AD NUMBER		
ADA800848		
	CLASSIFICATION CHANGES	
TO:	unclassified	
FROM:	restricted	
TO: Approved for public release; distribution is unlimited.		

FROM:

Distribution authorized to DoD only; Administrative/Operational Use; MAY 1942. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only.

AUTHORITY
NACA list dtd 28 Sep 1945; NASA TR Server website

TECFNICAI NOTES
MATIONAL ADVISORY COMMITTEP FOR ABRONAUTICS

$$
\text { No. } 846
$$

BENDING OP RECTANGULAR PIATES WITE LARGE DEFIRCTIONS
By Samuel Levy
National Bureau of Standards

$$
\begin{aligned}
& \text { Washington } \\
& \text { May } 1942
\end{aligned}
$$

TECHNICAL NOTE NO. 846

BENDING OF RECTANGULAR PLATES WITH LARGE DTRIEGTIONS

By Samuel Levy

SUMMARY

The solution of von Kármán's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangulax plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to von Kármán, Bengston, Marguerre, and Cox and uith experimental results by Remberg, MoPherson, and Levy. The deflections for a square plate uncer lateral pressure are compared with experimental and theoretical results by Keiser. It is found that the effective vidths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work.

INRRODUCTION

In the design of thin plates that bend under lateral and edge loading, formulas based on the Kirchhofe theory which neglects stretching and shearing in the middle surface are quite satisfactory provided that the deflections are small compared with the thickness. If deflections are of the same order as the thickness, the Kirchhoff theory may yield results that are considerably in error and a more rigorous theory that takes account of deformations in the middle surface should therefore be applied. The fundamental equations for the more exact theory have been derived by von Kismán (reference l); a number of approximate solutions (references 2 to 7) have been developed for the case of a rectangular plate. This paper presents a solution of von Kármán's equations in terms of trigonometric series.

Acknowledgment is due to the National Advisory Committee for Aeronautics and the Bureau of Aeronautics,

Navy Department, whose research projects on sheet-stringer panels have provided the impetus and the necessary financial support for the work presented in this paper. The author takes this opportunity to acknowledge also the assistance of members of the Engineering Mechanics Section of the National Bureau of Standards, particularly Dr. Walter Ramberg, Mr. Phillip Krupen, and Mr. Samuel Greenman.

FUNDAMENTAL BQUATIONS

Symbols

An initially flat rectangular plate of uniform thickness will be considered. The symbols have the following significance:
a plate length in x-direction
b plate length in y-direction
h plate thickness
p_{z} normal pressure
w vertical displacement of points of the midale surface
巴 Young's modulus
$\mu \quad$ Poisson's ratio
x, y coordinate axes with orifin at corner of plate
$D=\frac{1 h^{3}}{12\left(1-H^{2}\right)}$, elexural rigidity of the plate
F stress function
Subscripts $k, m, n, p, q, r, s, a n d t$ represent integers.

Tensile Ioads, stresses, and strains will be given as positive values and compressive loads, stresses, and strains will be designated by a negative sign.

Equations for the Deformation of Thin Plates

The fundamental equations governing the deformation of thin plates were developed by van Kármán in reference 1. They are given by Timoshenko (reference 4, pp. 322-323) in essentially the following form:

$$
\begin{equation*}
\frac{\partial^{4} F}{\partial x^{4}}+E \frac{\partial^{4} F}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} F}{\partial y^{4}}=E\left[\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}-\frac{\partial^{2} w}{\partial x^{2}} \cdot \frac{\partial^{2} w}{\partial y^{2}}\right] \tag{I}
\end{equation*}
$$

$\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{P z}{D}+\frac{h}{D}\left(\frac{\partial^{2} F}{\partial y^{2}} \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}-2 \frac{\partial^{2} \Psi}{\partial x \partial y} \frac{\partial^{2} w}{\partial x \partial y}\right)$

Whore the median -fiber stresses are

$$
\begin{equation*}
\sigma_{x}^{\prime}=\frac{\partial^{2} F}{\partial y^{2}}, \quad \sigma_{y}^{\prime}=\frac{\partial^{2} F}{\partial x^{2}}, \quad \tau^{\prime} x, y=-\frac{\partial^{2} \#}{\partial x \partial y} \tag{3}
\end{equation*}
$$

and tho median-fiber strains are

$$
\left.\begin{array}{rl}
\epsilon_{X}^{\prime} & =\frac{I}{B}\left(\frac{\partial^{2} F}{\partial y^{2}}-\mu \frac{\partial^{2} F}{\partial x^{2}}\right) \\
\epsilon_{y}^{\prime} & =\frac{I}{E}\left(\frac{\partial^{2} F}{\partial x^{2}}-\mu \frac{\partial^{2} F}{\partial y^{2}}\right) \tag{4}
\end{array}\right\}
$$

The cxtrome-fiber bending and shearing stresses are

$$
\begin{align*}
& \sigma_{x}^{\prime \prime}=-\frac{\operatorname{si}}{2\left(1-\mu^{2}\right)}\left(\frac{\partial^{2} w}{\partial x^{2}}+\mu \frac{\partial^{2} w}{\partial y^{2}}\right) \\
& \left.\sigma_{y}^{\prime \prime}=-\frac{E n}{2\left(1-\mu^{2}\right)}\left(\frac{\partial^{2} W}{\partial y^{2}}+\mu \frac{\partial^{2} W}{\partial x^{2}}\right)\right\} \tag{5}\\
& \tau_{X ; y}^{\prime \prime}=-\frac{W h}{2(I+\mu)} \frac{\partial^{2} W}{\partial X \partial \Psi}
\end{align*}
$$

General Solution for Simply Supported Rectangular Plate

A solution of equations (1) and (2) for a simply supported rectangular plate must satisfy the following boundary conditions. The deflection w and the edge bending moment per unit length are zero at the edges of the plate,

$$
\begin{aligned}
& m_{x}=-D\left(\frac{\partial^{2} w}{\partial x^{2}}+\mu \frac{\partial^{2} w}{\partial y^{2}}\right)=0, \text { when } x=0, x=a \\
& m_{y}=-D\left(\frac{\partial^{2} w}{\partial y^{2}}+\mu \frac{\partial^{2} w}{\partial x^{2}}\right)=0, \text { when } y=0, y=b
\end{aligned}
$$

These conditions are satisfied by the Fourier series

$$
w=\sum_{m=1,2,3 \ldots}^{\infty} \sum_{m=1,2,3 \ldots}^{\infty} w_{m, n} \sin m \frac{\pi x}{2} \sin n \frac{\pi y}{b}(6)
$$

The normal pressure may be expressed as a Fourier series

$$
p_{z}=\sum_{r=1,2,3 \ldots}^{\infty} \sum_{s=1,2,3 \ldots}^{\infty} p_{r, s} \sin r \frac{\pi x}{a} \sin s \frac{\pi y}{b}
$$

$$
B y \text { substitution equation }(I) \text { is found to be satisfied }
$$

if
$T=-\frac{\bar{D} y^{y^{2}}}{2}-\frac{\bar{p}_{y} x^{2}}{2}+\sum_{p=0,1,2 \ldots}^{\infty} \sum_{q=0, I, 2 \ldots}^{\infty}$

$$
\begin{equation*}
b_{p, q} \cos p \frac{\pi x}{a} \cos q \frac{\pi y}{b} \tag{8}
\end{equation*}
$$

where \bar{p}_{X}, \bar{p}_{y} are constants equal to the average membrane pressure in the x - and the y-direction (see equation (3)) and where

$$
b_{p, q}=\frac{B}{4\left(p^{2} \frac{b}{a}+q^{2} \frac{a}{b}\right)^{2}}\left(B_{1}+B_{2}+B_{3}+B_{4}+B_{5}+B_{6}+B_{7}+B_{8}+B_{9}\right)
$$

and

$$
\begin{aligned}
& \begin{array}{c}
B_{1}=\sum_{k=1}^{p-1} \sum_{t=1}^{q-1}\left[k t(p-k)(q-t)-k^{2}(q-t)^{2}\right] W_{k, t^{W}(p-k),(q-t)} \quad \\
\text { if } q \neq 0 \text { and } p \neq 0
\end{array} \\
& B_{I}=0, \quad \text { if } q_{\alpha-1}=0 \text { or } p=0 \\
& B=\sum_{k=1}^{\infty} \sum_{t=1}^{q-1}\left[k t(k+p)(q-t)+k^{2}(q-t)^{2}\right] w_{k, t^{W}(k+p),(q-t)} \\
& \text { if } q \neq 0 \\
& B_{z}=0, \text { if } q=0 \\
& B_{i}=\sum_{k=1}^{\infty} \sum_{t=1}^{q-1}\left[(k+p)(t)(k)(q-t)+(k+p)^{2}(q-t)^{2}\right] w(k+p), t^{w} k,(q-t) \\
& B_{3}=0, \text { if } q=0 \text { or } p=0 \\
& B_{4}=\sum_{k=1}^{p-1} \sum_{t=1}^{\infty}\left[k t(p-k)(t+q)+k^{2}(t+q)^{2}\right] w_{k}, t^{W}(p-k),(t+q) \\
& \text { if } p \neq 0 \\
& B_{4}=0, \quad i f \quad p=0
\end{aligned}
$$

$$
\begin{aligned}
& B_{5}=0, \text { if } q=0 \text { or } p=0 \\
& B_{6}=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty}\left[k t(k+p)(t+q)-k^{2}(t+q)^{2}\right] \cdot w_{k}, t^{w}(k+p),(t+q) \\
& \text { if } q \neq 0 \\
& B_{6}=0, \quad i \geq \quad q=0
\end{aligned}
$$

