

Beowulf Cluster Computing with Linux

Scientific and Engineering Computation
Janusz Kowalik, editor

Data-Parallel Programming on MIMD Computers, Philip J. Hatcher and Michael J. Quinn, 1991

Unstructured Scientific Computation on Scalable Multiprocessors, edited by Piyush Mehrotra,

Joel Saltz, and Robert Voigt, 1992

Parallel Computational Fluid Dynamics: Implementation and Results, edited by Horst

D. Simon, 1992

Enterprise Integration Modeling: Proceedings of the First International Conference, edited by

Charles J. Petrie, Jr., 1992

The High Performance Fortran Handbook, Charles H. Koelbel, David B. Loveman, Robert

S. Schreiber, Guy L. Steele Jr. and Mary E. Zosel, 1994

PVM: Parallel Virtual Machine–A Users’ Guide and Tutorial for Network Parallel Computing,
Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy Sunderam,

1994

Practical Parallel Programming, Gregory V. Wilson, 1995

Enabling Technologies for Petaflops Computing, Thomas Sterling, Paul Messina, and Paul

H. Smith, 1995

An Introduction to High-Performance Scientific Computing, Lloyd D. Fosdick, Elizabeth

R. Jessup, Carolyn J. C. Schauble, and Gitta Domik, 1995

Parallel Programming Using C++, edited by Gregory V. Wilson and Paul Lu, 1996

Using PLAPACK: Parallel Linear Algebra Package, Robert A. van de Geijn, 1997

Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith,

Jerrold L. Wagener, 1997

MPI—The Complete Reference: Volume 1, The MPI Core, Marc Snir, Steve Otto, Steven

Huss-Lederman, David Walker, and Jack Dongarra, 1998

MPI—The Complete Reference: Volume 2, The MPI-2 Extensions, William Gropp, Steven
Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir,

1998

A Programmer’s Guide to ZPL, Lawrence Snyder, 1999

How to Build a Beowulf, Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel

F. Savarese, 1999

Using MPI: Portable Parallel Programming with the Message-Passing Interface, second edition,

William Gropp, Ewing Lusk, and Anthony Skjellum, 1999

Using MPI-2: Advanced Features of the Message-Passing Interface, William Gropp, Ewing

Lusk, and Rajeev Thakur, 1999

Beowulf Cluster Computing with Linux, Thomas Sterling, 2001

Beowulf Cluster Computing with Windows, Thomas Sterling, 2001

Beowulf Cluster Computing with Linux

Thomas Sterling

The MIT Press
Cambridge, Massachusetts
London, England

c© 2002 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in LATEX by the author and was printed and bound in the United States of
America.

Library of Congress Control Number 2001095383
ISBN: 0–262–69274–0

Disclaimer:

Some images in the original version of this book are not

available for inclusion in the eBook.

