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S U M M A R Y
To elucidate the dynamics of free (buoyancy-driven) subduction of oceanic lithosphere, I
study a model in which a 2-D sheet of viscous fluid with thickness h and viscosity γ η1

subducts in an infinitely deep ambient fluid with viscosity η1. Numerical solutions for the
sheet’s evolution are obtained using the boundary-element method (BEM), starting from an
initial configuration comprising a short ‘protoslab’ attached to a longer horizontal ‘plate’ that
is free to move laterally beneath an impermeable traction-free surface. Interpretation of the
solutions using thin viscous sheet theory shows that the fundamental length scale controlling
the subduction is the ‘bending length’ �b, defined at each instant as the length of the portion
of the sheet’s midsurface where the rate of change of curvature is significant. Geophysically
speaking, �b is the sum of the lengths of the slab and of the region seaward of the trench where
flexural bulging occurs. The bending length in turn enters into the definition of the sheet’s
dimensionless ‘stiffness’ S ≡ γ (h/�b)3, which controls whether the sinking speed of the slab
is determined by the viscosity of the sheet itself (S � 1) or by that of the ambient fluid (S ≤
1). Motivated by laboratory observations of different modes of subduction (retreating versus
advancing trench, folding versus no folding, etc.) in fluid layers with finite depth, I calculate
numerically the dip θD of the slab’s leading end as a function of γ and the normalized depth
D/h to which it has penetrated. The contours of the function θD(γ , D/h) strongly resemble
the intermode boundaries in the laboratory-based regime diagram of Schellart, supporting the
hypothesis that the mode of subduction observed at long times in experiments is controlled by
the dip of the slab’s leading end when it reaches the bottom of the layer. In particular, the BEM
solutions explain why trenches advance in the laboratory only when γ lies in an intermediate
range, and why they retreat when γ is either smaller or larger than this. Application of the
BEM model to Wu et al.’s compilation of the minimum curvature radii of subducted slabs
suggests γ ∈ [140, 510] for the Earth. This is too small to permit the laboratory-type ‘trench
advancing’ mode, in agreement with the lack of tomographic evidence for slabs that are ‘bent
over backwards’.

Key words: Subduction zone processes; Dynamics of lithosphere and mantle; Mechanics,
theory, and modelling.

1 I N T RO D U C T I O N

Subduction, defined as the sinking of dense (primarily oceanic)
lithosphere into the Earth’s mantle, is a major component of the
planet’s plate tectonic cycle. Its importance in global geodynam-
ics is immense: it represents the main source of the buoyancy that
drives mantle convection; it generates the majority of great earth-
quakes and explosive volcanoes on Earth; and it is the principal
process responsible for recycling oceanic crust and volatile species
such as water back into the mantle.

Yet despite subduction’s obvious importance, the physical mech-
anisms underlying it have proven remarkably difficult to model
convincingly. The main reason is that subduction exhibits two criti-

cal features that appear contradictory at first sight. On the one hand,
subduction is driven by buoyancy forces alone, which act vertically
and have no preference for ‘right’ or ‘left’. Yet on the other hand,
subduction on Earth is always laterally asymmetric or ‘one-sided’,
with one plate plunging beneath another.

Faced with the difficulty of reconciling these two aspects, early
models of subduction tended to focus on one at the expense of
the other. The classic example of an asymmetric subduction model
is the ‘corner flow’ model of McKenzie (1969), in which viscous
flow in a wedge-shaped region is induced by an imposed motion of
the wedge’s inclined lower boundary (the ‘subducting plate’) in its
own plane. This model elegantly embodies the one-sided character
of real subduction zones; but the motion of the (non-deformable)
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subducting plate is forced kinematically rather than being driven
by negative buoyancy. At the opposite extreme is the influential
free subduction model of Christensen & Yuen (1984), in which a
dense slab with non-Newtonian rheology subducts within a self-
consistent convective flow. This approach can model realistically
the slab’s deformation and its interaction with chemical and phase
boundaries; but the subduction is perfectly symmetric.

A further step towards greater realism is represented by ‘hybrid’
models that include both free and forced aspects. In such models,
which can be either analogue or numerical, the slab is typically
allowed to subduct and deform freely, but a large-scale asymmetry
is enforced by imposed geometric and/or kinematic constraints. A
classic approach of this type is to force the subducting and/or over-
riding plates to move laterally with fixed velocities (e.g. Shemenda
1993; Houseman & Gubbins 1997; Becker et al. 1999; Faccenna
et al. 1999; Schellart 2005; Billen & Hirth 2007; Heuret et al.
2007; Guillaume et al. 2009). Other parameters that can be im-
posed include the speed of trench retreat (Griffiths et al. 1995;
Guillou-Frottier et al. 1995; Christensen 1996) and the geometry
of lithospheric faults (e.g. Zhong & Gurnis 1996; Billen & Hirth
2007).

A still higher degree of realism is attained by ‘free asymmetric’
models in which one-sided subduction is driven by buoyancy alone,
with no imposed geometric or kinematic constraints other than an
asymmetric initial condition. Free asymmetric subduction has been
modelled using three different approaches. The first is analogue
laboratory experiments in which a flexible sheet (solid or high-
viscosity fluid) sinks in a layer of low-viscosity fluid. The pairs
of materials used in such experiments include rubber and water
(Jacoby 1973), solid paraffin and molten paraffin (Jacoby 1976),
very viscous and less viscous corn syrup (Kincaid & Olson 1987),
and silicone putty and corn syrup (Funiciello et al. 2003b, 2004,
2008; Schellart 2004a,b, 2008; Bellahsen et al. 2005; Martinod
et al. 2005; Faccenna et al. 2007). In a typical experiment, the sheet
is first placed flat on the surface of the low-viscosity fluid, and one
of its edges is then pushed downward to form a ‘proto-slab’ which
initiates asymmetric subduction. This approach offers the advantage
of inherent three-dimensionality, but considerable effort is required
to characterize quantitatively the flow fields within the sheet and the
ambient fluid (Funiciello et al. 2006; Schellart 2008).

A second approach is to solve the problem numerically, using
full continuum descriptions of both the sheet and the ambient fluid.
The sheet is defined by density and viscosity anomalies (diffusing
or non-diffusing) that are prescribed initially in the form of a hor-
izontal ‘plate’ with an attached proto-slab. The solutions obtained
may be either steady-state (Conrad & Hager 1999), quasi-static
(Piromallo et al. 2006), or fully time-dependent with an evolving
sheet geometry (Schmeling et al. 1999; Enns et al. 2005; Morra
& Regenauer-Lieb 2006; Morra et al. 2006; Stegman et al. 2006,
2009; Schellart 2007; Di Giuseppe et al. 2008; Ozbench et al. 2008;
Schmeling et al. 2008). This approach guarantees a self-consistent
treatment of the interaction of the sheet and its surroundings. But
it is computationally expensive, and proper numerical treatment of
the ‘corner’ region where the sheet separates from the upper surface
is difficult (Schmeling et al. 2008).

The third approach, also numerical, is to represent the dynamics
of the sheet and/or the surrounding mantle in a parametrized way
that does not require explicit determination of the flow. One pos-
sibility is to calculate explicitly the flow within the sheet subject
to a parametrized representation of the viscous stresses exerted by
the surrounding mantle, using either a prescribed distribution of
dashpots (Funiciello et al. 2003a) or drag coefficients derived from

analytical solutions of the Stokes equations for idealized geome-
tries (Royden & Husson 2006; Capitanio et al. 2007, 2009; Goes
et al. 2008). Other options are to couple a parametrized representa-
tion of the sheet’s bending deformation with an explicit calculation
of the surrounding mantle flow (Conrad & Hager 2001) or to use
parametrized representations for both the sheet and the surrounding
mantle (Buffett & Rowley 2006). The main advantage of these ap-
proaches is their low computational cost, which allows the influence
of different model parameters to be explored efficiently. However,
the lack of an explicit flow field in part or all of the computational
domain means that the interaction of the sheet with its surroundings
cannot be treated with full self-consistency.

Taken together, the studies cited above represent a revolution
in our understanding of subduction as a dynamically self-consistent
process driven by buoyancy alone. They sketch a compelling picture
of the two-way interaction of a slab with its surroundings, whereby
a dense slab simultaneously drives mantle flow and is deformed by
it. Moreover, the results of these studies provide convincing expla-
nations for many features of the present and past geological record,
including the correlation between trench velocity and plate velocity
(Funiciello et al. 2008), the shapes of island arcs (Morra et al. 2006;
Schellart et al. 2007), and episodes of lower-mantle slab penetration
inferred from Cenozoic plate-motion histories (Goes et al. 2008).
Yet despite this impressive progress, a basic understanding of the
physical mechanisms underlying free asymmetric subduction is still
lacking. In my view, there are three critical questions that remain to
be answered.

The first question concerns the length scale that characterizes the
bending deformation of a subducting viscous sheet in response to the
gravitational and viscous forces acting on it. In an influential paper,
Conrad & Hager (1999) proposed that the relevant length scale is
the minimum value Rmin of the sheet’s radius of curvature R, an idea
that has been further developed in more recent studies (e.g. Buffett
2006; Wu et al. 2008; Capitanio et al. 2009). Other authors take
the radius of curvature at the trench as the fundamental length scale
(Funiciello et al. 2003b; Bellahsen et al. 2005; Faccenna et al. 2007).
By contrast, Royden & Husson (2006) treat slab bending without
reference to R: the only length scales appearing in their model are the
thickness of the upper mantle and the thickness, width and vertical
deflection of the slab.

A second unresolved question concerns the proper measure of the
mechanical resistance (‘stiffness’) of a subducting viscous sheet rel-
ative to that of the ambient mantle. Diverse answers to this question
have been proposed in the literature. Conrad & Hager (1999) quanti-
fied the relative resistances of the sheet and the mantle by estimating
the total rates of viscous dissipation within each. The ratio of the
former to the latter is a dimensionless measure of the sheet’s stiff-
ness, and is S ∝ γ (h/Rmin)3, where h is the plate thickness and γ

is the ratio of the sheet viscosity to the mantle viscosity. A different
approach was taken by Di Giuseppe et al. (2008), who estimated the
sheet’s stiffness from the position (in the model parameter space)
of the boundary between modes of subduction with retreating and
advancing trenches. They proposed a stiffness parameter S = A
ln γ + Bh + C�ρ, where �ρ is the excess density of the sheet
and A > 0, B > 0 and C < 0 are constants. Stegman et al. (2009)
characterized the strength of the slabs in their 3-D numerical mod-
els using a normalized ‘effective flexural stiffness’ S = γ (h/D)3,
where D is the depth of the upper mantle. Finally, Capitanio et al.
(2007) concluded on the basis of parametrized numerical models
that a slab always sinks with the Stokes velocity appropriate for its
(tabular) shape. This implies that the sheet’s bending resistance can
be neglected, that is, that its effective stiffness is zero.
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The third open question concerns the origin of the different modes
of free subduction seen in analogue laboratory experiments, which
can be broadly classified according to whether the motion of the
trench is retreating or advancing. Laboratory and numerical ex-
periments suggest the ‘rule of thumb’ that the retreating mode is
favoured when the plate is relatively thin, narrow (in the direction
parallel to the trench), and dense, whereas thick, wide and less
dense plates favour the advancing mode (Bellahsen et al. 2005; Di
Giuseppe et al. 2008; Funiciello et al. 2008). A more quantitative
laboratory-based phase diagram showing the mode of subduction
as a function of the viscosity contrast γ and the ratio D/h of the
layer depth to the sheet thickness was proposed by Schellart (2008).
On the basis of 3-D numerical experiments, Stegman et al. (2009)
proposed an alternative phase diagram for subduction modes as a
function of the effective flexural stiffness γ (h/D)3 and the (dimen-
sional) ‘Stokes buoyancy’ hg�ρ/η1, where g is the gravitational
acceleration and η1 is the viscosity of the upper mantle. Di Giuseppe
et al. (2008) suggested that the advancing mode is favoured for
‘stiffer’ sheets that cannot easily ‘unbend’ at depth; but their stiff-
ness parameter S = A ln γ + Bh + C�ρ does not reflect the physics
of bending in any obvious way. In summary, it seems safe to say that
the physical principle underlying mode selection in free subduction
is not yet well understood.