6 NACA Technical Note No. 846

$$
B_{8}=0, \text { if } q=0 \text { and } p=0
$$

$$
B_{9}=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty}\left[(k+p)(t+q) k t-(k+p)^{2} t^{2}\right] w(k+p),(t+q)^{w} w_{k, t}
$$

if $p \neq 0$

$$
B_{9}=0, \quad \text { if } p=0
$$

Equation (2) is satisfied if

$$
\begin{aligned}
& p_{r, s}=D_{W_{r, s}}\left(r^{2} \frac{\pi^{2}}{a^{2}}+s^{2} \frac{\pi^{2}}{b^{2}}\right)^{2}-\bar{p}_{x^{h} W_{r, s}} x^{2} \frac{\pi^{2}}{a^{2}}-\bar{p}_{y} h w_{r, s} s^{2} \frac{\pi^{2}}{b^{2}} \\
& +\frac{h \pi^{4}}{4 a^{2} b^{2}}\left\{-\sum_{k=1}^{r} \sum_{t=1}^{s}[(s-t) k-(r-k) t]^{2} b(r-k),(s-t)^{w} k, t\right. \\
& -\sum_{k=0}^{\infty} \sum_{t=0}^{\infty}[t(k+r)-k(t+s)]^{2} \quad b_{k}, t^{W}(k+r),(t+s) \\
& +\sum_{k=0}^{\infty} \sum_{t_{i}=1}^{\infty}[(k+r)(t+s)-k t]^{2} b_{k,}(t+s) w(k+r), t \\
& +\sum_{k=1}^{\infty} \sum_{t=0}^{\infty}[t k-(k+r)(t+s)]^{2} b(k+r), t^{w_{k}},(t+s) \\
& -\sum_{k=1}^{\infty} \sum_{t=1}^{\infty}[(t+s) k-(k+r) t]^{2} b(k+r),(t+s)^{w} k, t \\
& -\sum_{k=1}^{\infty} \sum_{t=0}^{\infty}[t k+(r-k)(t+s)]^{2} b(r-k), t^{W} k,(t+s)
\end{aligned}
$$

$$
\begin{aligned}
& B_{T}=0, \text { if } q=0 \text { or } p=0 \\
& \begin{array}{c}
B_{B}=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty}\left[(k+p) t k(t+q)-(k+p)^{2}(t+q)^{2}\right] w(k+p), t^{w} k,(t+q) \\
i f \quad q \neq 0 \text { or } p \neq 0
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{k=1}^{r} \sum_{t=1}^{\infty}[(t+s) k+(r-k) t]^{2} b(r-k),(t+s)^{w} k, t \\
& -\sum_{k=0}^{\infty} \sum_{t=1}^{s}[(s-t)(k+r)+t k]^{2} b_{k},(s-t)^{w}(k+r), t \\
& \left.+\sum_{k=1}^{\infty} \sum_{t=1}^{S}[(s-t) k+t(k+r)]^{2} b(k+r),(s-t)^{w} k, t\right\} \tag{9}
\end{align*}
$$

SPECIEIC SOLUTION FOR SQUARE PIATE WITE
SYGMETRICAL NORMAL PRESSURE ($\mu=0.316$)

Equation (9) represents a doubly infinito family of equations. In each of the equations of the family the coefficients $b_{p, q}$ may be replaced by their values as given by equation (8). The resulting equations will involve the known normal pressure coefficients $p_{r, s}$, the cubes of the deflection coefficients $w_{m, n}$, and the known average membrane pressures in the z - and the y-directions \bar{p}_{x} and \bar{p}_{y} s respectively. The number of these equations is equal to the number of unknown deflection coefficients $\mathrm{w}_{\mathrm{m}, \mathrm{n}}$.

In the solution of the following problems, the first six cquations of the family of equation (9) that do not reduce to the indeterminate form $0=0$ will be used to solve for the first six deflection coefficients $W_{1,1}$, $w_{1,3}, w_{3,1}, w_{3,3}, w_{1,5}$, and $w_{5,1}$. The rest of the deflection coefficients will be assumed to be zero. This assumption of a finite number of coefficients introduces an error into the solution. In each problem the magnitude of this error will be checked by comparing results as the number of equations used in the solution is increased from one to six.

The resultant load must be constant in the x - and in the y-direction and the boundaries of the plate must remain straicht. The first condition follows directiy from the substitution of equations (3) and (8) in the following expressions:for the total load:
$\left.\begin{array}{c}\text { Inroad in } x \text {-direction }=\int_{0}^{b} h \sigma_{x} d y=-\bar{p}_{x} b h \\ \text { Load in y-direction }=\int_{0}^{a} h \sigma^{\prime} y d x=-\bar{p}_{y} a h\end{array}\right\}$
The second condition was checked by the substitution of equations (4), (6), and (8) in the following equations:

Displacement of edges in x-direction $=\int_{0}^{a}\left[\epsilon_{x}^{\prime}-\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2}\right] d x$

$$
\begin{equation*}
=-\frac{\bar{p}_{x^{a}}}{E}+\mu \frac{\bar{p}_{y^{a}}}{E}-\frac{\pi^{2}}{8 a} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} m^{2} w_{m, n}{ }^{2} \tag{11}
\end{equation*}
$$

Displacement of edges in $y-d i r e c t i o n=\int_{0}^{b}\left[\epsilon_{y}^{\prime}-\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{3}\right] d y$

$$
\begin{equation*}
=-\frac{\bar{p}_{y} b}{E}+\mu \frac{\bar{p}_{x} b}{E}-\frac{\pi^{2}}{8 b} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n^{2} w_{m, n}{ }^{2} \tag{12}
\end{equation*}
$$

equations (10) to (I2) are independent of x and y, thus showing that the conditions of constant load and constant edge displacement are satisfied by equations (6) and (8).

The stress coefficients $b_{p, q}$ obtained from equation (8) for a square plate $a=b$ are given in table I. Poisson's ratio vas chosen as $\mu=\sqrt{0.1}=0.316$ for convenience of computation and because it is characteristic of aluminum alloys. Substitution of these stress coefficients in equation (9) gives the equations in table II rehating the pressure coefficients Pros, the average menbrand pressures in the x - and the y-directions \bar{p}_{x} and \bar{p}_{y}, and the deflection coefficients $w_{m, n}$. As an example of the use of table II, the first few terms in the first equaltion are

$$
\begin{align*}
0= & -\frac{a^{4} p_{I, I}}{\pi^{4} \operatorname{En}^{4}}+0.37 \frac{w_{1, I}}{h}-\frac{\bar{p}_{x^{2}} a^{2}}{\pi^{2} W^{2}} \frac{w_{1,1}}{h}-\frac{\bar{p}_{y^{2}} a^{2}}{\pi^{2} E h^{2}} \frac{w_{1, I}}{h} \\
& +0.125\left(\frac{w_{1,1}}{h}\right)^{3}-0.1875\left(\frac{w_{1,1}}{h}\right)^{2} \frac{w_{1}, 3}{h}-\ldots \tag{13}
\end{align*}
$$

It will be noted that the equations in table II are cubics and therefore their solution Gives three values for each of the deflection coefficients $W_{m, n}$. Some of these values correspond to stable equilibrium, while the remaining values are either imasinary or correspond to unstable equilibrium. Fortunately, if the equations in table I are solved by a mothod of succossive approximation, the successive approxinations will converge on a solution corresponding to stable equilibrim.

EdGe Compression in Qne Direction, Squaro Plate

Tho following result's apply to square plates loaded by edge conpression in the x-direction as shown in figure

The normal pressure p_{z} and the edse compression in tho y-diroction \bar{p}_{y} ah are zero. The method of obtaining a solution of the equations in tablo II for this case consists of assuming values of $\frac{w_{1}, 1}{h}$ and detormining by successive approximation from their respective equations the corrosponding valuos of $\frac{p_{X} a^{2}}{E h^{2}}, \frac{w_{1}, 3}{h}, \frac{w_{3}, 1}{h}, \frac{w_{3}, 3}{h}, \frac{w_{1}, 5}{h}$, and $\frac{W_{5}, I}{h}$. Those calculations havo been made for 16 values of $\frac{W_{1, ~}}{h}$ increasing by increments of 0.25 from 0 to 4.00 ; the results aro fiven in tablo III and figuro 2.

