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Abstract

“If you find yourself in a hole, stop digging.” Although Denis Healey’s fa-

mous adage (Metcalfe 2007) may offer sound advice for politicians, it is less

relevant to worms, clams, and other higher organisms that rely on their

digging ability for survival. In this article, we review recent work on the

development of simple models that elucidate the fundamental principles un-

derlying digging and burrowing strategies employed by biological systems.

Four digging regimes are identified based on dimensionless digger size and

the dimensionless inertial number. We select biological organisms to repre-

sent three of the four regimes: razor clams, sandfish, and nematodes. Models

for all three diggers are derived and discussed, and analogies are drawn to

low–Reynolds number swimmers.
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1. INTRODUCTION

Digging and burrowing are pervasive in the animal kingdom. Organisms from ants to aardvarks dig

for many reasons, including feeding, anchoring, shelter, and protection. Similar to swimming and

flying, digging strategies are tightly coupled to the dynamics of the surrounding medium—water

for swimmers, air for fliers, and granular media for diggers. Relative to their swimming and flying

counterparts, digging organisms present a particularly attractive target of investigation as their en-

vironment is largely dominated by frictional interactions between grains in dry substrates or viscous

effects in saturated environments. The dissipative nature of these systems can dramatically simplify

the dynamics, making quantitative comparisons with macroscopic biological systems feasible.

However, simplification in the analysis of the governing equations comes at a price in other

arenas. The first challenge associated with studying digging organisms is seemingly mundane, yet

it can be a showstopper. Simply put, it is difficult to see through dirt. To understand the strategies

adopted by digging and burrowing animals, it is necessary to visualize the kinematics of fully sub-

merged organisms and, ideally, the accompanying stresses and displacements in the surrounding

medium. Furthermore, this visualization must be done dynamically. This can be accomplished by

index matching grains and fluids (not ideal as index-matched fluids are often harmful to biological

specimens), imaging through thin geometries such as Hele-Shaw cells (Winter et al. 2012) or ant

farms (Gravish et al. 2012) (also not ideal as the dynamics of granular materials may be strongly

influenced by boundary effects), or X-ray imaging.

A second challenge lies in the derivation of the governing equations of motion. Although it

is possible to write down relevant macroscopic averaged conservation laws for digging organ-

isms and devices, the accompanying granular constitutive relationships remain an open topic of

investigation.

1.1. Scope of This Review

Locomotion through granular media is a vast topic that encompasses biology, physics, soil me-

chanics, fluid dynamics, rheology, optimization, and many other disciplines. Each of these fields

presents fascinating viewpoints on the topic of digging, and it is impractical to address all of them

in a single review article. Hence, we restrict our scope first and foremost to biologically motivated

digging strategies, neglecting many digging approaches employed by fabricated devices. Second,

we emphasize the physical strategies adopted by biological diggers, rather than detailed physiol-

ogy, except as it relates to the physics of digging. Third, in the examples that follow, some cases

consider fluid-saturated materials, and others dry grains. Rather than a comprehensive review of

all possible dry and saturated combinations, we again select the most relevant scenarios motived by

the biological context. Finally, we focus on locomotion through granular media versus on granular

media, the latter of which has recently received quite a bit of attention, particularly in the robotics

community (Goldman et al. 2009).

1.2. Characterizing Flowing Granular Media

A granular medium is an ensemble of non-Brownian particles that interact through a combination

of hydrodynamic interactions (in the case of saturated substrates), interparticle friction, and

collisions. Because the particles are non-Brownian and particle interactions are highly dissipative,

granular systems are easily trapped in nonequilibrium, metastable states. The nonequilibrium

nature of these ensembles makes it challenging to apply classical statistical approaches to derive

constitutive relationships. Instead, models are typically constructed via a phenomenological
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approach in which the medium is considered a viscoplastic. This approach captures two signatures

of granular flow: a flow threshold or yield stress, followed by viscous-like behavior.

Since the pioneering work of Bagnold (1954), many models have been proposed to reflect

these features. One of the most successful strategies for describing dense granular flows is the

local rheology model. In this model, the granular medium is described as a frictional viscoplastic

liquid (Forterre & Pouliquen 2009) with a friction coefficient and local volume fraction that depend

only on the inertial number I,

I =
γ̇ d

√

P/ρp

, (1)

where ρp is the particle density, d is a characteristic grain size, P is a characteristic pressure scale,

and γ̇ is a characteristic shear rate. This quantity, which approximates the relative importance

of inertial effects and confining stresses, can be interpreted as the ratio of two timescales: one

that characterizes the typical time associated with microscopic particle rearrangements and a

macroscopic timescale 1/γ̇ associated with the shear rate. In the context of digging, the inertial

number defines three important regimes: quasi-static flow (I < 10−3), dense flow (10−3 < I <

10−1), and collisional flow (I > 10−1). Digging typically occurs in one of the first two regimes,

which we refer to as slow and fast digging, respectively.

Diggers may also be classified by S = L/d, which characterizes the size of the digger relative to

the grain size. For our purposes, the term small refers to diggers that are comparable to the grain

size, and the term large refers to diggers that are much larger than the grains. This leaves us with

four interesting regimes—large and fast, large and slow, small and fast, and small and slow—which

are summarized in Figure 1, along with representative organisms in each regime.

1.3. Computer Simulation of Dry Granular Media

Although the examples in this review focus on analytical and experimental results, it is impor-

tant to recognize the key role simulation has played in analyzing digging systems. The discrete

element method (DEM) is a useful computational technique in modeling the flow of dry granu-

lar media (Poschel 2005) and treats each particle within the simulation as a dissipative repulsive

sphere governed by Newton’s laws. Each sphere is propelled via collisions with other particles

and gravitational effects. In the normal direction of collision, Hertizan contact is typically used to

generate repulsion, and a term is added to account for dissipative effects, which can be quantified

by the coefficient of restitution. Coulomb friction is used to model sliding contacts, with a static

friction term employed to generate statically stable packings. If interaction parameters are cho-

sen correctly, DEM simulations can quantitatively reproduce features of experimental granular

flows (Ding et al. 2011) and can thus be used as a microscopic view into grain-level dynamics.

DEM simulations are computationally simple to implement relative to analogous computational

techniques in fluids flows (e.g., computational fluid dynamics), and simulations of a few million

particles can be readily performed on desktop PCs.

2. ANALOGIES WITH LOW–REYNOLDS NUMBER LOCOMOTION

Locomotion through granular media is largely dominated by drag, which immediately invites com-

parison with other overdamped systems. In particular, it is instructive to examine the similarities

(and differences) between digging in granular substrates and low–Reynolds number swimming—a

topic that has received considerable attention in the fluid dynamics community (e.g., recently

reviewed in Lauga & Powers 2009). The governing equations for the pressure and velocity fields,
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Figure 1

Digging organisms arranged by inertial number I and dimensionless size S. The inertial number was estimated using ρ = 2,500 kg/m3

and biologically relevant shear rates and grain sizes. Pressure can be estimated two ways. The first estimate (indicated by the green
points) was calculated using characteristic stresses that muscles can produce (approximately 100 kPa). The second estimate (indicated by
the blue points) used the hydrostatic pressure at typical burrow depths. Both of these are intended as order-of-magnitude estimates. Four
biologically relevant digging regimes are identified by roman numerals.

p and u, of an incompressible low–Reynolds number flow around a swimming organism in a fluid

of viscosity μ are given by the Stokes equations

∇ p = μ∇2u, ∇ · u = 0, (2)

which are linear and independent of time.