The aim of this study is to propose quantitative answers to the
three questions above, using a simple 2-D fluid mechanical model
for the free subduction of a viscous sheet. The general approach
is first to obtain highly accurate numerical solutions for the sheet’s
evolution as a function of its initial geometry and viscosity contrast,
and then to interpret those solutions in light of the theory of thin
viscous sheets. The model problem to be studied is described in the
next section.

2 M O D E L P RO B L E M

Fig. 1 shows the geometry of the model, and Table 1 summarizes
the notation used. The domain is an infinite fluid half-space with
density ρ1 and viscosity η1, whose upper surface x2 = 0 is both
impermeable (zero normal velocity) and traction-free. Embedded
within this layer is a sheet of fluid with density ρ2 > ρ1 and viscosity
η2 ≡ γ η1 whose shape evolves with time. It comprises a horizontal
piece (the ‘plate’) of length L(t) and a bent piece (the ‘slab’) of
length �(t) whose leading end dips at an angle θ 0(t). At t = 0, the
sheet has a uniform thickness h (excluding the rounded ends), and

Figure 1. Model for free subduction of a 2-D sheet of fluid with viscosity
γ η1 and density ρ2 = ρ1 + �ρ in a half-space of fluid with viscosity η1 and
density ρ1. The symbols h and d indicate the initially constant thicknesses of
the sheet and the thin ‘lubrication layer’ of fluid above its horizontal portion.
As subduction proceeds, the thicknesses of the sheet and the lubrication
layer become spatially non-uniform, and L, � and θ0 vary in time. s ∈ [0,
L + �] is the arclength coordinate along the sheet’s midsurface. The upper
surface x2 = 0 is impermeable and free of shear traction.

the upper surface of the plate is at x2 = −d. The sheet’s ‘midsurface’
lies midway between its upper and lower surfaces. The arclength
along the midsurface is s ∈ [0, L(t) + �(t)], such that s = 0 and
s = L(t) correspond to the ‘ridge’ and the ‘trench’, respectively.
By convention, the midsurface is defined only within the portion
of the sheet having uniform thickness, and does not extend into the
rounded ends (see Fig. 1). At t = 0, the dip θ (s, 0) (clockwise from
horizontal) of the ‘slab’ portion of the midsurface is

θ (s, 0) = θ0(0)s2[3�(0) − 2s]/�(0)3. (1)

Eq. (1) implies that the midsurface curvature K (s) ≡ −∂ s θ (s, 0) is
initially zero at both the slab’s leading end s = L(0) + �(0) and the
trench s = L(0) (where the curvature must vanish to match that of
the plate.) Finally, the shape of the two rounded ends is chosen to
ensure continuous curvature at the points where they join with the
rest of the sheet. The entire outer surface of the sheet is denoted by
the symbol C.

Because the model problem of Fig. 1 is 2-D, the existence of
a solution is not immediately obvious and needs to be justified
explicitly. It is well known that the equations for slow 2-D viscous
flow around an infinitely long cylinder sinking in an unbounded
fluid have no solution (Stokes’s paradox). This is true regardless
of whether the cylinder is solid or fluid, and is also independent
of the shape of its cross-section. The origin of the paradox is the
fact that the 2-D velocity field due to an infinite line force diverges
logarithmically at large distances, which implies that the Stokes
equations have no bounded solution if the total force acting on the
fluid is non-zero. However, it also implies that a solution will exist
if the domain is modified in such a way that the total force on
the fluid becomes zero. A simple way to do this is to replace the
original infinite domain by a half-space bounded by an impermeable
horizontal surface x2 = 0, as in Fig. 1. In this new configuration, the
total downward force exerted on the ambient fluid by the sinking
sheet is exactly balanced by the integral of the normal stresses acting
on the surface x2 = 0. The net force on the ambient fluid is therefore
zero and a bounded solution of the Stokes equations exists, even
though the ambient fluid extends downward to infinity.

Finally, the role of the thin layer of low-viscosity fluid above the
plate in Fig. 1 requires some comment. If an isolated sheet of dense
viscous fluid comprising a horizontal ‘plate’ and a submerged ‘slab’
is placed on top of a less dense fluid, the natural tendency of the
plate, no less than that of the slab, is to sink. This tendency must
somehow be counteracted if the plate is to move in an ‘earthlike’
way, that is, laterally but not vertically. In the Earth, the sinking of
each plate is inhibited by the presence of its neighbours, which pre-
vents the underlying mantle from welling up between the plates and
spreading over them. If however our goal is to model the behaviour
of an isolated sheet with free edges, then some additional force is
required to hold up the plate. In the case of laboratory experiments,
which typically involve sheets of silicone putty subducting in honey,
that force is probably surface tension acting along the three-phase
contact lines where silicone putty, honey and air meet. This idea
is supported by a laboratory experiment in which the ‘standard’
protocol of Bellahsen et al. (2005) is slightly but significantly mod-
ified (F. Funiciello, personal communication, 2007). A rectangular
sheet of silicone putty with dimensions 20 × 35 × 1.2 cm was
placed flat on the surface of a tank of honey and left there. After
7 hr during which the sheet remained in place without sinking, its
upper surface was lightly painted with honey, and one of its edges
was pushed 2 cm down into the honey filling the tank. But instead
of exhibiting the typical subduction-like behaviour documented by
Bellahsen et al. (2005), the whole sheet sank beneath the surface of
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Table 1. Notation.

Variable Definition Units Defined in

d Lubrication layer thickness m Fig. 1
D Layer depth or reference depth m

D90 Depth of the slab’s leading end when θ0 = 90◦ m Fig. 4
D̂90 Reduced value (midsurface deflection) of D90 m Fig. 4; eq. (C2)
g Gravitational acceleration m s−2

h Plate thickness m Fig. 1
K ≡ −∂θ/∂s; midsurface curvature m−1

K̇ Rate of change of midsurface curvature m−1 s−1 Eq. (15)
� Slab length m Fig. 1
�̇ Subduction rate m s−1 Section 4
�b Bending length m Fig. 5
L Plate length m Fig. 1
M Bending moment kg m s−2 Eq. (16)
R ≡ 1/|K |; Radius of curvature of the midsurface m

Rmin Minimum value of R m
s Arclength along the midsurface m Fig. 1
S Sheet stiffness None Eq. (18)
t Time s

utip
1 Horizontal velocity of the slab tip m s−1

U Longitudinal velocity of the midsurface m s−1 Fig. 4
Up Plate speed m s−1 Section 4

U trench ≡ U0 − �̇; trench speed m s−1 Section 4
V Sinking speed of the slab’s tip m s−1 Section 4

V Stokes Characteristic Stokes sinking speed m s−1 Eq. (10)
w Sheet width m
W Normal velocity of the sheet’s midsurface m s−1 Fig. 4
γ ≡ η2/η1; viscosity contrast None Fig. 1

�ρ ≡ ρ2 −ρ1; excess sheet density kg m−3 Fig. 1
η1 Ambient mantle viscosity Pa s Fig. 1
η2 Sheet viscosity Pa s Fig. 1
θ Dip of the midsurface None Eq. (1)
θ0 Dip of the slab’s leading end None Fig. 1
θD Dip of the slab’s leading end when its depth is D None
ρ1 Ambient mantle density kg m−3 Fig. 1
ρ2 Sheet density kg m−3 Fig. 1

the honey within a few tens of minutes. Because the effect of the
painting is to eliminate the highly curved meniscus at the contact
line, the experiment seems to suggest that surface tension acting
on this meniscus provided the upward force required to balance the
sheet’s negative buoyancy during the first 7 hr of the experiment.
The critical role played by surface tension in analogue experiments
on free subduction has also been noted by Jacoby (1976).

However, the importance of surface tension in the laboratory
does not mean that it should be included in numerical models;
and if it is not, then some other means of supporting the plate is
necessary. One possibility is to impose a condition of zero normal
velocity at the plate’s upper surface; but it then becomes necessary
to modify the rheology of the sheet near the trench in an ad hoc way
to get it to subduct (e.g. Enns et al. 2005; Di Giuseppe et al. 2008;
Stegman et al. 2009). Another possibility is to support the plate by
imposing isostatic restoring forces along its base (e.g. Funiciello
et al. 2003a; Capitanio et al. 2007, 2009). A third possibility, and
the one I have chosen here, is to interpose a thin ‘lubrication layer’
of low-viscosity fluid between the plate and the surface x2 = 0,
which is assumed to be both impermeable and free of shear traction
(Fig. 1). According to a standard result from lubrication theory,
normal stresses greatly exceed shear stresses within the lubrication
layer. The plate is thus free to move horizontally, but its sinking
is impeded by a strong upward-directed normal stress whose value
throughout the plate’s interior (away from the ends of the lubrication

layer) is hg�ρ (Appendix B). The lubrication layer can therefore
be regarded simply as a mechanism for maintaining the plate in a
state of perfect local isostatic equilibrium while allowing it to move
freely in response to the pull of a freely deforming slab. Similar
lubrication layers have also been used in other numerical models of
free subduction (Morra et al. 2007; Ozbench et al. 2008; Schmeling
et al. 2008).

To summarize, the model geometry shown in Fig. 1 offers several
significant advantages. First, the flow fields within both the sheet and
the ambient fluid are regular in the vicinity of the trench, allowing
subduction to occur freely with no need for ad hoc modifications
of the rheology. Second, the presence of the lubrication layer allows
flexural bulging of the plate to occur seaward of the trench, an effect
whose importance will become clear below. Finally, the smoothness
of the interface between the two fluids permits the use of an efficient
and highly accurate numerical method, described next.

