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Benefiting from Linear Behaviour of a Nonlinear Reset-based Element

at Certain Frequencies

Nima Karbasizadeh1, Ali Ahmadi Dastjerdi1, Niranjan Saikumar1, Duarte Valério2 and S. Hassan HosseinNia1

Abstract— This paper addresses a phenomenon caused by
resetting only one of the two states of a so-called second order
“Constant in gain Lead in phase” (CgLp) element. CgLp is
a recently introduced reset-based nonlinear element, bound
to circumvent the well-known linear control limitation – the
waterbed effect. The ideal behaviour of such a filter in the
frequency domain is unity gain while providing a phase lead
for a broad range of frequencies, which clearly violates the
linear Bode’s gain phase relationship. However, CgLp’s ideal
behaviour is based on a describing function, which is a first
order approximation that neglects the effects of higher order
harmonics in the output of the filter. Consequently, achieving
the ideal behaviour is challenging when higher order harmonics
are relatively large. It is shown in this paper that by resetting
only one of the two states of a second order CgLp, the nonlinear
filter will act as a linear one at a certain frequency, provided
that some conditions are met. This phenomenon can be used
to the benefit of reducing higher order harmonics of CgLp’s
output and achieving the ideal behaviour and thus better
performance in terms of precision.

I. INTRODUCTION

Since its formal introduction, dated almost 100 years ago,

PID has remained the main control approach used in a

wide range of industrial and research applications including

precision motion control. However, the increasing demand

for faster and at the same time more precise performance has

made many researchers to focus on circumventing one se-

vere, fundamental and well-known limitation in linear control

theory which is called ”waterbed effect”, see [1]. Referring

to frequency loop-shaping method for designing a controller,

one can understand that increasing the gain of open loop

frequency response at lower frequencies and decreasing it at

higher frequencies will result in better performance in terms

of tracking and steady state precision, see [2]. However,

Bode’s gain-phase relationship for linear systems, along with

the frequency response of the differentiator of PID, will bring

the desire for precision to a contradiction with the robustness

of the system. Among all the efforts made to get around

this limitation using nonlinearity, a category of researches

are based on introducing a relatively simple nonlinearity to

system, namely reset technique, see [3], [4].

Reset control is based on the idea of resetting the states of the
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controller, provided that the resetting condition is met. The

concept was firstly shown in [3], in which a nonlinear reset

integrator, thereafter called Clegg integrator, demonstrated

significantly less phase lag than a linear one while main-

taining the gain behaviour according to describing function

approximation. The idea has then been further developed

to create more sophisticated reset elements such as First

Order Reset Element (FORE) in [4], [5], Generalized FORE

(GFORE) in [6] and Second Order Reset Element (SORE)

in [7]. Researchers took advantage of the reset elements in

different capacities such as phase lag reduction, decreasing

sensitivity peak, narrowband and broadband phase compen-

sation, see [8]–[13].

A recent research has used FORE and SORE in combination

with a linear lead to create a filter which has constant

gain while producing a phase lead in a broad range of

frequencies [14]. The so-called “Constant in Gain Lead

in Phase” (CgLp) can be used in the framework of PID,

completely replacing or taking up a big portion of derivative

duties, which is providing the required phase lead in the

bandwidth region for the system to be robustly stable. Unlike

the derivative in PID, CgLp does not violate the loop-shaping

requirement. However, achieving the desired ideal behaviour

of CgLp can be challenging when the higher order harmonics

of its output are relatively large, since the ideal behaviour is

based on the assumptions of the describing function method.

This is a first order approximation, and thus the effects of

higher order harmonics are neglected.

This paper will introduce and investigate a phenomenon

that can happen in a CgLp designed based on SORE. So

far, in all of the researches done on SORE, both states of

such a filter were reset with same resetting factor. But what

happens if one resets only one state of a second order reset

element? This paper will show that under certain conditions,

a SORE which only has one resetting state will behave like

a linear filter at a certain frequency. Hence, the higher order

harmonics will be zero at that frequency and the element will

have the ideal behaviour defined by describing function.

