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Abstract 

Background: Oxidative stress (OS) plays an important role in type 2 diabetes (T2D) pathogenesis and its complica-
tions. New therapies target natural antioxidants as an alternative and/or supplemental strategy to prevent and control 
them. Our previous chemical and biological studies highlighted the important antioxidant activities of cherries, 
among other fruits and vegetables, thus we aimed to determine in vivo effects of 2-month long cherry consumption 
using a high-fat/high-fructose (HFHF) model of diabetic-rats (Lozano et al. in Nutr Metab 13:15, 2016).

Methods: After 2 months of HFHF, male Wistar rats were divided into: HFHF and HFHF enriched in cherry (nutritional 
approach) or standard diet ND (lifestyle measures) and ND plus cherry during 2 months. Metabolic, lipidic, oxidative 
parameters were quantified. Tissues (liver, pancreas and vessels) OS were assessed and hepatic (steatosis, fibrosis, 
inflammation) and vascular (endothelial dysfunction) complications were characterized.

Results: T2D was induced after 2 months of HFHF diet, characterized by systemic hyperglycaemia, hyperinsulinemia, 
glucose intolerance, dyslipidaemia, hyperleptinemia, and oxidative stress associated with endothelial dysfunction and 
hepatic complications. Cherry consumption for 2 months, in addition to lifestyle measures, in T2D-rats decreased and 
normalized the systemic disturbances, including oxidative stress complications. Moreover, in the vessel, cherry con-
sumption decreased oxidative stress and increased endothelial nitric oxide (NO) synthase levels, thus increasing NO 
bioavailability, ensuring vascular homeostasis. In the liver, cherry consumption decreased oxidative stress by inhibiting 
NADPH oxidase subunit p22phox expression, nuclear factor erythroid-2 related factor 2 (Nrf2) degradation and the 
formation of reactive oxygen species. It inhibited the activation of sterol regulatory element-binding proteins (1c and 
2) and carbohydrate-responsive element-binding protein, and thus decreased steatosis as observed in T2D rats. This 
led to the improvement of metabolic profiles, together with endothelial and hepatic function improvements.

Conclusion: Cherry consumption normalized vascular function and controlled hepatic complications, thus reduced 
the risk of diabetic metabolic disorders. These results demonstrate that a nutritional intervention with a focus on OS 
could prevent and/or delay the onset of vascular and hepatic complications related to T2D.
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Background

Oxidative stress is widely accepted to be involved in the 

pathogenesis of type 2 diabetes (T2D) and its complica-

tions [2]. Oxidative stress occurs because of an imbalance 

between antioxidants (enzymes, vitamins, and proteins) 

and pro-oxidants (UV radiation, alcohol, and smoking) 

[3] leading to a bipolar process involving the genera-

tion of reactive oxygen species (ROS) and a decrease in 

plasma antioxidants. Many disorders observed in T2D 

patients such as hyperinsulinemia [4], hyperlipidae-

mia [5], glucose fluctuations [6, 7], hyperglycaemia [8], 

and inflammation [9–11], induce formation of ROS and 

exacerbate oxidative stress [11, 12]. Moreover, we have 

recently demonstrated in T2D rat models that oxida-

tive stress is involved in both hepatic and vascular com-

plications [1]. In fact, in T2D, the liver is involved in the 

accumulation of triglycerides, development of hepatic 

insulin resistance, and development of non-alcoholic ste-

atohepatitis (NASH) [1, 13]. �e liver plays a major role 

in the regulation of blood glucose levels in close coop-

eration with the pancreas and other peripheral tissues; 

however, several studies have reported an association 

between non-alcoholic fatty liver disease (NAFLD) and 

cardiovascular disease-related complications [14]. Ves-

sels, and more precisely the internal layer endothelium, 

are the first sites for the development of complications 

such as high cholesterol and high blood pressure [15], 

obesity and visceral fat distribution [16], impaired fast-

ing glucose and hyperglycaemia [17] and, more recently 

hypoglycaemia [18] and insulin resistance [19]. Under 

these pathological conditions, the strategic equilibrium 

between relaxant and contractor factors is lost in favour 

of pro-mitogenic, pro-aggregation mediators and inflam-

mation, leading to endothelial dysfunction as observed 

in T2D patients [11, 20]. Diabetic vascular complica-

tions also lead to further functional deterioration induc-

ing coronary arteriosclerosis, neuropathy, nephropathy… 

[21], and are associated with cardiovascular and all-cause 

mortality in patients with diabetes [22].

Lifestyle modifications/changes are the first essen-

tial pillar of the management of patients with diabetes, 

even before the introduction of a drug treatment. Life-

style modifications prevent significant changes in blood 

glucose levels, decrease insulin resistance, and promote 

weight loss in order to limit the development of diabetic 

complications and attenuate its severity [23]. In addi-

tion to nutritional benefit, fruits, vegetables, cereals and 

beverages supplies bioactive molecules (such as vitamins 

and polyphenols) possessing antioxidant properties, pro-

viding a real advantage in the prevention of chronic dis-

eases, such as obesity, diabetes, cardiovascular diseases 

and cancer. In fact, some studies have revealed an inverse 

relationship between the risk of cardiovascular mortality 

or morbidity linked to T2D and the consumption of 

polyphenol-rich products (e.g. red wine, cocoa, and tea) 

[24–26]. In 2017, a large epidemiological study in Chi-

nese adults found that an increased consumption of fresh 

fruits was associated with a significantly lower risk of 

diabetes and, among diabetic individuals, lower risks of 

death and development of major vascular complications 

[27]. �e consumption of fresh fruits that contain several 

polyphenols and vitamins can increase antioxidant levels, 

in addition to their direct effects on blood vessels and, in 

particular, on the endothelium [28]. High consumption of 

fruits and vegetables has been associated with a decrease 

in the incidence of chronic diseases and complications, 

including obesity and diabetes [29, 30], and these benefi-

cial effects have been attributed to phytochemicals.

Polyphenolic substances have received widespread 

attention because of their interesting biological activities, 

bioavailability and protective role against oxidative stress 

and free radical damage [31]. Our recent work has dem-

onstrated the beneficial impact of polyphenol consump-

tion (red wine) in prevention of metabolic syndrome 

complications in vivo [32] and in the protection of β-cells 

from loss of viability induced by oxidative stress in vitro 

(red wine and green tea) [33]. Recently, there has been a 

considerable interest in identifying natural polyphenols 

from plants, fruits, and vegetables that play an impor-

tant role in the management of disorders involving oxi-

dative stress, such as diabetes and its complications [29, 

30]. Our recent work on fruits and vegetables has shown, 

using a new high performance liquid chromatography 

(HPLC) method coupled with a post-column reaction 

system relaying 2,2′-azino-bis-(3-ethylbenzthiazoline-

6-sulfonic acid)  (ABTS.−) bleaching assay [34], the ability 

of some fruits and vegetables to scavenge ROS. Moreo-

ver, the complement of these chemical studies by tests 

carried out on β-cells using the fluorescent probe DCFH-

DA demonstrated their in vitro antioxidant capacity and 

identified the most active fruits and vegetables. Notably, 

cherries were identified as an active scavenging fruit with 

a high level of polyphenols [35].