Dedicated with respect and appreciation to the memory of

Seymour R. Cray

1925–1996

 blank

Contents

Series Foreword xix

Foreword xxi

Preface xxix

1 Introduction—Thomas Sterling 1

1.1 Definitions and Taxonomy 1

1.2 Opportunities and Advantages 3

1.3 A Short History 6

1.4 Elements of a Cluster 8

1.5 Description of the Book 10

I Enabling Technologies

2 An Overview of Cluster Computing—Thomas

Sterling

15

2.1 A Taxonomy of Parallel Computing 16

2.2 Hardware System Structure 19

2.2.1 Beowulf Compute Nodes 19

2.2.2 Interconnection Networks 23

2.3 Node Software 25

2.4 Resource Management 25

2.5 Distributed Programming 27

2.6 Conclusions 29

3 Node Hardware—Thomas Sterling 31

3.1 Overview of a Beowulf Node 32

3.1.1 Principal Specifications 34

3.1.2 Basic Elements 35

3.2 Processors 38

3.2.1 Intel Pentium Family 39

3.2.2 AMD Athlon 39

3.2.3 Compaq Alpha 21264 40

viii Contents

3.2.4 IA64 40

3.3 Motherboard 41

3.4 Memory 43

3.4.1 Memory Capacity 43

3.4.2 Memory Speed 43

3.4.3 Memory Types 44

3.4.4 Memory Hierarchy and Caches 45

3.4.5 Package Styles 46

3.5 BIOS 46

3.6 Secondary Storage 47

3.7 PCI Bus 49

3.8 Example of a Beowulf Node 50

3.9 Boxes, Shelves, Piles, and Racks 50

3.10 Node Assembly 52

3.10.1 Motherboard Preassembly 53

3.10.2 The Case 54

3.10.3 Minimal Peripherals 55

3.10.4 Booting the System 56

3.10.5 Installing the Other Components 57

3.10.6 Troubleshooting 59

4 Linux—Peter H. Beckman 61

4.1 What Is Linux? 61

4.1.1 Why Use Linux for a Beowulf? 61

4.1.2 A Kernel and a Distribution 64

4.1.3 Open Source and Free Software 65

4.1.4 A Linux Distribution 67

4.1.5 Version Numbers and Development Methods 69

4.2 The Linux Kernel 71

4.2.1 Compiling a Kernel 72

4.2.2 Loadable Kernel Modules 73

4.2.3 The Beowulf Kernel Diet 74

4.2.4 Diskless Operation 76

Contents ix

4.2.5 Downloading and Compiling a New Kernel 77

4.2.6 Linux File Systems 79

4.3 Pruning Your Beowulf Node 82

4.3.1 inetd.conf 83

4.3.2 /etc/rc.d/init.d 83

4.3.3 Other Processes and Daemons 85

4.4 Other Considerations 86

4.4.1 TCP Messaging 87

4.4.2 Hardware Performance Counters 88

4.5 Final Tuning with /proc 88

4.6 Conclusions 92

5 Network Hardware—Thomas Sterling 95

5.1 Interconnect Technologies 95

5.1.1 The Ethernets 96

5.1.2 Myrinet 97

5.1.3 cLAN 98

5.1.4 Scalable Coherent Interface 99

5.1.5 QsNet 99

5.1.6 Infiniband 100

5.2 A Detailed Look at Ethernet 100

5.2.1 Packet Format 100

5.2.2 NIC Architecture 102

5.2.3 Hubs and Switches 105

5.3 Network Practicalities: Interconnect Choice 106

5.3.1 Importance of the Interconnect 106

5.3.2 Differences between the Interconnect Choices 107

5.3.3 Strategies to Improve Performance over Ethernet 108

5.3.4 Cluster Network Pitfalls 109

5.3.5 An Example of an Ethernet Interconnected Beowulf 110

5.3.6 An Example of a Myrinet Interconnected Cluster 111

6 Network Software—Thomas Sterling 113

x Contents

6.1 TCP/IP 113

6.1.1 IP Addresses 114

6.1.2 Zero-Copy Protocols 115

6.2 Sockets 116

6.3 Higher-Level Protocols 120

6.3.1 Remote Procedure Calls 121

6.3.2 Distributed Objects: CORBA and Java RMI 123

6.4 Distributed File Systems 126

6.4.1 NFS 126

6.4.2 AFS 127

6.4.3 Autofs: The Automounter 128

6.5 Remote Command Execution 128

6.5.1 BSD R Commands 128

6.5.2 SSH—The Secure Shell 130

7 Setting Up Clusters: Installation and
Configuration—Thomas Sterling and Daniel Savarese

131

7.1 System Access Models 131

7.1.1 The Standalone System 132

7.1.2 The Universally Accessible Machine 132

7.1.3 The Guarded Beowulf 132

7.2 Assigning Names 133

7.2.1 Statistically Assigned Addresses 133

7.2.2 Dynamically Assigned Addresses 134

7.3 Installing Node Software 135

7.3.1 Creating Tar Images 136

7.3.2 Setting Up a Clone Root Partition 137

7.3.3 Setting Up BOOTP 138

7.3.4 Building a Clone Boot Floppy 139

7.4 Basic System Administration 140

7.4.1 Booting and Shutting Down 140

7.4.2 The Node File System 141

Contents xi

7.4.3 Account Management 142

7.4.4 Running Unix Commands in Parallel 143

7.5 Avoiding Security Compromises 144

7.5.1 System Configuration 144

7.5.2 Restricting Host Access 145

7.5.3 Secure Shell 146

7.5.4 IP Masquerading 147