The membrane stress coefficients were computed fron table I and table III with the results given in table IV. The membrane stresses for the corner of the plate, the centers of the edges, and the center of the plate were then computed from equation (3) and equation (8) with the results given in figure 3. At the maximum load computed, the membrane stress at the corner is almost three times the average compressive stress \bar{p}_{X}.

The extreme-fiber bending and shearing stresses for the center and the corners of the plate were computed from equations (5), equation (6), and table III with the results fiven in figure 4. At the maximum load computed, the bending produces a maximum extreme-fiber stress at the corners of the plate. This stress is directed at 45° to the x and the y axes and has a value of about $1 \frac{1}{2}$ tines the average median-fiber compression \bar{p}_{x}.

The ratio of the effective width to the initial width (defined as the ratio of the actual load carried by the plate to the load the plate would have carried if the stress had been uniform and equal to the Young"s modulus times the average edge strain) was computed from equation (II) and table III with the results given in figure 5 . At the maximum load conputed, the average edge strain is 13.5 tincs tho critical strain and the ratio of the effective width to the initial width is 0.434 .

As a measure of tho error resulting frow the uso of only six of the equations in the forcgoing solution, the results obtaincd by using onc, throc, four, and six of tho cquations of tho family of cquation (9) arc givon in tablo V. Tho convorgonco is rapid and the samo rosult is obtainod with four oquations as with six cquations.

Uniform Normal Prossuro, Squaro Plato, Edge Conprossion Zoro

Tho following rosults apply to squaro platos loadod by a uniforn normal pressure as shown in figuro 6 .

Poisson's ratio μ is assumcd to bo 0.316. Tho odgo comprossions in tho x-direction $\bar{p}_{x} a h$ and in tho $\dot{y}-$ dircction \bar{p}_{y} ah aro zoro. The uniforn noral prossuro is p. The expansion.of this pressure in a Fourier series as shown in equation (7) gives pressure coefficients prgs $=\frac{1}{r s}\left(\frac{4}{\pi}\right)^{2} p$. The nethod of obtaining a solution of the equations in table II for this case consists of assuming Values of $\frac{W_{1}, 1}{h}$ and deternining. by successive approximan tion fron their respective equations the corresponding values of $\frac{p^{4}}{\mathbb{H}^{4}}, \frac{W_{1}, 3}{h}, \frac{W_{3}, 1}{h}, \frac{W_{3}, 3}{h}, \frac{W_{1}, 5}{h}$, and $\frac{W_{5}, 1}{h}$. These
calculations have been made for eight values of $\frac{W_{1}, I}{h}$ increasing by increments of 0.50 from 0 to 4.00 with the resuIts giver in table VI and figure 7 .

The membrane stress coefficients have been computed from table I and table VI with the results given in table VII. The membrane stresses have been computed from table VII, equations (3), and equation. (8) for the corner of the plate, the centers of the edges, and the center of the plate with the results given in figure 8. The compressive membrane stress at the corner of the plate is seen to excoed consistently the tensile membrane stress at the center.

The extreme-fiber bending stresses have been computed from equations (5), equation (6), and table VI for the center and the corners of the plate with tho results given in figure 9. Comparison of figures 8 and 9 shows that the ratio of membrane stresses to extreme-fiber bending or shearing stresses increases rapidly with increasing pressure. The two types of stresses are of the same order of magnitude at $\frac{p a^{4}}{E h^{4}}=400$.

As a measure of the rapidity of convergence, the resuIts obtained by solving with one, three, and six equatins of the family of equation (9) are given in table VIII. The convergence of the value of the pressure is rapid and monotonic. In the case of the center deflection, the convergence, however, is oscillatory. For small pressurest the amplitude of oscillation rapidly decreases (reference 4, p. 316). For larger pressures the decrease in amplitude of oscillation is less rapid, as is indicated by table VIII (b), but an estimate of the asymptotic value may be obtained by noting that this value, if it exists, must lie between the value at any particular maximum (minimus) and the average of that maximum (minimum) with the preceding minimum (maximum). Since the next four equaltions in the series, giving $\frac{w_{7}, 7}{h}, \frac{w_{7}, 7}{h}, \frac{w_{3}, 5}{h}$, and $\frac{w_{5}, 3}{h}$ will cause a decrease in $\frac{\text { Tenter, the correct value of }}{h}$ $\frac{\text { Tenter }}{h}$ must lie between 2.704 (the average of 2.666 and 2.743) and 2.743 when $\frac{\mathrm{pa}^{4}}{\mathrm{Eh}^{4}}=247$. At higher values of $\frac{p a^{4}}{\text { Eh }}$, it nay be necessary to use the first ten equations
of the family of equation (9) to get a solution accurate to within 1 percent for center deflection.

Uniform Normal Pressure, Square Plate, Edge Displacement Zero

The following results apply to square plates loaded by a uniform normal pressure as shown in figure 10 . Poisson's ratio μ is assumed to be 0.316 . The average edge tensions in the $x-$ and the y-directions $-\bar{p}_{x}$ and \bar{p}_{y} are obtained from equations (11) and (I2) by setting the edge displacement equal to zero.

$$
\begin{aligned}
& -\frac{\bar{p}_{x^{2}}}{\# h^{2}}+\mu \frac{\bar{p}_{y^{2}}}{\# h^{2}}=\frac{\pi^{2}}{8} \sum_{\bar{m}, n}^{\infty} m^{2}\left(\frac{\dot{w}_{m, n}}{h}\right)^{2} \\
& -\frac{\bar{p}_{y^{2}} a^{2}}{E n^{2}}+\mu \frac{\bar{p}_{x^{2}} a^{2}}{\# n^{2}}=\frac{\pi^{2}}{8} \sum_{m, n}^{\infty} n^{2}\left(\frac{W_{m} n}{h}\right)^{2}
\end{aligned}
$$

The average torsions $-\bar{p}_{x}$ and $-\bar{p}_{y}$ are then substitufted in the equations of table II, a value of $\frac{W_{1}, I}{h}$ is assumed ak tho corresponding values of $\frac{p^{4}}{\operatorname{En}^{4}}, \frac{w_{1}, 3}{h}, \frac{w_{3}, 1}{h}$, $\frac{W_{3}, 3}{h}, \frac{W_{1}, 5}{h}$, and $\frac{W_{5}, I}{h}$ are determined by successive approximation from their respective equations. These calculations have been made for four values of $\frac{W_{I}, ~ i n c r e a s i n g ~ b y ~ i n-~}{h}$ cements of 0.50 from 0 to 2.00 with the results given in table $I X$ and figure 11.

The membrane stress coefficients have been computed from table I and table $I X$ with the results given in table X. The membrane stresses have been computed from table X, equations (3), and equation (8) for the corner of the plate, the centers of the edges, and the center of the plate; the results are Given in figure la. The tensile membrane stress at the center of the edge is seen to be slightly greater than tho tensile membrane stress at the center.

The extreme-fiber bending stresses have been computed from equations (5), equation (6), and table IX for the center and the corners of the plate with the results given in figure 13. Comparison of figures 12 and 13 indicates that bending and membrane stresses at the center of the plate are approximately the same at the maximum loads considered.

As a measure of the rapidity of convergence, the rem suIts obtained by using one, three, and six equations of the family of equation (9) are given in table XI. The convergence of the value of the pressure is both rapid and monotonic. In the case of the center deflection, the: comerfence is oscillatory. For small pressures, this oscillam tion decreased rapidly (reference 4, p. 316). For larger pressures the decrease in amplitude of oscillation is less rapid, as is indicated by table XI (b), but an estimate of the asymptotic value may be obtained by noting that this value, if it exists, must lie between the value at any particular maximum (minimum) and the average of that maximam (minimum) with the preceding minimum (maximum).
Since the next four equations for $\frac{W_{1}, 7}{h}, \frac{W_{7}, 1}{h}, \frac{W_{3}, 5}{h}$, $\frac{W_{5,3}}{h}$ will cause α decrease in $\frac{W_{c e n t e r}}{h}$, the correct value of $\frac{\text { Tenter }}{h}$ must lie between 1.827 (average of 1.807 and 1.846) and 1.846 when $\frac{p a^{4}}{E h^{4}}=278.5$. At higher values of $\frac{p a^{4}}{E h^{4}}$ it may be necessary to use the first ten equations of the family of equation (3) to get a solution accurate to within 1 percent for center deflection.

Combined Uniform Lateral Pressure and
Edge Compression in One Direction, Square Plate
The following results apply to square plates with simply supported edges loaded by a uniform normal pressure p and by edge compression in the x-direction as shown in figure 1 .

