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REVIEW & INTERPRETATION

Despite the widespread occurrence of condensed tannins (CTs) 
in the plant kingdom (Fig. 1), there are still large gaps in our 

knowledge that continue to challenge plant breeding, animal sci-
ence, and analytical chemistry; progress in all of these disciplines 
is needed in order understand the mechanisms that underpin their 
actions and to fully exploit their bene�ts.
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ABSTRACT

Condensed tannins (CTs) account for up to 20% 

of the dry matter in forage legumes used as rumi-

nant feeds. Bene�cial animal responses to CTs 

have included improved growth, milk and wool 

production, fertility, and reduced methane emis-

sions and ammonia volatilization from dung or 

urine. Most important is the ability of such forages 

to combat the effects of gastrointestinal parasitic 

nematodes. Inconsistent animal responses to CTs 

were initially attributed to concentration in the diet, 

but recent research has highlighted the importance 

of their molecular structures, as well as concen-

tration, and also the composition of the diet con-

taining the CTs. The importance of CT structural 

traits cannot be underestimated. Interdisciplinary 

research is the key to unraveling the relationships 

between CT traits and bioactivities and will enable 

future on-farm exploitation of these natural plant 

compounds. Research is also needed to provide 

plant breeders with guidelines and screening tools 

to optimize CT traits, in both the forage and the 

whole diet. In addition, improvements are needed 

in the competitiveness and agronomic traits of 

CT-containing legumes and our understanding of 

options for their inclusion in ruminant diets. Farm-

ers need varieties that are competitive in mixed 

swards and have predictable bioactivities. This 

review covers recent results from multidisciplinary 

research on sainfoin (Onobrychis Mill. spp.) and 

provides an overview of current developments 

with several other tanniniferous forages. Tannin 

chemistry is now being linked with agronomy, 

plant breeding, animal nutrition, and parasitology. 

The past decade has yielded considerable prog-

ress but also generated more questions—an envi-

able consequence of new knowledge!
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This review focuses on progress achieved during the 
past decade and considers the following topics:

1. bioactive CTs in plants in general and forage legumes 
in particular;

2. intra- and interspecies variations in CT contents and 
composition, which will be termed CT traits from 
here on;

3. e�ects of agronomic, harvesting, and processing 
practices on CT e�cacies;

4. e�ects on animal health, nutrition, product quality, 
and environmental emissions; and

5. characteristics useful for plant breeders and tools for 
selecting or engineering forages with novel CT traits.

This review also summarizes results from a 
multidisciplinary research consortium that focused on 
sainfoin (Fig. 2). In this project, agronomists and plant 
breeders assembled germplasm collections of sainfoin 
(Onobrychis Mill. spp.), which is a traditional forage legume 
in Europe, and identi�ed molecular markers and strategies 
for weed control. Ruminant nutritionists studied various 
accessions for their in vitro fermentation characteristics and 
in vivo feeding trials, nitrogen balances, and the quality 
of meat and dairy products. Parasitologists explored the 
antiparasitic properties of a wide range of CT traits, and 
chemists developed tools for analyzing the CTs in sainfoin 
pellets, silages, and digesta.

The background to this work was the pioneering 
research in New Zealand that �rst studied fresh sainfoin  
(Onobrychis viciifolia Scop.) and Lotus L. spp. in relation to 
legume bloat and nutritive value (Reid et al., 1974). Sainfoin 
research included measurements of the protein-binding 
characteristics of CTs (Fig. 1) ( Jones and Mangan, 1977) 
and aspects of nitrogen digestion in sheep (Egan and Ulyatt, 
1980), but problems with sainfoin persistence in swards 
diverted attention to Lotus species. Initial research by Barry 
and colleagues focused on big trefoil (Lotus pedunculatus Cav.), 

examining e�ects of CT concentration (Barry et al., 1986), 
whereas Waghorn et al. (1987) demonstrated the bene�cial 
e�ects of CTs in birdsfoot trefoil (Lotus corniculatus L. var. 
corniculatus) on absorption of essential amino acids from 
the intestine. Other forages were also evaluated in New 
Zealand, including sulla (Hedysarum coronarium L.; Stienezen 
et al., 1996) and dock (Rumex obtusifolius L.; Waghorn and 
Jones, 1989), but the importance of CT composition, in 
addition to concentration, was demonstrated more recently 
(Waghorn et al., 1997). Subsequent research included 
CT e�ects on livestock parasites and greenhouse gas 
emissions, but �nancial support decreased because of a lack 
of competitiveness of tanniniferous forages, especially in 
fertile soils. It also became apparent that detailed chemical 
characterization was required to elucidate mechanisms 
of action, because the two Lotus species di�ered in their 
biological e�ects and tannin types. The question was: were 
the CTs responsible for these di�erent biological e�ects?

This review seeks to provoke discussion on how 
to progress this area of research, how to optimize the 

Fig. 1. Example of a condensed tannin (CT) molecule that consists of four flavan-3-ol subunits (= monomeric building blocks). Procyanidins are 

composed of catechin or epicatechin and prodelphinidins of gallocatechin or epigallocatechin subunits (for further details, see Zeller, 2019).

Fig. 2. The LegumePlus project—an interdisciplinary European 

Union-funded research and training network on sainfoin (http://

legumeplus.eu).

https://www.crops.org
http://legumeplus.eu
http://legumeplus.eu


CROP SCIENCE, VOL. 59, 2019  WWW.CROPS.ORG 3

a few CT-containing feeds with ruminant animals (e.g., 
sheep, goats, and cattle; Mueller-Harvey, 2006; Waghorn, 
2008). The nutritional bene�ts include improved growth, 
milk yields, fertility, and tolerance to some intestinal 
parasites and arise from protection of dietary protein from 
excessive fermentation in the rumen. Other bene�ts include 
bloat prevention, which is associated with tannins reducing 
the stability of a foam that traps ruminal fermentation gases, 
and antiparasitic e�ects against ruminant and nonruminant 
gastrointestinal parasites (Waghorn, 2008; Kingston-Smith 
et al., 2010; Terrill et al., 2012; Wang et al., 2012; Hoste et 
al., 2015, 2016; MacAdam and Villalba, 2015).

Although plants synthesize many di�erent tannin 
types, this review will focus on CTs, as these are of 
particular interest in forage legumes and several other 
pasture plants. Hydrolyzable tannins are not considered 
here, although evidence is emerging that some may 
exert similarly useful bioactive e�ects (Baert et al., 2016; 
Engström et al., 2016; Bee et al., 2017).

A major impetus for research and utilization of CT 
forage legumes by livestock producers has been the drive 
to reduce bloat, to improve farm pro�tability, to control 
parasites, and to reduce greenhouse gas and ammonia 
emissions (Kingston-Smith et al., 2010; Wang et al., 2012; 
McCaslin et al., 2014; Hoste et al., 2015). Nutritional 
responses to CTs have been variable, and this has led to 
contradictory reports about their bene�ts (Min et al., 
2003; Mueller-Harvey, 2006; Waghorn, 2008). This is 
not surprising given the complexity of plant CTs, their 
impact when forages are fed as a sole diet or as a dietary 
component, and their interactions with feed components, 
host tissues, and the microbiome, plus the e�ects stemming 
from the animal’s nutrient requirements and parasitism. A 
concerted multidisciplinary research approach is required 
to harness the full potential of CTs for livestock production 
(Mueller-Harvey, 2006; Waghorn, 2008). However, 
obtaining funding for such a wide-ranging set of topics 
has been challenging and re�ects common barriers to 
interdisciplinary research, such as narrowly focused funding 
goals and short funding timelines. Progress in the study of 
complex plant–livestock systems is inherently slow, and CTs 
also pose interesting analytical and experimental challenges. 
Taken together, these facts account for the relatively slow 
progress in identifying the relationships between CT traits 
and bioactivities.

CHALLENGES AND OPPORTUNITIES 
POSED BY PLANTS WITH DIFFERENT 
CONDENSED TANNIN TYPES
Research on plant CTs has come a long way since the 
early literature described these compounds of mysterious 
composition and function as “accidents of [plant] 
metabolism” or metabolic “waste products” that served to 

bioactivity of CT forages, and how to develop on-farm 
applications. It will also consider whether farmers 
might require plants with di�erent CT traits for either 
antiparasitic or nutritional purposes. The reader is also 
referred to the accompanying article by Zeller (2019) for 
a detailed description of CT structures and the review by 
Tedeschi et al. (2014) for a mechanistic model describing 
the overall interactions between CTs and ruminants.

