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R E V I E W

Abstract: Low ethanol intake is known to have a beneficial effect on cardiovascular disease.

In cardiovascular disease, insulin resistance leads to altered glucose and lipid metabolism

resulting in an increased production of aldehydes, including methylglyoxal. Aldehydes react

non-enzymatically with sulfhydryl and amino groups of proteins forming advanced glycation

end products (AGEs), altering protein structure and function. These alterations cause

endothelial dysfunction with increased cytosolic free calcium, peripheral vascular resistance,

and blood pressure. AGEs produce atherogenic effects including oxidative stress, platelet

adhesion, inflammation, smooth muscle cell proliferation and modification of lipoproteins.

Low ethanol intake attenuates hypertension and atherosclerosis but the mechanism of this

effect is not clear. Ethanol at low concentrations is metabolized by low K
m
 alcohol

dehydrogenase and aldehyde dehydrogenase, both reactions resulting in the production of

reduced nicotinamide adenine dinucleotide (NADH). This creates a reductive environment,

decreasing oxidative stress and secondary production of aldehydes through lipid peroxidation.

NADH may also increase the tissue levels of the antioxidants cysteine and glutathione, which

bind aldehydes and stimulate methylglyoxal catabolism. Low ethanol improves insulin

resistance, increases high-density lipoprotein and stimulates activity of the antioxidant enzyme,

paraoxonase. In conclusion, we suggest that chronic low ethanol intake confers its beneficial

effect mainly through its ability to increase antioxidant capacity and lower AGEs.

Keywords: low ethanol, hypertension, cardiovascular disease, biochemical mechanisms,

advanced glycation end products

Introduction
Ethanol intake is a common lifestyle factor found across many cultures and geographic

regions. Since cardiovascular disease is also found ubiquitously and accounts for

more than 16 million deaths per year worldwide, it is essential to understand how

they relate to each other (WHO 2003a). Various epidemiological and controlled

clinical studies have investigated the effects of varying levels and patterns of ethanol

intake on cardiovascular health (Reynolds et al 2003; Corrao et al 2004). In contrast

to high ethanol intake which is detrimental to cardiovascular health, chronic low

ethanol has been shown to have a beneficial effect (Camargo et al 1997; Okubo et al

2001; Corrao et al 2004; Piano 2005). Understanding the biological mechanism of

this beneficial effect will aid in identifying potential preventative or therapeutic agents.

In this review, we discuss the factors involved in the development and progression

of cardiovascular disease and the possible biochemical mechanisms by which low

ethanol counters these factors to prevent or attenuate this disease.

Cardiovascular disease
Cardiovascular disease includes atherosclerosis and hypertension. Hypertension

affects more than 600 million people worldwide and results in 13% of the total deaths
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globally (WHO 2003b). Approximately 90% of all

hypertension is classified as “essential” meaning that the

cause is not known. Essential hypertension involves

endothelial dysfunction with alterations in nitric oxide (NO)

bioavailability and calcium handling, smooth muscle cell

proliferation, thickening of the vessel walls, and increased

peripheral vascular resistance and blood pressure (Resnick

1993; Oshima and Young 1995; Taddei et al 2003; Portaluppi

et al 2004). Risk factors for hypertension include family

history, diabetes, obesity, smoking, excessive alcohol intake,

and a diet high in salt and/or low in antioxidant nutrients.

Most of these risk factors are modifiable through lifestyle

changes such as participating in moderate physical activity

and eating a well-balanced diet. Healthy lifestyle choices

also include not smoking and limiting alcohol intake (WHO

2003b). Individuals with hypertension are at increased risk

for atherosclerotic diseases such as stroke, and heart and

kidney disease.

Atherosclerosis is a leading cause of death in the world.

Heart disease and stroke are the two leading causes of death

in adults in developed countries and are responsible for a

third of all deaths in developing countries (WHO 2003a).

Atherosclerosis is an inflammatory condition of the blood

vessels (Ross 1999). Damage to, or activation of, the

endothelium promotes entry of modified low-density

lipoprotein (LDL) into the intima, a process enhanced by

an elevation in circulating levels of LDL. Alteration in

endothelium also increases the expression of adhesion

molecules on the cell surface resulting in recruitment of

monocytes and platelet adhesion. The monocytes

transmigrate to the sub-endothelial space where they

differentiate into macrophages. Modified LDL is scavenged

by macrophages in the interstitial space transforming over

time into foam cells. Accumulation of foam cells and other

cellular debris evolve into atherosclerotic plaques

(Chakarvarti et al 1991; Witztum and Steinberg 1991;

Palinski et al 1995; Ross 1999; Sima and Stancu 2002;

Hansson 2005). Although atherosclerotic lesions generally

occur at junctions of large- and medium-size vessels, they

may also arise throughout the vasculature (Tegos et al 2001;

Hansson 2005). Through stenosis or embolytic occlusion,

lesions within the coronary, cerebral, peripheral or renal

vessels result in the clinical manifestations of angina,

myocardial infarction, stroke, peripheral arterial disease or

renal failure (Tegos et al 2001). Atherosclerosis also involves

increased smooth muscle cell migration and proliferation.