Poisson's ratio μ is again assumed to be 0.316. The cage compression in the y-direction \bar{p}_{y} ah is zero. Tho method of obtaining a solution of tho equations in table II for this case consists of assuming values of $\frac{p a^{4}}{\sin ^{4}}$ and
$\frac{W I, I}{h}$ and determining by successive approximations from their respective equations the corresponding values of $\frac{\bar{p}_{x^{2}}}{\operatorname{En}^{2}}, \frac{w_{1}, 3}{h}, \frac{w_{3}, 1}{h}, \frac{w_{3}, 3}{h}, \frac{w_{1}, 5}{h}$, and $\frac{w_{5}, 1}{h}$. These calicutlations have been made for two values of $\frac{\mathrm{pa}^{4}}{\mathbb{E} h^{4}}$, 2.25, and 29.5 and for five values of $\frac{W_{1}, 1}{h}$, and hence of $\frac{\bar{p}_{x} a^{2}}{E_{h}{ }^{2}}$, corresponding to each value of $\frac{\mathrm{pa}^{4}}{E h^{4}}$; the results are given in table XII.

The ratio of effective width to initial width has been computed from equation (II) and table XII with the results given in the last two columns of table XII and in figure 14. The reduction in effective width of square plates due to the addition of lateral load is seen to be appreciable for $\frac{\mathrm{pa}^{4}}{\mathrm{Fh}^{4}}>2.25$.

As a measure of the convergence, the results obtained by using one, three, four, and six of the equations in table II are given in table XIII. The convergence is rapid and monotonic.

```
SPECIFIC SOLUTION FOR A RECTANGULAR PLATE ( \(a=3 b\) )
WITE NORMAL PRESSURE SYMMTRICAL TO AXES OF PLATE
```

The first two equations of the family of equation (9) for the case of a rectangular plate whose length is three times its width $(a=3 b)$ are, for $\mu=0.316$.

$$
\begin{align*}
& \frac{b^{4} p_{1,1}}{\pi^{4} E h^{4}}=0.1142 \frac{w_{1,1}}{h}-\frac{\bar{p}_{x} b^{2}}{9 \pi^{2} \# h^{2}} \frac{w_{1,1}}{h_{1}}-\frac{\bar{p}_{y} b^{2}}{\pi^{2} \mathrm{E}^{2}} \frac{w_{1,1}}{h} \\
& +0.0632\left(\frac{w_{1}, I}{h}\right)^{3}-0.1873\left(\frac{w_{1, I}}{h}\right)^{2} \frac{w_{3,1}}{h}+0.267 \frac{w_{1, I}}{h}\left(\frac{w_{3}, I}{h}\right)^{2} \tag{14}\\
& \frac{b^{4} p_{3,1}}{\pi^{4} E h^{4}}=0.370 \frac{w_{3}, 1}{h}-\frac{\bar{p}_{x^{2}} b^{2}}{\pi^{2} E^{2}} \frac{w_{3,1}}{h}-\frac{\bar{p}_{y^{2}} b^{2}}{\pi^{2} E h^{2}} \frac{w_{3,1}}{h} \\
& -0.0625\left(\frac{w_{1}, y}{h}\right)^{3}+0.267\left(\frac{w_{1}, 1}{h}\right)^{2} \frac{w_{3}, 1}{h}+0.125\left(\frac{w_{3}, 1}{h}\right)^{3}
\end{align*}
$$

In the previous solutions a close approximation was obtained with one equation as long as $\frac{\text { Tenter }}{h}<1$. For this reason, in tho following problem only the first two equations, as given by equation (14), will bo used and the deflections will be limited to values of $\frac{\text { center }}{h}<1$. It should be noted that the two equations of (14) will be adequate only as long as the normal pressure can be described by the first two terns of equation (7):

$$
p_{z}=p_{1,1} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}+p_{3,1} \sin \frac{3 \pi x}{a} \sin \frac{\pi y}{b}
$$

For more complicated pressure distributions as well as for $\frac{{ }^{W} c e n t e r}{h}>1$, more equations of the family of equation: (9) should be used.

The following results apply to rectangular plates ($a=3 b$) loaded by a uniform lateral pressure p and by edge compression acting on the shorter edges as shown in figure 15.

Poisson's ratio μ is taken as 0.316 . The edge conpression in the y-direction $\bar{p} y$ ah is zero. The coefficients p_{r}, s in the Fourier series for the pressure as given in equation (r) equal $\frac{1}{r s}\left(\frac{4}{\pi}\right)^{2} p$. The method of obpaining a solution of equations (I4) for this case con-
sists of assuming values of $\frac{p^{4}}{\operatorname{Fh}^{4}}$ and $\frac{W_{3}, 1}{h}$ and determining by successive approximation from their respective equations the corresponding values of $\frac{w_{1}, 1}{h}$ and $\frac{\vec{p}_{x} b^{2}}{\operatorname{Hn}^{2}}$. These calculations have been made for 13 values of $\frac{\mathrm{pb}^{4}}{\mathrm{En}^{4}}$ and $\frac{W, 1}{h}$ with the results given in table XIV. The ratio of effective width to initial width was computed from equation (II) and table XIV, with the results given in the last two columns of table XIV and in figure lG. The reduction in effective width of rectangular plates $(a=3 b)$ due to the addition of lateral load is seen to be less than in the case of square plates (fig. 14).

COMPARISON WITE APPROXIMATE FORMULAS
Effective Width

Approximate formulas for effective width have been derived in references 2, 3, 6, and 7 .

Marguerre (reference 2) expresses the deflection for a square plate by a series similar to equation (6). He limits himself, however, to $w_{1,1}, w_{3,1}$, and $w_{3,3}$ and in his numerical work requires that $W_{3,3}=-\frac{1}{2} W_{3}, 1$ and that $\mu=0$. His stress function corresponds to the first terms of equation (8). He uses the energy principle to detormino tho values of W_{1}, r and $W_{3}, 1$ instead of the differential equation given as equation (2) in the prosont work. Margucre's approximate solution is given as
 Margucreo has limitod tho number of his arbitrary paramotors to two and has taken $\mu=0$, his results arc in oxcollcnt agrocmont with tho results obtajnod in tho present paper. Marguerro's approximate formula $b_{c} / b=\sqrt[3]{\epsilon_{c r} / \epsilon}$ is given as curve b. This curve chocks within about 7 perm cent with the exact results.

Bongston (roforonce 3) assumes a sinusoidal doflocdion cquivalont to tho first term in equation (6) in his solution ERr a square plato. Ho tho chooses his displace-
ments so that the strain at the supported edges is uniform but, in order to do so, he violates equatión (1). Owing to the method of choosing the displacements, however, the resulting errors should be small. The energy principle i_{s} then used to obtain the solution. In order to take account of secondary buckling, it is assumed that buckling of $1 / 3$ and $1 / 9$ the original wave length will occur independently and that the resulting effective width will be the product of each of the separate effective widths. Finally, an envelope curve to the effective widths thus constructed is drawn. This curve is given as curve d in figure ly. It differs less than percent from the effoctive widths obtained in this paper. The fact that Bengston's values are lower indicates that the increased strength which shotild result from the conditions of uniform strain at the edges is lost due to the approximate method of taking account of secondary buckling.

The well-known formula of von Kármán (see reference 7) $\mathrm{b}_{\mathrm{e}} / \mathrm{b}=\sqrt{\epsilon_{\mathrm{cr}} / \epsilon}$ is plotted as curve a in fisure Ir. It is in good agreement with the effective widths obtained in this paper for small values of the ratio ϵ / ϵ cr but is about 20 percent low for $\epsilon / \epsilon c r=4$.

Cox (reference 6) in his solution for the simply supported square plate uses energy methods together with the approximation that the strain is uniform along the entire length of a narrow element of the pariel. The effectivewidth curve thus obtained is plotted in figure 17 as curve e. It gives effective widths 10 to 20 percent below those obtained in this paper.

Deflection under Latoral Pressure

Navier's solution for the stimply supported square plate with small deflections (linear theory), given in reference 9, is included in figures.7, 9, ll, and 13. It is scen that for small deflections the solution given in this paper is in agreement with Navier's linear theory.

Kaisor (reference 5) converted von Kármán's differential cquations into difference equations and celculated deflections and stresses for a square plate under constant pressure assuming simple support at the edges with zero
membrane stress. He obtained $\frac{\text { weenter }}{h}=2.47$ for
$\frac{p a^{4}}{\mathbb{\#} h^{4}}=118.8$. This center deflection is about 25 percent higher than the curve in fieure 7 ; this difference is probably due to the fact that Kalser allows distortion of the edges of the plate. The membrane stresses calculated by Kaiser are about onemfifthas large as those given in the present paper. This fact, as well as a comparison of figures 8 and 12 , indicates the large influence of edge conditions on the membrane stresses.

COMPARISON WITH EXPERIMENTAI RESULTS

Effective Width

Extensive experiments on two aluminum-alloy sheetstringer panels 16 inches wicte, 19 inches long, and 0.070 and 0.025 inch in thickness are reported in reference ${ }^{8}$. The sheet of the 0.0r0-inch panel was 24S-T alclad alumi-num-alloy and the $0.025-1 n c h$ panel was 24S-T aluminumalloy givet. The panels were reinforced by stringers (0.13 scin. in area) spaced 4 inches on centers. Deflection curves measured at the time of the experiments indicated that in tho pancl having 0.025 -inch sheot the torsional stifiness of the stringers was large onough compared with the stiffness of the sheet to provide approciable restraint against rotation at the edges; in the case of the 0.070-inch alclad aluminum-alloy pancl the stringers approximated a condition of simplo support.

