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Summary
Quantile regression, which models the conditional quantiles of the response variable given
covariates, usually assumes a linear model. However, this kind of linearity is often unrealistic in
real life. One situation where linear quantile regression is not appropriate is when the response
variable is piecewise linear but still continuous in covariates. To analyze such data, we propose a
bent line quantile regression model. We derive its parameter estimates, prove that they are
asymptotically valid given the existence of a change-point, and discuss several methods for testing
the existence of a change-point in bent line quantile regression together with a power comparison
by simulation. An example of land mammal maximal running speeds is given to illustrate an
application of bent line quantile regression in which this model is theoretically justified and its
parameters are of direct biological interests.
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1. Introduction
Quantile regression, introduced by Koenker and Bassett (1978), models the conditional
quantiles of the response variable Y given a set of covariates X. Compared with ordinary
least squares regression, quantile regression can provide a more complete picture of the
conditional distribution of Y given X = x, and it is particularly useful when upper or lower or
all quantiles are of interest. It is more flexible for modeling data with heterogeneous
conditional distributions and more robust to outliers in Y than least squares regression.

The usual linear regression methods including ordinary least squares and quantile regression
assume a linear model between Y and X. The linearity assumption puts some limitations on
the pattern of data. The maximal running speed (MRS) data of land mammals in Garland
(1983) are an example where the simple linear (quantile) regression is not appropriate. A
scatter plot (Figure 2) shows that the natural logarithm of MRS of land mammals increases
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with the natural logarithm of mass up to a certain point and then goes down as the mass
rises. It implies that there may be linear relationships between MRS and mass on the log
scale which are continuous but have slopes that differ on either side of a boundary called a
change-point. Biologic considerations support the idea of a change-point: a quadratic model
is unrealistic here because there is no reason to believe that the slope for smaller animals is
related to that for larger ones—see Section 5.3 and Chappell (1989). To accommodate data
in which a linear relationship is not constant, it is necessary to consider segmented
regressions which have different analytical forms in different regions of the domain. A lot of
work about parameter estimation, hypothesis testing, and asymptotic distribution has been
done for segmented least squares regression (see Robinson, 1964; Quandt, 1958, 1960;
Feder, 1975). However, there has not been much analogous work done for segmented
quantile regression. When the upper or lower quantiles of the response variable are of
interest, segmented quantile regression may be preferable. Upper quantiles are indeed of
particular interest here because biologists are interested in the potential running speed as a
function of mass. For example, the bottom-most point in Figure 2 (at 4 kg, 1.6 km/h) is the
three-toed sloth. This animal, due to its arboreal lifestyle, is extremely slow. That fact is
useful in some instances but not for the present estimation of the upper limits of speed given
the constraints imposed by size. One can see many other slow outliers in Figure 2, but few
fast ones (hopping animals, due to their different form of locomotion, are treated separately).
Thus we are interested in the maximum rather than the mean in this instance. For reasons of
estimability and numerical stability, we substitute a high quantile such as the 0.8th. In this
article, we concentrate on an important special case of segmented quantile regression—bent
line quantile regression, with two segments which are different straight lines which intersect
at a change-point. We develop a systematic bent line quantile regression procedure, from
modeling to asymptotics.

The rest of the article is organized as follows. Section 2 describes a bent line quantile
regression model and develops parameter estimates, their asymptotic distribution, and
methods for confidence intervals and linear hypothesis testing. Section 3 proposes three tests
for the existence of a change-point. Section 4 investigates the performances of the tests and
confidence intervals via simulation studies. Section 5 presents data analysis results for the
maximal running speed of land mammals example. The last section discusses the advantages
and limitations of the procedure developed in this paper and further work.