3 N U M E R I C A L M E T H O D

Because inertia is negligible, the flow within the sheet and in the
fluid surrounding it is entirely determined at each instant by the
current geometry of the interface. Problems of this type can be ef-
ficiently solved using a boundary-integral representation, whereby
slow viscous flow in a given region is expressed by weighted inte-
grals of the tractions and velocities on the boundaries of that region.
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Pozrikidis (1990) and Manga & Stone (1993) derived the appro-
priate boundary-integral representation for the general case of a
buoyant ‘drop’ of fluid entirely surrounded by a second fluid with
a different viscosity, of which the system of Fig. 1 is an example.
Let Vi(i = 1 or 2) be the region occupied by the fluid with viscosity
ηi, and let C be the interface between the two fluids. Furthermore,
let u(i)(x) (i = 1 or 2) be the fluid velocity at the point x in Vi, such
that u(1)(x) = u(2)(x) for x ∈ C . Then the velocities u(i)(x) satisfy

χ1(x)u(1)(x) + γχ2(x)u(2)(x) − (1 − γ )

×
∫

C
u( y)·K ( y − x)·n( y)d�( y)

= −�ρ

η1

∫
C

(g· y)n( y) J( y − x)d�( y), (2)

where J and K are Green’s functions and n is the unit normal to C
that points out of the sheet. χ1(x) = 0, 1/2, or 1 if x is in V 2, right
on C, or in V 1, respectively, and χ 2(x) is defined similarly but with
the subscripts 1 and 2 interchanged.

The Green’s functions J and K are singular solutions of the
Stokes equations that represent the velocity and stress, respectively,
at y due to a line force at x, and which satisfy automatically the
boundary conditions at x2 = 0. Their explicit forms are

Ji j ( y − x) = J 

i j ( y − x) + (−1) j+1 J 


i j ( y − xIM), (3a)

Ki j ( y − x) = K 

i j ( y − x) + (−1) j+1 K 


i j ( y − xIM), (3b)

where xIM ≡x −2 x2 e2 is the mirror image of the point x across
the boundary x2 = 0 and

J 

i j (r) = 1

4π

(
−δi j ln |r| + rir j

|r|2
)

, K 

i j (r) = − 1

π

rir j rk

|r|4 (4)

are the Green’s functions for a line force in an infinite fluid.
For points x on C, (2) is a Fredholm integral equation of the

second kind for the velocity u of the interface. Once u on C is
known, u at other points x can be determined by evaluating the
integrals in (2) with χ1 = 1 and χ 2 = 0 (if x ∈ V 1) or χ 1 = 0 and
χ 2 = 1 (if x ∈ V 2.) Finally, the position of each material point x on
the interface evolves according to

dx

dt
= u(x). (5)

The dimensionless parameters that control the dynamics of the
system can be identified by rewriting (2) and (5) in terms of the
dimensionless variables

(x̂, ŷ) = h−1(x, y), û = η1

h2g�ρ
u, t̂ = hg�ρ

η1
t. (6)

The results are

χ1(x)u(1)(x) +γχ2(x)u(2)(x) − (1 − γ )

×
∫

C
u( y)·K ( y − x)·n( y)d�( y)

=
∫

C
(e2· y)n( y) J( y − x)d�( y), (7)

dx

dt
= u(x), (8)

where e2 is the (upward-pointing) vertical unit vector and the hat
symbols have been suppressed to simplify the notation. The only
dimensionless parameters that appear in (7) and (8) are the viscosity
contrast γ and the four parameters that define the shape of the
contour C, which I shall take to be L(0)/�(0), �(0)/h, d/h and

θ0(0). Accordingly, the velocity u(x) for x ∈ C must have the
general form

u

VStokes
= fct

[
x

h
,

hg�ρ

η1
t, γ,

L(0)

�(0)
,
�(0)

h
,

d

h
, θ0(0)

]
, (9)

where

VStokes = h�(0)g�ρ

η1
(10)

is the characteristic Stokes sinking velocity scale for a thin object
(e.g. a coin) with thickness h and lateral dimension �(0) � h.
Eq. (9) is the basis for the subsequent dimensional analysis of
several aspects of subduction dynamics.

The numerical solution procedure for (7) and (8) is as follows.
First, the integrals in (7) are regularized by ‘subtracting the singu-
larity’ at y = x following the method outlined in section 6.4 of
Pozrikidis (1992), which yields∫

C
(g·y)n( y)·J( y − x)d�( y)

=
∫

C
[g·( y − x)]n( y)·J( y − x)d�( y), (11a)

∫
C

u( y)·K ( y − x)·n( y)d�( y)

=
∫

C
[u( y) − u(x)]·K ( y − x)·n( y)d�( y) − 1

2
u(x). (11b)

Next, the contour C is discretized using three-node curved elements
Cn (n = 1, 2, . . . , N ), over each of which y, n and u vary as

y(ξ ) =
3∑

m=1

φm(ξ ) ym, n(ξ ) = ∂ξ y × e3

|∂ξ y × e3| ,

u(ξ ) =
3∑

m=1

φm(ξ )um, (12)

where ym are the (known) nodal coordinates, um are the (unknown)
nodal velocities, and φm(ξ ) are quadratic basis functions defined
on a ‘master’ element ξ ∈ [−1, 1]. Substitution of (12) into (7)
with x ∈ C transforms the integrals over C into sums of integrals
over the elements Cn, each of which is evaluated on ξ ∈ [−1, 1]
using 6-point Gauss–Legendre quadrature. The resulting system of
4N coupled linear equations is solved iteratively using the bicon-
jugate gradient algorithm of Press et al. (1996), yielding the nodal
velocities um with fourth-order accuracy. The positions of all ma-
terial points x ∈ C are then advanced in time by solving (5) using
a second-order Runge–Kutta (midpoint) method. The accuracy of
the (instantaneous) velocity determination was verified against two
independent solutions for the flow due to a cylinder moving normal
to an impermeable traction-free surface: an analytical solution valid
in the limit γ → ∞ (Wakiya 1975), and an integral representation
valid for γ = 1. The accuracy of the time stepping was checked by
monitoring the area enclosed by the contour C, which was constant
to within 0.01 per cent in all cases. Doubling the (spatial and/or
temporal) resolution yielded results indistinguishable from those
shown below to within the width of the plotting lines.

4 S I M U L AT I O N S O F U N S T E A DY
S U B D U C T I O N

To provide some initial understanding, I begin by examining some
qualitative features of the behaviour of the model system, focussing
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564 N. M. Ribe

Figure 2. Time evolution of freely subducting sheets for three values of the
viscosity contrast γ . Solid lines: shapes of the sheet at the dimensionless
times thg�ρ/η1 indicated, starting from the initial conditions L(0) = 16h,
�(0) = 4h, d = 0.2h and θ0(0) = 30◦. Dashed lines: shapes at the same
times for a longer plate with L(0) = 32h (displayed at an arbitrary horizontal
position).

on the influence of the plate/mantle viscosity contrast γ . The solid
lines in Fig. 2 show the time evolution of a sheet starting from the
initial conditions L(0) = 16h, �(0) = 4h, d = 0.2h and θ 0(0) =
30◦, for γ = 100 (Fig. 2a), 1000 (Fig. 2b) and 10 000 (Fig. 2c).
For each value of γ , the sheet’s shape is displayed at the times at
which the depth of the slab tip is 2.04 h (the initial condition),
4h, 6h and 8h, respectively. The corresponding values of the di-
mensionless time thg�ρ/η1 are indicated. The style of subduction
depends strongly on γ . The weakest sheet (γ = 100) curls counter-
clockwise at the trench while its lowermost part curls clockwise in
response to the stresses applied by the mantle flowing around the
slab tip. The ‘plate’ portion of the sheet moves steadily to the right
while the trench retreats (but more slowly) to the left. For γ = 103

(Fig. 2b), the curling of the slab is no longer concentrated near the
trench, and is counter-clockwise along the whole length of the slab.
Once bent, the slab is difficult to unbend because the gravitational
force acting on it is dominantly parallel to the midsurface. The dip
of the slab’s lower part therefore overshoots the vertical to values
> 90◦. Similar behaviour is observed for γ = 104 (Fig. 2c).

To illustrate the influence of the initial plate length L(0), Fig. 2
also shows the evolution of a longer sheet with L(0) = 32 h but
the same initial values of �(0), d and θ 0 (dashed lines). These
shapes are shown at the same dimensionless times as those for L(0)
= 16 h, but at an arbitrary horizontal position to facilitate compari-
son. The differences are minor, demonstrating that the evolution of
the slab shape is nearly independent of the plate length.

The results of Fig. 2 can be quantified in more detail by defining
three characteristic velocities. The first is the vertical ‘sinking speed’
V ≡ −u · e2 > 0 of the leading edge of the subducting slab. The

Figure 3. Characteristic velocities for the three solutions of Fig. 2 as func-
tions of time. Solid lines: sinking speed V . Dashed lines: plate speed Up.
Dotted lines: subduction rate �̇. The dots along the solid curves indicate the
dip of the leading end of the slab in degrees.

second is the ‘plate speed’ Up, defined as the average rightward
velocity of the portion of the sheet whose upper and lower surfaces
are horizontal to within 1◦. The third is the ‘subduction rate’ �̇,
that is, the rate at which the plate is consumed by subduction. It
was determined numerically from the rate of increase of the total
amount of slab material located below the depth x2 = −h −d that
corresponds to the base of the plate.

Fig. 3 shows the velocities V (t), Up(t) and �̇(t) as functions of
time for the three solutions of Fig. 2. To a first approximation, all the
velocities increase with time due to the steadily increasing negative
buoyancy (‘slab pull’) of the lengthening slab. The trench velocity
Utrench ≡ Up − �̇ is always negative, indicating leftward (retreating)
trench motion. The ratio |U trench/Up| (trench velocity as a fraction of
plate velocity) increases as a function of γ for t = 0, and decreases
as a function of time for fixed γ .

5 T H I N - S H E E T S C A L I N G A NA LY S I S

The next task is to uncover the physical mechanisms and scaling
laws that underly the complex behaviour shown in Figs 2 and 3. The
first point to note is that because inertia is negligible, the evolution-
ary history of a subducting sheet is nothing more than a sequence of
quasi-static configurations whose dynamics are determined entirely
by the sheet’s instantaneous shape. It therefore makes sense first
to study the quasi-static dynamics of a sheet as a function of its
viscosity contrast and shape, without the added complexity of the
(purely kinematic) time evolution. To do this, I shall use as a ‘refer-
ence’ configuration the geometry shown in Fig. 1, together with the
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Free subduction 565

analytical form (1) for the dip θ (s, 0) of the midsurface. But in-
stead of regarding L(0), �(0) and θ 0(0) as ‘initial’ values in a
time-dependent simulation, I shall treat them as free geometrical
parameters that can be varied to represent a wide range of different
sheet shapes at some arbitrary instant in time. Accordingly, in this
section I consider only instantaneous solutions of the boundary-
integral eq. (7), and ignore the time evolution described by the
kinematic eq. (8). The notation is simplified by suppressing the
time argument on all parameters, writing e.g. L instead of L(0), etc.

