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Benefit of Large Field-of-View Cameras for Visual Odometry

Zichao Zhang, Henri Rebecq, Christian Forster, Davide Scaramuzza

Abstract— The transition of visual-odometry technology from
research demonstrators to commercial applications naturally
raises the question: “what is the optimal camera for vision-
based motion estimation?” This question is crucial as the choice
of camera has a tremendous impact on the robustness and
accuracy of the employed visual odometry algorithm. While
many properties of a camera (e.g. resolution, frame-rate, global-
shutter/rolling-shutter) could be considered, in this work we
focus on evaluating the impact of the camera field-of-view
(FoV) and optics (i.e., fisheye or catadioptric) on the quality of
the motion estimate. Since the motion-estimation performance
depends highly on the geometry of the scene and the motion of
the camera, we analyze two common operational environments
in mobile robotics: an urban environment and an indoor scene.
To confirm the theoretical observations, we implement a state-
of-the-art VO pipeline that works with large FoV fisheye and
catadioptric cameras. We evaluate the proposed VO pipeline in
both synthetic and real experiments. The experiments point out
that it is advantageous to use a large FoV camera (e.g., fisheye
or catadioptric) for indoor scenes and a smaller FoV for urban
canyon environments.

SUPPLEMENTARY MATERIAL

A video showing our omnidirectional visual odometry

pipeline performing on real and synthetic data is available at

the website: http://rpg.ifi.uzh.ch/fov.html.

I. INTRODUCTION

Estimating the six degrees-of-freedom motion of a cam-

era simply from its stream of images has been an active

field of research for several decades [1], [2], [3]. Today,

state-of-the-art algorithms run in real-time on smartphone

processors and achieve the accuracy and robustness that is

required to enable various interesting applications. However,

the remaining challenge to enable commercial applications

in risky fields such as drone delivery or autonomous driving

is robustness, especially during fast motions, illumination

changes, and in environments with difficult texture. All three

nuisances increase the difficulty to track visual cues, which

is fundamental to enable vision-based motion estimation.

Our work is motivated by the question of whether the

robustness of existing visual odometry (VO) algorithms can

be significantly improved by selecting the best camera for

the task at hand. In order to minimize the design space, we

limit ourselves to the selection of the optimal optics. We are

particularly interested in the performance of omnidirectional

cameras, which are fisheye and catadoptric cameras charac-

terized by a large field of view (FoV). In theory, a larger

FoV allows tracking visual landmarks over longer periods,

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland http://rpg.ifi.uzh.ch. This research was
funded by the China Scholarship Council.
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Fig. 1: Images from our synthetic datasets, showing different FoV cameras.

which should increase the precision of pose estimation as

more measurements are available and, at the same time,

increase robustness since the visual overlap between sub-

sequent images is larger. However, increasing the FoV while

fixing the resolution means that the angular resolution of a

pixel is reduced, hence, lowering the measurement accuracy

of a single camera pixel.

The contribution of this work is threefold: after discussion

of related work in Section I-A, we present in Section II

simulation experiments that show the impact of the FoV

of a camera on the accuracy and robustness of a canonical

VO pipeline. The analysis encompasses standard steps of

a visual-odometry pipeline. After studying the theoretical

advantages of large FoV cameras and to facilitate an analysis

on real images, we describe in Section III challenges and

solutions to enable a state-of-the-art VO pipeline (in our

case SVO [4]) to operate with such images. Therefore, we

provide a detailed study of six error metrics on the pose

estimation accuracy. Our analysis helps to select the proper

error metrics as a function of the camera FoV. Finally, in

Section IV, we evaluate the performance of the proposed

omnidirectional SVO algorithm in synthetic as well as real

experiments for various camera optics. Since the impact of

the camera FoV is a function of the application scenario,

we perform the experiments in different environments that



reflect typical applications of VO (e.g., automotive, drones,

gaming). As a further contribution, we publicly release all

our synthetic and real datasets that we recorded with different

FoV cameras1.