2. Methods
2.1 Model

Given a probability τ strictly between 0 and 1, we consider a continuous bent line quantile
regression model

(1)

where Yi is the ith response, Xi is the scalar covariate whose slope changes at the change-
point t, zi is a q-dimensional vector of linear covariates with constant slopes and ei is the
error term whose τ-th quantile is zero conditional on (Xi, zi). Here, t is unknown and needs to
be estimated. Because of continuity, we express one of the parameters in (1), α2, as a
function of the others: α2 = α1 + (β1 − β2)t. Let η = (α1, β1, β2, γ⊤)⊤. From Model (1), it is
easy to show that given t the τ-th quantile of Yi given Xi and zi is
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(2)

2.2 Statistical Inference
2.2.1 Estimates of coefficients and change-point—If the change-point t were
known, the estimates of coefficients η could be formulated as the solution to the
optimization problem

(3)

where ρτ(w) = w(τ − I(w < 0)), 0 < τ < 1. Here I(·) denotes the indicator function. We may
now, via an extension of a method due to Quandt (1958) and Chappell (1989), find estimates
by conditioning on t and then minimizing (3) over all values of t in the range of Xi's. Letting
ui = min(Xi, t) and vi = max(0, Xi − t), the quantile conditional on t is linear in form, i.e.,

(4)

which is equivalent to Equation (2). Let . Then, conditional on t, η can be
estimated by solving

(5)

Now we have the estimates of η conditional on t. Let

(6)

S(η̂∣ t) is a function of t. One therefore can obtain the unconditional estimates of η by
minimizing S(η̂∣t) over t. The value of t at which the minimum is realized is t̂, the estimated
change-point. This estimation method is needed as an alternative to the algorithm in
Koenker (2005, Section 6.6) for estimating nonlinear regression quantiles, which requires
differentiability of quantile functions. The computational aspects of bent line quantile
regression are discussed in Web Appendix B.

2.2.2 Asymptotics—We consider a general bent line quantile regression model

(7)

Li et al. Page 3

Biometrics. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where Yi is the ith response, Xi is the covariate whose slope changes at tτ, zi is a q-
dimensional vector of linear covariates with constant slopes, and eτ,i is the error term whose
τ-th quantile is zero. We treat both the response and the covariates as random to derive the
asymptotic properties of the parameter estimates in Section 2.2.1. The observations

 are assumed to be independent but not necessarily identically distributed.

To simplify the presentation, we denote the conditional quantile function

where  and  is the true parameter vector. The
estimator of θ0(τ) can be expressed by

(8)

where ρτ(r) = r(τ −I{r < 0}) is the quantile regression loss function and θ = (α, β1, β2, t,
γ⊤)⊤. Due to the non-convexity of the objective function, θ ̂n(τ) is obtained via profile
estimation. Recalling that η= (α, β1, β2, γ⊤)⊤ is the vector of parameters excluding t, we can
write our objective function with respect to η and t as

A profile estimate of η at a fixed t is given by

An estimate of the change-point tτ is given by

θ ̂n(τ) is obtained from η̂n,τ(t̂n,τ) and t̂n,τ.

To derive the asymptotic properties of θ ̂n(τ), we introduce the following notation:

Li et al. Page 4

Biometrics. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The regularity conditions needed to derive the asymptotic properties are given in Web
Appendix A. We now present the main results of the asymptotic properties of θ ̂n(τ) in the
following theorem but defer the proof to Web Appendix A:

Theorem 1: Under the regularity conditions and the condition that β1,τ ≠ β2,τ, θ ̂n(τ) has the
following Bahadur representation:

(9)

where ψτ(r) = τ − I{r < 0} is the first derivative of ρτ(·). The representation (9) implies that

(10)

Remark 1: When β1,τ = β2,τ, i.e., the change-point does not exist and the estimation is ill-
conditioned.

Remark 2: The optimization (8) is equivalent to solving the estimation equation

(11)

This estimation equation provides a nice interpretation of the estimation: the quantile
gradient condition holds on both sides of t at θ ̂n(τ).

Moreover, letting

(12)

where f̂τ,wi is some consistent estimate of fτ,wi, then we have
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Therefore, we could estimate the asymptotic variance-covariance matrix by D ̂n,τ and Ĉn,τ.

We can easily extend the foregoing argument to consider the asymptotic joint distribution of
distinct vectors of bent line quantile regression parameters. For 0 < τ1 < τ2 < ⋯ < τm < 1, m

∈ ℤ+, we set , 1 ≤ j ≤ m. We assume that Model (7) is true for
all the τj's, i.e.

