
G. Berry, H. Comon, and A. Finkel (Eds.) : CAV 2001, LNCS 2102, pp. 436-453, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Benefits of Bounded Model Checking
at an Industrial Setting

Fady Copty1, Limor Fix1, Ranan Fraer1, Enrico Giunchiglia2,
Gila Kamhi1, Armando Tacchella2, and Moshe Y. Vardi* 3

1 Formal Property Verification, Intel Corporation, Haifa, Israel
2 DIST, University of Genova, Genova, Italy

3 Dept. of Computer Science, Rice University, Houston, USA

Abstract. The usefulness of Bounded Model Checking (BMC) based on
propositional satisfiability (SAT) methods for bug hunting has already been proven
in several recent work. In this paper, we present two industrial strength systems
performing BMC for both verification and falsification. The first is Thunder, which
performs BMC on top of a new satisfiability solver, SIMO. The second is Forecast,
which performs BMC on top of a BDD package. SIMO is based on the Davis
Logemann Loveland procedure (DLL) and features the most recent search methods.
It enjoys static and dynamic branching heuristics, advanced back-jumping and
learning techniques. SIMO also includes new heuristics that are specially tuned for
the BMC problem domain. With Thunder we have achieved impressive capacity and
productivity for BMC. Real designs, taken from Intel’s Pentium©4, with over 1000
model variables were validated using the default tool settings and without manual
tuning. In Forecast, we present several alternatives for adapting BDD-based model
checking for BMC. We have conducted comparison of Thunder and Forecast on a
large set of real and complex designs and on almost all of them Thunder has
demonstrated clear win over Forecast in two important aspects: capacity and
productivity.

1 Introduction

The success of formal verification is no longer measured in its ability to verify
interesting design behaviors; it is measured in its contribution to the correctness of
the design in comparison to the contribution of other validation methods, i.e.,
simulation. Therefore, technologies and methodologies that enhance the productivity
of formal verification are of special interest. Our research identifies Bounded Model
Checking (BMC) based on propositional satisfiability (SAT) to be such a technology.

BMC based on SAT methods [bcrz99, bccz99, sht00] has recently been
introduced as a complementary technique to BDD-based Symbolic Model Checking.
The basic idea is to search for a counterexample in executions whose length is
bounded by some integer k. Given this bound, the model checking problem can be
efficiently reduced to a SAT problem, and can therefore be solved by SAT methods
rather than BDDs.

*Work partially supported by NSF grants CCR-9700061 and CCR-9988322, BSF
grant 9800096, and a grant from the Intel Corporation.



Benefits of Bounded Model Checking at an Industrial Setting 437

In this paper, we report our detailed evaluation of SAT-based BMC at an
industrial setting. Our initial interest in BMC and SAT technology has been due to
the several recent papers [bcrz99, bccz99, sht00] that have compared BDD-based
model checking to SAT-based model checking and have concluded that many of the
(BDD-based model checking) hard problems can easily be solved by SAT-based
model checkers. The test cases used in the comparisons reported in [sht00] were
drawn from the internal benchmark of a state-of-the-art BDD based symbolic model
checker, RuleBase [bee96a, bee97a]. Therefore, in [sht00], no definite conclusions
could be derived on the capacity benefit of the SAT technology, since all the
verification cases were in the capacity ballpark of RuleBase. Although Biere et al.
report in [bcrz99] that their SAT-based BMC consistently outperformed the BDD-
based symbolic model checker, SMV, the results that they convey are on verification
test cases made up of hundreds of sequential elements and inputs well in the capacity
range of BDD-based symbolic model checkers.

Furthermore, prior comparisons [sht00] leave open the question whether the
difference in performance and capacity is due to the underlying technology--BDD
versus SAT, or is due to the difference between bounded and unbounded model
checking. Moreover, both in [bcrz99, sht00] no extensive expert configuration and
tuning have been done in the extraction of the performance numbers for BDD-based
model checkers in their comparison with tuned SAT-based bounded model checkers.

In order to understand the clear benefit of bounded model checking and SAT
technology at a formal-verification setting, we undertook the task of developing
industrial strength BMC using both BDD and SAT algorithms and have thus
provided the means for a fair comparison. On one hand, we have optimized Intel’s
unbounded BDD-based model checker, Forecast, for bounded model checking. On
the other hand, we have developed a state-of-the-art SAT-based bounded model
checker, Thunder.

Since our interest in SAT technology was in addressing the productivity problem
of the current formal verification techniques, we have evaluated the benefits of BDD-
based and SAT-based bounded model checking with respect to productivity. We have
built a performance benchmark made up of a large number of hard real-life
falsification test cases chosen from the unbounded Forecast’s internal benchmark
base. For each problem, we have built a falsification version that results in a
counterexample of minimal length k, and a verification version of length k-1. In this
manner, we have evaluated the power of SAT based bounded model checking for
both verification and falsification.

In order to understand the benefits of SAT technology with respect to
productivity, we tuned both Thunder and Forecast for the domain of bounded model
checking and came up with a default best configuration for both engines. Since it is
very hard to measure the tuning effort, we have compared tuned and default Forecast
versus default Thunder. Surprisingly the default and best setting for Thunder was the
same for all the test cases in the benchmark. Although Thunder significantly
outperformed untuned Forecast; its performance was very similar to tuned Forecast
for almost all the cases except for a few cases that could not be verified by any
setting of Thunder. The performance benchmark therefore showed a clear
productivity gain achieved by Thunder in the drastic reduction of user ingenuity and
tuning effort in running the tools.



Fady Copty et al.438

The capacity benchmark that we extracted by eliminating the pruning directives on
all the test cases of the performance benchmark demonstrated that Thunder with no
pruning effort could verify most of the test cases. These benchmarks, corresponding
to circuits with thousands of sequential elements and inputs, are far beyond the
capacity of Forecast and of any other BDD-based symbolic model checker.
Therefore, the conclusion from the capacity benchmark was that Thunder has
impressive capacity (can verify designs with over thousands of inputs and sequential
elements) and potentially increases the productivity of the verification engineer by
reducing the pruning effort significantly.