A. Related Work

The type of camera used for vision-based navigation meth-

ods has a significant impact on the accuracy and robustness

of the motion estimation process. A comparison of the

performance of a catadioptric and a perspective camera in

a visual SLAM system was presented in [5]. A catadioptric

camera has a shaped mirror mounted in the front that allows

it to capture the full 360 degree view. Experimental results

showed that the catadioptric camera outperforms the perspec-

tive camera in terms of motion estimation accuracy. However,

the catadioptric camera that was used for the experiments

had a higher pixel resolution than the perspective camera.

Thereby, the lower angular resolution of the larger FoV

catadioptric camera was compensated, which provided an

unfair advantage to the catadioptric camera. Nevertheless, the

comparison presented in [6] experimentally confirmed that a

larger FoV camera has a higher motion estimation accuracy

than a smaller FoV perspective camera even in the case of

a fixed pixel resolution. Unfortunately, the experiments were

limited to synthetic data and an indoor environment. In our

experiments we confirm these results in an indoor scenario,

but we show, both on synthetic and real data, that large FoV

cameras perform worse than standard perspective cameras in

outdoor environments.

Most VO algorithms for omnidirectional cameras [7], [8],

[9], [10] rely on robust feature descriptors (e.g., SIFT [11]) to

establish feature correspondence. To cope with the significant

distortion of large FoV images, special descriptors were

developed that model the distortion effects to improve feature

matching [12], [13], [14], [15]. Other works, such as [16] and

[17], used Lucas-Kanade feature tracking [18] to estimate

the motion of landmark observations between frames of

omnidirectional images.

In this work, we develop a VO pipeline for omnidirectional

cameras based on the state-of-the-art Semi-direct Visual

Odometry (SVO) algorithm [4]. SVO is a very fast odometry

algorithm because it does not extract salient features in every

frame. Instead, it uses a direct method to estimate the camera

motion by mimizing the photometric error of correspond-

ing pixels in subsequent views, similar to LSD [19] and

DTAM [20]. However, in contrast to LSD and DTAM, the

so called sparse image alignment step in SVO works only

with sparse pixels and, thus, the convergence radius of the

alignment is small and can only be applied on a frame-

to-frame basis. Therefore, given the frame-to-frame pixel

correspondence, which is found by means of sparse image

alignment, the SVO pipeline uses a classic feature-based

nonlinear refinement step to minimize the drift. In Section

III we describe the required modifications to the standard

1Available at http://rpg.ifi.uzh.ch/fov.html

SVO2 to enable motion estimation with cameras that have a

FoV larger than 120 degrees.

In the next section, we will study the impact of a large

FoV on the performance of VO.

II. OPTIMAL FIELD-OF-VIEW STUDIES FOR

CANONICAL VISUAL ODOMETRY PIPELINE

In this section, we study the impact of the camera FoV on a

canonical VO pipeline by means of Monte Carlo simulations.

First, we present a study of the influence of the FoV on the

accuracy of three standard components of a VO pipeline:

feature correspondence, pose optimization and combined

map-pose estimation. By pose optimization we denote the

nonlinear refinement of the camera pose, which minimizes

the reprojection error of known 3D landmarks. Note that

this step is typically applied in an odometry pipeline after

finding a solution to the perspective-n-point (PnP) problem.

The third experiment implements a canonical VO pipeline

combining both depth estimation and pose optimization.

As we will see, the optimal FoV depends greatly on the

structure of the environment. Therefore, we perform the

study in two different simulated scenes: in the first scene

the camera moves in an urban canyon that simulates an

automotive setting, while, in the second environment, the

camera moves in a confined room that simulates common

indoor scenarios. We evaluate the second scene both with a

forward- and downward-looking camera.

