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Abstract: The purpose of this work was to investigate the validity of Arrhenius accelerated-life

testing when applied to gallium nitride (GaN) high electron mobility transistors (HEMT) lifetime

assessments, where the standard assumption is that only critical stressor is temperature, which is

derived from operating power, device channel-case, thermal resistance, and baseplate temperature.

We found that power or temperature alone could not explain difference in observed degradation, and

that accelerated life tests employed by industry can benefit by considering the impact of accelerating

factors besides temperature. Specifically, we found that the voltage used to reach a desired power

dissipation is important, and also that temperature acceleration alone or voltage alone (without much

power dissipation) is insufficient to assess lifetime at operating conditions.
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1. Introduction

Gallium nitride (GaN) high electron mobility transistors (HEMTs) offer gains in increased

capability and lower costs due to their ability to operate at high power, high frequencies, and

high temperatures [1]. Although extremely attractive for many U.S. Department of Defense

applications, insertion of this emerging technology is risky because of the little to no long-term

use data that ensures the needed lifetimes are possible. Most estimates of GaN HEMT lifetimes

have used conventional temperature-accelerated direct current (DC) operational-life test predictions.

The Arrhenius extrapolations reported in the literature [2–4] have extremely long predicted median

times to failure. While encouraging, the long estimates and high activation energies may not be

indicative of the actual lifetimes at use conditions.

Despite the commercialization of GaN HEMTs for some ground-based applications, mysteries

about the device reliability remain [5], as evidenced by the continued research of their life expectancy.

These unanswered questions have inhibited their use for military and space applications, where

demonstrated long product lifetimes are required.
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The GaN HEMT is a complex electrothermomechanical system that will be used at high

channel temperatures, extreme bias, and high radio frequency (RF) drive. Is the conventional

temperature-accelerated Arrhenius extrapolation sufficient to describe the long-term behavior of

the system? Are these extrapolations adequate to compare one generation of GaN HEMTs from a

single vendor to another generation, or to compare GaN HEMTs from multiple vendors?

In using the Arrhenius model to estimate lifetimes, several assumptions are made that will be

investigated. Using the Arrhenius model assumes that a dominant failure mechanism exists and is

accelerated by temperature. In other words, the high temperatures cannot “turn on” different and

more temperature-sensitive mechanisms or mask unknown lower-temperature mechanisms. Other

assumptions of the Arrhenius technique, such as the existence of one unique temperature (i.e., T1)

that describes the device at a specific bias condition, are known issues but will not be investigated in

detail are whether or not surface, channel, or hot electron temperatures should be used as the critical

temperature for analysis [5]. The estimation of the temperature at the site of degradation/failure is

critical. Direct measurement and characterization of the actual temperature in the area of interest was

impractical because the area of interest is sub-micron in size and is located, within the structure of the

device, under a metal stack that cannot be removed without affecting device operation and/or the

intended temperature to be measured [6,7]. Therefore, we relied on the commonly accepted approach

of using simulation data and indirect measurements versus directly collecting measured data. Other

important sources of error in thermal estimation are that the degrading region of a power device is not

at a single uniform temperature during operation [6] and that the thermal resistance estimates usually

only consider the total power dissipated within the device. These thermal resistance estimates do not

account for different bias conditions causing different temperature distributions within the device [7].

Finally, the value of the thermal resistance between the GaN buffer and the substrate varies greatly

from vendor to vendor due to differences in device fabrication and packaging [8].

In addition to the query of the critical temperature for analysis in [5], the authors explored the

validity of the assumption that the failure mechanisms in GaN HEMTs follow the Arrhenius model.

Furthermore, [9,10] reported that the gate degradation in GaN HEMTs depends strongly on electric

field but weakly on temperature. The authors concluded that this weak temperature dependence

can lead to optimistic lifetime estimates if conventional high-temperature acceleration is used and

voltage-accelerated tests are needed.

The Arrhenius model is r(T) = A¨exp(´EA/kT), where r is the reaction rate, T is the temperature

in Kelvin (K) at the site of failure in the device (typically attributed to the channel), A is a constant, EA

is the activation energy in electron-volts (eV), and k is Botzmann’s constant (8.617 ˆ 10´5 eV/K) [11].

The activation energy parameter in the Arrhenius model is experimentally determined and denotes

the sensitivity of the reaction (degradation, in the case of reliability testing) to temperature.

An acceleration factor AF—in this case, due to elevated temperatures—relates an Arrhenius

reaction rate at one temperature to an Arrhenius reaction rate at a different temperature. The

acceleration factor is defined mathematically as [12]:

AF “
rpT2q

rpT1q
“

Aep´EA{kT2q

Aep´EA{kT1q
“ exp

ˆ

EA

k

ˆ

1

T1
´

1

T2

˙˙

. (1)

With failure time measurements from samples operating at two or more temperatures, the

activation energy EA can be found. Once the activation energy has been computed, an acceleration

factor is calculated with Equation (1) using a temperature other than the elevated temperatures, such

as operating temperatures, as T1, and one of the elevated temperatures as T2. An estimate for the time

to failure at T1 is then this AF multiplied by the time to failure at T2.

2. Materials and Methods

Tested devices came from the same lot and had the same structure, which consisted of a

semi-insulating silicon carbide (SiC) substrate [13], one 0.5-µm length optically defined gate with a
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gate-integrated field plate [13], and a source-connected field plate [4]. Gate width was 2 ˆ 50 µm.