ROLES OF TANNINS IN PLANTS  
AND CHALLENGES TO HARNESSING 
THEIR BENEFITS FOR LIVESTOCK 
PRODUCTION
The reader of the tannin literature is repeatedly reminded 
that tannins are “secondary” plant metabolites and provide 
a defense against herbivory (Barbehenn and Constabel, 
2011; Agrawal et al., 2012; Lattanzio et al., 2012). However, 
herbivores comprise a range of species, from insects to 
ruminants, and have distinctly di�erent gut systems. 
Although tannins can account for antiherbivory e�ects in 
insects (Salminen and Karonen, 2011), ruminant behavior 
suggests that their herbivory e�ect is marginal because 
forages containing CTs are consumed, and selection is 
often in preference to grasses (Waghorn, 2008). Within 
plants, leaves are selected in preference to stems despite 
higher CT concentrations, even when CTs accounted for 
~20% of the dry matter in erect canary clover [Dorycnium 

rectum (L.) Ser.] leaf (Waghorn and Molan, 2001). Current 
thinking suggests that these secondary metabolites provide 
plants with a plasticity that can support their development 
and interaction with the environment (Bidel et al., 2010; 
Neilson et al., 2013; Mouradov and Spangenberg, 2014). 
This concept, that CTs may have multiple and interrelated 
functions, is now gaining traction. For example, Chen et 
al. (2014) showed that the temperatures experienced by the 
mother plant elicit CT pathways that can pass information 
to the next generation. In addition, the �avan-3-ol 
monomers, which are precursors of CTs, appear to play 
a vital role in protecting chromosomes during periods of 
high cell activity, but not during dormancy or drought 
stress (Feucht et al., 2013). It is important to appreciate that 
a multitude of di�erent CT compounds exist (Khanbabaee 
and van Ree, 2001; Hümmer and Schreier, 2008; Salminen 
and Karonen, 2011; Zeller, 2019), and that their synthesis in 
the plant kingdom has not converged on a single structure. 
These �ndings suggest that the function of CTs deserves a 
closer look in plant and crop science.

From an animal’s perspective, when dietary CT 
concentrations are too high, or protein concentrations are 
too low, as in tropical environments where grasses may 
have little nitrogen and tree leaves may have high CT 
concentrations, CTs can be antinutritional (Cooper et al., 
1988). The bene�ts of CTs have been demonstrated in only 

https://www.crops.org
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support the primary plant metabolism (Haslam, 1981). It 
is now well established that CT synthesis is under genetic 
control (Szczyglowski and Stougaard, 2008; Scioneaux et 
al., 2011; Cheynier et al., 2013; Escaray et al., 2014) and 
that expression depends on the plant species and plant parts 
(Larkin et al., 1997; Gebrehiwot et al., 2002; Abeynayake et 
al., 2012; Ferreyra et al., 2012; Hancock et al., 2012; Verdier 
et al., 2012; Cheynier et al., 2013; Harding et al., 2013; 
Mouradov and Spangenberg, 2014; Pérez-Díaz et al., 2014; 
Zhou et al., 2015; Zhu et al., 2015; Chezem and Clay, 2016).

Chemotaxonomic surveys on the distribution of CTs 
in plants in general and of forage legumes in particular 
have found that CT compositions tend to follow 
distinct biosynthetic patterns in terms of their �avan-
3-ol subunit composition and polymer sizes, which are 
described in terms of mean degree of polymerization 
(mDP). Plants with procyanidin (PC)-type CTs are 
much more widespread than plants with prodelphinidin 
(PD)-type CTs (Fig. 1), but many more plant species 
contain PC/PD mixtures (Porter, 1988; Mueller-
Harvey, 2006; Sivakumaran et al., 2006; Mechineni et 
al., 2014; Laaksonen et al., 2015; Quijada et al., 2015; 
Hoste et al., 2016; Ropiak et al., 2016b). Most plant CTs 
have cis-�avan-3-ol subunits, especially as extension 
units (Fig. 1), whereas CTs with predominantly trans-
�avan-3-ol subunits in extension units are relatively rare 
(Porter, 1988; Hernes and Hedges, 2004; Klongsiriwet 
et al., 2013). We have also observed other trends in 
the composition of CTs in forage legumes, which are 
illustrated with examples from a few plants that are 
“specialists” in producing particular CT types:

•	 CTs that comprise PCs tend to be mixtures of 
oligomers and smaller polymers (e.g., cocoa [Theo-

broma cacao L.] bean CTs with mDP values of 2–5).

•	 CTs that comprise PDs are usually mixtures of 
larger polymers (e.g., sericea lespedeza [Lespedeza 
cuneata (Dum. Cours.) G. Don] CTs with mDP 
values of 10–30).

However, exceptions exist, as lime tree �owers (Tilia L. 
spp.) and some varieties of cider apples (Malus domestica 
Borkh.) have PCs with higher mDP values of 8 and ~100, 
respectively (Guyot et al., 2001a; Ropiak et al., 2017).

Other sources of special CT types include:

•	 Leaves from several willow (Salix L. spp.) acces-
sions and black currant (Ribes nigrum L.) have high 
proportions of PCs and PDs with trans-�avan-3-ol 
subunits, respectively (Porter, 1988).

•	 Tea [Camellia sinensis (L.) Kuntze] leaves and shea 
(Vitellaria paradoxa C. F. Gaertn.) nuts are unusual in 

having high proportions of galloylated �avan-3-ol 
monomers and galloylated low molecular weight 
PDs (Henning et al., 2003; Ramsay et al., 2016).

•	 Water dock (Rumex hydrolapathum Huds.) roots and 
persimmon (Diospyros kaki Thunb.) fruits contain 
highly galloylated smaller PCs (mDP = 6; gal-
loylation = 52%; Ropiak et al., 2016b) and larger 
PDs (mDP = 26; galloylation = 72%; Li et al., 
2010), respectively.

•	 An entire series of oligomeric and polymeric PC 
xylosides are present in birch (Betula pendula Roth) 
bark (Liimatainen et al., 2012).

Not surprisingly, these biosynthetic patterns can 
generate contradictory and confounding e�ects when 
attempting to align CT structure with bioactivity 
(Laaksonen et al., 2015; Hixson et al., 2016). However, 
the particular CTs in these ‘specialist’ plants can provide 
unique opportunities for research, because it would be 
very di�cult to separate su�cient quantities of a particular 
CT type from the complex CT mixtures, which are 
typical of most plants, for laboratory or in vitro studies. 
This problem is illustrated by the CT mixtures in di�erent 
sainfoin, sericea lespedeza and Lotus accessions (Table 1), 
in which the PC/PD ratios ranged from 84:16 to 3:97, 
cis-/trans-�avan-3-ol ratios from 90:10 to 66:34, and mDP 
values from of 12 to 84 (Meagher et al., 2004; Stringano et 
al., 2012; Azuhnwi et al., 2013a; Mechineni et al., 2014).

An alternative approach is to use CTs from “CT 
specialist plants.” The already “pure” groups of either 
PCs or PDs, having either cis- or trans-�avan-3-ol 
stereochemistry, can be isolated from these specialist 
plants, separated in the laboratory into mDP variants, and 
used to explore the bioactivities of di�erent PC/PD ratios, 
cis-/trans-�avan-3-ol ratios, and polymer sizes (Brown 
et al., 2017). Currently, this is the most straightforward 
approach to structure-activity studies, because chemical 
synthesis of CTs is even more challenging.

Another aspect of CT composition that is poorly 
researched concerns the galloylated CTs. This is a group 
of particularly potent antioxidants (Fig. 1; Li et al., 2010) 
that appear to possess strong antiparasitic, nematocidal, 
and antimicrobial activities but have received little 
attention for their nutritional or health e�ects (Brunet and 
Hoste 2006; Ropiak et al., 2016a). Acacia nilotica (L.) Delile 
leaves, carob (Ceratonia siliqua L.) pods, grape (Vitis vinifera 
L.) seeds, persimmon fruits, lentisk (Pistacia lentiscus L.) 
leaves, shea nuts, tea leaves, and Rumex L. spp. are good 
sources of galloylated CTs (Self et al., 1986; Henning et al., 
2003; Papagiannopoulos et al., 2004; Spencer et al., 2007; 
Li et al., 2010; Rodríguez-Pérez et al., 2013; Derksen et 

https://www.crops.org
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It is also essential to use CT mixtures that are speci�c 
to the plant species being investigated, because CT 
composition a�ects ultraviolet-visible absorption maxima 
and reaction yields that result from the hydrochloric acid 
(HCl)-butanol-acetone and thiolysis assays (Grabber et al., 
2013; Krueger et al., 2013; Engström et al., 2014; Hixson 
et al., 2015; Ropiak et al., 2016b; Wang et al., 2016). We 
emphasize the unsuitability of commercially available CTs 
from quebracho [Schinopsis quebracho-colorado (Schltdl.) F. 
A. Barkley & T. Mey.] as a standard because these have 
5-deoxy-�avan-3-ol subunits, which give particularly 
low reaction yields that lead to overestimation of CT 
concentrations (Scho�eld et al., 2001; Rautio et al., 2007), 
and tannic acid is even less appropriate, as it contains none 
of the CT �avan-3-ol subunits.

Additional challenges include variation in 
extractability of CTs. Some can be extracted with water 
or aqueous methanol, and others require aqueous acetone, 
but many CTs are tightly bound to the plant matrix 
and cannot be extracted with these solvents. By using 
techniques that only measure the easily extractable CTs, 
researchers may risk missing a large fraction (Table 2) that 

al., 2014; Ramsay et al., 2016; Ropiak et al., 2016b; our 
unpublished data).

PROGRESS IN TANNIN ANALYSIS
Several new techniques have been developed recently for 
analyzing CT mixtures. As Zeller (2019) has addressed 
this topic in detail, only a few additional techniques are 
described below. An important constraint in the quest 
for valid tannin data is the requirement for high purity 
standards for quantitation, which means that the CT 
concentration and purity of the standards needs to be 
assessed by CT-speci�c methods such as thiolysis (Gea et 
al., 2011; Grabber et al., 2013; Williams et al., 2014a) or 
nuclear magnetic resonance spectroscopy (Zeller et al., 
2015a). We emphasize that the widely used elution of 
plant extracts with 70% aqueous acetone from Sephadex 
LH-20 columns for tannin “puri�cation” can lead to CT 
concentrations as low as ~13 g CTs 100 g−1 “puri�ed 
sample” (Williams et al., 2014b). Their use would 
overestimate CT concentrations, so additional steps 
are required to increase their purity (Stringano, 2011; 
Fryganas, 2016; Brown et al., 2017; Ropiak et al., 2017). 