Thunder reads in RTL models, e.g., written in Verilog or VHDL, and in addition
a set of assumptions and assertions expressed in our new temporal specification
language, ForSpec [arm01]. Thunder is compatible with a wide-range of recently
developed, state-of-the-art SAT solvers (e.g., GRASP, SATO, Prover). We report the
benchmark results of Thunder based on a new SAT solver SIMO, developed at the
University of Genova. SIMO is based on the Davis-Logemann-Loveland procedure
(DLL) [dll62]. Similar to other state-of-the-art DLL-based algorithms, SIMO’s
strength is based on: (1) advanced procedures for choosing the next variable on
which to split the search and (2) advanced backtracking mechanisms. SIMO features
various forms of backtracking. In particular, besides the standard backtrack to the last
choice point, SIMO implements a Conflict-directed BackJumping schema, CBJ, and
CBJ-with-Learning [dec90a, pro93a, bs97a]. CBJ-with-Learning algorithm was
chosen to be the best setting following intensive benchmarking with real-life test
cases. In the context of heuristics to choose the splitting variable, we evaluated a
wide range of known dynamic heuristics, both greedy (e.g., MOMS) and Boolean
Constraint Propagation (BCP) [fre95a] based (e.g., Unit), and introduced a new
dynamic heuristics, UniRel2, that proves to be the best for the Intel bounded-model
checking benchmark. Unirel2 is a domain specific heuristics, since it gives preference
to model variables, and also takes into account the simplification imposed on the
auxiliary variables. Previous evaluation [sht00] of dynamic splitting heuristics
reported static heuristics to be a clear winner over dynamic heuristics. Our results
are not compatible with [sht00] in the sense that for our benchmark the dynamic
splitting heuristics, Unirel2, worked much better than the available static heuristics
in SIMO. Since we have not evaluated Unirel2 versus the original static heuristics
introduced in [sht00], our conclusion is that dynamic splitting heuristics tuned for the
domain of bounded model checking as is Unirel2 can be very robust for industrial
size designs. Our intensive evaluation clearly pinpointed Unirel2 and CBJ-with-
Learning as the winning setting of Thunder for Intel’s benchmark.

Our BDD-based model checker, Forecast, is built on top of a powerful BDD
package, and contains most of the recently published state-of-the-art algorithms for
symbolic model checking. In addition to the unbounded model checking algorithms
in Forecast we developed bounded ones in order to give BDD based BMC a fair
chance in the comparisons against Thunder. We tried to get an automatic (not
requiring additional human tuning) default setting for Forecast as we have done for
Thunder. We were not able to get a default setting that is good for all the test cases
and an automatic static BDD variable ordering that beats the best humanly tuned
variable order. Therefore, we compare both best default setting and tuned setting for
Forecast with default setting of Thunder. The comparison reveals the productivity



Benefits of Bounded Model Checking at an Industrial Setting 439

boost gained by Thunder, since the default setting of Thunder clearly outperforms the
default setting of Forecast and is very competitive with the tuned Forecast setting.

As a summary, the unique contribution of this work is in the adaptation of
unbounded BDD-based model checking to bounded model checking, optimizations
of SAT based methods (mainly dynamic splitting heuristics) for bounded model
checking and a thorough and fair evaluation of bounded model checking on SAT
versus BDD based model checking making use of a rich set of real-life complex
verification and falsification test cases.

The paper is organized as follows. In Section 2, we give an overview on Thunder
and present experimental results that demonstrate the best SIMO and CNF generator
configuration for Thunder. Section 3 describes our effort to achieve best results for
BMC on BDD. In Section 4 we present experimental results comparing Thunder with
Forecast. Section 5 describes our conclusion and future research directions.

2 Thunder: Bounded Model Checker on SAT

Thunder, our bounded checker on SAT technology, resembles the work of Bierre et
al. [bccz99] in the reduction of the symbolic model checking problem to a bounded
model checking problem and consequently to the problem of propositional
satisfiability. Thunder, which makes use of a powerful DLL-based engine, SIMO, as
its default SAT engine, is also compatible with other state-of-the-art SAT engines
such as GRASP, SATO, Prover Plug-InTM [PPI, sta89]. We report in this paper our
experience of Thunder with SIMO since our contribution is mainly in the tuning of
DLL-based algorithms in the context of bounded-model checking.

2.1 Transforming the Bounded Model Checking Problem to Formulas

The basic idea in SAT based bounded model checking is to consider only paths of
bounded length k and to construct a propositional formula that is satisfiable iff there
is a counterexample of length k. BMC is concerned with finding counterexamples of
limited length k, and thus it targets falsification and partial verification rather than
full verification.

In order to fully verify a property one needs to look for longer and longer
counterexamples by incrementing the bound k, until reaching the diameter of the
finite state machine [bccz99]. However, the diameter might be very large in some
examples, and there is no easy way to compute it in advance. This issue is addressed
in [sss00] which incorporates induction in BMC that allows the algorithm to be used
both for verification and falsification.

Assume that we have a finite state machine M with initial states I and transition
relation TR, where both I and TR are encoded symbolically as Boolean formulas.
Assume also, that we want to check if an invariance property P holds for all states
reachable in a bounded number of steps. It is sufficient to focus only on invariance
properties since the safety specifications expressed in our temporal language,
ForSpec, are compiled into such invariance properties.

Our experience shows that the performance and capacity of Thunder is very
dependent on the way we generate the propositional formulae describing the



Fady Copty et al.440

counterexample. Similarly to CMU’s implementation of BMC, Thunder provides
different settings that we describe below. We also provide experimental results that
compare the various settings.