As the first ‘target’ parameter for the scaling analysis, consider the
sinking speed V of the slab. Because V is an instantaneous quantity
defined at a particular material point on the sheet, it depends neither
on t nor on x. Moreover, the numerical solutions show that V is
very nearly independent of L: it changes by <1 per cent when L is
increased from 16h to 32h. The general relation (9) then reduces
to

V η1

h�g�ρ
= fct

(
γ,

�

h
,

d

h
, θ0

)
. (13)

I emphasize here that a relation of the form (13) is valid only for
the ‘vertical’ component V of the slab tip velocity, and not for its
horizontal component utip

1 , which does depend on L. The dependence
of utip

1 on L is what accounts for the minor differences between the
time evolutions of sheets with different values of L(0) in Fig. 2.
The reason why utip

1 depends on L is that it includes a contribution
from the plate speed Up, which itself depends on L because it is
influenced by the drag exerted on the plate by the underlying mantle.
The dependence of Up on L is quantified in more detail below.

The functional dependence in (13) could be determined by the
‘brute force’ method of obtaining numerical solutions over a grid
in the 4-D parameter space (γ , �/h, d/h, θ 0), but the result would
not provide any physical insight. A better approach is to interpret
the numerical solutions with the help of physical scaling arguments
derived from the theory of thin viscous sheets (Buckmaster et al.
1975; Ribe 2001, 2002; Buffett 2006). In this theory, the dynam-
ics of a sheet are described entirely in terms of quantities defined
on its midsurface. For a 2-D sheet, the basic quantities are the
components U(s) and W (s) of the velocity in the directions par-
allel to and normal to the midsurface, respectively (Fig. 4). Next,
the rates of stretching (�) and rotation (ω) of the midsurface are
defined as

� = U ′ − K W, ω = W ′ + KU, (14)

where (to repeat) K(s) is the curvature of the midsurface and primes
denote d/ds. A final derived quantity is the rate of change of the
midsurface curvature (Ribe 2003)

K̇ = ω′ − K�, (15)

which will be called the ‘curling rate’ for short. Note that the rates
of stretching, rotation and curling defined by (14) and (15) are all
advective rates of change following the motion of a material point
on the midsurface.

The curling rate is a direct measure of the internal stresses that
resist the bending of the sheet, as one sees immediately from the
formula for the bending moment (Ribe 2001)

M = −1

3
η2h3 K̇ . (16)

K̇ is determined from the BEM numerical solutions by first calcu-
lating U(s) and W (s) from (7) with χ 1 = 0, χ 2 = 1 for points x
(s) located on the sheet’s midsurface, and then evaluating numer-
ically the derivatives in (14) and (15). Fig. 5 shows K̇ (s) for the

Figure 4. Definitions of parameters characterizing a thin viscous sheet.
The sheet’s midsurface is indicated by the dotted line, and s is the arclength
coordinate along it. U (s) and W (s) are the components of the fluid velocity
at points on the midsurface in the directions parallel and perpendicular to it,
respectively, and are positive in the senses indicated. For the special case of
a slab whose leading end is vertical, D90 is the maximum depth of the slab
below the upper surface of the plate, and D̂90 ≡ D90 − 1.15h is the total
vertical deflection of the midsurface. The sheet’s thickness h and the length
(= 0.65h) of the slab’s endpiece remain nearly constant during progressive
subduction when γ ≥ 100.

Figure 5. Rate of curling K̇ (s) as a function of arclength for the sheets of
Fig. 2 at the initial instant t = 0. The solid, dashed, and dotted lines are for
γ = 100, 1000 and 104, respectively. The corresponding minimum values of
η1 K̇/g�ρ are −0.0281, −0.010 and −0.00246, respectively. The definition
of the bending length �b is indicated for γ = 100.

initial (t = 0) configuration of the three sheets whose time evo-
lution is shown in Fig. 2. In each case, the ‘slab’ portion of the
sheet corresponds to s > 16. For the weakest sheet (γ = 100; solid
line), the upper part of the slab curls clockwise (K̇ < 0), as one
would expect for bending under gravity. The lower part, however,
curls in the opposite direction due to the tractions applied by the
mantle ‘wind’ flowing around the tip of the slab. For the stiffer
sheets (γ = 103 and 104; dashed and dotted lines), the tractions
applied by the mantle wind are too weak to influence all but the
lowermost tip of the slab, so the slab curls clockwise over nearly
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566 N. M. Ribe

Figure 6. Time evolution of the bending length �b(t) (upper curves) and
the minimum radius of curvature Rmin(t) for the three simulations of Fig. 2.
The viscosity contrast γ for each curve is indicated.

its whole length. Moreover, significant bending also occurs seaward
of the trench, over a distance that increases with increasing γ . The
‘flexural bulge’ produced by this bending is observed seaward of
many trenches on Earth (Watts & Talwani 1974; Turcotte et al.
1978).

Motivated by the curves of Fig. 5, I now define the ‘bending
length’ �b as the length of the portion of the sheet’s midsurface
where the curling rate K̇ (s) is significantly different from zero.
To make this definition mathematically precise in the context of
the present model, I take �b to be the distance from the end of the
sheet’s midsurface (excluding the rounded ‘endcap’) to the first zero
of K̇ (s) to the left-hand side of the point where this function has its
global minimum. This definition is illustrated in Fig. 5 for the curve
K̇ (s) at the initial instant of the simulation with γ = 100 in Fig. 2.
However, the bending length is also defined at all later instants,
and typically increases monotonically with time because the slab is
continually lengthening. Fig. 6 shows this for the three simulations
of Fig. 2. For comparison, Fig. 6 also shows the sheet’s minimum
radius of curvature Rmin(t) for the same three simulations. Unlike
�b(t), Rmin(t) initially decreases and then increases more slowly.
These contrasting behaviours show that the length scales �b(t) and
Rmin(t) are fundamentally different in character, as discussed in
more detail in Section 8.

With the definition of �b in hand, I now consider the balance of
forces (per unit length in the x3-direction) acting on the bending
portion of the sheet at an arbitrary instant in time. The traction
σ 1 applied to this portion by the outer fluid is σ 1 ∼ η1V /�b, which
implies a total (integrated with respect to arclength) force F1 ∼ η1V .
Thin-sheet theory (Ribe 2001) shows that the internal traction σ 2

that resists the bending is σ 2 ∼ M ′′ ∼ η2 h3V /�4
b, which corresponds

to a force F2 ∼ η2h3V /�3
b. Finally, because the negative buoyancy

of the ‘plate’ portion of the sheet is compensated by normal stresses
in the lubrication layer, the effective buoyancy force Fb ∼h�g�ρ is
due entirely to the slab portion of length �. In the limit of negligible
bending resistance, the balance Fb ∼ F1 implies

V ∼ h�g�ρ

η1
≡ VStokes. (17)

Figure 7. Dimensionless sinking speed V /V Stokes of the slab as a function
of the sheet stiffness S, for three different values of the dip θ0. The geometry
of the sheet is as shown in Fig. 1. A total of 588 numerical solutions with
L/h = 16 are shown for d/h = 0.1 (open circles), d/h = 0.2 (black circles),
and different values of γ and �/h (see text).

Furthermore, the ratio of the internal and external viscous forces
acting on the slab is

F2

F1
∼ γ

(
h

�b

)3

≡ S. (18)

The quantity S is a dimensionless measure of the ‘stiffness’ of a
subducting sheet, and plays a fundamental role in controlling its
dynamics.

The above arguments suggest that it may be revealing to plot
the dimensionless sinking speed V /V Stokes versus S. Fig. 7 shows
such plots for a suite of 588 instantaneous BEM solutions obtained
with L/h = 16, seven different values of �/h (4 ≤ �/h ≤ 10),
two values of d/h (0.1 or 0.2), fifteen different values of γ (31.7 ≤
γ ≤ 105), and three values of θ 0(30◦, 60◦ and 90◦). For each value of
θ 0, all the solutions collapse onto a universal curve, independently
of the particular values of �/h, d/h or γ . These curves exhibit two
distinct limits. For large S � 1, the slope of each curve approaches
asymptotically the value −1, implying that V is controlled entirely
by the viscosity η2 of the sheet. Because the sheet’s resistance to
bending is the primary force resisting subduction when S � 1, I
shall call this the ‘flexural’ limit. For S ≤ 1, by contrast, the slope
of the curves in Fig. 7 is (nearly) zero, indicating that V is con-
trolled (almost) entirely by the viscosity η1 of the outer fluid. This
‘Stokes sinking’ limit corresponds to the unhindered sinking of a
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Free subduction 567

Figure 8. Same as Fig. 7b, but rescaled as a function of the modified
stiffness S∗ = γ (h/Rmin)3.

plate-shaped object beneath a free surface, as discussed in more
detail in Appendix A.

The near-perfect collapse of the numerical data in Fig. 7 onto
universal curves demonstrates that the bending length �b is the
critical length scale governing the dynamics of a subducting slab.
The essential point is that �b exceeds the slab length � by a factor
that increases with the viscosity contrast (Fig. 5) because bending
stresses are significant in the region of flexural bulging seaward of
the trench. For the model geometry of Fig. 1, �b depends on γ ,
h, �, d and θ 0 in a rather complicated way that is determined in
Appendix B.

The key role of the bending length �b becomes still more manifest
when Fig. 7 is compared with the results of alternative rescalings.
In Fig. 8, the numerical data from Fig. 7b are rescaled in terms of
a modified stiffness S∗ ≡ γ (h/Rmin)3 that is obtained from (18)
by replacing �b by the sheet’s minimum radius of curvature Rmin.
Because the sheet’s shape is described analytically by (1), Rmin

= 2�/3θ 0. When S∗ ≤ 3, all the data in Fig. 8 collapse onto the
same universal curve as in Fig. 7(b), unsurprisingly because bend-
ing stresses are negligible in that limit. For S∗ ≥ 10, by contrast,
the new rescaling breaks down, as indicated by the substantial scat-
ter of the data. The length scale Rmin is therefore not appropriate
for characterizing the sheet’s bending response. Moreover, because
Rmin ∝ � when θ 0 is constant, as it is in Fig. 8, it follows that the
slab length � is not appropriate either.