2.1. Scallop Theorem

The fact that the Stokes equations possess these two properties leads to a number of interesting

consequences in locomotion. First, the locomotion speed V of an organism changing its shape Ŵ

must be linearly proportional to the rate of change of the shape, namely V = f (Ŵ)Ŵ̇, where f (Ŵ)

is a function of the instantaneous shape of the organism, and the dot indicates a time derivative.

If the sequence of shapes is identical under time-reversal symmetry, the organism simply retraces

its steps and winds up exactly where it started. Hence, any swimmer that undergoes a reciprocal

deformation can never generate a net translation. This inability of reciprocal (non)swimmers was

made famous by Purcell (1977) in “Life at Low Reynolds Number,” in which he states “if the

animal tries to swim by a reciprocal motion, it can’t go anywhere. Fast or slow, it exactly retraces

its trajectory and it’s back where it started.”

Purcell used the scallop—two rigid bodies connected by a hinge—as the canonical example

of a swimmer that can undergo only reciprocal deformations, and consequently, this limitation
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of low–Reynolds number locomotors has become known as the scallop theorem. “Life at Low

Reynolds Number” opened the flood gates for new proposed designs of effective low–Reynolds

number swimmers, which typically introduce chirality or additional degrees of freedom to break

symmetry. Purcell himself hypothesized the three-link swimmer, the helical swimmer, and the

flexible oar, which were all followed by in-depth analyses by other researchers (Becker et al. 2003,

Jung et al. 2007, Lauga 2007, Liu et al. 2011, Qian et al. 2008, Raz & Avron 2008, Tam &

Hosoi 2007, Wiggins & Goldstein 1998, Yang et al. 2009, Yu et al. 2006); other proposed designs

such as the pushmepullyou (Avron et al. 2005) and the waving sheet (Taylor 1951) add to the

taxonomy. As shown in the following sections, many observed biological digging strategies are

remarkably analogous to the hypothetical strategies that appear in the canon of low–Reynolds

number locomotion.

2.2. Resistive Force Theory

Another commonality in inertialess locomotion is that the instantaneous forces and torques on

the organism must balance. Typically in locomotion studies, translational velocities are found by

balancing drag with relevant propulsive effects, such as vortex shedding or inertia. However, in

these highly overdamped systems, drag is often the only available source of propulsion. Hence,

locomotion can only arise from anisotropy in the drag forces. In a viscous fluid, the drag force FD

is well known for common geometries and is linearly proportional to the velocity of the object

relative to the fluid:
FD =

∑

i

Ci (V · ei )ei , (3)

where V is the relative velocity of the object, ei are appropriately chosen unit vectors, and the

drag coefficients Ci depend on the geometry of the object. For a translating sphere, one obtains

FD = 6πaμV, where a is the radius of the sphere. For a long, slender cylinder, the respective

parallel and perpendicular drag coefficients are given by

C|| =
2πμ

ln(L/a) − 1/2
, C⊥ =

4πμ

ln(L/a) + 1/2
, (4)

where L and a are the length and radius of the cylinder, respectively.

Computing drag coefficients for arbitrary geometries is a nontrivial exercise. Hence, locomo-

tion studies frequently employ a resistive force theory (RFT) approximation, as first proposed by

Gray & Hancock (1955). This approximation postulates that, for an undulating slender object in

which the radius of curvature is large compared to the radius of the filament, each infinitesimal

segment is (to first order) hydrodynamically uncoupled from the others. Hence, the drag forces

associated with normal and tangential motion are approximately proportional to the local filament

velocity, and the drag coefficients can be approximated as those of a straight cylinder, as given in

Equation 4. This approximation proves to be particularly useful in granular locomotion, provided

one can derive new appropriate drag coefficients in the relevant digging regimes.

2.3. Digging Efficiency

A final theme that emerges in the following analyses is efficiency. Optimization is a common goal

in biomechanical studies, and one of the trickiest tasks in these investigations is the determination

of a relevant metric or cost function to quantify the property being optimized. In locomotion

studies, the two most common metrics are (a) maximizing speed for a given power (sprint) and

(b) maximizing efficiency for a given speed (marathon). Both these are relevant to digging, which

may be used as an escape mechanism (sprint) or as a foraging or anchoring strategy (marathon).
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The first metric, maximizing speed, is straightforward. To define the second, maximizing energetic

efficiency or endurance, we note that an actively burrowing animal consumes power as it deforms

the surrounding medium and itself, and a certain fraction of that power is transformed into

useful unidirectional motion. A typical efficiency η, analogous to the hydrodynamic efficiencies

commonly used for low–Reynolds number swimmers, can be defined as the ratio of the power

required to drag the digger through the soil at the average digging velocity (namely the useful

fraction of the power) to the total power required to deform the substrate �:

η =
FD · V

�
. (5)

As a point of comparison, efficiencies for low–Reynolds number swimmers are typically on the

order of a few percent. G.I. Taylor’s (1951) swimming sheet, which is a superstar among low–

Reynolds number locomotors, can attain efficiencies as high as 7%. As shown in the examples

below, diggers can often achieve much higher efficiencies by exploiting asymmetries arising in the

environment that can enhance the effectiveness of their nonreciprocal kinematics.

Another common measure of efficiency is the cost of transport (COT), which is defined as the

energy consumed to move a unit weight a unit distance, normalized by the weight of the organism

or device, times the distance traveled. This metric is commonly used in biomechanical and robotic

studies. It is roughly the inverse of the hydrodynamic efficiency defined in Equation 5 in the sense

that the denominator of the COT can be interpreted as the useful work performed to move the

locomotor, and the numerator is the total energetic cost, which may include food, air, electricity,

or gasoline. An excellent summary of the COT for many organisms and devices, from freight

trains (≈1.1 × 10−2) to mice (≈40), is presented in Kuo (2007).

3. MODES OF DIGGING

We now present analyses of specific digging organisms in each of the four digging regimes. There

are many biological species one could choose for this purpose, and the examples below were

selected partially based on their effectiveness in illustrating key concepts and partially based on

the authors’ experience in working with these organisms. In all cases, the biological discussion is

paired with an analysis of a canonical digger that isolates the principal physical digging mechanisms

employed by the biological system.