The propositional formula describing a path from s0 to sk requires s0 to be an initial
state and also that there is a transition from si to si+1 for 0 £ i < k:

Path(s0,…,sk) = I(s0) Ù TR(s0, s1 ) Ù … TR(sk-1, sk )
Thunder implements three different checks for a counterexample (similar to what is
provided in CMU’s BMC tool). The first one, referred to as bound k, looks for a
violation of P in all the cycles from 0 to k:

Path(s0,…,sk) Ù (Ø P(s0) Ú …Ú Ø P(sk))
The second check, referred to as exact k, looks for a violation of P exactly in the last
cycle k:

Path(s0,…,sk) Ù Ø P(sk)
Finally, the third check, referred to as exact-assume k, looks for a violation of P at
cycle k and assumes P to be true in all the cycles from 0 to k-1:

Path(s0,…,sk) Ù P(s0) Ù …Ù P(sk-1) Ù Ø P(sk)
As expected, using exact or exact-assume is significantly faster than bound, but then
they solve an easier problem. For the sake of a fair comparison with BDD model
checking, all the results in this section are obtained with bound. We will return in
section 5 to the exact and exact-assume checks, since they are the only ones who can
cope with the capacity challenging examples presented there.

We also implemented the Bounded Cone of Influence (BCOI) optimization
proposed in [bcrz99]. This optimization rarely negatively affects so we use it as a
default, such that all the results below are obtained in the presence of BCOI. Our
experiments used a DLL-based SAT solver, SIMO [tac00], described in the next
section.

2.2 DLL Based Satisfiability Engine - SIMO

As many other modern SAT solvers, SIMO [tac00] is based on the well-known
Davis-Logemann-Loveland (DLL) algorithm [dll62]. DLL assumes the propositional
formula to be in Conjunctive Normal Form (CNF) and it employs a backtracking
search. At each node of the search tree, DLL assigns a Boolean value to one of the
variables that are not resolved yet. The search continues in the corresponding sub-tree
after propagating the effects of the newly assigned variable, using Boolean Constraint
Propagation (BCP) [fre95a]. BCP is based on iterative application of the unit clause
rule. The procedure backtracks once a clause is found to be unsatisfiable, until either
a satisfying assignment is found or the search tree is fully explored. The last case
implies that the formula is unsatisfiable.

SIMO’s strength is based on: (1) advanced backtracking mechanisms (2) advanced
procedures for choosing the next variable on which to split the search. Besides the
standard backtracking to the last choice point, SIMO implements also Conflict-
directed Back-Jumping (CBJ) and CBJ-with-Learning [dec90a, pro93a, bs97a]. In
Section 3.2.1, we explain at a high-level the CBJ-with-Learning algorithm which was
chosen to be the best setting following intensive benchmarking with real-life test
cases.



Benefits of Bounded Model Checking at an Industrial Setting 441

In the context of heuristics to choose the splitting variable, we compare several
dynamic heuristics and introduce a new dynamic heuristics, UniRel2, that proves to
be the best for the Intel bounded-model checking benchmark. Section 3.2.2 explains
at a high level the heuristics that have been compared and the experimental results
that justify our decision.

2.2.1 CBJ-with-Learning

Since the basic DLL algorithm relies on simple chronological backtracking, and most
heuristics are targeted to select the literal that satisfies the largest number of clauses,
it is not infrequent for DLL implementations to get stuck in possibly large sub-trees
whose leaves are all dead-ends. This phenomenon occurs when some selection
performed way up in the search tree is responsible for the constraints to be violated.
The solution, borrowed from constraint network solving [dec92], is to jump back
over the selections that were not at the root of the conflict, whenever one is found.
The corresponding technique is widely known as Conflict-directed Back-Jumping
(CBJ) [pro93]. It has been reported from the authors of RELSAT [bs97], GRASP
[ss96] and SATO [zha97] that CBJ proved a very effective technique to deal with
real-world instances.

It turns out that in all these solvers, CBJ is tightly coupled with another technique,
called Learning. CBJ can be very effective in "shaking" the solver from a sub-tree
whose leafs are all dead ends, but since the cause of the conflict is discarded as soon
as it gets mended, the solver may get repeatedly stuck in such local minima. To
escape this pattern, some sort of global knowledge is needed: the causes of the
conflicts may be stored to avoid repeating the same mistake over and over again. This
process is usually called no-good or recursive learning. Our BMC experience with
SIMO agrees with previous work [bs97] that reports that CBJ with relevance learning
is essential for good performance in the domain of SAT.

2.2.2 Splitting Heuristics

The splitting heuristic needs to decide which variable to assign next from the set S of
variables that were not assigned yet. Since the conversion to CNF [pg86] introduces
many additional variables (one for each non-atomic sub-formula of the original
formula) we restrict the set S to the variables of the original formula, also called
relevant variables. As pointed out in [sht00], this optimization is very useful and our
results confirm this conclusion.

SIMO features a static splitting heuristic that relies on a user-supplied order to
choose each splitting variable among relevant variables. Additionally, SIMO has a
wide range of dynamic splitting heuristics that showed to be very effective in our
experience with bounded model checking.

SIMO's dynamic splitting heuristics fall broadly into two categories: BCP
heuristics, and greedy heuristics. BCP heuristics choose the splitting variable by
tentatively assigning truth-values to (some of) the unassigned variables and then
performing BCP. In this way the exact amount of simplification produced by each
possible assignment can be calculated. Moreover, BCP heuristics can detect failed
literals, i.e., literals that once assigned produce a contradiction after a single sweep of
BCP. Greedy heuristics choose the splitting variable by estimating the amount of



Fady Copty et al.442

simplification caused by an assignment. Relying on an estimate rather than an exact
calculation makes greedy heuristics faster than BCP heuristics, but also less precise
and incapable of detecting failed literals. In this regard, greedy heuristics can be seen
as an approximation to the BCP ones. Both types of heuristics branch on the variable
that produces- or is estimated to produce- the maximum simplification in the formula.
We used heuristics from both categories in our experiments with SIMO.

Among the greedy heuristics, we have used Moms and Morel heuristics. For each
open variable p, Moms computes the number of binary clauses in which p occurs,
and uses this quantity as the expected amount of simplification when assigning p.
Morel works in the same way as Moms, but its choice is restricted to relevant
variables only.

