. Finite Element Model

This study adopted the parallel hole arrangement in a perforated screen pipe. Because
a screen pipe with a parallel hole arrangement was symmetrical, a 1/2 symmetrical model
was used to simplify the calculation, as shown in Figure 2. The screen pipe was severely
deformed under a bending load, and C3D8R element, which had the advantages of high
accuracy and no shear self-locking even when the mesh was severely deformed [30], was
employed to simulate the screen pipe under bending. The mesh sensitivity analysis was
carried out, as shown in Figure 3. When the mesh number is around 210,570, the ultimate
moment of the screen pipes tends to stabilize, and as the mesh number continues to increase,
the ultimate moment of the screen pipes changes slightly. Therefore, the mesh number of
210,570 was employed in the present work. The length of the screen was ten times greater
than the diameter of the pipe to reduce the influence of the ending effect on the bending
deformation of the screen pipe.
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Figure 2 shows the load and boundary conditions of the model. The reference points
were set at the center of the two end faces of the screen pipe and were coupled with the
faces. Symmetry constraints were applied to the symmetry plane, and a corresponding
displacement constraint was applied to the one half screen pipe length nodes to eliminate
the rigid body displacement of the pipe in different directions during loading [31]. The
same rotation angle was applied to the coupling points at both ends of the pipe to apply
a bending load. Additionally, general analysis steps were adopted, and the screen pipe’s
ultimate moment and rotation angles were obtained in a rotation angle-moment curve.
The elastic modulus, plastic strength, and Poisson’s ratio of this material were 203 GPa,
464.36 MPa, and 0.3, respectively [23]. The isotropic hardening behavior of screen pipe
material was assumed, and the stress–strain curve of the screen pipe material is shown in
Figure 4.
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2.2. Secondary Development of FEM

ABAQUS provided a secondary development interface [32,33]. A parametric analysis
model of the ultimate moment of screen pipe under bending load was established based on
the secondary development of ABAQUS by Python script. The secondary development
process is shown in Figure 5, and its main difficulty was realizing a regular arrangement
of hole parameters and parameterization. Secondary development of FEMs significantly
simplified the tedious modeling process and laid the data foundation for the study of the
deformation pattern of screen pipe as well as the establishment of the empirical formula of
the ultimate moment.
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2.3. Numerical Results Discussion

The screen pipe’s bending deformation patterns and mechanism under bending load
were currently unclear. Therefore, the bending deformation of the screen pipes with
different screen parameters, as listed in Table 1, was analyzed based on FEM.

Table 1. Screen pipes parameter commonly used in the field.

D/t D/mm t/mm d/mm N1 N2 L/mm

17
19
23

127.0
177.8
152.6

7.52
9.19
6.46

6.35
9.5

12.7
14.0
16.0

4
8

12
16
20

12
16
20
24
28

1600.0

D is the diameter of the screen pipes, mm; t is wall thickness of screen pipes, mm; d is the diameter of the holes,
mm; N1 is the number of circumferential holes; N2 is the number of axial holes; L is the length of screen pipe, mm.
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Numerous results of screen pipe deformation indicated that the deformation could be
divided into three patterns: In pattern-1, the screen pipe buckled from the middle position,
and the hole area did not fracture. In pattern-2, the screen pipe first buckled from the
middle position, and plastic deformation occurred around the hole area, which eventually
fractured as the bending load increased. In pattern-3, plastic deformation occurred around
the fractured hole area. However, the deformation around the middle of the screen pipe
was small.

The three bending deformation patterns of screen pipes were discussed in detail as
follows from different aspects, such as the relationship between the rotation angle and
moment, ovality change laws at the middle section of the screen pipe and fracture section
around the holes, and stress and strain laws at the middle position of the screen pipes and
fracture position around the holes.