Table 1. Condensed tannin (CT) concentrations (g/100 g dry matter) and compositions of forage legumes and selected 

pasture plants (Note: these studies used various CT assays that were applied either to whole plants, isolated extracts, or 

purified CT fractions).

Plant species CT concentration PC/PD ratio† mDP‡ References

g 100 g−1 dry matter

Erect canary clover [Dorycnium rectum (L.) Ser.] 15–20 5:95–17:83 10–127 Sivakumaran et al., 2004

Sericea lespedeza [Lespedeza cuneata (Dum. 

Cours.) G. Don]

6–13 3:97 33 Mechineni et al., 2014

Panicledleaf ticktrefoil [Desmodium paniculatum 

(L.) DC.]

22 nd§ nd Pawelek et al., 2008

Sulla (Hedysarum coronarium L.) 2–12 11:89–27:73 3–46 Tibe et al., 2011

Big trefoil (Lotus pedunculatus Cav.) 5–10 16:84–20:80 2–44 Meagher et al., 2004; Sivakumaran et al., 2006

Sainfoin (Onobrychis viciifolia Scop.) 1–9 5:95–50:50 12–84 Berard et al., 2011; Stringano et al., 2012; 

Azuhnwi et al., 2013a; Malisch et al., 2015

Prairie clover (Dalea purpurea Vent.) 4–9 nd nd Berard et al., 2011

Birdsfoot trefoil (Lotus corniculatus L. var.  

corniculatus)

0–5 60:40– 84:16 9 Meagher et al., 2004; Sivakumaran et al., 2006; 

Berard et al., 2011; Grabber et al., 2014

† PC/PD, procyanidin:prodelphinidin ratio.

‡ mDP, mean degree of polymerization.

§ nd, not determined.

Table 2. Overview of techniques for determining extractable or unextractable condensed tannins (CTs) and their composition.

Analytical  technique†

Extractable  

CTs

Unextractable  

CTs

Information on CT 

composition Literature

HCl-butanol-acetone X X Limited Grabber et al., 2013

Thiolysis, phloroglucinolysis X X X Guyot et al., 2001b; Gea et al., 2011; Hixson et al., 2015, 

2016; Ramsay et al., 2016

NMR X X X Grabber et al., 2013; Zeller et al., 2015a

NIRS X X X Petersen et al., 1991; Larkin et al., 1997; Dykes et al., 

2014; Grabber et al., 2014; Klongsiriwet 2016

MALDI-TOF MS X – X Stringano et al., 2011; Feliciano et al., 2012; Krueger et 

al., 2013

UPLC-MS/MS X – X Engström et al., 2014

† NMR, nuclear magnetic resonance; NIRS, near-infrared reflectance spectroscopy; MALDI TOF MS, matrix-assisted laser desorption ionization–time-of-flight mass 

spectrometry; UPLC-MS/MS, ultra-performance liquid chromatography tandem mass spectrometry (for further information, see Zeller, 2019).
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may have potentially important bioactivities (Gea et al., 
2011; Pérez-Jiménez and Lluís Torres 2011; Cheynier et 
al., 2015; Hixson et al., 2016; our unpublished data). The 
impact of extractable vs. unextractable CTs on ruminant 
nutrition and health has not yet been determined.

Thiolysis or phloroglucinolysis (analytical 
degradation of CTs with thiols or phloroglucinol) 
can be used to determine the composition of CTs by 
depolymerization, enabling characterization of the 
�avan-3-ol subunits (Zeller, 2019). The use of thiolysis to 
analyze CTs in whole plant material (removing the need 
for extraction) was �rst reported by Guyot et al. (2001b) 
for apple residues and then adapted to sainfoin and food 
samples (Hellström and Mattila, 2008; Gea et al., 2011). 
However, quanti�cation remains problematic, and higher 
CT yields have been reported in some samples with the 
HCl-butanol-acetone assay than with the thiolysis or 
phloroglucinolysis assays. Low values have been linked 
to oxidative processes a�ecting reaction yields (Hixson 
et al., 2015; Klongsiriwet, 2016; Brillouet et al., 2017; 
Desrues et al., 2017).

However, thiolysis can also generate up to threefold 
higher yields than the HCl-butanol-acetone assay (Drake 
and Mueller-Harvey, unpublished data, 2016); these 
particular CTs had high degrees of galloylation (Fig. 1), 
and this demonstrates the variation in reactivity of CTs 
and yield of assayable end products. These inconsistencies 
illustrate the challenge of determining the amount and 

type of CTs in forage material and reinforce the case 
for using more than one method for analyzing CTs, 
and for using plant-speci�c CT standards (see above). 
Recent observations also suggest that the optimum time 
for the in situ thiolysis is a�ected by the plant species. 
Some samples yielded more consistent CT parameters if 
thiolysis was performed for 2 to 3 h rather than 1 h, as 
suggested by Gea et al. (2011). Clearly, there is no one 
silver bullet for CT analysis, and methods need to be 
evaluated and adapted for a particular plant species and 
research objective.

Infrared spectroscopy techniques are of particular 
interest to plant breeders due to their speed and 
suitability for screening large numbers of samples; near-
infrared re�ectance spectroscopy (NIRS) can be used 
in the laboratory, whereas visible–near-infrared  and 
shortwave-infrared spectroscopy have been used for 
�eld screening (Lehmann et al., 2015). Near-infrared 
re�ectance spectroscopy has potential for measuring not 
only CT concentrations but also PC/PD and cis-/trans-

�avan-3-ol ratios (Fig. 3) (Petersen et al., 1991; Larkin 
et al., 1997; Dykes et al., 2014; Grabber et al., 2014; 
Klongsiriwet, 2016; Mueller-Harvey et al., unpublished 
data, 2010). Sample analysis by NIRS is rapid but requires 
robust calibrations that are based on laboratory analyses. 
Once calibrated, a single NIRS scan can also generate 
a large amount of information on other nutritional 
parameters, such as �ber, protein, soluble carbohydrate, 

Fig. 3. Near-infrared reflectance spectroscopy (NIRS) for predicting condensed tannin (CT) composition of sainfoin plants that had been 

analyzed by thiolysis (Gea et al., 2011; Mueller-Harvey et al., 2011).
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lignin, dry matter, and ash contents, as well as predicted 
digestibility and gross energy (Givens et al., 2000).

TANNIN VARIATION IN GERMPLASM 
COLLECTIONS AND POTENTIAL FOR 
TRAIT-DIRECTED PLANT BREEDING
Alignment of CT composition with function o�ers 
opportunities for exploiting their bioactivities, and 
germplasm collections o�er a rich source of CT variation 
(Hayot Carbonero et al., 2011; Klongsiriwet, 2016). 
Concentrations of CTs vary greatly not only between 
plant species but also between accessions (Larkin et al., 
1997; Mosjidis 2001; Sivakumaran et al., 2004; Gruber 
et al., 2008; Häring et al., 2008; Lorenz et al., 2010; 
Grabber et al., 2015; Hixson et al., 2016). Table 1 lists the 
variation in forage plants: birdsfoot trefoil tends to have 
the lowest (<5 g 100 g−1 dry matter) and sericea lespedeza 
and erect canary clover the highest CT concentrations 
(6– 20 g 100 g−1 dry matter).

The CT traits can also di�er markedly between 
accessions, and between parts of the same plant (Springer 
et al., 2002). Examples are PC/PD ratios in sainfoin stem 
CTs of ~50:50 and in sainfoin leaf CTs of ~10:90 (Malisch 
et al., 2015). Although alfalfa (Medicago sativa L.) seed coats 
have CTs with mDP values of 4 to 7 and a PC/PD ratio 
of 93:7 (Koupai-Abyazani et al., 1993), only the smaller 
PC dimers and trimers have been detected in engineered 
alfalfa leaves (Hancock et al., 2012). This means that plant 
breeding can target CT composition and concentration, 
which is important because these traits have been linked 
to di�erent bioactivities (see below).

Both concentration and composition can change with 
season (Theodoridou et al., 2011; Grabber et al., 2015; Muir 
et al., 2017), but accession di�erences tend to be much larger 
(Springer et al., 2002; Stringano et al., 2012). Importantly, 
environment did not a�ect the ranking of the CT traits 
of a few sainfoin accessions (i.e., there was no genotype ´ 
environment interaction) (Azuhnwi et al., 2013a ; Malisch 
et al., 2016); this demonstrates that there are opportunities 
for trait-directed breeding of new cultivars.

