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Benoît Mandelbrot and Fractional
Brownian Motion1
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Abstract. Although fractional Brownian motion was not invented by Benoît
Mandelbrot, it was he who recognized the importance of this random process
and gave it the name by which it is known today. This is a personal account
of the history behind fractional Brownian motion and some subsequent de-
velopments.
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Since Benoît Mandelbrot’s passing in October 2010,
many well-deserved tributes have been paid to him.2

Benoît influenced a great many fields ranging from the
physical sciences to economics, and mathematics was
certainly among them. Benoît’s great gift was his abil-
ity to recognize the hidden potential in certain mathe-
matical objects.3

I had the good fortune to observe Benoît’s mathe-
matical analysis in action, and I would like to tell you
about my experience with one of the objects that Benoît
worked with, the random process known as a frac-
tional Brownian motion. Although fractional Brow-
nian motion was introduced by Kolmogorov, it was
Benoît Mandelbrot who recognized the relevance of
this random process and, in his seminal paper with Van
Ness [18], derived many important properties. There,
he gave this process the name by which it is known
today. See [15] for a general review.

Let me recount first how I met Benoît. At the be-
ginning of the seventies, I was a graduate student at
Columbia University in the Department of Mathemati-
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1A French version of this article will appear in France in the
Gazette des Mathématiciens.

2There was a special symposium at the École Polytechnique in
Paris in March 2011, one at Yale in April 2011 and a number of ses-
sions related to Mandelbrot’s work took place at the annual meeting
of the American Mathematical Society in Boston in January 2012.

3Benoît Mandelbrot studied with Paul Lévy, who is widely ac-
knowledged for his mastery of the Brownian world.

cal Statistics—a small department but home to promi-
nent faculty such as Herbert Robbins, David Siegmund
and Yuan Shih Chow. Although I had a fellowship dur-
ing the academic year, I needed to find summer work—
something I failed to do in my first year. I had sent
my Curriculum Vitae to many companies in New York
City, but I did not receive a single reply.

For my second year, I decided to proceed differently.
I asked members of the Department for contacts. This
is how I was put in touch with Benoît Mandelbrot, who
was then at IBM Research—an hour’s drive from New
York City—but was also nominally an Adjunct Profes-
sor in the Department. In January of my second year,
I called him and inquired about potential summer jobs.
The conversation began in English but quickly turned
to French. I had expected it to last a few minutes, but
the conversation lasted an hour with Benoît doing most
of the talking (as was often the case). He ended the
conversation, saying that he knew of no jobs. But a few
months later, he called me back. As things developed,
it turned out that he needed a programmer for the sum-
mer and asked if I was interested. I accepted. This is
how I became acquainted with his research at the time,
which involved fractional Brownian motion and its ap-
plication to hydrology, and how I ended up as Mandel-
brot’s student.

It started with the so-called “R/S statistic,” where
R is the range of partial sums of the data, and S is
the sample standard deviation. It is a statistic that the
British hydrologist Harold Edwin Hurst, in the first
half of the twentieth century, had used to study the
yearly variation of the levels of Nile river in Egypt [8].
The original work on the subject by Benoît Mandelbrot
appeared in 1965 in the Comptes Rendus [12].
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Under the usual assumptions of finite variance and
independent and identically distributed observations,
the R/S statistic should grow like n1/2, where n is
the sample size. The Nile data, however, indicated a
growth of nH , where 1/2 < H < 1. The growth n1/2

is typically associated with random walk, so nH , with
1/2 < H < 1 must correspond to something else. This
is why Mandelbrot suspected that a process like frac-
tional Brownian motion BH(t) may perhaps be rele-
vant in this framework4 since, while the standard de-
viation of Brownian motion at time t is t1/2, that of
fractional Brownian motion at time t is tH , where
0 < H < 1 [19]. The letter H , which refers to the hy-
drologist Hurst and which was used by Mandelbrot, has
become standard in this context, and it now labels the
fractional Brownian motion.

The term “fractional Brownian motion” was coined
by Mandelbrot and Van Ness in the now classical paper
[18]. Fractional Brownian motion has a number of nice
properties, one of which is “self-similarity.” A process
{X(t), t ∈ R} is self-similar with index H > 0 if for
any a > 0, the process {X(at), t ∈ R} has the same
finite-dimensional distributions as {aH X(t), t ∈ R}.
Thus, like a fractal, there is scaling, but it is not the
trajectories of the process that scale, but the probabil-
ity distribution, the “odds.” This is why this type of
scaling is sometimes called “statistical self-similarity”
or, more precisely, “statistical self-affinity.”

The fractional Brownian motion process is then char-
acterized by the following three properties:

(1) the process is Gaussian with zero mean;
(2) it has stationary increments;
(3) it is self-similar with index H , 0 < H < 1.

Fractional Brownian motion reduces to Brownian mo-
tion when H = 1/2, but in contrast to Brownian mo-
tion, it has dependent increments when H �= 1/2. Frac-
tional Brownian motion was first introduced in 1940 by
Andrei Nikolaevich Kolmogorov [10], who was study-
ing spiral curves in Hilbert space. It was considered
by Richard Allen Hunt [7] in the context of random
Fourier transforms and by Akiva Moiseevich Yaglom
[34], who studied the correlation structure of processes
that have stationary nth order increments. However, it
is undoubtedly the seminal paper of Mandelbrot and
Van Ness which put the focus on fractional Brown-
ian motion and gave it its name. Why the term “frac-
tional?” This is because the process can be represented

4Some hydrologists argue instead that the nH behavior may be
due to nonstationarity. See [9] and [21].

as an integral with respect to Brownian motion B(t), as
follows:

BH(t) =
∫ 0

−∞
{(t − s)H−1/2 − (−s)H−1/2}dB(s)

(1)

+
∫ t

0
(t − s)H−1/2 dB(s)

=
∫ ∞
−∞

{(t − s)
H−1/2
+ − (−s)

H−1/2
+ }dB(s).(2)

The integrals are well defined because the integrands
are square integrable with respect to Lebesgue mea-
sure. The form of the integrands is also reminiscent of
the one that appears in the n-fold iterated integral for-
mula, ∫ t

0
dtn−1

∫ tn−1

0
dtn−2 · · ·

∫ t2

0
dt1

∫ t1

0
g(s) ds

= 1

(n − 1)!
∫ t

0
(t − s)n−1g(s) ds

and therefore (1) can be regarded as involving “frac-
tional integrals.” This, in fact, turns out to be more than
a superficial analogy!