7.6 Job Scheduling 149

7.7 Some Advice on Upgrading Your Software 150

8 How Fast Is My Beowulf?—David Bailey 151

8.1 Metrics 151

8.2 Ping-Pong Test 154

8.3 The LINPACK Benchmark 154

8.4 The NAS Parallel Benchmark Suite 156

II Parallel Programming

9 Parallel Programming with MPI—William Gropp

and Ewing Lusk

161

9.1 Hello World in MPI 162

9.1.1 Compiling and Running MPI Programs 163

9.1.2 Adding Communication to Hello World 165

9.2 Manager/Worker Example 169

9.3 Two-Dimensional Jacobi Example with One-Dimensional
Decomposition 174

9.4 Collective Operations 178

9.5 Parallel Monte Carlo Computation 183

9.6 Installing MPICH under Linux 183

9.6.1 Obtaining and Installing MPICH 183

9.6.2 Running MPICH Jobs with the ch p4 Device 186

9.6.3 Starting and Managing MPD 187

9.6.4 Running MPICH Jobs under MPD 189

xii Contents

9.6.5 Debugging MPI Programs 189

9.6.6 Other Compilers 191

9.7 Tools 192

9.7.1 Profiling Libraries 192

9.7.2 Visualizing Parallel Program Behavior 193

9.8 MPI Implementations for Clusters 194

9.9 MPI Routine Summary 194

10 Advanced Topics in MPI Programming—William

Gropp and Ewing Lusk

199

10.1 Dynamic Process Management in MPI 199

10.1.1 Intercommunicators 199

10.1.2 Spawning New MPI Processes 200

10.1.3 Revisiting Matrix-Vector Multiplication 200

10.1.4 More on Dynamic Process Management 202

10.2 Fault Tolerance 202

10.3 Revisiting Mesh Exchanges 204

10.3.1 Blocking and Nonblocking Communication 205

10.3.2 Communicating Noncontiguous Data in MPI 207

10.4 Motivation for Communicators 211

10.5 More on Collective Operations 213

10.6 Parallel I/O 215

10.6.1 A Simple Example 217

10.6.2 A More Complex Example 219

10.7 Remote Memory Access 221

10.8 Using C++ and Fortran 90 224

10.9 MPI, OpenMP, and Threads 226

10.10 Measuring MPI Performance 227

10.10.1 mpptest 227

10.10.2 SKaMPI 228

10.10.3 High Performance LINPACK 228

10.11 MPI-2 Status 230

Contents xiii

10.12 MPI Routine Summary 230

11 Parallel Programming with PVM—Al Geist and

Stephen Scott

237

11.1 Overview 237

11.2 Program Examples 242

11.3 Fork/Join 242

11.4 Dot Product 246

11.5 Matrix Multiply 251

11.6 One-Dimensional Heat Equation 257

11.7 Using PVM 265

11.7.1 Setting Up PVM 265

11.7.2 Starting PVM 266

11.7.3 Running PVM Programs 267

11.8 PVM Console Details 269

11.9 Host File Options 272

11.10 XPVM 274

11.10.1 Network View 276

11.10.2 Space-Time View 277

11.10.3 Other Views 278

12 Fault-Tolerant and Adaptive Programs with
PVM—Al Geist and Jim Kohl

281

12.1 Considerations for Fault Tolerance 282

12.2 Building Fault-Tolerant Parallel Applications 283

12.3 Adaptive Programs 289

III Managing Clusters

13 Cluster Workload Management—James Patton

Jones, David Lifka, Bill Nitzberg, and Todd Tannenbaum

301

13.1 Goal of Workload Management Software 301

13.2 Workload Management Activities 302

xiv Contents

13.2.1 Queueing 302

13.2.2 Scheduling 303

13.2.3 Monitoring 304

13.2.4 Resource Management 305

13.2.5 Accounting 305

14 Condor: A Distributed Job Scheduler—Todd

Tannenbaum, Derek Wright, Karen Miller, and Miron Livny

307

14.1 Introduction to Condor 307

14.1.1 Features of Condor 308

14.1.2 Understanding Condor ClassAds 309

14.2 Using Condor 313

14.2.1 Roadmap to Using Condor 313

14.2.2 Submitting a Job 314

14.2.3 Overview of User Commands 316

14.2.4 Submitting Different Types of Jobs: Alternative
Universes 323

14.2.5 Giving Your Job Access to Its Data Files 329

14.2.6 The DAGMan Scheduler 330

14.3 Condor Architecture 332

14.3.1 The Condor Daemons 333

14.3.2 The Condor Daemons in Action 334

14.4 Installing Condor under Linux 336

14.5 Configuring Condor 338

14.5.1 Location of Condor’s Configuration Files 338

14.5.2 Recommended Configuration File Layout for a
Cluster 339

14.5.3 Customizing Condor’s Policy Expressions 340

14.5.4 Customizing Condor’s Other Configuration Settings 343

14.6 Administration Tools 343

14.6.1 Remote Configuration and Control 343

14.6.2 Accounting and Logging 344

14.6.3 User Priorities in Condor 345

14.7 Cluster Setup Scenarios 346

Contents xv

14.7.1 Basic Configuration: Uniformly Owned Cluster 346

14.7.2 Using Multiprocessor Compute Nodes 347