Cherries (Rosaceae) are considered a nutrient dense 

food with a relatively low caloric content and a signifi-

cant amount of important nutrients and bioactive food 

components [36]. Cherries are one of the richest sources 

of anthocyanins and antioxidants-substances and are 

more effective than vitamin C and are four times more 

potent than vitamin E in antioxidant activity [37]. �e 

anthocyanins in cherries give a dark red colour [38] and 

have been shown to be associated with the prevention of 

lifestyle-related diseases such as cancer, diabetes and car-

diovascular diseases [39] and neurodegenerative disease 

[40]. Moreover, recently, Keane et al. [41] demonstrated 

that the acute supplementation with tart cherry juice can 
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lower blood pressure and improve some aspects of exer-

cise performance, highlighting the beneficial impact of 

bioactive compound and physical activity. However, there 

is little data available on the use of cherries to reduce or 

prevent diabetes and its complications. Our previous 

study demonstrated that Regina cherries containing sev-

eral phenolic compounds, including anthocyanins and 

flavones [35], demonstrated high antioxidant activities, 

with the new HPLC-ABTS− bleaching assay [34]. In fact, 

Regina cherry (Prunus avium) is known as sweet cherry 

and considered nutrient dense food with a relatively low 

caloric content and a significant amount of important 

nutrients [42] and bioactive food. Regina Cherry has 

twice higher chemical radical scavenging activities than 

Folfer cherry with an IC50 lower than 35  mg of fresh 

matter/mL in comparison to higher than 160 mg of fresh 

matter/mL for Folfer cherry [34, 35]. Moreover, a study 

reported that cherry consumption increased plasma 

lipophilic antioxidant capacity [43], which is severely 

decreased in patients with diabetes [44].

Despite widely available antidiabetic medicines in the 

pharmaceutical market, diabetes and its related compli-

cations continue to be a major medical problem. Due to 

a low level of expression of antioxidant enzymes in the 

pancreas of patients with diabetes [45], combinations 

of conventional antidiabetic treatments with antioxi-

dants were prioritized [46]. �e central role of oxidative 

stress in the pathophysiology of T2D and its complica-

tions is now well demonstrated and some studies sup-

port the protective effects of various polyphenol-rich 

foods against chronic diseases. However, based on a 

selection of antioxidant capacity fruits and vegetables, 

a robust demonstration on the mechanism of action of 

polyphenols extract on diabetes and its complications 

has to be performed. �e aim of this study was then to 

demonstrate the effect of long-term cherry consumption 

in a T2D model with endothelial dysfunction and non-

alcoholic fatty liver disease (NAFLD) complications. We 

determined the effect of 2  months of cherry consump-

tion added to a high fat high fructose (HFHF) diet or a 

normal diet (ND) through two strategies: nutraceutical or 

lifestyle interventions. We focused on the effects of these 

two treatments on metabolic, oxidative, and inflamma-

tory parameters and vascular, pancreatic, and hepatic 

functions.

Methods

Experimental protocols

Ethics statement

�e study was performed in accordance with the “Guide 

for the Care and Use of Laboratory Animals” published 

by the US National Institutes of Health (NIH publication 

No. 85-23, revised 1996), and the present protocol was 

approved by the local ethics committee (Comité Régional 

d’Ethique en Matière d’Expérimentation Animale CRE-

MEAS, approval AL/65/72/02/13). All efforts were made 

to minimize animal suffering and minimize the number 

of animals used.

Animal and diet compositions

Forty-eight male Wistar rats (7  weeks old; 246 ± 4.8  g), 

supplied by Depré (Saint Doulchard, France), were 

housed in a temperature-controlled room, in a 12 h light/

dark cycle environment with ad  libitum access to water 

and food throughout the study. After 1 week of acclima-

tion and quarantine (299 ± 5.1 g), T2D was induced with 

the addition of the high fat diet “WESTERN RD” from 

SDS (Special Diets Services, Saint Gratien, France) added 

to 25% fructose in water as beverage [1]. �is HFHF diet 

was compared to a ND from SAFE (Augy, France). Cher-

ries (Var. Regina) from IFLA (Interprofession des Fruits 

et Légumes d’Alsace, France) were lyophilized (CEVA, 

Centre d’Etude et de Valorisation des Algues, Pleubian, 

France), crushed (Technopoudre, Ancenis, France) and 

then incorporated in both foods at 10% concentration 

according to the protocol outlined below. Food composi-

tions are presented in Additional file 1: Table S1.

Course of study

After 2 months, HFHF rats (547 ± 5.0 g; 1.31 ± 0.02 g/L of 

fasting glucose) were randomly divided into four groups. 

�e first two groups, with access to a HFHF diet with or 

without cherry enrichment (respectively, HFHFCherry or 

HFHF), represented a ‘nutraceutical approach’. �e sec-

ond two groups were shifted to ND (HFHF/ND) or ND 

with cherry enrichment (HFHF/NDCherry) and repre-

sented ‘dietary lifestyle measures’. �e groups were com-

pared to ND rats (494.5 ± 10.0 g; 0.97 ± 0.03 g/L of fasting 

glucose) which received only ND for 2 more months. 

�e body weight and calorie intake of each animal was 

recorded once a week. Body weight, as well as abdomi-

nal circumference were measured to calculate the body 

mass index. Capillary glucose levels were measured and 

tail vein blood samples were taken to estimate metabolic 

parameters. After anaesthesia with an intraperitoneal 

injection of 50 mg/kg pentobarbital (Centravet, France), 

blood was drawn from the abdominal aorta, plasma 

and serum were frozen in liquid nitrogen and stored at 

− 80  °C after centrifugation (4  °C, 2  min, 10,000×g) for 

later biochemical analysis. Liver and abdominal fat were 

weighed. �e liver, pancreas and mesenteric artery were 

cleaned and embedded in Tissue-Tek® OCT (Optimal 

Cutting Temperature compound, Leica Microsystem 

SAS, Nanterre, France) and directly frozen in liquid 

nitrogen and stored at − 80  °C. Six rats were sacrificed 

at the beginning of the study (control), six ND rats and 
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six HFHF rats after 2 months of diet and six rats from all 

groups after 4 months (2 months of specific diets).

Biochemical plasmatic analysis

Plasmatic metabolic parameters

Fasting blood glucose was determined in plasma (glu-

cose RTU ®, Biomérieux, France) and glucose tolerance 

was evaluated based on intraperitoneal glucose tolerance 

(IpGTT) of fasting rats. Capillary glycaemia at baseline 

and 15, 30, 60, and 120  min post intraperitoneal (IP)-

injection of 2 g/kg glucose (20% solution) was measured 

with a glucometer (Accu-Chek  Performa®, Roche Diag-

nostic, France). Blood samples were collected from the 

tail vein at 0 and 60 min post injection, in order to meas-

ure blood glucose and C-peptide levels (Elisa C-peptide 

kit, Mercodia, Uppsala, Sweden) to evaluate insulin sen-

sitivity. Measuring C-peptide was preferred to measuring 

insulin for evaluating insulinemia because it is more sta-

ble in blood and is not affected by haemolysis [47]. Insu-

lin resistance (IR) was evaluated using the homeostasis 

model assessment (HOMA2). HOMA2-IR was calculated 

for fasting plasma glucose and fasting C-peptide using 

the HOMA2 model calculator (http://www.dtu.ox.ac.

uk/homa). Fasting leptin was measured by ELISA (Elisa 

Leptin kit, Linco Research Inc., St. Louis, MO, USA) as 

an index of fat mass [48], triglycerides (TG) (Triglyceride 

Quantification Kit, Abcam, Paris, France) and free fatty 

acids (FFA) (Free Fatty Acid Quantification Kit, Abcam) 

were measured by ELISA. Plasma cholesterol (Chol) was 

measured using the Cholesterol RTU™ (Biomérieux, 

Lyon, France) colorimetric method and a cholesterol cali-

brator. All parameters were measured once a month.

