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1. Introduction. Most of the approximations and more formal asymptotic expan-
sions which have been used for the analysis of the static and dynamic response of thin,
elastic shells are analogous to the asymptotic methods that have been developed in
wave mechanics. Whitham [10] has developed a variational approach for the determina-
tion of the significant features of a wave propagating through an inhomogeneous, dis-
persive medium. In the present paper, it is shown that this variational approach can be
utilized for waves in shells and provides a dramatic simplification in the determination
of the amplitude function.

Asymptotic analysis of shells began with the work of H. Reissner, 0. Blummenthal,
and E. Meissner (1912-1915). Direct application of asymptotic wave analysis was utilized
in the discussion of transition points occurring in the axisymmetric motion of shells
of revolution by Ross [7]. For the general surface, the asymptotic analysis leads to
"geometric optics", in which the determination of "rays" and "caustics" plays a vital
role. Steele [9] discusses the fundamental "point load" solution for the shell with high
prestress and negligible bending stiffness. Germogenova [1] obtains the wave solution
from the shallow-shell equations, which include the bending stiffness but not prestress.
Generally, in wave mechanics, the frequency is used as the large parameter, but for
shells, the convenient parameter is the radius-to-thickness ratio. Thus the geometric
optics analysis is useful for the static problem, as discussed by Steele [8]. The Airy func-
tion solution for a region containing a caustic is given by Logan [3] and the Bessel function
fundamental solution is given by Prat [5],

In the present paper, we consider wave propagation on the general shell surface
with prestress included and without any a -priori assumption concerning "shallowness".
Attention is restricted to waves which have a wavelength of the order of magnitude
of the square root of thickness times radius. These can be clearly identified as "bending"
waves in the special case of axisymmetric deformation of the shell of revolution, but
generally include membrane and inextensional effects. For the cylindrical shell, the present
solution gives exactly the well-known solution of Donnell's equations for vibration and
(classical) stability. Excluded from our consideration are waves with wave speeds of the
order of the shear velocity in the shell material—either the extremely long wavelength
membrane waves or the extremely short wavelength transverse shear waves. For many,
if not most practical problems, these are of minor significance.

* Received July 25, 1975. This study was performed with the support of a grant from the National
Science Foundation.
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2. Shell equations. A thorough discussion of classical and modern theories for
the behavior of thin shells is given by Naghdi [4], For the first-approximation linear
theory for the isotropic elastic shell the following equations are relevant.

The shell mid-surface, with position vector r, has the metric and curvature tensors

5 = aaSa" (x) a3 , b = baflsl" ® (2.1)

where a" are the reciprocal base vectors. Also useful is the rotation tensor (for an oriented
surface)

t = a(a' (x) a2 - a2 ® a1) (2.2)

where

ct = (a, X tlx)' a3 = (ctn(i22 ^12 ) (2.3)

in which a3 is the unit normal to the surface.
The displacement vector is

v = v"aa + wa3 (2.4)

the gradient of which is

Vv = y - t|r (g) a3 . (2.5)

The midsurface strain measure is the symmetric part of y,

r = i(r + y1), (2.6)
while t|r provides the rotation of the normal. The change in curvature of the surface
depends on the intrinsic part of the gradient of

k = Vit-5. (2.7)

However, the appropriate bending strain measure is the symmetric tensor

K = §-[k + J(b-Y - T-b)] + Mk + i(b-Y - r-b)]1. (2.8)

The constitutive relations between stress and strain measures are

N = -2 (y — ve-y-t) (2.9)
1 — V

M = Ehc\k - vt-K-t) (2.10)

in which c is the reduced thickness

c2 = A2/12(l - v2). (2.11)

Finally, the Lagrangian density per unit of surface area is

L = ttphir-t — N : y — M : k — <r-N0 ^]- (2-12)

In addition to the kinetic and strain-energy terms, a membrane "prestress" N0 has
been included. The displacement (2.4) is interpreted as the small displacement from the
primary equilibrium state, in which the bending stresses and rotations are negligible.

The remarkable feature of the approach developed by Whitham [10] for the asymp-
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totic analysis of waves is that no further equations are necessary. Thus the effort required
to use Novozhilov-type equations by Steele [8] and "shallow shell" equations by Ger-
mogenova [1] as the starting point of the asymptotic analysis can be completely avoided.

3. Monochromatic wave solution. The appropriate expansion for bending wave
propagation is

v = exp (id)[cT]3i3 — ic '\« + 0(c2)] (3.1)

in which the phase function is

0 = 0(r, t) = -ut + c~1/2f(r). (3.2)

The spatial change in phase, given by f, the amplitude of normal displacement, given
by t), and the amplitude of tangential displacement, given by the vector y, are the
unknown functions. It is assumed, however, that these functions are of "slow" variation,
i.e. independent of the magnitude of c. Thus the exponential term in (3.1) provides the
only "rapid" variation in the solution. In this section, for simplicity, E, c, and to are all
constant.