The gate contained a nickel Schottky barrier and thick gold overlay for low gate resistance. The

highly resistive GaN buffer was grown by organometallic vapor phase epitaxy (OMVPE) [13]. The

gate-to-drain gap was greater than the gate-to-source gap [13].

Two different sets of test conditions were used: one was a high DC drain voltage (VDS = 60 and

100 V) and low current with the gate pinched off (VGS = ´10 V), and the other was high DC power

dissipation (ě11 W/mm). These conditions may occur during the RF sweep of device operation.

Table 1 shows the initially observed parameter values of the two different sets of test conditions.

The rationale for selecting Conditions 1, 2, and 3 was to map the boundaries of life for the tested

devices with increasing voltages. Conditions 2 and 3 were to have the same power dissipation (Pdiss)

and Condition 1 half that power. Conditions 1 and 2 were to have the same drain current (ID). The

base-plate temperatures (Tbp) of the power test Conditions 1, 2, and 3 were selected so that the devices

had similar estimated peak channel temperatures (Tch), while the high-voltage test Conditions 4 and 5

would also have similar peak channel temperatures and were chosen to investigate the effect voltage.

All peak channel temperature estimates are based on bias-dependent electrothermal modeling of the

full device [6]. In all cases, testing was conducted in the dark under dry nitrogen in an Accel-RF/DC

test station. Two different test durations were used.

Table 1. Initial measured parameter values.

Condition Device
Measured
Tbp (˝C)

Measured
VDS (V)

Measured ID

(mA/mm)
Measured

VGS (V)
Calculated Pdiss

(W/mm)
Tch (˝C)
Estimate

1

55 245.2 20.011 568.9 2.011 11.4 399
56 245.2 19.994 547.9 2.004 11.0 393
57 245.2 20.000 532.8 2.017 10.7 389

2

58 133.0 40.012 552.8 2.016 22.1 393
59 133.2 40.010 576.8 1.806 23.1 406
60 133.2 40.012 571.9 1.708 22.9 404

3

28 130.3 60.005 380.8 0.3028 22.8 403
29 130.3 60.015 349.4 0.4022 21.0 378
30 130.2 60.018 366.7 0.25 22.0 391

6

25-024 245.2 17.494 655.3 3.033 11.5 397
26-025 245.3 17.509 658.9 3.034 11.5 399
27-026 245.3 17.507 658.5 3.028 11.5 398

Approximate ID

(mA/mm)

4
31 245.0 60.005 <0.026 ´10.002 <0.00156 245
33 245.1 59.996 <0.026 ´9.992 <0.00156 245

5
25 245.1 99.995 <2.0 ´9.996 <0.19999 246–248
27 245.1 100.005 <2.0 ´9.999 <0.20001 246–248

Base-plate temperatures (Tbp), drain to source voltage (VDS); drain current (ID); gate to source voltage (VGS );

power dissipation (Pdiss); channel temperatures (Tch).

2.1. 300-h Test

For a 300-h test, three devices were placed under testing for each of conditions 1, 2, and 3, and

two devices were tested for each of Conditions 4 and 5, for a total of 13 successfully tested devices.

For high-power Conditions 1, 2, and 3, the drain voltage VDS was set and the gate voltage VGS

was adjusted until the target drain current ID was reached. After the initial setting of VGS, VGS was

maintained for the duration of the test. The expected values of VGS for Conditions 1, 2, and 3 were

based on previous testing and were not anticipated to cause forward gate current based on the previous

testing of parts from the same lot at VGS = 2 V. For the high-voltage Conditions 4 and 5, both VDS

and VGS were set, and the expected ID is based on the values seen during step-stress testing on four

on-wafer devices in a probe station. The range of Tch estimates for Condition 5 is based on the range

of ID values seen during the step-stress testing.
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The test sequence for the power test conditions was an initial characterization, followed by stress.

The test was ended at 300 h to conduct post-stress characterization.

Since drain current degradation during stress was expected to be small in the devices in the

high-voltage set, these devices were periodically characterized. Their degradation was tracked with

IDSS and IDmax rather than with the stress drain current. One-hundred hours was arbitrarily chosen for

the time between characterizations.

The automated characterization is supported by the test stand (the sample did not leave the test

module), and consisted of transfer curves collected at Tbp = 70 ˝C with Agilent power supplies (model

E5280B Precision High Power modules in a model E5270B 9-Slot Precision Measurement Mainframe,

City, Country of Agilent). The transfer curve was conducted at VDS = 10 V, with VGS being swept

from ´5 to 1 V. The characterization was shown to be benign in on-wafer testing. IDSS is defined as

the current when measured at VDS = 10 V and VGS = 0 V. IDmax is defined as the drain current when

measured at VDS = 10 V and VGS = 1 V. The resulting 300-h test data were tabulated in Section 3

below. Traditional IV plots were not possible since all of the data were collected at fixed values of VDS

and VGS.

2.2. 600-h Test

A test similar to the 300-h high-power test was conducted for 600 total stress hours on three

devices. The differences were (Condition 6 in Table 1) rest periods at 200 and 400 stress hours, and

hourly characterizations at the stress base-plate temperature. In addition and similar to the 300-h test,

transfer curve characterizations occurred at Tbp = 70 ˝C before and after each stress period.