3.1. Regime I: Big (S ≫ 1) and Slow (I ≪ 1)

Regime I is broadly populated by soft burrowers (Trueman 1975). Among these organisms, there

are two widely adopted digging strategies: (a) undulatory motions used by worms and chordates

and (b) the two-anchor strategy. Undulatory digging is discussed extensively in Sections 3.2 and 3.3;

hence, this section focuses on bivalves (e.g., clams), which employ a two-anchor strategy. A bivalve

consists of a rigid shell and a soft foot that can protrude into the substrate. These two components

form the two anchor points in the animal’s burrowing strategy. The two halves of the shell are

connected via a torsional spring that opens the shell when the muscles are relaxed. Fraenkel (1927)

identified the following key stages in bivalve digging: protrusion of foot into the substrate (Hak-

enform), dilation of the distal end to form an anchor (Schwellform), and contraction of retractor

muscles to pull the shell into the substrate (Grabstufe) (see Supplemental Video 1; follow the Sup-

plemental Material link from the Annual Reviews home page at http://www.annualreviews.

org).

These stages are illustrated in Figure 2a. In a clam, the foot, shell, and muscles can be thought

of as a hydraulic system in which the force produced by the muscles controlling the opening and

436 Hosoi · Goldman
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(a) Schematic illustration of the three digging stages in burrowing bivalves: (1) protrusion of foot into substrate, (2) dilation of the distal
end to form an anchor, and (3) contraction of retractor muscles to pull the shell into the substrate. (b) Analogous schematic illustration
of the digging pushmepullyou. Initially the shell (S1) expands to form the first anchor point. The foot (S2) is then pushed into the
substrate. S1 contracts, squeezing fluid into S2, which expands to form a new anchor point. Then the connection between the two
spheres contracts, pulling S1 into the substrate. And finally fluid is reversed from S2 to S1, expanding the shell and returning the
pushmepullyou to its original configuration.

closing of the shell can be transferred to the substrate. In the first step, the animal relaxes these

muscles, and the spring-loaded shell braces against the sand, serving as the primary anchor point.

This allows the animal to extend its foot into the substrate. In the second step, the shell squeezes

shut, increasing the hydrostatic pressure inside the animal. This increase in pressure drives fluid

into the flexible foot, which expands, exerting pressure on the adjacent sand. The expanded foot

then serves as the second anchor point and allows the animal to pull the shell into the burrow in

the third step.

3.1.1. Canonical analogy: the pushmepullyou. Let us consider an idealized bivalve moving

through a saturated granular substrate. The clam can be modeled as a pushmepullyou (Avron

et al. 2005), consisting of a spherical foot (S2) and a spherical shell (S1) connected by a rigid bar

that can actively elongate or contract (Figure 2b). The total volume of the digger is conserved,

so as one sphere shrinks, the other grows, mimicking the transport of incompressible fluid within

the biological organism. The digging cycle of our pushmepullyou progresses through the stages

illustrated in Figure 2b.

There are two modes of symmetry breaking that contribute to the net translation of the organ-

ism in this example. The first mode is the nonreciprocal kinematics of the pushmepullyou. The

second is the asymmetry brought about by the differing effective material properties of the substrate

surrounding the shell and the foot. As the shell (or foot) contracts, the grains in the surrounding

medium unpack, creating a localized region of fluidized material, which lowers the local yield

stress and viscosity of the substrate. This trick of modifying the local environment surrounding a

contracting organ is a highly effective digging tactic, and the associated gains can be tremendous.
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As an order-of-magnitude estimate, let us consider the energy required to dig, which scales as

E ∼ Fh, where h is the depth of the submerged object, and F is the force required to penetrate

the granular medium. This force is proportional to the yield stress σ y of the substrate, which, for

packed beds of sand, typically arises from the frictional contact between grains and is set by the

hydrostatic pressure, σy ∼ ρgh. Here ρ is the effective density of the fluid-particle mixture, and g is

gravitational acceleration. Hence, the force required to penetrate a packed medium scales linearly

with the depth, and the energy expended by the digger scales as the depth squared. In contrast,

the force required to move through a viscous fluidized system scales as F f ∼ μ(φ)V a , which is

independent of the depth. As above, V is the digging velocity; a is an appropriate length scale of

the digger; and μ is an effective viscosity or resistance, which depends on the local volume fraction

of particles φ. In this idealized fluidized situation, the energy required to dig scales linearly with

the depth; therefore, beyond a critical depth, it always pays to fluidize.1

This transition from a packed to a fluidized state can be critical to animals, which are constrained

by the physiological limitations of muscle. For example, the maximum pulling force that a clam such

as Ensis directus, commonly known as the razor clam, can exert is approximately 10 N (Trueman

1967). We can contrast this with the force required to submerge a razor clam’s shell into the

animal’s habitat soil. This force can be measured directly, and one finds that, as expected, it

increases linearly with the depth at a rate of approximately 5 N/cm (Winter et al. 2012). These

measurements imply that, in a packed bed in its native habitat, a razor clam’s muscles should be

able to submerge the animal to a depth of approximately 2 cm. In reality, live razor clams can dig

almost two orders of magnitude deeper than this measurement would suggest (Holland & Dean

1977), a feat that is only possible through localized fluidization, which makes burrowing feasible

for these organisms.

We now return to our canonical example and estimate digging velocities and efficiencies of

the pushmepullyou shown in Figure 2b. To illustrate the physical principles that lead to a net

translation, we adapt the calculation in Jung (2010) and consider simple sinusoidal kinematics in

which the radius of S1 is prescribed as R1(t) = a0 +δa cos(ωt), and the length of the connecting rod

or muscle oscillates out of phase with the sphere dilation: ℓ(t) = ℓ0−δℓ sin(ωt). Because the volume

of the total swimmer is conserved, the radius of S2 is necessarily given by R2(t) = a0 − δa cos(ωt).

As argued above in Section 2.2, the sum of all forces—namely, the drag on the spheres—must

balance:
∑

i

Fi = 0, where Fi = 6π Ri (t)μi (t)V i (t). (6)

Here μi (t) is the effective viscosity of the surrounding medium experienced by the i-th sphere, and

V i (t)—which we would like to determine for a given set of material properties and kinematics—is

the unknown instantaneous velocity of the i-th sphere.

For small deformations of the digger, we first write the effective viscosity as a function of the

local void fraction ǫ, defined as the ratio of volume occupied by the pore fluid to the total volume,

and consider small perturbations to the initial void fraction ǫ0:

μi (t) = μ0 +
∂μ

∂ǫ
(ǫ − ǫ0) + . . . , (7)

where the effective viscosity of the unperturbed substrate is μ0. To determine ∂μ/∂ǫ, we must

select an appropriate constitutive relationship μ(ǫ), which depends on the material properties of

the medium, the history of the packing, external loadings, and grain geometry (see the sidebar

1This is, of course, only true if there is a fixed energetic cost associated with fluidization that is independent of the depth.
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EFFECTIVE VISCOSITY MODELS FOR SUSPENSIONS

For the estimation of the varying material properties of the substrate surrounding the digging organism, it is often

reasonable to consider a saturated granular substrate and model it as a suspension with viscosity μ = f (φ), where φ

is the volume fraction of the particles, and the function f (φ) may blow up at some critical concentration below the

maximum packing fraction. There is a tremendous literature on this topic, starting with Einstein’s (1906) calculation

in which he computed the first correction to the viscosity—which is linear in the particle concentration—in the limit

of dilute suspensions. Since then, many studies have empirically measured constitutive relationships, or computed

effective viscosities theoretically, or both (Batchelor & Green 1972, Eilers 1941, Ferrini et al. 1979, Frankel &

Acrivos 1967, Krieger & Dougherty 1959, Maron & Pierce 1956). There is a rich history associated with this topic

that we do not address in this review, as the qualitative conclusions related to digging do not sensitively depend on

the details of f (φ).

