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Abstract

We have recently proposed a nonlocal continuum crystal plasticity theory that

is based on a statistical-mechanics description of the collective behaviour of

dislocations. Kinetic equations for the dislocation density fields have been

derived from the equation of motion of individual dislocations and have been

coupled to a continuum description of single slip. Dislocation nucleation, the

material resistance to dislocation glide and dislocation annihilation are included

in the formulation. The theory is applied, in this paper, to the problem of

bending of a single-crystal strip in plane strain, using parameter values obtained

previously from fitting to discrete dislocation results of a different boundary

value problem. A numerical solution of the problem is obtained using a finite

element method. The bending moment versus rotation angle and the evolution

of the dislocation structure are analysed for different orientations and specimen

sizes with due consideration of the role of geometrically necessary dislocations.

The results are compared to those of discrete dislocation simulations of the same

problem. Without any additional fitting of the parameters, the continuum theory

is able to describe the dependence on slip plane orientation and on specimen size.

M This article features online multimedia enhancements

1. Introduction

Nonlocal or strain gradient continuum plasticity theories are extensions of classical (local)

continuum descriptions that attempt to incorporate the size dependence of dislocation plasticity

at length scales of around 1 µm, e.g. Hutchinson (2000). The development of such theories is
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a very active field currently, with a variety of theories which differ in the way nonlocality

is incorporated. A subset of them is based on the idea that the geometrically necessary

dislocations associated with strain gradients give rise to additional hardening. Most of these

employ Nye’s (1953) geometrical concept of the dislocation density tensor, but in a variety

of ways. A central and still unresolved issue in the formulation of phenomenological strain

gradient theories is whether additional boundary conditions are necessary, e.g. Aifantis (1984),

Acharya and Bassani (2000), Bassani et al (2001), Gao and Huang (2003), Gurtin (2002), and

Van der Giessen and Needleman (2003). Parallel to these developments there is work by,

for instance, Arsenlis and Parks (2002) and Evers et al (2002) where a more direct physical

connection is sought between dislocation density and hardening.

In a previous paper (Yefimov et al 2004) we have taken a somewhat different route

by starting from a statistical description of the motion of an ensemble of parallel edge

dislocations by Groma and co-workers (Groma 1997, Groma and Balogh 1999, Groma et al

2003). Averaging leads to two kinds of dislocation density for single slip: the standard total

dislocation density and a dislocation–difference density that can be interpreted as the density

of geometrically necessary dislocations. The analysis leads to two coupled transport equations

for these densities, which form the nonlocal extension of a standard continuum slip model. It is

these kinetic equations that introduces extra boundary conditions, and they directly relate to the

flux of dislocations across boundaries. To assess the validity of the approach, we have applied

it to the analysis of shearing of a model composite material in single slip, where impenetrable

interfaces with the elastic reinforcing particles impose zero-flux boundary conditions. The free

parameters in the theory have been fitted to results of (inherently nonlocal) discrete dislocation

simulations of the same problem (Cleveringa et al 1997). It was shown that several key

features of the discrete dislocation results, such as the dependence on particle shape and size,

were correctly picked up by the nonlocal continuum theory (Yefimov et al 2004).

A necessary condition for a constitutive model to have predictive power is that, once fitted

to a particular boundary value problem, it is able to predict other boundary value problems for

the same material. The object of this paper is to perform this test for the model of Yefimov

et al (2004) by applying it to bending, again in single slip. The key in this problem is that

dislocations are completely free to leave the material, as opposed to the zero-flux conditions

in the aforementioned shear problem. This paper will show how these boundary conditions

can be represented in the present theory and will discuss the correspondence with results from

discrete dislocation simulations.

2. Problem formulation

We consider the elastoplastic bending of a single crystal in single slip, as sketched in figure 1.

A plane strain strip with width L and height h is subjected to a prescribed rotation along

its edges. With the x1–x2 plane being the plane of deformation, the imposed rotation θ is

prescribed through the macroscopic boundary conditions

u1(t) = ±θx2, σ12 = 0 on x1 = ±
L

2
(1)

for the displacements ui and σij . Traction-free boundary conditions are imposed along the top

and bottom of the strip:

σ12 = 0, σ22 = 0 at x2 = ±
h

2
. (2)

The slip system is defined by the slip plane normal m and the slip direction unit vector s = b/|b|,

where b is the Burgers vector. The slip system orientation with respect to the x1 direction is
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Figure 1. Sketch of the bending of a two-dimensional strip. Plastic deformation is allowed to take

place in the hatched region only.

specified by the angle ϕ. Slip is permitted only within the hatched area of the strip indicated in

figure 1 such that the lateral sides, where displacements are prescribed, always remain elastic.