The gradient of (3.1) gives the rotation (2.5)

t!r = — Vv a3 = exp (i0)[—+ 0(c)] (3.3)

where k is the gradient k = Vf and the midsurface strain (2.6) is

Y = exp (id)[ca + 0(c3/2)] (3.4)

where

a = !(k ® » + v ® k) - v?b. (3.5)

The bending strain measure (2.8) is

k = exp (i'0)[r;k (x) k + 0(c1/2)]. (3.6)

The stress measures (2.9), (2.10) are

N = exp (t0)[a — vt-a t + 0(c1/2)],1 " ' (3.7)

M = Ehc2 exp (t0)b(k®k - „e-k (g)k-e) + 0(c1/2)].

The (real parts) of the stress and strain measures are substituted into (2.12). Following
Whitham [10], the "time-averaged" Lagrangian is computed. This eliminates explicit
dependence on the phase function 6:

f2 t /«L dt
7T J o

= hEhc2]^ -k'- k-Jfc-k)„2 - ^ (« - «.«•«) : «. (3.8)

Hamilton's principle states that the integral

JJ LdZdt (3.9)
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must have a stationary value. After the average over time is taken, we are left with the
surface integral

J £ dX (3.10)

which must be stationary. Since £ depends explicitly on the unknown amplitude func-
tions and y, and on the spatial derivatives of 6, the Euler equations of the variational
problem are

d£/dv = 0, (3.11)
d£,/dr) = 0, (3.12)

V • (d£/dk) = 0. (3.13)
The condition (3.11) can be used to determine y in terms of >?, after which (3.12) will be
recognized as the eikonal equation for f and (3.13) as the transport equation for 17, in
the form discussed by Hayes [2] and Whitham [10].

The direct calculation indicated by (3.11) is tedious. Instead, we note that

d£/dv = (d£/du)-(da/dv) = 0 (3.14)
which gives

(a — ce-a-E)k = 0. (3.15)

Thus from (3.7) we see that, to first approximation, N must be orthogonal to the phase
gradient k. It is possible, therefore, to write

N = iVe-k (X) e-k/c~2 (3.16)

where N is the trace of N. The inverse of (2.9) is

f = + ,e-N-e). (3.17)

Thus from (3.4), (3.5), and (3.16) this relation is obtained:

c exp (z6>)[§(k (x) v + v (x) k) - 77b] = [e-k <g) t-k - ^k <g) k]Af2. (3.18)

The dot product of this tensor equation with e k in both prefactor and postfactor positions
eliminates y and yields the relation between direct stress and normal displacement

Ehe exp (i'0)k-e-b-e-k/c"2?; = Si (3.19)

which gives the midsurface strain coefficient

« = v k'e'^'c'k [e.k 0 E.k - yk®k]. (3.20)
k

This may be used in (3.8) to obtain £ in terms of only r; and k:

£ = EhcvF (3.21)
where

2

F_F(k,r;„).t'+kJ^k + (!E^)' pw_

E (3.22)
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Now (3.12) gives the recognizable form of the eikonal equation

F(k, r; «) = 0 (3.23)

and (3.13) is the transport condition

V • (v2Fk) = 0. (3.24)

The explicit calculation of u has been avoided in the preceding method. Since a in
(3.20) is defined by (3.5), the dot product of (3.20) by k in both pre- and postfactor
positions gives the component in the gradient direction

(ik = r)/c~2(kbk — i/kebek). (3.25)

The dot product of (3.20) with k in the prefactor position and ek in the postfactor
position gives the orthogonal component

key = 2r,r2kebk. (3.26)

While the shell equations are not at all simple, the use of the time-averaged Lagrangian
does provide a clear, economical derivation of the significant relations for the asymptotic
analysis. Not obvious is the fact that the relations (3.23) — (3.26) hold even when k is
complex-valued, giving an "evanescent" wave solution (3.1) of exponential rather than
sinusoidal spatial variation. In this case, the dependence on d is not entirely eliminated
in the time-averaged Lagrangian, so the Euler equation (3.13) would appear to gain
additional terms. However, by the straightforward expansion procedure used by Steele [8],
Prat [5] and Logan [3], which is valid for complex k and for the static case of u —> 0, the
identical relations (3.23) —(3.26) are obtained. This indicates that, instead of using
the time-averaged Lagrangian, a more fundamental approach could be taken, in which
the possibility of an evanescent wave would be admitted, but which produces the same
relations (3.23)-(3.26).

