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Abstract Since the beginning of the nineteenth century,

silicon (Si) has been found in significant concentrations in

plants. Despite the abundant literature which demonstrates

its benefits in agriculture, Si is generally not considered as

an essential element. The integration of Si in agricultural

practices is, however, effective in a few countries. Silicon

fertilization by natural silicates has the potential to mitigate

environmental stresses and soil nutrient depletion and as a

consequence is an alternative to the extensive use of

phytosanitary and NPK fertilizers for maintaining sustain-

able agriculture. This review focuses on recent advances on

the mechanisms of Si accumulation in plants and its

behavior in soil. Seven among the ten most important

crops are considered to be Si accumulators, with concen-

tration of Si above 1% dry weight. New approaches using

isotopes and genetics have highlighted the mechanisms of

uptake and transfer of Si in planta. There is a general

agreement on an uptake of dissolved silica as H4SiO4 and

precipitation as amorphous silica particles (the so-called

phytoliths), but the mechanism, either active or passive, is

still a matter of debate. The benefits of Si are well

demonstrated when plants are exposed to abiotic and biotic

stresses. The defense mechanisms provided by Si are far

from being understood, but evidences for ex planta and in

planta processes are given indicating multiple combined

effects rather than one single effect. Phytoliths that are

located mainly in shoots of monocots return to the soil

through litterfall if the plants are not harvested and

contribute to the biogeochemical cycle of Si. According to

recent progress made on the understanding of the biogeo-

chemical cycle of Si and the weathering process of silicate

minerals, phytoliths may significantly contribute to the

resupply of Si to plants. We suggest that straw of crops, which

contains large amounts of phytoliths, should be recycled in

order to limit the depletion of soil bioavailable Si.

Keywords Nutrient cycling . Silica . Phytoliths .Wheat .

Cereal . Environmental stress
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1 Introduction

Silicon is a major constituent of the Earth’s crust, forming

the silicate minerals. In soils, these minerals undergo

chemical and physical weathering, resulting in the release

of Si in solution, which is either combined with other

elements to form clay minerals or released toward the

streams and the oceans or absorbed by the vegetation. The
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impact of plant Si on soil development was firstly

illustrated by Lovering and Engel (1959) who calculated

that 1 ha of forest could extract nearly 5,000 tons of Si in

5,000 years, which is equivalent to a 30-cm-thick basalt

layer. During litter decomposition, plant Si is re-injected

into the soil and can constitute an important pool of Si in

soil (Lucas et al. 1993). Conley (2002) estimated that the

annual amount of silica stored in plants (60–200 Tmol/year)

is of the same order of magnitude as the amount of Si fixed

by diatoms in the oceans (240 Tmol/year). The amount of

Si accumulated by plants is therefore a significant param-

eter in the natural functioning of soil development and in

controlling the continental erosion rates.

In agronomy, Si is generally not considered an essential

element. It is also currently assumed that Si is not limiting in

soils. However, crops can take up Si at a much faster rate than in

natural systems: 300 kg ha−1 year−1 for sugar cane (Meyer and

Keeping 2001) and 500 kg ha−1 year−1 for rice (Makabe et al.

2009) compared with 41–67 kg ha−1 year−1 for tropical

forests (Lucas et al. 1993; Alexandre et al. 1997),

22–67 kg ha−1 year−1 for US grasslands (Blecker et al.

2006), and 2.3–44 kg ha−1 year−1 for temperate forests (Bartoli

1983; Gérard et al. 2008; Cornelis et al. 2010). Matichenkov

and Bocharnikova (2001) calculated that 210–224 million tons

of Si are removed from cultivated soil every year. This figure is

of the same order of magnitude as the annual flux of dissolved

silica from rivers to oceans (Berner and Berner 1996) and

shows that agriculture may have a significant impact at a

global scale. Indeed, Savant et al. (1997a) suggested that the

non-reincorporation of the straw to the field may lead to a

depletion of plant-available Si in soils with a decline of cereal

yields. The objective of this paper was to review recent

advances on the mechanisms of Si uptake, transfer, and

accumulation by crops as well as the role of plant Si on yields.

2 The lights and shadows of Si in crops

2.1 Variability and essentiality

As early as 1804, de Saussure (1804) analyzed Si in the ashes

of plants and concluded that Si concentration in plants varied

according to species, with higher amounts in Gramineae.