All enzymes involved in the biosynthesis of the CT 
building blocks (i.e., �avan-3-ols) have been identi�ed, 
apart from the elusive �nal condensing enzyme(s) (Harding 
et al., 2013). Two genes and several myeloblastosis (MYB) 
transcription factors (i.e., proteins with myeloblastosis DNA-
binding domains that regulate CT synthesis) are responsible 
for the production of two of the �avan-3-ols (i.e., catechin 
and epicatechin; Ferreyra et al., 2012; Cheynier et al., 
2013; Zhu et al., 2015; Chezem and Clay, 2016), but the 
genes and transcription factors for the other �avan-3-ols 
await identi�cation. The MYB transcription factors from 
barrelclover (Medicago truncatula Gaertn.) and rabbitfoot clover 
(Trifolium arvense L.) have been expressed in alfalfa and white 

clover (Trifolium repens L.), leading to stable and heritable CT 
production in their shoots and leaves (Hancock et al., 2012, 
2014; Verdier et al., 2012; Albert, 2015). These developments 
provide a pathway for introducing CTs into the leaves of 
alfalfa and white clover. It would be interesting to explore 
whether the CTs that are already expressed in white clover 
�owers can be expressed in the leaves.

It should also be possible to alter the CT composition 
through conventional crossing experiments. Scioneaux 
et al. (2011) showed that CT composition, especially the 
average polymer size (the mDP value), in Populus L. was 
controlled by genetics and that environment (location) 
and season (months) had only a small e�ect. In addition, 
interspecies hybridization can generate plants with novel 
CT traits, as demonstrated with narrowleaf trefoil (Lotus 

tenuis Waldst. & Kit. ex Willd.) ´ birdsfoot trefoil hybrids 
(Escaray et al., 2014).

Despite considerable advances in plant science, genomic 
resources for forage legumes are still scarce, especially 
for CT-containing forages (Szczyglowski and Stougaard, 
2008; Hayot Carbonero, 2011; Zarrabian et al., 2013; De 
Vega et al., 2015; Mora-Ortiz, 2015). These are necessary 
to harness the potential bene�ts of CTs, and for breeding 
of new varieties with improved agronomic, nutritional, 
and antiparasitic traits. The European and Asian sainfoin 
germplasm is very diverse in terms of morphology, anatomy, 
drought resistance, CT traits, and genetic polymorphism 
(Hayot Carbonero, 2011; Zarrabian et al., 2013; Malisch et 
al., 2015, 2016; Mora-Ortiz, 2015; Kempf et al., 2016, 2017; 
Mora-Ortiz et al., 2016; Kölliker et al., 2017). For example, 
anatomical trait analysis (xylem/phloem ratio, vessel 
and sieve tube diameters, and phloem width) suggested 
that large di�erences exist in water and solute transport 
mechanisms between accessions, which are important for 
drought resistance (Zarrabian et al., 2013).

Molecular markers are helpful in the analysis of genetic 
diversity, mapping and quantitative trait loci analysis, and 
genomics-assisted breeding. Next-generation sequencing 
technology is facilitating the identi�cation and use of 
molecular markers in plant genetics and breeding. RNA-
sequencing technology is an e�cient way of obtaining 
sequence information of all the genes that are expressed in 
a given plant tissue, and it can also be mined for molecular 
marker polymorphisms. The �rst such library of expressed 
genes in sainfoin was obtained from �ve accessions using 
this technology (Mora-Ortiz et al., 2016). Annotation of 
the expressed genes in the library allowed identi�cation 
of 59 genes involved in the CT biosynthesis pathway 
(Mora-Ortiz et al., 2016). It also provided the platform for 
identifying >3800 simple sequence repeat (SSR) markers 
and 77,000 single-nucleotide polymorphism markers 
(Mora-Ortiz et al., 2016). Phylogenetic analysis revealed 
that sainfoin is closely related to red clover (Trifolium 

pratense L.) and barrelclover. Some of the SSR markers 
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were used to assess the genetic diversity of European 
sainfoin accessions representing cultivars and noncultivars 
(ecotypes, landraces) (Kempf et al., 2016). These molecular 
markers are now available as tools for further genetic and 
genomic research. They were used to study inbreeding 
and self-fertilization in sainfoin. In a pilot study, one 
marker locus was identi�ed that could explain up to 12% 
of the variation in CT composition (i.e., PC/PD ratio; 
Kempf et al., 2017). We anticipate that the sequence and 
molecular marker information now available (Kempf et 
al., 2016; Mora-Ortiz et al., 2016) can be used to assist 
breeding of novel sainfoin cultivars with CT traits that are 
optimized for animal nutrition and health.

AGRONOMY, WEED CONTROL, 
HARVESTING, AND PROCESSING OF 
TANNINIFEROUS FORAGE LEGUMES
There is currently considerable global interest in 
harnessing the bene�ts of CTs in forage legumes to support 
the sustainability agenda of agriculture; birdsfoot trefoil, 
sericea lespedeza, and prairie clover (Dalea purpurea Vent.) 
have been evaluated in the United States, Canada, New 
Zealand, and Switzerland (Mosjidis 2001; Waghorn 2008; 
Häring et al., 2008; Berard et al., 2011; Li et al., 2014; 
Grabber et al., 2015), sulla in Australia (de Koning et al., 
2003, 2010; Heuzé et al., 2015) and sainfoin in Canada 
and Europe (Häring et al., 2008; Hayot Carbonero et 
al., 2011; Malisch et al., 2015; Bhattarai et al., 2016). 
The choice of which forage to grow will depend on the 
climate, soil, environment, and farming practices. The 
performance of these forages has been tested in pure stands 
and in combinations with partner species to increase the 
overall forage quantity and quality (Häring et al., 2008; de 
Koning et al., 2010; Hayot-Carbonero et al., 2011; Döring 
et al., 2013; Lüscher et al., 2014; Wang et al., 2015).

Cocultivation of Legumes  

and Companion Crops
Cocultivation of forage legumes with companion crops 
can deliver higher total yields (Nyfeler et al., 2009; Döring 
et al., 2013; Finn et al., 2013; Mora-Ortiz, 2015; Hunt et 
al., 2016; Malisch et al., 2017), more nitrogen �xed per 
hectare (Nyfeler et al., 2011; Vasileva and Ilieva, 2016) 
and improved dry matter and nitrogen digestibilities 
of coensiled mixtures (Wang et al., 2007), but success 
depends on the agronomic compatibility of the species, 
appropriate treatments, and development of new sainfoin 
cultivars with a more competitive canopy (Mora-Ortiz, 
2015; Mora-Ortiz and Smith, 2016; Kölliker et al., 2017; 
Malisch et al., 2017).

Traditional mixtures for sainfoin establishment in the 
United Kingdom have included grasses such as timothy 
(Phleum L.) and meadow fescue [Schedonorus pratensis (Huds.) 

P. Beauv.] or undersowing with spring barley (Hordeum L.) 
as companions (Liu et al., 2008; Mora-Ortiz, 2015; Mora-
Ortiz and Smith, 2016). However, new investigations 
showed that chicory (Cichorium intybus L.)—which also 
has antiparasitic properties—and oat (Avena sativa L.) 
can be cocultivated with sainfoin for a short period (i.e., 
two agronomic cycles; Mora-Ortiz, 2015; Mora-Ortiz 
and Smith, 2016), but chicory was found to be a very 
aggressive partner and to suppress sainfoin (Häring et al., 
2008). North American researchers have also explored 
oat and alfalfa as companion crops for irrigated birdsfoot 
trefoil and sainfoin (Wang et al., 2015; Hunt et al., 2016), 
and this involved developing a new sainfoin population 
for cocultivation with alfalfa. The novelty of this work 
lies in the fact that this new sainfoin population has good 
competitiveness against alfalfa compared with previous 
sainfoin accessions, where seedlings �rst produced a long 
taproot and could become outgrown by weeds and many 
companion species (Hayot Carbonero et al., 2011).

Weed Control
Weed control in sainfoin can be achieved (Mora-Ortiz, 
2015; Mora-Ortiz and Smith, 2016; Malisch et al., 2017) 
through appropriate choice of partner species, sowing 
densities, and cutting frequencies and can lead to stable 
sainfoin percentages (i.e., ~40% of the sward was sainfoin), 
which su�ce to reduce the incidence of bloat (Wang et al., 
2006; Malisch et al., 2017). This was also demonstrated for 
several other legume species in a Pan-European experiment 
(Finn et al., 2013; Connolly et al., 2017; Suter et al., 2017). 
Other strategies for weed control can include application of 
preemergence, postemergence, and maintenance herbicides 
(Sheldrick and Thomson, 1982; Moyer et al., 1990; Frame 
et al., 1998; Amiri et al., 2013; Mora-Ortiz, 2015). In the 
case of sainfoin, weed suppression is directly correlated 
with sainfoin establishment and yields.

Current understanding of CT expression in sainfoin 
suggests that it should be possible to breed new forage 
legumes with good yields and consistent CT pro�les, 
which is important, as farmers need varieties with 
predictable CT traits.

Effects of Drought on Yield and Condensed 

Tannin Content in Sainfoin Accessions
However, instead of using irrigation to boost yield, others 
have focused on exploiting the taproot of sainfoin, as 
sainfoin can remain productive on dry, marginal soils and 
can continue to grow during unseasonably dry weather. 
To test this drought tolerance, 30 sainfoin accessions were 
subjected to drought for 18 wk, with the mean soil water 
potential of the upper 40 cm being below −2 MPa, and were 
compared with the dry matter yields of rainfed controls that 
received additional irrigation when the soil water potential 
was below −0.6 MPa. The results were also compared with 
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six other forage species (legumes, nonleguminous forbs, 
and grasses) of known drought tolerance. This showed 
that some sainfoin accessions were as tolerant under severe 
drought as alfalfa, and a few accessions even exceeded 
its drought tolerance. Most sainfoin accessions also had 
lower drought losses than chicory (Malisch et al., 2014). 
In addition, the CT traits were assessed under drought and 
control conditions for �ve of these accessions. Although 
CT composition was hardly a�ected by drought, the CT 
concentrations increased at the vegetative, but not the 
reproductive, stage (Malisch et al., 2016).