From the class of BCP heuristics, we have used three BCP heuristics, called Unit,
Unirel, and Unirel2. For each open variable p, Unit tentatively assigns both p and
Ø p: for both choices, BCP is performed and the number of unit-propagated variables
is collected. If the heuristic yields a contradiction by assigning p (resp. Ø p) then it
immediately assigns Ø p (resp. p): if also Ø p (resp. p) fails, then Unit halts and
backtracks, otherwise it goes on in trying to select a variable. If all variables are
assigned during this process or all the clauses are satisfied, Unit reports that a
satisfying assignment was found. Unirel works in the same way as Unit, except it
considers only relevant variables when collecting the number of unit-propagated
variables. Unirel2, on the other hand, tentatively assigns only relevant variables, but
it collects the number of all the unit-propagated variables.

We compared the performance of Moms, Morel, Unit, Unirel, Unirel2, and Static
heuristics in SIMO making use of a benchmark of 26 real-life test cases. The
benchmark is evenly distributed between falsification and verification test cases.
Unirel2 heuristics provides a clear performance and capacity boost over the other
heuristics. We chose to report only timings of the dynamic heuristics, since SIMO
does not include all the known static heuristics. The current static heuristics in SIMO
performed much worse than the dynamic heuristics for our benchmark. However, in
order to derive any accountable conclusions on the effectiveness of dynamic
heuristics versus static heuristics, SIMO needs to be enriched with the latest static
heuristics for bounded model checking [sht00].

For all the runs reported in Figure 1, we use 3-hour time-out limit. As can be seen,
Moms heuristics is significantly inferior to Unit and Unirel2 (except for circuit12).
On the other hand, Unirel2 provides a clear performance boost over Unit heuristics.

In the analysis of the results, let us concentrate on three representative heuristics
from each category: Moms, Unit and Unirel2. Moms is the basic and most popular
greedy heuristics. Unit is the simplest of the BCP-based heuristics, and Unirel2 is the
overall fastest of the 6 (Static, Moms, Morel, Unit, Unirel, Unirel2) that we have
tried. Our results indicate clearly that BCP heuristics perform better than greedy
heuristics for this domain of problems. BCP heuristics take into account the structure
of the CNF formula which closely reflects the structure of the original formula
(before the CNF conversion). Indeed, in the CNF formula there are (possibly long)
chains of implications. With BCP heuristics, a literal occurring at the top of a chain is
preferred to a literal occurring in the middle of the same chain. This is not guaranteed
to be the case with greedy heuristics, where only the number of occurrences counts.
Moreover, both Unit and Unirel2 feature the failed literal detection mechanism that



Benefits of Bounded Model Checking at an Industrial Setting 443

Moms heuristics is missing. This mechanism allows Unit and Unirel2 to perform
more simplifications at each node.

Unirel2 considers only the relevant variables (i.e., the model variables) whereas
Unit heuristics considers all the variables as a candidate for splitting. Although the
greedy nature of Unit heuristics makes it more accurate, in most cases the time spent
to choose a variable will be much more in Unit than Unirel2 (since the number of all
the variables can be significantly larger than the number of relevant variables).
Therefore, to give up a bit on quality provides better overall performance for Unirel2.

3 Forecast – A BDD-Based Symbolic Model Checker
Several recent papers [bcrz99, bccz99, bccfz99, sht00] compare traditional BDD -
based model checking with SAT-based model checking, showing that in many cases
SAT technology dramatically outperforms BDD technology. Such comparisons
(except [bccz99]), however, neglect one crucial aspect that distinguishes the two
approaches. Traditional BDD-based model checking searches for counterexamples of
unbounded length. In contrast, SAT-based model checking searches for
counterexamples of a predetermined bounded length. Thus, prior comparison leaves
open the question whether the difference in performance is due to the underlying
technology--BDD vs. SAT, or is due to the difference between bounded and
unbounded model checking. To answer this question, we undertook the task to first
adapt a BDD-based model checker to bounded model checking and then compare its
performance to a SAT-based model checker.

Fig. 1. Comparison of Thunder run-time with the dynamic heuristics Moms, Morel,
Unit, Unirel and Unirel2 for a benchmark of 26 test cases on a logarithmic scale. In
the reported runs, time-out has been set to 3 hours. The x axis indicates the test case
where the y axis indicates the Thunder run-time. We can clearly see that Moms and
Unit heuristics times out for 6 and 1 out of 26 test cases, respectively.

3.1 Adapting Forecast for Bounded Model Checking

Forecast is a BDD-based model checker developed and deployed in Intel, using an
in-house BDD package. Forecast can run in two modes. In the standard mode,
Forecast applies either forward or backward breadth-first-search traversal from a
source set S to a target set T with respect to a transition relation TR, when Image
refers to a pre-image or post-image operation:

0,1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Moms

Morel

Unit

Unirel

Unirel2



Fady Copty et al.444

Traversal(S,T,R)
Reach=Frontier=S
while (Frontier „ ˘ ) {

if (Frontier ˙ T„ ˘ ) terminate;
Frontier := Image(Frontier,R) - Reach

Reach := Reach ¨ Frontier
}

A difficulty often faced by standard traversal is the excessive growth of the
Frontier or the Reach set ("state explosion"). To address the former problem,
Forecast can apply a prioritized-traversal algorithm, see [fkzvf00]. In prioritized
traversal mode, we split the Frontier into two balanced parts when its BDD size
reaches some predetermined threshold. Thus, instead of maintaining one frontier, the
algorithm maintains several frontiers, organized in a priority queue. A given traversal
step consists of choosing one frontier set and applying the image operator to that set.
Thus, prioritized traversal can be viewed as a mixed bread-first/depth-first search.

How can we adapt standard traversal and prioritized traversal to bounded model
checking? The first change is to bound the length of the traversal.

BoundedTraversal1(S,T,R,k)
I :=0
Reach=Frontier=S
For (I = 0; I< k; I++) {

If (Frontier ˙ T„ ˘ ) terminate;
Frontier := Image(Frontier,R)-Reach
Reach := Reach ¨ Frontier;

}

If the distance between S and T is less than or equal to k, then the running time of
BoundedTraversal1 and Traversal would clearly coincide. Note, however, that
termination is not an issue in bounded traversal. Thus, from a termination point of
view, there is no need to maintain Reach.