Indeed, Si concentration in plants offers a large variability,

ranging from 0.1% to 10% dry weight, depending on species

(Epstein 1999; Hodson et al. 2005). The species which are

the richest in Si are monocots. Dicots are generally poorer,

but there are exceptions. Sangster et al. (2001) indicate that

the following families show silicification processes:

& Among dicots: some Fabaceae (e.g., pea), Cucurbitaceae

(e.g., cucumber), Rosales (e.g., elm), and Asteraceae (e.g.

sunflower)

& Among monocots: Cyperaceae (e.g., sedge) and Gra-

mineae (e.g., wheat)

Even if significant levels of Si are found in very different

plants, Sangster (1978) and Hodson et al. (2005) consider that

Si concentration in plants depends primarily on the phyloge-

netic position of the plant, more than on its environment (i.e.,

Si concentration in the soil and the soil solution, pH). Ma and

Takahashi (2002) give the following explanation: unlike other

elements, Si is abundant in nearly all soils, so environmental

criteria do not impact Si accumulation in plants. The same

authors present a phylogenetic tree of Si-accumulating plants

and note that Si-rich species have generally low calcium

concentrations, and vice versa. They propose criteria to

differentiate non-accumulating plants from accumulating plants:

& “Accumulators” have a Si concentration over 1% and a

[Si]/[Ca] ratio >1.

& “Excluders” have a Si concentration below 0.5% and a

[Si]/[Ca] ratio <0.5.

& Plants that do not meet these criteria are called

“intermediates.”

The critical value of 0.5% is considered to be the Si

concentration obtained in a plant which would absorb 0.5 L of

a solution containing 10 mg Si L−1and produce 1 g of dry

matter. In addition, there are large differences among genotypes

within the same species (Deren 2001). Several data compila-

tions have reported the extent of this variation (Hodson et al.

2005; Ma and Takahashi 2002). However, a given species or

cultivar grown in various Si concentrations will absorb different

amounts of Si, as shown in banana, rice, or tomato (Henriet et

al. 2006; Ma and Takahashi 2002). Thus, even though Si

accumulation is a phylogenetic feature, the availability of Si

will influence the amount of Si absorbed by plants.

The question of the essentiality of Si in plants was first

highlighted by Sachs (1862): observing that two corn plants

with respectively 0.3% and 9% Si in the shoot ashes showed

no difference in their growth, he concluded that Si was not

essential. In 1906, Hall and Morison (1906) raised the

question of the role of Si in plants, doubting that an element

forming up to 60% of the wheat ash had no metabolic role.

More recently, Epstein (1994) found that the non-essentiality

of Si had not been proven because of the difficulty to remove

entirely Si from experimental nutrient solutions and thus

obtain control plants. He suggested Si to be “quasi-essential

for many of those plants for which its absolute essentiality

has not been established.” Since the reviews by Epstein

(1994, 1999), many studies have been conducted on the

mechanisms of Si uptake, transport, and accumulation in

plants that are useful to discuss the concept of Si essentiality.

Seven out of the ten most produced crops in the world

(ranked by quantity) are accumulators (Table 1): understand-

ing the role of Si in crop production is therefore a matter of
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global concern and justifies studies on mechanisms control-

ling Si uptake by plants both in the soil and in planta.

2.2 Root uptake

In soil solution and natural waters, pH is generally under 9.5,

and Si is mainly present as uncharged monomeric orthosilicic

acid, H4SiO4 (Casey et al. 2004), with concentrations generally

within the range 0.1–0.6 mM (Epstein 1994). In soil solutions

of acidic European soils, however, minor but significant (up to

20% of total Si) concentrations of polymerized silicic acid have

been observed (Wonisch et al. 2008). Côté-Beaulieu et al.

(2009) supplied wheat with organic compounds (as methyl

silanols) that proved to be toxic. Therefore, it appears that

orthosilicic acid remains the main form of Si absorbed by

roots, although Fu et al. (2002) suggested that root uptake

might occur via physical incorporation of Si soil particles.

Silicon uptakemechanisms have beenmostly studied in rice, a

Si accumulator. Estimating the permeability of the plasma

membrane at 10−10 m.s−1, Raven (2001) showed that high

concentrations of Si found in rice could not be due to a simple

flow caused by the permeability of the membrane and that the

absorption of Si by rice required a metabolic control. In wheat,

Rains et al. (2006) also proposed a metabolic control as Si

uptake is inhibited by dinitrophenol or potassium cyanide. They

concluded that the mechanisms involved in Si uptake by wheat,

rice, or other species are similar, “differences being a matter of

degree” and leading to various Si concentrations in plants.

By using a mutant cultivar that excludes Si, Ma et al. (2004)

isolated two Si transporters: one called SIT1, responsible for

the radial transport of Si from the external solution to the

cortical cells, and the other called SIT2, responsible for the

transport of Si from the cortical cells to the xylem. The two

transporters work oppositely to the concentration gradient,

suggesting processes that consume energy. Also using rice

mutants, Ma et al. (2001a) showed that Si uptake is

performed by lateral roots, but not root hairs. Since this

pioneer work on rice, Si influx transporters have been

identified in maize (Mitani et al. 2009), but not in wheat yet.

Active and passive uptakes can coexist within the same

plant (Henriet et al. 2006; Mitani and Ma 2005; Ding et al.

2008; Liang et al. 2007; Gérard et al. 2008). For example,

Henriet et al. (2006) studied the Si uptake by bananas grown

in hydroponics at different Si concentrations. On one hand,

at higher Si supplies, Si absorption was proportional to the

mass flow-driven supply, in good agreement with a passive

uptake. On the other hand, at lower Si supplies, Si absorption

was larger than the one expected if mass flow-driven supply

had been the only mechanism, and Si in the nutrient solution

was depleted, suggesting an active uptake.