The effoctive widths rosulting from these cxperiments are plottodin figuro 18 using for $\epsilon_{\text {cr }}$ tho buckIing strain of a simply supportod squaro plato. It is evident that in the case of the $0.070-i n c h$ alclad aluminumalloy specinen the agreement is excellent up to stresses for which yielding due to the combined bending and membrane stresses was probably taking place. In the case of the 0.025 -inch aluminum-alloy specimen the observed effective width exceeded the colculated values for $\epsilon / \epsilon_{c r}<7$ but the agreement was excellent for $\epsilon / \epsilon_{c r}>7$, Which appearod to be large enough to reducc the effect of the torsional stiffness of the stringers as a factor in the edge conditions.

Deflection under Iateral Pressure

Kaiser (reference 5) has conducted a carefully controlled experiment on one simply supported plate. In this experiment, as in Kaiseris theoretical work, the édee conditions are such that the membrare stresses at the edge are zero. The initial deflections obtained by Kaiser are in agrecment with the results in this paper. At large dofloctions, however, the fact that the membrane stress at the edge of the plate was zero in the experiment causes the measured deflections to oxceod by appreciable amounts the dofloctions calculated in this paper.

National Burcau of Standards,
Washington, D. C., May 27, 1941.

REFERENCES

1. Von Káxmán, Th. Pestigkeitsprobleme in Maschinenbau. Vol. IV of Encyk. der Math. Wiss., 1910, p. 349:
2. Marguerre, Karl: The Apparent Width of the Plate in Compression. T.M. INo. 833, NACA, 193\%.
3. Bengston, Henry W.: Ship Plating under Compression and Fydrostatic Pressure. Trans. Soc. Naval Arch. and Marine Eng., Vol. 47, Nov. 1939, pp. 80-116.
4. Timoshenko, S.: Theory of Elastic Stability. HeGrawHill Book Co., Inc., 1936 .
5. Kaiser, Rudolf: Rechnerische und experimentelle Ermittlung der Durchbiegungen und Spannungen von quadratischen Platten bei freier Auflagerung an den Rändern, gleichmässig verteilter Last und grossen Ausbeigungen. Z.f.a.M.M., Bd. I6, Heft 2, April 1936, pp. 73-98.
6. Cox, H. I.: The Buckling of Thin Plates in Compression. R. \& M. No. I554, British A.R.C., 1933.
7. Von Kármán, Theodor, Sechler, Ernest E., and Donnell, I. $\mathrm{H}_{\mathrm{A}}:$ The Strength of Thin Plates in Compression. A.S.M. ${ }^{\text {P. Trans:, APM-54-5, vol. 54, no. } 2, ~ J a n . ~ 30, ~}$ 1932, pp. 53-57.
8. Ramberg, Walter, MePherson, Albert \mathbb{E}., and Levy, Sam: Exporimental Study of Deformation and of 巴ffective Width in Axially Ioadod Sheet-Stringer Panels. T.N. No. 634, NACA, 1939.
9. Timoshenko, S.: Theory of Plates and Shells. McGrawHill Book Co., Inc., 1940, pp. 117-120.

TABLE I. - $E Q U A T I O E S$ FOR THE STRESS COEFTIOIENTS IN EQUATION (8) FOR A SQUARE PLATE (a = b)

TABLE IT.- COEFFICIENTS FOR SQUARE PLATE IN THE FIRST SIX EQUATIONS OF THE FAMILY OF TQUATION (9)
$[\mu=0.316]$

	$0=$	$0=$	$0=$	$0=$	$0=$	$0=$
$\frac{a^{4}}{\pi^{4} \text { Eh }^{4}}$	$-p_{1,1}$	${ }^{-p_{1}, 3}$	$-p_{3,1}$	- $\mathrm{p}_{3,3}$	${ }^{-1,5}$	- $p_{5,1}$
1	$0.37 \frac{\text { Whal }}{\text { \% }}$	$9.26 \frac{w_{1,3}}{h}$	$9.26 \frac{W_{3,1}}{h}$	$30.0 \frac{\text { Wh, }}{\text { h }}$	$64.5 \frac{\mathrm{~m}_{1,5}}{\mathrm{~h}}$	$62.5 \frac{\mathrm{w}_{5,1}}{\mathrm{~h}}$
$\frac{\bar{p}_{x} a^{2}}{\pi^{3}{ }^{2} h^{2}}$	$-\frac{w_{1,1}}{\mathbf{h}}$	$-\frac{\nabla_{1,3}}{h}$	$-9 \frac{W_{3,1}}{h}$	$-9 \frac{m_{3,3}}{h}$	$-\frac{w_{1,5}}{h}$	$-25 \frac{W_{5,1}}{h}$
$\frac{p_{y} a^{2}}{\pi^{3} \mathrm{En}^{2}}$	$-\frac{W_{1,1}}{h}$	$-9 \frac{\pi_{1,3}}{h}$	$-\frac{\mathbf{w}_{3, I}}{n}$	$-9 \frac{\nabla_{3,3}}{h}$	$-25 \frac{1,5}{h}$	$-\frac{w_{5,1}}{h}$
$\left(\frac{\pi_{1}, 1}{h}\right)^{3}$	0.125	-0.0625	-0.0625	0	0	0
$\left(\frac{\omega_{1,1}}{n}\right)^{2} \frac{w_{1,3}}{h}$	-. 1875	1.065	. 250	-. 585	-. 210	0
$\left(\frac{w_{1,1}}{n}\right)^{2} \frac{w_{3,1}}{h}$	-. 1875	. 250	1.065	-. 585	0	-. 210
$\left(\frac{w_{1,1}}{h}\right)^{2} \frac{w_{3,3}}{h}$	0	-. 585	-. 585	. 405	. 2035	. 2025
$\frac{m_{1,1}}{n}\left(\frac{m_{1,3}}{h}\right)^{2}$	1.065	0	-1.625	0	1.1875	0
$\frac{w_{1,1}}{n}\left(\frac{w_{3,1}}{n}\right)^{2}$	1.065	-1.625	0	0	0	1.1875
$\frac{w_{1,1}}{n} \frac{w_{1,3}}{n} \frac{w_{3,1}}{n}$. 500	-3.25	-3.25	5.625	1.685	1.685
$\frac{W_{1,1}}{h}\left(\frac{w_{3,3}}{h}\right)^{2}$. 405	0	0	0	2.385	3.385
$\frac{w_{1,1}}{\mathrm{~h}} \frac{\mathrm{w}_{1}, 3}{\mathrm{~h}} \frac{\mathrm{w}_{3}, 3}{\mathrm{~h}}$	-1.17	0	5.625	0	-2.34	-4.68
$\frac{\nabla_{1,1}}{h} \frac{\nabla_{3,1}}{h} \frac{\nabla_{3,3}}{h}$	-1.17	5.625	0	0	-4.68	-2.34
$\left(\frac{1,3}{h}\right)^{3}$	0	5.125	0	-5.0625	0	0
$\left(\frac{w_{1,3}}{h}\right)^{2} \frac{w_{3,1}}{n}$	-1,625	0	7.375	0	-4.00	-4.625
$\frac{w_{1,3}}{n}\left(\frac{w_{3,1}}{n}\right)^{2}$	-1.625	7.375	0	0	-4.625	-4.00
$\left(\frac{\square}{\frac{3,1}{}}\right)^{3}$	0	0	5.125	-5.0625	0	0
$\left(\frac{w_{1,3}}{h}\right)^{2} \frac{w_{3,3}}{n}$	0	-15.188	0	21.653	0	0
$\left(\frac{w_{3,3}}{h}\right)^{3}$	0	0	0	10.125	0	0

TABLE II (Continued)

