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INTRODUCTION

The bending of a flagellum, such as the flagellum which forms the tail of a sea-

urchin spermatozoon, is the result of active mechanochemical processes occurring

within the flagellum itself, which cause it to bend actively throughout its length

(Gray, 1955; Machin, 1958). To understand how flagella operate, we must understand

not only the mechanisms which generate bending, but also the control mechanisms

which initiate and coordinate the active bending of different parts of the flagellum in

order to generate smoothly propagated bending waves which will efficiently propel a

cell.

Spermatozoa, such as sea-urchin spermatozoa, which propagate nearly planar

waves of bending along their flagella, can be readily photographed to reveal the shape

of the flagellum during active movement. Such photographs indicate that the bending

waves are ordinarily composed of bent regions, in which the flagellum is bent into a

circular arc, separated by shorter regions in which the flagellum is approximately

straight (Brokaw & Wright, 1963; Brokaw, 1965). As bent regions move along a flagel-

lum, bending and unbending of the flagellum are therefore occurring only in rather short

transition zones between the bent and straight regions. These transition zones, which I

will refer to as bending or unbending points, move relatively uniformly along the

flagellum to produce propagated bending waves. After sudden breakage of the flagellum

by a laser microbeam, bent regions already established in the distal fragment of the

flagellum continue to propagate to the end of the flagellum, although no new bent

regions are formed (Goldstein, 1969). Therefore, either the bent region as a whole, or

the bending and unbending points at its ends, appear to be autonomous, self-propa-

gating, events. Other aspects of this picture of flagellar bending have been discussed

elsewhere (Brokaw, 1966a, 1968). The present paper has been motivated by the fol-

lowing question: Is the propagation velocity of a bent region, or of its bending and

unbending points, determined by the resistance which these events encounter as they

move from point to point along the flagellum? Since the propagation velocity can vary,

for example, when the viscosity of the medium is altered (cf. Brokaw, 19666), some

mechanism must exist to control this potentially variable velocity, in order to produce a

particular bending wave pattern.

The resistance to bending (or to unbending) can be expressed as a bending moment

which will be a function of time and position along the length of the flagellum. This

• This work has been supported in part by a grant from the United States Public Health Service

(GM 14613).
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moment will be the sum of a non-conservative moment resulting from forces acting on

the flagellum as it moves against the viscous resistance of the surrounding medium, a

conservative moment resulting from the internal elasticity of the flagellum, and,

possibly, non-conservative moments originating within the flagellum. Only the mo-

ment resulting from external viscous forces is accessible to determination in moving

flagella, although by making various assumptions, estimates of internal elasticity can

be obtained subsequently. Such estimates have been made in a number of studies

(Gray, 1955; Machin, 1958; Rikmenspoel, 1966; Brokaw, 19666).

A calculation of the bending moment resulting from viscous forces on a moving

flagellum was described in an earlier paper (Brokaw, 1965). This calculation involved

assumptions which were only appropriate for a segment of an infinitely long flagellum.

It gave no indication of the variation in moment which must occur near the ends of a

finite flagellum. An improved method for calculating bending moments resulting from

viscous forces on a finite flagellum has now been developed which makes use of nu-

merical integration by high-speed digital computer. This method can handle any

form of planar bending movement, including asymmetrical bending patterns such as

those commonly found on cilia, and waves with parameters which vary with time or

position along the flagellum. In this paper the method is used to analyse data from some

new photographs of the movement of sea-urchin sperm flagella. The mathematical

methods used for computing bending moments are described in an Appendix. With the

exception of the first paragraph of the Appendix, which outlines the fundamental

assumptions of the method, knowledge of these mathematical details should not be

necessary for interpretation of the results of the paper.

DATA AND METHODS OF ANALYSIS

As described in the Appendix, the bending moments resulting from viscous forces

on a moving flagellum can be calculated from data describing the bending behaviour of

the flagellum. This data must include the position and propagation velocity of each

bending and unbending point, and either the curvature and its rate of change with

time, or the angle and its rate of change, of each bent region.

The photographs in Plate 1 record the movement of headless sperm flagella from

the sea urchin Lytechinuspictus. These photographs were obtained by the same methods

used in earlier work (Brokaw, 1965), except that the use of an improved stroboscopic

illuminator (model 135 N, Chadwick-Helmuth Co., Monrovia, Calif.) has enabled me

to record a greater number of positions of a flagellum on a single photograph. These

photographs provide information about the behaviour of bends near the base of the

flagellum which has not been available previously. Using several enlarged copies of

these photographs, each image of the flagellum was analysed in the following manner.

First, a set of circles inscribed on a sheet of transparent plastic was used to locate

the centre of curvature of each bent region of the flagellum. Using these centres,

circles were drawn passing along the midline of the image of the flagellum in the bent

regions; the radii of these circles were measured to obtain the curvature of the flagellum

in each bent region. Secondly, lines were drawn tangent to adjacent circles, to locate

the straight regions of the flagellum. The angles between the lines forming the straight

regions were measured with a protractor in order to determine the total angle of bend
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in each bent region. Thirdly, lines were drawn perpendicular to the straight regions,

passing through the centres of curvature of the bent regions. The intersections between

these perpendiculars and the lines forming the straight regions located the bending and

unbending points. The distance of each of these points from the basal end of the flagel-

lum was determined by measuring the lengths of the straight regions, and by calculat-

ing the arc lengths in the bent regions from the angle of bend and the curvature. Most of

the images in the photographs I have selected for detailed study could be accurately

matched by this procedure.