2.3 Transfer to shoots

After penetrating the xylem, Si is transferred to the shoots.

Transpiration is the most important factor regulating transport

and deposition of Si in plant shoots. Generally, Si concentration

of a plant organ directly reflects its rate of transpiration (Raven

2001). Henriet et al. (2006) measured Si concentrations in

several parts of banana plants grown hydroponically with

various Si concentrations in the nutrient solution; they found a

concentration gradient within the plant that reflects the major

role of transpiration in Si transport and this, whatever the Si

concentration in solution. Silicon isotope studies have also

been proven to be useful to evidence the role of transpiration.

In rice for instance, Ding et al. (2005) found enrichment in the

heavier isotope 30Si from roots, to stem and leaves, then husk

and grains, which is well explained by the Rayleigh

distillation law. The potential use of Si isotopes in plants has

been recently reviewed by Leng et al. (2009). As transpiration

is the main driver for Si transport and deposition, the duration

of plant growth plays an important role in the Si concentra-

tion: older leaves of a plant are richer in Si than younger ones

(de Saussure 1804; Henriet et al. 2006). Besides all the

evidences which demonstrate the role of transpiration, Mitani

et al. (2009) have isolated a gene that mainly functions as a Si

transporter for xylem uploading in maize. More work is

therefore required to elucidate the importance of active vs.

passive transfer of Si to the shoots.

2.4 Accumulation in shoots

In wheat sap, Casey et al. (2004) observed that the only forms

of Si present were mono- and di-silicic acids, with a ratio of

7:1. But this part of soluble Si is minimal compared with the

solid form. Sangster et al. (2001) studied the distribution of Si

Table 1 Si concentration of some of the most important crops ranked

by production

Name Production

(MT)a
Si concentration

in shoots (% DW)

Sugar cane 1.736 Saccharum officinarumb 1.509

Maize 826 Zea maysb 0.827

Rice paddy 686 Oryza sativab 4.167

Wheat 683 Triticum aestivumb 2.455

Potatoes 326 Solanaceaec 0.4

Cassava 232 –
d 0.5

Soybeans 231 Glycine maxb 1.399

Sugar beet 222 Malpighialese 2.34–7

Barley 155 Hordeum vulgareb 1.824

Tomatoes 136 Lycopersicon esculentumb 1.55

a Source: FAO for 2008 at http://faostat.fao.org/site/339/default.aspx
bData compiled by Hodson et al. (2005)
cAverage estimated from the data compiled by Hodson et al. (2005)
dAverage estimated from the data compiled by Hodson et al. (2005)
e Source: Draycott (2006)
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in a wheat plant during its growth. After only 8–10 days, Si

was almost exclusively found as a solid form in the aerial

parts. Indeed, Si quickly precipitates as amorphous silica. Lux

et al. (2003) observed the formation of silica aggregates in the

root endodermis within 2 h following the transfer of a sorghum

plant from a Si-poor environment to a Si-rich environment.

The presence of organo-silicon compounds in plants is

not formally established. In rice, Inanaga et al. (1995)

suggested that Si plays a role in the formation of links

between lignin and carbohydrates, in association with

phenolic acids. But there is no evidence of a Si–C bond,

and the instability of Si–O–C bonds at physiological pH

suggests that Si is probably regulated differently from the

other nutrients (Perry and Keeling-Tucker 1998).

Amorphous silica is therefore virtually the only form of

Si in plants (Ding et al. 2008). Amorphous silica particles

that precipitate in plant cells are called phytoliths (Fig. 1).

Phytoliths may contain impurities such as Al, Fe, Ti, Mn, P,

Cu, N, and C (Clarke 2003), but are usually near-

stoichiometric silica (Dietrich et al. 2003), the formula of

which is [SiOnOH(2n − 4)]m (with n<2 and m large).

Phytoliths can be assembled without any energy by

polymerization of silicic acid when its concentration

exceeds 2 mM (Ma and Yamaji 2006). Proportions and

locations of phytoliths vary with the species, but also with

the age of the plant (Ponzi and Pizzolongo 2003; Sangster

et al. 2001). Phytoliths are not found evenly throughout the

plant (Ponzi and Pizzolongo 2003; Prychid et al. 2003;

Fig. 1 Microphotographs of phytoliths from cultivated soils, France

(Guntzer 2010); phytolith types are named according to the nomen-

clature of Madella et al. (2005): 1 Bilobate, 2 Clavate, 3 and 4

Trapeziform polylobate short cell, 5 Cylindric elongate, 6 Parallepi-

pedal bulliform cell, 7 Elongate echinate long cell, 8 Rondel

204 F. Guntzer et. al.



Sangster et al. 2001), but in leaf epidermis, in root

endodermis, and in cell membranes of the vascular bundle

(in relation with sclerenchyma) at transpiration sites.