Prior to conducting this 600-h test, three packaged devices were tested in a probe station to

determine bias conditions at which very little (<1 mA/mm) forward gate current would flow. With the

thermal stage set at 245 ˝C, the voltages of Condition 6 were observed to cause very little forward gate

current. The average drain current at these biases was 690 mA/mm. The resulting 600-h test data were

tabulated in Section 3 below. Traditional IV plots were not possible since all of the data were collected

at fixed values of VDS and VGS.

3. Detailed Results

3.1. 300-h Test

The devices showed a very apparent “burn-in” effect, with a rapid change in electrical

characteristics followed by slow and more consistent (part-to-part) change. Due to this apparent

burn-in effect, some of the following comparisons will treat the first post-stress characterization for

the high-voltage-tested parts as the “initial” values; doing so is sufficient to remove the burn-in effect

for all parts. Since the first post-stress characterization for the high-power-tested parts is also the last

characterization for these devices, the pre-stress characterization will be treated as the initial values for

the high-power-tested devices.

The nominal pre-stress conditions for the devices tested for 300 h follow: the average peak

transconductance (gmp) was 201.2 mS/mm; the average threshold voltage was 2.88 volts; the average

maximum drain current (IDmax) was 745.5 mA/mm; and the average maximum source current (ISmax)

was 573.8 mA/mm.

Table 2 contains the changes at the end of the test period for each device. Most changes are listed as

percentages, but the threshold voltage change is absolute. The initial values for the high-voltage-tested

parts are from the 100-h characterization to remove the burn-in effect, as explained above. All devices

trended as indicated by the signs in Table 2. All devices exhibited a positive threshold voltage shift.

The high-power conditions caused more change than the high-voltage conditions as seen in the greater

magnitude changes shown in Table 2.

To ensure that the positive gate biases used in some test conditions were not the cause of

degradation, we subjected devices from the same family as reported herein to high forward gate
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bias (+6 V) and current (>1.8 A/mm) for >17.5 h. The HEMTs survived this condition and exhibited

only a slight change in gate diode characteristic, little decrease in maximum drain current, with only

a 0.1 V positive threshold voltage shift, and remarkably, a persisting breakdown voltage exceeding

200 V.

Table 2. Parameter changes by condition in 300-h test: gmp, VT, IDmax, and IDSS.

Condition Device gmp ∆VT (mV) IDmax IDSS

1

55 ´2.37% 253 ´7.9% ´10.1%
56 ´1.20% 310 ´8.6% ´11.9%
57 ´2.57% 365 ´10.0% ´13.6%

2

58 ´2.29% 316 ´11.6% ´14.2%
59 ´3.50% 312 ´12.1% ´14.1%
60 ´1.64% 263 ´9.0% ´11.2%

3

28 ´5.37% 603 ´18.3% ´24.6%
29 ´2.03% 356 ´10.7% ´14.9%
30 ´2.72% 514 ´13.0% ´18.3%

4
31 0.04% 49.6 ´1.3% ´1.7%
33 ´0.14% 31.7 ´0.7% ´1.4%

5
25 0.01% 71.4 ´1.7% ´2.4%
27 ´1.02% 12.3 ´1.2% ´1.2%

Transconductance (gmp); change in threshold (∆VT); maximum drain current (IDmax); steady state drain
current (IDss).

Our commercially purchased reliability test station monitored gate leakage current, but not with

sufficient accuracy to provide any useful data for this research. While some reports show increased

gate current after exceeding a “critical voltage” [14], we tested two representative devices to the

limits of our power supplies (VD = +200 V, VG = ´100 V) and did not see any such “critical voltage”

breakdown. Instead, the bias conditions used in this study were chosen because they represent realistic

device operating conditions and they closely follow industry standard accelerated life test (ALT)

methodologies where saturated RF power and DC saturated drain current are key metrics for assessing

device performance and degradation [15,16].

While determining the physical cause of the observed degradation was not an objective of this

paper, there are published mechanisms that could apply. Degradation due to hot electrons is discussed

in [17,18]. A prominently reported degradation mechanism in GaN HEMTs is the physical alteration

of the drain side of the gate after stress [15,17,19,20]. In [21], we reported our observations of physical

damage after stress.

Based on the averages of the parameter data presented in Table 2, there appears to be a correlation

between higher drain biases (when power dissipation and channel temperature are held constant) and

greater degradation. Although the estimated channel temperatures were similar for the high power

tests and separately for the high voltage tests, the average change for the four parameters generally

increased in magnitude with drain voltage. For high-power Condition 3, the degradation was more

than it was for the other two high-power conditions.

Using the averages of the activation energies presented in [2–4]—2.09 eV—and the averages of

each condition’s channel temperatures estimates in Table 1, the acceleration factors from Equation (1)

between the test conditions were calculated. The acceleration factors (AF) suggest that the devices

tested at Condition 1 should have, based on the AF alone, degraded slightly more than the Condition

3 devices (AF = 1.19), and Condition 2 more than Condition 3 (AF = 1.72). However, we see in Table 2

that Condition 3 degraded the fasted as would be expected for a positive degradation correlation with

drain voltage. To be fair, Conditions 2 and 3 are more comparable to each other than Condition 1

since Conditions 2 and 3 experienced similar power dissipation; error in the estimate of the thermal

resistance of the sub-micron-sized channel region will affect Conditions 2 and 3 in about the same
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way and still leave them comparable to each other. Still, we see that the degradation caused by the

high-power electrical conditions overshadows the degradation that may be caused by temperature

for Condition 3.