14.7.3 Scheduling a Distributively Owned Cluster 348

14.7.4 Submitting to the Cluster from Desktop
Workstations 349

14.7.5 Expanding the Cluster to Nondedicated (Desktop)
Computing Resources 349

14.8 Conclusion 350

15 Maui Scheduler: A Multifunction Cluster
Scheduler—David B. Jackson

351

15.1 Overview 351

15.2 Installation and Initial Configuration 352

15.2.1 Basic Configuration 352

15.2.2 Simulation and Testing 352

15.2.3 Production Scheduling 353

15.3 Advanced Configuration 353

15.3.1 Assigning Value: Job Prioritization and Node
Allocation 354

15.3.2 Fairness: Throttling Policies and Fairshare 356

15.3.3 Managing Resource Access: Reservations,
Allocation Managers, and Quality of Service 358

15.3.4 Optimizing Usage: Backfill, Node Sets, and
Preemption 361

15.3.5 Evaluating System Performance: Diagnostics,
Profiling, Testing, and Simulation 363

15.4 Steering Workload and Improving Quality of Information 365

15.5 Troubleshooting 367

15.6 Conclusions 367

16 PBS: Portable Batch System—James Patton Jones 369

16.1 History of PBS 369

16.1.1 Acquiring PBS 370

16.1.2 PBS Features 370

16.1.3 PBS Architecture 372

xvi Contents

16.2 Using PBS 373

16.2.1 Creating a PBS Job 374

16.2.2 Submitting a PBS Job 374

16.2.3 Getting the Status of a PBS Job 375

16.2.4 PBS Command Summary 376

16.2.5 Using the PBS Graphical User Interface 376

16.2.6 PBS Application Programming Interface 377

16.3 Installing PBS 378

16.4 Configuring PBS 379

16.4.1 Network Addresses and PBS 379

16.4.2 The Qmgr Command 379

16.4.3 Nodes 381

16.4.4 Creating or Adding Nodes 382

16.4.5 Default Configuration 383

16.4.6 Configuring MOM 384

16.4.7 Scheduler Configuration 385

16.5 Managing PBS 386

16.5.1 Starting PBS Daemons 386

16.5.2 Monitoring PBS 386

16.5.3 Tracking PBS Jobs 387

16.5.4 PBS Accounting Logs 387

16.6 Troubleshooting 388

16.6.1 Clients Unable to Contact Server 388

16.6.2 Nodes Down 388

16.6.3 Nondelivery of Output 389

16.6.4 Job Cannot Be Executed 389

17 PVFS: Parallel Virtual File System—Walt Ligon

and Rob Ross

391

17.1 Introduction 391

17.1.1 Parallel File Systems 391

17.1.2 Setting Up a Parallel File System 394

17.1.3 Programming with a Parallel File System 396

17.2 Using PVFS 402

Contents xvii

17.2.1 Writing PVFS Programs 403

17.2.2 PVFS Utilities 411

17.3 Administering PVFS 412

17.3.1 Building the PVFS Components 413

17.3.2 Installation 415

17.3.3 Startup and Shutdown 421

17.3.4 Configuration Details 423

17.3.5 Miscellanea 428

17.4 Final Words 429

18 Chiba City: The Argonne Scalable
Cluster—Remy Evard

431

18.1 Chiba City Configuration 431

18.1.1 Node Configuration 432

18.1.2 Logical Configuration 438

18.1.3 Network Configuration 440

18.1.4 Physical Configuration 442

18.2 Chiba City Timeline 442

18.2.1 Phase 1: Motivation 442

18.2.2 Phase 2: Design and Purchase 444

18.2.3 Phase 3: Installation 445

18.2.4 Phase 4: Final Development 446

18.2.5 Phase 5: Early Users 446

18.2.6 Phase 6: Full Operation 446

18.3 Chiba City Software Environment 447

18.3.1 The Computing Environment 447

18.3.2 Management Environment 452

18.4 Chiba City Use 459

18.5 Final Thoughts 460

18.5.1 Lessons Learned 460

18.5.2 Future Directions 461

19 Conclusions—Thomas Sterling 463

xviii Contents

19.1 Future Directions for Hardware Components 463

19.2 Future Directions for Software Components 465

19.3 Final Thoughts 468

A Glossary of Terms 471

B Annotated Reading List 479

C Annotated URLs 481

References 485

Index 488

Series Foreword

The world of modern computing potentially offers many helpful methods and tools

to scientists and engineers, but the fast pace of change in computer hardware, soft-

ware, and algorithms often makes practical use of the newest computing technology

difficult. The Scientific and Engineering Computation series focuses on rapid ad-

vances in computing technologies, with the aim of facilitating transfer of these

technologies to applications in science and engineering. It will include books on

theories, methods, and original applications in such areas as parallelism, large-scale

simulations, time-critical computing, computer-aided design and engineering, use

