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Abstract  
In this paper, the bending problem of rectangular thin plates with free edges laid on 

tensionless Winkler foundation has been solved by employing Fourier series with 

supplementary terms. By assuming proper form of series for deflection, the basic 

differential equation with given boundary conditions can be transformed into a set of 

infinite algebraic equations. Because the boundary of contact region cannotbedetermined in 

advance, these equations are weak nonlinear ones. They can be solved by using iterative 

procedures. 

I. Introduct ion  

The calculation of plates on elastic foundation is a common problem in engineering. Various 
assumptions and calculating models have been proposed in literature, in which the model based on 

the well-known Winkler's assumption is widely used owing to its simplicity and easiness in 

'engineering,applications. However, this model has also some weakness which becomes more 

conspicuous for some specific problems. For example, the soil foundation can bear compression 

only, but it cannot resist tension at all. Therefore calculations based on Winkler's foundation model 

will cause remarkable errors. In this paper, to overcome this weakness, we solve the bending 

problem of rectangular thin plates with free edges laid tensionless Winkler foundation by employing 
Fourier series with supplementary terms I21. Results obtained are satisfactory. 

II. F u n d a m e n t a l  Dif ferent ia l  Equat ion  and Boundary Condit ions  

Fig. 1 shows a rectangular plate with side lengths a,b and thickness h laid on an elastic 

foundation, subjected to a transverse load q ( x , y ) .  

1. F u n d a m e n t a l  differential  equat ion 

D v ~ w ( x ,  y)  + k H  ( w ) w ( x ,  y ) = q ( x ,  y)  (2.1) 

in which 
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v 

1 ( w > 0 )  
H (w) =~ 

k 0 (w-<.o) (2.2) 
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Fig. I 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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is the bending rigidity, and 
2. B o u n d a r y  c o n d i t i o n s  
(1) On sides x = 0  and x = a  

M,--= - D (  

V , =  - -D I 

(2) On sides y = 0 a n d  y = b  

(3) At all corners  

k is the modulus of foundation. 

Ozw OZw \ 0 
o--U-)= 

Osw + aaw ]= 0 
cgx a (2--~) OxOyZ 

M , = _ D (  o~,  8Zw \ u 

V , = - - D [  Oaw 03w ] = 0  

(2.3) 

(2.4) 

(2.5) 

(2.6) 

OZlll 
R = - - 2 D ( 1 - - # )  OxOy z O  (2.7) 

III.  Ser ies  E x p a n s i o n s  of  De f l ec t i on  F u n c t i o n  W (X ~ y ) ,  Heav i s ide  F u n c t i o n H ( w )  
a n d  Load ing  F u n c t i o n  q (X,  y) 

Assume the deflection function w (x, y) is expanded into Fourier series with supplementary 
terms as the following form 

w (x, y) ~_~ ~ W,. .  cos m=x n~y ~ t  C O S  
a b 

m m 0  B--0  

(2 " " b2 m ~ 2 4 b y 3 - 4 b 2 y z - y 4  2by--YZ ]C,,  
+ ~-'~ ( [ - U ) T  24b' + 2b 2 

ram0 

b 2 o 4 
+ [  (2--/~) a-~-'m2== 24b*2b~yZ + D,~ cos- a 

+ . (2-- #)---g r-ha 24a ~ 
20-~ ~ X 2 + 

a z x ~ -2a*x  z . x z -1,, 3 n~ry 
+ ( 2 - - / ~ ) ~ n  = ~" 24a~ , -1- - ~ -  j r l ,  j~ co s ---g-- (3.1)  

This expression is a dual cosine series with two supplementary single cosine series. In this expression, 
W ,  C ,  D m , G and ~ are undetermined coefficients. It can easily be seen'that expression (3.1) can 
be differentiated term by term at least four times and satisfies boundary conditions (2.4), (2.6) and 
(2.7) automatically. 