Plasmatic oxidative parameters

Plasmatic lipid peroxidation as a consequence of oxida-

tive stress was estimated by measuring thiobarbituric 

acid reactive substances (TBARS) using a kit (OxiSelect™ 

TBARS Assay Kit-MDA Quantitation, Cell Biolabs Inc., 

San Diego, CA, USA) according to the manufacturer’s 

instructions, and expressed in µmol/L malondialde-

hyde (MDA). Superoxide dismutase (SOD) and catalase 

activities were measured according to the manufacturer’s 

instructions (Superoxide dismutase assay kit and Cata-

lase Assay Kit, Abcam, Paris, France) and expressed, 

respectively, in percent of inhibition rate and μmol/L. 

Total antioxidant capacity (TAOC) with the radical 

cation  ABTS•+ (2,2′-azino-bis-(3)-ethylbenzthioazo-

line-6-sulfonic acid, VWR, Fontenay sous Bois, France) 

was determined using 6-hydroxy-2, 5, 7, 8-tetrameth-

ylchromane-2-carboxylic acid (Trolox; Sigma-Aldrich, 

St Quentin Fallavier, France) equivalent, as previously 

described for plasma [1].

Histological and functional hepatic and pancreatic studies

Morphological analysis

�e degree of hepatic histological changes was assessed 

on 10-µm cryosections fixed with 4% paraformaldehyde 

by eosin/hematoxylin coloration and Oil Red O stain-

ing (steatosis). Steatosis was evaluated according to the 

standard Kleiner Classification [49] of grading and stag-

ing. Degree of steatosis was scored as the percentage of 

hepatocytes per lipid droplet: 0 (less than 5%), 1 (from 5 

to 33%), 2 (from 33 to 66%) and 3 (higher than 66%).

In situ hepatic inflammation was determined as pre-

viously described [50] on 10  µm-cryosections fixed and 

incubated with rabbit anti-Iba-1 (Rat, 1:1000, Wako 

Chemicals GmbH, Germany). Macrophage density cor-

responded to the percentage of brown pixels per field 

and was expressed as a percentage of area. Six slides were 

prepared for each animal and five fields were analysed 

per slide at a magnification of 20×.

Hepatic and pancreatic oxidative stress was performed 

with a dihydroethidine (DHE) probe as described above 

according to a previous study [1]. Unfixed 10  µm-thick 

sections were treated with DHE (2.5 µM) and incubated 

in a light-protected humidified chamber at 37  °C for 

30 min. �e level of ROS was determined using micros-

copy and whole fluorescence of tissue was quantified 

with the microscope assistant (NIS-Elements BR, Nikon, 

France) and expressed as a percentage of that in ND rats.

Functional analysis

Extraction and quantification of triglyceride (Abcam) 

and cholesterol (Cholesterol RTU™, Biomérieux) were 

performed on a piece of fresh liver (100  mg) according 

to the manufacturer’s instructions. Extraction and quan-

tification of glycogen content were also performed on a 

piece of fresh liver (100  mg) according to the manufac-

turer’s instructions and as previously described [1] and 

expressed as glycogen/mg of liver.

Western blotting

Total protein (80  mg) was separated on a 4–12% Bis–

Tris CriterionTM XT Precast Gel (Bio-Rad, Marne-

La-Coquette, France) and transferred to an Immobilon 

polyvinylidene difluoride (PVDF) membrane (Millipore, 

Molsheim, France). Antibodies against -ChREBP (1:1000, 

rabbit) from Novus Biologicals Canada (Oakville, Can-

ada), -SREBP1 (1/200, mouse) and -SREBP2 (1/500, 

rabbit) from abcam, -p22phox (1/500, goat) and –Nrf2 

(1/1000) from Santa Cruz (Dallas, TX, USA) were incu-

bated with membranes overnight at 4  °C. Membranes 

were incubated for 1 h at room temperature with a corre-

sponding horseradish peroxidase (HRP)-conjugated sec-

ondary antibody (1/2000, Sigma-Aldrich) and developed 

http://www.dtu.ox.ac.uk/homa
http://www.dtu.ox.ac.uk/homa
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using the Luminata™ Forte Western HRP substrate (Mil-

lipore, Molsheim, France) with Chemidoc XRS (Bio-Rad, 

Marne-La-Coquette, France). �e relative quantity of 

the protein of interest compared with the reference pro-

tein β-actin (1/500, mouse) from Santa Cruz or GAPDH 

(1/500, rabbit) from Ozyme (Saint Quentin, France) was 

measured with Image J software (NIH, USA).

Histological and functional vascular studies

Vascular reactivity studies

�e main superior mesenteric artery rings were sus-

pended in organ baths to determine changes in isomet-

ric tension, as described previously [51]. �e nitric oxide 

(NO)-mediated component of relaxation was deter-

mined in the presence of indomethacin (10  μM) and 

charybdotoxin plus apamin (100  nM each) to rule out 

the formation of vasoactive prostanoids and the endothe-

lium-derived hyperpolarizing factor (EDHF), respec-

tively. Rings were pre-contracted with phenylephrine 

(PE) (1 µmol/L) before the construction of a concentra-

tion-relaxation curve respective to acetylcholine (Ach) 

(0.1–10  µmol/L) to test endothelial calcium-dependent 

relaxation [52]. Relaxations were expressed as percentage 

of the reversal of the contraction induced by PE.

In situ mesenteric oxidative stress and immunochemical 

characterization

�e oxidative fluorescent dye dihydroethidine (DHE) 

was used to evaluate in  situ formation of ROS as 

describe above. Endothelial NO synthase (eNOS, 1/100, 

BD Biosciences) and 3-nitrotyrosine (1/100, Millipore, 

Molsheim, France) expression and localization were 

determined on 10  µm-cryosections of mesenteric arter-

ies, fixed with 4% paraformaldehyde and incubated with 

both antibodies. �e corresponding anti-mouse IgGs 

coupled to Alexa 488 (1/200, Invitrogen, Molecular 

Probes) were used as secondary antibodies. Fluorescence 

was determined using microscopy, quantified with the 

microscope assistant (NIS-Elements BR, Nikon, France) 

and expressed as a percentage of that in ND rats.

Statistical analysis

Values are expressed as mean ± SEM, and n indicates the 

number of rats. Statistical analysis was performed with 

Student’s t test for unpaired data or ANOVA followed by 

LSD test after normality test validation protected least-

significant difference tests, where appropriate  (Statistica® 

version 12, StatSoft, France). If normality was violated, 

we used log transform. P < 0.05 was considered to be sta-

tistically significant.