I turn now to the scaling law that governs the plate speed Up.
The numerical solutions show that this quantity, unlike the sinking
speed V , depends on the plate length L. The scaling law analogous
to (13) is therefore

Up

VStokes
= fct

(
γ,

L

�
,

L

h
,

d

h
, θ0

)
, (19)

where the argument �/h in (13) has been replaced by L/h with no
loss of generality. While it is possible to determine the complete
functional dependence (19), the result would be too complicated to
be illuminating. Instead, consider the simpler problem of how Up

depends on γ , L/� and �/h with θ 0 and d/h held fixed. Fig. 9 shows
Up/V Stokes as a function of S for θ 0 = 60◦, d/h = 0.2, and various
values of L/� and �/h. When L/� = 2 (plate length twice the slab
length), the curves of Up/V Stokes versus S are similar in shape to
those of V /V Stokes versus S (Fig. 7). In physical terms, this means
that the speed of a relatively short plate is entirely controlled by the
balance of the forces Fb, F1 and F2 acting on the attached slab.
As L/� increases, however, the additional drag force exerted on
the bottom of the plate by the ambient fluid becomes progressively
more important relative to Fb, F1 and F2, so that Up is reduced.
When L � �, the curves of Up versus S have strong local maxima,

Figure 9. Dimensionless plate speed Up as a function of S for θ0 = 60◦,
d0/h = 0.2, three values of L/� (indicated) and L/h = 32 (solid lines), 24
(dashed lines), and 16 (dotted lines.)

implying the existence of an ‘optimal’ viscosity contrast γ opt that
gives the fastest plate speed for a given sheet geometry. For L/� =
8 and L/h = 32, for example, γ opt ≈ 350.

6 M O D E S O F F R E E S U B D U C T I O N

The foregoing thin-sheet analysis revealed two critical parameters
that govern the dynamics of instantaneous subduction: the ‘bending
length’ �b and the dimensionless sheet ‘stiffness’ S. I now show
that these concepts also provide the key to understanding critical
aspects of time-progressive subduction, as observed in laboratory
experiments with viscous sheets sinking in a layer of fluid with a
lower viscosity and a finite depth (Bellahsen et al. 2005; Funiciello
et al. 2008; Schellart 2008). These experiments reveal that free
subduction can occur in five different styles or ‘modes’ depend-
ing on the experimental parameters, as summarized in Fig. 10. The
photographs in the left-hand column of Fig. 10 were taken before
the sheet’s leading end reached the bottom of the layer, and those in
the right-hand column some time afterwards. For γ ≤ 100, subduc-
tion occurs in a ‘dripping’ (D) mode (Fig. 10a). The slab descends
nearly vertically, and its thickness varies substantially as a function
of time and depth due to stretching in its upper part and shortening
in its lower part. The speeds of both the plate and the trench are
small in this mode. For intermediate viscosity contrasts 100 < γ ≤
104 (approximately), three different modes are observed, depending
on the plate’s thickness h and width w. In the ‘weak retreating’
(WR) mode (Fig. 10b), the sinking slab lies down more or less flat
on the bottom surface, and the trench ‘retreats’ to the left, that is,
in the direction opposite to that of the plate motion. The ‘folding
retreating’ (FR) mode (Fig. 10c) is similar, except that the slab folds
once on the bottom of the tank before steady-state trench retreat is
established. In the ‘advancing’ (A) mode (Fig. 10d), by contrast, the
sinking slab ‘bends over backwards’ against the bottom of the tank,
and thereafter the trench moves in the same direction as the plate.
Finally, for γ � 104 subduction occurs in a ‘strong retreating’ (SR)
mode (Fig. 10e), except if the plate is very thin, in which case the
advancing mode is observed.

On the basis of his own laboratory experiments and those pre-
viously performed by others, Schellart (2008) proposed a regime
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568 N. M. Ribe

Figure 10. Modes of free subduction observed in analogue laboratory ex-
periments. (a) ‘dripping’ (D) mode; (b) ‘weak retreating’ (WR) mode; (c)
‘folding retreating’ (FR) mode; (d) ‘advancing’ (A) mode and (e) ‘strong
retreating’ (SR) mode. The photographs in the left-hand column were taken
before the sheet’s leading end reached the bottom of the experimental tank,
and those in the right-hand column some time after. The viscosity contrast
γ for each experiment is indicated at far right-hand side. The depths of
the fluid layers are 9.4 cm for (a), 11 cm for (b)–(d) and 9.7 cm for (d).
Photographs courtesy of F. Funiciello.

diagram for the WR, FR, A and SR modes as a function of the
viscosity contrast γ and the ratio D/h of the layer depth to the sheet
thickness (Fig. 11a). The D mode is not included to the left-hand
side of the WR field because there is a smooth transition between
the two rather than a sharp boundary. The regime boundaries in
Fig. 11(a) are valid for fairly narrow slabs with w/D ≈ 0.4–2.7,
and will be different for wider slabs.

Three important features of Fig. 11(a) are worth noting. First,
there is no clear distinction between regimes when D/h is less than
a critical value (≈7.3 in Fig. 11a). Second, for a fixed value of
D/h above the critical value, the modes succeed one another in
an invariant order (WR, FR, A and SR) as γ increases. Third, the
boundary between the WR and FR modes has a much greater slope
than that between the A and SR modes.

I now show that all three of these features can be explained using
the 2-D BEM model. The argument starts from the observation that
there is a systematic relationship between the mode of subduction
and the dip θD of the leading end of the slab when it first reaches
the bottom of the tank. In Fig. 10, for example, the dip θD is less
than or equal to 90◦ for the WR and SR modes; slightly exceeds
90◦ for the FR mode; and substantially exceeds 90◦ for the A mode.
These observations suggest the working hypothesis that the mode
of subduction is controlled by the dip θD, that is, by the amount of
bending the sheet undergoes during its initial descent through the
fluid layer.

To test this hypothesis quantitatively, I use the BEM model to
calculate the dip θD as a function of γ and H/d. Fig. 11(b) shows
the contours θD = 90◦ and θD = 105◦ of that function. Their shapes
are remarkably similar to the shapes of the boundaries in the regime
diagram of Fig. 11(a): each contour exists only above a minimum
value of D/h, and the slope of its left-hand branch is much larger
than that of its right-hand branch. The symbols WR, FR, A and SR
in Fig. 11(b) indicate the subduction modes to which the different

Figure 11. (a) Phase diagram showing the modes of free subduction ob-
served in laboratory experiments as a function of the viscosity contrast γ

and the ratio D/h of the layer depth to the sheet thickness (adapted from
Fig. 13 of Schellart 2008). WR: weak retreating mode. FR: folding retreat-
ing mode. A: advancing mode. SR: strong retreating mode. (b) Contours of
the dip θD (in degrees) of the tip of the slab at the time when it reaches the
depth D, predicted numerically using the BEM model. The initial condition
for the calculations is �(0) = 0.455 D, θ0(0) = 15◦, L/h = 16 and d/h =
0.2.

portions of the diagram correspond, assuming in accord with Fig. 10
that the WR/FR and FR/A boundaries are roughly at θD = 90◦ and
105◦, respectively. Fig. 11(b) thus predicts that the modes WR, FR,
A and SR should be observed in that order as the viscosity contrast γ
is increased for fixed D/h, in agreement with Fig. 11(a). If however
D/h is less than a critical value ≈6.2–7.3, the dip θD never reaches
90◦. The trench therefore retreats for any value of γ , and there is no
distinction between the WR and SR modes.

If it is true that the FR mode corresponds roughly to dips θD ∈
[90◦, 105◦], then Fig. 11(b) would seem to imply that FR should be
observed not only between WR and A, but also for higher values of
γ between A and SR. There is no experimental evidence for this to
my knowledge. The most likely reason is simply that a more viscous
sheet is harder to fold than a less viscous one, which suppresses the
‘second’ FR mode between A and SR. However, a proper test of this
hypothesis would require a more realistic 3-D model with a mantle
layer of finite depth.

There are of course significant quantitative differences between
Figs 11(b) and (a), the most obvious being that the contours in
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Free subduction 569

Fig. 11(b) are shifted to higher values of γ relative to the regime
boundaries in Fig. 11(a). The idealized 2-D character of the BEM
model is only one among several reasons for this that are discussed
in more detail in the Discussion below. However, the qualitative
similarity between Figs 11(a) and (b) strongly supports the conclu-
sion that the BEM model captures the essential physical mechanism
responsible for mode selection in free subduction.

This conclusion is illustrated in a more visually striking way in
Fig. 12, which shows the shape of the sheet as a function of γ at the
time when its leading end reaches a fixed depth D = 9.17h (the depth
of the fluid layer in the majority of the laboratory experiments of
Bellahsen et al. 2005). For γ = 20, subduction occurs in the dripping
(D) mode (Fig. 10a). For γ = 100, θD < 90◦, and so the WR mode
will be observed. The dip θD then increases further, reaching 90◦

for γ = 580 and 103◦ for γ = 1000. Subduction should therefore
occur in the FR mode in these two cases, although it should be
remembered that the BEM model cannot model folding explicitly
because it has no bottom boundary. For γ = 5000, θD significantly
exceeds 90◦, and so the subsequent subduction will occur in the A
mode. Finally, θD ≤ 90◦ for γ ≥ 21 400, and so subduction will
occur in the SR mode.

In closing, it is important to emphasize that both the laboratory
and numerical results presented in this section are influenced by
the choice of the initial condition. In the BEM calculations pre-
sented above, I chose a uniform initial condition in order to isolate
the effect of the viscosity contrast γ . A more systematic study of
the influence of the initial condition in the BEM models is per-
formed in Appendix C, where it is shown that the evolution of
the subducting sheet depends only on the initial bending length
�b(0) and the initial dip θ 0(0) of the protoslab (Fig. C2.) Fig. C1
presents the same results as a function of γ , and suggests by anal-
ogy that the horizontal position of the contours in Fig. 11(b) can
vary by a factor 2–3 in γ for a reasonable range of variation of
the initial conditions. But the overall shapes of the contours remain
unchanged, and so the numerical prediction of the mode sequence
WR–FR–A–SR as a function of increasing viscosity contrast is
robust.

7 G E O P H Y S I C A L A P P L I C AT I O N

Applying the model studied here to real subduction systems re-
quires caution for at least two reasons. First, the BEM model is
a highly oversimplified representation of geophysical reality that
neglects numerous potentially important factors including three-
dimensionality, mantle viscosity stratification, non-linear rheology,
heat transport and mineralogical phase changes. Second, several of
the critical quantities predicted by the model are difficult to observe
directly in real subduction zones: these include the slab sinking
speed V , the bending length �b, and the sheet stiffness S.