4 5 6 7

Time (Image number)-

10

Text-fig, T. Locations of bending and unbending points measured from PI. i, fig. i. O,
Bending points; • , unbending points. The points at the upper edge of the figure are measure-
ments of the total length of the flagellum. The line marked I is an example of the measurements
made to estimate the duration of the beat cycle.

The results of measuring PI. 1, fig. 1, are shown in Text-figs. 1-3. In Text-fig. 1

the positions of each bending and unbending point, measured from the base of the

flagellum, have been plotted as functions of time (determined by the image sequence).

The lines connect successive positions of a particular bending or unbending point.

The variation in the measured positions of the distal end of the flagellum gives an

indication of the magnitude of the errors involved in taking measurements from these

photographs.

Inspection of Text-fig. 1 indicates that the bending and unbending points propa-

gate slowly near the base of the flagellum, but accelerate to a reasonably constant

propagation velocity in the distal three-quarters of the flagellum.

The time period corresponding to one full cycle of bending in the distal part of the

flagellum was obtained in the following manner. Distance parallel to the time axis in

Text-fig. 1 was measured from each plotted point to the connecting line corresponding
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to the next repetition of that phase point. The line marked t in Text-fig. 1 is an example

of such a measurement. The average of all possible measurements of this type was

found to be 3-65 flash intervals. The points in Text-fig. 1 were then replotted in Text-

fig. 2, using lateral shifts of an integral multiple of 3-65 flash intervals, where necessary,

to put all the positions of each type (+ or —) of bending or unbending point in one

sequence. The resulting sequences show more irregularity than is evident from the

10 15 -20

Time (beat periods)

25

Text-fig. 2. Data from Text-fig, i, after time-shifting of points to produce a single sequence of
locations for each type of bending point. O, Bending points; • , unbending points. The origin
of the time scale would correspond to the point of zero propagation velocity for the leading
bending point, according to the V, = t* equation used to derive the curves in the basal region
of the flagellum. The same time scale has been used in Text-figs. 3 and 6.
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Text-fig. 3. Measured values of the total angle of bend in bent regions of the flagellum in PI. 1,
fig. 1. The angles for the two bends should actually have opposite signs, but the values are
plotted as shown for compactness. The times correspond to those in Text-fig. 2.
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lines in Text-fig. 1; this represents noise introduced by variations in the behaviour of

the flagellum during different beat cycles. The set of parallel straight lines shown in

Text-fig. 2 was fitted by eye to the points in the distal portion of the flagellum. With one

possible exception the deviations from these lines appear to be in the nature of random

noise, rather than repeated non-uniformities in the propagation velocity of bending

and unbending points. However, a larger sequence of data points would be required to

establish this conclusion definitely.

The acceleration of propagation of bending and unbending points near the base of

10 15 20

Time (beat periods)

25

Text-fig. 4. Locations of bending and unbending points measured from PI. i, fig. a. The begin-
ning of the continous sequence of positions in the photograph corresponds to times of o, i o ,
I'O cycles, etc.; in other respects the data are presented just as in Text-fig. a.

6-5 10 1-5 20

Time (beat periods)

2-5

Text-fig. 5. Measured values of the total angle of bend in bent regions of the flagellum in PI. 1,
fig. 2, plotted as in Text-fig. 3. The time scale corresponds to that in Text-figs. 4 and 8.

29.2
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the flagellum appears to follow a reasonably consistent pattern. For convenience in

obtaining propagation velocities for input to the computer calculations, I have as-

sumed that the propagation velocity increases with the square of time, until it reaches

the constant value characteristic of the distal part of the flagellum. The sequence of

positions generated by this assumption is indicated by the lines drawn in Text-fig. 2.

These lines correspond to the input given to the computer about the behaviour of this

flagellum. Although it would be possible to use the actual measured positions of

bending and unbending points on the flagellum for input to the computer, the velocities

of these points are also needed. Without having more closely spaced photographs,

these velocities can only be obtained by making some assumptions about the unifor-

mity of the movement, as incorporated into the lines drawn in Text-fig. 2.

The measured angles of the positive and negative bent regions have been plotted

in Text-fig. 3 as a function of time, using the same time-shifting procedures as used to

obtain Text-fig. 2. The angles increase gradually over slightly more than one half-

cycle and then level off to an approximately constant value, so that there is little

overlap between the periods of increase in angle of the positive and negative bends. As

a consequence, the angular orientation of the basal end of the flagellum does not

remain constant with respect to the distal portion of the flagellum, as appears to be the

case in thiourea-inhibited spermatozoa (Brokaw, 1965). The linear functions indicated

by the lines drawn in Text-fig. 3 have been used for computing the bending moments

for this flagellum.

Given parameters for the lines drawn in Text-figs. 2 and 3, the data required for

computation of bending moments can be calculated for any time in the bending cycle.

Computations on this flagellum were performed at 24 evenly spaced times in the

bending cycle.