Stiffening of the vessel walls may hinder elasticity

exacerbating hypertension. Hypertension is considered a risk

factor for atherosclerosis, as increased blood pressure itself

can contribute to vascular injury, making vessels more

susceptible to inflammation (Chobanian and Alexander

1996). However, studies show that lowering blood pressure

alone does not completely eliminate the risk of

cardiovascular disease (Neutel 2000). Other risk factors

include smoking, diabetes mellitus, obesity, dyslipidemias,

and a diet high in saturated fat (WHO 2003a, 2003b).

Hypertension and atherosclerosis share similar risk factors

and both are characterized by modified vascular structure

and function (Pepine and Handberg 2001). These

cardiovascular conditions are also linked by another

common feature, insulin resistance.

Etiological factors of
cardiovascular disease
Insulin resistance
We suggest that the key etiological factor in cardiovascular

disease is insulin resistance (Figure 1). Insulin resistance is

characterized by an inadequate glucose uptake in peripheral

tissues at a given concentration of plasma insulin. It involves

an impairment of the nonoxidative (glycolytic) pathways

of intracellular glucose metabolism (Ferrannini et al 1987).

Insulin resistance has been well documented in hypertension

and atherosclerosis. Humans with essential hypertension and

normotensive offspring of essential hypertensives have

insulin resistance (Ferrannini et al 1987; Saad et al 2004;

Vlasakova et al 2004). Abnormalities in glucose metabolism

exist in up to 80% of subjects with essential hypertension

(Ferrannini et al 1987; Flack and Sowers 1991). Insulin

resistance has also been documented in humans with

atherosclerosis (DeFronzo and Ferrannini 1991; Howard et

al 1996; Shinozaki et al 1996; Reaven 2003). It has been

suggested that hypertensives who are insulin resistant are

at increased risk for atherosclerotic disease (Reaven 2003;

Liao et al 2004). In metabolic syndrome, also known as

syndrome X or insulin resistance syndrome, primary insulin

resistance is linked to a group of co-existing conditions

including hypertension, dyslipidemias, diabetes, and

atherosclerotic cardiovascular disease (DeFronzo and

Ferrannini 1991).

Aldehydes
Under normal physiological conditions, glucose is

metabolized via the glycolytic pathway to glyceraldehyde-

3-phosphate (G3P) which is converted to 1,3-

diphosphoglycerate by the enzyme glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), with further
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metabolism to pyruvate. Any factor which affects GAPDH,

whether through inhibition or upregulation, has an impact

on the rate of glucose metabolism. It has been shown that

GAPDH is upregulated by insulin (Alexander et al 1988).

In insulin resistant states, altered insulin function may down-

regulate GAPDH, slowing glucose metabolism through the

glycolytic pathway, thus increasing metabolism via the

polyol pathway. This may result in a build-up of G3P leading

to an increase in the highly reactive aldehyde, methylglyoxal

(Mayes 1983; Thornalley 1993; Beisswenger et al 2003).

Methylglyoxal itself has been shown to inhibit GAPDH,

resulting in further abnormalities in glucose metabolism

(Morgan et al 2002). Methylglyoxal also induces aldose

reductase which is known to stimulate flux of glucose

through the polyol pathway with further formation of

methylglyoxal (Chang et al 2002). An excess of dietary sugar

or fat, or both, typical of western diets, may overload these

pathways and exacerbate this altered metabolism. Insulin

resistance is also associated with dyslipidemia (Fuh et al

1987; Liao et al 2004); elevated LDL without the mitigating

antioxidant effect of high high-density lipoprotein (HDL),

may contribute to an increase in reactive aldehydes (Dargel

1992).

Advanced glycation end products
Advanced glycation end products (AGEs) are formed when

aldehydes (eg, methylglyoxal, glyoxal, glucose) react

nonenzymatically with free sulfhydryl (SH) and amino

(NH2) groups of amino acids including cysteine, arginine

or lysine, of proteins (Schauenstein et al 1977; Thorpe and

Baynes 2003; Thornalley et al 2003). This direct

modification of protein structure results in functional

changes (Morgan et al 2002; Nagaraj et al 2002; Karachalias

et al 2003). AGE-modified protein has also been shown to

stimulate receptors of AGEs (RAGEs) and various scavenger

receptors to influence protein function and expression

(Schmidt et al 2001; Wautier et al 2001; Horiuchi et al 2003).

Normally, methylglyoxal is formed but kept at a low level

through catabolism via the glutathione-dependent

glyoxalase enzyme system or by binding to cysteine and

being excreted in bile and urine (Schauenstein et al 1977).