	$0=$	$0=$	$0=$	$0=$	$0=$	$0=$
$\left(\frac{w_{3,1}}{h}\right)^{2} \frac{w_{3,3}}{h}$	0	0	-15.188	21.652	0	0
$\frac{w_{1,3}}{h}\left(\frac{w_{3,3}}{h}\right)^{2}$	0	21.652	0	0	0	0
$\frac{w_{3,1}}{h}\left(\frac{w_{3,3}}{h}\right)^{2}$	0	0	21.652	0	0	0
$\frac{w_{1,3}}{n} \frac{w_{3,1}}{n} \frac{w_{3,3}}{h}$	5.625	0	0	0	16.790	16.790
$\left(\frac{w_{1,1}}{h}\right)^{3} \frac{1,5}{h}$	0	-. 210	0	. 2085	2.025	0
$\left(\frac{w_{1,1}}{h}\right)^{2} \frac{w_{5,1}}{h}$	0	0	-. 210	. 2025	0	2.025
$\frac{w_{1,1}}{h} \frac{w_{1,3}}{h} \frac{w_{1,5}}{h}$	-.420	2.375	1.685	-2.34	0	0
$\frac{w_{1,1}}{n} \frac{w_{1,3}}{n} \frac{w_{5,1}}{n}$	0	0	1.685	-4.68	0	-5.65
	0	1.685	0	-4.68	-5,65	0
$\frac{\omega_{1,1}}{n} \frac{\omega_{3,1}}{n} \frac{\omega_{5,1}}{n}$	-.420	1.685	2.375	-2.34	0	0
$\frac{\nabla_{1,1}}{n} \frac{\nabla_{3,3}}{n} \frac{\nabla_{1,5}}{h}$. 405	-2.34	-4.68	4.77	0	3.645
$\frac{w_{1,1}}{n} \frac{w_{3,3}}{n} \frac{\mathbf{w}_{5,1}}{h}$. 405	-4.68	-2.34	4.77	3.645	0
$\frac{w_{1,1}}{h}\left(\frac{w_{1,5}}{h}\right)^{2}$	2.025	0	-2.825	0	0	0
$\frac{w_{1,1}}{n}\left(\frac{w_{5,1}}{n}\right)^{2}$	2.025	-2.825	0	0	0	0
$\frac{\nabla_{1,1}}{n} \frac{w_{1,5}}{h} \frac{W_{5,1}}{h}$	0	0	0	3.645	0	0
$\left(\frac{w_{1,3}}{n}\right)^{2} \frac{w_{1,5}}{h}$	1,1875	0	-4.00	0	18.313	0
$\left(\frac{m_{1,3}}{h}\right)^{2} \frac{w_{5,1}}{h}$	0	0	-4.625	0	0	13,451
$\left(\frac{m_{3,1}}{n}\right)^{2} \frac{\omega_{1,5}}{h}$	0	-4.625	0	0	13,451	0
$\left(\frac{\omega_{3,1}}{h}\right)^{2} \frac{\omega_{5,1}}{h}$	1.1875	-4.00	0	0	0	18.313
$\frac{\nabla_{1,3}}{\mathrm{~h}} \frac{\mathrm{w}_{3,1}}{\mathrm{~h}} \frac{\mathrm{w}_{1,5}}{\mathrm{~h}}$	1.685	-8.00	-9.25	16,790	0	10.25

TABLE II (Continued)

	$0=$	$0=$	$0=$	$0=$	$0=$	$0=$
	1.685	-9.25	-8.00	16.790	10. 25	0
$\frac{w_{1,3}}{n} \frac{w_{3,3}}{h} \frac{w_{1,5}}{h}$	-2.34	0	16.790	0	-46.16	-19.485
$\frac{w_{1,3}}{n} \frac{w_{3,3}}{n} \frac{w_{5,1}}{h}$	-4.68	0	16.790	0	-19.485	0
$\frac{\omega_{3,1}}{h} \frac{\omega_{3,3}}{h} \frac{\nabla_{1,5}}{h}$	-4.68	16,790	0	0	0	-19.485
$\frac{\omega_{3,1}}{h} \frac{\omega_{3,3}}{h} \frac{\nabla_{5,1}}{h}$	-2.34	16.790	0	0	-19.485	-46.16
$\left(\frac{w_{3,3}}{h}\right)^{2} \frac{w_{1,5}}{h}$	2.385	0	0	0	38.272	20.25
$\left(\frac{w_{3,3}}{h}\right)^{2} \frac{w_{5,1}}{h}$	2.385	0	0	0	20.25	38.272
$\frac{w_{1,3}}{h}\left(\frac{w_{1,5}}{h}\right)^{2}$	0	18.313	0	-23.08	0	0
$\frac{w_{1,3}}{h}\left(\frac{w_{5,1}}{h}\right)^{2}$	-2.825	13.451	0	0	-13.625	0
$\frac{w_{3,1}}{h}\left(\frac{w_{1,5}}{h}\right)^{2}$	-22.825	0	13.45	0	0	-13.625
$\frac{w_{3,1}}{h}\left(\frac{w_{5,1}}{h}\right)^{3}$	0	0	18.313	-23.08	0	0
$\frac{w_{1,3}}{n} \frac{\nabla_{1,5}}{n} \frac{\nabla_{5,1}}{n}$	0	0	10.25	-19.485	0	-27.25
$\frac{\nabla_{3,1}}{n} \frac{\nabla_{1,5}}{n} \frac{\nabla_{5,1}}{n}$	0	10.35	0	-19.485	-27.25	0
$\frac{w_{3,3}}{h}\left(\frac{w_{1,5}}{h}\right)^{2}$	0	-23.08	0	38.272	0	0
$\frac{w_{3,3}}{h}\left(\frac{w_{5,1}}{h}\right)^{2}$	0	0	-23,08	38.272	0	0
$\frac{w_{3,3}}{h} \frac{\omega_{1,5}}{h} \frac{\omega_{5,1}}{h}$	3.645	-19.485	-19.485	40.5	0	0
$\left(\frac{w_{1,5}}{n}\right)^{3}$	0	0	0	0	39.125	0
$\left(\frac{w_{1,5}}{h}\right)^{2} \frac{w_{5,1}}{h}$	0	0	-13.625	0	0	45.385
$\frac{w_{1,5}}{n}\left(\frac{w_{5,1}}{h}\right)^{2}$	0	-13.625	0	0	45.385	0
$\left(\frac{w_{5,1}}{h}\right)^{3}$	0	0	0	0	0	39.125

NACA Technical Note No. 846

TABLE III - VALUES OF COEFEICIENTS IN DEFLECTION FUNCIION OF EQUATION (6) FOR SQUARE PLATE UNDER

EDGE COMPRESSION $[\mu=0.316]$

$\frac{p_{x} a^{2}}{m_{1}}$	$\frac{w_{1} 1}{h}$	$\frac{w_{1}, 3}{h}$	$\frac{w_{3}, 1}{h}$	$\frac{w_{3}, 3}{h}$	$\frac{w_{1,5}}{h}$	$\frac{w_{5,1}}{h}$	$\frac{w_{c e n t e r}}{h}$
3.66	0	0	0	0	0	0	0.000
3.72	.25	.000109	.000164	.000000	.000000	.000000	.250
3.96	.50	.000848	.001308	.000012	.000001	.000001	.498
4.34	.75	.00275	.00434	.000086	.000005	.000009	.743
4.87	1.00	.00615	.01043	.000360	.000017	.000036	.984
5.51	1.25	.01127	.0203	.001063	.000044	.000104	1.220
6.30	1.50	.0181	.0350	.00257	.000092	.000241	1.450
7.22	1.75	.0267	.0561	.00541	.000166	.000484	1.673
8.24	2.00	.0370	.0846	.01040	.000284	.000879	1.889
9.38	2.25	.0493	.1208	.0184	.000467	.00143	2.101
10.61	2.50	.0635	.1670	.0307	.00082	.00215	2.303
11.99	2.75	.0790	.226	.0488	.00145	.00313	2.498
13.48	3.00	.095	.299	.0743	.00273	.0041	2.687
14.97	3.25	.112	.384	.107	.00483	.00510	2.871
16.79	3.50	.129	.493	.151	.00893	.00565	3.044
18.77	3.75	.138	.626	.206	.0161	.00392	3.212
1.00	.124	.808	.287	.0303	.0021	3.376	

TABLE IV
VALUES OF COEFFICIENTS IN STRESS FUNGTION OF EQUATION (8) FOR SQUARE PLATE UNDER EDGE GOMPRESSION
[$\mu=0.316$]