Moreover, there were no interactions between drought 
and accession for CT traits, and it remains to be seen whether 
the ranking of sainfoin accessions according to their CTs 
is maintained across other environments (Malisch et al., 
2016). Another study with 100 sainfoin genotypes from 
10 ecotypes showed that drought tolerance was, however, 
correlated with leaf proline content (Irani et al., 2015). 
This correlation is in accordance with previous studies, and 
although the cause-and-e�ect relationship between proline 
and drought tolerance is not yet fully understood, proline 
can act as an osmoprotectant, thus stabilizing membranes 
and maintaining cell turgor. Additionally, there is some 
indication that it might contribute to upregulation of 
drought tolerance genes (Szabados and Savouré, 2010; Per 
et al., 2017). Therefore, the current understanding of CT 
expression in sainfoin suggests that it should be possible to 
breed new cultivars with good yields, drought tolerance, 
and consistent CT pro�les, which is important, as farmers 
need forage legumes with predictable CT traits.

Grazing vs. Preservation
Legume swards expressing CTs can be grazed safely, as they 
are nonbloating (Wang et al., 2012; MacAdam and Villalba, 
2015), but optimal use of CT forages would most likely be 
as a substitute for existing legumes in mixed swards, such as 
white clover with ryegrass (Lolium L.). This is because dry 
matter yields are greater from grasses than from legumes 
(subject to adequate nitrogen availability), and because 
farmers in temperate climates have identi�ed forage species 
(including grasses) that enable pro�table farming. In these 
situations, the CT concentration in the diet is diluted by 
the contribution of the CT-free component of the sward 
(Waghorn and Shelton, 1997), so high CT concentrations 
of the bioactive CT legume might be most useful, as the 
CTs in one forage can a�ect digestion of protein in the 
companion forage (Waghorn and Jones, 1989).

Several CT forages possess antiparasitic properties, 
which are of special interest for sheep and goat grazing 
systems (Hoste et al., 2010), or when there is anthelmintic 
resistance (Terrill et al., 2012). Condensed tannins may 
also provide bene�ts when immunity of animals is low (i.e., 
around parturition or weaning), but the need to combat 
parasitism at such times does not necessarily coincide with 

the availability of fresh CT forages. Therefore, bioactivity 
needs to be maintained when processing CT forages 
into hay, pellets, or silages. Conserved forages allow 
out-of-season feeding, but may, especially in the case 
of pellets (Girard et al., 2016b), also o�er opportunities 
for standardizing and optimizing CT traits and enable 
transportation to other regions.

Processing of CT forages into hay, pellets, or silages 
can have a marked e�ect on CT concentration and 
extractability (Fig. 4) and appears to increase protein-
bound, and possibly covalently linked, CTs (Terrill et al., 
1997; Minnée et al., 2002; Lorenz et al., 2010; Vernhet 
et al., 2011; Ramsay et al., 2015; Girard, 2016; Huang 
et al., 2016). Ensiling sainfoin or sulla reduced ammonia 
production, improved silage quality, and protected 
plant protein during fermentation, which improved its 
nutritional value relative to forages without CTs (Niezen et 
al., 1998b; Lorenz et al., 2010). There is a need for feeding 
trials to assess the biological signi�cance of unextractable 
CTs in terms of ruminal or intestinal digestion and e�cacy 
against parasitic nematodes. These questions could perhaps 
be addressed through experiments that explore accession 
di�erences in terms of unextractable CTs.

ELUCIDATING RELATIONSHIPS BETWEEN 
CONDENSED TANNIN STRUCTURES  
AND ANTIPARASITIC EFFECTS
Parasitism imposes a considerable nutritional penalty on 
animals, and therefore controlling the parasite burden 
will indirectly bene�t the nutritional status of animals. 
This is the reason for noting that CT forages can be used 
for nutraceutical purposes, which refers to a combined 
action of nutritional and antiparasitic bene�ts that include 
anthelmintic (Terrill et al., 2012; Hoste et al., 2015, 2016) 
and anticoccidial e�ects (Kommuru et al., 2014; Saratsis 
et al., 2016). Most evidence of anthelmintic e�ects of CTs 
stems from in vitro assays, but some in vivo feeding trials 

Fig. 4. Average percentages of extractable and unextractable 

condensed tannins (CTs) in fresh, pelleted, and ensiled sainfoin, 

sulla, and birdsfoot trefoil (Minnée et al., 2002; Lorenz et al., 2010; 

Ramsay et al., 2015).
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under controlled experimental conditions have also yielded 
promising results. It is therefore timely to summarize the 
emerging trends and CT structure-activity relationships, 
which were obtained with a range of in vitro assays, to 
guide future feeding trials.

Antiparasitic Effects of Prodelphinidins  

and Galloylated Condensed Tannins
Condensed tannins with high molar percentages of PDs 
and galloylation have given good anthelmintic e�ects in 
vitro with parasite larvae (L). These include inhibition of 
L3 migration and L4 motility with Ascaris suum, as well 
as L1 feeding inhibition, adult motility assays of Ostertagia 

ostertagi and Cooperia oncophora, and larval exsheathment 
inhibition of Haemonchus contortus and Trichostrongylus 

colubriformis of L3 larvae (Brunet and Hoste 2006; Quijada 
et al., 2015; Desrues et al., 2016a; Ramsay et al., 2016). 
These �ndings could explain the excellent in vivo results 
with sheep or goats that were obtained when feeding sericea 
lespedeza (these CTs consist of almost pure PDs with high 
mDP values), big trefoil, sainfoin, sulla plants, or hazelnut 
(Corylus L.) peels (high PD percentage) and lentisk browse 
(galloylated compounds) (Landau et al., 2010; Rodríguez-
Pérez et al., 2013; Hoste et al., 2015). These in vivo trials 
found better host resilience and lower fecal egg counts 
of H. contortus, Teladorsagia circumcincta, and T. colubriformis 
and of a mixed gastrointestinal nematode infection, which 
were attributed to lower worm fecundity (Niezen et al., 
1995, 1998a; Paolini et al., 2005; Landau et al., 2010), and 
also lower Eimeria oocyst counts (Kommuru et al., 2014). 
Control of T. colubriformis was re�ected in higher liveweight 
gains by lambs fed sulla than alfalfa (Niezen et al., 1995).

Antiparasitic Effects of the Mean Degree  

of Condensed Tannin Polymerization
The average size of CTs in a polymeric mixture (mDP 
value) can also a�ect their antiparasitic activity, with 
larger polymers being more potent against exsheathment 

of H. contortus L3 and larval feeding of O. ostertagi and C. 

oncophora L1 larvae in vitro (Quijada et al., 2015; Desrues 
et al., 2016a). However, PD-rich plants tend to have 
CTs with high mDP values and high CT concentrations 
(Kommuru et al., 2014; Laaksonen et al., 2015; Mueller-
Harvey et al., unpublished data, 2016), confounding our 
understanding of CT structure-activity relationships. The 
characteristics of CTs responsible for antiparasitic e�ects 
need to be understood to identify optimal feed sources.

Apart from the examples above, very few other plants 
with high molar PD or galloyl percentages or high mDP 
values (>15) have been evaluated in vivo to determine 
their e�cacy against gastrointestinal parasites. The plant 
kingdom remains a rich and underexplored resource of 
such promising CTs (Table 3), and it would be timely 
to test these in vitro results by feeding plants, browse, 
or agroindustrial byproducts with di�ering CT traits to 
parasitized livestock. As traits vary across accession and 
environment, it is important to analyze the dietary CTs to 
establish their relationships with antiparasitic e�ects. This 
would enable guidelines to be formulated for development 
of new plant cultivars for optimal bioactivities.

One other aspect also needs investigation: are CT traits 
that are optimal for antiparasitic e�ects compatible with 
nutritional bene�ts, or would farmers require plants with 
di�erent CTs for either antiparasitic or nutritional purposes? 
Given the encouraging results with sericea lespedeza and 
panicledleaf ticktrefoil [Desmodium paniculatum (L.) DC.], 
especially in parasitized animals, anthelmintic and nutritional 
bene�ts may not be mutually exclusive (Terrill et al., 2012; 
Cherry et al., 2014), but other options could include sacri�cing 
nutrition for a short period, enabling an appropriate period of 
CT feeding to achieve parasite control.

Mechanisms of Antiparasitic Condensed 

Tannin Action
A key question concerns the mechanisms by which CTs 
exert their e�ects. It is thought that the ability of CTs 

Table 3. Plant materials containing condensed tannins (CTs) with structural characteristics that are of interest for conferring 

antiparasitic activities.

CT traits Plant species and part Reference

Prodelphinidin-rich CTs Peels of hazelnut (Corylus avellana L.) seeds; leaves of Persian ironwood 

[Parrotia persica (DC.) C.A. Mey.], London plane (Platanus ´ hispanica Mill. 

ex Münchh. [occidentalis ´ orientalis]), black or red currant (Ribes nigrum 

L., R. rubrum L.) bushes, black locust (Robinia pseudoacacia L.); sainfoin 

(Onobrychis viciifolia Scop.), sulla (Hedysarum coronarium L.), sericea 

lespedeza [Lespedeza cuneata (Dum. Cours.) G. Don] plants; white clover 

(Trifolium repens L.) flowers; erect canary clover [Dorycnium rectum (L.) Ser.]