2.3.1. Pattern-1

As the bending load increased, the screen pipe buckled from the middle position.
However, the hole area did not fracture. Figure 6 shows the screen pipe’s moment-rotation
angle relationship in the pattern-1, which was divided into four stages. In stage-1, as
the bending load increased, the bending moment sharply increased, and the stress and
bending deformation were small, as shown in #1. In stage-2, as the bending load increased,
the bending moment gradually reduced, whereas the deformation and stress gradually
increased, as shown in #2. In stage-3, as the bending load gradually increased, the increasing
speed of the bending moment tended to stabilize, and the bending deformation gradually
increased, as shown in #3. The deformation and stress of the screen pipe when the ultimate
bending moment was reached are shown in #4. In stage-4, when the bending load was
increased after reaching the ultimate bending moment, the bending moment of the screen
sharply decreased. However, the bending deformation continued to increase, whereas the
stress at both ends of the screen gradually decreases, causing the screen pipe to buckle
from the middle position, as shown in #5. Meanwhile, there was no deformation around
the hole area.
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The deformation was most significant at the middle position of the screen pipe, which
is the central area of concern. Therefore, the ovality, stress, and strain in the middle of
the screen tube are discussed in detail here. Figure 7a,b show the middle section of the
screen pipe and the ovality curve with the rotation angle of the middle section, respectively.
The curve could be roughly divided into three stages: In the first stage, when the rotation
angle was less than the critical rotation angle, the ovality of the section gradually increased
as the rotation angle increased, and the deformation of the screen pipe was small. In the
second stage, the ovality and deformation sharply increased with an increase in the rotation
angle after the angle reached the critical angle. In the third stage, as the rotation angle
increased, the increase in ovality tended to stabilize, and the deformation of the screen pipe
continued to increase.
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Figure 8 shows the selection of normalized elements and nodes in the middle of
the screen pipe. Figure 9 shows the stress and strain contours of the selected nodes and
elements on the compression and tension sides of the screen pipe during the bending
process. In Figure 9a,b, the stress and strain contours about the middle position were
symmetrical. When θ < 0.016, the stress difference of the nodes at different positions was
small. As the rotation angle increased, the nodes on both sides reached the yield stress
first compared to the middle nodes at the same θ. The stress in the middle position and on
both sides fluctuated after θ > θcr. In contrast, when θ < 0.0195, the strain of the elements
on both sides was more significant than that of the central elements. It was because the
stress at both sides reached the yield state first. The strain in the middle position was
gradually greater than those on both sides, and the closer the position was to the middle,
the greater the strain, causing the screen pipe to buckle from the middle position on the
compression side.
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Figure 9c,d shows the stress and strain contours on the tensile side, which were
symmetrical about the middle position. Although the stress variation law on the tensile
side was similar to that on the compression side, the rotation angle to yield stress at
the middle position was more significant on the tensile side. The stress of the nodes at
different positions did not change after reaching the yield stress. However, the strain
on the tensile side of the screen pipe was opposite to that on the compression side: the
closer the element was to the middle position, the smaller the strain. In addition, the strain
on the tensile side was less than on the compression side at the same angle rotation and
corresponding elements.

2.3.2. Pattern-2

As the bending load increased, the screen pipe first exhibited overall bending defor-
mation, and buckling deformation occurred at the middle position. In contrast, plastic
deformation and fracture occurred around the hole area. The moment–rotation angle curve
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was divided into five stages, as shown in Figure 10. The first four stages were similar to
those of pattern-1 and will not be repeated here. In stage-5, as the bending load increased,
the deformation of the middle position of the screen pipe increased, and plastic deformation
appeared around the hole area, which gradually evolved into a fracture. The deformation
and stress of the screen pipe are shown in #6.
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Meanwhile, the deformations at the middle position and hole area were significant,
the main areas of concern. Therefore, the ovality, stress, and strain at the middle position
and the area around the hole are discussed in detail here. Figure 11a shows the middle
and plastic deformation hole sections (planes 1 and 2, respectively), and Figure 11b shows



J. Mar. Sci. Eng. 2023, 11, 754 9 of 20

the ovality curve with the rotation angles of planes 1 and 2. The curve could be divided
into three regions: In the first region (θ < θcr), as the rotation angle increased, the ovality
of planes 1 and 2 gradually increased, and the deformation of the screen pipe was small.
Additionally, the ovality of planes 1 and 2 was approximately equal, indicating that the
bending deformations of the two positions were the same. In the second region (θ > θcr),
the ovality of plane 1 was greater than that of plane 2. It increased approximately in a
straight line, indicating that the deformation of the hole area was more significant than
that of the middle position of the screen pipe. In the third region, as the rotation angle
increased, the ovality of plane 1 gradually decreased and tended to be constant, whereas
that of plane 2 sharply increased, indicating that the radial deformation of the screen tube
mainly occurred at the hole position.
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The node stress and element strain at the middle position and the hole areas on the
compression and tensile sides of the screen were discussed in detail here. Figure 12 shows
the selected elements and nodes. Figure 13 shows the stress and strain of the nodes and
elements in the middle position of the tensile and compression sides, respectively. The
stress and strain on the compression side were similar to those of pattern-1, as shown in
Figure 13a,b, which was not repeated here. The stress on the tensile side was comparable
to that in the pattern-1, as shown in Figure 13c,d. Yield stress occurred only in the nodes at
the middle position on the tensile side after the rotation angle reached a significant value.
The strain in the nodes at the middle position gradually approached and exceeded those at
both sides when the rotation angle increased to a more significant value. This difference
may be due to the appearance of the plastic deformation of the hole area at the tensile side
of the screen pipe, which significantly influenced the stress and strain distributions at the
tensile side but slightly influenced those at the compression side.
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(c,d) Stress and strain on the tensile side of screen pipe in the middle position.