Results of analysis of another flagellum, shown in PI. 1, fig. 2, are presented by

the graphs in Text-figs. 4 and 5. In this case the flash frequency was just slightly below

the frequency of beat, and the 18 images appear to cover almost exactly one cycle of

bending. However, the record is noisier; possibly because it covers a larger number of

beat cycles than the one in PI. 1, fig. 1. The lines used to obtain data for computation

were obtained by the same procedures as used for the previous flagellum.

RESULTS OF BENDING-MOMENT COMPUTATION

A check on the validity of the computational methods can be carried out by com-

paring measured values for the average angular velocity and forward velocity of the

flagellum in PL 1, fig. 2, with computed velocities obtained as part of the computation

of bending moments. For this purpose the computation was carried out using several

values for CN/CL, the ratio of normal and tangential drag coefficients. This flagellum

rotated through an angle of about 198
0
 in 17-95 beats, for an average angular velocity

of 0-193 radians/beat. The computation gave values for W, the angular velocity of

the basal end of the flagellum, at 18 times through the beat cycle. By integrating W

over the beat cycle after subtracting the portion of W resulting from bending of the

flagellum, agreement with the observed angular velocity was obtained for a value of

CN/CL close to i-8. A similar comparison of the path-length of this flagellum with the

computed linear velocities of the basal end of the flagellum (Vx and Vy) gave best
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agreement for a value of CNjCL close to 1*9. The second estimate is probably less

precise.

CN/CL is expected to have a limiting value of 2-0 for an infinitesimally thin filament,

and a somewhat lower value for a real filament. Equations given by Burgers (1938)

and by Hancock (1953) suggest that CN/CL should have a value of about 1-7 for a

filament having the dimensions of these flagella.

Considering the variability of the movement of this flagellum, and the approxima-

tion involved in extracting data from the photograph, the agreement between the two

estimates of C^ICL and with theoretical values is satisfactory. This agreement suggests

that the hydrodynamic assumptions on which the computational method is based are

reasonably valid, and that no major errors have been made in developing the method.
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Text-fig. 6. Bending-moment curves computed for the flagellum in PI. i, fig. i, by using data
represented by the lines in Text-figs, z and 3. Text-fig. 6 A shows the curves for the bending
and unbending points of the bend which reaches the larger angle of bending; B shows curves for
the smaller bend. Other details are explained in the text.

A more thorough test of the hydrodynamic assumptions might be made by analysing

a large number of photographs in a similar fashion. For further computations in this

paper a value of CNjCL = i-8 has been used.

The results of the bending-moment computations, plotted in Text-figs. 6-9, are

given in terms of a non-dimensional factor which depends on the shape of the bending

wave pattern. This factor must be multiplied by CLfL
3 to obtain actual values of bend-

ing moments, where / is the frequency of beat, and L is the wavelength measured

along the flagellum, or 1// times the value of the propagation velocity in the distal

portion of the flagellum.

Text-fig. 6 presents bending-moment curves computed using the data obtained

from PI. 1, fig. 1. Three moment curves are shown in each half of this figure. Curve B

gives values of the bending moment at a particular bending point as a function of time,

from the time the bending point appears near the base of the flagellum until it reaches

the distal end of the flagellum. Curve U gives values for the following unbending

point, at corresponding times. All the curves have been plotted so that positive moments

indicate a moment which opposes the bending at a bending point or the unbending
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at an unbending point. Curve B+U gives the value of the sum of the moments

resisting bending and unbending at the ends of a complete bend at any given time.

Since the bending pattern of this flagellum is asymmetrical, different moment

curves are obtained for the bends of positive and negative direction. Text-fig. 6 A

gives values of the moments for the bends of larger angle and Text-fig. 6B gives

values for the bends of smaller angle. In Text-fig. 7 A moments are shown for a

symmetrical bending pattern derived from this flagellum by using mean values for

the angles, etc., of the positive and negative bends. In Text-fig. 7B moments are

shown for a symmetrical, uniform, bending pattern derived from this flagellum,
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Text-fig. 7. Bending-moment curves computed for modified forms of flagellnr movement de-
rived from the data for the flagellum in PI. i, fig. i. A applies to a symmetrical modification of
the bending waves and B applies to a symmetrical, uniform, modification with no change in the
curvature or propagation velocity of the bends near the base of the flagellum. The horizontal
lines give the average values of moment and power output calculated by earlier, approximate
methods.

having a constant propagation velocity for all bending points and a constant radius of

curvature for all the bent regions; these values are obtained from the distal portion of

the flagellum. This situation should most closely resemble that treated in previous

work (Brokaw, 1965).

Values of the power output of the flagellum (labelled 'work') are also shown as a

function of time in Text-figs. 6 and 7. These values are also given as dimensionless

quantities, and must be multiplied by 10 CjJ
2
!? to obtain actual values for the power

output. The power outputs shown in Text-figs. 6 A and 7 A include not only the work

done at the bending and unbending points as they move along the flagellum, but also

the work done in changing the curvature of bends in the bend-initiating region of the

flagellum. The latter portion represents about 5 % of the total work. The values for

power may be about 5 % too low, since the ' negative work' done in regions of negative

moment is subtracted from the total.