It has been suggested that AGEs formed in low

concentrations contribute to the regulation of normal tissue

remodeling (Kirstein et al 1992) but when found in excess

are pathogenic (Vasdev et al 2000a, 2000b; Mizutani et al

2002; Alderson et al 2003; Bidasee et al 2003; Karachalias

et al 2003; Stitt et al 2004; Vasdev et al 2005). It has also

been proposed that certain AGEs have normal biological

functions whereas others referred to as toxic AGEs, play a

pathophysiological role (Takeuchi and Yamagishi 2004).

Whatever the case, several specific AGEs including

carboxymethyl-lysine, carboxyethyl-lysine, argpyrimidine,

and glycoaldehyde-pyridine, have been identified, and have

been implicated in the pathology of hypertension and

atherosclerosis (Anderson et al 1999; Oya et al 1999; Baynes

and Thorpe 2000; Nagai et al 2002; Alderson et al 2003;

Wang et al 2004).

Causative role of advanced glycation end products
in cardiovascular disease
It is known that AGEs act directly or via receptors to alter

the function of cellular proteins including calcium channels,

metabolic and antioxidant enzymes, receptors and structural

Figure 1 Mechanism of cardiovascular disease. In insulin resistant state, excess
aldehydes formed due to altered glucose/lipid metabolism react with proteins to
form advanced glycation end products (AGEs). AGEs alter the functions of
cellular proteins including vascular ion channels, and metabolic and antioxidant
enzymes, with oxidative stress leading to hypertension and atherosclerosis.
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proteins leading to endothelial dysfunction, inflammatory

responses, and increased oxidative stress (Figure 2). Thus,

it is becoming increasingly clear that AGEs play a major

causative role in hypertension and atherosclerosis. We have

shown that methylglyoxal given in the diet to Wistar-Kyoto

(WKY) rats increased tissue AGEs and caused hypertension

(Vasdev et al 1998). Levels of tissue methylglyoxal and

AGEs are higher in spontaneously hypertensive rats (SHR)

and sugar-induced hypertensive rats (Vasdev et al 2000a,

2000b; Wu and Juurlink 2002; Midaoui et al 2003; Wang et

al 2004). Although research on AGEs in human essential

hypertension is scant, in preeclampsia, a hypertensive

condition of pregnancy, RAGE expression was increased

in vascular tissue (Cooke et al 2003). AGE-mediated

crosslinks in collagen and elastin, also contribute to arterial

stiffening, hindering vessel elasticity, and exacerbating

hypertension (Aronson 2003). There is strong evidence in

diabetes, another insulin resistant state, that AGEs are

responsible for cellular protein modifications which

contribute to diabetic atherosclerotic complications

(Kislinger et al 2001; Degenhardt et al 2002; Nagaraj et al

2002; Babaei-Jadidi et al 2003; Karachalias et al 2003; Alt

et al 2004; Stitt et al 2004). Evidence supporting the concept

that AGEs are involved in the etiology of cardiovascular

disease shows that compounds which lower AGEs also lower

blood pressure and attenuate atherosclerotic conditions

(Vasdev et al 2000a, 2000b, 2002; Kislinger et al 2001;

Degenhardt et al 2002; Mizutani et al 2002; Alderson et al

2003; Babaei-Jadidi et al 2003; Midaoui et al 2003;

Sakaguchi et al 2003; Smit and Lutgers 2004; Stitt et al

2004).

Vascular dysfunction
Maintaining normal endothelial function is essential to blood

pressure homeostasis and vessel integrity. One of the major

factors involved in regulation of endothelial function is NO.

Endothelium derived NO is not only a potent vasodilator

but it inhibits platelet aggregation, vascular smooth muscle

cell (VSMC) proliferation and intimal migration, and

monocyte adhesion, thus regulating blood pressure and

Figure 2 Atherosclerotic and hypertensive effects of advanced glycation end products (AGEs) on blood vessels. AGEs act directly and via receptors of AGEs (RAGES)
to alter the function of cellular proteins including calcium channels, endothelial nitric oxide synthase (eNOS), antioxidant enzyme superoxide dismutase (SOD)
resulting in a decrease in NO and an increase of reactive oxygen species (ROS), cytokines, imflammation, platelet aggregation and vascular smooth muscle cell
(VSMC) proliferation. AGEs and ROS also modify low density lipoprotein (LDL) increasing uptake by macrophages contributing to the formation of plaque. These
alterations lead to hypertension and atherosclerosis.
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protecting vascular function (Taddei et al 2003).

Abnormalities in NO have been demonstrated in both

hypertension and atherosclerosis (Taddei et al 2003;

Shinozaki et al 2004).