Results

Dietary intervention improved metabolic control of HFHF 

rats

HFHF rats maintained a significantly higher weight gain, 

body mass index and body weight (Table 1, Fig. 1a) than 

ND rats until the end of the study period. �is increase 

was associated after 4  months with higher abdominal 

circumference, abdominal fat (Table 1) and hyperleptine-

mia (37.2 ± 5.4 vs. 13.2 ± 0.9  ng/mL) (Fig.  2a). Moreo-

ver, HFHF rats developed fasting glycaemia (defined as 

glucose levels > 1.26  g/L; 1.35 ± 0.04 vs. 1.10 ± 0.04  g/L) 

Table 1 Characteristics of rats after 4 months of experimental period

Experiments were performed six times

* Signi�cant di�erence vs. ND; $ vs. HFHF; * and $ : P < 0.05; ** and $$ : P < 0.01; *** and $$$ : P < 0.001

Variables ND HFHF HFHF/ND HFHF/NDCherry HFHFCherry

Physiological variables

Weight gain from 2 to 4 months (g) 63.4 ± 6.9 97.5 ± 4.60* 13 ± 12.14***$$$ 36.12 ± 9.5$$$ 95.12 ± 12.0

Final body weight (g) 558 ± 15.3 628 ± 12.6** 570 ± 13.4$ 581 ± 12.2$ 652.95 ± 20.71***

Body mass index (BMI) (g/cm2) 0.78 ± 0.003 0.86 ± 0.02* 0.76 ± 0.02$ 0.79 ± 0.03 0.88 ± 0.05*

Abdominal circumference (cm) 22.14 ± 0.59 24.9 ± 0.78* 22.08 ± 1.34$ 23.5 ± 0.62 25.25 ± 0.98*

Abdominal fat (g) (% vs. total weight) 12.22 ± 1.74 34.60 ± 1.38*** 18.33 ± 3.39$$$ 17.92 ± 2.43$$$ 29.85 ± 3.57***

2.17 ± 0.27 4.37 ± 0.96*** 3.17 ± 0.49$$$ 3.07 ± 0.40$$$ 4.58 ± 0.52***

Plasmatic lipidic profile

Fasting leptin (ng/mL) 13.23 ± 0.99 37.24 ± 5.39*** 15.88 ± 1.08$$$ 20.77 ± 13.87$$ 51.26 ± 3.96***$$

Total cholesterol (mM) 1.37 ± 0.12 2.21 ± 0.30** 1.71 ± 0.25 1.52 ± 0.16$ 2.86 ± 0.29***

Triglycerides (μM) 805.2 ± 175.2 1523 ± 184.6** 878 ± 199.7$ 650.2 ± 164.7$$ 1313 ± 189.4***$$$

Free fatty acids (μmol/L) 82.11 ± 10.64 234.4 ± 29.39*** 155.3 ± 14.12*$$ 130 ± 11.67*$ 354 ± 85.71***

Plasmatic oxidative profile

Lipid peroxide, TBARS (μM malondialdehyde) 35 ± 1.14 62.81 ± 8.86* 34.7 ± 0.91$$$ 33.41 ± 2.08$$$ 52.2 ± 9.54*

Total antioxidante capacity (mM trolox equivalent) 5.75 ± 0.18 5.75 ± 1.167 5.99 ± 0.131 6.62 ± 0.086*$ 4.36 ± 0.492**$$
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and insulin resistance (defined as HOMA-IR value > 2.4; 

4.84 ± 0.63 vs. 1.43 ± 0.15) while ND rates did not 

(Fig. 1b, c). Further, HFHF rats developed glucose intol-

erance with area under the curve (343 ± 29 vs. 244 ± 18) 

and C-peptidemia higher than in ND rats (during 

ipGTT: t0′: 1954 ± 267 vs. 583 ± 81; t60′: 4398 ± 299 

vs. 2274 ± 284  pmol/L) at a faster rate than the ND 

rats (Fig.  1d, e). Finally, higher cholesterol (2.2 ± 0.3 vs. 

Fig. 1 Impact of cherry consumption on metabolic characteristics of rats 4 months into the experimental period. Physiological and plasmatic 

metabolic impacts of cherry consumption on a weight gain evolution, b fasting glycaemia, c HOMA-IR, d capillary glycaemia and area under the 

curve during ipGTT, e fasting plasmatic c-peptid (t0) and 60 min (t60) after glucose injection during ipGTT. Results represent the mean of 6 different 

experiments ± SEM after 4 months of normal diet (ND), high fat high fructose (HFHF) diet, HFHF 2 months + ND 2 months (HFHF/ND); HFHF 

2 months + ND with cherry supplementation 2 months (HFHF/NDCherry) and HFHF 2 months + HFHF with cherry supplementation 2 months 

groups (HFHFCherry). Asterisk represents significant results vs. ND; dollar vs. HFHF
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1.4 ± 0.1 mM), triglyceride (1523 ± 185 vs. 805 ± 175 µM) 

and free fatty acid (234 ± 29.4 vs. 82 ± 10.6  µM) levels 

revealed that dyslipidaemia was induced by 4 months of 

HFHF diet administration (Fig. 2b–d).

�e HFHFCherry diet did not have a beneficial impact 

on metabolic and lipidic parameters (Figs.  1, 2a–d). In 

fact, HFHFCherry rats had the same body weight evo-

lution as rats maintained on HFHF diet, with a higher 

fasting leptin level than HFHF rats (51.26 ± 4  ng/

mL). HFHFCherry rats developed hyperglycaemia 

(1.45 ± 0.07 g/L), dyslipidaemia (TG: 131 ± 189 µM; Chol: 

2.86 ± 0.29  mM; FFA: 354 ± 86  µM), glucose intoler-

ance (area under the curve: 391 ± 25), and insulin resist-

ance (HOMA-IR: 6.1 ± 0.95). Moreover, they developed 

C-peptidemia after 2  h of ipGTT at a faster rate than 

HFHF rats (t0′: 2423 ± 397 and t60′: 5841 ± 275 pmol/L) 

(Figs. 1, 2a–d).

However, the addition of cherries to the nutritional 

intervention where ND replaced the HFHF diet (HFHF/

NDCherry) normalized glucose tolerance (area under the 

curve: 243.2 ± 10.32) and C-peptide levels during ipGTT 

(t0′: 1029 ± 118 and t60′: 3222 ± 368 pmol/L). Moreover, 

fasting glycaemia was under 1.26 g/L (1.24 ± 0.03 g/L) and 

cherry consumption decreased HOMA-IR (2.541 ± 0.29) 

(Fig.  1b–e). Plasmatic FFA levels were decreased 

(130 ± 11.7 µM) but not normalized to ND levels. How-

ever, hypercholesterolemia and hypertriglyceridemia 

were eliminated (1.52 ± 0.16  mM and 650 ± 167  µM, 

respectively) (Fig.  2b–d). �e HFHF/NDCherry diet 

stopped weight gain until the end of the treatment and 

body weight, body mass index, abdominal circumference 

(Table 1, Fig. 1a) and leptinemia (20.8 ± 2.7 ng/mL) were 

normalized to ND levels (Fig. 2a).

Bene�cial e�ect of dietary intervention associated 

with cherry consumption on antioxidant capacity

HFHF rats had a twofold higher TBARS level in plasma 

than ND rats (62.80 ± 8.9 vs. 35 ± 1.1  µM MDA) 

(Fig.  2e). �is oxidative stress complication was associ-

ated with an increase in superoxide dismutase (SOD) 

activity (71.43 ± 4.22 vs. 57.52 ± 5.83% of inhibition) 

and a decrease in catalase activity (0.022 ± 0.004 vs. 

0.052 ± 0.03 µM) (data not shown). No difference in total 

antioxidant capacity was observed despite plasmatic 

oxidative stress (5.75 ± 0.17 vs. 5.75 ± 0.18 µM eq. Trolox) 

(Fig. 2f ).

�e HFHFCherry diet had no beneficial impact on 

plasmatic oxidative stress. In fact, HFHFCherry rats had 

the same levels of TBARS (52.21 ± 9.5  µM MDA) and 

SOD activity (78 ± 3.67% of inhibition) as HFHF rats, a 

great variability of catalase activity (neither significant 

vs. ND rats nor HFHF rats, 0.031 ± 0.014  µM) and also 

decreased total antioxidant capacity (4.36 ± 0.49 µM eq. 

