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carried out to examine the ihfluence of plate
ahead of a through crack in a bent plate of
used rests on a theory in which no restrictions
stress distribution across the thickness of
local stresses or moments of the ensuing stress—~

held important in connection with modern views

on the theory of crack propagation. The results show that the bending stresses

local to the crack tip are drastically changed when the plate thickness

increases from zero to some finite, but small, value. This is evidenced by

the high elevation of the local moments as the ratio of plate thickness to

crack length is perturbed slightly from zero.
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Introduction

Intensification of stresses around through cracks in plates under
various loading conditions has been the subject of many past discussions [1].
Problems of this kind dre of interest in connection with the theory of crack
propagation and are relevant to questions which have been raised concerning
the effect of stress variation across the plate thickness on the mechanics
of fracture initiation. A characteristic feature of such problems is that
they involve highly localized effects in the form of steep stress gradients
in the immediate vicinity of the crack front. This type of problems, however,
is one of the least understood analytically, mainly because the problem is
three~dimensional in character and presents severe mathematical difficulties
which are substantially greater than those encountered in the problems of
generalized plane stress. One of the reasons is that the crack geometry is
no longér planar but three-dimensional in nature. There is the question
regarding the uniqueness of solution involving geometric discontinuities,
since the stress singularity on the surface layers, where the crack penetrates
through the plate, remains to be found. In view of the uncertainties associated
with the thickness problem, previous stress analyses on cracked. plates are
either incomplete [2] or approximation of the actual three-dimensional stress
state.

It is the objective of this paper to further improve on the existing
solutions [3,4] pertaining to cracked plates deflected out of its own plane,
while the case of plates stretched in its own plane may be analyzed in the
same way. The results in [3,4] were based on the standard theories [5,6] in
which the bending stresses are assumed to vary linearly over the plate

thickness, and the transverse shear stresses obey the parabolic law of
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distribution, regardless of the value of the plate thickness to crack length
ratio, h/2a. In what follows, a more general assumption will be adopted
such that the thickness distribution of the bending and transverse shear
stresses can be arbitrary and can depend on the thickness h as well as on
the crack length 2a.

With a view toward reducing the problem to manageable proportions
and yet retaining some of the three-dimensional character of the state of
affairs near the crack edge, it is proposed that the stresseé may be

written as
o= fl(z) sx(x,y) , 0& = fl(z) sy(x,y) . xy = fl(z) txy(x,y)

T, = fz(z) tXZ(x,y) y o Ty, = fz(z) tyz(x,y) (1

0, = f3(z) s, (x,7)

where O&, 0& and Txy are the bending stresses, T and Tyz the transverse
shear stresses, and 0; the transverse normal stress. In equatiomns (1), x,¥
are coordinates in the middle plane of the plate, and z is the thickness
coordinate. The functions fj(z) (j=1,2,3), which govern the stress distri-
bution in the thickness direction, depend on h/2a and may be pre-assigned
arbitrarily or according to the experimental measurements.

A system of partial differential equations is solved for the
problem of a through crack in an infinite plate, which is otherwise in
a state of uniform bending. The problem is reduced to a pair of dual

integral equations. Determined in closed elementary form are the singular



character of the bénding stresses and the moment-intensity factor which has
been known in fracture mechanics to control the onset of crack extension in

brittle materials.

Fundamental equations for the crack problem

Consider the elastic equilibrium of an infinite plate of thickness h
containing a crack of length 2a along the y-axis as in Fig. 1. The material
of the plate is isotropic and homogeneous with Young's modulus E and Poisson’s
ratio V . For plate bending problems, it is convenient to introduce the defini-
tion of bending and twisting moments denoted by MX, My and ny, and transverse

shear forces by Vx' Vy’ i.e.,

hi/2
[M,M,H]:f lc,0,t1 lzdaz=10[0s,s,t 1
x' 'y xy -h/2 x? 7y xy x' 7y xy

(2)

h/2
[V,V]:J‘ (v y1. . 3dz=1[¢t_, t 1]
x' 'y h/2 xz' yz xz' yz

in which the functions fj(z) (j=1,2) are assumed to be normalized so that

1

h/2 h/2
J‘ £f.(z) zdz =1, f fz(z) dz = 1 (3)
-h/2 -h/2

With the aid of eqs. (2) and (3), the stresses in egqs. (1) become

Gx = fl(z) MX ’ O-y = fl(Z) My * Txy = fl(z) ny
(%)