On the other hand, high-voltage Condition 5 may have had a channel temperature between 246

and 248 ˝C versus 245 ˝C for the channel temperature of the other high-voltage condition. This implies

1.09 < AF < 1.31 for Condition 5 versus Condition 4. As such, for the changes shown in Table 2 for the

high voltage tests, we do not rule out agreement with the expectations of the Arrhenius model.

Figure 1 shows the pre- and post-stress values of IDmax and IDSS, respectively, normalized to the

pre-stress values for the high-power conditions. The plots of the Condition 1 and 2 drain currents

overlap, indicating that these conditions had similar responses to their stresses, despite different drain

voltage and power dissipation levels. The plots of the Condition 3 drain currents are distinctly separate

from those of Conditions 1 and 2, despite the similar Tch estimates for all three conditions and the

same power dissipation as Condition 2. Condition 3 shows a marked difference to Conditions 1 and 2.

In fact, ˘15% ranges around Conditions 1 and 2 slope averages overlap each other, while the ˘15%

range around the Condition 3 average does not overlap the ˘15% ranges of either Condition 1 or

2 averages.

 

Figure 1. Normalized (to the 0 h measurements) pre- and post- stress values of (a) maximum drain

current (IDmax) and (b) steady state drain current (IDSS)for the 300 h high-power conditions. The top

three lines (red) of the legend are Condition 1, the middle three (blue) Condition 2, and the bottom

three (green) Condition 3.

A similar analysis of the slopes of the IDmax and IDSS lines can be performed for the high-voltage

conditions. Figure 2 shows the pre- and post-stress values of IDmax and IDSS, respectively, normalized to

the 100 h values. The plots of IDmax overlap, and the Condition 5 IDSS lines encompass the Condition 4

IDSS lines, indicating that both conditions had similar responses to their stresses, despite different drain

voltages. Ranges of ˘15% around the Condition 4 and 5 IDSS linear-fit slope averages overlap, but

˘15% ranges around the IDmax linear-fit slope averages do not. Although the slope averages increase

with drain voltage and the ˘15% IDmax slope average ranges do not overlap, the overlapping IDmax

and IDSS plots indicate similar behavior for the high voltage test.

The following is an analysis of the sensitivity of the high power test to different sources of

variation. To examine the effect of the test station on device degradation measurements, the initial

parameters were first recorded. Table 1 contains the values of parameters of interest at time 0 of the

stress period as measured by the test station while at the stress base-plate temperature. There are

multiple sources of measurement variation within the test station: ˘2 ˝C for base-plate temperature,

˘50 mV for drain voltage, and ˘1.5 mA (equivalently 15 mA/mm) for drain current. In addition to the

measurement variation, the setability accuracy for drain current is 1.5 mA, and base-plate temperature

is ˘2 ˝C. The drain current measurements (and calculated power dissipations) are the largest sources

of variation in the channel temperature estimates in Table 1 for the high-power conditions.



Electronics 2016, 5, 32 7 of 14

 

Figure 2. Normalized (to the 100 h measurements) pre- and post- stress values of (a) maximum drain

current (IDmax) and (b) steady state drain current (IDSS)for the 300 h high-voltage conditions. The top

two lines (red) of the legend are Condition 4, and the bottom two (blue) are Condition 5.

Assuming the initial measured values had persisted throughout the test, a correlation between

the channel temperature estimates of Table 1 and the degradation for each device (Table 2) for the

high-power conditions can be investigated. For comparison purposes, the high-power-tested device

values are compared to nominal values of Tch =395 ˝C (the average of the Tch estimates in Table 1),

´2% gmp, a ∆VT of +300 mV, ´10% IDmax, and ´10% IDSS. With the nominal Tch value as T1 in

Equation (1), acceleration factors are calculated to compare each high-power-tested device to the

nominal values. This analysis indicates there is no correlation between the acceleration factors and the

observed degradation, which means that the observed degradation was not caused by the variation in

initial measured parameter values.

The following analysis investigates the initial Tch estimates of Table 1 and the measurement

error from the Agilent power supplies during initial and final characterizations. Based on the Agilent

specifications [22], the drain current measurement error depends on the measured current value

and the output voltage, which also has a measurement error dependent on the measured output

voltage. The drain voltage measured 10 V and the error was ˘7 mV. For the high-power-tested

devices, the maximum drain current error for the initial characterizations was 0.108 mA, and, for

the final characterizations, was 0.102 mA. The maximum drain current error for the initial and final

characterizations of the high-voltage-tested devices was 0.107 mA. Degradation rates (linear-fit slopes

from Figures 2 and 3) are calculated from the initial and final IDmax characterizations and times. Finally,

the magnitudes of the degradation rates are plotted against the temperatures (1/kT) in Figure 4. The

center points are the average Tch estimates and the average rates in a condition. The endpoints are

the minimum and maximum rates along the line of average temperatures and the minimum and

maximum Tch estimates along the line of average rate in a condition. Conditions 4 and 5 have greater

rate ranges since there was little difference between the initial and final drain current values, which

resulted in the same maximum error of 0.107 mA. Also included in Figure 3 are reference lines that

pass through the center point of Condition 1 and assume activation energies of 2.09 (used previously

in this paper), 1.6, and 2.47 eV (the range of values surveyed in [5] that resulted from DC testing).