Sivakumaran et al., 2004; Tibe et al., 2011; 

Mechineni et al., 2014; Hoste et al., 2016; Ropiak 

et al., 2016b

Galloylated CTs Shea (Vitellaria paradoxa C. F. Gaertn.) nuts, persimmon (Diospyros 

kaki Thunb.) fruits, lentisk (Pistacia lentiscus L.) leaves, carob (Ceratonia 

siliqua L.) fruits, grape (Vitis vinifera L.) seeds, great water dock (Rumex 

hydrolapathum Huds.) roots, dock (Rumex obtusifolius L.) leaves

Papagiannopoulos et al., 2004; Spencer et al., 

2007; Li et al., 2010; Rodríguez-Pérez et al., 2013; 

Ramsay et al., 2016; Ropiak et al., 2016b

High mean degree of 

polymerization  values

Erect canary clover plant, persimmon fruits, apple (Malus domestica 

Borkh. spp., cider cultivars); leaves of Persian ironwood, London plane, 

black currant, black locust; white clover flowers; sericea lespedeza plant

Guyot et al., 2001a; Sivakumaran et al., 2004; Li et 

al., 2010; Mechineni et al., 2014; Hoste et al., 2016; 

Ropiak et al., 2016b 
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to suppress gastrointestinal nematodes stems from their 
ability to bind with proteins (Hoste et al., 2012). Thus, CTs 
could act by inhibiting key parasite enzymes, and indeed 
inhibition of parasite glutathione-S-transferases, which 
play an important role in the detoxi�cation of xenobiotic 
compounds, has been con�rmed in in vitro experiments 
(Hansen et al., 2016). Prodelphinidins have more phenolic 
groups capable of forming hydrogen bonds with proteins 
than PCs (Fig. 1), but it has also been established that the 
mDP value is the most important factor for CT protein 
aggregation and precipitation (Zeller et al., 2015b; Ropiak 
et al., 2017). Taken together, these observations could 
explain why PDs, which generally have larger mDP values 
than PCs, have better anthelmintic properties (Hoste et 
al., 2016; Kommuru et al., 2014, 2015).

By using electron microscopy, a number of studies have 
revealed physical deformations of H. contortus adult worms 
that had been exposed to CTs in either in vitro experiments 
or collected after feeding sericea lespedeza or sainfoin plants 
or tzalam [Lysiloma latisiliquum (L.) Benth.] leaves (Martínez-
Ortíz-de-Montellano et al., 2013; Kommuru et al., 2015). 
The shriveled surfaces and plaque formations around ori�ces 
could account for inhibition of feeding and lowering of 
fecundity and are thought to stem from CTs interacting 
directly with proteins on parasite surfaces (Ropiak et al., 
2016a). Scanning and transmission electron microscopy 
detected not only external but also internal damage to the 
cuticle and sensilla of the lip region of young and adult 
Caenorhabditis elegans by di�erent CT types, and to the 
cuticle and underlying tissue (i.e., muscle cells) and intestinal 
cells of H. contortus L3 larvae and adults and of T. colubriformis 
L3 larvae by sainfoin and tzalam CTs (Brunet et al., 2011; 
Martínez-Ortíz-de-Montellano et al., 2013; Ropiak et al., 
2016a). Given the low uptake (bioavailability) of polymeric 
CTs in mammalian tissues in comparison with monomeric 
�avonoids (Li and Hagerman, 2013), it would be worth 
exploring whether the internal tissue damage arises from the 
CTs or from other compounds that may be present in plant 
extracts (Brunet and Hoste, 2006; Williams et al., 2015; 
Klongsiriwet et al., 2015; Desrues et al., 2016a; Mengistu 
et al., 2017). It also raises the question whether mixtures 
of CTs plus co-occurring smaller plant compounds (such 
as quercetin, luteolin, cinnamaldehyde, etc.) can cause both 
external and internal damage, or whether internal damage 
may be due to a disruption of nematode metabolism, in 
turn causing necrosis of cells and tissues. Condensed tannins 
together with a �avone (luteolin), a �avonol (quercetin), 
or cinnamaldehyde can act synergistically against parasitic 
nematodes in vitro (Barrau et al., 2005; Klongsiriwet et 
al., 2015; Hoste et al., 2016; Ropiak et al., 2016a). These 
in vitro �ndings are yet to be tested in feeding trials 
using combinations of feeds with di�erent CTs and such 
monomeric compounds, but such combinations should 
hopefully lead to future on-farm applications.

Tissue and Host Responses  

to Condensed Tannins

In addition to direct anthelmintic e�ects against parasites, 
more work is warranted on how CTs may in�uence host 
responses to parasites. Niezen et al. (2002) measured higher 
antibody titers against antigens to adult T. circumcincta 
and adult and larval T. colubriformis when lambs were fed 
with sulla compared with alfalfa. This may be a result 
of increased intestinal �ow of proteins and amino acids 
associated with ruminal protection of protein degradation, 
which can contribute to the host’s ability to maintain 
growth, immune function, and regulation of worm 
populations (Ríos-De Álvarez et al., 2008; Ramírez-
Restrepo et al., 2010; Hoste et al., 2012). Moreover, recent 
in vitro studies have also indicated that CTs can directly 
modulate the activity of immune cells such as gd T cells 
and dendritic cells, potentially enhancing the host’s innate 
immune response (Tibe et al., 2012; Williams et al., 2016, 
2017). Similar to other bioactivity studies, immune-
modulating activity in vitro is highly dependent on CT 
size, with mDP >6 eliciting a stronger response than CTs 
with mDP <6, and �avan-3-ol monomers have little or no 
e�ect (Williams et al., 2016, 2017).

Effects of Fermentation on Condensed 

Tannin Activity
Work has started on determining how fermentation 
a�ects CT concentrations and bioactivities. According to 
results from the HCl-butanol-acetone or thiolysis assays, 
fermentation can reduce “apparent” CT concentrations 
by 30 or 85%, respectively, in silages (Mena et al., 2015; 
Ramsay et al., 2015) and the gut (Desrues et al., 2017; 
Quijada et al., 2018). However, despite these apparent 
losses, sericea lespedeza and sainfoin silage extracts 
and silages still exerted anthelmintic e�ects in vitro by 
inhibiting the exsheathment of H. contortus L3 larvae and in 
vivo by lowering adult worm burden and fecal egg counts 
(Heckendorn et al., 2006; Manolaraki, 2011; Terrill et al., 
2016). This may either be due to su�cient quantities of 
undegraded CTs or hydrolysis of anthelmintic �avonoids 
from inactive glycosides (Manolaraki, 2011), or to protein-
bound CTs surviving ruminal fermentation and exerting 
anthelmintic activity in the abomasum, where a lower pH 
facilitates dissociation of the CT-protein complex ( Jones 
and Mangan, 1977). A high activity against O. ostertagi 
nematodes of the abomasum contrasted with no activity 
against intestinal Cooperia oncophora nematodes and was 
associated with 2.3% CTs (g 100 g−1 dry matter by thiolysis) 
in the abomasum vs. 0.02% CTs in the intestine (Desrues 
et al., 2016a, 2016b, 2017). However, both nematode 
species were a�ected by CTs in the in vitro larval feeding 
inhibition assay (Desrues et al., 2016a).

https://www.crops.org
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EFFECTS ON RUMINAL FERMENTATION 
AND CONSEQUENCES FOR RUMINANT 
NUTRITION AND GREENHOUSE  
GAS EMISSIONS

Effects on Nutrition and Dietary Protein Use

Nutritional e�ects of CTs are currently understood in 
general terms, and information concerning the ways that 
CTs a�ect speci�c processes are only now being de�ned by 
determining the CT traits of forages used for in vivo and 
in vitro measurements and their e�ects on the microbiome 
(Grosse Brinkhaus et al., 2016, 2017). Binding to dietary 
proteins and reduction in rumen proteolysis, resulting in 
higher proportions of dietary protein passing to the small 
intestine, have been measured (Waghorn, 2008), but 
details and mechanisms are not understood. The �ndings 
by Kariuki and Norton (2008) indicated that the release of 
dietary protein between the abomasum and terminal ileum 
was correlated with the protein precipitation capacity of 
CTs, which depends on the structures of both the CTs 
and the proteins (Hagerman and Butler, 1981; Dobreva 
et al., 2012). The measurements of Wang et al. (1996) are 
especially important in this regard, because they showed 
that in sheep fed birdsfoot trefoil with polyethylene glycol 
(PEG, which inactivated the CTs), ~80% of amino acid 
absorption occurred in the �rst half of the intestine, but the 
entire length of the intestine was required for absorption 
when CTs were active. Hence, the unknowns concerning 
CT interactions with rumen function, microbial growth, 
and intestinal absorption need to be evaluated in terms of 
dietary CT traits.