Values for bending moment and power calculated by the earlier equations (Brokaw,

1965) are also indicated in Text-fig. 7 (horizontal lines marked by arrows). These

equations give reasonably accurate estimates of the average values of bending moment

and power output.
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The curves in Text-figs. 6 A, B and 7 A contain discontinuities at the times at which

the bend angles reach their final values and stop increasing linearly (see Text-fig. 3).

This discontinuity in the rate of increase in bend angles may not be a real feature of

the generation of bends in flagella, but there is not sufficient data from these photo-

graphs to settle this point.
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Text-fig. 8. Bending-moment curves computed for the flagellum in PI. i, fig. 2, by using data
represented by the lines in Text-figs. 4 and 5. A and B are for the larger and smaller bends re-
spectively, as in Text-fig. 6.
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Text-fig. 9. Bending moment curves computed for modified forms of flagellar movement
derived from the data for the flagellum in PI. 1, fig. 1. In these cases, the movement is sym-
metrical, as in Text-fig. 7 A, but the length of the flagellum has been increased from its original
value of 1-23!. to values of 1-75!. in A and 2-oL in B. (L is the wavelength, measured on
the flagellum, of the bending waves on the distal part of the flagellum.)

Results of computations for the flagellum in PI. i, fig. 2, are presented in Text-fig. 8.

This flagellum has wave parameters which are closer to the normal wave parameters

for Lytechinus spermatozoa. The distributions of moments in the two cases examined

here (Text-figs. 6, 8) are very similar.

The general form of the bending-moment curves in these figures is not greatly

influenced by details of the parameters of the bending waves, the manner of initiation
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of bends near the base of the flagellum, or the asymmetry of the bending wave pattern.

Other calculations show, however, that the ratio (S/L) of the total length of the flagel-

lum to the wavelength of the bending waves does influence the form of the bending-

moment curves. Examples are shown in Text-fig. 9, using data from the symmetrical

flagellum of Text-fig. 7 A, except for changes in the value of S/L (S/L = 1-23 for the

flagellum of PI. 1, fig. 1, and SjL = 1-36 for the flagellum of PI. 1, fig. 2). Moments

calculated for S/L = 1-5 are not very different in form from those at the lower values

of SjL in Text-figs. 6-8, but significantly different moment curves are obtained for

values of SjL of 175 and 2-0. Bending patterns with values of S/L in this range can be

produced by sea-urchin sperm flagella when the viscosity of the medium is increased

(Brokaw, 19666) and are normal for the movement of the posterior flagellum of

the dinoflagellate, Ceratium (Brokaw & Wright, 1963).

Moments have also been calculated using data for an intact spermatozoon. The

presence of the head causes only minor changes in the distribution of bending moments.

DISCUSSION

These calculations of the bending moments which result from the viscous resis-

tance of the medium through which a flagellum is moving indicate that the viscous

resistance encountered by a bending or unbending point as it moves along a flagellum

varies significantly from one part of the flagellum to another. The bending moment is

zero at each end of a headless flagellum. Near each end of the flagellum there is often

a region where the resisting moment has negative values, meaning that bending and/or

unbending in these regions could be driven indirectly by bending and unbending

occurring in other parts of the flagellum. The resisting moments rise to peak values of

about 2-5 times their average value near the middle of the flagellum, for cases where the

ratio (S/L) between the length of the flagellum and the wavelength of the bending

waves is in the range of 1-2-1-5, as in the normal swimming patterns of sea-urchin and

similar spermatozoa.

These results suggest that the rate of propagation of bending and unbending

points cannot be determined independently by the resistance each point encounters as

it propagates. In the simplest case the flagellum might be expected to produce the

same active bending moment all along its length, and the propagation velocity might

be expected to vary more or less inversely with the moment resisting bending or

unbending. Examination of the records of bend propagation gives no indication of a

correlation of this nature between the propagation velocity and the calculated bending

moments. On the contrary, the propagation velocity is generally low in the region of

low or negative bending moment near the base of the flagellum, where bends are being

generated, and is occasionally lower as a bending point approaches the distal end of the

flagellum. The propagation velocity typically has its maximum value, and remains

relatively constant, near the middle of the flagellum, where the moments resisting

bending and unbending are greatest.

There is some evidence that a bent region may be a unit, composed of a bending and

unbending point which cannot propagate independently of one another (Goldstein,

1969). If the bent region is considered as a unit, the sum, B+ U, of the resistances to

bending and unbending at each end of the bent region may be the parameter which
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might influence the propagation velocity. When SjL has values of 1-2-1-5, B+U

appears to remain relatively constant over most of the interval between the time the

bend is fully developed and the time the bending point reaches the end of the flagellum.

If the propagation velocity of a bend were regulated by the resistance (B + U), no

detectable variations in velocity could be predicted in these cases. However, for longer

flagella, where S/L is about 1-75, the resistance B+U is more sharply peaked.

Photographs of flagellar movement with longer values of SjL have not been studied in

detail, but no indications of irregularities in propagation velocity are obvious in such

cases.
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Text-fig. 10. The bending moment curves of Tert-fig. 7 A have been replotted to show the
resisting moments at the bending and unbending points as a function of position on the flagel-
lum instead of a function of time.