No dislocations are presumed present initially and obstacles are not taken into account

in the analysis. New dislocations are generated from Frank–Read sources distributed in the

material. A constant macroscopic rotation rate, θ̇ , is imposed until a specified rotation angle

is reached. Then, the strip is unloaded by applying θ̇ in the opposite direction until θ reaches a

value of zero. The effect of specimen size is studied by varying L and h such that the ratio h/L

remains unchanged. The overall response will be presented in terms of the work-conjugate

bending moment M , given by

M =

∫ h/2

−h/2

x2σ11

(

±
L

2
, x2

)

dx2 (3)

and the applied rotation angle θ . The calculations are carried out within the context of small

displacement gradients.

2.1. Discrete dislocation plasticity

A discrete dislocation plasticity analysis of the problem follows the formulation by Van der

Giessen and Needleman (1995) and the application to bending by Cleveringa et al (1997).

In this section we give a brief summary of the methodology, confining ourselves to two-

dimensional boundary value problems and single slip.

The dislocations are modelled as line defects in a linear elastic continuum. The

computation of the deformation history is carried out in an incremental manner. Each time

step involves three main computational stages: (i) determining the forces on the dislocations,

i.e. the Peach–Koehler force; (ii) determining the rate of change of the dislocation structure,

which involves the motion of dislocations, the generation of new dislocations, their mutual

annihilation and their possible pinning at obstacles; (iii) determining the stress and strain state

for the updated dislocation arrangement. The fields are written as the superposition of fields,

denoted by ( ˜ ), as if the dislocations were in infinite space, and the complementary (or image)

fields, denoted by (ˆ), correct for the actual boundary conditions. Thus, for the displacements

and stresses,

u = ũ + û, σ = σ̃ + σ̂. (4)

The ( ˜ ) are singular at the dislocations and are known analytically. The boundary value

problem for the image fields is regular and can be solved by, e.g. the finite element method.

In this plane strain analysis, only edge dislocations are considered which are restricted to

glide on their slip planes. The glide component of the Peach–Koehler force F i acting on the
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ith dislocation is given by

F i = mi ·



σ̂ +
∑

j �=i

σ
j



 · bi (5)

and includes the interactions with all other dislocations in the material. The glide velocity vi

of the dislocation i along si is taken to be linearly related to the Peach–Koehler force through

the drag relation

F i = Bvi (6)

with drag coefficient B.

New dislocations are generated by mimicking the Frank–Read mechanism. In two

dimensions, a Frank–Read source is emulated by a point source on the slip plane which

generates a dislocation dipole when the magnitude of the resolved shear stress at the source

exceeds the source strength τnuc during a period of time tnuc. The distance Lnuc between the

newly generated dislocations is specified as

Lnuc =
µ

2π(1 − ν)

b

τnuc

. (7)

where µ is the shear modulus and ν is Poisson’s ratio. Annihilation of two dislocations on

the same slip plane with opposite Burgers vectors occurs when they are within a material-

dependent, critical annihilation distance, Le.

2.2. Nonlocal continuum plasticity

The nonlocal continuum crystal plasticity formulation adopted here is based on the theory

proposed by Yefimov et al (2004). The theory is developed for single slip and involves a

statistical-mechanics description of the collective behaviour of dislocations coupled to the

standard description of single crystal continuum slip.

In summary, the plastic part ǫ̇
p of the strain rate,

ǫ̇ = ǫ̇
e + ǫ̇

p (8)

is expressed, as is usual in single slip, in terms of the slip rate (γ̇ ) on the slip system, as

ǫ̇
p = 1

2
γ̇ (s ⊗ m + m ⊗ s) , (9)

but with γ̇ being linked to the average continuum dislocation glide velocity (v) given by

v = B−1b(τ − τs). (10)

Here, as an approximation (see Yefimov et al (2004)), τ is the resolved shear stress,

τ = m · σ · s (11)

and B is the same drag coefficient as in (6). To take into account the effect of obstacles on

the slip plane in the form of small precipitates or forest dislocations, Yefimov et al (2004)

introduced the additional (and completely phenomenological) notion that the response of the

material is elastic, i.e. γ̇ = 0, when

|τ − τs| < τres, (12)

where τres is the slip resistance.