In the case of wheat, Si is present in all tissues with higher

levels in the inner tangential and radial walls of endodermis

cells (Bouzoubaa 1991). In the leaves, Si is at first

preferentially deposited in the abaxial epiderm, and then in

both epiderms as the leaf grows (Hodson and Sangster

1988). Among those tissues, phytoliths are found in specific

cells called silica cells located on vascular bundles and/or are

present as silica bodies in bulliform cells, fusoid cells or

prickle hairs in rice (Ma and Yamaji 2006), wheat (Dietrich

et al. 2003), or bamboos (Motomura et al. 2004). These

specific allocations observed in Poaceae have been taken

both as proofs of passive or active Si transport, depending on

the allocation (Motomura et al. 2004).

3 The benefits of Si under environmental stress

The beneficial effects of Si has been demonstrated by many

studies using pots, hydroponic, and field experiments (see the

reviews by Jones and Handreck 1967; Savant et al. 1997b;

Epstein 1999; Datnoff et al. 2001; Datnoff and Rodrigues

2005). The benefits can be especially pointed out under

environmental stresses because Si may act at several levels in

the plant functioning as well as in the soil (Fig. 2). Below, we

present a few striking examples of the benefits of Si for

plants based mostly on recent studies under various

environmental stresses.

3.1 Biological stresses

The beneficial effects of Si intake have been shown for

many pathogens on a wide range of plants, but are often

based on empirical approaches. The mechanisms involved

are poorly known. In the case of wheat, the beneficial effect

of Si has been demonstrated on the following diseases and

fungal attacks (Rodgers-Gray and Shaw 2004): powdery

mildew (Blumeria graminis), septoria (Phaeosphaeria

nodorum and Mycosphaerella graminicola), and eyespot

(Oculimacula yallundae). In the case of rice, the effect of Si

has been demonstrated on stalk rot (Leptosphaeria salvinii),

rice blast (Magnaporthe grisea), fusarium wilt (Fusarium),

tan spot (Cochliobolus miyabeanus), melting seedlings

(Thanatephorus cucumeris), and leaf spots (Monographella

albescens; Ma and Takahashi 2002; Savant et al. 1997b).

The beneficial effects of Si have been thought to be

due to the precipitation of amorphous silica in plants

which acts as a mechanical barrier (Cheng 1982; Jones

and Handreck 1967). It has since been shown that Si also

protects the plant by other processes which can boost the

IN SOIL
IN PLANT

physiological mechanical

Alleviate Al and Zn toxicity

Alleviate Mn, Cd and As toxicity

Improve K, P, Ca intake

Reduce absorption of 

nutrients (P, N) in excess

Alleviate P defi ciency

Alleviate salt stress

Alleviate drought

Increase resistance to 

strong wind and rain

Increase resistance to pathogenes and insects

Alleviate Fe toxicity

Fig. 2 Synthesis of the benefits

of Si for crops under various

environmental stresses; the

mechanical mechanism is

due to the presence of phytoliths
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defense mechanisms, including the accumulation of lignin,

phenolic compounds, and phytoalexins (Epstein 1999;

Fawe et al. 2001; Ma and Yamaji 2006). In the case of an

attack by pathogenic fungi, Si triggers a rapid and

extensive deployment of the natural defenses of the plant

(Fauteux et al. 2005) either indirectly by sequestering

cations or directly by increasing some protein activity. In

the case of powdery mildew, it has been shown that when

infection occurs after Si fertilization, the pathogen usually

remains, but the development of the infection is minimal.

Extensive research on epidermal cells have shown that in

Si-fertilized plants, plant defenses were stimulated through

the production of phenolic compounds, callose, or methyl-

aconitate (phytoalexin) (Bélanger et al. 2003; Ghanmi et

al. 2004; Rémus-Borel et al. 2005, 2009). Guevel et al.

(2007) showed that foliar application of Si also reduced

infection by powdery mildew, but did not propose a

mechanism. The role of silicification may even be

questioned as it has been shown for different pathogens

that the prophylactic effect of Si is lost when the Si

fertilization is stopped, whereas amorphous silica deposits

are still present (Fauteux et al. 2005; Fawe et al. 2001).

Diseases are not the only biological stresses that Si helps

to regulate: Si limits damages caused by animals, especially

insects which are harmful to crops. Cotterill et al. (2007)

and Hunt et al. (2008) showed that Si-fertilized grasses

were less likely to be eaten by grazing animals, respectively

wild rabbits and locusts, than unfertilized ones. Here, it is

probably more a mechanical factor that plays a role as

leaves containing Si are more difficult to graze. The

beneficial effect of Si has been proven on attacks by many

other species, among which are insect borers (Chilo

suppresalis), yellow borers (Scirpophaga incertulas), rice

chlorops (Chlorops oryzae), rice leafhopper (Nephotettix

bipunctatus cinticeps), brown leafhoppers (Nilaparvata

lugens), weavers spider mites (Tetranychus spp.), or mites

(Savant et al. 1997b), but the effect of Si on aphid attacks

has been mostly studied: Gomes et al. (2005) showed that

Si fertilization decreased the number of aphids observed on

an infested plant. Goussain et al. (2005), studying the

penetration of aphids stylus, concluded that the silicifica-

tion does not create a physical barrier to the penetration of

the aphid stylus. However, the stylus is often removed and

aphids excrete less honeydew, suggesting a lesser sap

uptake, probably due to chemical processes within the

plant. As in the case of powdery mildew, a foliar

application of Si is effective on aphids (Moraes et al.