The remainder of this paper is organized as follows. The

second section presents the preliminaries. The following one

introduces and studies the case in which only one state of a

SORE in CgLp framework is being reset. The third section

will investigate the benefits and applications of the interesting

phenomenon in presented CgLp. Finally, the paper concludes

with some remarks and recommendations about ongoing

works.
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II. PRELIMINARIES

In this section, the preliminaries of this study will be

discussed.

A. General Reset Controller

A general form of a reset controller is as follows [15]:

∑

R
:=







ẋr(t) = Axr(t) +Be(t) if e(t) 6= 0,

xr(t
+) = Aρxr(t) if e(t) = 0,

u(t) = Cxr(t) +De(t)

(1)

where A,B,C,D are the state space matrices of the base

linear system and Aρ = diag(γ1, ..., γn) is called reset

matrix. This contains the reset coefficients for each state

which are denoted by γ1, ..., γn. The controller’s input and

output are represented by e(t) and u(t), respectively.

B. Describing Functions

Like many other nonlinear controllers, the steady state

response of a reset element to a sinusoidal input is not

sinusoidal. Thus, its frequency response has been analysed

by Describing Function (DF) method in the literature [6].

However, the DF method only takes the first harmonic of

Fourier series decomposition of the output into account and

neglects the effects of the higher order harmonics. As it will

be shown in this paper, this simplification can sometimes be

significantly inaccurate. To have more accurate information

about the frequency response of nonlinear systems, a method

called “Higher Order Sinusoidal Input Describing Function”

(HOSIDF) has been introduced in [16]. In [17], [18] the

HOSIDF has been developed for reset elements defined

by (1) as follows:

Gn(ω) =







C(jωI −A)
−1

(I + jΘD(ω))B +D n = 1

C(jωnI −A)
−1

jΘD(ω)B odd n > 2

0 even n ≥ 2

ΘD(ω) = −
2ω2

π
∆(ω)[Γr(ω)− Λ−1(ω)]

Λ(ω) = ω2I +A2

∆(ω) = I + e
π
ω
A

∆r(ω) = I +Aρe
π
ω
A

Γr(ω) = ∆r
−1(ω)Aρ∆(ω)Λ−1(ω)

(2)

where Gn(ω) is the nth harmonic describing function for

sinusoidal input with frequency of ω.

C. CgLp

According to [14], CgLp is a broadband phase compensa-

tion element whose first harmonic gain behaviour is constant

while providing a phase lead. Two architectures for CgLp are

suggested using FORE or SORE, both consisting in a reset

lag element in series with a linear lead filter, namely R and

D. For FORE CgLp:

R(s) =
✟
✟
✟
✟
✟✟✯

Aρ

1

s/ωrα + 1
, D(s) =

s/ωr + 1

s/ωf + 1
(3)

1

s

e(t) x2

γ2

1

s

x1

2βrωrα

ω2
rα

ω2
rα

+

−

+

+

D(s)
u(t)

Second Order Single State

Reset Element

Fig. 1. Block Diagram of a SOSRE CgLp. The second integrator is not
being reset which translates to γ1 = 1.

For SORE CgLp:

R(s) =

✘✘✘✘✘✘✘✘✘✘✘✘✘✿
Aρ

1

(s/ωrα)
2
+ (2sβr/ωrα) + 1

D(s) =
(s/ωr)

2
+ (2sβr/ωr) + 1

(s/ωf )
2
+ (2s/ωf ) + 1

(4)

In (3) and (4), ωrα = ωr/α, α is a tuning parameter

accounting for a shift in corner frequency of the filter due to

resetting action, βr is the damping coefficient and [ωr, ωf ]
is the frequency range where the CgLp will provide the

required phase lead. The arrow indicates that the states of

element are reset according to Aρ; i.e. are multiplied by Aρ

when the reset condition is met.