The ability of vascular tissue to form adequate amounts

of NO depends on the availability of its substrate, arginine,

and the endothelial enzyme, nitric oxide synthase (eNOS)

(Taddei et al 2003). Methylglyoxal reacts with arginine

residues to form several AGEs including argpyrimidine

(Shamsi et al 1998; Oya et al 1999; Thornalley et al 2003),

which may limit substrate availability (Degenhardt et al

2002). eNOS is an SH-dependent enzyme with a cysteine

residue identified at its active site (Chen et al 1994). AGEs

have been shown to inhibit eNOS activity and expression

(Verbeke et al 2000; Rojas et al 2000). We have shown that

methylglyoxal given in the diet to WKY rats increased tissue

AGEs and decreased plasma NO (Vasdev et al 1998). NO

production is also regulated by insulin acting on specific

receptors on the cell surface (Trovati et al 1997; Kahn et al

2000). In insulin resistant states, aldehydes may alter

receptor function decreasing NO formation (Sechi et al

1996; Vasdev et al 1998, 2005). NO has a very short half

life. Under physiological conditions, it has been shown to

readily react with SH groups of plasma proteins forming

biologically stable adducts (S-nitrosothiols) which represent

a pool of available NO. Low molecular weight thiols such

as cysteine and glutathione act as transfer agents for NO

from these pools to NO’s site of action (Scharfstein et al

1994; Alencar et al 2003). Since aldehydes also readily react

with SH groups, this suggests a competitive role limiting

both protein binding sites and transfer agent availability

resulting in an increase in NO degradation and possible

endothelial dysfunction (Farkas and Menzel 1995; Thorpe

and Baynes 2003).

Vascular calcium channels are dependent on SH groups

for normal function (Schauenstein et al 1977; Zaidi et al

1989) and their alteration can lead to increased cytosolic

free calcium, abnormal contractile activity and increased

peripheral vascular resistance. AGEs impair type 2

ryanodine receptor calcium release channels (calcium

receptors which regulate cardiac contractility) during

chronic diabetes (Bidasee et al 2003) and AGE-modified

protein increases intracellular calcium (Scivattaro et al

2000). We have shown increased vascular AGEs and platelet

cytosolic free calcium in SHRs, a genetic model of

hypertension and in methylglyoxal- and fructose-treated

WKY rats, dietary models of hypertension (Vasdev et al

1998, 2000a, 2000b).

Since calcium plays a key role in platelet activation,

elevated intracellular free calcium may contribute to the

enhanced platelet aggregation seen in hypertension and

atherosclerosis (Ding 1996). AGEs may also contribute to

platelet aggregation and thrombus formation. AGEs

increased superoxide production and aggregation in human

platelets in vitro (Hangaishi et al 1998). It has been suggested

that AGEs stimulate externalization of phosphatidylserine

which activates clotting factors leading to platelet adhesion

(Wang et al 2005).

Oxidative stress
Under normal physiological conditions, reactive oxygen

species (ROS) are produced in low concentrations and act

as signaling molecules to regulate VSMC contraction-

relaxation, and VSMC growth (Touyz and Schiffrin 2004).

Oxidative stress occurs when ROS outweigh the body’s

antioxidant capacity. Oxidative stress is controlled in part

by antioxidant enzymes, including glutathione peroxidase

and glutathione reductase (Kaul et al 1993). These enzymes

have SH and NH2 groups at their active sites and AGEs

inhibit their activity increasing oxidative stress (Morgan et

al 2002; Wu and Juurlink 2002; Park et al 2003). Excess

ROS can lead to the secondary production of aldehydes such

as malondialdehyde and hydroxynonenal, through lipid

peroxidation (Brooks and Klamerth 1968; Schauenstein et

al 1977; Benedetti et al 1980; Thornalley et al 1984; Dargel

1992; Touyz and Schiffrin 2004). These lipid-derived

aldehydes have been shown to react with cysteine or lysine

residues of proteins to form a type of AGE known as

advanced lipoxidation end products (ALEs) (Baynes and

Thorpe 2000; Thorpe and Baynes 2003; Stitt et al 2004).

There is strong evidence that oxidative stress contributes

to the progression of essential hypertension and the

development of atherosclerosis (Chakravarti et al 1991;

Kumar and Das 1993; Chobanian and Alexander 1996;

Stocker and Keaney 2004; Touyz and Schiffrin 2004).

Oxidative modification of LDL increases uptake by

macrophages via scavenger receptors (further discussed in

dislipidemia section). This results in an increased production

and accumulation of foam cells in the vascular intima leading

to the formation of atherosclerotic lesions. Oxidized LDL

also stimulates atherogenic processes including

inflammation, platelet aggregation, and VSMC proliferation

(Ross 1999; Stocker and Keaney 2004; Hansson 2005).

Oxidative stress impairs endothelial function. ROS

promote uncoupling of eNOS resulting in a decreased

production of NO (Alp and Channon 2004; Shinozaki et al
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2004). ROS also react directly with NO, forming

peroxynitrite, also known as reactive nitrogen species.