However, the BEM does predict several other quantities that can
be compared directly with observations. As a first example, consider
the sheet’s minimum radius of curvature Rmin. As the comparison
of Figs 7 and 8 shows, Rmin is not the fundamental lengthscale that
characterizes the bending response of the sheet. Nevertheless, Rmin

is still a useful measure of the finite bending strain experienced by
the sheet during subduction. Although Rmin is a function of time
in general, Fig. 6 suggests that it tends towards a roughly constant
(i.e. slowly varying) value that depends on the viscosity contrast γ .
To quantify this dependence, I use the BEM model to determine
Rmin(γ ) at the time when the tip of the slab reaches a depth D =
8.25h (= 660 km for h = 80 km) starting from the initial condition
shown in Fig. 12(a). That initial condition was chosen to ensure that
the initial value of Rmin/h (= 10.2) significantly exceeds the final
value for all viscosity contrasts γ ∈ [100, 30 000]. Fig. 13 shows
that the final value of Rmin(γ ) follows roughly the power law

Rmin ≈ 0.50hγ 0.25. (20)

The scaling relation (20) can now be used in conjunction with
published estimates of Rmin to constrain the effective value of
γ for subducting plates on Earth. Heuret (2005) and Wu et al.
(2008) estimated Rmin for 207 subduction transects, and found
Rmin = 100–1300 km with a mean value 390 ± 190 km. To
compare these data with the BEM model predictions, I first
calculate the corresponding values of the normalized curvature
radius Rmin/h(τ ), where h(τ ) and τ are the thickness and age,

Figure 12. Shapes of subducting viscous sheets that have reached a depth D = 9.17h, starting from the initial conditions L(0) = 16h, d/h = 0.2, �(0) =
4h and θ0(0) = 15◦ shown in panel a). The viscosity contrast γ is indicated at the lower left-hand corner of panels (b)–(h). The inverted triangles indicate the
initial position of the trench.
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Figure 13. Minimum radius of curvature Rmin of a subducting sheet at the
time when its tip reaches a depth D = 8.25h, as a function of the viscosity
contrast γ . The initial condition is the same as in Fig. 12(a).

Figure 14. Normalized minimum radius of curvature Rmin/h of subducting
slabs on Earth as a function of the slab’s maximum depth D (data from Wu
et al. 2008). Arrows indicate the data points used to estimate the global
minimum value of Rmin/h.

respectively, of the subducting lithosphere at the trench. I assume
h(τ ) = min(11.2

√
τ , 100) with h in km and τ in Ma, corresponding

to a lithosphere that thickens conductively until it reaches its max-
imum thickness h = 100 km at τ = 80 Ma. Fig. 14 shows Rmin/h
as a function of the slab’s maximum depth D for all the subduction
transects of Wu et al. (2008) for which estimates of all three pa-
rameters Rmin, τ and D are available. Despite the substantial scatter
of the data, the maximum value of Rmin at a fixed depth D clearly
decreases systematically as D increases. This is consistent with the
intuitive expectation, confirmed by the curves of Rmin(t) in Fig. 6,
that a slab which has been subducting longer (i.e. which has pene-
trated more deeply) will have a smaller Rmin, all else being equal.
Furthermore, the fact that Rmin decreases towards a γ -dependent
asymptotic value at long times means that only the smallest values
of Rmin are relevant for constraining γ . A rough estimate of the
‘minimum’ Rmin/h in Fig. 14, obtained by averaging the values

indicated by arrows, is 2.05 ± 0.33. The scaling relation (20) then
implies γ ∈ [140, 510].

Another quantity predicted by the BEM model that can be com-
pared with observations is the subduction rate �̇. As an example,
consider the curve �̇(t) from Fig. 3(a), which corresponds to a vis-
cosity contrast γ = 102. Noting that �(0) = 4h for that simulation
and assuming h = 100 km, η1 = 1021 Pa s and �ρ = 65 kg m−3,
one finds from (10) that V Stokes = 80 cm yr−1. The subduction
rate �̇ in Fig. 3(a) thus increases from ≈1.6 cm yr−1 at t = 0 to
≈7.7 cm yr−1 at t = 28.5η1/hg�ρ. That range of values is quite
reasonable for subduction on Earth.

8 D I S C U S S I O N

The first main result of this study is the identification of the length
scale that characterizes the bending response of a subducting vis-
cous sheet: the ‘bending length’ �b. In general, �b is defined as the
length of the portion of the sheet’s midsurface where the curling rate
K̇ (or equivalently, the bending moment) is significantly different
from zero. However the precise definition of the endpoints of this
portion of the midsurface is to some degree arbitrary. In this study,
I defined the ‘beginning’ of the curling portion as the point where
K̇ (s) = 0 within the region of flexural bulging (Fig. 5), but other
choices (e.g. the point further seaward where |K̇ | has a local max-
imum) would have served just as well. Similarly, because the slab
curls significantly over its whole length in most of the cases exam-
ined here, I defined the ‘end’ of the curling portion as the endpoint
s = L + � of the midsurface. However, one can imagine situations
in which a different definition would be necessary, for example, a
slab that has penetrated so deeply that its lowermost portion hangs
vertically and deforms by extension/shortening alone (Ribe 2001,
Fig. 9). In this case, the curling region does not extend to the end of
the slab, and a more appropriate definition of �b would be the length
of the portion of the midsurface where |K̇ | exceeds (say) 1 per cent
of its maximum value.

Whatever definition of �b is used, the curling portion of the sheet
will include not only the subducted slab, but also the part of the plate
seaward of the trench where flexural bulging occurs. Because the
lateral extent of the bulging region depends on the viscosity contrast
between the sheet and its surroundings, an explicit solution of the
dynamical eq. (7) is required to determine it. The implication is that
�b is a property of the sheet’s (instantaneous) dynamic response to
loading, and cannot be determined solely from its current geometry.
The bending length is therefore of a fundamentally different char-
acter from purely geometric length scales such as the slab length �

or the sheet’s radius of curvature R.
The need for a dynamic (rather than geometric) length scale

to describe the bending response of a viscous sheet is a direct
consequence of the fact that viscous fluids, unlike elastic solids, have
no memory. When an initially flat elastic sheet is bent, the bending
moment is proportional to the local curvature K of the midsurface,
and is therefore entirely determined by the sheet’s current geometry.
In a viscous sheet, by contrast, the bending moment is proportional
to the rate of change of the curvature, which is independent of the
sheet’s current geometry. More generally, the viscous forces acting
on a volume of fluid are not related to its shape, but rather to the rate
of change of that shape. A purely geometric lengthscale is therefore
not appropriate for characterizing the response of a viscous sheet to
loading. This remains true even for the special case of steady-state
(in the frame of the trench) subduction, a situation that arises at long
times in some laboratory experiments (e.g. Bellahsen et al. 2005)
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and numerical models (e.g. Capitanio et al. 2007). The normal
component W of the midsurface velocity is then identically zero,
and the curling rate (15) simplifies to

K̇ = U
dK

ds
, (21)

that is, the advective rate of change of the curvature following the
motion of a material particle along the midsurface. Even though
dK/ds is entirely determined once the sheet’s geometry is known,
finding the (unique) geometry that is consistent with a steady state
requires solution of the dynamical equations. The function dK/ds
is thus in a very real sense ‘not purely geometric’. Note further that
the length scale over which dK/ds varies along the midsurface is
precisely the bending length �b. It is distinct in principle from the
sheet’s minimum radius of curvature Rmin, which characterizes the
amplitude of a function (namely, K(s)) rather than the scale of its
arcwise variation. The correct scaling relation is therefore dK/ds ∼
(Rmin�b)−1, rather than (say) dK/ds ∼ R−2

min.
The dynamic character of �b implies that it depends on the vis-

cosity contrast γ in addition to the parameters that define the sheet’s
geometry. For a model with the reference geometry of Fig. 1, di-
mensional analysis together with the (numerically verified) result
�b �= fct (L) implies

�b

h
= fct

(
γ,

�

h
,

d

h
, θ0

)
, (22)

where the dependence on the four arguments is determined in Ap-
pendix B. Other models will of course predict somewhat different
scaling laws for �b. However, the general definition of �b as the
length of the portion of the sheet where the curling rate K̇ (s) is
significant can be applied to any model.

The second main result, which presupposes the first, is the iden-
tification of the dimensionless sheet ‘stiffness’ S ≡ γ (h/�b)3, the
characteristic ratio of the internal and external viscous forces act-
ing on a subducting sheet. In consequence of this definition, S �
1 means that the sheet’s deformation is controlled primarily by its
own viscosity (‘flexural’ limit), whereas S ≤ 1 implies that the de-
formation is controlled by the viscosity of the surrounding fluid
(‘Stokes sinking’ limit.) The stiffness S is defined at every instant in
time. During progressive subduction, however, S tends to decrease
because the slab length �, and consequently also �b, is continu-
ally increasing. The role of the external fluid therefore becomes
progressively more important as subduction proceeds.

The existence of distinct ‘flexural’ and ‘Stokes sinking’ limits
in subduction dynamics appears at first sight to contradict the con-
clusion of Capitanio et al. (2007) that a subducting plate always
sinks with the Stokes velocity. In fact, there is no inconsistency,
because the sheet stiffness S is small in the numerical models of
Capitanio et al. (2007). The focus in that study is on the special case
of steady-state subduction in which the sheet bends downward at the
trench, descends obliquely through the upper mantle, and then ‘un-
bends’ to become horizontal again above the 660 km discontinuity.
Capitanio et al. (2007) provide sufficient information to estimate
S for their model ‘Iso23’, in which an isoviscous lithosphere with
viscosity contrast γ = 100 and thickness h = 80 km traverses the
upper mantle with an average dip that depends on the density dif-
ference �ρ. Typical values of the bending length can be estimated
directly from the images of the rate of viscous dissipation within the
sheet in figs 4(A) and (C) of Capitanio et al. (2007), and are �b ≈
900 km (for �ρ = 30.1 kg m−3) and ≈1300 km (for �ρ = 88.7
kg m−3) The corresponding stiffnesses are S = 0.070 and 0.023,
respectively. Capitanio et al. (2007) also studied a stiffer isoviscous

model (‘Iso24’) with γ = 1000, but did not present images of the
dissipation rate from which �b could be estimated. However, the
BEM model shows that �b is an increasing function of γ for a given
sheet geometry due to the ‘flexural bulging’ effect, and so it is rea-
sonable to assume that the bending lengths for model Iso24 are not
smaller than those estimated for model Iso23. Because the viscosity
contrast γ for model Iso24 is 10 times that for model Iso23, the
definition S = γ (h/�b)3 then implies that the stiffnesses for model
Iso24 are at most 10 times those estimated for model Iso23, namely,
0.70 and 0.23. These are still small values, so it is not surprising
that the slabs in the models of Capitanio et al. (2007) sink with the
Stokes velocity.

It is important at this point to understand why both the bending
length and the stiffness S are independent of the sheet’s buoyancy
g�ρ. Because both fluids have negligible inertia, their densities
ρ1 and ρ2 are dynamically irrelevant except insofar as they con-
tribute to the buoyancy term g(ρ2 − ρ1) ≡ g�ρ. Moreover, be-
cause the governing equations are linear, the instantaneous velocity
at any point in space is linearly proportional to g�ρ. The parameter
g�ρ therefore controls only the overall amplitude of the instanta-
neous velocity field, and has no influence whatsoever on its spatial
distribution. Both �b and S must therefore be independent of g�ρ,
which can accordingly be ‘scaled out’ of the problem by a suitable
non-dimensionalization such as (6). A further implication of this
result is that the depth at which the slab’s leading end achieves
a given dip (e.g. 90◦; Appendix C) is independent of g�ρ, even
though the time required for the slab to reach that depth scales as
(g�ρ)−1.