III. SECOND ORDER SINGLE STATE RESET ELEMENT

This section addresses the architecture and frequency

behaviour of a Second Order Single State Reset Element

(SOSRE), in framework of CgLp. SOSRE is in fact a special

case of a with only one resetting state.

A. Architecture and State Space Representation

Figure 1 shows the block diagram of the SOSRE. The ar-

chitecture is similar to SORE in controllable canonical form

with the difference being that the second integrator —the first

state in controllable canonical state space realization, x1, is

not being reset, i.e., γ1 = 1. This specific type of resetting in

which a resetting state and a non-resetting one are coupled

creates an interesting behaviour for this element in terms of

steady state output. State space representation of SOSRE in

the framework of CgLp is:

A =







SOSRE
︷ ︸︸ ︷

0 1 0 0
−ω2

rα −2βrωrα 0 0
0 0 0 1

ω2
rα 0

︸ ︷︷ ︸

Second order lead

− ω2
f −2ωf






, B =







0
1
0
0






,

C =

[(
ωrαωf

ωr

)2

0 ω2
f

(

1−
(

ωf

ωr

)2
)

2ω2
f

(
βrωr−ωf

ω2
r

)]

D = [0] , Aρ = diag(1, γ2, 1, 1).
(5)

It has to be mentioned that since SOSRE is a nonlinear

element, transforming the above state space representation
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Fig. 2. Harmonics of SOSRE CgLp utilizing HOSIDF method.

to other forms may result in a different behaviour of the

element. In other words, state space representation should

exactly match the block diagram represented in Fig. 1.

Remark 1: Assuming a sinusoidal input to a reset element,

if the phase shift between the output of its base linear system

and its input is zero, the reset action will be of no effect

in steady state response, and thus the reset element can be

regarded as a linear system in terms of steady state response

at that certain frequency.

The proof of this is trivial, since the reset element under such

circumstances will reset its output when its output is already

at zero, resulting in no change from the resetting action. In

the case of a SOSRE, if e(t) = sin(ωt), the reset action of

the first integrator will be of no effect if:

∠
X2(jω)

E(jω)
=

π

2
− tan−1

(
2βrωrαω

−ω2 + ω2
rα

)

= 0

⇒ ω = ωrα.

(6)

Since there is no other nonlinear element in SOSRE, it will

behave like a linear element at frequency ωrα. Solving such

an equation for a conventional FORE will result in ω = 0
as the only solution and thus it does not exhibit such a

behaviour.

B. HOSIDF of SOSRE CgLp

Assume a state-space representation of a SOSRE CgLp

system with the following configuration

ωrα = 10, βr = 1, α = 1.13, ωf = 1000

Aρ = diag(1, 0.1, 1, 1)
(7)

Figure 2 depicts the 1st, 3rd, 5th and 7th order describing

functions of this CgLp in frequency domain. It goes without

saying that the steady state output of a linear system,

when the input is sinusoidal, is also a sinusoid, and can

consequently be completely described by the first term of

a Fourier series; thus, all higher order harmonics are zero.

Figure 2 shows that this is the case for SOSRE CgLp as well,

at ω = 10 rad/s, where its behaviour is like that of a linear
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Fig. 3. Comparison of the first and third harmonics of conventional SORE
CgLp in which γ1 = γ2 = 0.44, SOSRE CgLp in which γ1 = 1, γ2 = 0.1
and FORE CgLp in which γ = 0.15. In all CgLps ωrα = 10 and frequency
range is [10, 1000] rad/s and in SORE and SOSRE, βr = 1. All CgLps
designed to have matching 1st order harmonic gain. They are also designed
to have the same first order harmonic phase at 100 rad/s.

filter. The benefits of this phenomenon will be discussed in

following sections.