A. Experiment 1: Feature Correspondence

The foundation of all geometric vision problems is feature

correspondence. Hence, the accuracy of 3D landmark mea-

surements (i.e., keypoints) in the images directly affects the

accuracy of the motion estimate. Therefore, our first exper-

iment evaluates the accuracy of feature correspondence for

three different cameras with a constant image resolution. The

experiment is based on synthetic scenes rendered for different

FoV cameras using Blender (Fig. 1). Given a keypoint in a

reference image, we search for the corresponding keypoint in

a subsequent image of the same camera trajectory by means

of Lucas-Kanade feature alignment [18]. The groundtruth of

the keypoint alignment is calculated by first backprojecting

the keypoint from the reference image to the 3D model of

the scene to get the 3D landmark and then projecting the

landmark to the subsequent frame.

Figure 2 shows the alignment error as a function of the

distance to the reference view. We observe that the accuracy

of feature correspondence decreases as we select a frame in

the camera trajectory that is farther from the reference frame.

Also, the accuracy is slightly reduced when the cameras

with larger FoVs are used. The reason for this is that for

larger FoV cameras, the image patches used in the alignment

suffer from more severe distortions between the reference

frame and the selected frame. Given these considerations, in

the following experiments we corrupt all feature correspon-

dences with zero-mean additive white Gaussian noise with

2Available at http://github.com/uzh-rpg/rpg_svo
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Fig. 2: Experiment 1: Keypoint alignment accuracy for different optics as a
function of the distance from the reference frame.

σ = 0.25 pixels, which reflects the average uncertainty of

our measurements.

B. Experiment 2: Pose Optimization

The pose optimization step refines the pose TCW ∈ SE(3) of

the camera C with respect to a world frame W by minimizing

the reprojection error of the visible landmarks. Hence, we are

solving the following nonlinear least-squares problem:

TCW = argmin
T

1

2

N
∑

i=1

‖ r(ũi, π(T Wpi)) ‖
2, (1)

where Wpi ∈ R
3 are the landmark positions expressed in the

world frame. The metric we use for the reprojection residual

r(ũi, ûi) between the measured feature position ũi ∈ R
2

and the predicted feature position ûi = π(T Wpi) ∈ R
2 is

discussed in more detail in Section III-B. By π : R3 → R
2 :

u = π(p) we denote the camera projection function.

In this section, we assume that a perfectly known 3D map

of the environment is available, whereas in the next section

the map is computed using triangulation.

For this experiment, we simulate cameras with varying

FoVs using the equidistant fisheye model [21]. The image

resolution is fixed, thus the angular resolution decreases as

the FoV increases. A forward-looking camera is placed in the

center of the scene (Fig. 3). For each feature in the image

plane, the corresponding visible 3D point is found using

raytracing on the synthetic scenes. We sample 150 features

uniformly in the image plane and compute their correspond-

ing 3D landmarks. Features are corrupted as described in

Section II-A. With these inputs (2D-3D correspondences), we

solve the absolute pose estimation problem. The experiment

is repeated 1000 times for each FoV.

Fig. 4 shows the pose estimation accuracy as a function

of the FoV, for the confined room and canyon scenes. It can

be observed, that larger FoV cameras perform better in the

room scene, despite the loss of angular resolution. Indeed,

increasing the FoV yields more evenly distributed landmarks

in space (as a larger FoV allows to capture points with a

greater angular distance to the optical axis), which stabilizes

the pose optimizer (this was also reported in [6]). By contrast,

in Fig. 4b, the translation error reaches a minimum for a FoV

of about 215 degrees. This can be interpreted as the result

of two competing effects. On the one hand a larger FoV

provides a better conditioning for the PnP problem, which

(a) (b) (c)

Fig. 3: Rendered images showing what the camera sees in different setups:
front-looking camera in box environment, front-looking camera in canyon
environment, up-looking catadioptric camera in canyon environment. Note
that the texture is not given because the groundtruth depth is available.
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(a) Confined room environment
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(b) Urban canyon environment

Fig. 4: Experiment 2: Pose estimation accuracy with respect to FoV for two
synthetic scenes. Solid line is the median; dashed lines bound the confidence
interval.

raises the pose estimation accuracy. On the other hand, as the

FoV grows, the angular resolution decreases (since the image

resolution is fixed), leading to larger angular errors on the

landmark measurements, thus degrading the pose estimation

accuracy. As shown in Fig. 4b, for the canyon scene, the first

effect prevails for small and moderate FoVs while the second

eventually becomes predominent for very large FoVs.