(13)

Let ϑ̂n = (θ ̂n (τ1)⊤, θ ̂n(τ2)⊤,⋯ θ ̂n(τm)⊤)⊤ be the estimated vector of parameters with ϑ0 =
(θ0(τ1)⊤,θ0(τ2)⊤, ⋯, θ0(τm)⊤)⊤. To describe the asymptotic properties of ϑn, we introduce
three more notations: Hn = diag[Dn,τ1, ⋯,Dn,τm], H0 = diag[D0,τ1, ⋯, D0,τm] and

The regularity conditions needed to derive the asymptotic properties of ϑ̂n are also given in
Web Appendix A. The asymptotic properties of ϑ̂n are presented in the following theorem,
and its proof is again deferred to Web Appendix A.

Theorem 2: Under the regularity conditions and the condition that β1,τj ≠ β2,τj for j = 1,
⋯,m, ϑ̂n has the following Bahadur representation:

(14)

The representation (14) implies that

(15)

where Λ0 is a m(4 + q) × m(4 + q) matrix with klth block

2.2.3 Confidence intervals for the change-point and slopes—The change-point t
and slopes β1, β2 in Model (1) are, in general, of great interest and so we construct their
confidence intervals. Theorem 1 provides an asymptotic confidence interval for every
parameter, which involves density estimation. The density estimation method we use in this
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paper is called The Hendricks-Koenker Sandwich described in Koenker (2005, Section
3.4.2). Bootstrap techniques are also capable of constructing confidence intervals. We
resample n triples of variables with replacement from {(Yi, Xi, zi)∣i = 1,⋯,n} and use this
bootstrap sample to reestimate t, β1 and β2. We repeat this procedure B times so that B
estimates of the parameters can be obtained. The confidence intervals for t, β1 and β2 are
computed using Efron's percentile method. This bootstrap method for confidence intervals is
valid because the asymptotic joint distribution of the parameter estimates is normal, as
discussed in Section 2.2.2.

Note that when the change-point doesn't exist, estimation and confidence interval
construction for bent line quantile regression are ill-conditioned. So we recommend testing
for a change-point (Section 3) before estimation and constructing confidence intervals.

2.2.4 General linear hypothesis testing—We consider a general hypothesis testing on
the vector ϑ0 = (θ0(τ1)⊤, θ0(τ2)⊤,⋯, θ0(τm)⊤)⊤ of the form

This kind of hypothesis can be accommodated by the Wald approach since we have the
asymptotic normality of ϑn as discussed in Section 2.2.2. The test statistic is

(16)

where Vn is a m(4 + q) × m(4 + q) matrix with klth block

where

The test statistic Wn is asymptotically  under the null hypothesis, where ν is the rank of
the matrix R.

This formulation accommodates a wide variety of testing situations. For example, we could
test for the equality of several slope coefficients across several quantiles. Also, we might test
for the increasing trend in the slope coefficient as the quantile level rises by constructing an
appropriate R for this purpose.

3. Three Tests for the Change-point Existence
One may question whether there is a bend at all. So we are interested in testing simple
versus continuous two-phase linear quantile regression.

Three methods of testing the change-point existence are discussed below.

Li et al. Page 7

Biometrics. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. An omnibus lack of fit test. We apply the lack of fit test in He and Zhu (2003) to
test H0: the simple linear quantile regression model (17) is adequate for the data.

(17)

where  is a (2+q)-dimensional vector of linear covariates, ξ = (α, β,
γ⊤)⊤ and ei is the error term whose τ-th quantile equals zero.

2. Testing the significance of a quadratic term in the model. A general test for
nonlinearity (bent line in our case) is testing the significance of a quadratic term of
X. This can be done by a Wald test as described in Bassett and Koenker (1982).
The reason we test for a quadratic term is not because we believe a quadratic model
fits the data but because it is an easy test against a wide range of nonlinear
alternatives.

3. A bootstrap-based test using the continuous change-point as an alternative.
We are interested in testing

H0: no change-point in (c, d) vs. HA: there exists a continuous change-point in (c,
d), where (c, d) is in the support of the density of the covariate which might have
non-constant slope. In other words, we want to test the adequacy of the simple
model (17) with Model (1), where t ∈ (c, d), as the alternative. Conditional on t,
one may test whether β1 and β2 in (4) are equal with a Wald test as described in
Bassett and Koenker (1982), which can test the hypothesis that the nested smaller
model is adequate relative to the larger model. Inspired by this fact, we can
construct an unconditional test. For the observed Wald test statistic Tobs computed
conditional on t̂, the following bootstrap method would give an approximate level
of significance.