Trolox) (Fig. 2e, f and data not shown).

However, the HFHF/NDCherry diet normalized plas-

matic TBARS levels (33.41 ± 2.08  µM MDA) and cata-

lase activity (0.043 ± 0.01 µM), had a higher SOD activity 

(81.87 ± 1.08% of inhibition) and increased total antioxi-

dant capacity (6.62 ± 0.09 µM eq. Trolox) (Fig. 2e, f and 

data not shown).

Cherry consumption emphasizes the bene�cial e�ect 

of dietary intervention on hepatic oxidative stress 

and in�ammation

Rats fed an HFHF diet showed a decrease in hepatic gly-

cogen content (0.024 ± 0.003 vs. 0.042 ± 0.004  mg/mg 

of liver) and a maximal steatosis score after 4  months 

(3.0 ± 0 vs. 0.67 ± 0.21) (data not shown). Many cell 

nuclei were shifted from a location in the centre of the 

hepatocyte to the periphery, apparently due to interfer-

ence from normal cell structures because of the presence 

of numerous large fat globules (Fig.  3a, b). �ese struc-

tural disorders were associated with a higher content of 

hepatic TG (19.9 ± 2.74 vs. 1.83 ± 0.08 nmol/mf of liver) 

and cholesterol (32.7 ± 9.87 vs. 7.82 ± 0.68  mg/mg pro-

tein) (Fig. 3c). �ese complications were associated with 

inflammation with macrophages infiltration (1.02 ± 0.12 

vs. 0.57 ± 0.14% of area) and oxidative stress (222 ± 31.3 

vs. 100 ± 7.7%) (Fig. 3a, b).

�e HFHFCherry diet had no beneficial impact on plas-

matic oxidative stress (Figs.  2f, 3). In fact, HFHFCherry 

rats had a great variability in glycogen content (neither 

significant vs. ND rats nor HFHF rats, 0.036 ± 0.005 mg/

mg of liver), a maximal steatosis score (3.0 ± 0) with 

hepatic TG (8.52 ± 1.45 nmol/mf of liver) and cholesterol 

(32.85 ± 6.54 mg/mg protein) associated with a threefold 

macrophages infiltration (1.55 ± 0.1% of area) and oxida-

tive stress (200 ± 18.6%).

(See figure on next page.)

Fig. 2 Impact of cherry consumption on plasmatic lipidic profiles, oxidative complications and hepatic glycogen characteristics of rats 4 months 

into the experimental period. Impacts of cherry consumption on a fasting leptin, b total cholesterol, c triglycerides, d free fatty acids, e TBARS 

formation and F) total antioxidant capacity. Results represent the mean of 6 different experiments ± SEM after 4 months of normal diet (ND), high 

fat high fructose (HFHF) diet, HFHF 2 months + ND 2 months (HFHF/ND), HFHF 2 months + ND with cherry supplementation 2 months (HFHF/

NDCherry) and HFHF 2 months + HFHF with cherry supplementation 2 months groups (HFHFCherry). Asterisk represents significant results vs. ND; 

dollar vs. HFHF
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Fig. 3 Impact of cherry consumption on hepatic complications 4 months into the experimental period. Impacts of cherry consumption on 

(a) hepatic structure assessed by eosin/hematoxylin coloration, steatosis by Oil-Red O, macrophages infiltration by immunohistochemistry 

and oxidative stress by dihydroethidine fluorescent probe (DHE) after 4 months of normal diet (ND), high fat high fructose (HFHF) diet, HFHF 

2 months + ND 2 months (HFHF/ND), HFHF 2 months + ND with cherry supplementation 2 months (HFHF/NDCherry) and HFHF 2 months + HFHF 

with cherry supplementation 2 months groups (HFHFCherry). Bar scale = 100 µm; b relative score of steatosis, percentage of macrophages and DHE 

fluorescence quantifications; c hepatic cholesterol and triglycerides contents. All cumulative results are shown as the mean ± SEM of 6 different 

experiments. Asterisk represents significant results vs. ND; dollar vs. HFHF
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However, the HFHF/NDCherry diet normalized mac-

rophages infiltration (0.42 ± 0.13% of area), oxidative 

stress (93 ± 7.1%) and TG (2.58 ± 0.45  nmol/mf of liver) 

(Fig.  3a, b). HFHF/NDCherry rats presented an inter-

mediate appearance and steatosis score (1.67 ± 0.2) 

associated with hepatic cholesterol (26 ± 4.76  mg/

mg protein) and lower glycogen content than ND rats 

(0.0267 ± 0.0035  mg/mg of liver) (Fig.  3 and data not 

shown).

Bene�cial impact of cherry consumption on hepatic 

metabolic and oxidative pathways

�e HFHF diet induced hepatic increase of p22phox 

expression (0.85 ± 0.15 vs. 0.40 ± 0.06 a.u) (Fig.  4a), an 

NADPH oxidase (Nox) subunit and a major source of 

glucose-induced ROS production in liver [50, 53]. More-

over, Nrf2 polyubiquitination was increased 1.5-fold 

in HFHF rats in comparison to ND rats (0.45 ± 0.04 vs. 

0.32 ± 0.03 a.u) (Fig. 4b), all leading to excessive hepatic 

ROS formation and oxidative stress as shown before. �e 

HFHFCherry and HFHF/NDCherry diets preserved a 

physiological level of p22phox (respectively: 0.51 ± 0.10 

and 0.66 ± 0.16 a.u) and Nrf2 expression and ubiqui-

tination (respectively: 0.27 ± 0.03 and 0.30 ± 0.03 a.u) 

(Fig. 4a, b).

�e HFHF diet increased the sterol regulatory ele-

ment-binding protein-1c (SREBP-1c) (0.09 ± 0.01 vs. 

0.06 ± 0.01 a.u), the carbohydrate-responsive element-

binding protein (ChREBP) (0.16 ± 0.04 vs. 0.05 ± 0.02 

a.u) and the master regulator of intracellular cholesterol 

homeostasis (SREBP2) (0.40 ± 0.08 vs. 0.12 ± 0.02 a.u), 

three major transcription factors implicated in liver 

lipogenesis [54, 55]. �e HFHFCherry diet decreased 

SREBP1 (0.035 ± 0.01 a.u), tended to increase ChREBP 

(0.12 ± 0.05 a.u; P = 0.08) and normalized SREBP2 

(0.09 ± 0.02 a.u) expressions in comparison to the ND 

whereas the HFHF/NDCherry diet preserved a physi-

ological level of SREBP-1c (0.05 ± 0.01 a.u), ChREBP 

(0.08 ± 0.03 a.u) and SREBP2 (0.21 ± 0.08 a.u) (Fig. 4c–e).

Dietary intervention associated with cherry 

supplementation maintained vascular homeostasis

HFHF rats had a decrease of NO-mediated relaxation 

in the mesenteric artery associated with oxidative stress 

and decreased expression of eNOS in the endothe-

lium of the vessel (Fig.  5). In fact, acetylcholine, which 

induced relaxation via a calcium dependent pathway 

[52], caused NO-mediated concentration-dependent 

relaxations in mesenteric artery rings in ND rats (at 

 10−5  M, 67 ± 7%) associated with eNOS expression in 

the vessel (100 ± 10.73%). However, blunted NO-medi-

ated relaxation was observed in HFHF rats (at  10−5  M, 

40 ± 11%), associated with a twofold decrease in eNOS 

(53.35 ± 7.17%) and a threefold ROS formation in all 

the vasculature, as observed with DHE fluorescence 

(339 ± 56.3% vs. 100 ± 7.14%.). Decrease in NO was not 

correlated with peroxintrite formation (association of 

ROS and NO) as observed by physiological nitrotyros-

ine fluorescence levels (113.5 ± 14.97 vs. 100 ± 8.32%) 

(Fig. 5b).