C. Comparison with FORE CgLp and Conventional SORE

CgLp

SOSRE CgLp is a special case of a general SORE CgLp

in which only one state is being reset. The fundamental

distinction of SOSRE with respect to SORE and FORE is

that it has a reset state and a non-reset state that are coupled

together, which is in fact, the main reason for the linear

behaviour. However, using these three elements in framework

of CgLp, one can achieve the same gain behaviour in DF for

all three, while different higher order harmonic behaviour.

Figure 3 compares DF and HOSIDF of the SOSRE CgLp

described in (7) with a conventional SORE CgLp realized in

controllable form with the following configuration:

ωrα = 10, βr = 1, α = 0.9, ωf = 1000

Aρ = diag(0.44, 0.44, 1, 1)
(8)

The comparison also includes a FORE CgLp with the

following configuration:

ωrα = 10, α = 1.3, ωf = 1000

Aρ = diag(0.15, 1, 1)
(9)

In order to make all CgLps behave the same at high fre-

quencies, an additional low-pass filter has been added to

FORE CgLp with the same corner frequency of 1000 rad/s.

Moreover, the γi values are chosen in such a manner that

all filters have the same 1st harmonic phase at 100 rad/s

and α values are chosen for all CgLps to have unity gain at

100 rad/s.

According to Fig. 3, although all three CgLps have almost

the same first order gain behaviour, the third harmonic is

quite different. FORE and SOSRE have the same behaviour

for the harmonics except for the range of [3, 70] rad/s where

SOSRE CgLp has considerably smaller third order harmonic.
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Fig. 4. Designed control architecture to compare the performance of CgLps
presented in (7), (8) and (9) to control the plant introduced in (11).

The conventional SORE CgLp has noticeably larger 3rd order

harmonic, to the extent that it dominates the first harmonic

in a large range of frequencies.

It should be noted that other higher order harmonics, i.e.,

5th, 7th, etc. will follow the same trend and as seen in Fig. 2

are descending in magnitude with respect to their order;

however, they are not depicted in Fig. 3 for the sake of plot

clarity.

IV. ON BENEFITS OF THE NOTCH-LIKE BEHAVIOUR IN

HIGHER ORDER HARMONICS OF SOSRE CGLP

As aforementioned, designing a controller in frequency

domain is a very popular method. However, since no method

exists for capturing all the frequency aspects of a nonlinear

reset element, DF approximation is being used for frequency

domain design. But how reliable is this approximation? The

approximation is based on the assumption that the first

harmonic of the steady state response is the dominant one

and higher order harmonics are negligible. And since the

first harmonic gain is dominant, the phase behaviour of the

controller will follow the first harmonic phase. It can be

concluded that smaller the higher order harmonics are, closer

the real controller is to its design based on DF.

However, referring to the example comparison made in

Section III-C, this assumption is not true for all the cases and

not only is the approximation not accurate, but also it can

be completely misleading in some cases like conventional

SORE CgLp presented in (8); where, in a wide range of the

frequencies, the third harmonic dominates the first one and

thus the DF and the design based on it are completely unre-

liable. Although this degenerate case was readily observable

for conventional SORE CgLp in HOSIDF of the controller

itself, in some cases, it can only be seen in HOSIDF of

the overall open loop system including the plant, due to a

phenomenon mentioned in [17]. HOSIDF of the open loop

can be obtained as follows:

Ln(ω) = Gn(ω)C(nω)P (nω) (10)

where C(ω) is the DF of the linear part of the controller and

P (ω) is the DF of the plant. The above equation reveals that

in open loop frequency response of a nonlinear controller

together with a mass-spring-damper system which has a

resonance at ωn, the resonance peak for the third harmonic

will happen at ωn/3, the peak for the fifth at ωn/5, and

so on. Consequently, if the controller happens to have a

large enough third order harmonic even if it is not readily

dominating the first one, the resonance peak can cause it

to dominate. However, according to the notch-like HOSIDF
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Fig. 5. Comparison of the 1st, 3rd and 5th harmonic of open loop system
using controllers designed based on CgLps introduced in (7), (8) and (9) in
series with plant introduced in (11). All systems have matching 1st order
harmonic gain but significantly different 3rd and 5th harmonic gain.

behaviour of a SOSRE, this controller can be designed in a

manner to cancel the third order harmonic resonance peak.