The third main result of this study is a new hypothesis for the
cause of the different modes of free subduction observed in labo-
ratory experiments (Bellahsen et al. 2005; Funiciello et al. 2008;
Schellart 2008). Photographs from those experiments suggest that
the mode of steady-state subduction observed at long times might
be controlled by the dip θD of the leading end of the slab when
it reaches the bottom of the ambient fluid layer. To evaluate this
hypothesis, I used the BEM model to calculate θD numerically as a
function of the viscosity contrast γ and the ratio D/h of the layer
depth to the plate thickness. The contours of the function θD(γ ,
D/h) strongly resemble the boundaries in the experimentally con-
strained regime diagram of Schellart (2008), supporting the idea
that the mode of subduction is controlled by the amount of bending
the slab undergoes during its initial descent through the ambient
fluid layer. In particular, the BEM model explains why the modes
WR–FR–A–SR always appear in that order as γ increases at a fixed
value of D/h. A curious and hitherto unexplained feature of this
sequence is that the trench advances (mode A) only for values of
γ in an intermediate range, whereas it retreats if γ is either lower
(modes WR and FR) or higher (mode SR). The physical cause of
this behaviour is that θD can fail to reach large values ≥90◦ for two
opposite reasons: either because the slab is too weak to overcome
the resistance of the ‘mantle wind’, or because it is too strong to
bend sufficiently over the depth (= D) available to it. Still another
observation that the BEM model explains is why the A mode can
be observed at very high values of γ if the plate is thin (e.g. Fu-
niciello et al. 2008). This is direct consequence of the expression
S = γ (h/�b)3 for the slab’s stiffness, which depends much more
strongly on h than on γ . As a result, the slopes of the right-hand
branches of the contours in Fig. 11(b) are very small, implying that
it easy to move from the SR mode to the A mode by reducing h by
a fairly small factor.

Despite the striking similarity between Schellart’s (2008) regime
diagram (Fig. 11a) and the predictions of the BEM model (Fig. 11b),
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significant quantitative differences between the two are obvious.
There are several reasons for this, involving limitations of both the
laboratory experiments and the BEM model. On the experimental
side, the regime diagram of Fig. 11(a) is only valid for fairly narrow
slabs, and no longer applies when w > 4D. An additional source of
experimental uncertainly arises from the initial condition, which is
generally difficult to control in the laboratory. The main limitation
on the numerical side is the highly idealized character of the model
problem, in which the sheet is strictly 2-D and the ambient fluid
infinitely deep. Two-dimensionality means that the slab has no lat-
eral edges, so that the ambient fluid displaced by its motion (‘return
flow’) is constrained to flow around its leading edge. The viscous
drag (per unit length parallel to the trench) exerted on the slab by
the ambient fluid is thereby increased, with the consequence that a
2-D sheet behaves more stiffly than one with a finite width (all else
being equal). The effect is further enhanced by the presence of a
bottom boundary, which increases the drag even more by hindering
flow around the slab’s leading edge. The conjunction of these two
effects is probably the main reason why the contours in Fig. 11(b)
are shifted to higher values of γ relative to the regime boundaries
in Fig. 11(a).

While the agreement between Figs 11(a) and (b) could certainly
be improved by using a 3-D numerical model with a fluid layer of
finite depth, it is more important to understand why the idealized
BEM model succeeds as well as it does. First, the stiffness S =
γ (h/�b)3 tends to be large in the initial stages of subduction be-
cause the bending length �b is small. Thus even if the slab has a
finite width w, its initial evolution will be dominated by its internal
resistance to bending, and will ‘feel’ neither the ambient flow nor
the presence of a bottom boundary. Second, even after the slab be-
gins to feel the ambient mantle, most of the return flow will still go
around its leading edge as long as (1) the slab’s length � is much
less than its width w and (2) its depth of penetration is much less
than the layer depth. Under these conditions, the external flow will
be quasi-2-D except near the slab’s lateral edges. Together, these
two reasons imply that the idealized 2-D BEM model describes
well the slab’s early evolution. That description of course breaks
down progressively as the slab nears the bottom boundary, forcing
a greater proportion of the return flow to go around its sides. How-
ever, the result is only a quantitative modulation of the evolutionary
trajectory established in the early stages, rather than qualitatively
new behaviour. It is therefore not surprising that the predictions of
the idealized model (Fig. 11a) reproduce the major features of the
laboratory-based regime diagram (Fig. 11b).

I noted previously that the sheet/mantle density contrast is irrel-
evant to the dynamics of a linear system such as the BEM model
studied here. Accordingly, the foregoing discussion of regime di-
agrams made no reference to �ρ. However, this appears at first
sight grossly to contradict the results of laboratory experiments
(Bellahsen et al. 2005) and 3-D numerical experiments (Stegman
et al. 2009) in which the mode of steady-state subduction clearly
depends on �ρ. Despite appearances, there is no contradiction,
because the laboratory experiments and the 3-D numerical setup,
unlike the BEM model, are both non-linear systems in which the
velocity u is not proportional to the driving buoyancy g�ρ. In
laboratory experiments, the non-linearity is due to the presence of
surface tension; in the 3-D numerical models of Stegman et al.
(2009), on the other hand, it arises from the use of a yield stress
to get the plate to subduct. In such non-linear systems, it is impos-
sible to non-dimensionalize the underlying governing equations in
such a way as to ‘scale out’ the quantity g�ρ. As a result, one or
more dimensionless groups involving g�ρ necessarily play a role

in the dynamics. For laboratory experiments, the relevant group is
the (inverse) Bond number

Bo−1 = σ

h2g�ρ
, (23)

where σ is the coefficient of surface tension. Using a value σ =
78 dyne cm−1 appropriate for sugar syrup (Chiu-Webster & Lister
2006, Appendix A) and all combinations of values of �ρ and h
from table 2 of Bellahsen et al. (2005), one finds Bo−1 ∈ [0.37,
2.2]. The fact that Bo−1 = O(1) implies that surface tension cannot
be neglected, and the significant variation of Bo−1 among experi-
ments explains why different modes of subduction are observed for
different values of �ρ. For the numerical setup of Stegman et al.
(2009), the relevant dimensionless group is

� = τ

hg�ρ
, (24)

where τ is the yield stress. Using all combinations of values of �ρ

and ‘hplate’ (= h) from table 2 of Stegman et al. (2009) together with
their value τ = 48 MPa, one finds � ∈ [0.06, 1.85]. Here again,
the magnitude [= O(1)] and range of variation of the dimensionless
parameter explains why the mode of subduction is observed to
depend on �ρ. More generally, these results imply that if the system
under study is non-linear, the dimensionless parameter reflecting the
non-linearity (Bo−1, �, etc.) must be varied systematically in order
to obtain a complete regime diagram for the subduction modes.

Two additional aspects of the model results deserve further com-
ment. The first concerns the relationship among the several differ-
ent velocities (and velocity components) that have been introduced
during the course of this study: the vertical velocity of the slab tip
(‘sinking speed’) V , the plate velocity Up, the subduction rate �̇,
the horizontal component utip

1 of the velocity of the slab tip, and the
trench velocity Utrench ≡ Up − �̇. Of these, only V is independent
of the plate length L; all the others depend on L to some extent.
The physical reason for this is that V is controlled entirely by the
local balance of forces acting on the slab (buoyancy, bending re-
sistance and mantle traction) whereas Up, �̇, Utrench and utip

1 are all
influenced in addition by the viscous drag on the base of the plate. V
is therefore independent of all the other velocities, a fact I exploited
to determine the universal scaling law it obeys (Fig. 7.) By contrast,
Up, �̇ and utip

1 are not independent of one another, because each
depends on the values of all five dimensionless parameters in the
problem (γ , �/h, d/h, θ 0, L/h.)

The second point that needs emphasizing concerns the role of the
(arbitrary) initial conditions. In the numerical models studied here,
as well as in most laboratory experiments on free subduction, the
initial geometry comprises a short ‘proto-slab’ that can be charac-
terized by its length �(0) and dip θ 0(0). The BEM model shows that
the sheet’s subsequent evolution depends to a significant degree on
these parameters (see Appendix C, especially Fig. 15). In the case
of laboratory experiments, the attendant uncertainties are magnified
by the difficulty of controlling the initial conditions precisely. Ac-
cording to F. Funiciello (personal communication, 2009), the initial
dip θ0 of the slab typically varies within the range 20–30◦, and the
initial depth of the slab tip within the range 2–3 cm. This variabil-
ity needs to be taken into account when interpreting experimental
results. More generally, the importance of the initial conditions im-
plies that the time-invariant model parameters γ , h, D and w are
not by themselves sufficient to determine the subduction mode, and
consequently that no ‘universal’ regime diagram exists. In light of
this inherent uncertainty, I have chosen here to focus on physical
mechanisms and parameters (�b, S, etc.) whose relevance is inde-
pendent of initial conditions.
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I close by pointing out an implication of the results obtained here
for subduction on Earth. In Section 7, I used Wu et al.’s (2008)
global compilation of the minimum curvature radii of subducted
slabs to estimate an effective viscosity contrast γ ∈ [140, 510] for
slabs in the mantle. This range of values is consistent with the
nearly identical estimate γ ∈ [150, 500] of Funiciello et al. (2008),
even though the latter was based on an entirely different data set
(trench/subducting plate velocity ratios.) It is also consistent with
the estimate γ ≤ 300 of Wu et al. (2008), based on yet another inde-
pendent data set (observed relative plate motions.) This remarkable
agreement among the results of different approaches is encourag-
ing. Its far-reaching implication for the Earth is that γ is too low
to permit the occurrence of the A (trench advancing) subduction
mode, which requires γ ≥ 750 (Fig. 11a.) This conclusion may
seem at first sight to contradict the well-documented result that
many trenches on Earth are currently advancing, regardless of the
reference frame chosen (e.g. Heuret & Lallemand 2005). However,
there is in fact no good reason to suppose that an advancing trench
on Earth corresponds to the A mode as observed in the laboratory.
On the contrary, there is a good reason to doubt it: the near-total ab-
sence of tomographic evidence for the typical ‘bent over backwards’
shape of a sheet undergoing A-mode subduction (Fig. 10d). This
fact strongly suggests that trench advance on Earth has some other
cause than a ‘rollover’-type interaction of the slab with the 660-km
discontinuity. One possibility is that the distribution of advancing
and retreating trenches on Earth is controlled by the complex inter-
actions among the several plates, each of which behaves differently
than it would if it were alone. If this is true, then models of isolated
freely subducting sheets may be of limited value in understanding
the motions of Earth’s surface plates.