Effective Viscosity Models for Suspensions). One can compute the change in void fraction, ǫ − ǫ0,

by defining ∀P as the characteristic volume of the perturbed soil, the extent of which depends on

the geometry of the burrowing organism and initial soil properties. A straightforward geometric

calculation for small digging deformations, namely δa ≪ a0, leads to

ǫ − ǫ0 =
4π

3∀P

(1 − ǫ0)[a3
0 − R3

1 (t)] + · · · ≈ δa
4πa2

0

∀P

(1 − ǫ0) cos(ωt). (8)

Finally, to close the system, we note that the sphere velocities are related by a kinematic

constraint: V 2 = V 1 + ℓ̇. The force balance equation can now be solved for the velocity of S1,

which is then averaged over one digging cycle, yielding the average translational velocity of the

organism:

V̄ =
π

2
(ωδℓ)

δa

a0

(

1 −
k0

μ0

)

, where k0 ≡
∂μ

∂ǫ

4πa3
0

∀P

(1 − ǫ0). (9)

Tying this back to the two types of symmetry breaking discussed above, the first term in the average

digging velocity represents translation owing to the nonreciprocity of the kinematics. The second

represents the net motion that arises from the asymmetric material properties of the environment

surrounding the spheres. This calculation can be repeated with a slightly more realistic geometry

in which the shell is modeled as a cylinder, which allows one to address a number of interesting

questions, such as computing the optimal aspect ratio of a clam shell ( Jung et al. 2011).

Although digging speed is paramount for organisms that use burrowing as an escape mechanism,

others may employ digging in other capacities—such as foraging—which may elevate energetic

efficiency to the primary goal. Consider the digging efficiency η defined in Section 2.3. The power

in the denominator required to deform the substrate can be written as the sum of the power required

to move the individual spheres through the medium and the power Pi dissipated by the expanding

(or shrinking) spheres. The power associated with dilation Pi can be estimated as the product of

the local stress and the dilation rate. Estimating the stress as σ = 2μ(t)∂ Ṙ/∂r = 4μ(t)∀̇/(3∀), one

can calculate the hydrodynamic efficiency of the granular pushmepullyou to lowest order as

η = 6π

(

1 −
k0

μ0

)2 (

δa

a0

)2
δ2

l

3δ2
l + 32δ2

a

. (10)

In this estimate, the efficiency increases as both δl and δa increase. However, recall that this

approximation is only valid for small δa and in the limit that local variations in viscosity can be

well approximated by the first term in the expansion in Equation 7. Again the calculation can be
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Decreasing r

a r

r

Rf

2R

Failure

τ

σn

σzz

σzz

σrr

σrr

θ

τ crit
 = ασn

Clam

z

b

Figure 3

(a) Schematic illustration of a cylindrical digging clam and local state of stress in the substrate. (b) Mohr’s circle, illustrating the
graphical identification of the failure zone. Larger circles correspond to smaller values of r, indicating neighborhoods closer to the clam.

repeated for a cylindrical shell to determine optimal aspect ratios for efficient digging ( Jung et al.

2011).

3.1.2. Finite yield stress substrates. In the analysis above, we lump the characteristic volume

of the perturbed soil into a single unknown parameter, ∀P . In general, this volume may be a

complicated function of the soil properties; however, for a simple finite yield stress material (e.g.,

a Bingham plastic), ∀p can be estimated by calculating the location of the yield or failure surface

around the digger. To illustrate this concept, we consider a long, axisymmetric cylindrical clam

shell (Figure 3a). Closing of the shell is modeled as a decrease in the radius of the cylinder R.

As the radius decreases, the horizontal stress in the medium surrounding the organism decreases.

(From here on, we use the sign convention commonly used in soil mechanics, in which compressive

stresses are positive.) When this stress drops below a critical value, the soil fails.

To calculate the location of the failure surface, we first need to estimate the stresses in the

granular bed as they relate to the kinematics of the organism. Let us consider the vertical and

horizontal stresses a distance r from the clam, as shown in Figure 3a (by symmetry, there are no

shear stresses in this configuration). In a saturated medium, the vertical stress is a combination of

the hydrostatic pressure, σhs = ρgz, and pore pressure, which arises from the lubrication forces

between particles, ppore = ρ f gz. As above, ρ is the effective density of the fluid-particle mixture,

namely ρ = ρpφ + ρ f (1 − φ); g is gravitational acceleration; ρp is the particle density; and ρ f is

the fluid density. Hence, the vertical stress can be written as

σzz = σhs − ppore = φ(ρp − ρ f )gz. (11)

In equilibrium, the horizontal stress, σ ′
rr (without the pore pressure correction), can be found by

solving ∇ · σ ′ = 0 with boundary conditions σ ′
rr = p0 at r = R, where p0 is determined by the
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kinematics of the shell, and σ ′
rr → σ∞ as r → ∞. The resulting expression for σ ′

rr again needs

to be corrected to account for the pore pressure, namely σrr = σ ′
rr − ppore, which leads to the

following expression for the effective horizontal stress (Landau & Lifshitz 1984):

σrr =
R2

r2
(p0 − σ∞) + σ∞ − ρ f gz. (12)

The only remaining unknown quantity is σ∞, the horizontal stress in the far field, which can be

measured. In general, soil engineers do not measure σ∞; rather, they report K0, the coefficient of

lateral earth pressure. This is a property of the substrate that depends both on the history of the

soil and on the material properties of the granular medium. In unperturbed soil (i.e., no clam),

one obtains σrr = K0σzz, which defines K0 (Lambe & Whitman 1969, Terzaghi et al. 1996).

Given this picture of the stress state in the surrounding medium, one can address the original

question of estimating ∀P by computing zones of failure in the granular substrate. As a first

estimate, we select one of the simplest empirical failure criteria, namely that the critical shear

stress at which the material yields is proportional to the normal stress, τcrit = ασn. This criterion

can be graphically evaluated using Mohr’s circle to transform the local state of stress (Figure 3b)

(Wieghardt 1975). As the clam closes its shell, the horizontal stress decreases, which moves the

minimum principal stress to the left in Figure 3b. As Mohr’s circle grows, it intersects the failure

criterion at some critical value of σrr . This critical value corresponds to a physical radius located

a distance Rf from the clam, and the soil within this critical radius yields. The failure radius can

now be deduced geometrically via this intersection point. From the diagram in Figure 3, we see

that sin θ = σM /(σrr + σM ), where σM = (σzz + σrr )/2, which implies that, at the failure surface,

σzz =
1 + sin θ

1 − sin θ
σrr , (13)

where θ is the angle of repose of the granular medium, and σzz and σrr are given in Equations 11

and 12, respectively.