For such a purpose, ωrα should be designed to be equal

ωn/3. For instance consider a mass-spring-damper system

as:

P (s) =
1

11.11s2 + 40s+ 10000
(11)

which has a resonance at 30 rad/s and is desired to be

controlled with bandwidth of 100 rad/s. Following the in-

structions in [14], three controllers have been designed based

on CgLps compared in Section III-C in the framework of

PID. The architecture of the designed controllers is depicted

in Fig. 4. The CgLps all have ωrα = 10 rad/s which is

one third of the plant’s resonance, and all produce the same

phase lead at the frequency of the bandwidth.

The overall quadratic stability of the closed loop reset system

when the base linear system is stable can be examined by

the following condition [19].

Theorem 1: There exists a constant β ∈ ℜnr×1 and

positive definite matrix Pρ ∈ ℜnr×nr , such that the restricted

Lyapunov equation

P > 0, AT
clP + PAcl < 0 (12)

BT
0 P = C0 (13)

has a solution for P , where C0 and B0 are defined by

C0 =
[
βCp 0nr×nnr

Pρ

]
, B0 =





0np×nr

0nnr×nr

Inr



 .

(14)

And

AT
ρ PρAρ − Pρ ≤ 0 (15)

Acl is the closed loop A-matrix. nr is the number of states

being reset and nnr being the number of non-resetting states

and np is the number states for the plant. Ap, Bp, Cp, Dp are

the state space matrices of the plant.
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This theorem requires the base linear system to stable. The

weak tamed derivative which provides 5◦ phase margin for

the base linear system, exists to fulfil this requirement. Thus

the overall controller phase margin for all CgLps is about

45◦.

Figure 5 depicts the open loop HOSIDF. As expected, the

third harmonic resonance happens at 10 rad/s and amplifies

the third order harmonic for FORE CgLp and conventional

SORE CgLp, while the notch-like behaviour of the SOSRE

CgLp cancels the effect of the resonance peak. According

to previous discussions, one can expect the SOSRE CgLp to

have a better performance in terms of precision in the range

of frequencies at which it has smaller third order harmonic.

In particular, this will be the case at 10 rad/s, where the other

two CgLps have significantly larger third order harmonic.

Moreover, it can be seen in Fig. 5 that while the peaks of

higher order harmonics are descending with respect to their

order, the notch-like behaviour has also further decreased the

peak of the 5th harmonic for SOSRE. This also strengthens

the expectation for better performance of SOSRE CgLp in

terms of steady state tracking precision.

In order to validate the discussion, a simulation has been

done using Simulink in Matlab. Its results are presented in

the following section.

V. SIMULATION RESULTS

To validate the hypothesis in the time domain, and the

improvements observed in the frequency domain, and also

in order to be able to compare the controllers in terms of

precision, a simulation has been done for a sinusoidal input

with frequency of 10 rad/s. Furthermore, for the sake of

completeness, results are also obtained and compared with

a linear PID, in which ωi = 10 rad/s, ωd = 26.3 rad/s and

ωt = 380 rad/s and there is a second order low pass filter

with same characteristics as there is in CgLps. It should be

noted that PID is tuned in such a manner that it provides the

same phase margin as other controllers.

The output and error for each controller is presented in

TABLE I

COMPARISON OF L2 AND L∞ OF THE STEADY STATE ERROR OF EACH

CONTROLLER.