The back stress τs in equations (10) and (12) follows from the state variable field description

in terms of the total dislocation density, ρ, and the net Burgers vector density, k, which is an
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integral part of the theory. A statistical treatment of an ensemble of gliding dislocations by

Groma (1997) leads to the following coupled balance equations:

∂ρ

∂t
+

∂

∂r
· (kv) = f (ρ, k, . . .), (13)

∂k

∂t
+

∂

∂r
· (ρv) = 0, (14)

with the back stress arising from the gradient of the net Burgers vector density along the slip

direction, according to

τs(r) =
µb

2π(1 − ν)ρ(r)
· D

∂k

∂r
. (15)

Here, D is a dimensionless constant on the order of unity (see Zaiser et al (2001)).

The function f in the right-hand side of equation (13) is the source term to the total

dislocation density and is taken to have the form

f (ρ, k, . . .) = Cρnuc|τ − τs| − ALe(ρ + k)(ρ − k)|v|. (16)

The first term in the right-hand side of equation (16) represents nucleation from sources with

a density ρnuc and at a rate governed by the parameter C, given by

C =
1

τnuctnuc

if |τ − τs| � τnuc; C = 0 otherwise, (17)

in terms of the nucleation strength τnuc and the nucleation time tnuc. The second term in the

right-hand side describes the annihilation of dislocations at a rate determined by A|v|, with A

being a dimensionless constant. Details can be found in Yefimov et al (2004).

The constitutive model is supplemented with the elastic strain rate ǫ̇
e being governed by

Hooke’s law in the form,

ǫ̇
e = L−1

σ̇ (18)

with σ̇ the stress rate and L the tensor of elastic moduli, which is expressed in terms of µ and

ν for isotropic elasticity.

In addition to the macroscopic mechanical boundary conditions (1) and (2), ‘microscopic’

boundary conditions on the dislocation dynamics equations (13) and (14) are required.

Taking into account that slip is confined to the plastic zone in figure 1 the kinetic boundary

conditions are specified only along its boundary S. This boundary consists of the part

S1 = {x2 = x1 tan ϕ± 1
2
(h−L tan ϕ)} ⊂ S along the elastic–plastic interfaces and S2 = S \S1

at the top and bottom surfaces {x2 = ±h/2}. The S1 boundary is parallel to the slip planes, so

that in single slip

v⊥ = v · m = 0 along S1. (19)

If S1 is not parallel to the slip planes, it may be physically reasonable to assume that this

boundary is impenetrable for dislocations so that the normal flux v · n = 0 with n the normal

to S1.

Along S2—the free surfaces—natural dislocation outflow occurs. Dislocation nucleation

at the surfaces is not taken into account and therefore there is no additional dislocation

inflow from the surfaces. There are several choices for a boundary condition when a flow

is expected to go out of the computational domain, e.g. continuative, periodic, outflow, natural

etc. Which would be the best depends on the physical conditions of the problem. Continuative

boundary conditions comprise zero normal derivatives at the ‘open’ boundary and are intended

to represent a smooth continuation of the flow through the boundary, and is used for example
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in studies by Zienkiewicz et al (1985) and Peraire (1986). However, this type of boundary

conditions has no strong physical basis, but rather is a mathematical statement which in some

situations provides the desired flow behaviour. In this study, we assume that, as in the discrete

dislocation simulations, dislocations leave the domain with no reflection from the surfaces and

that there is no additional inflow. Thus, a physically meaningful boundary condition at S2

is a natural boundary condition rather than an essential one. However, we do not explicitly

impose the boundary condition on the continuous problem (equations (13) and (14)), but

implicitly, within its approximation by the finite element method, as discussed in the following

section. This approach is similar to the successful treatment by Papanastasiou et al (1992)

of the outflow boundary in finite element simulations of the Navier–Stokes equations with no

boundary condition at the outflow boundary.

2.2.1. Numerical implementation of the continuum model The dislocation density evolution

equations (13) and (14) supplemented with the boundary conditions (19) represent a nonlinear

convection-dominated diffusion problem coupled to the single crystal continuum plasticity

model described in the above section. A standard finite element method is employed to solve

this set of equations (see Yefimov et al (2004) for details).