BoundedTraversal(S,T,R,k)
Frontier=S
For (I = 0; I< k; I++) {

If (Frontier ˙ T„ ˘ ) terminate;
Frontier := Image(Frontier,R);

}

However, besides guaranteeing termination, Reach was used in the classic
algorithm to cut down on the size of Frontier. Thus, one would expect
BoundedTraversal to run into huge Frontiers, resulting in weak performance. This is
where prioritized traversal comes to the rescue. As before, we split the Frontier



Benefits of Bounded Model Checking at an Industrial Setting 445

whenever its BDD gets larger than some threshold, maintaining a set of frontiers in a
priority queue. With each frontier we maintain its distance from the source set S. We
choose frontiers and apply the image operator, making sure that the bound is never
exceeded. This results in a prioritized version of BoundedTraversal.

So far we have treated S and T in a symmetrical fashion. In practice, however, the
initial states are defined in terms of many state variables, while the error state is
defined in terms of a small number of state variables, called the error variables.
Cone-of-influence (COI) reduction algorithms take advantage of that by eliminating
state variables that cannot have any effect on the error variables. In the context of
BMC, one can be more aggressive and eliminate variables that cannot have an effect
on the error variables in a bounded number of clock cycles. This optimization called
Bounded Cone-of-Influence (BCOI) was introduced in [bcrz99].

Forecast has a “lazy”mode [yt00] that effectively applies a BCOI reduction. This
mode is effective only in backward traversal – for each pre-image, one identifies the
relevant variables appearing in the frontier and builds a smaller TR based on those
relevant variables. Naturally, this reduction is more effective when the Frontier has a
small number of state variables, e.g., when the Frontier is close to the set of error
states. We have adapted the “lazy model checking” mode of Forecast to BMC (i.e.,
we search for a counter-example for k pre-image steps).

3.2 Default Configuration for Forecast

Since we built the benchmark of bounded model checking from internal Intel’s
benchmark base† of Forecast, every test case had the best setting for unbounded
Forecast meaning
• The right pruning directives to reduce the size of the model
• The best initial order that the FV expert user could get
• The best (CPU time-wise) configuration that the FV expert user could get

The time spent by the FV expert to get to the best initial order and tool
configuration could not be derived from the benchmark. Furthermore, the
configuration in the benchmark base was for unbounded Forecast. In order to make a
fair comparison with Thunder, in search for a best default setting, we experimented
with three recent state-of-the-art algorithms of Forecast described in Section 3.1 :
bounded prioritized-traversal, unbounded prioritized traversal [fkzvf00], and bounded
lazy model checking. For all the runs a partitioned transition relation was used.

We present results achieved by Forecast under two different configurations.
• Automatic : the initial variable order is automatically computed by a static

variable ordering algorithm
• Semi-automatic : the initial order is taken from the order that was calculated

by previous runs of Forecast with dynamic reordering‡

† All the properties verified were safety properties.
‡ This evaluation is similar to RB2 configuration in [sht00a]; however, in our case the order

gets refined by the dynamic reordering output of more than one run of the model checker.



Fady Copty et al.446

Both of the configurations were run with dynamic reordering with the threshold
of 500K BDD nodes (meaning dynamic reordering will be turned on when the total
number of BDD nodes allocated exceeds 500K).

TestCase Bound Forecast
Lazy
(secs)

Forecast
Prioritized

(secs)

Forecast
Prioritized Unbounded

(secs)

Circuit 1 5 27.3 1340 114.1
Circuit 2 7 1.1 0.56 2.1
Circuit 3 7 2.1 15.00 106.1

Circuit 4 11 9.1 2233.00 6189.0
Circuit 5 11 TIMEOUT 107800.00 4196.2
Circuit 6 10 TIMEOUT TIMEOUT 2354.1
Circuit 7 20 4187.2 TIMEOUT 2795.1
Circuit 8 28 TIMEOUT TIMEOUT TIMEOUT
Circuit 9 28 TIMEOUT TIMEOUT TIMEOUT

Circuit 10 8 TIMEOUT TIMEOUT 2487.1
Circuit 11 8 TIMEOUT TIMEOUT 2940.5
Circuit 12 10 TIMEOUT TIMEOUT 5524.1
Circuit 13 37 TIMEOUT TIMEOUT TIMEOUT

Table 1. Automatic Setting Comparisons. Forecast performance comparisons for
different configurations with automatically generated initial order. A time-out limit
of 3 hours has been set.

Table 1 and Table 2 summarizes the time spent by Forecast in verifying these test
cases when a time limit of 3 hours has been set. All experiments were run on HP
J6000 work station with 2 Gigabyte memory. Table 1 reports Forecast runs when the
initial order is automatically generated by the tool and Table 2 reports the results
when Forecast is given a semi-manual order (i.e. the enhanced order is obtained by
running Forecast with dynamic ordering several times).

The bottom line of Table 2 is the criticality of “a good initial order” for good
performance of a BDD-based model checking. Without a good order, Forecast is far
from being competitive. Although unbounded prioritized traversal does not
outperform the other two algorithms for the test cases that all three complete, we
selected it to be the winner configuration for the automatic default setting, since it
times out much less than the other two (only three times). Although the success of
unbounded prioritized traversal versus the bounded version is intriguing, we believe
it to be due to the better suitability of the initial variable orders to the unbounded
prioritized traversal.

Table 2 dilutes the effect of bad initial order; however still no winner
configuration for all or most of the test cases can be chosen indicating the difficulty
to set an always winning setting for BDD-based model checkers. Lazy model
checking in Table 2 for the test cases that it can complete beats the other two. On the
other hand, it cannot complete 6 verification cases in the time set. No clear winner
could be found between the bounded and unbounded versions of Prioritized
Traversal. Although performance of prioritized traversal is worse than lazy model



Benefits of Bounded Model Checking at an Industrial Setting 447

checking for all the test cases where lazy model checking completes, it times out less
(4 times).