Note that this experiment was conducted using a synthetic

camera, allowing for arbitrarily large FoVs. While, in reality,

fisheye lenses typically reach a maximum FoV of approxi-

mately 215◦ (e.g., the KodakSP360 camera), this experiment

still provides some valuable insight on the trade-off involved

when selecting an optics for a given sensor. The vertical

line in Fig. 4 marks the frontier between existing and purely

synthetic cameras.

C. Experiment 3: Canonical Visual Odometry Pipeline

This section assumes no prior knowledge of the map,

therefore in the following experiment we simulate a full

VO pipeline: from noisy observations we triangulate 3D

landmarks that are used to estimate the camera pose of

subsequent images (see Fig. 5). This is a standard approach

for incremental camera motion estimation [10].

We simulate a camera trajectory (Fig. 6) in the desired

environment and select a reference keyframe (red in Fig. 5)

among the trajectory frames. As in the previous experiment,



Fig. 5: Experiment 3: Camera moving along the trajectory, keyframes and
triangulated landmarks.

(a) Box environment (b) Canyon environment

Fig. 6: Experiment 3: Top views of the different setups. For the box scene,
the experiment is conducted with both downward-looking and forward-
looking camera but only the latter is shown in this figure.

we sample features uniformly in the reference keyframe

image plane. Corresponding landmarks (red dots) are tri-

angulated using a set of previous frames (shown in grey),

projected and corrupted in the image plane as before. Then,

the poses of the following frames (green) are estimated based

on the triangulated landmarks. This experiment is conducted

for various camera FoVs on both synthetic scenes, with 1000

runs for each configuration. Additionally, in two cases, an

up-looking catadioptric camera with a horizontal FoV of

360◦ and vertical FoV from -50◦ to +50◦ above the horizon

is simulated.

The results of our experiment are shown in Fig. 7. The

pose estimation accuracy is evaluated as a function of the

distance to the keyframe. This provides a measure of robust-

ness and drift: Robustness is increased if we can move farther

away from the last keyframe without loosing much pose

accuracy, whereas drift is reduced if we can track features

over longer time intervals.

The main conclusion from these experiments is that,

for visual localization, large FoV cameras should be pre-

ferred in confined environments (e.g., indoor flight for a

drone), whereas smaller FoV cameras will perform better for

forward-looking cameras in canyon-like environments (typ-

ically a camera mounted on a car in the city). Specifically,

the analysis of the plots in Fig. 7 follows.

a) Room environment: Regardless of the camera orien-

tation, the motion estimation accuracy grows with the FoV

(Figs. 7a and 7b). The superiority of wide angle optics in

this setup stems from two different beneficial effects: first,

the better angular distribution of features, as demonstrated in

Section II-B; and second, the ability of large FoV cameras

to track features longer greatly increases the robustness of

visual localization in this environment (see Fig. 7b: almost all

features remain visible as the down-looking camera moves).

Interestingly, the catadioptric camera performs slightly worse

than the large FoV fisheye cameras. This is consistent

with the results from the previous section: the localization

accuracy stops increasing when the FoV reaches a threshold

of around 210 degrees, and the catadioptric camera’s self-

occlusion zone furthermore reduces the available image area

compared to the fisheye cameras.