The dislocation evolution part of the problem and the crystal plasticity part can be

decoupled by applying a staggered solution procedure for time integration. The solution

of either of the two separate problems is obtained by using an explicit time-stepping scheme,

with the same time steps for both subproblems. In principle, we may adopt independent spatial

discretizations for the two parts of the problem, but we take the two meshes to be identical

for convenient passing of information. The spatial discretization uses quadrilateral elements

consisting of four crossed linear triangular elements.

The solution of the crystal plasticity part departs directly from the incremental version of

the principle of virtual work. The associated boundary conditions have already been listed in

equations (1) and (2).

In addition, we solve the evolution equations (13) and (14) in the plastic zone using

a standard weighted-residual Galerkin method. Generally, the Galerkin discretization is not

applicable for solving convection-dominated diffusion problems due to oscillatory behaviour of

the solution, unless element Peclet numbers are small enough. However, for the particular case

of systems without a specification of boundary conditions at free surfaces, standard Galerkin

weighting results in quite acceptable solutions even for quite high Peclet numbers (Zienkiewicz

and Taylor 1991).

The spatial discretization is based on the interpolation of ρ and k, as well as their rates,

inside an element from the nodal values; e.g. ρ = NT
ρ, k = NTk, where ρ and k are the vectors

of nodal values of the dislocation densities ρ and k, respectively, and N is the vector of the C0

continuous shape functions. As a consequence, the back stress according to equation (15),

τs = b
T

ρ

∂k

∂r
· s, T = D

µ

2π(1 − ν)
, (20)

is governed by lower-dimensional interpolation. Therefore, we take the back stresses to

be defined at the integration points of elements, just like the resolved shear stress from

equation (11).

After substitution of equation (20) and evaluation of the weighted residual integral for the

balance law (14) for k, for instance, we obtain the system of linear equations

Mk̇ = Jρ − Hk − f. (21)
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Here, the matrices M, J and H are given by

M =

∫ L/2

−L/2

∫ h/2

−h/2

NNT dx1 dx2, (22)

J = B−1b

∫ L/2

−L/2

∫ h/2

−h/2

τN
∂NT

∂r
· s dx1 dx2 (23)

and

H = B−1b2

∫ L/2

−L/2

∫ h/2

−h/2

T s ·
∂N

∂r

∂NT

∂r
· s dx1 dx2. (24)

The right-hand side vector

f =

∫

S1

NTρv·n ds +

∫

S2

NTρv·n ds =

∫

S2

NTρv·n ds (25)

(s being a coordinate along the surface) contains contributions from the boundaries S1 and S2.

The contribution from S1 in equation (25) vanishes due to the boundary condition (19) with

n = m on S1. The remaining S2 contribution, through the natural boundary outflux condition,

is just evaluated from the velocity field along S2 that is computed using equation (10). The

latter boundary condition is unusual because, in the weak formulation, it appears to impose no

boundary condition at all on the dislocation densities outflow.

The spatial discretization of equation (13) is done in a manner fully similar to that for

equation (14) and is not presented, for brevity.

3. Results

The nonlocal crystal plasticity model described in the previous section is applied to the problem

of bending of a single crystal. The results are compared with those of discrete dislocation

plasticity simulations of the problem. The discrete dislocation plasticity simulations are based

on the work of Cleveringa et al (1999).

3.1. Reference case

The results for a strip of dimensions L = 12 µm and h = 4 µm subjected to a bending rate

of θ̇ = 103 s−1 will serve as a reference for subsequent parameter studies. The slip system

is oriented at ϕ = +30˚ from the x1 axis. The same material parameters have been used,

whenever possible, as in the discrete dislocation calculations of Cleveringa et al (1999), both

for elastic and dislocation properties. In contrast to Cleveringa et al, however, we do not

incorporate obstacles in our analysis. The material is taken to be elastically isotropic, with

shear modulus µ = 26.3 GPa and Poisson ratio ν = 0.33. The magnitude of the Burgers

vector is b = 0.25 nm for all (edge) dislocations, and a value B = 10−4 Pa s, for the drag

coefficient, is taken.