$\frac{\overline{p r x a}^{2}}{\operatorname{Th}^{2}}$	3.66	3.72	3.96	4.34	4.87	5.51	6.30	7.22	8.24	9.38	10.61	11.99	$13 . .48$	14.97	16.79	18.77	$21^{3} .45$
$\frac{4 \pi^{2} \mathrm{~b}_{0,2}}{E h^{2}}$. 00	. 08	. 31	. 69	1.22	1.89	2.73	3.69	4.80	6.10	7.52	9.15	10.92	12.88	15.08	17.58	20.55
$\frac{4 \pi{ }^{2} \mathrm{~b}_{2,0}}{\mathrm{Eh}^{2}}$. 00	. 08	. 31	. 68	1.21	1.86	2.66	3.53	4.58	5.59	6.70	7.82	8.84	9.82	10.60	11.12	11.23
$\frac{16 \pi^{2} b_{0,4}}{\pi h^{2}}$. 00	. 00	. 00	. 00	. 01	. 03	. 07	. 12	. 20	. 32	. 50	. 77	1.18	1.77	3.70	3.99	6.15
$\frac{16 \pi^{2} b_{4,0}}{E h^{2}}$. 00	. 00	. 00	. 01	. 03	. 06	. 13	. 24	. 42	. 68	1.06	1.60	2.34	3.30	4.64	6.39	$8 . .79$
$\frac{4 \pi^{2} \mathrm{~b}_{2,2}}{E n^{2}}$. 00	. 00	. 00	. 01	. 04	. 09	. 19	. 34	. 57	. 89	1.32	1.90	2.64	3.56	4.74	6.19	8.07
$\frac{36 \pi^{2} b_{0,6}}{E h^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 05	. 10	.17	. 35	. 64	1.24
$\frac{36 \pi^{2} b_{6,0}}{\operatorname{En}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 02	. 06	. 11	. 20	. 35	. 59	. 98	1.70
$\frac{16 \pi^{2} b_{2}, 4}{\operatorname{Eh}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 03	. 08	. 17	. 32	. 58	. 99	1.56	2.38	3.43	4.86
$\frac{16 \pi^{2}{ }^{b_{4}}{ }^{2}, 2}{E h^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 04	. 11	. 23	. 44	. 76	1.24	1.92	2.81	4.10
$\frac{36 \pi^{2} \mathrm{~b}_{2,6}}{\mathrm{Eh}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 02	. 03	. 06	. 11	. 19	. 32	. 54
$\frac{36 \pi^{2} b_{6,2}}{7 h^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 02	. 04	. 08	.17	. 32	. 59	1.03	1.87
$\frac{16 \mathrm{~m}^{2} \mathrm{~b}_{4,4}}{T \mathrm{~h}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	-. 01	-. 02	-. 04	-. 06	-. 08	-. 11	-. 11	-. 02
$\frac{64 \pi^{2} b_{0,8}}{E h^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01
$\frac{64 \pi^{2} b_{8,0}}{\operatorname{mh}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 00
$\frac{36 \pi^{2} \mathrm{~b}_{4,6}}{\mathrm{Eh}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	-. 01	-. 02	-. 05	-. 10	-:20
$\frac{36 \pi^{2} b_{6,4}}{\mathrm{mh}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	-. 01	-. 01	-. 03	-. 05	-. 09	-. 15	-. 28
$\frac{64 \pi^{2} b_{8,2}}{\operatorname{mh}^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 01	-. 01
$\frac{64 \pi^{2} b^{2}, 8}{E h^{2}}$. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 01	. 01	. 04	. 10
Others	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00

TABLE V - CONVERGENCE OF SOLUTION FOR EFFECTIVE WIDTH OF A SQUARE PLATE UNDER EDGE COMPRESSION AS THE NUMBER OF EQUATIONS OF THE FAMILY OF EQUATION (9) USED IN THE SOLUTION IS INCREASED

$$
[\mu=0.316]
$$

$\frac{\text { Average edge strain }}{\text { Critical strain }}$	$\frac{\text { Effective width }}{\text { Initial width }}$			
	$\begin{aligned} & \text { Using one } \\ & \text { from } \\ & \text { equation (9) } \end{aligned}$	Using three from equation (9)	$\begin{aligned} & \text { Using four } \\ & \text { from } \\ & \text { equation (9) } \end{aligned}$	$\begin{gathered} \text { Using six } \\ \text { from } \end{gathered}$ equation (9)
1.00	1.000	1.000	1.000	1.000
1.67	. 797	. 797	.797	.797
7.01	. 570	. 535	. 525	. 525
13.50	. 538	. 480	. 434	. 434

NACA Technical Note No. 846

TABLE VI - VALUES OF COEFFICIENTS IN DEFLECTION FUNCTION, EQUATION (6), FOR SQUARE PLATE UNDER UNIFORM NORMAL PRESSURE p [Edge compression $=0 ; \mu=0.316]$

$\frac{p^{4}}{\mathrm{ph}^{4}}$	$\frac{w_{1,1}}{h}$	$\frac{w_{1,3}}{h}, \frac{w_{3,1}}{h}$	$\frac{w_{3,3}}{h}$	$\frac{w_{1,5}}{h}, \frac{w_{5}, 1}{h}$	$\frac{w_{c e n t e r}}{h}$
0	0	0	0	0	0
12.1	.500	.00781	.000814	.000644	.486
29.4	1.000	.02165	.00254	.00156	.962
56.9	1.500	.0447	.00666	.00303	1.424
99.4	2.000	.0776	.0152	.00524	1.870
161	2.500	.1195	.0299	.00831	2.307
247	3.000	.167	.0516	.0123	2.742
358	3.500	.221	.0813	.0175	3.174
497	4.000	.282	.116	.0236	3.600

NACA Technical Note No. 846

TABLE VIII - CONVERGENGE OF SOLUTION FOR pa*/Eh* AND Wcenter/h OF A SQUARE PLATE UNDER UNIFORM NORMAL. PRESSURE AS THE NUMBER OF EQUATIONS OF THE FAMILY OF EQUATION (9) USED IN THE SOLUTION IS INCREASED [Edge compression, $0 ; \mu=0.316$]

(a) Pressure			
$\frac{w_{1}, 1}{h}$	$\mathrm{pa}^{4} / \mathrm{Eh}^{4}$		
	Using one equation	Using three equations	Using six equations
0	0.00	0.00	0.00
1	29.9	29.4	29.4
3	271	249	247
4	572	516	501
(b) Center deflection			
w_{7}	wcenter/h		
h	Using one equation	Using three equations	Using six equations
0	0.000	0.000	0.000
1	1.000	. 957	. 962
3	3.000	2.666	2.743
4	4.000	3.436	3.600

NACA Technical Note No. 846

TABLE IX - VALUES OF COEFFICIENTS IN DEFLECTION FUNCTION, EQUATION (6), FOR SQUARE PLATE UNDER UNIFORM NORMAL PRESSURE p [Edge dispracement $=0 ; \mu=0.316$]

$\frac{\mathrm{pa}^{4}}{\mathrm{Eh}^{4}}$	$\frac{w_{1,1}}{h}$	$\frac{w_{1,3}}{h} \frac{w_{3,1}}{h}$	$\frac{w_{3,3}}{h}$	$\frac{w_{1,5}}{h} \frac{w_{5,1}}{h}$	$\frac{w_{c e n t e r}}{h}$
0	0	0	0	0	0
14.78	.500	.0089	.00095	.00077	.485
51.4	1.000	.0283	.00366	.00252	.952
132.0	1.500	.0595	.00965	.00585	1.402
278.5	2.000	.0978	.0193	.0109	1.846

TABIE X - VALUES OF COEFTICIENTS II STRESS FTMOTIOM, BQUATION (8), FOR SQUARE

بABEEXI - CONVERGENCE OF SOLUTIONS FOR pa4/Eh4
ANE wentei/h OF SQUARE TLLATE UNDER UNIFORM NORMAI* PRESSURE AS THE NUMBER OR EQUATIONS OF THE TAMILY OF EQUATION (9) USED IN THE SOLUTION IS INCREASED [Fdge displacement $=0 ; \mu=0.316$]

${ }^{W}{ }_{1,1}$	Prestiure		
	$\mathrm{pa} / \mathrm{Eh}^{4}$		
h	Using one equation	Using three equations	Using six equations
0.000	0.00	0.00	0.00
. 500	14.83	14.78	14.78
1.000 1.500	51.8	51.4	51.4
1.500 2.000	133.0	132.0	132.0
2.000	280.2	278.5	278.5
(b) Center deflection			
${ }^{W} 1,1$	weenter/h		
	Using one equation	Using three equations	Using six equations
0.000	0.000	0.000	0.000
. 500	. 500	. 482	. 485
1.000	1.000	. 944	. 952
1.500	1.500	1. 382	1. 402
2.000	2.000	1.807	1.846

IN ONE DIRECTION HOR A SQUARE PTATE

$\frac{W], 1}{n}$	$\frac{D^{x^{2}}}{3 h^{2}}$	$\frac{W 1,3}{n}$	$\frac{W 3,1}{n}$	$\frac{w 3,3}{h}$	$\frac{W], 5}{h}$	$\frac{W 5,1}{n}$	$\frac{\text { Effective width }}{\text { Initial width }}$	$\frac{\text { Average edge strain }}{(\text { Critical strain })_{p=0}}$

TABEE XIII - CONVERGENCE OF SOLUTION FOR EFFECTIVE WIDTH OF A SQUARE PLATE UNDER COMBINED UNIFORM

LATERAL PRESSURE AND EDGE COMPRESSION AS THE NUMBER OF EQUATIONS OF THE FAMIIY OF EQUATION (9) USED IN THE SOLUTION IS INCREASED

$$
[\mu=0.316]
$$

(a) $\frac{\text { Effective width }}{\text { Initial width }}$ whe $\frac{p a^{4}}{E h^{4}}=2.25$

$\frac{w_{1}, 1}{h}$	Using one equation	Using three equations	Using four equations	Using six equations
. 10	. 000	. 000	. 000	. 000
. 20	. 974	. 974	. 974	. 974
. 40	. 935	.935	. 935	. 935
. 60	. 887	. 887	. 887	. 887
. 80	. 832	. 832	. 832	. 832
(b)	ctive wid	n $\frac{\mathrm{pa}^{4}}{\mathrm{Eh}}{ }^{4}=29$		

$w_{1,1}$	Using one equation	Using three equations	Using four equations	Using six equations
1.00	6053	.000	.000	.000
1.30	.493	.479	.479	.479
1.50	.536	.520	.520	.520
1.70	.551	.536	.536	.536
2.00	.556	.535	.535	.535