Tey = fz(z) Vs Tyn = fz(z) Vy

where the expression for Oé remains unchanged. In the present analysis, the



surfaces of the plate located at z = # h/2 are free from normal and shear

stresses and hence it is necessary to require

T =t =0 =0 for z =% n/2 (5)

Now, multiplying the streass equations of equilibrium in the x-~ and y-directions

by z dz, the equilibrium equation in the z-direction by dz, and integrating
through the plate thickness from -h/2 to h/2 lead to the three standard equa-

tions [6] of equilibrium in terms of M_, M, H_ , V_ and V_ provided that
x' Ty oxy' x y

dfa(z)

— (6)

fl(z) = -
Using the definition of the weighted averages of the displacements L uy
and u, across the plate thickness

h/2
(0 0 01 = [ 100 w20 gy g0 w] e

it can be deduced directly from the three-~dimensional equations of elasticity

or shown from the work in [7] that

2%y 2% I, .2

B Z 4 2 0
M = - ( +V —-§-) + 2 = i
x (1-v )I1 ax® dy 1, oxoy

a2y 2%u I, .2

E 2 z 2 9
M == ( 4y —2) 2 529
YA o ox’ I, oy <
A L . WY N
xy 11+9511 oxoy I1 ayz sz
=% = e
Vx =3 Vy=-

The parameters I, (j=1,2) stand for
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h/2 h/2
I, [£.(2)1%z I = [£.(z)1%az 8
1 f -n/2 1 z 2 f—h /2 2 z (8)

The functions Uz and ¢ are required to satisfy the two third order differential

equations

°w-ivw-—£—— wv>
ox (1=v7) )1,

[}
o

(9)

(o - —w%)-

AN ch)+(1-‘,21

(
(o]

where V2 is the Laplacian operator in two dimensions. Once Uz and ¢ are known,

the genralized displacements Ux and Uy are obtainable from

auz 2(1+o)1

= - 2 %

Ux ==& ! E oy
(10)

_— U, ) 2(1+\))I 2 29

y oy E ox

Referring to Fig. 1, equal and opposite surface moments m(y) are
applied to the crack which is opened out symmetrically with respect to both
the x~ and y~-axes. Because of symmetry, the quantities Vx and ny must

vanish along' the entire y-axis, i.e.,

Vx(o,y) = ny(o,y) =0 forally (11)

The remaining conditions inside and outside the segment y = -a and y = a

are

Ux(o,y) =0, y >a : Hx(o,y) =-mly) , ¥ <a (12)

In order to satisfy eqs. (11) automatically, the solution to egs. (9) is
taken as

Se



(1+\))I1 o 5
— o« “Ala)[(1-V)ox - (1+v)]exp(-ax) cosay da , x > O

o

Uz(x )

(13)

o(x,y) %fo A(a){exp[(a - a2+%2)x] - 1} exp(-ax) sinay da , x > O

where ?,: (II/IZ)IIZ. Substituting eqs. (13) into the first of egs. (7) and
(10), and applying the conditions in egqs. (12) result in the dual integral
equations

o

f o A(a) cosay da =0 , |y|>a
° (1)

f Ale) [3+9 + (2/R)2(1-a"a®+ )] cosay do = ~mu(y) , I1y|<a
[

solving for the only unknown function A(a). Note that eqs. (14) can be solved
for arbitrary distribution of stresses along the z~direction. This will be

discussed in the next section.

Stress distribution across the plate thickness

Experiment work on the stretching of cracked plates has demonstrated
that the thickness of the plate can exert a significant effect on the fracture
stress and that the stresses can vary appreciably along the crack edge
depending upon the crack size and the plate thickness. Herein, a theoretical
treatment of the thickness effect due to bending will be carried out by the
semi-inverse method described earlier. The z-dependence of the stresses will
be assumed by specifying the functions fj(z) (j=1,2). For bending loads, the
variation of the transverse shear stresses T and t 2 is distributed symme-
trically about the midplane of the plate. In other words, fz(z) must be an

even function of z. A suitable form of fa(z) is
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m
. n 2nnz
b h fz(z) = bO-- o1 (-1) b cos( h ) (15)

where

2&1‘12-1 o0 e
b = f1+ (‘E') 77, n=1,2,""",m

The constant bo is fixed such that the first two boundary conditions in egqs.