First, fit Model (1) and obtain α̂1, β ̂1, γ ̂, and the residuals ê1, ê2, ⋯, ên. Next generate the null
data ( , Xi, zi) using

(18)

Then generate bootstrap samples ( , , ) by sampling with replacement from
. For every bootstrap sample , get the estimate

of change-point, t̂*, and conditional on t̂*, compute the Wald test statistic T* for H0:β2−β1 =
β ̂20,* − β ̂10,*, where β ̂10,* and β ̂20,* are the estimates of β1 and β2 in (4) with the null data

 and t = t̂*. In this way, we obtain the empirical null hypothesis
distribution of T*. The approximate p-value is then the proportion of T*'s exceeding Tobs,
because large values of Tobs are indicative of (1).

Similar bootstrap-based tests for change-points are discussed by Hinkley et al. (1980,
Section 3.4) and Gijbels and Goderniaux (2004) for linear regression and nonparametric
regression, respectively.
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4. Simulation
4.1 Power Simulation

A power comparison among the three tests proposed in Section 3 is performed through
simulation.

The data for simulation are generated from the following two sets of scenarios:

1. Symmetric scenarios:

• A straight line:

(19)

• Symmetric bent lines with β1 = 0.125, 0.25, 0.375, and 0.5:

(20)

2. Asymmetric scenarios:

• A straight line:

(21)

• Asymmetric bent lines with β1 = −0.25, 0, 0.25, and 0.5:

(22)

where vA(x) = 1 + 0.2x, vB(x) = 0.5 + 0.02x and e ∼ N (0, 1). In the symmetric scenarios, x is
uniformly distributed on [0, 10]. In the asymmetric scenarios, x has a mixture distribution
that is uniform on [0, 1] with probability 0.1 and uniform on [1, 10] with probability 0.9.
The change-point in the symmetric scenarios is the median of x, but its counterpart in the
asymmetric scenarios is the 10th percentile of x.

We run the power simulation for these ten models. The median functions for the ten models
are plotted in Web Figure 1. Under each model, for every single run of simulation, we
generate a sample of (x, y) of size n from the model. The three tests are performed on the
same sample with τ = 0.5, 0.7, and 0.8. The change-point search range for the bootstrap-
based test is (1, 9) for the symmetric scenarios, and (0.75, 9.25) for the asymmetric
scenarios. The significance level of every test is chosen to be 0.05.

The simulation results for sample size n = 200 are summarized in Table 1.

From Table 1, we can see that the test for the quadratic term outperforms the other two at all
the quantiles under all the models in the symmetric scenarios in terms of power. The lack of
fit test is the second best in the symmetric scenarios. The bootstrap-based test is the most
powerful in the asymmetric scenarios. The lack of fit test beats the test for the quadratic term
at the median, but is less powerful at the upper quantiles in the asymmetric scenarios. It is
not difficult to explain the different relative performances of the three tests in the two sets of
scenarios. The lack of fit test assesses the goodness of fit of the linear quantile regression
model and so in the asymmetric scenarios where 90% of the data are from a linear model, it
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retains the null hypothesis of goodness of fit very often. This degrades its performance as a
test for the change-point existence. In order for the quadratic test to be powerful for testing
the change-point existence, the data points need to be approximated well by a quadratic
function, which is not the case in the asymmetric scenarios since 90% of the data points
come from a linear model. Fig. 1 graphically shows the pattern of power change with |β2 −
β1| and across the three tests for τ = 0.7. The power plots for τ = 0.5 and 0.8 are omitted here
to save space.

In sum, all three tests have pros and cons. The lack of fit test, which has power against the
widest range of alternatives among the three, has good power to detect a bent line when the
change-point is not at a tail of the covariate's distribution, but has poor power when it is. The
test against quadratic alternatives is powerful only to detect a bent line that can be
approximated well by a quadratic function. The bootstrap-based test performs well in terms
of power in general, but is less powerful than the other two tests when the data are from their
favorite scenarios like what we described above. The test against quadratic alternatives is the
least computationally intensive and very fast, the lack of fit test has a medium computational
cost, and the bootstrap-based test is the most computationally intensive. Computing times
are reported for the example in Section 5 as an illustration (see Web Table 1).