The current evidence suggests that only four forage 
legumes–birdsfoot trefoil, sainfoin, sulla and crownvetch 
[Securigera varia (L.) Lassen]–support higher ruminant 
growth rate or milk yield when fed as a sole diet, compared 
with CT-free diets (Burns et al., 1972; Waghorn et al., 
1990, 1997; Mueller-Harvey, 2006; Rochfort et al., 
2008; Waghorn, 2008; Patra and Saxena 2010; MacAdam 
et al., 2011; Naumann et al., 2013; Piluzza et al., 2014; 
MacAdam and Villalba 2015). However, other CT forage 
legumes or some CT browse species may be bene�cial 
when fed as part of a diet (e.g., lotuses; Ayres et al., 2006). 
A universal consequence of dietary CTs is a reduction in 
urinary nitrogen excretion (because of reduced rumen 
proteolysis) and an increase in fecal excretion of nitrogen 
(Mueller-Harvey, 2006; Waghorn, 2008).

Evaluation of nutritional bene�ts can be complicated, 
especially if both feed quality (digestibility) and voluntary 
feed intake are important. Variations in intake are likely 
to confound comparisons of digestibility, but digestible 
matter intake is a recognized indicator of performance. 
There are a number of ways that the e�ects of CTs can 
be determined, and several studies (Table 4) have fed a 
CT forage to two groups of animals, with one receiving 

daily doses (or intraruminal infusions) of PEG to bind and 
deactivate the CTs. This ensures that the majority of the 
diet is the same and enables the e�ect of the CTs to be 
evaluated. An option used by some researchers to compare 
a CT diet with a similar non-CT diet is fraught with 
di�culties. No species are optimal for comparisons, and 
any di�erences in composition, digestion, or intake will 
compromise the evaluation of the CTs. It is also important 
to distinguish the CT e�ect from a legume e�ect when 
evaluating a CT forage fed with grasses, for example, and 
if the animals are parasitized, any bene�ts of CTs could 
arise from direct or indirect impacts on the parasites 
(Hoste et al., 2015, 2016).

Furthermore, because CTs reduce the digestion of 
protein in the rumen and over the entire gastrointestinal 
tract (Waghorn, 2008), it is unlikely that any nutritional 
bene�ts will result when dietary crude protein is 
insu�cient. Bene�ts are more likely when dietary 
protein is in excess of requirements. However, if in 
the presence of enough protein (or amino acids) other 
nutrients are limiting (e.g., energy intake or phosphorus), 
providing additional protein will not improve production 
(Waghorn, 2008; Pagán-Riestra et al., 2010). Hence, the 
methods by which animals are fed and their physiological 
state (e.g., lactating, growing, or at maintenance) when 
evaluating the nutritional e�ects of CTs can contribute 
to inconsistencies in �ndings. In addition, comparative 
measures of digestion may be confounded by variation in 
intakes, because increasing intakes may reduce digestibility 
(Tyrrell and Moe, 1975), but on other occasions have no 
e�ect (Hammond et al., 2013).

A number of studies with sainfoin and birdsfoot trefoil 
have also yielded contradictory results, often with lower 
or no production bene�ts measured when compared with 
CT-free controls (Thomson et al., 1971; Waghorn et 
al., 1997; Theodoridou et al., 2010; Aufrère et al., 2013; 
Azuhnwi et al., 2013b; Copani et al., 2016; Girard et al., 
2016a, 2016b). In addition to the constraints mentioned 
above (dietary crude protein concentration, or whether 
other nutrients are limiting production), variations in CT 
traits within germplasms may also a�ect animal responses 
(Grabber et al., 2015). For example, the UK Hampshire 
Common and Cotswold Common sainfoin accessions 
had higher PC/PD ratios (>30:70) than the continental 
European Visnovsky accession (<19:81) (Stringano, 2011; 
Stringano et al., 2012) and could have accounted for these 
contradictory reports. Birdsfoot trefoil has delivered good 
growth rates in the United States and New Zealand, 
and the PC/PD ratios were ~80:20 (Meagher et al., 
2004; MacAdam and Villalba, 2015). However, when 
two sainfoin cultivars with PC/PD ratios of 24:76 
(Visnovsky) and 37:63 (Perly) were fed to lambs infected 
with H. contortus, concentrations of essential amino 
acids in plasma were higher than when both diets had 
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been treated with PEG to inactivate 
CTs (Azuhnwi et al., 2013b); it 
is not known whether the higher 
plasma concentrations were a direct 
result of CTs on protein digestion 
or an anthelmintic e�ect against H. 

contortus. Variable results could be 
investigated by considering CT traits 
in conjunction with diet composition 
(e.g., protein, �ber, water-soluble 
carbohydrate, starch, and amino acid 
contents, as these can be a�ected by 
environment; Grabber et al., 2015), 
forage harvesting, or preservation 
methods. This means that nutritional 
evaluations of CT plants need to 
be undertaken under documented 
and controlled conditions, with 
information on harvesting and 
preservation methods (grazed, dried 
as hay or pellets, or ensiled).

Another potentially important issue 
could be how animals are fed, because 
CT traits also vary within plants. In 
Spain, it is traditional to take the �rst 
sainfoin cut as hay and then leave 
animals to graze the regrowth (Dr S.F. 
Demdoum, personal communication, 
2010). Under light stocking regimes 
in the United Kingdom, sheep will 
only eat the sainfoin tops (�owers and 
younger leaves) and leave older leaves 
and stems intact (Mueller-Harvey, 
personal observation). Therefore, 
feeding whole plants as pellets, hay, or 
silage could result in forages with very 
di�erent nutritive values than grazed 
forages, and also because conservation 
a�ects CT concentrations; these 
facts could be another reason for the 
contradictory results mentioned above.

One of the very few feeding trials 
that compared two birdsfoot trefoil 
cultivars with similar nutritional 
composition—apart from their CT 
concentrations—found that the 
‘Maitland’ cultivar (3.5 g CTs 100 g−1 
dry matter) achieved better nitrogen 
retention in sheep than the ‘Empire’ 
cultivar (0.5 g CTs 100 g−1 dry matter) 
(Waghorn et al., 1987). Greater 
retention of dietary protein suggested 
that the Maitland CTs protected more 
soluble protein from digestion in the 
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rumen but did not interfere with protein digestion and 
absorption in the abomasum and small intestine. More 
research is needed to establish the precise fate of dietary 
protein in the abomasum and intestine in the presence 
of CTs. Estimates based on their potentially bene�cial 
protein protection e�ects suggest that if alfalfa had just 1% 
CTs in its dry matter, this could achieve a 12% increase in 
net returns for US dairy farmers (McCaslin et al., 2014).

It is unfortunate that few studies describe the 
composition of CTs in plants that have been fed to 
ruminants, and the LegumePlus program has attempted 
to address this issue by encouraging communication 
and collaboration among chemists and plant and animal 
scientists. However, we still do not know which CT 
traits plant breeders should be targeting (i.e., dietary 
CT concentration, PC/PD ratio, or mDP values or a 
combination of these) to increase livestock production 
and product quality. Apart from a few in vitro studies 
(Azuhnwi et al., 2013b; Hatew et al., 2016; Huyen, 2016; 
Huyen et al., 2016b), no feeding trials have attempted to 
resolve the relationships between animal production and 
CT traits. Interdisciplinary research is needed to uncover 
the mechanisms by which CTs exert their e�ects on 
rumen (microbial) digestion and utilization of dietary 
nutrients, and this will require compositional (rather than 
colorimetric) analyses of the dietary CTs.

The size of CTs is the key parameter that controls 
CT protein aggregation and precipitation. This has been 
illustrated using bovine serum albumin (BSA) and gelatin, 
where aggregation increased markedly as the mDP values 
increased from 3 to 8 (corresponding to CT molecular 
weights of ~1000 to 2400 Da), but there were only small 
di�erences in the e�cacies of larger CTs with mDP >9 to 
aggregate the proteins (Ropiak et al., 2017). It would be 
worth testing whether CT size also a�ects the mechanism 
by which CTs interact with dietary or endogenous animal 
proteins, as Zeller et al. (2015b) showed that relatively more 
alfalfa protein was precipitated by CTs than BSA protein, 
which could be due to the major leaf protein ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBisCo) 
being much larger (560 kDa) than BSA (67 kDa). It will 
be necessary to determine if CTs with di�erent mDP 
values a�ect dietary protein degradation and digestion, 
especially as the major proteins in forages (RuBisCo), 
beans (albumins, prolamins), and intestinal gut tissue and 
mucoproteins have quite di�erent structures, which will 
in�uence their interactions with CTs (Hagerman and 
Butler, 1981). As an aside, we have included bean proteins 
in this context, as several papers from the 1960s and 1970s 
on the nutritional e�ects of dietary tannins originated 
from feeding CT-containing beans ( Jansman, 1993; 
Lowry et al., 1996). It would therefore be timely to review 
some of these results in the light of new knowledge on CT 
and protein structures.

Effects on the Quality of Animal Products

There are some e�ects of sainfoin diets on milk and 
meat quality and on the animal’s physiological response 
to dietary CTs. Cattle fed a grass–sainfoin (mixture of 
Zeus and Esparcette accessions) silage or sheep grazed on 
big trefoil (‘Maku’) partitioned energy towards protein 
synthesis, rather than lipid synthesis, compared with 
grass–corn (Zea mays L.) silage and white clover diets, 
respectively (Purchas and Keogh, 1984; Huyen et al., 
2016a). Feeding dairy cows with sainfoin pellets lowered 
milk and blood urea concentrations compared with alfalfa 
and birdsfoot trefoil pellets (Girard et al., 2016b; Grosse 
Brinkhaus et al., 2016) because of the reduction in rumen 
proteolysis and ammonia absorption.