As can be seen no good (overall winning) default setting could be selected for
Forecast based on the results of Table 1 and Table 2. We have selected the
unbounded prioritized traversal as the default setting, since it is a clear winner for
Table 1 and not performing worse than the others for Table 2; moreover, the setting
in Table 1 is more fair for comparison with default setting of Thunder, since the
initial order selection time is included in the overall Thunder run time. Table 2
numbers do not include the time spent in the generation of the initial order time (i.e,
the runs of symbolic model checking to generate good orders). However, note that
although unbounded prioritized traversal is not guaranteed to find the counter-
example of the minimal length, for all the falsification test cases that we have tried a
counter-example of length k or less was reported.

TestCase Bound Forecast
Lazy
(secs)

Forecast
PrioritizedBounded

(secs)

Forecast
Prioritized UnBounded

(secs)

Circuit 1 5 7.4 21.0 21.8
Circuit 2 7 1.6 1.8 1.9
Circuit 3 7 2.3 5.2 5.6
Circuit 4 11 6.7 89.9 241
Circuit 5 11 6432.5 64.2 80.4
Circuit 6 10 TIMEOUT 44.6 36.8
Circuit 7 20 134.3 7250.2 TIMEOUT
Circuit 8 28 TIMEOUT 1421.1 1287.5
Circuit 9 28 TIMEOUT TIMEOUT 1040.3

Circuit 10 8 147.4 693.1 694.6
Circuit 11 8 143.9 260.6 261.0
Circuit 12 10 2379.2 4657.0 1041.5
Circuit 13 37 TIMEOUT TIMEOUT 4188.0
Circuit 14 41 TIMEOUT 1864.36 TIMEOUT
Circuit 15 12 423.1 TIMEOUT TIMEOUT
Circuit 16 40 16.1 783.0 TIMEOUT
Circuit 17 40 TIMEOUT TIMEOUT 33.1

Table 2. Semi-automatic Setting Comparions. Forecast performance comparisons for
different configurations with semi-automatic generated good initial order.

4 Comparison of Thunder and Forecast

We evaluated bounded Thunder versus bounded Forecast with respect to
performance and capacity. For each of these, we studied the aspect of productivity.

Our performance benchmark consists of 15 real-life falsification test cases. All the
15 test cases were from the unbounded Forecast benchmark base (meaning all the test
cases could be falsified at special settings of Forecast). Since unbounded version of
Forecast finds counterexamples of minimal length, we knew beforehand the minimal
length k for the counterexamples that can be generated for each test case. Therefore,
we could generate for each test case a bounded k-1 verification version. Furthermore,



Fady Copty et al.448

we added to our benchmark two hard verification cases where we requested both
Forecast and Thunder to verify that no counter-example exists. In this manner, we
evaluated the power of bounded Thunder versus the power of bounded Forecast for
both verification and falsification test cases.

We built the capacity benchmark (made up of 11 test cases) by eliminating the
pruning directives of some of the test cases in the performance benchmark and we
added brand-new test cases clearly surpassing the capacity limits of Forecast and
other state-of-the-art model checkers (i.e., verification test case with over 2000
sequential elements and inputs).

4.1 Analysis of Performance Benchmark Results

Table 3 compares the performance of default Thunder setting with default and tuned
settings of Forecast. The default setting of Forecast (prioritized traversal + dynamic
reordering + partitioned transition relation + automatic initial ordering) is far from
being competitive. For tuned Forecast results, we report the configuration that has
worked best. All the tuned configurations, except the ones explicitly reported do not
activate dynamic reordering. As can be seen they include variations of transition
relation (tr part (partitioned), tr mono (monolithic)), variations of priorities (min size,
max states, BFS, DFS) for prioritized search and variations of configurations for lazy
model checking.

The comparison of default settings of Thunder and Forecast reveals that Forecast’s
default performance and capacity is far below Thunder’s. On the other hand, the
comparison results reveal that Thunder at default setting provides compatible
performance to tuned Forecast results. For 6 benchmarks out of 17, Thunder default
settings beat tuned Forecast setting’s results by 2 to 3X (See in Table 3 the
comparison on Circuit 3, 5, 8, 9, 10, and 11). For Circuit 13, Thunder default
performance wins over Forecast tuned performance by 9X. Nevertheless, tuned
Forecast results are 2 to 3 X better for Circuit 7 and Circuit 12. Thus, there is no clear
winner with respect to performance when default Thunder and tuned Forecast’s
performance is compared. The only conclusion is that Thunder gives a significant
productivity boost. In short, unlike Forecast Thunder does not require high tuning
effort to perform well.

Through the performance benchmark, we also tested the capacity of Thunder
versus Forecast. Three test cases that could be easily verified by tuned Forecast
setting could not be verified by any heuristics of Thunder (Circuit 14 (bound 40, 41),
Circuit 16 (bound 40), Circuit 17 (bound 60)). Although Thunder could not solve
(except for Circuit 16) the bounded model checking problem for these test cases, it
could solve a variation of the problem (exact, exact-assume described in Section 2.1).
As seen in Figure 2, although exact and exact-assume modes are significantly faster
than the bound mode, the problem solved is simpler. By exact-assume, we are
verifying the existence of a counterexample of exactly length k. Clearly, the solution
of k exact-assume verification cases where the existence of a counter-example of
length 1 to length k are verified will be equivalent to verifying bound k problem.
Although too time consuming, the fact that Thunder could solve the exact-assume
problem for most of the hard test cases for the bound version, indicates that the
solution of these problems is in the capacity range of Thunder.



Benefits of Bounded Model Checking at an Industrial Setting 449

4.2 Analysis of Capacity Benchmark Results

We generated the capacity benchmark by eliminating the pruning directives set to get
the model checking cases through. The size of the test cases in the capacity
benchmark containing thousands of sequential elements and inputs is clearly far
beyond the capacity of Forecast and any other state-of-the art BDD-based symbolic
model checker. Therefore, no results are reported for Forecast. Thunder has
successfully verified a wide range of the test cases in the capacity benchmark
indicating a clear win over Forecast for un-pruned test cases. The fact that Thunder
could verify these test cases without the extensive pruning effort required for BDD-
based model checker is also a clear indication of productivity gain achieved by
Thunder.