Expressions for bending moments M and M~ can be derived: 

+ /.t ~ ~'Vm. cos cos M ,  = D ~ m rf , m=x n=y 
a b 

lqel ~ 0 nmO 
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Utilizing known expansions 

4 a x  3 - -  4 GZX z - -  X 4 x ~ ,  m x X  
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2GX~ X z ,,o 
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in which 
--1/45 (m=O) a,~={ (3.8) 
2re-'Jr- '  (m~:0) 

i1/3 ( m = O )  
(3.9) 

f l " =  t - -2m-=~-= (m:~ O) 

i 
- - 7 /3 6 0  ( m = 0 )  

(3. i0) 
~'" = t ( - -  1) =*'2m-4rc-'  (m=bO) 

1/6 (m----O) 
r1=={ (3.11) 

(--1)m2m-Zn -2 (m=V 0) 
expression (3.1) can be rewritten as 

I'll.n0 n n 0  

b z a 2 

[ a__~____~,~nbr~ + r/= ] } m~rx n~ry + (2 - -~ )  H ,  cos cos (8 .12)  a b 

Suppose there are some regions of  separation cry, a2, "" ,  ao in the whole plate, i.e., 
deflection w is negative as (x,  y ) E a ,  (i= 1,2,..., s). Then equation (2.2) can be written as 

0 as ( ( x , y )  Ea~, i = 1 ,  2, . . . , s )  
H (w) = ~ (3.13) 

k 1 as ( ( x ,  y ) E a ,  

Let the Fourier expansion of H ( w )  be 

H (w) = ~ 2, . .  a , . .  cos eos (3 .14)  
G 

where 

[ 1 / 4  (re=O, n=O) 

; L . . = ~ 1 / 2  ( re=O,  n ~ O o r  m ~ O ,  n = O )  (3 .15)  
/ 
" 1 (m~0, n:~0) 

~E_Ib I [  cosm,rx n r c y . .  a,,,. = H (w)  " - -  e o s T a x a y  (3 .16)  
0 a 

Now let's expand the loading function q(x, Y)  into dual cosine series. For concentrated forces 
and couples, the loading functions can be regarded as generalized functionsPL The expansion can be 
expressed as 

o~ ~_~ mJrx tory 
q (x, u) = ~ ~ ;t,.. q,.. cos a c~ (3.17') 

fn~O n~O 

in which 
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~ J b  I~ m=x n=y , , 
q,,,,.-= q(x, 9)cos cos---E-azatj 

0 G 
(3. lS) 

IV. S o l u t i o n  of  t h e  F u n d a m e n t a l  Di f ferent ia l  E q u a t i o n  u n d er  G iv en  B o u n d a r y  

C o n d i t i o n s  

Substituting (3. I), (3.12), (3.14) and (3.17) into equation (2. I), and utilizing the multiplication 

of series[//and given expansions 
o o  

6ax-- 2aZ--3x z _ ~ k , e o s  mJrx (4.1)  
6a z a rtl-O 

in which 

and introducing the notation 

3 z : - a ~  - ' ~ / . , c o s  m=-----L--x (4 .2 )  
6aZ -- m-o a 

0 f k.= 
"[_ 2m-br-Z 

0 

I '= { (_ i) ~2m-Z~-~ 

( m =  O) 
(4 .3 )  

(m=~O) 

(m= O) 
(4.4)  

(m~O) 

~ = {  1 ( i = 0 )  

0 ( i = 1 ,  2, 3, -..) 

finally, through the comparison of coefficients on both sides of equation (2.1), we obtain 

o T a . + ~ ( g . - - 2 ( 2 - - # ) k . )  

mz~'z  ~ § I me~re m4~r4 + # ~ g , ] C , ~  ( 2 - / ~ ) b Z T ~ . +  a----~--(~.-2(2-#)ln) 

1.2 7n2d-62 ne~e n4I~4 
- -  ~ . ] D = + [ ( 2 - - # ) a 2 ~ a . + ~ ( f l . ~ - - 2 ( 2 - - # ) k m )  

~Iz~z q 
+ 1~ a--drg-C.j G .  + [ " z n%8 - n'=~ ( 2 - # )  a T g ~ , + T  ( ~ - - 2 ( 2 - - # ) 1 ~ )  