4. Ray coordinates. As is well known, the eikonal equation (3.23) can be solved
by the method of characteristics. The characteristic, or ray, emitted from a given point
on the surface in a particular direction can be determined from the equations

(It/da = Fk (4.1)

{dk/da) • 5 = —Fr (4.2)

while the parameter along the ray u is related to the phase function f by

dl/da = k -Fk . (4.3)

If the rays emitted from a boundary curve are used as one family of coordinate lines,
and the lines of constant i.e. constant phase, are used for the second set of coordinate
lines, then we have

x1 = r,

a1 = Vf = k, (4 4)

a, = dr/df = Fk/k-Fk ,

a2 = ake.
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Note that the variational problem of finding the curve r on the surface which has
endpoints A and B, and which extremizes the integral

fB <*J A du k da (4.5)

subject to the constraint condition (3.23) has the Euler equations (4.1) and (4.2). If
we identify k as the gradient of the scalar f, then

M = f dt = m - f(A). (4.6)
J A

Thus the rays can be thought of as lines of minimum phase change subject to the con-
straint (3.23). Generally the rays do not coincide with the gradients, so the ray coordinates
are not orthogonal.

In terms of the ray coordinates, the amplitude function can be easily obtained.
The condition (3.24) is

0 = V • (v2k ■ Fka,) = („2k • Fk) + ^2k Fk (4.7)

Thus
v = (ak-F (4.8)

The determinate of the metric a can be obtained from the calculation of the spacing
between two adjacent rays. In the special case considered by Steele [9], a linear second-
order equation on a single ray was obtained for a. Hayes [2] provides equations for the
calculation of a along a single ray in the general case.

5. Variation in properties. The restriction to constant c in Sec. 3 was made so
that the relative orders of magnitude of the various terms could be explicitly shown
with a minimum of notational clutter. A smooth variation in thickness and in E can,
however, be easily taken into consideration. Writing

£ = c"1/2f, k = V?, (5.1)

we obtain, instead of (3.21),

£ = -i V2G (5.2)

where

G = <7(k, r, «) = Ehc^iky* + fcjj.fi + (k'e/.2'e'k)2 - (5.3)

and the obvious modifications of the equations in Sec. 4.

6. Transient excitation. For the important problems of shell vibration and steady-
state wave propagation the coordinates (4.4) are convenient. For transients, the formula-
tion discussed of Whitham [10] and Hayes [2] is preferred. Instead of (3.2), a more general
form of the phase function is considered, with

|| = -co; ve = fi. (6.1)
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The time-averaged Lagrangian retains the same form (5.2). Explicit time dependence,
for instance in the membrane prestress, may now be admitted. The Euler equations are

d£/dv = 0 (6.2)

which gives the same eikonal equation

(?(£, r, a, t) = 0 (6.3)

but the time dependence effects the transport condition

~^£" + V'£k=0- (6'4)

The solution of (6.3) on a ray is governed by

dr/da = Gk , (r/k/da) ■ o = — Gt ,

dt/da = —Gu , du/dcr = G, , dd/dc = k-G^ -f- «Gu . (6.5)
Time instead of a can be used as the parameter along the ray. In particular, the local
group velocity is

dx/dt = -Gk/Ga . (6.6)

For a given frequency the ray trajectory on the surface given by (6.5) is the same as
that given by (4.1) and (4.2). In the transient situation, the "instantaneous frequency"
at a point and the corresponding direction of energy propagation change with time.

7. Vibration and stability. Much of the local behavior of the shell can be obtained
from consideration of the eikonal equation (3.23). For a given direction of the gradient
k = a1, (3.23) is a polynomial for the amplitude lc = |k|.

/c4 + k\N0iu)/Ehc) + b(22)2 - = 0 (7.1)

in which iVo'11' is the physical component of membrane prestress in the direction of k
and b(22> is the curvature of the surface in the orthogonal direction. The roots of (7.1) are

[2 ~11/2

(.N0(u)/2Ehcf + - bl22)2J . (7.2)

When the prestress is tensile or zero in the direction of k, a positive root occurs when

pu2/E > b{22)2. (7.3)

The limit gives the "cut-off" frequency for (bending) wave propagation in the direction k,
which is equal to the resonant frequency in pure expansion of the cylindrical and spherical
shells, and gives the transition point on the shell of revolution discussed by Ross [7].
When the prestress is compressive, the positive root occurs for frequencies

pu2/E > 6(22>2 - (No(U)/2Ehc)2. (7.4)

In this case the prestress lowers the cutoff frequency. Finally, for sufficiently high com-
pression

|AT0<u>/2^b(22,| > 1 (7-5)
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the solution is oscillatory in the direction k for zero frequency. An oscillatory solution
generally permits the satisfaction of homogeneous boundary conditions with an arbitrary
amplitude. Indeed, (7.5) is exactly the "classical" condition for instability of a cylinder
under axial force and the sphere under external pressure.

In the problem of the torispherical end closure of a cylindrical vessel with internal
pressure, the circumferential stress in the toroidal segment is compressive. Ranjan and
Steele [6] find that all the available experimental data for the incidence of circumferential
wrinkling correspond to values of the parameter in (7.5) ranging from about 0.9 to 2.
Considering the difficulties associated with shell instability, and the oversimplified
nature of the local criterion (7.5), such agreement is remarkable.

We conclude that the general approach which has been discussed in this paper
offers more than unification and simplification in the derivation of well-known results.
Insight and useful results can be obtained for nontrivial problems of difficult geometry.
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