In Text-fig. 10 the bending moments from Text-fig. 7 A have been replotted to

show the variation in moment as a function of position along the flagellum. Although

the peak moments for a bending point and the following unbending point are separated

in time, as shown in Text-fig. 7 A, they both occur near the middle of the flagellum.

The sum B + U in this case is an indication of the total amount of work done per beat

cycle in propagating bending points, at each position along the flagellum. Points near

the middle of the flagellum are required to work at about 2-5 times the average rate,

while points near the distal end of the flagellum do no positive work at any time in the

beat cycle. This last conclusion may be relevant to the presence of a thin terminal piece

at the end of the sea-urchin sperm flagellum.

In previous discussion of the use of ATP dephosphorylation energy to perform the

work required for flagellar bending, it was implicitly assumed that in flagella propa-
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gating uniform bending waves the work done was distributed uniformly along the

flagellum (Brokaw, 1968). A similar conclusion was reached by Rikmenspoel (1965).

This is now seen to be untrue. In flagella, as in cilia (Sleigh & Holwill, 1969), different

amounts of external work against viscous resistances are done by bending at various

positions along the flagellum. Previous discussions of the energetics of flagellar

movement have also indicated that the uniform use of 1 ATP molecule per beat by

each flagellar ATPase molecule would provide 2-3 times the amount of energy needed

for movement of the flagellum (depending on the value chosen for the free energy

available from ATP dephosphorylation). The peak work performed per unit length in

the mid-region of the flagellum is therefore just about equal to the absolute maxi-

mum amount of energy available, if energy is made available and used locally and if only

one ATP molecule can be used at each ATPase site per beat cycle.

If the flagellum contains a conservative elastic resistance to bending, the bending

moment resulting from elasticity will be proportional to the curvature of the flagellum

if the flagellum behaves as a simple elastic structure obeying Hooke's law. This can be

expressed as Me = ajp, where a is a constant representing the stiffness of the flagellum,

and p is the radius of curvature at the point where the elastic bending moment,

Mg, is measured. In the distal region of the flagellum, where p is approximately constant,

the total moment resisting bending or unbending can be estimated by adding a

constant value of Me to the B curves and subtracting Me from the U curves. The

B+U curves will be unchanged. The elastic moment within the flagellum represents

work stored during bending, which may be available for use during unbending. If the

value of a is sufficiently great, the total moment resisting unbending can always be

negative, and no active work need be done by the flagellum at the unbending points.

However, the system as a whole cannot operate conservatively unless some mechanism,

such as a reconversion of stored elastic energy into chemical free energy, exists to

utilize the 'negative work' of unbending when the moment resisting unbending is less

than 0. If no such mechanism is present, the overall efficiency of the system will

decrease as the stiffness of the flagellum is increased. In the case of the flagellum for

which bending moments are shown in Text-fig. 7 A, the value of stiffness which will be

just sufficient to enable unbending to occur passively, utilizing only stored elastic

work, is such that only about one-half of the total mechanical work done by the

flagellum will appear as work done in moving against external viscous resistances; the

remainder of the work is done against the elastic resistance to bending, but this energy

stored in the elastic elements cannot be recovered as mechanical work against the viscous

resistances'. At higher values of stiffness the flagellum will become progressively less

efficient, and its movements will probably become relatively insensitive to the vis-

cosity of the medium.

Some objections raised previously (Gray, 1928; Brokaw, 1968) to the idea that

unbending of a cilium or flagellum can be driven by stored elastic energy depend on

the assumption that the rate of unbending in such cases would be determined by the

elastic moment and the viscous moment resisting unbending. Since the results of this

paper suggest that in general the propagation of bends along flagella must be controlled

by a mechanism which is independent of local values of the bending moments, these

objections become less forceful. The results of an earlier study of the effects of vis-

cosity on sperm movement (Brokaw, 19666) can be interpreted to mean that there is a
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limit to the value of the viscous bending moment, which can be increased only in

cases where the curvature of the flagellum increases. This behaviour is consistent

with the possibility that unbending is a purely passive process, but a more thorough

re-evaluation of the results of that study, using the methods for bending moment

calculation developed in the present paper, would be desirable.

If each bent region is an integrated unit, rather than just the region between inde-

pendently propagating bending and unbending points, the role of elastic resistances is

difficult to evaluate without a more specific model. It is possible that within such a

unit the elastic energy of bending and unbending could be conserved irrespective of

the local values of the viscous bending resistances, so that the work done would be

proportional to the B+U curve in the distal part of the flagellum where bends are

uniformly propagated. However, the elastic work done in initiating a bent region will

probably not be recovered when this bent region reaches the distal end of the flagellum,

so that a certain amount of non-conservative work against elastic resistances will be

done during each beat cycle. A value for the stiffness constant, a, which will cause

50% of the total work output of the flagellum of Text-fig. 7 A to be used non-con-

servatively against elastic bending resistances can be calculated for this case. This value

of a will correspond to a bending moment in the bent regions which is 2-5 times the

peak bending moment required to overcome viscous resistances, and will require

that the rate of working during formation of a bent region near the base of the flagellum

is 4-5 times the peak power output required to propagate a bend against viscous

resistances. Further investigation of this model might be profitable.

Little can be said about other possible non-conservative bending resistances within

the flagellum, except that they will reduce the efficiency of movement, especially at

low external viscosities.