Sainfoin and birdsfoot trefoil diets reduced bacterial 
biohydrogenation in the rumen, increased unsaturated 
fatty acid contents in milk, cheese, and meat products, 
and reduced indole and skatole in lamb meat (Priolo et al., 
2005; Schreurs et al., 2007; MacAdam and Villalba, 2015; 
Girard et al., 2016a, 2016b; Huyen, 2016; Huyen et al., 
2016a). Skatole and indole were associated with “fecal” 
�avor characteristic of pasture-fed products and originated 
from amino acid degradation by Clostridium aminophilum 
(Attwood et al., 2006), which was relatively sensitive to CTs 
(Sivakumaran et al., 2004). More recently, Campidonico 
et al. (2016) reported that CTs and polyphenol oxidases 
in a sainfoin–red clover silage mixture generated additive 
e�ects that increased the intramuscular unsaturated fatty 
acid contents of lambs compared with a pure grass diet.

Effects on Nitrogen and Methane Emissions
The reduction in urinary nitrogen and increase in fecal 
nitrogen excretion seem to be universal consequences of 
dietary CTs fed to ruminants and are important because 
a greater proportion of nitrogen is lost from urine than 
feces. Thus, CTs can improve soil nitrogen status, lower 
emissions of the potent greenhouse gas nitrous oxide 
(N2O), and lessen nitrogen leachate into waterways and 
groundwater (Kingston-Smith et al., 2010; Theodoridou 
et al., 2010). A shift from urinary to fecal nitrogen could 
redue nitrogen losses by 25% and achieve savings on 
nitrogen fertilizers based on preliminary estimates from 
the Integrated Farm System model for dairy farms (Zeller 
and Grabber, 2015). Other opportunities for reducing 
the environmental impact of nitrogen emissions from 
ruminant livestock include the use of galloylated CTs 
and epigallocatechin gallate (a galloylated �avan-3-ol 
monomer), because they are urease inhibitors (Huynh-Ba 
et al., 1994; Powell et al., 2011; Takeuchi et al., 2014). 
Urease inhibition reduces ammonia emissions from urine 
and subsequent N2O production (Kingston-Smith et al., 
2010). Grape seeds and some agroindustrial residues are 
sources of galloylated CTs and epigallocatechin gallate (Li 
et al., 2010; Lee et al., 2014; Ramsay et al., 2016), and 
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application to the barn �oor could lessen ammonia and 
N2O emissions from intensive systems.

It is clear that CTs can provide important bene�ts to 
ruminant farming; however, high dietary concentrations 
or CTs with the “wrong” compositional traits will lower 
the digestion and utilization of dietary protein and 
absorption of essential amino acids by ruminants (Min et 
al., 2003). The challenge is to identify which CT traits 
are best able to enhance utilization of dietary protein to 
improve animal production, environmental sustainability, 
and pro�tability for farmers.

CONCLUSIONS AND POSSIBLE 
DIRECTIONS FOR THE FUTURE
Condensed tannins are the fourth largest group of 
secondary plant metabolites in the plant kingdom and 
provide opportunities for breeding forage legumes with 
novel CT traits. Research on CT-containing feeds has the 
potential to improve ruminant health by preventing bloat 
and mitigating e�ects of parasitism, as well as lowering 
environmental footprints and improving the sustainability 
of food quality and production for consumers (Tedeschi 
et al., 2014). Innovative molecular approaches have 
enabled alfalfa and white clover to express PC dimers 
and trimers in their foliages (Hancock et al., 2012, 2014; 
Verdier et al., 2012; McCaslin et al., 2014). Apart from 
research by Mosjidis and colleagues, who selected for low 
CT concentration and grazing-tolerant sericea lespedeza 
for cattle production (Mosjidis, 2001), there has been 
hardly any plant breeding for enhanced CT composition; 
however, progress is becoming feasible, as new genomic 
data and molecular markers for CTs have been obtained 
(Kempf et al., 2016; Mora-Ortiz et al., 2016). Alternatively, 
cultivars with speci�c CT traits could also be obtained by 
conventional selection, focusing on the compositional CT 
di�erences that already exist between plant species and 
between, but also within, accessions and plant parts.

This review has highlighted that interdisciplinary 
research is essential for developing new forages with 
desirable CT traits and bioactivities, and that it 
requires well-coordinated inputs from plant scientists, 
chemists, animal nutritionists, and parasitologists. Such 
collaborations have succeeded in identifying the large 
variation in CT traits and their in vitro nutritional and 
parasitological e�ects that pertain to the germplasms 
of sainfoin and birdsfoot trefoil (Stringano et al., 2012; 
Grabber et al., 2014; Malisch et al., 2015), which grow 
in temperate climates. Such variation is likely to exist 
also in other species (e.g., sericea lespedeza and prairie 
clover, which grow in warm humid and colder regions, 
respectively; Mosjidis, 2001; Berard et al., 2011). It would 
be timely to explore these in vitro results by feeding CT 
forage legumes with varying CT traits to develop robust 
targets and tools for plant breeding.

Researchers must become aware that most 
colorimetric assays are not appropriate for determining 
CT concentrations or compositions. For example the 
p-dimethylaminocinnamaldehyde and HCl-vanillin 
reagents detect CTs, but also their monomeric �avan-
3-ol precursors, and the Folin–Ciocalteu reagent detects 
all phenolic groups, whether in monomeric �avonoids, 
proteins, or condensed or hydrolyzable tannins (Scho�eld 
et al., 2001). These problems are made worse by the use 
of inappropriate CT material to construct calibration 
curves for analysis of CT concentrations, as mentioned 
above (Grabber et al., 2013; Krueger et al., 2013). The 
fact that a multitude of methods or standards have been 
chosen to measure CTs has prevented comparisons of 
published CT concentrations from feeding trials and the 
setting of optimum thresholds for CT traits. Appropriate 
CT analysis is crucial to progressing this �eld.

Laboratory studies have probed the impact of CT 
concentration, polymer size, and PC/PD ratios on 
ruminal fermentation and antiparasitic e�ects. The time 
has come for feeding trials with selected forages of similar 
nutritional compositions but di�erent CT traits to test 
these in vitro results and establish the in vivo nutritional 
and antiparasitic e�ects associated with contrasting CT 
traits. This will also require comparison of forages that 
have been grazed or processed into hay, pellets, or silages, 
because CTs become less extractable on processing, but 
the underlying mechanisms and biological signi�cance of 
these changes are yet to be explored. Such studies will 
help to optimize dietary protein utilization and energy 
partitioning and reduce the environmental footprint of 
livestock production.

We also need answers to the following questions: what 
e�ects do CTs exert on intestinal cells in ruminants and 
nonruminants in terms of nutrient absorption and cell 
signaling cascades? What are the mechanisms by which 
CTs protect dietary protein from rumen degradation and 
a�ect amino acid absorption from the intestine (e.g., in 
the presence of CTs, amino acid absorption takes place 
across the entire intestine; however, in the absence of 
CTs, absorption occurs in the �rst third of the intestine; 
Wang et al., 1996)? What are the e�ects on the ruminal 
or colonic microbiomes? How does the impact of CTs on 
recycling of urea-nitrogen modify the utilization of energy 
and protein in dairy cows, and what is the origin of higher 
fecal nitrogen outputs in the presence of CTs? We need to 
establish the fate and bioactivity of CTs during ensiling and 
digestion, their mechanisms of action against parasites along 
the digestive tract, and their e�ects on the in vivo immune 
response and establish relationships with CT concentration 
and composition. This review has also highlighted the 
need for analytical methods and CT standards that are �t 
for purpose so that published CT values can be compared 
between research groups and experiments.
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Although considerable progress has been achieved 
over recent years, questions remain on how to translate 
the research results into practice, such as:

•	 How should we use CT forages? Is it better to graze 
forages with low CT concentrations and use high-
CT forages as supplements?

•	 Can high-CT and CT-free forages be grazed 
together in strips, and could this improve utiliza-
tion of dietary protein?

•	 Can the competitiveness and persistency of CT-
containing legumes be increased so they can be 
sown together with other crops and achieve suc-
cessful weed suppression?

•	 What are the ecological implications of intake and 
selectivity by di�erent ruminant species on plant 
persistence in the �eld?

•	 Does an optimum CT concentration and com-
position exist that can deliver nutritional plus 
antiparasitic e�ects? According to Cherry et al. 
(2014), it may be possible to achieve both, or do 
we need forages with di�erent CT compositions 
(i.e.,  cultivars that either improve protein utiliza-
tion or possess antiparasitic e�ects)?

•	 Will increased use of CT forages generate resistance 
of parasites to CTs, and how can feeding regimes 
mitigate against this?

•	 Is it best to use a short-term supply of high-CT for-
ages for reducing parasite burdens at strategic times 
(e.g., pregnancy, parturition, weaning), or should a 
longer-term supply of low-CT forages be used to 
boost the immune response?

•	 What agronomic, harvesting, or processing mea-
sures can best ensure that CT plants deliver 
consistent results? Which cultivars should be grazed 
and processed into hay, pellets, or silage, and at 
what times of the year?

From these questions we need to develop practical 
solutions through collaboration with farmers and 
veterinarians. Producers and consumers alike are looking 
for sustainable innovations that produce high-quality 
foods pro�tably while also maintaining soil fertility and 
the quality of our environment.
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