2004), but the mechanism in this case is not explained.

Finally, although the beneficial effects of Si are observed

empirically in many cases, the mechanisms behind these

prophylactic effects are only beginning to be understood

and have been proposed only for a limited number of plants

and pathogens.

3.2 Abiological stresses

3.2.1 Regulation of nutrient uptake

Phosphorus The role of Si in P uptake by plants was one of

the first effects of Si ever studied. Indeed, Brenchley and

Maskell (1927) and Fisher (1929) found that Si fertilization

increased the yields of barley crops mainly when phosphorus

fertilization was limiting. They concluded that Si fertilization

made soil phosphorus more available to plants. Eneji et al.

(2008) also found correlations between Si and P uptake and

concluded on an effect in soil. However, earlier studies had

shown that the effect of Si under phosphorus deficiency

could be due to an in planta mechanism, implying an

improved utilization of phosphorus, probably through an

increase in phosphorylation (Cheong and Chan 1973) or a

decrease in Mn concentration (Ma and Takahashi 1990). In

contrast, when phosphorus was supplied in excess, Si limited

P uptake and the appearance of chlorosis, probably by

reducing the transpiration rate (Ma et al. 2001b).

Potassium–nitrogen–calcium According to Mali and Aery

(2008a), K uptake both in hydroponics and in soil is

improved even at low Si concentrations through the

activation of H-ATPase. Mali and Aery (2008a, 2008b)

observed also a better absorption of N and Ca for cowpea

and wheat fertilized with increasing doses of sodium meta-

silicate (50–800 mg Si kg−1), as well as a better nodulation

and apparently better N2 fixation in cowpea. Yoshida et al.

(1969) have shown that a decrease of erectness of rice

leaves following excess of N application can be mitigated if

Si is supplied to the nutrient solution.

3.2.2 Metal in excess

Soil contamination with trace elements due to human

activities and excess of metals due to specific edaphic

conditions are widespread. Contamination results in major

physiological disturbances including reduced biomass

production, photosynthesis inhibition, or disturbance of

nutrient uptake. The number of studies, which tend to prove

that Si may reduce toxicity symptoms, are steadily

increasing, especially for metals of serious concern such

as cadmium (Cd; Sarwar et al. 2010).

Iron In rice, it appears that Si increases the oxidizing

capacity of roots, which converts ferrous iron into ferric

iron, thereby preventing a large uptake of iron and limiting

its toxicity (Ma and Takahashi 2002). It has been suggested

that Si could regulate Fe uptake from acidic soils through

the release of OH− by roots when supplemented with Si

(Wallace 1993).
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Aluminum Several explanations have been given to explain

the effect of Si on plants in the presence of an excess of

aluminum. It was first assumed that Si and Al interact in the

soil, creating subcolloidal and inert aluminosilicates, there-

by reducing phytotoxic aluminum concentration in the soil

solution (Li et al. 1996; Liang et al. 2007). It may also

stimulate phenolic exudation by roots that would chelate

and thus reduce Al absorption by corn roots (Kidd et al.

2001). In these cases, detoxification would be a mechanism

external to the plant. It has also been shown that aluminum

can be detoxified by in planta mechanisms either by

forming hydroxyaluminumsilicates in the apoplast (Wang

et al. 2004; Ryder et al. 2003) in roots or by a sequestration

in phytoliths (Hodson and Sangster 1993; Hodson and

Sangster 2002), which would reduce Al toxicity in the

shoots.

Manganese, Cd, Cu, Zn, As Manganese toxicity is reduced

in Si-fertilized plants because Si increases Mn binding to

cell walls, which limits cytoplasmic concentrations (Liang

et al. 2007; Rogalla and Romheld 2002). Horst et al. (1999)

observed that Si application lowered the apoplastic Mn

concentration (but not the vacuolar concentration) in

cowpea leaves, suggesting that Si may modify the cation

binding capacity of the cell walls. In addition, it induces a

more homogenous distribution of Mn in leaves, limiting

spot necrosis (Williams and Vlamis 1957; Horiguchi and

Morita 1987; Ma et al. 2001b).

As for Al, Si has a “soil” and a “plant” effect on the

uptake of trace metals like Cd, copper (Cu), or zinc (Zn;

Liang et al. 2007). Metal concentrations in plant may either

decrease or increase upon Si application depending on plant

parts and metals. For example, reduced uptake of Cd after

rice fertilization with furnace slag has been attributed to an

increase in soil pH, thereby limiting Cd uptake, reduction

of root–shoot translocation, and changes in compartmenta-

tion within the plant cell (Liang et al. 2007; Shi et al. 2005).