HFHFCherry and HFHF/NDCherry rats experienced 

an intermediate NO-mediated relaxation (respectively at 

 10−5 M, 59.77 ± 16.22%; 58.09 ± 18.80%) over 2 months, 

similar to ND and HFHF rats. However, HFHFCherry 

rats presented excessive ROS (338 ± 44.1%) in all the 

vasculature associated with endothelial peroxinitrite 

(194.5 ± 26.45%) and a compensatory increase of eNOS 

expression (156.3 ± 26.3%). In contrast, the HFHF/

NDCherry diet prevented ROS and nitrotyrosine for-

mation (respectively: 98.3 ± 18.6%; 129.46 ± 14.43%) and 

presented a physiological level of eNOS (108.3 ± 11.7%) 

(Fig. 5).

No impact of dietary intervention associated with cherry 

supplementation on pancreas oxidative stress

�e HFHF diet induced an increase in ROS in the entire 

pancreas (212.30 ± 25.2% vs. 100 ± 12%). �e HFHF-

Cherry and HFHF/NDCherry diets had no effect on pan-

creatic oxidative stress because of the formation of ROS 

in the pancreas, including islets, as observed in HFHF-

Cherry rats (172.6 ± 13.3%) and HFHF/NDCherry rats 

(234 ± 32.7%) (Additional file 2: Figure S1).

Figure 6 presents all disorders observed in HFHF rats 

and highlights the beneficial impacts of cherry consump-

tion and nutritional intervention on blood, vessels, and 

liver.

Discussion

In our study, we have demonstrated that cherry con-

sumption decreased the risk of developing diabetic dis-

orders by reducing fat accumulation, body weight and 

lipid concentrations and improving glucose and insulin 

regulation, enhancing metabolic and oxidative balance 

in plasma. Moreover, it helped in maintaining an anti-

oxidant and anti-inflammatory state leading to decreased 

vascular and hepatic complications.

Cherry consumption improves plasmatic oxidative 

and metabolic disorders associated to diabetes

Firstly, we have demonstrated that cherry consump-

tion decreased oxidative stress in plasma. While diabe-

tes induces a decrease in catalase activity and TBARS 

production without any modulation of TAOC, cherry 

consumption was able to increase catalase activity and 

TAOC leading to a decrease in TBARS complications. 

Accordingly, studies in healthy human subjects reported 
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Fig. 4 Impact of cherry consumption on liver 4 months into the experimental period. Impact of cherry consumption on oxidative parameters 

assessed by (a) the expression of p22phox and b the expression of Nrf2 (p.u: polyubiquitination). The impact on c triglycerides metabolism was 

assessed by SREBP1 and ChREBP expressions and d on cholesterol metabolism by the expression of SREBP2. Experiments show results after 

4 months of normal diet (ND), high fat high fructose (HFHF) diet, HFHF 2 months + ND 2 months (HFHF/ND), HFHF 2 months + ND with cherry 

supplementation 2 months (HFHF/NDCherry) and HFHF 2 months + HFHF with cherry supplementation 2 months groups (HFHFCherry). All the 

results are shown as the mean ± SEM of 6 different experiments. Asterisk represent significant results vs. ND; dollar vs. HFHF
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that cherry consumption increases plasma TAOC [43, 

56]. Traustadottir et  al., in a double blind placebo-con-

trolled crossover design in older adults, showed that con-

sumption of tart (sour) cherry juice improves antioxidant 

defences by increasing the capacity to constrain an oxida-

tive challenge and reducing oxidative damage to nucleic 

acids [57]. Moreover, cyanidin-3-rutinoside, present in 

our cherry extract [35], displays a wide range of biological 

activities, including antioxidant and anti-inflammatory 

[58]. Recently, an in  vitro study confirmed the benefi-

cial impact of cyaniding-3-rutinoside on oxidative stress 

damage and the inhibition of TBARS formation in bovine 

Fig. 5 Impact of cherry consumption on vascular complications 4 months into the experimental period. Impacts of cherry consumption on a 

vascular function represented by NO-mediated relaxation induced by acetylcholine (Ach) on phenylephrine (PE) pre-contracted mesenteric artery 

and b characterization of endothelial dysfunction through the presence of reactive oxygen species by dihydroethidine fluorescent probe (DHE), the 

localization and expression of eNOS and the formation of nitrotyrosine after 4 months of normal diet (ND), high fat high fructose (HFHF) diet, HFHF 

2 months + ND 2 months (HFHF/ND), HFHF 2 months + ND with cherry supplementation 2 months (HFHF/NDCherry) and HFHF 2 months + HFHF 

with cherry supplementation 2 months groups (HFHFCherry). A adventice, M media, I intima; bar scale = 50 µm. All the results are shown as the 

mean ± SEM of 6 different experiments. Asterisk represents significant results vs. ND
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serum albumin [59]. Recent epidemiological studies high-

lighted that people with acatalasemia develop T2D [60] 

and Hait et al. have demonstrated that catalase deletion 

promotes obesity associated with the impairment of glu-

cose tolerance and insulin sensitivity, increased plasmatic 

TGs and induced steatosis and inflammation in the liver 

of  Cat−/− mice [61]. Our results are in accordance with 

these data and suggested that cherry consumption could 

prevent alterations in lipids mobilization and utilization 

thought their beneficial effect on catalase, thus avoiding 

excess circulating lipids. �erefore, all these data high-

light not only the improvement of systemic oxidative bal-

ance with cherry consumption but also an improvement 

of lipids profiles.

Besides the beneficial impact on redox homeostasis, 

cherry consumption normalized glucose tolerance, insu-

lin resistance, dyslipidaemia, hyperleptinemia, decreased 

hyperglycaemia, and hyperinsulinemia. �ese beneficial 

impacts of cherry consumption could be closely linked 

to its ability to decrease obesity and inhibit adipocyte 

dysfunction, two disorders strongly associated with the 

development of insulin resistance, cell impairment and 

T2D [62, 63]. In fact, anthocyanins are considered modu-

lators of adipose tissue metabolism which improve adi-

pocytes dysfunction and adipocytokines secretion in 

insulin resistance, increase β-oxidation and decrease fat 

accumulation on adipocytes [64]. Hypertrophic adipo-

cytes, which release rather than store FFAs, are linked 

to insulin resistance [65], but were decreased by cherry 

consumption, which could explain the normalization 

of glucose tolerance, insulin sensitivity, leptinemia and 

dyslipidaemia. All these beneficial effects were observed 

only when cherry consumption was associated with ND 

and not with the HFHF diet. �en, our results suggest 

that cherry consumption may cause lipid trafficking away 

from the abdomen and hence reduce the associated com-

plications, mainly NASH and cardiovascular dysfunction. 