4.2 Simulation for Confidence Intervals
Besides power simulation, we also investigate the performance of the confidence intervals
for slopes and the change-point proposed in Section 2.2.3 through simulation. The
simulation scenario is the same as the symmetric scenario (20) with |β2 − β1| = 1 in power
simulation. The asymptotic confidence intervals and the bootstrapped confidence intervals
are computed for one sample in every single run of simulation. The number of bootstrap
replications is 500. The number of simulation runs is 1000. The simulation results are in
Table 2. In all cases, we report results for confidence intervals that are intended to have
coverage 0.95.

Table 2 shows that the bootstrapped confidence interval has a much better coverage than the
asymptotic confidence interval in all cases. A sample size of 200 is large enough for the
bootstrapped confidence interval to have good coverage, but a larger sample size than 500 is
needed for an asymptotic confidence interval, especially for the change-point interval, to be
accurate. An investigation on Wald confidence intervals for linear quantile regression in
Koenker (2005, Section 3.10) has a similar finding that the interval's coverage is remarkably
smaller than intended, even for a sample size of 500.

5. An Example
This section presents an application of bent line quantile regression to the maximal running
speed example mentioned in Section 1.

5.1 An allometric model
Maximal running speed (MRS) obviously depends on size for land mammals. It is apparent
that the dependency is non-monotonic; the fastest mammals are neither the largest nor the
smallest. Huxley (1932) introduced an allometric equation with which MRS may be
modeled to be proportional to a power of mass, i.e.

(23)
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where α and β may vary after the mass exceeds some change-point. The logarithmic
transformation renders the allometric relation linear; the exponent to which mass is raised
may now be viewed as the slope of a line, with log-linear effects of covariates easily
estimated by the inclusion of extra terms. So bent line quantile regression may be applied to
analyze the MRS/mass data.

5.2 The data
One hundred and seven land mammal (MRS(km/h), mass(kg)) pairs were collected by
Garland (given in Garland, 1983) from many sources, covering a wide range of body sizes
and types. A plot of the data set on the log scale is given in Figure 2. Points belonging to
animals which ambulate by hopping are labeled by ‘h’. Figure 2 clearly shows the need for
accommodating nonlinearity of log(MRS) in log(mass).

5.3 Analysis
There is no scientific interest in how slowly mammals can run. Indeed, there are
environmental niches which are filled by animals, e.g., sloths, which give the points in the
bottom center of Figure 2, for which high running speed does not give a selective advantage.
The theoretical minimum obviously is near 0. However, biologists are definitely interested
in the determinants of MRS for organisms in niches for which speed is important (see
discussion in Garland, 1983); thus we estimate the median and higher quantiles. In
particular, the hypothesis of isometry, that biological properties (speed in this case) are
invariant with respect to size, is of great and general interest. Here isometry means speed is
proportional to length, which in turn is proportional to mass1/3, implying that (23) holds with
β = 1/3. Other values of β, such as 0.25 for elastic stress similarity and 0.40 for static stress
similarity, have been proposed (see Garland, 1983). Isometry and other models implying
positive β may not hold for larger animals in which structural and metabolic constraints may
apply, in which case speed would be expected to stabilize or decrease with mass.

The bent line quantile regression model was fitted to Garland's data under three specific
values of τ: 0.5, 0.7 and 0.8. Yi is log(MRS), Xi is log(mass), and zi accounts for the hopping
effect, i.e., zi = 1 if the i-th animal is a hopper; otherwise, zi = 0. The three tests for change-
point existence all showed that the bent line patterns in Figure 2 are highly statistically
significant (the p-values for all the three tests at all the three quantiles are 0, and the
bootstrap-based test uses 400 bootstrap replications and searches for change-point in (-3.04,
6.15)). The data analysis results are tabulated in Table 3.

Since all three tests indicate that for the median and higher quantiles the slope with respect
to log(mass) does change in the bent line quantile regression model, the estimates and the
confidence intervals in Table 3 are valid. The estimated coefficients show that the maximal
running speed increases first and then gradually drops as the body mass gets bigger. The
change-point is about 34kg for the 0.5th and 0.7th quantiles, and 37kg for the 0.8th quantile.
Hopping has a positive effect on running speed. These estimates are consistent (or nearly so
for τ = 0.8) with the hypothesis of isometry in small mammals and indicate negative
allometry for large ones.

We performed a statistical test for the equality of the change points across the three quantile
levels using the test statistic (16). The resulting p-value is 0.96, so there is no statistically
significant difference in the change point across the three quantile levels.