(5) are satisfied. This gives

bo = ngl bn

The last condition in eqs. (5) is satisfied by assuming that the magnitude
of the transverse normal stress is everywhere small. A plot of the z-variation
of Tz and Tyz with the normalized distance in the thickness direction for
different values of h/2a is given in Fig., 2. Presumably the transverse shear
stresses achieve greater magnitudes as the plate thickness is increased., The
magnitude at the midplane assumes a maximum and then decreases to zero at the
plate surface as required by the boundary condition. Inserting eq. (15) into
(6), the z-dependence of the in-plane stresses is determined:

on

m n 2z
b.h fl(z) =- 3 & (-1)" n b sin( 5 ) (16)

which is odd in z. It can be easily verified that both egs. (15) and (16)
satisfy the normalization conditions specified in eqs. (3).

For the purpose of assisting the numerical calculation later on, the
and I,, With the

1 2
help of eqs. (15) and (16), eqs. (8) can be integrated to render

constant % will be evaluated through the parameters I

I, = hn® n° b
1 bZhE n=1 n

o

Heg B



and
m
2 2 1 2
I, = v + = _z. v7]
2 bihz o 2n=l n
It follows that % can be determined from
m 1
2 1 2 =
2 b, +35 2 Py |2

= (17)
L PEVR

As it is apparent from Fig. 3, the numerical values of %llame determined

for a wide range of the plate thickness to crack length ratio, h/2a.

Moment and shear forces near the crack

Characteristics of the elastic stresses local to the crack are germane
to study of brittle fracture since these are the stresses which provide the
environment for possible crack propagation. Theoretical foundation of the
fracture mechanics will not be given here as these principles [1] are well
known by all workers in the field.

From the system of dual integral equations stated in eqs. (14), the
singular behavior of the stresses or moments may be obtained. A detailed
discussion on the method of solving egs. (14) can be found in [4]. Here,
only the final result will be given for the special case of a crack subjected
to uniform bending moments, m(y) = m = constant, applied to the crack
surfaces, The solution to the problem of a free-surface crack opened ocut
by constant moments at infinity can be easily deduced by means of super-

position. For the present problem, it can be verified that [4]

nm a 1
Ae) = rgy{ - 1) 3 aa) + [ & 5, (aae)
0

d (¥(s)
4% ]ds} (18)



indeed satisfies egqs. (14). In eq. (18), J, is the first order Bessel function
of the first kind. The function ¥, which takes the definite limit ¥(1) at the
crack tip, depends on the ratio h/2a and the Poisson's ratio Vv , and it is to

be determined numerically from the integral equation

1l
we)+ [ Fe) W) at= 5, s<1 (9

o

The kernel function in eq. (19) takes the form

Fs,t) = 42 | ) p{z + OGN O - 5L o2 (222802 1} -
. Jo(sp) Jc(tp) dp

where Jo is the zero order Bessel function of the first kind. The numerical
values of ¥ will be reported subsequently.

It is now more pertinent to find the singular character of the solution
near the endpoints of the crack. The dominating terms whose contributions to
the moments Hx, Hy and ny become unbounded at the crack tips can be identified
with the leading term in eq. (18). Upon introduction of the polar coordinates
(r,0), (rl,el) and (r2,92) as indicated in Fig. 1 and making use of egs. (7),

(13) and (18), it is found after considerable amount of manipulations that

¥(1)m a 6,40,
2 cos(—-z-) - 8) + ;T;’ sinr(e +0, )]

=
|
IL!

¥(1)m a r 8,+6,
M = ———2 [£ cos( -9) - -—-sin-(9+9)] (20)
Yy [rr. @ 2 T, 1
152
¥(1)m a
2 [ ax cosé(

9.



Those terms which are bounded at the singular crack points have been neglected.

Since the transverse shear forces are finite as rlr2

of cracked plates in bending is mainly controlled by the moment quantities

- 0, the fracture behavior

shown in eq. (20). At this point it is appropriate to define a moment-intensity

factor K by taking the sum of Mx and My asr,orr approaches zero, i.e.,

1
(<]
Mx + M = K c031§ . as ry ~ 0
y 42&1
or
n-0
+ M = K. cos—-—l ’ as r, =+ 0
x y > 2 2
2
where K is given by
K = w(l)mo.]"a (21)

In each case, the moments are shown to be inversely proportional to the square
root of the radial distances measured from the crack tips. Hence, K may be
interpretated as the strength of the moments in the circular regions with
radii ry and r, centered at y = ~a and y = a, respectively, and it is
indicative of the condition under which fracture may be triggered in structures
under bending loads. Further, it serves as an useful parameter for collating
fracture data in static and fatigue tests.