Combining Equation 13 with our expressions for horizontal and vertical stresses, we find that

the dimensionless failure radius, R f /R, is defined by

R2
f

R2
=

β

βK0 − 1

[

K0 +
ρ f

ρ − ρ f

(

1 −
p0

ppore

)]

, (14)

where β ≡ (1 + sin θ )/(1 − sin θ ). As z → ∞ (i.e., the clam burrows deeper), one finds that

p0/ppore → 0, so Rf approaches a constant value. For glass beads, a favorite medium of granular

physicists, one obtains K0 = 0.5 and θ = 35◦, and the dimensionless failure radius approaches

R f /R ≈ 3.3 for large z. In fact, for a wide variety of soil parameters, Equation 14 predicts that

the failure radius lies between roughly 1 and 3 digger radii, which is consistent with the limited

available biological data and implies that fluidization is a fairly localized phenomenon for these slow

diggers. This prediction has also been tested using a robotic digger, RoboClam; measurements

confirm that fluidization is localized to within a few device radii (Winter et al. 2014).

3.2. Regime II: Big (S ≫ 1) and Fast (I ≫ 1)

In regime II, a swimmer’s characteristic thrusting surface dimensions are larger than the grain

diameter, and motion occurs at speeds that typically generate I > 10−3 when the digger is fully

submerged. Biologically, in dry media, this regime is home to sand swimmers (see Figure 4)

classified by the biologist Mosauer (1932) as subarenaceous, implying that they move within dry

noncohesive granular media (e.g., desert sand) typically several body diameters below the surface.
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Eastern sand�sh

Scincus mitranus

Keeled slider

Lerista planiventralis

Desert plated lizard

Gerrhosaurus koogi

Broad-banded sand-swimmer

Eremiascincus richardsonii

Three-toed snake skink

Ophiomorus tridactylus

Variable sandsnake

Chilomeniscus stramineus

Wedge-snouted skink

Chalcides sepsoides

Mojave shovel-nosed snake

Chionactis occipitalis

Egyptian
sand�sh

Scincus scincus

Black-naped snake

Neelaps bimaculatus

L/w
55

b d

c

f g

i

a

j

h

e

33207

23115 14

Figure 4

Subarenaceous desert snakes and lizards organized by aspect ratio, where w is the characteristic width of the animal, and L is the
characteristic length. Panel a courtesy of Alexey Sergeev; panel b courtesy of Daniel Goldman; panel c courtesy of John Sullivan,
Creative Commons; panel d courtesy of Daniel Goldman; panel e courtesy of Simon Cherriman; panel f courtesy of Paul Freed; panel g
courtesy of Wikimedia user Kelapstick; panel h courtesy of Gabriel Martı́nez del Mármol Marı́n; panel i courtesy of Omid Mozaffari;
and panel j courtesy of William Flaxington.

Before we discuss the biological organisms, we consider a granular version of Purcell’s three-link

swimmer as it illustrates how traveling waves create movement in granular media in this regime

and highlights some surprising similarities of granular swimming to locomotion at low Reynolds

numbers.

3.2.1. Canonical analogy: the three-link swimmer. In regime II, DEM simulation can prove

useful to understand features of digging. Using a multibody simulation coupled to a DEM sim-

ulation capable of tracking boxes of ∼106 particles, Goldman and colleagues simulated a sand-

swimming robot in a large bed of 6-mm plastic particles (Maladen et al. 2011a,b). Goldman’s

group also used this tool to model the locomotion of a sandfish moving through relatively large

particles and compared it to the movement of the live organism in a similar environment (Ding

et al. 2012, Maladen et al. 2011a).
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Figure 5

Robotic swimming in a frictional fluid (regime II). (a) A three-link swimmer moving forward in a discrete element method simulation
within a granular medium comprising 6-mm plastic spheres; only a single plane is shown. The particles are colored by instantaneous
speed [slow (blue) to fast (red )]. The fluid extends approximately a single body width away from the swimmer. (b) Effects of increasing
the number of segments N in the simulated swimmer on the wave efficiency η, the ratio of forward swimming speed to backward wave
speed (thick gray line). Panel b adapted with permission from Maladen et al. (2011b). Abbreviation: RFT, resistive force theory.

These DEM simulations reveal that a defining characteristic of regime II is a continuously

fluidized region of material surrounding the organism (see Figure 5) (Ding et al. 2012, Maladen

et al. 2011a); thus, a swimmer moves within a self-generated localized frictional fluid such that

the grains are mobile, but Coulomb friction forces (instead of viscous forces) dominate inertia.

Measuring particle speeds in DEM (see Figure 5) reveals that the fluid region decays within

roughly a body width away from the swimmer.

The insight from DEM motivates the use of RFT in regime II, a fortunate situation as RFT

is much faster to calculate (seconds versus days) and can yield to analysis. DEM simulations

also reveal that such swimming systems are kinematic, and thus the conditions established by

Shapere & Wilczek (1987) (e.g., symmetry, gauge invariance) are satisfied, at least in a horizontal

plane. With these assumptions, Goldman and colleagues (Hatton et al. 2013) recently analyzed

regime II swimming of a Purcell three-link swimmer using tools of geometric mechanics originally

developed in the robotics community (Hatton & Choset 2011, Ostrowski & Burdick 1998). This

approach gives geometric insight into optimal deformation patterns and facilitates comparison

between swimming in regime II granular media and low–Reynolds number fluids.

To apply RFT in regime II, we require force relations for dry granular media, the analog to

Stokes equations in Newtonian fluids. Because theory cannot yet provide these, Goldman’s group

measured drag forces on cylinders (Maladen et al. 2009, 2011a) immersed in granular media at a

fixed depth, varying the angle of attack, depth, and speed. The relationships are plotted in Figure 6.

These force relations differ from those of a viscous fluid in that they are insensitive to speed, and

perpendicular forces rise more steeply at shallow attack angles of elemental intruders. Unlike

forces in a fluid, the drag force increases with the depth into the medium; this makes it relatively

simple to calculate with the RFT at fixed depths but certainly adds to the challenge of modeling

locomotion as an animal descends into the medium.