In discussing the results of his original examination of the bending waves of sea-

urchin sperm flagella, Sir James Gray proposed a model in which independent, local,

contractile elements were distributed along the sides of the flagellum (Gray, 1955).

Other models of a similar nature can be imagined in which bending at a point depends

on the independent activity, within the flagellum at that point, of some bend-generating

mechanism, which may not necessarily involve contraction of elements at the sides of

the flagellum. Electron microscopy suggests that these mechanisms are alike through-

out the length of these flagella. It is then necessary to ask how the activity of these

independent, bend-generating elements distributed along the flagellum might be

controlled to produce various types of propagated bending waves.

Machin (1958, 1963) has discussed the possibility that bending-wave propagation is

co-ordinated by visco-elastic interactions between the independent bending elements,

in the same way that the elements of an elastic filament surrounded by a viscous

medium interact in passively propagating waves driven by oscillation of one part of the

filament. He suggests that passive bending of the flagellum, which will occur in

regions where the sum of the elastic and viscous resistances to bending is negative,

stimulates active bending. This mechanism has been objected to because it cannot

easily explain the control of bending in cilia and in flagella propagating very asymmetical

bending patterns (Brokaw, 1966a, 1968). The present results suggest that similar

difficulties may be encountered in applying this mechanism to the uniform bending

patterns of flagella. For uniform propagation this mechanism would appear to require
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a constant time relationship between regions of negative bending resistance, where

passive bending could initiate active bending, and the points where active bending

occurs. However, the calculated bending-moment curves show that the moments are

related more to the location along the flagellum and the length of the flagellum than to

the phase of the bending.

An alternative mechanism for bend propagation was suggested by Brokaw (1966 a),

who pointed out that localized bending elements will probably not be completely

independent, because of local shear strain near the bending and unbending points.

This effect could provide a mechanism for a local point-to-point propagation of the

activation of bending and unbending points, but overall co-ordination of the bending

pattern would require a mechanism for controlling the propagation velocity. The

calculations of bending moments indicate that this control of propagation velocity

cannot be brought about by the bending moments resulting from viscous interactions

between the bending of different parts of the flagellum.

It now appears unlikely that bent regions or their bending and unbending points

reflect the activity of completely independent, local, bend-generating elements, which

are co-ordinated solely by interaction through the mechanical properties of the visco-

elastic system in which they are found. There must be some form of interaction within

the flagellum, to provide for co-ordination between the activity of the bend-generating

elements. Additional evidence suggesting such an interaction is provided by Gold-

stein's observation of an immediate decrease in propagation velocity of bends in the

distal region of a flagellum when it was irradiated near its base by a laser beam (Gold-

stein, 1969).

The observation that in flagella, as well as in cilia, the work done by bending and

unbending is not uniform along the length of the flagellum suggests that the use of

chemical energy may also not be distributed uniformly along the flagellum. Alter-

natively, it may be better to discard the idea that the bending observed at one point on

the flagellum is solely the result of active mechanochemical processes occurring in the

interior of the flagellum at that point. For example, models in which bending is gene-

rated by sliding filaments, discussed by Satir (1967) and by Sleigh (1968), may provide

a means for distributing the work required for bending at a particular point over a

larger fraction of the length of the flagellum, and may also provide for interaction

between different parts of the flagellum to co-ordinate the behaviour of the bending

and unbending points. However, the details of a sliding filament model have not yet

been sufficiently explored to allow comparison with experimental results.

SUMMARY

1. Starting with the simple hydrodynamic assumptions of earlier work on flagellar
movement, an exact analysis of the bending moments in a flagellum moving through a
viscous solution has been developed. The results illustrate the variation in the resistance
to bending and unbending resulting from viscous forces as a function of time as bends
move along a flagellum. These bending moments are o at free ends of the flagellum,
and rise to peak values of 2-3 times their average value near the middle of the flagellum,
for movement patterns similar to those normally found on sea-urchin spermatozoa.

2. The approximate expressions for bending moments and energy expenditures
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developed in earlier work are reasonable estimates of the average values of these

quantities.

3. Bending and unbending points propagate at reasonably constant velocities in the

distal portion of free-swimming flagella, in spite of the large variations in the resisting

moment resulting from viscous forces. The propagation velocity of individual

bending and unbending points, or an individual bent region, is therefore probably not

controlled by the resistance to bending and unbending at these points. Some mecha-

nism for internal coordination of the activity of different regions of the flagellum

appears to be required.

4. In flagella, as in cilia, the external work done against viscous resistances is not

uniformly distributed along the length of the flagellum.