A uniform finite element mesh consisting of 66 × 38 quadrilateral elements is used to

discretize the domain for both mechanical and dislocation dynamics sub-problems. For the

latter sub-problem we define a plastic subdomain bounded by S as discussed in the above. To

treat the degrees of freedom at the elastic–plastic interfaces, S1, the mesh has been designed

so that one of two diagonals of any element is parallel to S1. The interface can then be

simply discretized by letting two of the four sub-triangles of a boundary quadrilateral fall

inside the plastic domain and the other two in the elastic domain. Compatibility between the
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Figure 2. Comparison of (a) bending moment, M , versus imposed rotation, θ , curves and

(b) evolution of the total dislocation density ρ, for the reference case according to nonlocal

continuum and discrete dislocation plasticity.

subdomains at the interface S1 is thus achieved without additional mesh refinement. The mesh

size dependence of the solution will be discussed later in this section.

In the discrete dislocation calculations the active slip planes are distributed with a uniform

spacing of 100b inside the plastic zone, so that none of them intersects the lateral sides

x1 = ±L/2 where displacements are prescribed. The material is taken to be initially dislocation

free, and two dislocation sources are randomly positioned on each slip plane. Thus, for the

reference case, there are a total of 101 slip planes and 202 sources. This leads to an average

source density ρnuc = 10 µm−2 (inside the plastic zone) that enters the nonlocal continuum

model as a material parameter. In both discrete and continuum approaches, the strength of

the dislocation sources is chosen randomly from a Gaussian distribution with mean value

τ̄nuc = 1.9 × 10−3µ and standard deviation 
τnuc = 0.2τ̄nuc, the nucleation time is taken to

be tnuc = 2.6 × 106B/µ for all sources and Le = 6b. In the nonlocal continuum calculations

the sources are distributed uniformly over all integration points in the matrix, with a uniform

density ρnuc.

The continuum theory has a few free parameters: the coefficient D in the back stress (15);

the slip resistance τres (cf equation (12)); and the annihilation coefficient A. Their values do

not follow from the derivation and were fitted by Yefimov et al (2004) to discrete dislocation

simulations for the problem of shearing of a two-dimensional composite material. The same

values, A = 5, D = 1 and τres = 15 MPa, are employed in this study. Hence, no further fitting

is being done later in this paper.

The bending moment response to the imposed rotation according to both plasticity

descriptions is shown in figure 2(a). The moment M is normalized by a reference moment,

Mref , defined as

Mref =
2

h

∫ h/2

−h/2

τ̄nucx
2
2 dx2 =

2

3
τ̄nuc

(

h

2

)2

. (26)

This reference moment is the moment that would result from the linear stress distribution over

the height: τ̄nucx2/(h/2).

The initiation of plasticity is caused by the motion of the first generated dislocations and

depends quite strongly on the position of the weakest sources relative to the outer fibres of

the strip. These results suggest that the initial yield point is a stochastic quantity to a certain
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Figure 3. Dislocation distribution at θ = 0.015 for the reference case. The corresponding movie

can be found at stacks.iop.org/MSMSE/12/1077

(This figure is in colour only in the electronic version)

extent, and this effect is more pronounced in the discrete dislocation calculations due to the

natural discreteness of the dislocation events. The ultimate hardening in the bending-moment–

rotation curves, however, is hardly affected by the source distribution and controlled largely

by the average source strength. The two models predict similar behaviour of the material with

an almost linear increase of bending moment with rotation. The prediction of the continuum

model for the total dislocation density evolution is also in good agreement with the discrete

dislocation simulations, figure 2(b).

The discrete dislocation distribution at θ = 0.015 is shown in figure 3. Only a few of

the 101 available slip planes have been activated, and those are now heavily populated with

dislocations. The dislocations are arranged in well-defined long pile-ups with dislocation-free

areas near the free surfaces (because of the attraction by the surfaces). Only dislocations of the

same sign are present in the material; the ones with the opposite sign have exited the material

through one of the free surfaces. Thus, the dislocation density is the minimum required density

to accommodate the applied deformation by producing local rotations; all dislocations at this

stage are ‘geometrically necessary’.