For ease of calculation, the curves in Figure 6 can be approximated by the following expression:

For a segment of a cylinder with length ds, radius r, velocity û, and in-plane normal and tangent

vectors n̂ and t̂, the infinitesimal force is

dF = 2kρgr〈z〉[ f (n̂ · û)n̂ + (t̂ · û)t̂]ds , (15)
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Figure 6

(a) Caenorhabditis elegans moving through glass beads. Panel a courtesy of Sunghwan Jung. (b) X-ray image of a sand-swimming sandfish,
Scincus scincus. (c) Resistive force relations for F⊥ and F‖ as a function of the orientation of the long axis of a cylinder relative to the
motion direction. Porous media curves are simply the viscous curves rescaled by a factor that depends on the permeability of the
substrate. Red and blue curves correspond to F⊥ and F‖, respectively. Panel c adapted with permission from Hatton et al. (2013) using
data presented in Maladen et al. (2009, 2011a).

where the anisotropy factor is given by

f (n · û) =

(

1 +
C

√

tan2 γ0 + (n̂ · û)2

)

, (16)

and C and γ 0 are measured coefficients. For 0.3-mm glass particles, one obtains C = 1.8 and

γ0 = 13.8◦. Inputting these relations into the regime II RFT yields predictions that agree with

experiments, even for relatively large-amplitude undulations of the three-link granular swimmer

(Hatton et al. 2013).

The geometric structures produced by the geometric mechanics theory, the so-called local con-

nection (Bloch 2003) and curvature constraint functions (Hatton et al. 2011, 2013), are qualitatively

similar in granular and low–Reynolds number locomotion, facilitating comparison between these

situations. For example, the structure of the curvature constraint functions demonstrates why the

pattern for optimal movement in granular media is quite similar to that of a low–Reynolds number

swimmer (Tam & Hosoi 2007) but also reveals how the larger F⊥ in granular media leads to greater

displacement per undulation. The agreement between theory and experiment also implies that a

scallop theorem should exist for regime II granular locomotion, a topic that should be investigated

further in light of recent theoretical insights (Lauga 2011).

3.2.2. Effects of body shape. None of the animals that live in deserts resembles a three-link

swimmer. A better approximation of these swimmers is the sand-swimming robot Goldman’s

group has constructed and systematically studied (Maladen et al. 2011b). This physical model

of the sandfish consists of six connected servo motors that can be driven to generate traveling

waves to swim in a granular medium of 6-mm-diameter plastic spheres. Goldman’s group has also

created a DEM simulation of the swimmer that matches experimental measurements over a wide

range of conditions (Maladen et al. 2011a,b).
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In both experiments and simulations, waves that propagate down the body—head to tail—result

in sand swimming. The wave efficiency of the robot (the forward speed relative to the wave speed)

is lower than that of the animal (0.35 versus 0.5), but as the number of segments increases (in

simulation), the robot’s performance improves and approaches the wave efficiency prediction of

the RFT for a single-period smooth sinusoidal wave (see Figure 5). Thus, this gives us confidence

that the RFT can be used to understand the movement of biological swimmers.

To that end, we now discuss the movement strategies of two animals whose kinematics have

been studied in detail by Goldman’s group, the sandfish lizard (Scincus scincus) and the shovel-

nosed snake (Chionactis occipitalis) (Figure 4). The sandfish is relatively short and stout (an average

aspect ratio of L/w ≈ 7), has legs, runs on surfaces, and dives into the substrate rapidly. The

shovel-nosed snake is long and slender (an average aspect ratio of L/w ≈ 30), typical of many

elongated desert snakes and lizards (Norris & Kavanau 1966).

To make the first visualizations of subsurface movement of these subarenaceous organisms,

Goldman’s group placed a fluidized bed of granular media (0.3-mm-diameter glass spheres, ap-

proximating material in dry deserts) between an X-ray source and image intensifier detector; such

an apparatus allows visualization of movement with millisecond resolution through 10–20 cm of

granular media. Opaque markers were bonded to the scales of the animals along the midlines and

legs when applicable to aid in imaging. Markers were tracked to subpixel accuracy using custom

software, allowing quantification of body curvature, wave numbers, etc. (see Sharpe et al. 2014a

for details).

Because these animals encounter granular material of varying volume fraction in their natural

habitats, 0.57 < φ < 0.63, Goldman’s group pioneered the use of air fluidized beds to prepare

substrates into uniform states of different φ. Such states have qualitatively different rheological

properties upon intrusion. For example, loosely packed material (low φ) compacts during inter-

action, whereas closely packed material dilates; at an intermediate φ, called the granular critical

state, the material does not experience a net volume change. The volume changes of the material

lead to either smooth intrusion forces or periodic fracturing of the material at the initiation site.

The resistance forces in high-φ material are nearly a factor of two greater than those in low-φ

material.

Goldman and colleagues discovered that once they are subsurface,2 both animals swim by prop-

agating head to tail traveling waves of curvature down the body (see Figure 7 and Supplemental

Video 2). Remarkably, the locomotor behaviors are similar in material of different φ, although

the energetics change (as estimated by the theory). The wave used by the sandfish can be well

approximated by a single-period sinusoidal wave. The spatial form of the wave does not change

with compaction, depth beneath the surface, or wave frequency. Increasing wave frequency is

correlated with increasing swimming speeds, which can reach up to two body lengths per sec-

ond. The shovel-nosed snake swims more slowly and typically generates approximately 3.5 waves

along its body; these waves are better approximated by serpenoid curves. Interestingly, the ranges

of maximum wave curvatures used by both the shovel-nosed snake and sandfish are similar.

Another difference between the shovel-nosed snake and sandfish swimming is the amount of

slip during locomotion, which we quantify by calculating the angle βs between the local tangent

and segment velocity vectors at every marker along the body during subsurface movement,

βs = cos−1(|v̂t,m · T̂t,m|), (17)

2We do not discuss the more complex behaviors during initial burial in these and other animals ( Jayne & Daggy 2000) in this

review.
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Figure 7

Comparison of locomotor strategies in two regime II sand swimmers: the sandfish (Scincus scincus) and shovel-nosed snake (Chionactis
occipitalis). (a,b) Both move forward through propagation of backward traveling waves of body curvature, although the shovel-nosed
snake shows lower slip than the sandfish, as indicated by midline tracings. (c) Undulation efficiency (wavelength-normalized forward
distance traveled per undulation cycle) for both animals as predicted in regime II resistance force theory as a function of the normalized
average body curvature, using parameters measured in animal experiments, for loosely packed (LP) and closely packed (CP) granular
media. Crosses show experimental measurements. (Inset) The mechanical cost of transport (COT). Shaded regions indicate curvatures
used by both animals. Figure adapted with permission from Sharpe et al. (2014a).

where v̂ is the unit velocity vector and T̂ is the tangent vector at a body location m and time t.

We have discovered that the spatial and temporal average of the slip angle β̄s is a useful metric for

locomotion that is not necessarily composed of a uniformly traveling wave. Remarkably, in either

animal, β̄s does not change with compaction or depth. In the sandfish, β̄s is a factor of three larger

than in the shovel-nosed snake, as can be seen in the track images in Figure 7. And because β̄s for

both animals is finite, we can assume that the animals are surrounded by a frictional fluid, which

motivates the use of the regime II RFT.