The focus on fractional Brownian motion has proved
to be extremely fruitful because it has allowed all kind
of extensions, some of which were hinted at by Benoît
Mandelbrot.

For example, the Gaussian noise “dB” in (1) can
be replaced by an infinite variance Lévy-stable noise,
giving rise to the linear Lévy fractional stable motion,
which is an infinite variance self-similar process with
stationary, but dependent, increments [28]. The kernel
can also be replaced by a random sum of pulses [3].
From a different perspective, the single integral in (1)
can be replaced by a multiple integral, so that it be-
comes an element of the so-called Wiener chaos [24,
30], of the form∫ ′

Rk
gt (x1, . . . , xk) dB(x1) · · · dB(xk),(3)

for a suitable kernel gt and where prime indicates that
one does not integrate on the diagonals. More specifi-
cally, if one chooses

gt (x1, . . . , xk) =
{∫ t

0

k∏
j=1

(s − xj )
H0−3/2
+ ds

}
,(4)

where

H0 = 1 − 1 − H

k
∈

(
1 − 1

2k
,1

)
,(5)

then the resulting process (3) is also self-similar with
index 1/2 < H < 1 and has stationary increments. It
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reduces to fractional Brownian motion if k = 1 but is
non-Gaussian if k ≥ 2. The marginal distribution for
k = 2 is studied in [33].

The representation (3) with the kernel gt in (4) is
called a “time representation,” but there are also other
representations, for example, a “spectral representa-
tion” or a “finite interval representation” [26].

One can also try to define stochastic integrals, where
the integrator is dBH , even though fractional Brownian
motion BH does not have independent increments. One
then needs to define integrals of the type∫

R

g(x) dBH (x),(6)

first for nonrandom functions g [20, 25], and then for
random functions g [2]. One can also consider stochas-
tic differential equations driven by fractional Brownian
motion [22].

In a more applied vein, one can focus on the incre-
ments

X(n) = BH(n) − BH(n − 1), n ≥ 1,(7)

which form a stationary time series with covariance

r(k) = E[X(0)X(k)] ∼ Ck2H−2(8)

as k → ∞. The Fourier transform of the covariance
(spectral density),

f (λ) =
∞∑

k=−∞
r(k)eikλ(9)

blows up at the origin if 1/2 < H < 1 since f (0) =∑∞
k=−∞ r(0) = ∞. This type of dependence is called

long memory, long-range dependence or strong depen-
dence [31]. Time series with long-memory are impor-
tant in modeling, particularly in econometrics. Finan-
cial returns, for example, appear uncorrelated, but their
squares often display long-memory [1, 4].

Mandelbrot was very interested in finance and in de-
veloping suitable models for financial returns [14]. To-
gether with his students Adlai Fisher and Laurent Cal-
vet [16], he introduced a multifractal model of assets
returns, BH(θ(t)), where BH is fractional Brownian
motion, and θ(t) is an independent multifractal pro-
cess corresponding to “activity time.” A multifractal
process has stationary increments and satisfies

E|θ(t)|q = c(q)tτ(q)+1, t ≥ 0,(10)

where τ(q) is not necessarily a linear function of q .
Observe that fractional Brownian motion itself is mul-
tifractal, more precisely monofractal, because by self-
similarity, E|BH(t)|q = tqH , corresponding to the lin-
ear function τ(q) = qH − 1. The idea of “subordina-
tion,” replacing “physical time” by “activity time” can

already be found as early as 1967 in his pioneering pa-
per with Howard Taylor, with Brownian motion instead
of fractional Brownian motion [17].

Statistics also enters into the picture. Given a time
series, how does one check that it displays long-
memory? And if it does, how does one estimate H ?
There is quite a large literature on the subject [27].
Many of the available tests are graphical [32] or asymp-
totic in nature. The asymptotic ones are related to cen-
tral limit theorems but also to so-called noncentral limit
theorems which arise as follows.

Consider a time series {Xn,n ∈ Z}, and let s2
n =

Var(
∑n

k=1 Xk). What is the limit of the normalized sum

1

sn

[nt]∑
k=1

Xk, t ≥ 0,(11)

as n → ∞? It is typically Brownian motion in the
case of weak dependence. But if {Xn,n ∈ Z} is long-
range dependent, it could be Brownian motion, frac-
tional Brownian motion or a non-Gaussian process.
The study of limit theorems in this context is thus very
important, and while there is a large literature about it,
there are still many open problems [5, 6, 11, 13, 23, 29,
30].

This story illustrates one of Benoît Mandelbrot’s
contributions to mathematics. He tended to focus on
a concept or mathematical object whose importance
was not recognized. He studied and developed it—at
times rigorously, at times heuristically—with the fre-
quent consequence that the object of his attention be-
came the basis of major subsequent developments. Be-
cause he challenged accepted views, many of his ideas
met with initial resistance. Ultimately though, Benoît
Mandelbrot’s influence on the course of mathemati-
cal thinking has been far-reaching. He will be greatly
missed.
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