�ese findings are in accordance with some in vivo stud-

ies which demonstrated that cherries and their bioactive 

food components decrease body weight and abdominal 

fat [66], blood lipids [67, 68] and fasting blood glucose 

[64, 66]. More precisely, Cherian et  al. demonstrated 

that a single dose of anthocyanins decreases fasting gly-

caemia by 19% and improves glucose tolerance by 29% 

in moderately-diabetic rats. Moreover, 4 weeks of treat-

ment dropped the pre-treatments levels of fasting blood 

glucose by 50% and increased glucose tolerance by 41% 

[69]. Similar results were observed in high fat diet-rats 

with 5-caffeoylquinic acid [70], one of the compounds 

in Regina cherries [35]. Another therapeutic approach 

to treat diabetes is to delay the absorption of glucose via 

inhibition of enzymes, such as α-glucosidase, in the diges-

tive organs. It has been confirmed that α-glucosidase 

activity in  vitro can be inhibited by berry extracts rich 

in polyphenols [71] and by cyanidin-3-rutinoside [72], 

a derivate of anthocyanin present in the cherry extract 

used in our study [35]. All these data highlight the fact 

that bioactive food compounds found in cherries are 

responsible for an improvement in systemic metabolic 

balance.

Cherry promotes NO bioavailability and assures vascular 

function

Keeping a state of oxidative, carbohydrate and lipid 

homeostasis is essential to ensuring vascular func-

tion. In fact, the endothelium, the internal layer of ves-

sels, is in constant interaction with the blood, subjected 

to mechanical and chemical stresses, and plays a pivotal 

role in vascular homeostasis. A better understanding of 

the cellular basis of the pathophysiological processes and 

better strategies to treat damage are clearly an important 

goal because diabetes-associated vascular complications 

are responsible for 75% of the deaths associated with dia-

betes [73]. We have demonstrated that HFHF induced 

(See figure on next page.)

Fig. 6 Disorders observed in HFHF rats and beneficial impacts of cherry consumption in addition to nutritional intervention. Cherry consumption 

associated with nutritional strategy has multiple beneficial effects against complications induced by T2D. In blood, cherry consumption decreased 

fasting glucose, C-peptide and HOMA-IR leading to reduced hyperglycaemia and hyperinsulinemia, assuring physiological glucose and insulin 

tolerance. Cherry consumption decreased adipose tissue dysfunction and thus decreasing weight gain, body mass index (BMI) and abdominal 

circumference. Cherry consumption normalized adipokines secretion [leptine, cholesterol (Chol), triglycerides (TG) and free fatty acids (FFA)] and 

then eliminated dyslipidemia and hyperinsulinemia. Cherry consumption decreased systemic oxidative stress and thiobarbituric acid reactive 

substances (TBARS) complications by increasing catalase (CAT) activity and total antioxidant capacity (TAOC). All these systemic beneficial effects of 

cherry consumption led to suppressed endothelial dysfunction. Nitric oxide (NO) bioavailability was increased in accordance with the decrease of 

reactive oxygen species (ROS) production and the increase of the endothelial NO synthase (eNOS) leading to physiological relaxation of the vessel. 

Cherry consumption in the liver decreased p22phox, a subunit of the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) 

and thus decreased superoxide anion  (O2
−) formation. In addition, cherry consumption inhibited the ubiquitin-degradation of the nuclear factor 

erythroid-2 related factor 2 (Nrf2), all leading to eliminated oxidative stress and linked inflammation. Additionally, cherry consumption decreased 

carbohydrate-responsive element-binding protein (ChREBP) and sterol regulatory element-binding proteins (SREBP-1 and -2), then decreased TG 

accumulation and steatosis. SOD: superoxide dismutase, upward arrow increase, downward pointing arrow decrease, X: suppress. Black information: 

effect of diabetes; red information: effect of cherry consumption
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diabetes is associated with a decrease of relaxation in 

the mesenteric artery involving a decrease of eNOS 

expression and, thus, blunted NO-mediated relaxation, 

in addition to ROS formation. �is endothelial dysfunc-

tion has been associated in several regions of the vascu-

lature in animals and humans with T2D due to defects in 

NO-derived vasodilation [74–77]. A number of studies 

have suggested that ROS play an important role in the 

pathogenesis of diabetic vasculopathy, affecting both the 

macro- and the microvascular systems [63, 78]. All meta-

bolic disorders observed in blood in our model could be 

linked to disturbance of vessels [76]: high cholesterol and 

FFA, obesity and visceral fat distribution, insulin resist-

ance, impaired fasting glucose and glycaemic fluctuations 
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[7, 79, 80]. �ey have also been associated with ROS 

formation and exacerbated oxidative stress [7, 12, 63, 

81]. However, as shown before in our study, cherry con-

sumption was able to assure blood homeostasis, lead-

ing to decreases in oxidative stress in vessel vasculature, 

to increases eNOS expression and thus to assure good 

NO-bioavailability and relaxation in HFHF/NDCherry 

rats. Much of research suggests, in fact, the cardio-pro-

tective effects of cherry consumption and anthocyanins 

appear to have some vasoprotective effects in humans 

[82]. Endothelial cells from bovine arteries exposed for 

several hours to cyanidins increased NO output and 

reduced local oxidative stress [83], decreased inflamma-

tion and indirectly reduced the risk of atherosclerosis 

plaque formation [84]. In fact, polyphenols, such as citrus 

flavonoids or isoflavones from red clover, could increase 

flow mediated dilatation and improve vascular function 

after 3–4 weeks in patients with metabolic syndrome [85, 

86] and anthocyanins, including cyanidin-3-rutinoside 

as shown in our cherry composition, have potent plate-

let-inhibitory properties and are considered inhibitors 

of platelet cell signalling and thrombus formation [87]. 

Moreover, cherry consumption inhibited free radical 

formation which could prevent the onset and develop-

ment of long-term diabetic complications [88]. �is vas-

cular protection of cherry consumption against oxidative 

stress has been closely correlated to the improvement of 

metabolic and lipidic profiles in blood. In fact, the HFH-

FCherry diet has no beneficial impact on these plasmatic 

parameters and thus exhibited ROS in all the vasculature. 

However, in this nutraceutical strategy, eNOS was highly 

increased by cherry supplementation to counteract ROS 

and peroxinitrite formation and thus to assure NO bio-

availability and relaxation in vessels, as shown in HFHF/

Cherry-rats. Changes in endothelial function hasten the 

development of micro- and macroangiopathy and thus 

target the cellular basis of endothelial dysfunction and 

promote NO bioavailability. Cherry supplementation, in 

addition to lifestyle measures, should provide benefits to 

the overall therapeutic management of diabetes.

Cherry promotes NO bioavailability leading to optimal 

metabolic function

In addition to its vascular beneficial effect, NO derived 

from eNOS appears to have both antiobesogenic and 

insulin-sensitizing properties. �ese effects, discovered 

in recent years, are due to its ability to increase fat oxida-

tion in peripheral tissues, such as liver and adipose tissue, 

to decrease lipid synthesis in the liver, increase insulin 

and glucose transports to key peripheral tissues and to 

regulate gluconeogenesis [89]. �ese metabolic effects 

of NO bioavailability could explain in part the benefi-

cial impact of cherry consumption on the liver. In fact, 

massive hepatic lipid accumulation observed in HFHF 

rats in our study and in T2D patients [90] was elimi-

nated in HFHF/NDCherry rats. Our findings are in line 

with an earlier study in HFD-mice and consumption of 

a mixture of pure anthocyanins [66]. Seymour et al. also 

reported a decrease in hyperlipidemia, hyperinsulinemia, 

fatty liver and hepatic steatosis [68] with 90-day adminis-

tration of sour cherry. Moreover, supplementation of the 

HFD-rats with 5-caffeoylquinic acid, one of our cherry 

compounds [35], reduced macrophage infiltration and 

steatosis [70] via PPARγ and NFκB signaling pathways. 