As can be seen from Figure 3, Conditions 1 and 2, and separately 4 and 5, have overlapping ranges

and are similar. Notice that the reference lines through Condition 1 do not approach Conditions 4

and 5. Conditions 4 and 5 appear related to each other by the Arrhenius model. Since the high power

test results are clustered closely in Figure 3, the portion of the graph containing these conditions is

magnified in Figure 4.

In Figure 4, the error bars are replaced with error boxes, and individual device data are

plotted. As seen in Figure 4, the ranges of Condition 3 do not overlap those of Conditions 1 and 2,

which suggests that Condition 3’s behavior may not have been caused by temperature, even with

measurement error and variation of initial biases. However, the reference lines could be shifted to the
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right such that the lines intersect all three boxes, suggesting an Arrhenius relationship between the

conditions. The inconsistency, though, is that Conditions 3’s box is up and to the right of Condition 1,

when it should be down and to the right for its lower average Tch estimate (see Table 1).

− Δ − −

 

Figure 3. Comparison of Agilent power supply (San Jose, Ca, USA) measurement error and initial

channel temperature (Tch) estimates in the 300-h test.

 

−

− −

Figure 4. Magnified portion of Figure 3.

Finally, an analysis of the sensitivity of Conditions 1, 2, and 3 to thermal resistance (Rth) changes

in the thermal model is investigated. The accuracy of any thermal resistance estimate for these

devices is subject to significant error [6,7,23], and it is an underappreciated fact that the sensitivity of

conclusions drawn in an accelerated life test to the thermal resistance assumed should be considered [7].

The analysis computes new Tch estimates with [(Tch ´ Tbp) ˆ (˘20%)] + Tbp for a ˘20% change in

thermal resistance. Then, acceleration factors between test conditions are calculated with the new Tch

estimates. Table 3 lists the new Tch estimates and acceleration factors (AF), as well as the original Tch

estimates and acceleration factors. The new AF’s generally indicate the same behavior as the original

AF’s for Condition 2 versus 3: Condition 2 should degrade more than Condition 3. Depending on the

error, though, Condition 1 may degrade much more or less than Conditions 2 and 3 based on AFs.

Recall that the observed behavior was not what was indicated by the Arrhenius model—Condition 3

degraded more than Conditions 2 and 3.

Based on the foregoing data, the evidence indicates that temperature was not the cause of

degradation in the high-power tested devices, especially, since there were significant differences in the

responses of Conditions 2 and 3. From the sensitivity analysis, the variation of the test station bias
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setting and measurements in initial measured parameter values, the characterization measurement

error, and the thermal resistance error in the thermal model are not sufficient to discount the differences

in degradation or the conclusion that temperature did not cause the degradation. In contrast, for the

high-voltage-tested parts, there is sufficient similarity and overlap in degradation values and plots to

indicate that the observed changes may have been caused by temperature. Therefore, the Arrhenius

model may be valid for some bias conditions, but not for others.

Table 3. Sensitivity analysis of thermal model for Rth for Conditions 1, 2, and 3.

Condition
Tch (˝C) Tch (˝C) Tch (˝C)

Comparison
AF AF AF

(´20% Rth) (Model Rth) (+20% Rth) (´20% Rth) (Model Rth) (+20% Rth)

1 364 394 424 1 to 2 2.84 0.69 0.227
2 347 401 455 1 to 3 4.73 1.18 0.397
3 339 391 443 2 to 3 1.67 1.72 1.75

Thermal resistance (Rth).

3.2. 600-h High-Power Test

Similar to the burn-in effect observed in the 300 h test above, the devices of the 600 h test

showed a more rapid decrease in the first hour of stress than in subsequent hours. Consequently,

the 1 h characterizations at 245 ˝C are considered to be the “initial” data points for the pre- and

post-stress characterizations.

The nominal pre-stress conditions for the devices tested for 600 h follow: the average peak

transconductance (gmp) was 202.1 mS/mm; the average threshold voltage was ´2.96 volts; the average

maximum drain current (IDmax) was 760 mA/mm; and the average maximum source current (ISmax)

was 591 mA/mm. The devices were from the same lot as the devices used for the 300-h test. Table 4

contains the changes at the end of the 200 and 600 h for each device.

Table 4. Parameter changes by device and stress time in the 600-h test: gmp, VT, IDmax, and IDSS.

Y (hours) Device gmp ∆VT (mV) IDmax IDSS

200

25-024 –4.1% 0.31 –10.4% –13.5%
26-025 –3.2% 0.25 –8.1% –10.6%
27-026 –2.4% 0.24 –7.1% –9.7%

600
25-024 –3.2% 0.25 –8.3% –10.9%
26-025 –2.4% 0.17 –5.8% –7.3%

Transconductance (gmp); change in threshold (∆VT); maximum drain current (IDmax); steady state drain
current (IDss).

Figure 5 shows the normalized values (to the 1 h, 245 ˝C measurements) of IDmax over time for

the devices in the 600 h test. Interestingly, after initially degrading, the devices began to recover

during stress. This recovery is evident in decreased magnitudes of averages, from 200 to 600 h, of the

parameter data in Table 4.