Figure 14 shows the stress and strain of the nodes and elements around the holes on
the compression and tension side. As shown in Figure 14a, when θ < 0.02, the node stresses
at different positions were equal under the same rotation angle. When 0.02 < θ < 0.08,
the stress increased and then decreased as the position was closer to the middle. When
0.08 < θ < 0.2, the node stress values at different positions were consistent under the same
rotation angle. When 0.2 < θ, the node stress gradually decreased at the same node position,
which differed from the stress variation in the middle position of the screen pipe. As shown
in Figure 13b, the strain in the middle position of the hole was the smallest. When θ < 0.04,
the strain difference of each element was small. When 0.04 < θ, the strain of the screen pipe
first increased and then decreased as the unit position approached the middle position of
the hole.

Figure 14c,d shows the stress and strain at the nodes and elements on the tensile
side. As shown in Figure 14c, when θ > 0.08, the stress in the middle position of the hole
gradually reached the maximum stress and was more significant than those on both sides
of the pipe. When θ < 0.16, the strain difference of the elements around the hole was small
at the same rotation angle. When θ > 0.16, the strain increased as the element position was
closer to the middle of the hole. Moreover, the strain of the area around the hole on the
tension side was much more significant than on the compressive side.

Comparing the stress and strain variations at the middle and hole positions of the
tension and compression sides of the screen pipe, when θ < θcr, the strain in the middle
position of the pipe on the compression side was greater than that in the hole position
on the tensile side. However, when θ > θcr, the situation was reversed, and the strain at
the hole position was considerable. Therefore, the screen tube first buckled at the middle
position on the compression side. Then, plastic fracture occurred at the hole position
on the tension side.
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2.3.3. Pattern-3

In this pattern, as the bending load increased, the screen pipe deformed and fractured at
the hole position, whereas the middle position of the screen pipe did not buckle. Figure 15
shows the moment–rotation angle curve divided into five stages. As shown in Figure 15, the
first three stages were similar to those in pattern-1 and not repeated here. In stage-4, as the
bending load further increased after reaching the ultimate moment, the bending moment of
the screen tube sharply decreased, and the bending deformation of the screen pipe continued
to increase. However, there was no buckling deformation in the middle position of the screen
pipe. The deformation and stress of the screen tube are shown in #5. In stage-5, with a
continuous increase in the bending load, the overall bending deformation of the screen pipe
further increased, and plastic deformation appeared in the hole position, which gradually
evolved into a fracture. The deformation and stress of the screen tube are shown in #6.
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Meanwhile, the deformation at the middle position and the area around the hole was
significant, which were the main areas of concern. Therefore, the ovality, stress, and strain
at the middle position and area around the hole are discussed in detail. Figure 11a shows
the middle and hole sections, and Figure 16 shows the ovality curve with the rotation angles
of planes 1 and 2. As shown in Figure 16, the change in ovality with the rotation angle
could be divided into three stages. In the first stage, when θ < θcr, the ovality difference
between planes 1 and 2 was small as the rotation angle increased, indicating that the radial
deformations of planes 1 and 2 were consistent. In the second stage, when θ > θcr, the
ovality of plane 1 was gradually greater than that of plane 2 with an increase in θ. In the
third stage, as θ increased, the ovality of planes 1 and 2 gradually increased, reaching a
maximum and decreasing sharply. Meanwhile, the ovality of plane 2 was much smaller
and reached the maximum value earlier than that of plane 1.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

 

 
Figure 15. Moment versus rotation angle and stress contour of screen pipes. 