Da Cunha and do Nascimento (2009) found that the

decrease in Cd and Zn concentrations in maize shoots

grown on Cd- or Zn-contaminated soil treated with calcium

silicate, associated with an increase in shoot biomass, was

due to changes in metal speciation in the soil rather than to

pH increase (da Cunha et al. 2008) They also observed

significant structural alterations in the shoots and suggested

that the deposition of silica in the endodermis and pericycle

of roots was responsible for maize tolerance to Cd and Zn

stress. Hodge (2004) indicated that Si could change root

plasticity, thereby increasing stress tolerance. Neumann and

zur Nieden (2001) found that Si affected zinc inside the

plant as zinc can co-precipitate with Si in cell walls

(Neumann et al. 1997), leading to less soluble zinc in

plants. In addition, foliar application of Si sol decreased Cd

concentration in rice grains and shoots while increasing

their biomass (Liu et al. 2009). The authors suggested that

alleviation of Cd toxicity and accumulation in rice would

be related to Cd sequestration in the shoot cell walls. This

indicates also that Si would be able to enter leaves through

the stomatae. In metal-hyperaccumulating plants, Zn can be

at least temporally associated to Si in vesicles or in the

cytoplasm before Zn is being stored in vacuoles, leaving

SiO2 precipitates in the cytoplasm. Neumann and De

Figueiredo (2002) suggested that this mechanism might be

responsible for the high Zn tolerance of Silene vulgaris,

Thlaspi caerulescens, or Minuartia verna.

Silicic acid also decreased arsenic (As) concentration in

rice shoots grown in hydroponics, and arsenite transport in

roots was shown to share the same highly efficient pathway

as Si, indicating that sufficient available Si in soil would be

efficient at reducing As accumulation in rice shoots (Ma et

al. 2008). Awhole range of mechanisms has been given that

could explain the alleviating effect of Si on metal stress in

planta, especially in shoots. In soil, however, the respective

roles of soil and root factors in controlling metal uptake,

and more precisely in alleviating metal stress when Si is

applied to soil, have been still poorly investigated (Kirkham

2006).

3.2.3 Other stresses

Drought stress is of increasing concern because of its

impact on crops production and its expected broadening

worldwide. There is a general agreement on the positive

effect of Si application on the biomass yield under deficit

irrigation (Eneji et al. 2008). Indeed, increases of biomass

and/or grain yields have been observed on a large set of

crops (e.g., Eneji et al. 2008; Shen et al. 2010; Pei et al.

2010). Wheat plants subjected to drought and treated with

Si maintained higher stomatal conductance, relative water

content, and water potential than non-treated plants.

Besides, leaves were larger and thicker, thereby limiting

the loss of water through transpiration (Gong et al. 2003;

Hattori et al. 2005) and reducing water consumption (Eneji

et al. 2005). Along the same line, in the case of rice, Si

increased resistance to typhoons (Ma et al. 2001b),

probably because of the rigidity gained by the silicifica-

tion of shoots. Silicon fertilization impacts also the

development of secondary and tertiary cells of the

endodermis, thus allowing better root resistance in dry

soils and a faster growth of roots (Bouzoubaa 1991;

Hattori et al. 2003, 2005). In addition, Eneji et al. (2008)

observed that Si enhanced the uptake of major essential

elements by various grasses exposed to a water deficit,

while Pei et al. (2010) did not see any effect for wheat

seedlings. The effects of Si in plants exposed to drought

have also been observed at the physiological or metabolic
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level: Gong et al. (2005) observed that Si increased

antioxidant defenses and therefore maintained physiolog-

ical processes such as photosynthesis. Pei et al. (2010)

also found that in wheat under short-term water stress

conditions, Si addition contributed to improved wheat

growth by stimulating antioxidant defense rather than

modifying osmotic pressure.

In the case of saline soils, Si increased the activity of

antioxidant enzymes in wheat (Saqib et al. 2008),

decreased plasma membrane permeability, and increased

root activity, which allowed for a better absorption of

nutrients in barley (Liang et al. 1996, 2003). Silicon also

decreased sodium absorption when it was in excess

(Ahmad et al. 1992; Ma et al. 2001b; Saqib et al. 2008).

Comparing salt-sensitive and salt-tolerant wheat cultivars,

Tuna et al. (2008) hypothesized that Si could alleviate salt

stress through two mechanisms: either inhibition of

transport of Na to the leaves and/or specific accumulation

of Na in the roots.

Other effects of Si were observed empirically on abiotic

stresses. Goto et al. (2003) showed that rice plants treated

with Si absorbed less radiation than untreated plants. Ma

and Takahashi (2002) reported that rice grew better after

exposure to gamma rays if it had been previously fertilized

with Si. Shen et al. (2010) showed that Si improved growth,

photosynthesis, and antioxidant parameter response in

soybean seedlings exposed to UV-B radiation.