b) Front-looking camera in canyon environment: This

experiment (Fig. 7c) shows that a smaller FoV should be

preferred in an urban canyon scenario. The reason why large

FoV optics perform worse in this setup is twofold. Firstly,

because the depth range of the scene is much higher than the

room scene. Whereas the triangulation error introduced by

the loss of angular resolution remains small when the depth

range of the landmarks is limited, it eventually becomes

predominant when the depth range is very high (in the

canyon environment, the farthest point is 250m away from

the camera). Secondly, because of the uniform sampling of

the features in the image plane, the landmarks corresponding

to the features extracted in the reference frame tend to

be farther away for smaller FoV cameras, thus having a

slower apparent motion with respect to the camera. These

features can therefore be tracked more reliably (because of

the reduced optical flow between two successive frames), and

longer. Our experiment confirmed this somewhat surprising

fact (third column of Fig. 7c): the camera with the smallest

FoV observes features longer on average.

III. IMPLEMENTATION OF A SEMI-DIRECT

OMNIDIRECTIONAL VISUAL ODOMETRY

In this section, we describe the challenges and, accord-

ingly, our solutions, to enable a state-of-the-art VO pipeline

to work with wide field-of-view cameras. In particular, we

develop a unified VO system that works with fisheye as well

as catadioptric cameras.

We base our developments on the state-of-the-art SVO [4]

pipeline. The standard SVO algorithm does not scale to large

FoV cameras, which required us to perform three main mod-

ifications: (1) implementation of polynomial and equidistant

camera models that adequately model large FoV cameras; (2)

use of reprojection-error metrics based on bearing vectors in

the pose optimization (bundle adjustment) step; (3) sampling

of the curved epipolar line based on the unit sphere for better

correspondence search and triangulation.

In the following, we discuss the implementation of these

modifications in more detail.

A. Omnidirectional Camera Model

The omnidirectional camera model from [22] is used in

our work. In this model, a Taylor series expansion is used

to describe the image projection function. We choose this

camera model largely due to its advantage of being able to

describe catadioptric and fisheye cameras within one unified

framework compared to other omnidirectional models such

as the unified projection model [23] and the equidistant

model [21].
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(a) Forward-looking camera in the box environment
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(b) Downward-looking camera in the box environment
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(c) Forward-looking camera in the canyon environment

Fig. 7: Experiment 3: Pose error and number of visible features for different FoVs in the canonical VO pipeline.

B. Error Metrics for Pose Optimization

The SVO algorithm finds 2D-3D landmark correspondence

using direct methods, specifically sparse image alignment

and feature alignment [4]. In the subsequent pose optimiza-

tion step, the six degree of freedom (DoF) pose of a frame is

refined by minimizing the reprojection error. This problem is

formalized in (1) and can be solved by standard least squares

optimization techniques such as the Gauss-Newton method.

In a standard implementation, one would minimize the

image error (see Fig. 8):

ru = ũ− π(p), (2)

where p = [px, py, pz]
⊤ is the 3D landmark (in the camera

frame). However, this requires to compute the projection

function and its Jacobian at each iteration, which can be

expensive when complicated camera models are used. There-

fore, SVO minimized the reprojection error on the unit plane:

rm = m̃−

[

px
pz

,
py
pz

]⊤

, (3)

where m̃ is the corresponding position of observation ũ on

the unit plane. Unfortunately, this approach does not scale

when the FoV is large as pz approaches zero for landmarks

observed at the border of the image. Hence, implementations

of omnidirectional vision systems such as [24], [25] use the

angular error ∆θ between the unit bearing vectors f̃ and f

corresponding to ũ and p, respectively:

ra1 = 1− f̃⊤f =⇒ ‖ra1‖
2 = 4 sin4(∆θ/2), (4)

ra2 = arccos(f̃⊤f) =⇒ ‖ra2‖
2 = (∆θ)2. (5)

Instead, the difference between the bearing vectors gives:

rf = f̃ − f =⇒ ‖rf‖
2 = 4 sin2(∆θ/2). (6)

The authors of [26] studied different error metrics for the

omnidirectional SfM problem and showed experimentally

that the following tangential error was the best error metric

for the pose estimation problem:

rt =

√

2

1 + f̃⊤f
(f̃ − f) =⇒ ‖rt‖

2 = 4 tan2(∆θ/2). (7)