5. These conclusions provide additional support for 'sliding filament' models of

flagellar bending.
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APPENDIX. MATHEMATICAL METHODS

The method used to compute bending moments in a finite flagellum is an exten-

sion of a method introduced by Gray & Hancock (1955) for their calculation of the

swimming velocity of sea-urchin spermatozoa. It was later applied to flagellar bending

waves containing circular arcs and straight lines (Brokaw, 1965) and used to obtain a

preliminary estimate of bending moment and energy expenditure. The method makes

the fundamental assumption that the external force on any short element, ds, of the

length of the flagellum, resulting from its movement through a viscous medium at a

steady velocity, can be represented by:

dFN=-CNVNds (1)
and

dFL= -CLVLds. (2)
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dFN and dFL are, respectively, the normal and tangential components of force acting

on the element ds; VN and VL are the normal and tangential components of the velocity

of the element ds; and the normal and tangential drag coefficients, CN and CL, are

assumed to be constants which are independent of position along the flagellum. The

use of these equations involves the assumptions that the velocity field around the

element ds is independent of the bending of other parts of the flagellum and that the

changes in VN and VL with time are slow enough to justify use of these steady-field

equations. Burgers' discussion of transient effects (Burgers, 1938, p. 118) indicates

that after a step change in velocity, the velocity field will assume nearly equilibrium

values out to a distance of 5 /i from the flagellum within about o-6 msec, or one-fiftieth

of the cycle time for normal flagellar movement. Therefore the steady-field assump-

tion appears to be no worse than the assumption that the bending of distant parts of the

flagellum does not influence the velocity field around a particular element ds. The most

important error involved in these assumptions may be the assumption that the values

of CN and CL remain the same near the end of a flagellum.

Although equations (1) and (2) represent a greatly oversimplified approach to the

hydrodynamics of flagellar movement, previous work has shown that this approach

leads to reasonably accurate estimates for the forward swimming velocity of sperma-

tozoa and flagella, so that it appears at least to be valid as a first-order approximation.

The external forces acting on various elements of the flagellum will set up shearing

forces and bending moments within the flagellum. Considering the flagellum as a

very thin filament, these internal forces can be represented simply as functions of

position along the length of the flagellum, and are given by the following equations:

FN{s) = FN{o)+\'"dFN (3)
J s-0

M(s) = M(o)+ \'FNds. (4)
Jo

FN is the normal component of shear force within the flagellum and M is the bending

moment. In previous work (Brokaw, 1965), M(s) was obtained from these equations

by arguing that in a long flagellum propagating symmetrical, uniform, bending waves,

M(s) would be zero at the crests of the bending waves and F^s) would be zero at the

points where the flagellum crossed the axis of symmetry of the wave. The values of

M obtained in this way were constant for a particular phase point in the bending wave

cycle. This approach ignored the fact that in any real flagellum, both M(s) and FN(s)

must be zero at a free end of the flagellum, regardless of the phase of the wave. The

moment at a particular phase point (such as a bending or unbending point) must

therefore decrease to zero as these points near the end of a flagellum, and cannot have

the constant values given by the previous treatment at all points on the flagellum.

If VN is known for all values of s along the flagellum, M(s) can be evaluated accu-

rately from equations (1), (3) and (4), by carrying out the integrations from a free end

of the flagellum, where M(s) and F^s) must both be zero. In principle, VN values could

be obtained from measurements on a series of photographs of a flagellum taken at

closely spaced time intervals (< o-1 beat period). This procedure is difficult, and

probably not very accurate. Alternatively, if there is a consistent pattern of flagellar

and
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bending which can be deduced from photographs of moving flagella and expressed in

mathematical terms, VN values can be calculated. This procedure was used in the

previous studies by Gray & Hancock (1955) and by Brokaw (1965). In both cases,

only symmetrical flagellar bending waves were considered, and rotation and lateral

displacement of the flagellum were neglected. VL and VN were expressed as functions

of the bending wave parameters and an unknown forward velocity. The component of

force in the direction of the wave axis was integrated, starting from a free end where the

force must be zero. Since there must also be zero force at the other free end of the

flagellum, the value of this force integral can be set equal to zero, and the resulting

expression can be solved to obtain a unique value for the forward velocity. Values of

VN and VL could then be calculated and used to obtain values for the bending moment.

V,,Fy

W, M

— V, . Fx

Text-fig. 11. Identification of some of the variables used in the computation of bending
moments for the movement of a flagellum. Bending and unbending points are identified by
B and V, respectively.

The availability of a computer for numerical integration of these procedures has

now made it possible to carry out a more exact analysis incorporating the following

improvements over earlier analyses.

Not only the forward velocity, but also the rotational and lateral velocities have been

calculated, by integrating two force components and the bending moment over the

flagellum and setting the integrals equal to zero at the free end of the flagellum. This

makes it possible to deal with asymmetrical bending wave patterns, which normally

cause swimming in a circular path.

The use of numerical integration makes it feasible to deal with mathematically

more complex bending waves and to consider, in particular, a more detailed descrip-

tion of the bending in the basal region of the flagellum, where bends are initiated.

Realistic boundary conditions at the ends of the flagellum have been used. In order
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to compute the moment at a particular phase point, such as a bending point, as a

function of time or position on the flagellum, it is then necessary to carry out a com-

plete calculation of bending moments for many times during a beat cycle. Use of the

computer makes this feasible.

The mathematical analysis on which these computations were based is described in

the following paragraphs.