This not only limits NO bioavailability, but peroxynitrite

and peroxynitrous acid are powerful and cyto-toxic

oxidants which may cause damage to vascular tissue

(Beckman and Koppenol 1996). Methylglyoxal and AGEs

have been shown to increase oxidative stress (Anderson

et al 1999; Scivittaro et al 2000; Wautier et al 2001;

Mizutani et al 2002; Wu and Jurrlink 2002; Midaoui et

al 2003; Wong et al 2003) and in VSMC in vitro induced

significant generation of superoxide radical and

peroxynitrite (Chang et al 2005).

Dyslipidemia
Dyslipidemia has long been associated with atherosclerosis,

and controlling elevated cholesterol and abnormal

lipoprotein ratios is a recognized preventative cardiovascular

health strategy (Fodor et al 2000). It is well known that

high levels of HDL offer protective cardiovascular effect,

and that elevated LDL is associated with higher risk of

cardiovascular disease.

However, the roles of these lipoproteins are complex

and have not yet been fully elucidated. It has been proposed

that in its native state LDL is not atherogenic but becomes

so under conditions where its structure is modified (Figure

2). Alterations to lysine residues of apolipoprotein B of LDL

result in a decreased binding by LDL receptors and an

increased stimulation of macrophage scavenger receptors

(Witztum and Steinberg 1991; Haberland et al 1992;

Horiuchi et al 2003). Oxidatively modified LDL initiates

atherogenic processes including inflammation, platelet

aggregation and smooth muscle cell proliferation (Stocker

and Keaney 2004). Oxidized LDL has been identified as a

main component in atherosclerotic lesions, and hypertensive

subjects exhibit an enhanced susceptibility to LDL oxidation

(Witztum and Steinberg 1991; Maggi et al 1993).

AGEs can form on lipoproteins themselves and AGE-

LDL has been shown to have similar atherogenic properties

as oxidized LDL (Figure 2). AGE-LDL and AGE-modified

protein are ligands for class AI/AII scavenger receptors

(Horiuchi et al 2003). Binding to these receptors leads to

endocytic uptake of LDL and accumulation in human

monocytes-macrophages (Haberland et al 1992; Horiuchi

et al 2003). AGE-LDL has been identified in the cytoplasm

of foam cells and extracellularly in the core of atherosclerotic

lesions in humans and animals (Palinski et al 1995; Nagai

et al 2002; Sima and Stancu 2002).

HDL’s function in reverse cholesterol transport plays a

key role in its cardioprotective effect. HDL removes

cholesterol from vascular tissue and either transfers it to

very low density lipoprotein (VLDL) or LDL for transport

to the liver, or it carries cholesterol directly to the liver where

it may be recycled or excreted. In dyslipidemia, where HDL

is low, cholesterol may be left to accumulate in vascular

tissue. It has been suggested that AGEs interfere with reverse

cholesterol transport by suppressing scavenger receptor B1

(SR-B1)-mediated uptake of cholesterol ester from HDL

by liver and SR-B1-mediated cholesterol efflux from

peripheral cells (Horiuchi et al 2003). AGEs have been

shown to cause cholesterol and cholesterol ester

accumulation in macrophages in vitro (Brown et al 2005).

HDL also has antioxidant ability. It is closely associated

with the antioxidant enzyme paraoxonase. Low HDL and

paraoxonase levels are associated with oxidative stress,

hypertension and coronary heart disease (Suh et al 1992;

Mackness et al 2001; Uzun et al 2004; Mancia et al 2005).

Paraoxonase protects both HDL and LDL from oxidation

and lipid peroxidation (Aviram, Rosenblat, et al 1998;

Aviram, Billecke, et al 1998; Rao et al 2003). In vitro studies

show that paraoxonase lowers levels of oxidized LDL by

converting them to biologically inactive products (Rao et

al 2003). Blockage of free SH groups (cysteine residues) of

paraoxonase reduced its ability to protect LDL from

oxidation (Aviram, Billecke, et al 1998) suggesting a

possible inhibitory role for AGEs (Hedrick et al 2000;

Ferretti et al 2006).

HDL has also been shown to have antiinflammatory

properties. It inhibited cytokine-induced expression of

adhesion proteins and reduced neutrophil infiltration into

the wall of injured arteries (Barter et al 2004). AGE-

modification of HDL resulted in a loss of these anti-

inflammatory properties (Hedrick et al 2000; Ferretti et al

2006).