To answer the question of which error metric to use,

the same Monte Carlo experiment as in Section III-B is

performed using different error metrics. The average position
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inverse camera projection f̃i = π−1(ũi), which also models the distortion,
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errors after the optimization are shown in Fig. 9. It can

be observed that the image error ru, the tangential error rt
and the bearing vector difference error rf have comparable

performances for all the FoVs. In comparison, the unit

plane error rm results in equal accuracy for small FoVs,

but exhibits large errors for large FoVs. When using the

angular error metrics ra1 and ra2, the pose estimations

oscillate around the true values instead of converging after

4-6 iterations as the other error metrics.

The time cost for each error metric is summarized in

Table I. The angular error ra1 and ra2, which are not listed

in the table, have a much worse time performance because

of the convergence problem.

TABLE I: Average Convergence Time

ru rm rf rt

Time(ms) 0.4 0.2-0.25∗ 0.28 0.31

∗ increases with the field of view

Therefore, it can be concluded that for pose optimization,

the unit plane error rm should be used for small FoVs (e.g.

perspective cameras with less than 100◦ FoVs) due to its

efficiency and for large FoVs, the bearing vector difference

error rf should be used. In the experiments of this work, the
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Fig. 10: Epipolar search on unit sphere for depth filter update.

bearing vector difference error rf is used for omnidirectional

cameras and the unit plane error rm for perspective cameras.

C. Feature Correspondence along Curved Epipolar Lines

SVO triangulates new landmarks from known camera

poses by means of a depth filter [4]: In a selected reference

image Ir salient corners are selected for which the depth

is estimated using measurements from older and newer

frames Ik. A measurement is obtained by sampling the

epipolar line in a neighbouring image Ik pixel by pixel

and computing the correlation of an 8 × 8 pixel patch with

the reference patch in Ir. The pixel on the epipolar line

with highest correlation is used to update the depth of the

reference pixel through triangulation (see Fig. 10).

For omnidirectional cameras, the epipolar line in Ik is not

straight but forms a curve. To sample pixels on the curved

epipolar line, we compute the bearing vectors {fmin, fmax}
that correspond to the confidence interval of the current depth

estimate d ± 2σd = {dmin, dmax} in the reference image.

Subsequently, we rotate a bearing vector f ′ in small angular

steps from fmin to fmax around the axis fmin × fmax and

project it on the image u′ = π(f ′), which results in a pixel

location u′ that lies on the curved epipolar line.

IV. EXPERIMENTS

The modified SVO algorithm described in the previous

section allows us to verify our FoV studies in Section II

on real and synthetic images. In the following, we first

discuss the synthetic experiments and subsequently the real

experiments performed with a micro aerial vehicle (MAV)

and an automobile.

A. Synthetic Datasets

To generate photorealistic synthetic images, we used the

Cycles raytracing engine3 implemented in Blender. In addi-

tion to the already built-in perspective and equidistant fish-

eye camera models, we implemented a catadioptric camera

model based on [22], which we release as an open-source

patch for Blender4.

3http://www.blender.org/manual/render/cycles/
4https://github.com/uzh-rpg/rpg_blender_omni_

camera
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Fig. 11: Synthetic Datasets: Top views of the estimated trajectories.

(a) Feature tracking (left: perspective, right: fisheye)

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x[m]
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

y
[m

]

Groundtruth

Perspective 90 deg

Fisheye 180 deg

(b) Trajectory top view

Fig. 12: Real Datasets: Results on the Flyroom sequence.

Fig. 13: Real Datasets: Results on the Zurich sequence. The first straight
segment of each estimated trajectory is aligned with the corresponding part
of the streets that the car drove along.