The continuum dislocation distributions at θ = 0.015 are shown in figures 4(a) and (b) in

terms of the ρ and k fields, respectively. Qualitatively, these fields show similar dislocation

structures to those found in the discrete dislocation analysis of figure 3. The levels of the

total dislocation density, ρ, and the net Burgers vector density, k, are practically identical,

implying that positive dislocations dominate in the material and that they are all geometrically

necessary, as in the discrete simulations. We also see (especially from the enhanced moving

version of the figure) that the dislocations form pile-ups, which originate near the free surfaces

and accumulate towards the centre of the strip. The continuum model predicts dislocation-free

boundary layers near the free surfaces, much like the discrete simulations. However, near a

neutral line at x2 = 0, where the applied resolved shear stress τ vanishes, the continuum model

shows a different dislocation structure than that from the discrete dislocations simulations. Due

to a zero contribution of τ to the total driving stress, the dislocations are driven only by self-

produced back stress τs. The discrete dislocation results, as figure 3 shows, reveal a dislocation

flow through the neutral line even in the absence of τ , while in the continuum simulations,

a narrow dislocation free zone occurs. This zone appears due to the applied slip resistance

τres = 15 MPa in the threshold condition (12). The width of the zone is controlled by the value

of the slip resistance. Figure 5 shows the distribution of the total dislocation density in case of

no slip resistance. These results reveal no dislocation free zone near the neutral line x2 = 0,

and are qualitatively similar to those from the discrete dislocation simulations.

Figure 6 demonstrates how the strip bends by showing the deformed finite element mesh.

The deformation pattern is characterized by bands of localized deformation in the slip direction

http://stacks.iop.org/ms/12/1077


1078 S Yefimov et al

(b)

(a)

Figure 4. Distributions of (a) the total dislocation density ρ and (b) the sign-dislocation density

k at θ = 0.015 for the reference case. The corresponding movie for the density ρ can be found at

stacks.iop.org/MSMSE/12/1078

Figure 5. Distribution of the total dislocation density ρ at θ = 0.015 for the reference case

with τres = 0.

and by slip steps at the free surfaces created by dislocations exiting the material. The continuum

deformation pattern (figure 6(b)) is evidently smoother since localized flow now has to be

represented through the finite elements. In the discrete dislocation computations localization

comes from the displacement discontinuities across the slip planes, which are represented

analytically (cf Cleveringa et al (1999)).

The respective distributions of σ11 are shown in figure 7. In both types of calculation,

the material is relaxed near the free surfaces due to the outflow of negative dislocations and

more stressed close to the faces of the elastic–plastic interface inside the strip. The latter

feature gives rise to the continued dislocation generation activity seen in figures 3 and 4. The

continuum prediction (figure 7(b)) obviously does not exhibit the stress fluctuations seen in

the discrete dislocation field (figure 7(a)), because these are due to the individual dislocation

singularities.

http://stacks.iop.org/ms/12/1078
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(a)

(b)

Figure 6. Deformed finite element mesh for the reference case at θ = 0.015. (a) Discrete

dislocation plasticity. (b) Nonlocal continuum plasticity. Displacements are multiplied by 20.

(a)

(b)

Figure 7. Distribution of σ11 for the reference case at θ = 0.015. (a) Discrete dislocation plasticity.

(b) Nonlocal continuum plasticity.

The behaviour of the material upon unloading is shown in figure 8. The discrete dislocation

results reveal a distinct Bauschinger effect, but this is much less so for the continuum model. To

study the possible reasons for such a significant qualitative difference, a simulation with zero

slip resistance, τres = 0, instead of the reference value τres = 15 MPa, has been performed.

Comparison of the results for these two values of τres reveals that the dislocations, which

were not participating in plastic flow due to the threshold condition (12) in the reference case,

contribute significantly to the overall response. The effect of no slip resistance leads to a
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Figure 8. Comparison of moment–rotation curve for forward bending loading and unloading from

θ = 0.015 according to nonlocal continuum and discrete dislocation plasticity. Nonlocal plasticity

results with τres = 0 instead of 15 MPa are shown for comparison.
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Figure 9. Moment versus rotation angle for the reference case using three finite element

discretizations.

significant drop of the yield point, but the ultimate hardening rate remains unchanged. Upon

unloading the Bauschinger effect that leads to nearly zero residual plastic deformation and

seen in the discrete dislocation calculations, is picked up.

To analyse the mesh size dependence of the numerical solution of the continuum problem, a

sequence of calculations with different mesh sizes was performed. A comparison of the results

in terms of bending moment versus rotation angle curves is shown in figure 9. The coarser
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Figure 10. Comparison of σ–ǫ curves in plane strain tension for the reference case according to

nonlocal continuum and discrete dislocation plasticity.