The kinematics measured from live animals were used as inputs to the theory to perform the

RFT calculations for the shovel-nosed snake and sandfish. The key biological hypothesis is that

the neuromechanical control system will act to control the shape of the body to target a particular

waveform. Goldman’s group made muscle activity measurements in the back of the swimming

sandfish (Sharpe et al. 2012), and findings support this hypothesis; the muscle activity increases

with the depth into the medium and is independent of the speed (as befitting a frictional fluid

swimmer). Intriguingly, the back muscle activity does not depend on compaction; we speculate

that this is because a large portion of the drag in closely packed material is on the head, which

then generates a frictional fluid around the body whose properties are those of the critical state,

independent of initial conditions.

RFT predicts average swimming properties; for example, it predicts β̄s values to 20%. However,

detailed comparison between RFT and DEM (Ding et al. 2012, Maladen et al. 2011a) for sandfish

swimming reveals that the noninertial assumption is not perfect (as expected in the dense flow
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regime). In addition, a hysteresis effect results in an overestimate of RFT forces: Although RFT

force relationships are obtained in the steady state of cylinder drag, DEM simulation reveals that,

in 3-mm glass particles, the steady state is never achieved owing to the reversals in direction during

undulatory swimming. We note that when reversals do not occur, such as in legged locomotion

on granular media, agreement between RFT and experiments is excellent over a wide range of

parameters (Li et al. 2013). Surprisingly, these results indicate that, unlike in true fluids (Rodenborn

et al. 2013), the superposition ansatz in granular RFT is an excellent approximation, even in regimes

in which segments are close.

Regime II granular RFT reveals that the animals use kinematics (e.g., curvature and number

of waves along the body) that maximize swimming speed and minimize energy use (Sharpe et al.

2012, 2014a). Analysis of the theory (Maladen et al. 2011a) reveals that the optima result from a

competition of increased thrust with increasing curvature and a decrease in a forward component

of movement at high curvatures (see Figure 7). Relative to the sandfish, the shovel-nosed snake

achieves lower slip, higher undulatory efficiency, and lower mechanical COT (its skin friction

is also a factor of two smaller than that of the sandfish). We speculate that a high undulatory

efficiency is important for the sandfish during its rapid (and likely anaerobic) escape behavior,

whereas low COT should be useful for the shovel-nosed snake, which burrows slowly. We note

that locomotor behaviors such as turning and ascending to the surface remain unexplored.

Finally, we comment on the applicability of regime II RFT to swimming in fully water-saturated

granular media. Sand lances (family Ammodytidae) are fishes that burrow into fully saturated gran-

ular media at the ocean floor. Gidmark et al. (2011) used X-ray imaging to record the burial and

subsurface locomotion of these animals. Their study reveals that once submerged, the sand lances

swim within the granular media using a head to tail traveling wave of curvature comparable to the

sandfish lizard and shovel-nosed snake and with approximately 1.5 wave periods along the body

(compared to 1 wave period for the sandfish and 3.5 wave periods for the shovel-nosed snake).

We predict that dry granular media RFT can be used to model this locomotion, likely with scaled

F‖. This would explain how the sand lance can generate small slip using the observed kinematics;

however, measurements of force relations in fully saturated granular media are needed to test this

hypothesis. In partially saturated systems, surface tension may supply a cohesive force between

grains, adding additional complexities that are beyond the scope of this review (see the sidebar

Cohesive Media).

3.3. Regime III: Small (S ∼ 1) and Slow (I ≪ 1)

In regime III, propulsive strategies are dominated by interactions with individual grains. Our

example organism in this regime is Caenorhabditis elegans, which has a worm-like shape and is

commonly found in saturated soils. Owing to its simple structure and ease of use in laboratory

settings, C. elegans is one of the most widely used model organisms in modern biology. Although

there are many studies related to C. elegans swimming in a fluid environment, less is known about

its locomotion through granular media, which ironically more closely resembles its natural habitat.

The few studies that investigate C. elegans in granular settings universally find that locomotion is

more effective in granular media than in purely viscous environments. In the following sections,

we focus on a few key studies: locomotion through microstructured environments (Majmudar

et al. 2012, Park et al. 2008) and motion through a saturated granular medium ( Jung 2010) (see

Supplemental Video 3).

3.3.1. Canonical analogy: undulating slender body. To illustrate the physical principles as-

sociated with this regime, we consider an undulating slender body moving through a saturated
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COHESIVE MEDIA

A great diversity of terrestrial animals locomotes within soils, including within granular material that is not com-

pletely dry. For example, the ocellated skink (Chalcides ocellatus), which resembles and coexists with the sandfish

in the sand dunes of North Sinai, Egypt (Attum et al. 2007), is commonly found near vegetation and harder soil,

whereas the sandfish is found further from vegetation on the dry, loose sands of the dunes. Goldman and colleagues

developed a systematic method to create repeatable homogeneous locomotion test beds of wet granular media using

a shaking/sieving system (see Sharpe et al. 2014b for details). Drag measurements in wet 0.3-mm glass particles

reveal that resistance forces increase with depth and, for a given depth, double when the water content, W (the

mass of water/mass of granular media), increases by just 3%. These force changes are attributed to the formation of

liquid bridges between grains (Kudrolli 2008). To determine if subsurface locomotion is affected by W, Sharpe et al.

(2014b) used X-ray imaging to study burial kinematics in the ocellated skink. Relative to the sandfish, movement

was slow, taking on average 30 s to enter dry or wet material. In both substrates, the animal moved using a start-stop

motion as a wave of body curvature propagated from head to tail. During movement, the head oscillated, and the

forelimb on the convex side of the body was used to push the animal forward. Slip was minimal in both wet and

dry media, and the final burial depth was correlated with the drag resistance. We hypothesize that analogous to

the annelid worm Nereis virens (Dorgan et al. 2005, 2007), which cracks the cohesive media as it digs to minimize

energy expenditure, the head oscillation decreases the penetration resistance.

environment. In principle, this body could take any smooth continuous shape, but the key physi-

cal mechanisms can be illuminated by selecting simple sinusoidal kinematics. In the following, we

mirror the calculation performed by Jung (2010) and prescribe the deformation of the centerline

of our slender digger as y(x, t) = (A/2) cos [(2π/λ)(x + V wavet)], where A is the amplitude of the

undulation, λ is the wavelength of the undulation, and V wave is the propagation velocity of the wave,

all of which are selected by the animal. As above, the resulting digging velocity, V, is determined

by balancing forces along the organism, and we again turn to RFT to estimate the drag force:

F(s ) = C||(u · t̂)t̂ + C⊥(u · n̂)n̂, (18)

where s tracks the distance along the centerline; t̂ and n̂ are unit tangential and normal vectors to the

body’s centerline, respectively; u = u(s , t) is the local velocity of the organism; and C‖ and C⊥ are

parallel and perpendicular drag coefficients, respectively. To find the total force on the organism,

we integrate F along the body. This calculation can be simplified in the limit of small deformations,

namely A ≪ L. Balancing forces in the x̂ direction yields
∫

F · x̂ d x = 0 ≈ C||(I1V wave − I2V )L,

which can be rearranged to find the final dimensionless digging velocity

V̄ =
(C − 1)δ2

1 + Cδ2
, (19)

where V̄ has been rescaled by the wave velocity, V̄ = V /V wave; C is the ratio of drag coefficients,

C⊥/C||; and δ is a dimensionless deformation amplitude, π A/(λ
√

2). As noted by Taylor (1951)

in his analysis of swimming sheets, the digging velocity calculated in Equation 19 scales as the

waving amplitude squared, which can be argued by symmetry. Note that so far we do not make

any assumptions that would distinguish digging from swimming, and Equation 19 applies equally

well to saturated granular and viscous fluid environments. All the environmental details are

captured in the constant parameter, C. This is distinct from the dry granular calculation in the

previous section in which the drag coefficients depend on the instantaneous angle of attack and

hence are not independent of the kinematics.
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The distinction between swimming and digging arises here in the computation of the environ-

mental parameter, C. To estimate C for a wet granular material surrounding a slender cylinder,

Jung (2010) proposed to revisit the well-established viscous drag calculation but to model the

granular environment as a porous medium. In this case, one can replace the Stokes equation with

the Darcy-Brinkman model in which ∇ p = μ(∇2 − α2)u. By analogy to unsteady Stokes flow

around a cylinder, Jung calculated a modified expression for the drag ratio in the limit of large α:

C =
αL + 4

2
. (20)

Estimating α for various particle configurations, Jung predicted RFT velocities that compare well

with data from live C. elegans.

3.3.2. Locomotion through microstructured environments. More recently, Majmudar et al.

(2012) proposed an alternate approach to rationalize the locomotion of C. elegans through soils by

measuring and modeling passage through structured media. The authors constructed an artificial

two-dimensional soil out of a fixed array of pillars saturated with interstitial fluid. In this environ-

ment, the undulating body must interact with discrete elements of the embedded microstructure

(so-called sand grains). These interactions lead to local hydrodynamic and contact forces experi-

enced by the swimmer that are not incorporated in the continuum-level models described above.

Experimental observations are complemented with a model digger, which is represented as an

inextensible chain of N elastically linked spherical particles. Unlike the other studies described

in this review, the authors prescribed internal forces and torques rather than kinematics, which

constitutes a more faithful representation of the biological system. Force and torque balance

equations are coupled with the Stokes equations, which are solved numerically; hence, no RFT

approximations are required.

Thus equipped with an experimental platform and numerical model, Majmudar et al. (2012)

proceeded to investigate the role of various parameters. They found that the speed and path of

locomotion through the pillars are strongly dependent on the lattice spacing and the degree of

confinement. Consistent with previous biological studies (Park et al. 2008), the authors found

that digging speed increases by almost an order of magnitude relative to locomotion through

unstructured environments when the ratio of pillar spacing to the worm’s length is approximately

0.47. This optimal environment for digging arises owing to a resonance in which the rate of

arrival of the pillars is matched with the frequency of undulations, allowing the organism to gain

traction by pushing off of fixed structures. With regard to the efficiency defined in Section 2.3,

the authors found that as the lattice spacing increases, the undulation frequency must decrease to

maintain both maximal speed and efficiency. Surprisingly, the opposite of this trend is observed

in the biological experiments.

3.4. Regime IV: Small (S ∼ 1) and Fast (I ≫ 1)

We are not aware of any digging organisms in regime IV, which is surprising because biology

generally does an exceptional job exploring and inhabiting all possible corners of phase space.

To determine whether this regime is physiologically feasible, we consider the following order-

of-magnitude estimate. In this regime, one obtains L ∼ d and γ̇ L/
√

P/ρ > 10−3. The density of

a sand grain is typically on the order of 2,500 kg/m3, and the typical stress generated by muscle

(which sets a scale for pressure) is approximately 100 kPa. If we now consider grain sizes on the

order of 1 mm, an organism would need to shear the surrounding grains at a rate greater that 20 Hz

in order to access regime IV. As a baseline for comparison, C. elegans oscillates at approximately
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1 Hz, and swimming microorganisms may attain frequencies of 20–50 Hz. From this perspective, it

appears that the lower bound of the dense flow region may be at the edge of what is physiologically

attainable.

4. OUTLOOK

There have been at least two exciting recent theoretical developments and a number of experimen-

tal advances that could potentially transform the landscape of digging research. In the first, on the

experimental front, we note that the decreasing cost of X-ray detectors and automated tracking

software should allow researchers to expand their exploration of the behaviors of organisms in the

laboratory and even in the field.

On the theoretical side, there have been several recent efforts by multiple research groups to

use the tools of geometric mechanics to visualize kinematic landscapes and to quickly and cheaply

determine optimal locomotion strategies (Avron & Raz 2008, Hatton et al. 2011, Melli & Rowley

2010). As described in Section 3.2.1, these techniques have already begun to make inroads into

the analysis of simple digging systems (Hatton et al. 2013). Results from these early studies are

quite promising and lay the groundwork for future exploration.

The second potentially significant theoretical development is the recognition and implemen-

tation of a new constitutive model for granular systems. The cases described above have relied

heavily on modified RFTs rather than models derived from the local rheology theory introduced

in Section 1.2. This route has not been widely pursued because local rheology models—which

perform admirably for fast, dense, uniform flows—encounter problems in nonuniform situations.

However, recent developments have led to the derivation of a nonlocal rheology model in which

flow at a point is affected by both the local stress and the flow in neighboring material (Henann &

Kamrin 2013). The physical notion behind these nonlocal approaches is that mesoscopic regions

of material may undergo local elastic deformation, followed by plastic yielding and relaxation to

a new local equilibrium position. The interactions between these regions are coupled and yield

events at one location may induce elastic modifications in nearby regions. Initial tests of the pre-

dictive capability of this nonlocal model are extremely promising: With a single experimentally

measured parameter, the model quantitatively predicts hundreds of experimental flows in differ-

ent geometries, including all the salient features of split-bottom flow, a geometry that has resisted

modeling efforts for nearly a decade.
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v

A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
2
0
1
5
.4

7
:4

3
1
-4

5
3
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

 A
cc

es
s 

p
ro

v
id

ed
 b

y
 G

eo
rg

ia
 I

n
st

it
u
te

 o
f 

T
ec

h
n
o
lo

g
y
 o

n
 0

2
/1

0
/1

5
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Green Algae as Model Organisms for Biological Fluid Dynamics

Raymond E. Goldstein ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 343

Fluid Mechanics of Blood Clot Formation

Aaron L. Fogelson and Keith B. Neeves ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 377

Generation of Microbubbles with Applications to Industry and Medicine

Javier Rodrı́guez-Rodrı́guez, Alejandro Sevilla, Carlos Martı́nez-Bazán,
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