We first ran our algorithm on two synthetic datasets:

Urban Canyon and Indoor (Fig. 1). The Urban Canyon

dataset simulates a forward-looking camera mounted on a

car driving in a city environment and the Indoor dataset

contains views from a downward-looking camera moving

along a circle in an indoor environment. We rendered these

two datasets with three different camera models respectively:

perspective (90◦ FoV), fisheye (180◦ FoV) and catadioptric

(360◦ FoV). Note that for the catadioptric camera, the same

trajectories were used for the rendering but the camera was

set up to be upward-looking (facing the mirror).

The top view of the trajectories estimated is shown in

Fig. 11. It can be observed that the perspective camera

exhibits the smallest drift in the Urban Canyon dataset,

followed by the fisheye camera and the catadioptric camera.

However, in the Indoor dataset, while the trajectories esti-

mated by the omnidirectional cameras are almost identical to

the groundtruth, the perspective camera exhibits significant

drift.

B. Real Datasets

To further verify our FoV studies with real world scenar-

ios, we first recorded a Flyroom dataset with a downward-

looking camera mounted on a MAV. The camera was 1 m

above the ground and moved along a circle of about 1.5 m

radius at a speed of 1.3 m/s. The datasets were recorded

with a perspective camera (90◦ FoV) and a fisheye one

(180◦ FoV), respectively. The groundtruth was acquired via

a motion capture system. Fig. 12 shows the performance

comparison between the two cameras. It can be observed

from Fig. 12b that the trajectory estimated by the fisheye

camera follows the circle precisely, while the trajectory

estimated by the perspective one drifts away as it repeats the

circle. It can be seen from Fig. 12a that while the perspective

camera can only track features that are very close, the fisheye

one can keep track of features from a much larger area.

We also ran our algorithm on the Zurich dataset from

[27]. The Zurich dataset contains two sequences: a forward-



looking perspective camera (45◦ FoV) and an upward-

looking catadioptric camera (360◦ FoV).The two sequences

were recorded on the same car simultaneously while the

car drove through Zurich downtown. Since no groundtruth

is available for this dataset, the estimated trajectories were

aligned with a satellite map for evaluation. As is shown in

Fig. 13, the trajectory estimated with the perspective camera

is more consistent with the streets on the map.

C. Discussion

The results from the above experiments are consistent with

our simulations and analysis presented in Section II.

• For indoor scenarios, such as the Indoor and Flyroom

datasets, large FoV omnidirectional cameras outperform

the perspective ones. The reason for this is twofold: first,

features are more evenly distributed in space, which

stabilizes the pose estimation, and, second, the camera

can track features for a longer time.

• For outdoor environments such as the Urban Canyon

and Zurich datasets, the trajectories can be estimated

more accurately using perspective cameras, mainly be-

cause the loss of angular resolution for higher FoVs is

drastically amplified by the higher depth range.

V. CONCLUSIONS

It is well known that VO can benefit from large FoVs.

Indeed, a larger FoV theoretically allows for tracking visual

landmarks over longer periods, which should increase the

precision of pose estimation (since more measurements are

available) and increase robustness since the visual overlap

between successive images is larger. However, at the same

time, increasing the FoV while fixing the resolution decreases

the angular resolution of the image, thus, lowering the

measurement accuracy of a single camera pixel.

In this work, we showed that for a constant image resolu-

tion, the best choice of FoV and optics is not as straightfor-

ward as it seems. We first performed extensive simulations

to study the impact of different FoVs on the standard VO

modules as well as the complete pipeline, which point

out that large FoV cameras (e.g., omnidirectional cameras)

are preferable in indoor environments, while smaller FoV

cameras perform better in urban canyon scenarios. We also

performed experiments using both synthetic and real world

datasets and these are in accordance with the simulation

results. Moreover, we provided an in-depth analysis of the

challenges arising when adapting VO algorithms for large

FoV cameras, and adapted the state-of-the-art algorithm SVO

to work with omnidirectional cameras.

Based on the simulations and experiments, it can be

concluded that for small, confined environments, large FoV

cameras should be used and for larger scale scenarios, small

FoV cameras should be preferred.
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