Low ethanol intake
Effect on hypertension and
atherosclerosis
It has been well documented that excessive alcohol intake

can be detrimental to cardiovascular health (Thun et al 1997;

Reynolds et al 2003; Corrao et al 2004). Although some

studies of ethanol intake of greater than 30 g/day have shown

improvement in cardiovascular risk, this level of intake

increases risk of other diseases and death by other means

(Camargo et al 1997; Fagrell et al 1999). Therefore, we have
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focused our attention in this review on the effects of low

ethanol intake (Table 1). Since there is no standard definition

of “low” ethanol intake, we have chosen a level of up to,

and including, 24 g per day (equivalent to 2 drinks), for the

purposes of this discussion. A drink has been defined as a

12 oz bottle or can of beer (4%–5% ethanol), a 4 oz glass of

table wine (10%–12% ethanol), or a 1–1.5 oz shot of liquor

or spirits (40% ethanol) (Ellison et al 2004).

Table 1 Effect of low ethanol on hypertension and atherosclerosis

Subject Description Result Reference

Animal
New Zealand white rabbits 0.5% ethanol given in drinking • Reduced neointimal proliferation, Merritt et al 1997

water for 10 weeks the extent of lipid oxidation and
number of foam cells

Spontaneously hypertensive rats 0.5% ethanol given in drinking • Decreased SBP, cytosolic free calcium, Vasdev et al 1999
water for 14 weeks tissue AGEs, & renal vascular changes

Human
New Zealand males and females, Epidemiologic study of 1429 • U-shaped response of BP to ethanol Jackson et al 1985
35–64 yrs subjects on the effect of ethanol consumption 

consumption on BP • Both light(>0–9 g/day) and moderate
(10–34 g/day) ethanol consumption
lowered SBP and DBP

US males and females Study of 129 170 individuals • Consumption of 1–2 drinks/day Klatsky et al 1990
undergoing health examinations lowered relative risk of all-cause and
in a prepaid health plan CV mortality

US males and females, 30–104 yrs 9-year prospective study of • 30%–40% decrease in CV death in Thun et al 1997
490 000 subjects on the effect men consuming at least 1 drink/day
of ethanol consumption on • 1 drink/day reduced all-cause
CV and total mortality mortality in men and women

US male physicians, 40–84 yrs 10.7-year prospective study of • Consumption of 2–6 drinks/week Camargo et al 1997
22 071 subjects on the effect resulted in a decreased risk in
of ethanol consumption on all-cause mortality (mostly a result
mortality of a 34%–53% decrease in risk of

CV mortality)
Bulgarian males & females, Study of 155 individuals • J-shaped response with consumption Genchev et al 2001
45–69 yrs hospitalized with ischemic of both light (0.01–18 g/day) and

heart disease (IHD) versus moderate (18.01–36 g/day) ethanol
154 normal control patients associated with a decreased risk of

IHD
Japanese normotensive males, A 5-year observational study of • J-shaped response of BP to ethanol Okubo et al 2001
40–54 yrs 2143 subjects on the effect of consumption 

ethanol consumption on BP • Consumption of <18 ml/day of ethanol
decreased SBP and DBP

Males and females from Meta-analysis of 35 observational • J-shaped response of ischemic stroke Reynolds et al 2003
various countries studies of varying duration and consumption of <12 g/day of

examining the risk of stroke at ethanol associated with a reduced
various levels of alcohol risk of total and ischemic stroke
consumption

Diabetic males and females, Study of 216 subjects hospitalized • J-shaped response with BP, cholesterol, Pitsavos et al 2004
45–75 yrs with first event of ACS versus and risk of ACS and consumption

196 diabetic controls of <12 g/day associated with a 47%
reduction of prevalence of ACS

Males and females from various Meta-analysis of 116 702 subjects • J-shaped response with consumption Corrao et al 2004
countries from 156 epidemiologic studies of 20 g/day of ethanol was estimated

examining the risk of alcohol to provide a 20% reduction in risk of
related diseases and injuries at coronary heart disease
various levels of alcohol
consumption 

Abbreviations: ACS, acute coronary syndrome; AGEs, advanced glycation end products; CV, cardiovascular; BP, blood pressure; DBP, dystolic blood pressure; SBP,
systolic blood pressure.
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We have shown in rat models of hypertension that

chronic low ethanol is effective in decreasing blood pressure

(Vasdev et al 1999). Two studies of low ethanol intake in

humans, one using up to 9 g/day and the other up to 18 g/

day, showed antihypertensive effects (Jackson et al 1985;

Okubo et al 2001). Most animal research that looked

specifically at atherosclerotic vascular changes, used

moderate to high levels of ethanol. However, one study

which fed low ethanol to an atherosclerotic model of rabbit

showed that it attenuated atherosclerosis with a decrease in

the extent of neointimal proliferation, lipid oxidation, and

number of foam cells (Merritt et al 1997). In humans, low

ethanol consumption reduced risk for both cardiovascular

and non-cardiovascular mortality (Klatsky et al 1990;

Camargo et al 1997; Thun et al 1997) and was associated

with a significantly reduced risk of stroke (Reynolds et al

2003) and ischemic heart disease (Genchev et al 2001). In

diabetic patients, low ethanol intake was associated with a

47% reduction in the prevalence of acute coronary syndrome

(Pitsavos et al 2005) and in individuals known to be at risk

for cardiovascular disease, a 20% reduction in risk of

coronary artery disease (Corrao et al 2004).