The variables used for calculation are defined with reference to an x,y coordinate

system having its origin at the anterior end of the sperm flagellum, as shown in

Text-fig. 11. Only movements in the x,y plane are considered. a(s) is the angle between

the tangent to the flagellum at any point 5 and the x axis; s is distance measured

along the flagellum from the origin of the coordinate system. The forces and moment

at any point s are then given by the following three equations;

Fx=- CHJX - 2 f °(VL(i) CL cos ads- VJi) CN sin a ds), (5)
i-lJO

Fv = - CHVVV- £ P QMi) CN cos a ds + VL(t) CL sin a ds), (6)
I Jo

M(s) = - CHW W+ 2 f Vv(0 cos a
 ~

F
Ji)

 sin a
) *• (7)

1 Jo

Fx is the x component of the shear force within the flagellum at the point J ; and Fy is

the corresponding y component. Vx is the velocity of the co-ordinate system in the

x direction; Vv is the velocity of the co-ordinate system in the y direction; and W is the

angular velocity of the co-ordinate system, as defined in Text-fig. 11. CHX, CHy, and

CHW are drag coefficients for movement of the head of the spermatozoon. The index

(t) refers to components of VL, VN, Fx, and Fv which result from four movements.

i = 4 refers to movement of points on the flagellum in the y direction resulting

from overall movement of the flagellum and its coordinate system with the velocity Vv:

FL(4) = 7vsina, (8)

FA<4) = Fvcosa. (9)

1 = 3 refers to movement in the x direction resulting from the velocity Vx:

VL(3) = yx cos a, (10)

yt(3) = F,sina. (11)

x = 2 refers to rotational movement resulting from the angular velocity W:

VL{z) = W{y cos a — x sin a), (12)

F (̂2) = W{ — x cos a — y sin a); (13)

where the x and y co-ordinates of a point s are obtained from the following integrals :

= cos a ds,
Jo

(14)
j 0

and

= I sin a ds.
Jo
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* = 1 refers to movement of a point s relative to the x,y co-ordinate system origi-

nating at the head end of the flagellum. This movement results from flagellar bending

and unbending.

VL(i) = x cosa+y sina, (16)

V^i) = y cosa — x sina, (17)

where

x = - ( s i n a (da/dt) ds, (18)
Jo

Ji

8

cos a (da/dt) ds (19)
0

are obtained by differentiation of equations (14) and (15) with respect to time. If the

wave is specified by giving a and dajdt as functions of s, all the components can be

integrated. At the distal end of the flagellum, the integrals giving Fx, Fy, and M(s)

must each equal o, if this is a free end on which no external forces are acting. This

produces three equations which can be solved for Vx, Vv, and W. These values of

Vx, Vy and W c&n then be used to obtain values for M(s) from equation (7). The entire

procedure must be repeated, using appropriate specifications of a and dajdt, for other

points in time through one cycle of flagellar bending, in order to obtain a complete

picture of M(s,t).

It is convenient to specify flagellar waves in terms of regions of constant curvature,

separated by straight regions. This specification can be used to fit the flagellar photo-

graphs considered in this paper. The information required to obtain a and dajdt' as

functions of s needs to be specified only at the points where the curvature changes,

indicated by U or B in Text-fig, n . At each of the bending and unbending points

indicated in Text-fig. 11, let the following parameters be specified;

s = location of the bending or unbending point, measured along the flagellum

from the head end,

= change in curvature of the flagellum at point s,

= change in the time derivative of curvature at point s,

Vs(s) = propagation velocity of the transition point.

Ak(s) and A£(s) = o at all other points, a and dajdt can be generated by equations

(20H23):

a = a(o) + k(s) ds, (20)
Jo

where

k(s) = I Ak(s) ds. (21)

Jo

The convention that k(o) = o at s = o has been adopted.

dajdt = \ dk(s)jdtds, (22)
Jo
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where

dk(s)ldt = !
3
A]c{s)ds-V,{s)M(s). (23)

Jo

The above method for calculating M(s) is easily adapted to numerical integration

on a digital computer. I have used a FORTRAN rv program involving simple trapezoidal

integration, which starts at the head end of the flagellum and carries out all the inte-

grations (equations 5-7, 14, 15, 18-23) simultaneously as it proceeds in steps along the

flagellum. A value for the rate of working of the flagellum is also obtained by inte-

grating M(s) [dk(s)ldt] over the length of the flagellum. On Caltech's IBM 360/75 system,

slightly less than 1 sec is required to compute bending moments for one position of a

flagellum, using 1200 integration steps. Inspection of the symmetry of the results

obtained for symmetrical waves indicates that errors are less than 0-5% with this

number of steps.

Computation can be carried out by supplying sets of parameters (s, AA(j), Afc(s),

Va(s)) for each of a number of times in the cycle of flagellar bending, or the program

can be augmented so that these sets are generated automatically from more general

information about the behaviour of the flagellum, such as the behaviour of Va and the

total angles of the bent regions as functions of time. It is also convenient to set up the

program to collate bending moments for particular bending and unbending points and

draw curves such as those in Text-figs. 6-9.

EXPLANATION OF PLATE

Fig. 1. Flagellum from a spermatozoon of L. pictus, photographed with ten evenly spaced flashes. This
flagellum is running out of ATP. It has slowed down to less than 10 beats/sec and the dimensions of its
bending waves have become larger than normal. The head end of the flagellum is towards the left side of
the photograph.

Fig. 2. Flagellum from a spermatozoon of L. pictus, photographed with flashes at a frequency slightly
slower than the frequency of beat. This flagellum was photographed more promptly after removal of the
head; the parameters of its movement are close to those of flagella of normal spermatozoa. The flagellum
is swimming in a clockwise circle.
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