50 ×28 mesh gives a somewhat higher moment with respect to the reference 66×38 and finer

100 × 58 meshes. A significant difference between the finer meshes and the reference ones is

seen only at the initial stage of plastic deformation. It is due to a difference in spatial distribution

of the nucleation strength of sources, which is dependent upon a number of integration points of

the mesh. For larger strains, the curves for the reference mesh and the finer one almost coincide.

From this comparison, we conclude the reference mesh to be sufficiently fine to produce nearly

mesh-size independent results, consuming less computation power than is necessary for the

finer mesh.

Bending necessarily involves a strain gradient. For comparison, a tensile test calculation

was performed for the same strip using both plasticity models. Figure 10 shows the calculated

stress response to plane strain tension in the x1-direction. The boundary conditions are

stress-free surfaces at x2 = ±h/2 as in the bending test, and a prescribed uniform fixed

displacement rate u̇1 at x1 = ±L/2. As seen in figure 10, the two models predict that the

material exhibits essentially perfect plasticity. The wiggles in the discrete dislocation curve

are due to the discrete nucleation events. The deformed mesh in figure 11 shows that the plastic

deformation is highly localized within one slip band. The discrete dislocation and continuum

plasticity calculations predict different locations of the slip band (see figures 11(a) and (b)).

This arises from different source distributions and therefore from different locations of the

weak sources in those calculations. This is also responsible for the difference in yield stress

seen in figure 10.

3.2. Effect of slip orientation

The ability of the continuum theory to pick up the effect of different slip orientations is studied

by repeating the calculation for a slip plane orientation of ϕ = 60˚. Figure 12(a) shows the

bending moment response according to the two models, in comparison with the ϕ = 30˚

reference case. In both cases the material exhibits nearly linear hardening, but for the case of

60˚ the tangent modulus is somewhat lower than that for the 30˚ case.
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(a)

(b)

Figure 11. Deformed finite element mesh for the reference case in plane strain tension at

ǫ = 0.0035. (a) Discrete dislocation plasticity. (b) Nonlocal continuum plasticity. Displacements

are multiplied by 20.
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Figure 12. The effect of slip plane orientation on (a) the moment versus rotation curve and (b) the

evolution of the total dislocation density versus plastic curvature.

According to figure 12(b), the total dislocation density increases linearly with the plastic

curvature κp for both slip orientations. The plastic curvature is computed at each deformation

stage as

κp =
2θ

L
−

M

EI
(27)

(cf Cleveringa et al (1999)). The first term in the right-hand side is the total curvature and the

second is the elastic curvature, where EI = µh3/6(1 − ν) is the bending stiffness in plane

strain. According to Nye (1953) and Ashby (1970), the GND density for bending is

ρG =
κp

b1

, (28)

where b1 = b cos ϕ is the component of the Burgers vector parallel to the x1-axis. This

relation implies that the GND density increases linearly with the curvature κp. This line is

plotted in figure 12(b) for comparison, from which we see that the simulations predict the

dislocation density to grow with a slope slightly smaller than 1/b1. This deviation has been
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Figure 13. Distribution of (a) dislocations according to discrete dislocation plasticity and

(b) the total dislocation density ρ at θ = 0.015. The corresponding movies can be found at

stacks.iop.org/MSMSE/12/1083

explained by Cleveringa et al (1999) to arise from the dislocation-free layers near the free

surfaces (see figures 3, 4 and 13).

Figure 13 shows that, as b1 is smaller, there are indeed many more dislocations in the

60˚ specimen than in the reference case (see figures 3 and 4), where only few slip planes are

activated near the elastic–plastic interface. Also, the dislocation distribution inside the plastic

zone is more uniform in comparison to the reference case. The continuum model (figure 13(b))

is able to resolve to some extent the formation of individual slip bands seen in the discrete

dislocation simulations (figure 13(a)).

3.3. Size effects

Next we consider the effect of specimen size on the bending response of the strip. Figure 14(a)

compares the response for the reference 12 µm × 4 µm specimen with that of a two times

smaller specimen (6 µm × 2 µm) for one slip system at +30˚. Both specimens have the same

source density as defined in the reference case. For the discrete dislocation simulations, random

distributions of position and strength of the sources are generated independently for the two

specimens, so that this by itself can give some statistical difference in the response in addition

to the size effect. The continuum plasticity calculations use the same Gaussian distribution

of source strength as generated for the reference case. Due to the presence of the GNDs,

the specimen exhibits a size-dependent bending response, consistent with the conventional

tendency of ‘smaller being stronger’ at this size scale. This size effect is not only predicted by

discrete dislocation plasticity (Cleveringa et al 1999), but also by the continuum strain gradient

theory used here. The size effect for crystals with a slip system at +60˚ is shown in figure 14(b).