Mechanism of beneficial effect
Low ethanol has been shown to improve the clinical

manifestations of cardiovascular disease (Table 1), but what

is the biochemical mechanism of this beneficial effect? We

suggest that low ethanol intake has the ability to increase

antioxidant capacity, improve insulin resistance and decrease

AGEs, thus preventing subsequent hypertensive and

atherosclerotic consequences. To begin, we need to

understand the metabolism of ethanol (Figure 3). Ethanol

is metabolized differently at high and low concentrations.

With chronic high ethanol intake, the microsomal ethanol

Figure 3 Metabolism of high versus low concentrations of ethanol. In high concentrations, ethanol is metabolized by the microsomal ethanol oxidizing system
(MEOS) system. In this reaction, reduced nicotinamide adenine dinucleotide phosphate (NADPH) is converted to oxidized nicotinamide adenine dinucleotide
phosphate (NADP+) creating an oxidative environment. In low concentrations, ethanol is metabolized by the enzymes alcohol and aldehyde dehydrogenase producing
reduced nicotinamide adenine dinucleotide (NADH) from oxidized nicotinamide adenine dinucleotide (NAD+) by both reactions, increasing antioxidant capacity. At
the low levels produced, acetate, which is a normal metabolite of glucose and fatty acid metabolism, is further metabolized in the citric acid cycle.
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oxidizing system (MEOS) is induced. MEOS has a relatively

high Km for ethanol, and at high concentrations ethanol is

metabolized to acetaldehyde without producing reduced

nicotinamide adenine dinucleotide (NADH). Instead, this

pathway utilizes reduced nicotinamide adenine dinucleotide

phosphate (NADPH), another reducing equivalent, thus

producing an oxidative environment (Lieber 1990).

Additionally, chronic high ethanol consumption inhibits

aldehyde dehydrogenase resulting in a significant decrease

in the ability of rat mitochondria to oxidize acetaldehyde.

This high ethanol intake thus associated with an enhanced

rate of metabolism by the MEOS pathway resulting in a

decrease in reducing equivalents, elevated acetaldehyde, and

increased oxidative stress. These factors may account for

the detrimental effects of high ethanol intake. However, at

low ethanol blood levels, ethanol is metabolized very

efficiently by low Km alcohol dehydrogenase to

acetaldehyde and then by aldehyde dehydrogenase to

acetate, producing NADH in both reactions (Lieber 1990;

Bello et al 1994). NADH has a major influence on total

antioxidant capacity of the body. NADH is a key component

of the electron transport chain and, due to its high reducing

potential functions to promote regeneration of endogenous

vitamin radicals back to their reduced form (Figure 4).

Although ethanol is primarily metabolized in the liver, it is

also metabolized in other tissues, including vascular tissue.

This ability of ethanol at low concentrations to create a

strong reducing environment, possibly at the site of

atherosclerotic activity, may enhance its cardiovascular

protective effect.

An increase in antioxidant capacity would offer

protection against oxidative stress (Figures 4 and 5) and

secondary production of aldehydes through lipid

peroxidation (Bello et al 1994). In vitro, ethanol has been

shown to act as an antioxidant by decreasing the rate of

consumption of LDL antioxidants and reducing the

formation of lipid peroxides (Bonnefont-Rousselot et al

2001).  In humans, i t  decreased urinary 8-

hydroxydeoxyguanosine, a measure of oxidative stress

(Yoshida et al 2001). NADH treatment has been shown

to reduce blood pressure and lipid peroxidation in SHRs

(Bushehri et al 1998). NADH may also increase overall

antioxidant capacity, increasing tissue levels of cysteine

by converting cystine to cysteine, via the NADH

dependent enzyme, cystine reductase (Rodwell 1983).

Cysteine is a precursor of glutathione, a major

endogenous antioxidant. Additionally, glutathione is a

cofactor in methylglyoxal catabolism and cysteine has

the ability to bind aldehydes to foster excretion and

reduce AGE formation (Schauenstein et al 1977; Vasdev

et al 1998).

An increase in the low molecular weight thiols, cysteine

and glutathione, may also enhance the transfer of NO from

protein-bound reserves improving endothelial dysfunction

(Scharfstein et al 1994). Decreasing levels of AGEs may

also preserve eNOS and prevent breakdown of NO. Low

ethanol increased the expression of eNOS (Venkov et al

1999) and stimulated calcium-activated potassium channels

increasing production of NO in vascular endothelial cells

in culture (Kuhlmann et al 2004). Humans consuming low

amounts of ethanol showed significant dilatation of brachial

artery at rest and at reactive hyperaemic conditions

(Vlachopoulos et al 2003). Low ethanol decreases cytosolic

free calcium, an initiator of smooth muscle cell contraction.