In Table 4, we report the CPU time of the overall run of Thunder for 11 test cases.
The test cases, circuit 1, 3 and 4, are the same test cases that have been used for the
performance evaluation. For this benchmark, the pruning directives set by the user to
get the verification fit the capacity of BDD-based model checking have been
eliminated. We report the number of latches and inputs before and after the
application of automatic pruning operation (cone-of-influence reduction with respect
to property). As can be seen, using Thunder, test cases with over 9000 latches and
inputs could be verified without requiring any additional manual pruning effort. In
Table 4, the bounded model checking problem fed into Thunder SAT engine
represents a verification case (i.e., Ncircuit8) of total 6832 inputs and sequential
elements representing 121786 SAT variables and 358334 clauses. These results,
although in the domain of bounded model checking, are a clear indication of the
promise in this technology to establish model checking as a robust and popular
technique at industrial validation environments.

Fig. 2. Performance comparison results of bound and exact-assume modes of
Thunder for the same k. The x axis represents the test cases when the y axis
represents Thunder run-time in seconds.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

bound

ex-assum



Fady Copty et al.450

TestCase Bound Variables,
Clauses in
Thunder

Thunder
Default (secs)

Bounded
Forecast
Default
(secs)

Bounded
Forecast

Tuned(secs),
Configuration

5 5055, 14690 2.43 114Circuit 1
4 3987, 11559 1.59

2.80, lazy

7 2000, 5727 0.81 2Circuit 2
6 1688, 4820 0.64

0.56, lazy

7 3419, 8977 2.01 106Circuit 3
6 2908, 7623 1.17

1.29, lazy

11 6740, 18884 1.91 6189Circuit 4
10 6085, 17030 1.53

1.04, lazy

11 10258, 29515 10.12 4196Circuit 5
10 9303, 26746 8.78

35.14,
unbounded-prio,

tr part
10 8829, 25587 5.51 2354Circuit 6
9 7918, 22927 4.85

8.34,
unbounded-prio,

tr part
20 28769, 85033 236.29 2795Circuit 7
19 27316, 80732 140.65

76.88,
unbounded-prio:
minimum size

28 38836, 116803 45.66 TIMEOUTCircuit 8
27 37427, 112558 52.85

141.00,
unbounded-prio:

BFS, tr mono
28 37451, 112465 39.96 TIMEOUTCircuit 9
27 36092, 108377 50.65

85.50,
unbounded-prio :

max states
8 8734, 25631 5.01 2487Circuit 10
7 7517, 22031 5.79

13.90, lazy

8 8734, 25631 5.01 2940Circuit 11
7 7517, 22031 5.76

13.89, lazy

10 8331, 24497 378.05 5524Circuit 12
9 7429, 21826 139.47

159.20,
unbounded-prio,

tr part
37 60779, 169824 195.15 TIMEOUTCircuit 13
36 59118, 165175 217.75

1586.00,
unbounded-prio

41 51917, 154061 TIMEOUT
91.9 (exact-

assume)

TIMEOUTCircuit 14

40 50616, 150220 TIMEOUT
83.88(exact-

assume)

833.96,
unbounded-prio

maxstates

12 9894, 29138 1070.65 TIMEOUTCircuit 15
11 4209.1

17.31,
unbounded-prio

40 40718,114344 TIMEOUT
(exact-assume)

TIMEOUTCircuit 16

20 20000, 56009 22.03

16.1, lazy +
reorder

60 123323, 356126 TIMEOUT
4652.76

(exact-assume)

TIMEOUTCircuit 17

20 41968,120996 247.27

3657.3, tr part,
forward reach

Table 3. Performance comparison results of default Thunder versus default and tuned
Forecast. For Forecast, no timing for bound k-1 is reported (clearly it is less than the
time reported for bound k).



Benefits of Bounded Model Checking at an Industrial Setting 451

Unpruned
Test Cases

Bound Num. Latches +
Inputs before

Automatic
Pruning

Num. Latches
+ Inputs after

Automatic
Pruning

Variables,
Clauses

Thunder
time (secs)

Circuit 1 5 12011 152 6831, 19759 6.1
4 12011 152 5403, 15591 5.1

Circuit 3 7 7054 0.81 24487, 65332 96.1
6 7054 0.64 200552, 54774 16.37

Circuit 4 11 6586 2.01 119248, 353400 78.61

10 6586 1.17 107838, 319404 68.2
Ncircuit 6 5 9704 1.91 21351, 61499 29.39
Ncircuit 7 5 17262 1.53 TIMEOUT TIMEOUT
Ncircuit 8 6 6832 10.12 121786, 358334 576.24

Ncircuit 9 11 3321 8.78 35752, 105268 73.32
Ncircuit 10 6 1457 5.51 50578, 149668 267.91

Table 4. Results from the Capacity Benchmark.

5 Conclusions
In this paper, we have reported our effort to develop industrial strength BMC and the
impressive productivity gain achieved by using SAT-based BMC (Thunder) versus
BDD-based BMC (Forecast). This gain is achieved by drastic reduction in the
required user ingenuity and tuning effort in running the tools. Our work agrees with
previous work [bccz99, bcrz99, sht00] in the observation that SAT-based BMC can
outperform BDD-based BMC. We show that this statement holds mainly in
comparison of SAT-based BMC with untuned BDD-based BMC supporting our
conclusion on productivity boost of SAT. Moreover, the evaluation of SAT-based
BMC on verification test cases of over thousands of inputs and sequential elements
reveals its outstanding capacity to verify designs far beyond the capacity ballpark of
the state-of-the-art BDD-based model checkers.

The tuning effort that we have invested to get best default setting for SAT-based
BMC introduces a new dynamic heuristics, Unirel2, which is a winner for Intel’s
bounded model checking benchmark supporting the statement made on the
productivity gain achieved by Thunder over Forecast.