TABLE XIV - COMBINED UNIFORM LATERAL PRESSURE p AND EDGE COMPRESSION IN THE DIRECTION OF THE $x-A X I S ~ \bar{p}_{X} b{ }^{\circ}$ FOR RECTANGULAR PLATES
$[\mathrm{a}=3 \mathrm{~b} ; \quad \mu=0.316]$

$\frac{p b^{4}}{E h^{4}}$	$\frac{\bar{p}_{x} b^{2}}{\operatorname{Eh}^{2}}$	$\frac{\mathrm{w}_{\mathrm{I}}, \mathrm{I}}{\mathrm{h}}$	$\frac{W_{3}, 1}{h}$	$\frac{\text { Effective width }}{\text { Initial wiath }}$	$\frac{\text { Average edge stain }}{(\text { Critical strain) } p=0}$
0.00	3.66	0.00	0.00	1.000	1.00
. 00	3.72	. 00	. 25	. 978	1.04
. 00	3.96	. 00	. 50	. 928	1.17
. 00	4.34	. 00	.75	. 863	1.37
. 00	4.87	. 00	1.00	. 798	1.67
2.25	.00	. 313	. 0365	. 000	. 004
2.25	1.02	. 344	. 0500	. 980	.276
2.25	2.47	. 405	. 1000	. 989	. 683
2.25	3.69	. 443	. 300	. 962	1.05
4.50	. 00	. 583	. 0797	. 000	. 015
4.50	.77	. 620	. 100	. 926	. 233
4.50	2.68	. 739	. 200	. 957	. 765
4.50	3.58	. 800	. 300	. 947	1.03

Figure 1.- Square plate loaded by edge compreasion in x-direction.

Figure 2.- Valuea of coefficients in table III for deflection function edge compresaion. Average compreasiv nty/a for a aquare plate under $\mu=0.316$.

Fige. 3.4

$\begin{array}{lll}\underline{A},\left(-r^{n} x y^{2} / E h^{2}\right)_{A} & \underline{B},\left(\sigma^{n} y^{2} / E h^{2}\right)_{D} & \underline{C,}\left(\sigma^{n} x^{2} / E h^{2}\right)_{D} \\ \underline{D},\left(r^{n} x y^{2} / E h^{2}\right)_{B} & \underline{E},\left(\sigma^{n} x^{2} / E h^{2}\right)_{A} & -\left(\sigma^{n} y^{2} / E h^{2}\right)_{A}\end{array}$
 x-direction $=\bar{p}_{x} ; \mu=0.316$.

Figure 5.- Effective-width curve for a simply supported square plate under edge compression. $\mu=0.316$.

Figure 6.- Square plate loaded by a uniform normal pressure p. Edge compression $=0$.

 for a suare plate under uniform normal pressure p. Fdge compression $=0$; $\mu=0.316$. Linear theory from reference 9 .

 $\underline{G},\left(\sigma^{\prime} x^{2} / \operatorname{mh}^{2}\right)_{B},\left(\sigma^{\prime} y^{2} / E h^{2}\right)_{C}$ (compression) $\underline{D},\left(\sigma^{\prime} x^{2} / \operatorname{mh}^{2}\right)_{D},\left(\sigma^{\prime} y^{2} / \operatorname{En}^{2}\right)_{D}$ (teneion)

E, ($\left.\tau^{\prime} x^{x y}{ }^{2} / \operatorname{mh}^{2}\right)_{A}$
Figure 8.- Membrane gtresseg for a square plate under uniform normal pressure p. Eage compression $=0 ; \mu=0.316$.

Figure 9.- Extreme-fiber bending atresses at the center and the corner for a square plate under uniform normal pressure. Edge compression $=0 ; \mu=0.316$. Linear theory from reference 9 .

Figure 10.- Square plate loaded by a uniform normal pressure p and by edge forces - \vec{p}_{x} ah and $-\bar{p}_{y} a h$ sufficient to make the edge displacement zero.

Fige. 11,12

Figure ll.- Values of coefficients in tableIX for deflection function $=\sum_{n} \sum_{n} w_{m, n} \sin m \pi x / a \sin n \pi y / a$ for a square plate under uniform normal preasure p. Edge displacement $=0 ; \mu=0.316$. Innar theory from reference 9 .

B, $\left(\sigma^{1} x^{\left.\left.a^{2} / \mathbb{L n}^{2}\right)_{D},\left(\sigma^{1} y^{a^{2} / E h^{2}}\right)_{D} \text { (tension) }\right) ~\left(\sigma^{2}\right)}\right.$
$\underline{C},\left(\sigma^{\prime} x^{a^{2}} / E h^{2}\right)_{B},\left(\sigma^{\prime} y^{a^{2} / E h^{2}}\right)_{C}(t e n s i o n)$
D, $\left(\sigma^{\prime} x^{a^{2} / E h^{2}}\right)_{A},\left(\sigma^{\prime} y^{2} / \operatorname{Ln}^{2}\right)_{A}$
(tension)

Figure 12.- Membrane stresses for a square plate under uniform normal stress p. Edge displacement $=0 ; \mu=0.316$.

> A, $\left(\sigma^{n} x^{\left.\left.a^{2} / E h^{2}\right)_{D},\left(\sigma^{n} y^{2} / E h^{2}\right)_{D}\right)}\right.$ D, $\left(\sigma^{n} x^{2} a^{2} / E h^{2}\right)_{B},\left(\sigma^{n} y a^{2} / E h^{2}\right)_{B}$
> $B_{2}\left(\tau^{H} x y^{\left.a^{2} / \operatorname{En}^{2}\right)_{A}}, \quad C_{2}\left(\tau^{H} x y^{\left.a^{2} / \pi n^{2}\right)_{B}}\right.\right.$
> E, ($\left.\sigma_{x^{2}} a^{2 / E h^{2}}\right)_{B}$, $\left(\sigma^{n} y^{2} / E h^{2}\right)_{B} \quad\left(\sigma^{n} x^{\left.\left.a^{2} / E h^{2}\right)_{C},\left(\sigma^{n} y^{2} / E h^{2}\right)_{C}\right)}\right.$

Figure 13.- Extreme-fiber bending stresses at the senter and the corner for a square plate under uniform normal pressure. Edge displacement $=0 ; \mu=0.316$. Linear theory from reference 9.

Figure 14.- Iffect of normal pressure on effective width of a square plate loaded by edge compreasion.

Figure 15.- Combined normal preasure and edge compression for a rectangular plate (a $=3 b$).

Tigure 16. - Effect of normal preseure on effective width of a rectangular plate (a $=3 b$) loaded by
odge compreseion on the ahort eidee.

Figure 17.- Effective-width curves for aimply supported square plate according to different sources
(a) Reference 7, $b_{e} / b=\sqrt{c q / G}$
(c) Approximate solution of reference 2
(b) Approximate formula of reference 2 , Formula of reference 6 reference $2 \quad 0.80 \sqrt{\mathrm{be}_{\mathrm{c}} / \mathrm{b}=\sqrt[5]{\epsilon_{c r} / \epsilon}}$
(e) Formula of reference $6, b_{e} / 0=0.09+0.80 \sqrt{\varepsilon_{c r} / \epsilon}$
(d) Solution of reference 3

Exact) Derived from present paper

Figure 18.- Comparison of computed effective widin and experimental results from refextace
square plates.

AUTHOR(S): Levy, Samuel
ORIGINATING AGENCY: National Advisory Committee for Aeronautics, Washington, D. C. PUBLISHED BY: (Same)

Von Karman's fundamental equations for large deflections of plates are used for the case of a rectangular plate under combined edge compression and lateral loading. Numerical solutions for square and rectangular plates with a width span ratio of $3: 1$ are given. Deflections for a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It was found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and the deflections agree with experimental results.

Classification canceliea or changed to

AUTH:
By
Signature and Grade
APR 291949

Clasification cancelled per authority of List MACA dd. 28 Sept 1945 Hearge R fordhen, uSCO, 29 Apr 2949

ITLE: Bending of Rectangular Plates with large Deflections
AUTHOR(S): Levy, Samuel
ORIGINATING AGENCY: National Advisory Committee for Aeronautics, Washington, D. C. OR10. AOENCT mo.

PUBLISHED BY: (Same)

Von Karman's fundamental equations for large deflections of plates are used for the case of a rectangular plate under combined edge compression and lateral loading. Numerical solutions for square and rectangular plates with a width span ratio of 3:1 are given. Deflections for a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It was found that the effectlve widths agree closely with Marguerre's formula and with the experimentally observed values and the deflections agree with experimental results.

DISTRIBUTION: Request coptes of this report onlp from Originating_Agency
DIVISION: Stress Analysis and Structures (7) SU\&ECT HEADINGS: Plates - Stresses (71975)
SECTION: Structural Theory and Analysis
methods (2)
ATI SHEET NO:: R-7-2-12.
Alr Oocuinonts Olvision, Intolligoneo Depertmont
AIR TECMNICAL INDEX
RESTRICTED