Meanwhile, the deformation at the middle position and the area around the hole was 
significant, which were the main areas of concern. Therefore, the ovality, stress, and strain 
at the middle position and area around the hole are discussed in detail. Figure 11a shows 
the middle and hole sections, and Figure 16 shows the ovality curve with the rotation 
angles of planes 1 and 2. As shown in Figure 16, the change in ovality with the rotation 
angle could be divided into three stages. In the first stage, when θ < θcr, the ovality differ-
ence between planes 1 and 2 was small as the rotation angle increased, indicating that the 
radial deformations of planes 1 and 2 were consistent. In the second stage, when θ > θcr, 
the ovality of plane 1 was gradually greater than that of plane 2 with an increase in θ. In 
the third stage, as θ increased, the ovality of planes 1 and 2 gradually increased, reaching 
a maximum and decreasing sharply. Meanwhile, the ovality of plane 2 was much smaller 
and reached the maximum value earlier than that of plane 1. 

 
Figure 16. Ovality versus rotation angle at middle position and hole position of screen pipes. 

The node stress and element strain at the middle position and the area around the 
hole on the compression and tension sides of the screen are discussed in detail here. Figure 
12 shows the selected elements and nodes, and Figure 17 shows the element strain and 
node stress at the middle position on the compression and tensile side. As shown in Figure 
17a, when θ < 0.022, the stress difference of different nodes was small under the same θ. 
When 0.022 < θ < θcr, the stress first increased and then decreased as the node position was 
closer to the middle position of the screen pipe, and the stresses on both sides were more 
significant than that in the middle position under the same θ. When θ > θcr, the stress 
values at different locations fluctuated. Concerning the element strain, as shown in Figure 
17b, the strain difference of the elements at different positions was small under the same 

Figure 16. Ovality versus rotation angle at middle position and hole position of screen pipes.

The node stress and element strain at the middle position and the area around the hole
on the compression and tension sides of the screen are discussed in detail here. Figure 12
shows the selected elements and nodes, and Figure 17 shows the element strain and node
stress at the middle position on the compression and tensile side. As shown in Figure 17a,
when θ < 0.022, the stress difference of different nodes was small under the same θ. When
0.022 < θ < θcr, the stress first increased and then decreased as the node position was closer
to the middle position of the screen pipe, and the stresses on both sides were more signifi-
cant than that in the middle position under the same θ. When θ > θcr, the stress values at
different locations fluctuated. Concerning the element strain, as shown in Figure 17b, the
strain difference of the elements at different positions was small under the same θ. When
0.045 < θ < 0.127, the strains of the elements on both sides were more significant than that of
the middle elements under the same θ. However, when θ > 0.127, the situation was reversed.

Figure 17c,d shows the node stress and element strain in the middle of the screen pipe
at the tension side. The observations were similar to those on the compression side and
will not be repeated here. Compared to the first two screen pipe deformation patterns, the
strain values on the compression and tension sides of the middle position of pattern-3 were
small. The difference between them was also small, indicating that the deformation at the
middle position was small during the screen pipe bending process.

Figure 18a,b shows the node stress and element strain on the tension and compression
sides of the hole. Figure 18a shows the node stress around the hole on the compression side.
When θ < 0.022, the stress difference of different nodes was small under the same θ. When
0.022 < θ < 0.06, the stress first increased and then decreased as the node position was closer
to the middle position of the hole. When θ > 0.06, the stress of the middle nodes of the
hole was greater than that of the nodes on both sides. Figure 18b shows the element strain
around the hole on the compression side. When θ < 0.03, the stress difference of different
nodes was small under the same θ. When θ > 0.03, the element strains on both sides of the
hole were more significant than that in the middle position. As the element position was
closer to the middle of the hole, the element strain first increased and then decreased.
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Figure 18c,d shows the node stress and element strain on the tension side of the hole
position. The node stress at the hole position on the tension side was similar to that on
the compression side and will not be repeated here. Concerning the element strain on the
tension side, when θ < θcr, the strain difference of the different elements was small under
the same rotation angle. When θ > θcr, the strain of the central elements of the screen hole
was much larger than those of the elements on both sides. Comparing the strain at the hole
position on the tension and compression sides, the maximum strain on the tension side
was 0.724, which was much greater than the maximum strain of 0.059 on the compression
side, indicating that the deformation at the hole position of the tension side was significant
compared to that of the compression side, resulting in the plastic deformation of the screen
pipe at the tension side.