A C K N OW L E D G M E N T S

I thank T. Becker, F. Capitanio, C. Conrad, A. Davaille, E.
Di Giuseppe, C. Faccenna, F. Funiciello, S. Goes, B. Kaus, J.
Lister, G. Morra, W. Schellart and D. Stegman for helpful dis-
cussions. F. Funiciello generously made available numerous pho-
tographs of laboratory experiments performed at the Università
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A P P E N D I X A : T H E S T O K E S S I N K I N G
L I M I T

When S � 1, the dynamics of the sheet is controlled (almost)
entirely by the viscosity η1 of the surrounding mantle. The purpose
of this Appendix is to show that the limit S � 1 of Fig. 7 is consistent
with unhindered Stokes sinking of a plate-shaped object beneath a
free surface.

The first aspect of Fig. 7 that requires comment is the small
values of V 
 ≡ V /V Stokes ∈ [0.02, 0.06] when S � 1. Ideally, one
would like to compare these values with an analytical solution for
the sinking speed of a rigid 2-D plate with an arbitrary orientation
beneath a free surface, but no such solution exists to my knowledge.
A useful alternative is the analytical solution of Wakiya (1975) for
the sinking speed of an infinite (2-D) circular cylinder of diameter
� whose centre is located a depth D below the impermeable but
shear traction-free surface of a fluid half-space. The appropriate
Stokes velocity scale for this case is V Stokes = �2g�ρ/η1. Wakiya’s
(1975) solution then gives V 
 = (2α − tanh 2α)/32, where α =
cosh−1 (2D/�). For values of D/� ∈ [0.75, 1.0] corresponding to a
cylinder whose mean depth below the free surface is 0.75–1.0 times
its diameter, V 
 ∈ [0.030, 0.051]. Because the mean depths of the
slabs in the BEM model are also comparable to their longest lateral
dimension �, the above results confirm that the small values of V 


at the left-hand side of Fig. 7 are consistent with Stokes sinking that
is unhindered except by the ‘wall effect’ of the free surface.

A second striking aspect of Fig. 7 is the systematic increase of
V 
 as a function of the slab dip θ 0. This reflects the fact that the
terminal speed of a plate-like object falling edge-on is greater than
its speed falling broadside (by exactly 50 per cent for a thin circular
disk in an infinite fluid; Happel & Brenner 1973). Allowing for the
fact that the slabs in the BEM model are never straight, the dips
θ0 = 90◦ and 30◦ correspond roughly to ‘edge-on’ and ‘broadside’
sinking, respectively, which is consistent with the increase of V 
 as
a function of θ0 in Fig. 7. However, that increase (by a factor ≈3) is
considerably larger than the factor 1.5 one would expect for a cir-
cular disk in an infinite fluid, probably because slabs with different
values of θ 0 ‘feel’ the wall effect of the free surface differently.

A final, curious aspect of Fig. 7 is the small but non-zero slope
of the curves of V 
 versus S for S � 1, notable especially for
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θ 0 = 30◦ and 90◦. These slopes imply that V is influenced to a small
degree by the sheet viscosity η2 even when S � 1. Moreover, the
positive slope for θ 0 = 30◦ implies the seemingly paradoxical result
that V increases with increasing η2. Although the reason for this is
not clear, the effect is far too small to alter the essential result that
V is dominantly controlled by the mantle viscosity η1 when S � 1.

A P P E N D I X B : S C A L I N G L AW F O R
T H E B E N D I N G L E N G T H

Here I determine how the bending length �b depends on the model
parameters γ , h, �, d and θ 0. The first task is to determine the
bending length in the limit � = 0 of a perfectly flat sheet with
no subducted slab. In this limit, the longitudinal velocity U of the
sheet’s midsurface is much smaller than the normal velocity W .
Moreover, the flow in the thin layer of fluid above the sheet is
described by the lubrication equation ∂1 p = η1∂

2
22u1, where p is

the pressure and ∂ i ≡ ∂/∂xi. Now integrate this equation subject to
u1(x2 = −d) = 0 and the free-surface condition ∂2u1(x2 = 0) = 0
to obtain u1 = ∂1 p (x2

2 −d2)/2η1. Finally, integrate the continuity
equation ∂2u2 = −∂1u1 subject to u2(x2 = 0) = 0, evaluate the
result at x2 = −d, and set u2(x2 = −d) = W to obtain

d3

3η1
p′′ + W = 0, (B1)

where ∂1 has been replaced by the arclength derivative d/ds. W in
turn is governed by the equation that describes the pure bending
(with negligible stretching) of a thin viscous sheet, which in the
small-slope limit is (Ribe 2001)

η2h3

3
W ′′′′ + hg�ρ + p = 0. (B2)

The three terms in (B2) represent the internal stress that resists
the bending of the sheet, the sheet’s integrated buoyancy, and the
normal stress (≈ −p in the lubrication limit) exerted on the sheet
by the fluid in the lubrication layer, respectively. The normal stress
exerted by the fluid beneath the sheet is small by comparison and is
neglected in (B2).

Combining (B1) and (B2) into a single equation for p, we obtain

γ h3d3

9

d6 p

ds6
− p = hg�ρ. (B3)

The appropriate boundary conditions at each end of the sheet are
W ′′ = W ′′ ′ = 0 (vanishing bending moment and shear stress resul-
tant) and p = 0, or equivalently, p = p′′ ′′ = p′′ ′′ = 0. Suppose further
that the sheet is effectively of infinite length, that is, sufficiently long
that the bending regions at the two ends do not influence each other.
Consider for definiteness the bending region at the left-hand end
s = 0; the solution of (B3) that satisfies the boundary conditions
there and is bounded as s → ∞ is

p

hg�ρ
= −1 + exp(−s/�0) − 2√

3
exp(−s/2�0) sin

√
3s

2�0
, (B4)

where

�0 =
(

γ h3d3

9

)1/6

. (B5)

The corresponding vertical velocity W is obtained from (B1). Its
value at the end of the sheet is

W (s = 0) = −2d3hg�ρ

3η1�
2
0

. (B6)

Eq. (B4) shows that �0 is the fundamental length scale that con-
trols the buoyancy-induced bending of the sheet, which is confined
to within a distance ∼�0 of the sheet’s ends. Far from the ends
(s � �0), p = −hg�ρ, implying that the sheet’s negative buoyancy
is exactly compensated by the (upward-directed) normal stress in
the lubrication layer, and that no bending occurs there. The be-
haviour described by (B4) and (B6) corresponds to the very slow
subduction of the left (‘ridge’) end of the sheet in Figs 2(a)–(c).

Turning now to the more realistic case � > 0, we find from the
full BEM solutions that �b varies linearly with the slab length �. The
general scaling law for �b must therefore have the form

�b = A�0 + B(γ, θ0, d/h)�, (B7)

where A is a constant. A least-squares fit using my suite of 588
numerical solutions yields A = 3.39 ± 0.16. The coefficient B
varies smoothly within the range 0.58–0.82 as a function of θ 0 and
d/h, but depends only weakly on γ . The figure displaying these
dependences is omitted to save space, but will be provided by the
author upon request.

A P P E N D I X C : I N F LU E N C E O F
T H E I N I T I A L C O N D I T I O N

To quantify how progressive subduction is influenced by its initial
condition, consider the parameter D90, defined as the depth (>0) of
the slab’s leading end at the time (t90, say) when its dip first reaches
90◦ (Fig. 4). Unlike the sinking velocity V or the plate speed Up,
which are instantaneous quantities defined at each moment in time,
D90 describes the result of ongoing subduction during a finite time
t90. The plate length L(t) and the slab length �(t) and dip θ 0(t)
vary continuously during this time, but because their time evolution
is entirely determined by the initial conditions only their initial
values L(0), �(0) and θ0(0) are relevant. Now D90 is obviously not
a function of t or of x, and the numerical solutions show that it is
nearly independent of L(0). By analogy with (9), the scaling law
for D90 must therefore have the form

D90

h
= fct

[
γ,

�(0)

h
,

d

h
, θ0(0)

]
. (C1)

Fig. C1 shows D90/h as a function of γ for a subducting sheet
with L(0)/h = 16, d/h = 0.2, and three different combinations
of initial values of �(0)/h (=4 or 6) and θ 0(0) (= 15◦ or 30◦).
Three features of these curves are noteworthy. First, the significant
differences among the curves indicate that D90 depends strongly
on the initial condition. Second, D90 → ∞ when γ is below a
critical value γ c ∈ [430, 790]. This is because the slab’s leading
end is unable to attain a dip of 90◦ when γ < γ c due to the op-
posing effect of the ‘mantle wind’ (see Fig. 2a for an example).
Finally, each of the curves exhibits a global minimum (note that D90

increases downwards) at a viscosity contrast γ m ∈ [1150, 2100].
The existence of such a minimum implies that a slab reaching a
given fixed depth can achieve a dip of 90◦ or greater only if its
viscosity contrast lies in an intermediate range that depends on the
initial condition.

Additional insight into the influence of the initial conditions can
be obtained by using thin-sheet theory to rescale the curves in
Fig. C1. Note first that the relevant length scale for D90 is not h,
but rather the initial value �b(0) of the time-varying bending length
�b(t). Second, one can anticipate that the relevant dependent vari-
able is not the viscosity contrast γ , but rather the initial value S(0)
of the time-varying sheet stiffness S(t). Finally, because thin-sheet
theory considers only quantities defined on the sheet’s midsurface,
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Figure C1. Depth D90 at which the leading end of the slab becomes vertical
as a function of the viscosity contrast γ , for three combinations of initial
values of �(0)/h (= 4 or 6) and θ0(0) (= 15◦ or 30◦).

the relevant dependent variable is not the depth D90 of the slab’s
tip but rather the total downward deflection of the midsurface
(Fig. 4)

D̂90 = D90 − h/2 − 0.65h. (C2)

Fig. C2 shows D̂90/�b(0) as a function of S(0) for �(0)/h = 4
(solid lines) and 6 (dotted lines) and for three values of θ0(0) (15◦,
30◦, 45◦) typical of the initial dips in the laboratory experiments of
Bellahsen et al. (2005) (F. Funiciello, personal communication,
2009). For each value of θ0(0), the solid and dotted lines are nearly
identical, indicating (nearly) complete self-similarity with respect
to the initial dimensionless slab length �(0)/h. To a good approxi-

Figure C2. Midsurface deflection D̂90 (Fig. 4) at the time when the leading
end of the slab first becomes vertical, as a function of the initial stiffness
S(0) and for three values of the initial dip θ0(0). The solid and dotted curves
are for �(0)/h = 4 and 6, respectively.

mation, therefore, the scaling law for D̂90 has the form

D̂90 = �b(0)G[S(0), θ0(0)], (C3)

where G denotes the functional dependence shown in Fig. C2. Be-
cause S(0) depends only on �b(0) and the (known) values of h and
γ , (C3) implies that the depth D90 at which the slab tip becomes ver-
tical can be predicted entirely from the initial values of the bending
length �b(0) and the dip θ 0(0). The rescaling also clarifies the role
of the initial dip by revealing that D̂90 decreases monotonically as a
function of θ0(0) (Fig. C2). This is simply because slabs with higher
initial dips θ0(0) have less rotation to accomplish before reaching
the dip θ 0(t90) = 90◦.
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