Figures 14(a) and (b) also reveal that the size effect is mainly associated with the hardening

rate increasing with decreasing specimen size. The overall hardening for all sizes and slip

http://stacks.iop.org/ms/12/1083
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Figure 14. Effect of specimen size for slip systems at (a) +30˚ or (b) +60˚ on the moment versus

rotation angle according to nonlocal continuum and discrete dislocation plasticity.

(a)

(b)

Figure 15. Distributions of the total dislocation density ρ for the cases in figure 13 at θ = 0.01.

(a) 12 µm × 4 µm; (b) 6 µm × 2 µm.

orientations appears to be approximately linear with rotation. A size effect on the yield point

found in discrete dislocation simulations is only owing to different probabilities of finding a

weak source near the highly stressed outer fibres.

Figure 15 compares the total dislocation density distributions for two different specimen

sizes for ϕ = 60˚ at the same rotation. One observes that the number of pronounced slip

bands is nearly the same for the two specimens, so that the mean spacing between the slip
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bands scales linearly with the specimen size. This feature has been observed earlier in the

discrete dislocation plasticity study by Cleveringa et al (1999). There it has been explained

as a consequence of the competition between dislocations in a pile-up being geometrically

necessary and repelling each other. Apparently, the continuum theory is able to pick these

effects up as well.

4. Conclusion

We have applied the recently formulated nonlocal crystal plasticity theory (Yefimov et al

2004) to the bending of a single crystal by single slip. This boundary-value problem involves

a number of free boundaries and we have discussed the treatment of the boundary conditions

for the dislocation transport equations. It turns out that free outflux of dislocations across

such boundaries is automatically captured by natural boundary conditions where the flux is

just computed from the average dislocation equation of motion. This contrasts the zero-flux

boundary conditions adopted in the composite shear problem considered previously (Yefimov

et al 2004).

The continuum theory has a number of material parameters, most of which are analogous

to parameters in the discrete dislocation model. It has an additional few ones that have been

fitted by Yefimov et al (2004) to discrete dislocation dynamics simulations of the above-

mentioned composite shear problem. Using these values, the bending response and the

dislocation density distributions are outcomes of the continuum theory calculations. Compared

with discrete dislocation dynamics results of the same problem, the continuum theory has

proved to be capable of picking up: (i) the moment–rotation response; (ii) its size dependence;

(iii) its dependence on slip plane orientation, as well as (iv) characteristics of the dislocation

distributions.

This study together with the previous one (Yefimov et al 2004) belongs to a series of

comparisons between nonlocal continuum theories and discrete dislocation simulations (e.g.

Bassani et al (2001), Bittencourt et al (2002), Shu et al (2001)). The purpose of these works

is to help the development of nonlocal theories (cf Van der Giessen and Needleman (2003)).

Geometrically necessary dislocations play a central role in such theories, but their effects are

implemented in quite different ways in the theories available at the moment. The present one is

designed to be close to the dynamics of dislocations, which makes the form of the constitutive

equations different from the ones considered in (Bassani et al 2001, Bittencourt et al 2002,

Shu et al 2001). While the latter ones explicitly introduce a length scale as a material constant,

the length scale in the present statistical-mechanics based theory enters implicitly through the

source density ρnuc. Because of the physical origin of the dislocation evolution equations,

the boundary conditions in the present theory are directly related, if not identical, to those

in discrete dislocation theory, which make them physically transparent. A limitation of the

current theory evidently is that it has been derived only for single slip. Zaiser et al (2001)

have very recently made the first steps towards the extension to multiple slip.

In addition to this limitations, the theory currently suffers from the fact that it is two

dimensional, as are the discrete dislocation simulations that were used for comparison. Three-

dimensional discrete dislocation frameworks that account for aspects like junction formation

and line tension are available these days (e.g. Kubin et al (1992), Weygand et al (2002)), but

the statistical continuum theory needs to be developed. It is emphasized that this does not put

a restriction on the conclusions of this paper. Not only is bending a two-dimensional problem

when the crystal is properly oriented, the object here was to demonstrate that the continuum

formulation is appropriate for traction-free boundary value problems, just as bending.
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