Comparing the element strain results at the middle position of the screen pipe and hole
position, when θ > θcr, the strain and, consequently, the deformation at the hole position on
the tension side were much larger than those at the middle position of the screen pipe. As a
result, deformation and yielding occurred from the hole position on the tension side of the
screen pipe, which evolved into a fracture, whereas the deformation in the middle position
of the screen pipe was small.

3. Influence of Different Parameters on the Ultimate Moment of Screen Pipes

The deformation patterns of screen pipes were different under different hole distri-
bution parameters. However, when the moment was less than the ultimate moment, the
change law of the rotation angle-moment is similar under different deformation patterns
according to the above analysis. The screen tube’s ultimate moment was the field’s main
parameter of interest. Therefore, the influence of different hole and screen pipe parameters
on the ultimate moment of the screen pipe was analyzed. The selection of the parameters is
shown in Table 1.

3.1. Effect of Diameter and Diameter-to-Thickness Ratio on the Ultimate Moment of Screen Pipes

The parameters N1 and N2 were 12 and 20. The other parameters were shown in
Table 2. The effects of different hole diameters and D/t values on the ultimate bending
moment of the screen pipe were analyzed, and the results were shown in Table 2. As shown
in Table 2, as the hole diameter increased, the ultimate moment of the screen pipes with
different D/t values gradually decreased, and the ultimate moment of the screen pipe with
D/t = 19 was the largest with the same hole diameter. This is because the outer diameter
of the screen pipe is inconsistent. According to the formula for calculating the ultimate
bending moment of the complete pipe [34], the ultimate bending moment of the complete
pipe is related to D and t. D significantly impacts the ultimate bending moment of the
complete pipe. In addition, with an increase in the hole diameter, the ultimate moment of
the screen pipe with D/t = 17, D/t = 19, and D/t = 23 decreased by 36.8%, 21.2%, and 26.3%,
respectively, compared to the ultimate moment of the screen tube with a hole diameter of
6.35 mm.

Table 2. Effect of D/t and hole diameter on ultimate moment of screen pipes.

D/t D/mm t/mm d/mm Mcr-d/t = 17/kNm Mcr-d/t = 19/kNm Mcr-d/t = 23/kNm

17
19
23

127.0
177.8
152.6

7.52
9.19
6.46

6.35
9.5

12.7
14.0
16.0

50.36
45.94
39.42
36.28
31.80

125.30
119.20
110.32
105.70
98.76

64.62
60.78
54.90
52.10
47.58

3.2. Effect of Diameter-to-Thickness Ratio and Number of Axial Holes on the Ultimate Moment of
Screen Pipes

The parament N1 and d were 12 and 9.5 mm. The parameters were shown in Table 3.
The effects of the different number of axial holes and D/t values on the ultimate moment
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of the screen pipes were analyzed, and the results are shown in Table 3. As shown in
Table 3, as the number of axial holes increased, the ultimate moment of the screen tubes
with different D/t values gradually decreased. The ultimate moment of the screen pipe
with D/t = 19 was the largest with the same number of axial holes. In addition, the number
of axial holes slightly affected the screen pipes’ moment. Compared to the ultimate moment
of the screen pipes with eight axial holes, the reductions of the D/t = 17, D/t = 19, D/t = 23
values were 2.2%, 6.4%, and 4.7%, respectively.

Table 3. Effect of D/t and axial holes number on ultimate moment of screen pipes.

D/t D/mm t/mm N2 Mcr-d/t = 17/kNm Mcr-d/t = 19/kNm Mcr-d/t = 23/kNm

17
19
23

127.0
177.8
152.6

7.52
9.19
6.46

8
12
16
20
24
28

46.44
46.22
46.18
45.94
45.84
45.44

121.72
120.76
120.1
119.2

116.58
113.96

61.68
61.16
60.96
60.78
60.2

58.78

3.3. Effect of Diameter-to-Thickness Ratio and Number of Circumferential Holes on the Ultimate
Moment of Screen Pipes

The parament N2 and d were 12 and 9.5 mm. The parameters were shown in Table 4.
The effects of the different number of circumferential holes and D/t values on the ultimate
moment of the screen pipes were analyzed, and the results are shown in Table 4. As shown
in Table 4, the ultimate moment of the screen tubes with different D/t values gradually
decreased as the number of circumferential holes increased. The ultimate moment of the
screen pipes with D/t = 19 was the largest with the same number of circumferential holes.
Compared to the axial holes’ effect on the screen pipes’ ultimate moment, the number of
circumferential holes had a significant influence on the ultimate moment of the screen
pipe. The reductions of the D/t = 17, D/t = 19, and D/t = 23 values were 28.4%, 15.4%,
and 20.5%, respectively, compared to the ultimate moment of the screen pipes with four
circumferential holes.