Acknowledgements

We would like to thank Roy Armoni for his contribution to the development of the
infrastructure of Thunder.



Fady Copty et al.452

References
[abe00] P. A. Abdulla, P. Bjesse, and N. E'en. Symbolic reachability analisys based on SAT

solvers. In Proc. of the 6th International Conference of Tools and Algorithms for
Construction and Analisys of Systems (TACAS 2000), volume 1785 of LNCS, pages
411-425, Berlin, 2000. Springer.

[arm01] R.Armoni, L.Fix, R.Gerth, B.Ginsburg, T.Kanza, S.Mador-Haim, E.Singerman,
A.Tiemeyer, M.Y.Vardi. ForSpec: A Formal Temporal Specification Language,
Submitted to ICCAD’01

[bee96a] I.Beer, S.Ben-David, C.Eisner, A.Landver. “RuleBase: An industry-oriented formal
verification tool”. In Proc. Design Automation Conference 1996 (DAC’96).

[bee97a] I.Beer, C.Eisner, D. Geist, L.Gluhovsky, T.Heyman, A.Landver, P.Paanah, Y.Rodeh,
G.Ronin, Y.Wolfsthal. “RuleBase: Model Checking at IBM”, Proceedings of CAV’97.

[bcm92] J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking: 1020 states
and beyond.Information and Computation, 98:142-170, 1992.

[bcrz99] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu. “Verifying Safety
Properties of a PowerPC Microprocessor Using Symbolic Model Checking without
BDDs”. Proc. of Computer Aided Verification, 1999 (CAV'99).

[bccz99] A. Biere, A Cimatti, E. M. Clarke, and Y. Zhu. “Symbolic model checking without
BDDs”. TACAS’99

[bccfz99] A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Proc. of the 36th Conference on Design
Automation (DAC '99), pages 317-320. ACM Press, 1999.

[bry92] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293-318, September 1992.

[bs97] R. J. Bayardo, Jr. and R. C. Schrag, "Using CSP Look-Back Techniques to Solve Real-
World SAT Instances", pages 203-208, Proc. AAAI, 1997.

[dll62] M. Davis and G. Logemann and D. Loveland, “A machine program for theorem
proving”, Journal of the ACM, vol. 5, 1962.

[dec90a] R. Dechter, "Enhancement Schemes for Constraint Processing: Backjumping,
Learning, and Cutset Decomposition", Artificial Intelligence, pages 273-312, vol. 41,
n.3, 1990.

[fkzvf00a] R.Fraer, G.Kamhi, B.Ziv, M.Vardi, L.Fix, “Efficient Reachability Computation
Both for Verification and Falsification”, Proceedings of International Conference on
Computer-Aided Design, (CAV’00).

[fre95a] J.W. Freeman, "Improvements to propositional satisfiability search algorithms", PhD
Thesis. University of Pennsylvania, 1995.

[mcm93] K.L. McMillan. Symbolic Model Checking: an Approach to the State Explosion
Problem. Kluwer Academic Publishers, 1993.

[pg86] D.A. Plaisted and S. Greenbaum, "A Structure-preserving Clause Form Translation",
Journal of Symbolic Computation, vol.2, pages=293-304, 1986.

[PPI] Prover 4.0 Application Programming Reference Manual, Prover Technology AB,
2000. PPI-01-ARM-1.

[pro93a] P. Prosser, “Hybrid algorithms for the constraint satisfaction problem",
Computational Intelligence, vol. 9, n. 3, pages 268-299, 1993.

[sht00] O. Shtrichman, “Tuning SAT checkers for Bounded Model-Checking” Proc. of
Computer Aided Verification, 2000 (CAV'00).

[sss00] M. Sheeran, S. Singh and G. Staalmarck, “Checking safety properties using induction
and a SAT solver” Proceedings of Formal Methods in Computer Aided Design 2000
(FMCAD00)

[ss96] J.P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for
satisfiability.Technical report, University of Michigan, April 1996.



Benefits of Bounded Model Checking at an Industrial Setting 453

[ss98] M. Sheeran and G. Stalmarck. A tutorial on Stalmarck's proof procedure for
propositional logic. In Proc. of the 2nd International Conference on Formal Methods in
Computer Aided Design (FMCAD '98), volume 1522 of LNCS, pages 82-99, Berlin,
1998. Springer.

[sta89] G. Stalmarck. System for Determining Propositional Logic Theorems by Applying
Values and Rules to Triplets that are Generated From Boolean Formula. Swedish
Patent No. 467076 (approved 1992), US Patent No. 5276897 (1994), European Patent
No. 0403454 (1995), 1989.

[tac00] A. Tacchella. "SAT Based decision procedures for knowledge representation and
Formal Verification". PhD Thesis. University of Genova. 2000.

[wbcg00] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining Decision
Diagrams and SAT Procedures for Efficient Symbolic Model Checking. In Proc. of the
12th International Conference on Computer Aided Verification (CAV 2000), volume
1855 of LNCS, pages 124-138, Berlin, 2000. Springer.

[yt00] J.Yang, A.Tiemeyer.” Lazy Symbolic Model Checking”. DAC’00.
[zha97] H. Zhang. SATO: An efficient propositional prover. In William McCune, editor,

Proceedings of the 14th International Conference on Automated deduction, volume
1249 of LNAI, pages 272-275, Berlin, July13-17 1997. Springer.


	1 Introduction
	2 Thunder: Bounded Model Checker on SAT
	2.1 Transforming the Bounded Model Checking Problem to Formulas
	2.2 DLL Based Satisfiability Engine - SIMO
	3 Forecast - A BDD-Based Symbolic Model Checker
	3.1 Adapting Forecast for Bounded Model Checking
	3.2 Default Configuration for Forecast
	4 Comparison of Thunder and Forecast
	4.1 Analysis of Performance Benchmark Results
	4.2 Analysis of Capacity Benchmark Results
	5 Conclusions
	References