We have shown in rat models of essential hypertension that

low ethanol reduced AGEs and platelet cytosolic free

calcium (Vasdev et al 1999). Low ethanol activated sarco/

endoplasmic reticulum uptake of calcium in platelets

(Mitidieri and de Meis 1995) which would lower cytosolic

free calcium concentration. This effect of ethanol on vascular

Figure 4 Antioxidant activity of low ethanol. Free radicals (ROO-) are reduced (ROOH) by vitamins which become oxidized in the process. These vitamin radicals
are reduced by nicotinamide adenine dinucleotide (NADH) which forms oxidized nicotinamide adenine dinucleotide (NAD+). Ethanol in low concentrations converts
NAD+ back into NADH, via its metabolism to acetate. At this low level, acetate, which is a normal metabolite of glucose and fatty acid metabolism, is further
metabolized in the citric acid cycle.

-
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dilation/contraction regulators may contribute to its

beneficial cardiovascular effect (Figure 5).

Low alcohol intake increased insulin sensitivity in

humans (Facchini et al 1994; Flanagan et al 2000) and in

rats (Furuya et al 2003). Improving insulin resistance, the

source of excess aldehydes, would limit formation of AGES

and their subsequent hypertensive and atherosclerotic

complications (Figure 5). Since aldehydes and AGEs have

also been shown to inhibit GAPDH (Morgan et al 2002;

Beisswenger et al 2003), likely further exacerbating insulin

resistance, reducing AGE formation may limit the effect of

this cycle. Low ethanol may also work to improve insulin

resistance by lowering plasma free fatty acids and improving

glucose uptake and metabolism (Avogaro et al 2002).

Low ethanol intake has a beneficial effect on lipoprotein

profiles (Figure 5). Low ethanol has been shown to increase

HDL (Facchini et al 1994; De Oliviera e Silva et al 2000;

Ellison et al 2004). This increase may be a result of mediating

the AGE-induced inhibitory effect on reverse cholesterol

transport. In hypertensive patients low ethanol decreased

lipoprotein a (Lp[a]), an independent predictor for

atherosclerosis (Catena et al 2003). It has been suggested

that this may be due to an increase in the transportation rate

of apolipoprotein AI and AII (De Oliviera e Silva et al 2000)

or to an ethanol-induced redistribution of cholesteryl ester

transport proteins between HDL and VLDL (Hannuksela et

al 1996). Chronic low ethanol intake stimulated paraoxonase

activity by upregulating liver paraoxonase mRNA in rats

and humans (Rao et al 2003). Ethanol may also prevent

inhibition of paraoxonase by lowering AGEs.

Implication for treatment
We have suggested that low ethanol intake affords beneficial

cardiovascular effects due to its ability to improve insulin

resistance and its subsequent detrimental effects. However,

due to the addictive nature of alcohol, recommending

ethanol intake at any level may not be prudent. It may be

more appropriate to suggest other agents which act in a

similar fashion and may provide the same beneficial effects

without the complication of addiction. Supplementation with

antioxidants including vitamin C, E, or B6, N-acetylcysteine,

lipoic acid and coenzyme Q10 has been shown to lower

blood pressure in animal models and humans with essential

hypertension (Duffy et al 1999; Singh et al 1999; Vasdev et

al 2000a, 2000b, 2002; Morcos et al 2001; Barrios et al

2002; Boshtam et al 2002). In humans, antioxidants have

also shown a beneficial effect on atherosclerotic endpoints

in several studies (Stampfer et al 1993; Losonczy et al 1996;

Stephens et al 1996). As well, various anti-AGE therapies,

which either prevent or reverse AGE formation, such as

pyridoxamine, thiamine, metformin, alagebrium, or soluble

RAGE have been shown to attenuate hypertension and

atherosclerotic disease (Kislinger et al 2001; Degenhardt et

al 2002; Mizutani et al 2002; Alderson et al 2003; Babaei-

Figure 5 Mechanism of action of low ethanol.
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Jadidi et al 2003; Midaoui et al 2003; Sakaguchi et al 2003;

Smit and Lutgers 2004; Stitt et al 2004).

Conclusion
In summary, insulin resistance leads to altered glucose and

lipid metabolism. A subsequent increase in AGEs, oxidative

stress, and endothelial dysfunction leads to the development

of hypertension and atherosclerosis. Low ethanol intake

provides cardiovascular beneficial effect primarily through

its ability to increase antioxidant capacity, improving insulin

resistance and decreasing AGEs. Considering the potential

for addiction with ethanol consumption, agents such as

antioxidants which have similar antihypertensive and anti-

atherosclerotic mechanisms, may provide an appropriate

alternative.
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