Controller L2 L∞

SOSRE CgLp 0.099 0.069
Conventional PID 0.171 0.123
FORE CgLp 0.368 0.105
SORE CgLp 1.214 0.672
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Fig. 7. Control input comparison of FORE CgLp, SOSRE CgLp and PID.
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Fig. 8. Simulation result of x2(t) for all three CgLps.

Fig. 6. Table I represents the RMS (L2) and maximum (L∞)

of the steady state error of each controller. One can read-

ily observe that conventional SORE CgLp has the poorest

performance and SOSRE CgLp outperforms the other three

controllers by nearly an order of magnitude improvement

in precision. Simulation results clearly validates the better

performance of proposed SOSRE CgLp in terms of steady

state tracking precision for frequency of the notch-like be-

haviour. It worth mentioning that the estimation of L2 and

L∞ of closed loop steady state error based on DF of the three

CgLps are 0.099 and 0.069, which is the same as the SOSRE

CgLp. Hence showing that at this frequency the minimization

of harmonics makes the DF completely reliable.

Reset-based controllers usually have large peaks in their

output and thus are not very control effort efficient. Another

characteristic of SOSRE CgLp is a relatively small control

input at the frequency of notch-like behaviour which is

almost comparable with PID. Since conventional SORE

CgLp has too poor a performance in terms of accuracy and

has 2 orders of magnitude larger u(t), Fig. 7 only depicts

the comparison between FORE CgLp, SOSRE CgLp and

PID which validates the claim.

The simulations results also validate the claim of Remark 1.

Figure 8 depicts the value of x2(t), introduced in Fig. 1

for all three CgLps. One can observe that after transient

response, no reset is seen for the x2 state of the SOSRE

CgLp.
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Fig. 9. The steady state maximum error of three CgLp elements for
sinusoidal input.

In order to have a clearer view of the higher order harmonic

effect on the steady state tracking error, a further inves-

tigation has been carried out on other frequencies around

the frequency of SOSRE higher order harmonic notch. As

illustrated in Fig. 9, the L∞ of the steady state error of

the SOSRE CgLp deviates from that of the FORE CgLp

from 8 rad/s till 30 rad/s. It shows that higher order

harmonic notch-like behaviour of the SOSRE also improves

the performance not only at the frequency of the notch itself,

but also at frequencies around. However, a complete closed-

loop performance analysis of these elements is subject to

further investigation.

For this example, one may suggest using a notch filter to

cancel out the resonance of the plant for cancelling the

corresponding peaks in higher order harmonics. Such a filter

will remove the free gain available from the resonance in

first order harmonic. However using SOSRE CgLp one can

reduce higher order harmonics without changing the first

order one. Furthermore, higher order harmonics have their

adverse effect in frequencies other than their peaks and

wherever the higher order harmonic notch of the SOSRE is

tuned to be, e.g., a critical working frequency of the system,

the performance is guaranteed to be the same as DF.

VI. CONCLUSION

This paper studied a special case of a SORE CgLp, in

which only one state is being reset. It was shown that when

input and output of a reset element’s base linear system have

the same phase at certain frequencies, the reset action will be

of no effect and the element will behave like a linear one at

the same frequencies. In the special architecture of SOSRE

CgLp presented in this paper, based on the aforementioned

fact, a notch-like behaviour in higher order harmonics gain

is found and at the same time the first order harmonic gain

behaviour is conserved.

In this paper, the notch-like behaviour was used to cancel out

the resonance peak of the third harmonic of the system. How-

ever, the application is not restricted to this, and wherever the

higher order notch is placed, the performance is guaranteed

to be the same as DF. The simulation results validated the

claim that the SOSRE CgLp is behaving linear in terms of

steady state output at the frequency of higher order notch

and also has better performance in terms of precision at a

range of frequency around it.

As ongoing works, a complete closed loop analysis will be

carried out on this element; moreover, its behaviour will be

investigated in presence of noise and disturbance. Further-

more, the simulation results will be validated in practice.
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