Table 4. Effect of D/t and circumferential holes on ultimate moment of screen pipes.

D/t D/mm t/mm N1 Mcr-d/t = 17/kNm Mcr-d/t = 19/kNm Mcr-d/t = 23/kNm

17
19
23

127.0
177.8
152.6

7.52
9.19
6.46

4
8

12
16
20

52.04
49.78
46.22
41.84
37.24

127.26
124.64
120.76
114.88
107.62

66.26
64.14
61.16
56.10
52.64

3.4. Effect of Diameter and Number of Axial Holes on the Ultimate Moment of Screen Pipes

The number of circumferential holes and D/t of the screen pipes were 12 and 19,
respectively, and the hole diameters were 6.35, 9.5, 12.7, 14.0, and 16.0 mm. The numbers
of axial holes were 16, 20, and 24. The effects of the different number of axial holes and
diameters on the ultimate moment of the screen pipes were analyzed, and the results are
shown in Table 5. As shown in Table 5, the ultimate moment of the screen pipes with
different numbers of axial holes gradually decreased as the diameter increased. Under the
same diameter, as the number of axial holes increased, the ultimate moment of the screen
pipes decreased. With an increase in the hole diameter, the ultimate moment of the screen
pipe with 16, 20, and 24 axial holes decreased by 21.2%, 21.2%, and 21.9%, respectively,
compared to the ultimate moment of the screen tube with a hole diameter of 6.35 mm.
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Table 5. Effect of diameter and axail holes number on ultimate moment of screen pipes.

N2 d/mm Mcr-N2 = 16/kNm Mcr-N2 = 20/kNm Mcr N2 = 24/kNm

16
20
24

6.35
9.5

12.7
14.0
16.0

125.86
120.10
111.16
106.24
99.24

125.30
119.20
110.32
105.70
98.76

123.90
116.58
107.20
102.92
96.78

3.5. Effect of Diameter and Number of Circumferential Holes on the Ultimate Moment of
Screen Pipes

The number of axial holes and D/t of the screen pipes were 16 and 23, respectively,
and the hole diameters were 6.35, 9.5, 12.7, 14.0, and 16.0 mm, respectively. The numbers
of circumferential holes were 8, 12, and 16. The effects of the different number of circum-
ferential holes and diameters on the ultimate moment of the screen pipes were analyzed,
and the results are shown in Table 6. As the diameter increased, the screen pipes’ ultimate
moment under different circumferential holes gradually decreased. For the same diameter,
the greater the number of circumferential holes, the smaller the ultimate moment of the
screen and the more significant the reduction in the ultimate moment. Compared to the
ultimate moment of the screen pipe with a diameter of 6.35 mm, the ultimate moment
values of the screen pipe with eight, 12, and 16 circumferential holes were reduced by
15.1%, 26.5%, and 42.9%, respectively. Compared to the effects of the axial holes on the
ultimate moment, the effects of the circumferential holes were more significant.

Table 6. Effect of diameter and circumferential holes number on ultimate moment of screen pipes.

N1 d/mm Mcr-N1 = 8/kNm Mcr-N1 = 12/kNm Mcr-N1 = 16/kNm

8
12
16

6.35
9.5

12.7
14.0
16.0

66.30
63.80
60.40
58.78
56.28

64.78
60.96
54.94
52.16
47.60

64.78
57.12
47.96
43.38
36.96

4. The Ultimate Moment Formula of Screen Pipes

A simplified calculation formula was established to simplify the calculation of the
ultimate bending moment of the screen pipe under pure bending and facilitate its field
application. It was assumed that the ultimate moment of the screen pipe was related to
the ultimate moment of the complete casing before perforation and the hole arrangement
parameters (d, l, c), which could be expressed as the following relationship:

U =
Mb
Mi

= f (d, l, c) (1)