As with Conditions 2 and 3 of the 300 h test, Condition 1 of the 300 h test and Condition 6 of the

600 h test are comparable since they experience similar power dissipation. However, the Tch estimate

for Condition 6 is 405 ˝C, and the acceleration factor between Conditions 6 and 1 is 1.80, indicating

that Condition 6 should be different than the other conditions. Therefore, Condition 6 was expected

to degrade more than Condition 1. Figure 6 contains plots of the 70 ˝C characterization data for the

300-h and 600-h tests. As in Figure 5, the drain current recovers in the 600-h test devices. Interpolating

the 600-h test data at 300 h reveals that Condition 6, in fact, did not degrade more than Condition 1,

contrary to Arrhenius expectations.
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Figure 5. Normalized values (to the 1 h, 245 ˝C measurements) of IDmax over time during the 600 h test.

 

Figure 6. Normalized values (to the 0 h, 70 ˝C measurements) of maximum drain current (IDmax) over

time during the 300-h test, Condition 1 (lines 2–4 in the legend in red) and the 600-h test, Condition 6

(lines 5–7 in the legend in green) tests.

The following is a brief analysis of the sensitivity of Conditions 1 and 6 to the initial measured

parameter values. To begin, the initial measured parameter values of Conditions 6 are listed. Table 1

contains the values of parameters of interest at time 0 of the stress period as measured by the test

station while at the stress base-plate temperature.

Then, the initial Tch estimates for Conditions 1 and 6 in Table 1 and the measurement error

from the Agilent power supplies during the initial 300-h characterizations are analyzed in direct

analogy to the analysis of Figures 4 and 5. Linear interpolations of the 200 h and 400 characterizations

of Devices 25-024 and 26-025 are used to obtain 300 h characterization estimates for these devices.

A 300-h characterization estimate is extrapolated for Device 27-026 from its 200-h characterization

using the average of the slopes calculated for the linear interpolations od Devices 25-024 and 26-025.

Based on the Agilent specifications [22], the error for the measured drain voltage of 10 V is ˘7 mV.

For Condition 1, the maximum drain current error for the initial characterizations is 0.108 mA, and for

the 300-h characterizations is 0.102mA. For Condition 6, the maximum drain current error for the initial

characterizations is 0.109 mA, and for the 300-h characterization estimates is 0.103 mA. Degradation

rates are calculated from the initial and 300 h IDmax characterizations and times. Finally, the magnitudes

of the degradation rates are plotted against the temperatures (1/kT) in Figure 7. The center points are

the average Tch estimates and the average rates in a condition. The endpoints are the minimum and

maximum rates along the line of average temperature and the minimum and maximum Tch estimates

along the line of average rate in a condition.
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As can be seen in Figure 7, Conditions 1 and 6 have overlapping ranges and the reference lines

could be moved left to intersect both boxes, indicating similar behavior. The initial Tch estimates for

Condition 6 are generally higher than those of Condition 1, yet the degradation rates are generally

similar. The average initial Tch estimates for Condition 6 is 398 ˝C, and the average initial Tch estimates

for Condition 1 is 394 ˝C. The Arrhenius acceleration factor between these average temperatures is 1.24.

The inconsistency here with the Arrhenius model is that the Condition 6 box is down and to the left of

the Condition 1 box, when it should be up and to the left for its higher average initial Tch estimate.

Figure 7. Comparison of Agilent power supply measurement error and initial Tch estimates in

Conditions 1 and 6.

3.3. Discussion

In the data presented, there are two instances where the Arrhenius model seems reasonable. These

instances occur when GaN HEMTs were tested at a similar channel temperature estimates. These

instances are between Conditions 1 and 2 and between Conditions 4 and 5 (although the average

degradation for these conditions has a positive correlation to drain voltage).

Conversely, there are two instances of inconsistency with the Arrhenius model. Both instances

occur when the test conditions are similar. One instance—between Conditions 2 and 3—occurs when

similar degradation was expected, but the two conditions exhibited different degradation. The other

instance—between Conditions 1 and 6—occurs when different behavior was expected, but similar

behavior was observed. In addition, the error boxes of Conditions 3 and 6 are not where they are

expected to be based on the Arrhenius relation.

Another instance of inconsistency is between the high-voltage conditions and the high-power

conditions. Reference lines assuming activation energies do not intersect the error regions of the

two different sets of conditions (see Figure 3). This inconsistency indicates that GaN HEMT

degradation depends on the test conditions.

The average points of all the test conditions follow a positive correlation to drain bias. For the

high-voltage conditions, the average degradation rate is higher for Condition 5 (VDS = 100 V) than

for Condition 4 (VDS = 60 V). For the high-power conditions, the progression from lowest to highest

average degradation rate is Condition 6 (VDS = 17.5 V), Condition 1 (VDS = 20 V), Condition 2

(VDS = 40 V), and Condition 3 (VDS = 60V) (see Figures 3, 4 and 7).

Reliability evaluation of aluminum gallium nitride (AlGaN)/GaN HEMT’s will benefit from

considering other accelerants besides temperature. Based on the observations from this study, drain

bias showed a positive correlation to degradation in a high-power test condition. Voltage acceleration

would be a primary additional accelerant to pursue. To adequately consider other accelerants,

the design of experiment methodology could be applied to create the multi-variable tests. Then,
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multi-stress models could be used in place of the single-stress Arrhenius model to analyze the data.

Possible multi-stress models to use include the Generalized Eyring model [12] Generalized Log-Linear

relationship, and the Proportional Hazards model [24]. Each model allows more than two stressors to

be applied as accelerants.

Reliability assessments that employ more and different accelerants than temperature will result

in more accurate lifetime estimates of AlGaN/GaN HEMTs since they will account for the failure

mechanisms of the electrothermomechanical system that are not primarily thermally activated.