The numerical evaluation of the function ¥(1) in eq. (21) was done on
an electronic computer for various values of h/?a, 2/§5h and for the values
of Poisson’s ratio V = 0,0, 0.3, 0.5. The dimensionless parameter 2/?;11 is
fixed for a given value of the thickness-to=crack length ratio in accordance
with eq. (17). Fig. 4 displays the dependence of the normalized moment-intensity

factor upon h/2a. Initially, the curves rise abruptly as the ratio h/2a departs

from zero and then they climb gradually with increasing values of h/2a. It is

10,



also evident from Fig. 4 that the influence of the increase of Poisson's
ratio is to raise the amplitudes of the moment-intensity factor curves.
The percentage of increase of K/deE, however, is lowered for increasing
values of V., Specificaily, if the crack length to plate thickness ratio
is 5 to 1, the amount of increase for K/deE is 9#.57L for V = 0.0, 77.07L
for Vv = 0,3 and 68.370 for V= 0.5, These results and the factors brought
out in this analysis should be of significance to those observing the

thickness behavior of cracked plates experimentally.

Discussions

The advantage which the system of equations in this paper possesses
as compared with the exact equations of three-dimensional elasticity is
that the number of independent variables is reduced from three to two. In
particular, eqs. (9) permit an explicit solution of the mixed boundary-value
problem of a finite thickness plate containing a crack since the theqry makes
provision for the specification of the displacements as well as the stresses.

While the plate bending analysis of the crack problem involving a
more general assumed variation of the stresses through the plate thickness
has revealed some interesting and important features, there is considerable
work yet to be accomplished. Leaving aside the question of the character of
the stress singularity at the intersection of the crack edge with the free
plate surface, one immediate improvement on the plate bending problem might
be mentioned.

It has been reported by Sih et al [2] that the two-dimensional
condition of plane strain, characterized by the relation O ='0(0; + 0}),
prevails in the proximity of a through crack in a plate with finite thickness.

This condition was derived in [2] using the exact three-dimensional equations



of elasticity and was shown to be valid only in the interior region of the
plate. As remarked previously, the crack front stress state on the surface
of the plate is still not known.

Preliminary work on incorporating the plane strain condition into
a plate bending (or stretching) theory by application of the variational

principles has been made. On the basis of the equilibrium state of stress

in eqs. (1), a best approximation is obtained by determining 5.4 8y etc. such

J
that the strain energy of the body becomes as small as is possible. Briefly,

the variational procedure leads to a system of three simultaneous partial

differential equations

(c;t + cg) VhUz 2c§V2Uz +0,=0

( 1"\)) Co 29

e (22)
c1+(1-0) c, ox

2 .2
Y ey Vit

(1-0)00

tyz - ci Vatyz R 2 5 %2
c1+(1-0) cy

solving for Uz, txz and tyz from which the remaining unknowns can be found.

In egs. (22), § is related to U, by

b= [c: + (l-J)cg] Vaﬂz - ci U

z

and C 1 Cqy C, are constants depending upon the plate material and geometry

as given by
3 I I I
3 Eh 2 h.,2 "2 L h4 1 > 242
° 211 12(1_02) ! 1 2 I1 2 2 1_02 I1 Il

The additional parameter introduced in the new theory is



h/2 >
13 = [fB(Z)] dz
- ¥Y=h/2

whereas Il and 12 are the same as those shown in eqs. (8). The function f3(z)

is constructed in such a way that the condition O; = 0(0% + O&) is fulfilled.
Calculations leading to more refined estimates of the stress~field

parameters which are important to the understanding of brittle-fracture

mechanics of cracked plates in bending and stretching are currently underway.
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Fig. 2 - Transverse shear stress distribution across half plate thickness.
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Fig. 3 - Variation of ?,h with h/2a.
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Fig. 4 - Nondimensional moment-intensity factor for different plate thickness
to crack length ratio and Poisson'’s ratio.