Mi = (1.05 − 0.0015D/t)× γ × D2 × t (2)

c =
πd
N1

(3)

where U is the ultimate moment coefficient of the screen pipe, dimensionless, Mb the plastic
ultimate bending moment the screen pipe, N·m, Mi the plastic ultimate bending moment of
the complete casing, which can be calculated using the formula in the literature [34], N·m;
d the diameter, mm; l the axial hole spacing, mm; c the circumferential hole spacing, mm;
D the outer diameter of the screen pipe, mm; t the wall thickness, mm; and N the number
of circumferential holes. γ was specified minimum yield strength.
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Through fitting with the numerical simulation data, the relationship between U, d, c,
and l was obtained, as shown in Figure 19. Thus, the dimensionless parameters d/c and d/l
were introduced, and Equation (1) is expressed as:

U =
Mb
Mi

= F(
d
l

,
d
c
) (4)
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Assuming that the F function in Equation (4) could be expanded into a power series,
Equation (4) could be expressed as:

U =
Mb
Mi

=
∞

∑
i=0

Bi

[
(

d
l
)

n1
(

d
c
)

n2
]i

(5)

Considering that the ultimate moment of the screen pipe was less than that of the
casing before perforation, U ≤ 1 when n = 0 and B0 = 1. Ignoring the influence of higher-
order terms in Equation (5) [35–37], it was approximately expressed as:

U =
Mb
Mi

≈ 1 − B1(
d
l
)

n1
(

d
c
)

n2
(6)

The numerical simulation results were used to fit Equation (6) and determine the
parameter values in the formula. It was given by:

U =
Mb
Mi

= 1 − 1.32(
d
l
)

0.175
(

d
c
)

1.25
(7)

Figure 20 shows the comparison between the numerical simulation results and the
calculation results obtained using Equation (7). As shown in Figure 20, the difference
between the FEM results and formula calculation results had a range of −0.04–4.79%, and
the average error is 1.26%. Therefore, the established formulas can accurately reflect the
numerical results.

Due to the lack of literature results on the bending test of screen pipe, the eight groups
of screen pipe finite element results shown in Table 7 are used to verify the accuracy of the
established formulas. Those results were outside the fitting data of the formulas. As shown
in Table 7, the minimum difference between the numerical simulation and the formula
results was 0.02%, and the maximum error was 6.16%. The average error for the FEM
results of the five groups of screen pipes was 3.25%. Therefore, the established empirical
formula can accurately calculate the ultimate moment of screen pipe under bending load.
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Table 7. Ultimate moment comparison between numerical and formula results.

CASE D/mm t/mm N1 N2 L/mm d/mm Mcr-FEM/kNm Mcr-calculate/kNm Error

CASE-1 127.0 7.52 12 20 52.63 14.00 36.28 37.17 2.46%
CASE-2 177.8 9.19 8 12 90.91 9.50 124.64 127.50 2.30%
CASE-3 152.6 6.46 12 20 52.63 12.70 54.90 53.40 −2.73%
CASE-4 127.0 7.52 4 12 90.91 9.50 52.04 54.95 5.58%
CASE-5 177.8 9.19 12 20 52.63 16.00 98.76 98.78 0.02%
CASE-6 152.6 6.46 16 16 66.67 6.35 64.78 61.90 −4.45%
CASE-7 152.6 6.46 16 16 66.67 19.00 26.68 28.32 6.16%
CASE-8 127.0 7.52 12 20 52.63 19.00 25.42 26.00 2.28%

5. Conclusions

The finite element model of a screen pipe with a parallel hole arrangement under
pure bending was defined based on ABAQUS and Python script. The deformation pat-
terns and ultimate moment of screen pipes with different parameters were analyzed.
Three deformation patterns were identified and discussed in detail. An empirical formula of
the ultimate moment of screen pipes was proposed. The main conclusions are summarized
as follows:

(1) The deformation patterns of screen pipes could be divided into three categories
under a bending load: In Pattern-1, the screen pipes buckled from the middle position,
and the area around the holes did not fracture. In Pattern-2, the screen pipes first buckled
from the middle position. As the bending load increased, plastic deformation appeared
around the holes, and fracture occurred. In Pattern-3, plastic deformation appeared around
the hole area, and fracture occurred. However, the deformation around the middle of the
screen pipes was small.

(2) The proposed empirical formula could accurately calculate the ultimate moment of
screen pipe under bending load, and the average difference between the empirical formula
and numerical simulation results was 3.25%.

(3) With an increase in the diameter and number of circumferential and axial holes,
the ultimate moment of the screen pipe gradually decreased, and the circumferential holes
had a more significant effect on the ultimate moment than the axial holes.
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