For example, if a temperature-accelerated life test was conducted near Conditions 1 and 2, but device

operation occurred near Condition 3, the Arrhenius extrapolations would be optimistic.

Based on this study, and [9,10], the need for different accelerants when assessing GaN HEMT

reliability is shown. Additionally, [14,19,20] investigated the effect of increasing drain-to-gate voltage

IDmax. They observed that higher drain-to-gate voltages degraded drain current, especially after a

“critical voltage”. These authors showed, in effect, that GaN HEMT degradation for some devices

could be accelerated with voltage. In contrast to [14,19,20], our devices required high voltage in

conjunction with power dissipation for degradation; higher voltages without power did not cause

similar degradation. Similar devices to ours from the same vendor, tested independently, behaved

similarly without degradation according to the inverse piezoelectric effect, as expected by the “critical

voltage” model [25,26].

4. Conclusions

We have studied the degradation of AlGaN/GaN HEMTs subjected to the conditions of high

DC power and high voltage with the gate pinched off, conditions which are typical during normal

device operation. We observed that device degradation, in the devices stressed by only DC, can not

be modeled using the classic temperature accelerated model. The experimental data showed that

single-DC-stress, temperature accelerated life testing does not account for the critical degradation in a

GaN HEMT. Further work will investigate the stress effects of RF operation, to assess whether or not

DC-only accelerated-life tests can properly identify dominant end-of-life degradation mechanisms.

Acknowledgments: The authors wish to thank the Air Force Research Laboratory High-Reliability Electronics
Virtual Center team for guidance and support and Ross Dettmer for the transconductance smoothing algorithm.

Author Contributions: Bradley Christiansen, Eric Heller, James Theimer and Ramakrishna Vetury conceived
and designed the experiments; Bradley Christiansen, Eric Heller, Brian Poling, Stephen Tetlak and Glen Via
performed the experiments; Ronald Coutu, Bradley Christiansen and Eric Heller analyzed the data; Christopher
Bozada, Ramakrishna Vetury and Jeffrey Shealy contributed reagents/materials/analysis tools; Ronald Coutu,
Bradley Christiansen wrote the paper; Ronald Coutu and Robert Lake edited and revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: The views expressed in this article are those of the authors and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the U.S. Government.

References

1. Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs—An overview of device operation and applications.

Proc. IEEE 2002, 90, 1022–1031. [CrossRef]

2. Conway, A.M.; Chen, M.; Hashimoto, P.; Willadsen, P.J.; Micovic, M. Accelerated RF life testing of GaN

HFETs. In Proceedings of the 45th Annual 2007 IEEE International Reliability Physics Symposium, Phoenix,

AZ, USA, 15–19 April 2007; pp. 472–475.

3. Singhal, S.; Hanson, A.W.; Chaudhari, A.; Rajagopal, P.; Li, T.; Johnson, J.W.; Nagy, W.; Therrien, R.; Park, C.;

Edwards, A.P.; et al. Qualification and reliability of a GaN process platform. In Proceedings of the CS

MANTECH Conference, Austin, TX, USA, 14–17 May 2007; pp. 83–86.

4. Lee, S.; Vetury, R.; Brown, J.D.; Gibb, S.R.; Cai, W.Z.; Sun, J.; Green, D.S.; Shealy, J. Reliability assessment of

AlGaN/GaN HEMT technology on SiC for 48V applications. In Proceedings of the 2008 IEEE International

Reliability Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008; pp. 446–449.

http://dx.doi.org/10.1109/JPROC.2002.1021567


Electronics 2016, 5, 32 13 of 14

5. Leach, J.H.; Morkoç, H. Status of reliability of GaN-based heterojunction field effect transistors. Proc. IEEE

2010, 98, 1127–1139. [CrossRef]

6. Heller, E.R. Simulation of life testing procedures for estimating long-term degradation and lifetime of

AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2008, 55, 2554–2560. [CrossRef]

7. Heller, E.R.; Crespo, A. Electro-thermal modeling of multifinger AlGaN/GaN HEMT device operation

including thermal substrate effects. Microelectron. Reliab. 2008, 48, 45–50. [CrossRef]

8. Kuball, M.; Killat, N.; Manoi, A.; Pomeroy, J.W. Benchmarking of thermal boundary resistance of GaN-SiC

interfaces for AlGaN/GaN HEMTs: US, European and Japanese suppliers. In Proceedings of the CS

MANTECH Conference, Portland, OR, USA, 17–20 May 2010; pp. 109–110.

9. Marcon, D.; Kauerauf, T.; Medjdoub, F.; Das, J.; van Hove, M.; Srivastava, P.; Cheng, K.; Leys, M.; Mertens, R.;

Decoutere, S.; et al. A comprehensive reliability investigation of the voltage-, temperature- and device

geometry-dependence of the gate degradation on state-of-the-art GaN-on-Si HEMTs. In Proceedings of the

2010 IEEE Electron Devices Meeting (IEDM), San Francisco, CA, USA, 6–8 December 2010.

10. Marcon, D.; Kauerauf, T.; Decoutere, S. Unraveling the mysteries of HEMT degradation. Compd. Semicond.

2001, 17, 14–19.