4 Plant Si is a significant source for plant

4.1 Sources of plant Si

The Si concentration in plants depends primarily on the

concentration of silicic acid in the soil solution (Ding et al.

2005; Henriet et al. 2008; Jones and Handreck 1967) and is

not correlated to the total Si concentration of the soil

(Brenchley and Maskell 1927). However, correlations were

observed between the Si concentration in rice and the

percentage of clay in soils (Cheng 1982), and between the

Si concentration in rice or banana and the stock of

weatherable minerals (Henriet et al. 2008; Makabe et al.

2009). The weatherability of silicate minerals, including

phytoliths, depends on environmental factors such as

temperature and pH as well as the physicochemical

characteristics of the minerals which can be evaluated by

thermodynamic and kinetic data (Gérard et al. 2002; White

and Brantley 1995; Heaney et al. 1994).

Several studies have attempted to quantify the proportion

of plant Si that is coming from the recycling of phytoliths,

which are the main Si form in plants. Using a steady-state

approach, Bartoli (1985) showed that about 85% of the Si

uptake originated from the dissolution of phytoliths in a

deciduous forest ecosystem which is characterized by a

strong Si biological cycle. Besides, only 15% of the Si

uptake originated from the dissolution of phytoliths in a

coniferous forest ecosystem which is characterized by a

weak Si biological cycle. Using a similar approach for a

rain forest developed above a latosol in Congo, Alexandre

et al. (1997) showed that about 74% of the DSi in soil

solution originates from the dissolution of phytoliths.

Gérard et al. (2008) found that the proportion of plant

recycling averaged 60% in an acidic brown soil covered by

Douglas fir. These studies show that a strong Si biological

cycle may control the biogeochemical cycle of Si of a given

ecosystem through the production of phytoliths.

The role of phytoliths in controlling significantly the

level of dissolved silicon (DSi) in soil solutions is based on

several experimental evidences:

& Solubility data show that phytoliths are highly soluble,

like other amorphous silica particles (Fraysse et al.

2006).

& The dissolution rate of phytoliths increases with pH

(Fraysse et al. 2006). Fraysse et al. (2009) also showed

that soil phytoliths were among the minerals that

dissolved the fastest in a range of pH relevant to most

soil types (Fig. 3).

& At common pH values (4–8), phytoliths are as reactive

as hydroxides or allophanes (Bartoli 1985) and are 100–

10,000 times more reactive than primary clays or

silicates. Bartoli (1985) suggested that between pH 8.9

and 9.8, the dissolution of phytoliths would be

controlled by aluminum concentration, but this conclu-

sion was not supported by the results obtained recently

by Fraysse et al. (2009).

Fig. 3 Rate of dissolution (R) of frequent soil minerals and phytoliths

as a function of pH (Fraysse et al. 2009)
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& Batch experiments of litter degradation show that the

rate of Si release is similar or higher than the one found

for primary soil minerals (Fraysse et al. 2010).

& The importance of biogenic amorphous silica as a

source of dissolved Si in the soil solution is also

supported by data from isotopic geochemistry. By

studying Si isotopic ratios in different compartments

of a bamboo field, Ding et al. (2008) showed that Si

dissolved in the soil solution originated from phytoliths.

Using Ge/Si ratios in Hawaiian soils waters, Derry et al.

(2005) showed that surface samples characterized by

high DSi values and low Ge/Si ratios were controlled

by the dissolution of phytoliths.

The importance of plant Si (phytoliths) recycling in

natural ecosystem is therefore well established, and it

allows explaining the uptake of Si by plants even in soil

depleted in primary weatherable minerals (Alexandre et al.

1997; Lucas et al. 1993) where they can become the major

source of potentially available Si to plants.

4.2 The phytolith pool

The quantification of the phytolith pool in soils is based

on the physical and chemical properties of amorphous

opal A. Other biogenic amorphous silica particles can be

found in soils such as diatoms frustules and the

camoebian testates (Cary et al. 2005). Depending on the

target (biogenic silica, plant-available Si, or amorphous Si

as a whole), the aim of the study, and the scientific

discipline, different approaches have been developed to

identify and quantify amorphous silica in soils (Sauer et

al. 2006).

The gravimetric method (Kelly 1990), which separates

particles of amorphous silica from the rest of the soil using

heavy liquid flotation, allows for the observation and

quantification of amorphous silica particles and phytoliths.

The phytoliths represent generally 0.7–3% of the forest soil

dry weight (Bartoli 1985). Jones and Handreck (1967)

observed 1–2% of phytoliths in grassland soil, while soil

horizons resulting from phytolith accumulation have also

been described (Meunier et al. 1999).

An alternative technique to quantify the phytoliths in

soil is by solubilization. Contrary to the gravimetric

method, this is a destructive method so that the

proportion of phytoliths vs. other amorphous silica

particles cannot be assessed. Saccone et al. (2007) used

alkaline extractions (NaOH and Na2CO3) originally used

to quantify diatoms in marine sediments (Demaster 1981).