The three bent quantile regression lines excluding hoppers are plotted with the data in Figure
2. The 0.8th quantile line approaches the 0.7th quantile line at the right tail. This might be
due to not enough data in that region to distinguish the two quantiles well.
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6. Discussion
Bent line quantile regression as a special case of nonlinear quantile regression retains many
of quantile regression's good properties. For example, it is robust to any response outlier in
the data, and especially useful when high or low quantiles instead of the mean are of
particular interest. More importantly, bent line quantile regression enables us to use quantile
regression to analyze data for which the linear relationship is not constant. Such data can be
found in allometry, nutrition, medicine, etc. (Pawitan, 2005), which means the area where
bent line quantile regression could be applied is large. One caution about the bent line
quantile estimation here is quantile crossing. Crossing is theoretically possible due to the
virtues of independently estimating a family of conditional bent line quantile functions. In
such a case, we can restrict the bent line estimates to prevent this, similar to He's (1997)
results for the linear quantile regression case, but a price to pay for using the method of He
(1997) in a bent line case is the assumption that the change-point is the same at different
quantile levels. The authors have implememented this algorithm and can be contacted for
details.

In real applications, the problem of how to identify which covariates have slope changes
would arise in the presence of at least two covariates. As a general model-building and
evaluation strategy we could examine a vector X of covariates for nonlinearity. One
possibility suggested by a referee is for the testing procedures proposed above except the
lack of fit test to be applied separately to each element of X. This would be appropriate
when we knew nonlinearity to be restricted to at most a single element. A computationally
tractable simultaneous test is desirable in the general case. One practical solution would be
to conduct simultaneous tests of all quadratic terms. After we decide which subset of X has
bends, if any, then we can extend the computational methods of Section 2.2.1 to estimate
potentially multivariate t and coefficients β1, β2. This actually extends the line of research in
bent line quantile regression in the direction of multiple covariates, each having its own
break point. In this case, the dimension of the change-point is greater than one, and we have
a folded hyperplane instead of a bent line. The parameter estimates and their asymptotic
properties can be derived using similar arguments as in the one-dimensional change-point
case. The test for quadratic terms can be used to test for the existence of each change-point
simultaneously.

Another direction to extend the current research is to consider more than one break point for
a covariate so that bent line quantile regression is generalized to multi-phase quantile
regression. Estimation and inference for multi-phase quantile regression are not so
analogous to our work as the previous case because the change-points are ordered.
Optimization with inequality constraints and the asymptotics of constrained M-estimation
are involved in this case. The tests for the existence of change-point or change-points would
be complex and need much innovative work. Instead of multi-phase quantile regression, one
could refer to Koenker et al. (1994) for quantile estimation in a general nonlinear situation
using smoothing splines.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Power plots for the three tests in the two sets of scenarios given τ = 0.7.
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Figure 2.
MRS vs. mass of land mammals, on the logarithm scale (hoppers denoted “h”), fitted with
bent line quantile regression.
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Table 3
Parameter estimates and confidence intervals for change-point and slopes

τ = 0.5 τ = 0.7 τ = 0.8

α̂1 3.23 3.43 3.58

α̂2 4.68 4.84 5.07

β ̂1 0.29 0.28 0.27

95% Boot. C.I. for β1 [0.21, 0.34] [0.20, 0.34] [0.23, 0.34]

95% Asymp. C.I. for β1 [0.24, 0.34] [0.23, 0.33] [0.22, 0.32]

β ̂2 -0.12 -0.12 -0.14

95% Boot. C.I. for β2 [-0.48, -0.03] [-0.41, -0.02] [-0.26, -0.05]

95% Asymp. C.I. for β2 [-0.25, 0] [-0.19, -0.04] [-0.20, -0.08]

Change-point t̂ 3.53 3.53 3.61

95% Boot. C.I. for t [3.00, 5.85] [2.62, 5.41] [2.43, 4.83]

95% Asymp. C.I. for t [2.68, 4.38] [2.78, 4.27] [2.96, 4.26]

γ ̂ 0.61 0.43 0.32

NOTE: Boot. C.I.: bootstrap confidence inteval; Asymp. C.I.: asymptotic confidence interval. 500 bootstrap samples are used for constructing a
confidence interval.
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