11. Trew, R.J.; Green, D.S.; Shealy, J.B. AlGaN/GaN HFET reliability. IEEE Microwave Mag. 2009, 10, 116–127.

[CrossRef]

12. Ebeling, C.E. An Introduction to Reliability and Maintainability Engineering; Waveland Press: Long Grove, IL,

USA, 2005.

13. Brown, J.D.; Green, D.S.; Gibb, S.R.; Shealy, J.B.; McKenna, J.; Poulton, M.; Lee, S.; Gratzer, K.; Hosse, B.;

Mercier, T.; et al. Performance, Reliability, and Manufacturability of AlGaN/GaN High Electron Mobility

Transistors on Silicon Carbide Substrates. ECS Trans. 2006, 3, 161–179.

14. Del Alamo, J.A.; Joh, J. GaN HEMT reliability. Microelectron. Reliab. 2009, 49, 1200–1206. [CrossRef]

15. Gajewski, D.A.; Sheppard, S.; McNulty, T.; Barner, J.B.; Milligan, J.; John Palmour Cree Inc. Reliability of

GaN/AlGaN HEMT MMIC technology on 100-mm 4H-SiC. In Proceedings of the 26th Annual JEDEC ROCS

Workshop, Indian Wells, CA, USA, 16 May 2011.

16. Burgaud, P.; Constancias, L.; Martel, G.; Savina, C.; Mesnager, D. Preliminary reliability assessment and

failure physical analysis on AlGaN/GaN HEMTs COTS. Microelectron. Reliab. 2007, 47, 1653–1657. [CrossRef]

17. Smith, K.V.; Brierley, S.; McAnulty, R.; Tilas, C.; Zarkh, D.; Benedek, M.; Phalon, P.; Hooven, A. GaN HEMT

reliability through the decade. ECS Trans. 2009, 19, 113–121.

18. Meneghesso, G.; Verzellesi, G.; Danesin, F.; Rampazzo, F.; Zanon, F.; Tazzoli, A.; Meneghini, M.; Zanoni, E.

Reliability of GaN high-electron-mobility transistors: State of the art and perspectives. IEEE Trans. Dev.

Mat. Reliab. 2008, 8, 332–343. [CrossRef]

19. Joh, J.; del Alamo, J.A. Critical Voltage for Electrical Degradation of GaN High-Electron Mobility Transistors.

IEEE Electron Device Lett. 2008, 29, 287–289. [CrossRef]

20. Makaram, P.; Joh, J.; del Alamo, J.A.; Palacios, T.; Thompson, C.V. Evolution of structural defects associated

with electrical degradation in AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2010, 96,

233509. [CrossRef]

21. Christiansen, B.D.; Coutu, R.A.; Heller, E.R.; Poling, B.S.; Via, G.D.; Vetury, R.; Shealy, J.B. Reliability testing

of AlGaN/GaN HEMTs under multiple stressors. In Proceedings of the 2011 IEEE Reliability Physics

Symposium (IRPS), Monterey, CA, USA, 10–14 April 2011; pp. CD.2.1–CD.2.5.

22. Agilent Technologies, Agilent E5270B 8 Slot Precision Measurement Mainframe Technical Overview.

September 2004. Available online: http://cp.literature.agilent.com/litweb/pdf/5989--1355EN.pdf (accessed

on 1 July 2011).

23. Kim, J.; Freitas, J.A., Jr.; Klein, P.B.; Jang, S.; Ren, F.; Pearton, S.J. The effect of thermally induced stress on

device temperature measurements by Raman spectroscopy. Electrochem. Solid State Lett. 2005, 8, G345–G347.

[CrossRef]

24. ReliaSoft Corp. Multivariable relationships: General log-linear and proportional hazards. Available

online: http://www.weibull.com/AccelTestWeb/general_log_linear_relationship_chap_.htm (accessed

on 15 July 2011).

http://dx.doi.org/10.1109/JPROC.2010.2044858
http://dx.doi.org/10.1109/TED.2008.2003220
http://dx.doi.org/10.1016/j.microrel.2007.01.090
http://dx.doi.org/10.1109/MMM.2009.932286
http://dx.doi.org/10.1016/j.microrel.2009.07.003
http://dx.doi.org/10.1016/j.microrel.2007.07.017
http://dx.doi.org/10.1109/TDMR.2008.923743
http://dx.doi.org/10.1016/j.microrel.2010.02.015
http://dx.doi.org/10.1063/1.3446869
http://cp.literature.agilent.com/litweb/pdf/5989--1355EN.pdf
http://dx.doi.org/10.1149/1.2103527
http://www.weibull.com/AccelTestWeb/general_log_linear_relationship_chap_.htm


Electronics 2016, 5, 32 14 of 14

25. Hodge, M.D.; Vetury, R.; Shealy, J.; Adams, R. A robust AlGaN/GaN HEMT technology for RF switching

applications. In Proceedings of the 2011 IEEE Compound Semiconductor Integrated Circuit Symposium

(CSICS), Waikoloa, HI, USA, 16–19 October 2011; pp. 1–4.

26. Hodge, M.D.; Vetury, R.; Shealy, J. Fundamental failure mechanisms limiting maximum voltage operation in

AlGaN/GaN HEMTs. In Proceedings of the 2012 IEEE Reliability Physics Symposium (IRPS), Anaheim, CA,

USA, 15–19 April 2012; pp. 3D.2.1–3D.2.6.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	300-h Test 
	600-h Test 

	Detailed Results 
	300-h Test 
	600-h High-Power Test 
	Discussion 

	Conclusions 