Today, these pathways, such as antioxidants inhibiting 

NADPH oxidase, receive a lot of attention in the treat-

ment of atrial fibrillation [91]. So, our results, in addition 

to others, highlighted the anti-steatosic effect of cherry 

consumption.

Cherry improved NASH associated to diabetes: anti-FFAs 

and anti-oxidant bene�cial e�ects

While many mechanisms can explain the improvement of 

hepatic steatosis and NASH complication, normalization 

of FFAs and oxidative stress by cherry consumption seem 

to be involved in our study. Li et  al. demonstrated that 

FFAs cause hepatic insulin resistance, resulting in over-

production of glucose and hyperglycemia, and initiate 

inflammatory processes in the liver, thus resulting in the 

development of steatohepatitis [65]. Additionally, Pereira 

et al. linked FFAs to NADPH oxidase and oxidative stress 

in impaired hepatic insulin signalling [92]. Numerous 

disorders stimulate NADPH oxidase activity: elevated 

glucose, hyperinsulinemia, lipids, and cytokines [93]. As 

shown before, only cherry consumption in association 

with lifestyle measures (ND) normalized them in plasma 

and in the liver cherry consumption decreased HFHF-

induced p22phox expression (NADPH oxidase subunits), 

ROS formation and NASH (steatosis plus inflamma-

tion). Previous studies demonstrated that anthocyanins 

reduce ROS generation in human HepG2 cells exposed to 

a high glucose environment [94], increase activity of the 

antioxidant enzymes SOD (liver, blood) and Gpx (liver) 

and decrease lipid peroxidation [95]. One of the major 

defence systems against stress-related injury is the Nrf2 

system [10, 96] which activates the antioxidant response 

elements. Activation of Nrf2 by a number of polyphenols 

increases expression of phase II detoxifying enzymes 

and antioxidant enzymes [97, 98], which can directly act 

to eliminate free radicals and oxidative damaged mol-

ecules. Recently, Nrf2 was highlighted as a real target 

against diabetic nephropathy [10]. Our results showed 

that the HFHF diet increased Nrf2 degradation in the 

liver and was clearly associated with the presence of oxi-

dative stress. But cherry supplementation avoided this 
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degradation, in addition to decreasing p22phox expres-

sion and ROS formation.

Cherry improved NASH associated to diabetes: 

involvement of hepatic pathways

Degradation of Nrf2 was also implicated in the develop-

ment of NASH [99, 100] because of its role in lipid catab-

olism [101]. SREBPs (-1 and -2) and ChREBP regulate 

the gene expression of enzymes involved in lipogenesis 

and cholesterol synthesis [54, 102]. Our present study 

demonstrated that the HFHF diet induced an abnormal 

expression profile of these hepatic lipogenic transcrip-

tion factors, increasing de novo lipogenesis due to hyper-

glycemia and hyperinsulinemia [55, 103] as observed in 

our model. However, cherry consumption was able to 

normalize them, decrease hepatic TGs and steatosis and 

thus decrease plasmatic dyslipidemia and hyperglycemia. 

Polyphenols, including anthocyanins, significantly reduce 

tissue lipid accumulation and the activity of enzymes that 

promote fat storage [104], and also lower body weight, fat 

mass and TGs through enhancing energy expenditure, 

fat utilization and modulating glucose hemostasis [105]. 

Little data are available on the in  vivo effect of antho-

cyanins or cherry consumption on these hepatic targets. 

Anthocyanin from mulberry extract decreases SREBP1c 

and SREBP2 on human hepatocyte (HepG2) cultured 

with high fatty acid, suppressing fatty acid synthesis and 

enhancing fatty acid oxidation, all contributing to amelio-

ration of lipid accumulation [106]. Additionally anthocy-

anins from purple sweet potato decrease SREBP1c in the 

same in vitro model but also in vivo in HDF-mice [107]. 

Musso et al. reviewed cellular mechanisms of cholesterol 

toxicity involved in liver injury and NASH and high-

lighted the therapeutic impact of anthocyanin through a 

decrease SREBP2 and lipogenesis [104]. So, all these data 

highlight the fact that the cherry is responsible for an 

improvement of hepatic complications associated with a 

decrease of oxidative stress and inflammation.

Antioxidant therapy: the practical implications

Our recent data showed that the consumption of cherry 

without any metabolic disorders, so on healthy rats, leads 

to opposite effects. For example, hepatic p22phox expres-

sion was increased, leading to oxidative stress and asso-

ciated to hepatic dysfunction (unpublished data). �ese 

results highlight the difficulty to work with antioxidant 

compounds, which could be pro-oxidant sometime. We 

worked also with cherry which contained fructose as the 

major source of sugar; future study could be done with 

free-sugar cherry extract, but only for the purpose of a 

consumption of modified food and not the promotion 

of the consumption of natural healthy food. Identify-

ing specific polyphenolic compound(s) in cherry extract 

leading to the beneficial effect could be also a strategy, 

but as highlighted by Snyder et  al. [108] ‘a challenge 

for future research is not only to describe the improve-

ments produced by the intake of specific healthful foods 

or phytochemicals, but also to determine what benefi-

cial synergies may be produced by consuming comple-

mentary healthy foods containing a variety of bioactive 

compounds, acting on multiple and molecular-level reg-

ulatory pathways’. Several studies in animal models and 

human subjects have demonstrated that phenols are 

bioavailable and exert a protective role against oxida-

tive stress and free radical damage [30, 40, 82]. Moreo-

ver epidemiological studies suggest that consumption 

of fruits, vegetables and plants [30] may be associated 

with a reduced risk of diabetes or have a protective effect 

[109]. Recently, Pickering et al. [10] clearly reviewed the 

feasibility of emerging new therapies to combat oxidative 

stress and inflammation in the diabetic milieu. �e use of 

therapy like cherry brings a real asset thanks to its broad-

spectrum effects on: (1) the regulation of carbohydrate 

and lipid metabolisms, (2) the attenuation of oxidative 

damage and scavenging of free radicals, (3) the improve-

ment of endothelial function and vascular tone through 

the enhancement vasodilation factor production, and (4) 

the decrease of NASH with macrophages and ROS inhi-

bition. All the bibliography available today on the subject 

brings hope on using antioxidants in future hepatitis and 

antidiabetic therapeutics.

Conclusion

Medical nutrition therapy is recommended for all 

patients with T2D and, along with activity, is a cor-

nerstone of treatment. Nevertheless, a recent widely 

discussed study failed to achieve a reduction of cardio-

vascular events in overweight or obese adults with T2D 

after a 10-year intense lifestyle intervention, despite 

improvements in body weight, physical fitness, and 

metabolic markers [110]. Despite the presence of known 

antidiabetic medicine in the pharmaceutical market, 

diabetes and its related complications continue to be a 

major medical problem. In recent years, we have come 

to understand diabetes-associated vascular and hepatic 

complications as clearly linked disorders. Interconnected 

failures include adipose tissue, blood vessels, endothe-

lial function and liver, which is why new therapies need 

to act on several points. Consumption of bioactive food, 

such as cherries, provides a unique combination of phy-

tonutrients in one package that work together to deliver 

health benefits. �eir pleiotropic effects could be an 

interesting target in order to optimize management of 

long-term diabetic complications.
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