Chemical and gravimetrical techniques on similar samples

do not necessarily give good correlations (Saccone et al.

2007), indicating that the methodology should be im-

proved if phytoliths are to be quantified. Other non-

alkaline extractants do not solubilize phytoliths and

usually dissolve less than the alkaline ones (Saccone et

al. 2007), but they may be used (or have been used) to

quantify immediately plant-available Si in specific soils

(e.g., Liang et al. 1994).

The depth distribution of soil phytoliths is variable,

but generally, the highest concentrations are found in the

topsoils of undisturbed soils (Saccone et al. 2007;

Sommer et al. 2006) and decrease with depth. This

distribution reflects the equilibrium between the rate of

phytoliths input via litterfall and the rate of phytolith

output via dissolution.

In cultivated soil, we can expect results different from

those obtained in natural ecosystems depending whether the

straw is exported or not. Indeed, repeated crop exports can

reduce the concentration of potentially available Si present

as phytoliths to the extent that Si fertilization is necessary

(Datnoff and Rodrigues 2005; Eneji et al. 2005; Meunier et

al. 2008; Savant et al. 1997a) because a fraction of plant Si

does not return to the soil. For example, Desplanques et al.

(2006) showed that if we consider amorphous silica as the

only source of Si for plants, the stock of available Si from a

rice field of Camargue (France) would be exhausted after

5 years of cultivation.

4.3 Fertilization

The addition of silicate materials to crops started in Japan in

the early 1950s and is commonly used in many parts of the

world such as Korea, Taiwan, Thailand, Ceylon (Liang et

al. 1994), and the USA (Korndörfer and Lepsch 2001). An

example from field trials conducted in Japan (Ma and

Takahashi 2002) using Si fertilization on rice growth and

yield is given in Table 2. The results show a slight increase

in the panicle number, but up to a 17% yield increase. In the

case of wheat, annual application of Si-containing materials

(at a rate of 230 gkg−1 of water-soluble Si) increased the

grain yield by 4.1–9.3% during a 4-year field experiment

(Liang et al. 1994). In general, farmers use about

900 kg Si ha−1 year−1 or more for rice cultivation

(Korndörfer et al. 2001). Alvarez and Datnoff (2001)

calculated the economic benefits expected from such

Table 2 Effect of Si fertilization (sodium silicate) on rice growth and

yield in Japan (Ma and Takahashi 2002)

Application rate

(kg ha−1)

Number of panicles

(×104/ha)

Yield

(ton.ha−1)

0 4.84 7.01

75 4.94 7.87

105 5.03 8.16

135 5.03 8.23
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fertilization on the cultivation of rice in Florida and showed

that the additional income would be on average US $74 per

hectare per year.

Different types of Si fertilizers exist, which have been

compared in several studies (Gascho 2001; Mecfel et al.

2007; Meyer and Keeping 2001; Rodgers-Gray and Shaw

2004; Savant et al. 1997b). The most used are wollastonite

(CaSiO3), residues of blast furnaces, but also straw

(mainly rice straw). By testing several types of Si

fertilizers, including calcium silicate and rice straw, on

rice crops in pots, Hossain et al. (2001) showed that rice

straw offers better results in terms of Si concentration in

plant. Yields are also larger when rice straw is added

ground or combined with an organic matter decomposer.

Experiments conducted in Japan showed that Si from rice

straw used as a fertilizer is usually not fully available in

the short term, but is available at more than 70% in the

long term (40 years). Inorganic silicates affect the yields

faster as they are used by plants in the crop following

directly the fertilization. This has led to their wide use (Ma

and Takahashi 2002). Foliar applications of inorganic

silica have also been tested in order to gain in efficiency

and in cost (Sarwar et al. 2010), but are not widely used.

However, Savant et al. (1997a) calculated that in 1993, the

world rice production had exported 33 million tons of Si

as straw that could have been reused for fertilization.

Savant et al. (1997a) suggested that intensive rice

cultivation with straw export may deplete the plant-

available silica, which could be a factor for explaining

yield decline. The straw, which contains large amounts of

phytoliths, should therefore be recycled because it is a

source of bioavailable Si.

5 Conclusion

Most of the major crops are Si accumulators. Although not

considered as an essential element, Si has a positive impact

on plant development. The mechanisms that allow plant Si

to alleviate many environmental stresses are still poorly

known in details, but it is well established that ex planta

and in planta processes may occur. Plant Si also has an

impact on the Si cycle by providing a readily efficient

source of Si to the soil.

In cultivated areas, the export of crops does not allow the

recycling of Si by plants, and the biogeochemical cycle of

Si is disturbed. More than a decade after the paper by

Savant et al. (1997a), the assumption of the depletion of

plant-available silica is still pertinent, but new evidences

have proven that phytoliths are a significant source of Si for

plant. This issue is fundamental as the decrease of

bioavailable Si may have significant impacts on cereal

yields.
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