(4.5) 

n ~  k oo 0o b2 

b ,  , 2  o, 

4 [  a2 (2--#) ~ , q Z J r 2  +~i,]H,} (a,+= .,+. +a,§ . , q-. , 

§  I , e + . §  i q - n l ) = ~ . m n q ~ n  ( m = 0 ,  1, "-~ n = 0 ,  1, ---) (4 .6 )  

Then, we consider boundary conditions (2.3) and (2.5). Putting x = 0 and x = a in (3.2), Y = 0 

and 9 = b in (3.3), and considering equations (3.4), (3.5), (3.6), (3.7), (4.1), (4.2) and (4.5), we obtair~ 
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" ' ~  
~ ( - - ~ +  ~, . + ~ ( ~ , - ~  (2-~,)  k.) 
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# - i t  2--# nZn z 
b~ ~ D.,  + 3 b 2 t- G . +  6 b ~ H~ 
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+ [ ( 2 - ~ , )  a~----gr--~.,+ - - g r - - ( o . , - ~ ( 2 - . )  l,.) 
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Now we have five systems of equations (4.5) - (4.10). However, they are infinite equation 
systems. For calculation practice, we have to take a finite number of equations with a corresponding 
number of unknowns. Let M and N be the maximum values taken for m and n, then the total number 
of equations will be (M + 1) (N + 1) + 2(M + 1) + 2(N + 1), and the number of unknowns involved is 
just the same. Consequently, they can be solved determinately. Nevertheless, for the tensionless 
Winkler foundation, H(w)cannot be known in advance, thus the Fourier coefficients a,~ are also 
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undetermined because they are dependent on the sign of deflection w. Therefore this problem is a 

nonlinear one, and cannot be solved directly. In this paper an iterative method is adopted to solve it. 

At first, we assume the whole plate is in contact with the foundation, then we have Htw)--l. By 

solving simultaneous equations (4 .6) -  (4.10), the first approximation of  deflection wl(x,y) can be 

obtained. It is just the exact solution of a plate on classical Winkler foundation. If w, (x,  y) ~ 0  

holds, everywhere, it will be the exact solution of the plate on tensionless Winkler foundation, too. If 

there is some region, in which tnl (x ,  y) d 0 ,  the solution must be modified. The region, in wtlich 

w~(x, y ) ( 0  must be determined and taken as the first approximation of the actual region of  

separation. New modified function H( to )and  its Fourier coefficients am, can be determined 

according to the configuration of  this approximated region of  separation. Then we can get the 

second approximation of deflection wz(x, y).  Repeat these procedures until the absolute value of 

the difference of results of  two adjacent approximations is less than a preassigned small positive 

number. Finally, the deflection function w(x, ~1) obtained in the last iteration will be taken as the 

solution of  the plate on tensionless Winkler foundation under preassigned precision. Bending 

moments Mx(x, y) and Mw(x, y) can be obtained from equations 43.2) and (3.3). 

V. Example 

Solve the square plate on tensionless Winkler foundation shown in Fig.2. The length of  each 

side is b. The load is a concentrated force P at the center of  plate. Poisson's ratio is # = 0. 167 

kb*/D= 10 ' .  
Solution: Along the above precedure, the first approximation w ~(x, 9 ) obtained (which is also 

the exact solution of  plate on classical Winkler foundation) is shown in table 1. 

Table 1. The first approximation of deflection w~q 
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These results are in good coincidence with those given in [3] for plate on classical Winkler 
foundation. 

Through five times of  iteration, the solution of  the plate on tensionless Winkler foundation has 

been obtained. The maximum deflection at the center of  plate is w , , , x =  0 .001531PbZ/D �9 The 
deflection curves of w and tot along V --b/2 are shown in Fig. 3. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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VI. Concluding Remarks 

It has been shown by the calculation of examples that the convergence of iteration is 
satisfactory. In general, a good result can be obtained through only five or six times of iteration. In 
addition, calculation pr~tctice shows also that the convergence of the Fourier series is rapid enough. 
Therefore, the method of Fourier series with supplementary terms is an efficient and generally 
applicable approach for solving the bending problem of rectangular plates with various boundary 
conditions. The authors have also extended this method to solve the Reissner plate on elastic 
foundation, which will be discussed later. 
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