of computers in manufacturing, visualization of scientific data, and human-machine

interface technology.

The series is intended to help scientists and engineers understand the current

world of advanced computation and to anticipate future developments that will

affect their computing environments and open up new capabilities and modes of

computation.

This volume in the series describes the increasingly successful distributed/parallel

system called Beowulf. A Beowulf is a cluster of PCs interconnected by network

technology and employing the message-passing model for parallel computation. Key

advantages of this approach are high performance for low price, system scalability,

and rapid adjustment to new technological advances.

This book includes how to build, program, and operate a Beowulf system based

on the Linux operating system. A companion volume in the series provides the

same information for Beowulf clusters based on the Microsoft Windows operating

system.

Beowulf hardware, operating system software, programming approaches and li-

braries, and machine management software are all covered here. The book can be

used as an academic textbook as well as a practical guide for designing, implement-

ing, and operating a Beowulf for those in science and industry who need a powerful

system but are reluctant to purchase an expensive massively parallel processor or

vector computer.

Janusz S. Kowalik

 blank

Foreword

We know two things about progress in parallel programming:

1. Like nearly all technology, progress comes when effort is headed in a common,

focused direction with technologists competing and sharing results.

2. Parallel programming remains very difficult and should be avoided if at all

possible. This argues for a single environment and for someone else to do the pro-

gramming through built-in parallel function (e.g., databases, vigorous applications

sharing, and an applications market).

After 20 years of false starts and dead ends in high-performance computer ar-

chitecture, “the way” is now clear: Beowulf clusters are becoming the platform for

many scientific, engineering, and commercial applications. Cray-style supercom-

puters from Japan are still used for legacy or unpartitionable applications code;

but this is a shrinking fraction of supercomputing because such architectures aren’t

scalable or affordable. But if the code cannot be ported or partitioned, vector super-

computers at larger centers are required. Likewise, the Top500 share of proprietary

MPPs1 (massively parallel processors), SMPs (shared memory, multiple vector pro-

cessors), and DSMs (distributed shared memory) that came from the decade-long

government-sponsored hunt for the scalable computer is declining. Unfortunately,

the architectural diversity created by the hunt assured that a standard platform

and programming model could not form. Each platform had low volume and huge

software development costs and a lock-in to that vendor.

Just two generations ago based on Moore’s law (19952), a plethora of vector

supercomputers, nonscalable multiprocessors, and MPP clusters built from propri-

etary nodes and networks formed the market. That made me realize the error of an

earlier prediction that these exotic shared-memory machines were supercomputing’s

inevitable future. At the time, several promising commercial off-the-shelf (COTS)

technology clusters using standard microprocessors and networks were beginning to

be built. Wisconsin’s Condor to harvest workstation cycles and Berkeley’s NOW

(network of workstations) were my favorites. They provided one to two orders of

1MPPs are a proprietary variant of clusters or multicomputers. Multicomputers is the name
Allen Newell and I coined in our 1971 book, Computer Structures, to characterize a single computer
system comprising connected computers that communicate with one another via message passing
(versus via shared memory). In the 2001 list of the world’s Top500 computers, all except a few
shared-memory vector and distributed shared-memory computers are multicomputers. “Massive”
has been proposed as the name for clusters over 1,000 computers.
2G. Bell, “1995 Observations on Supercomputing Alternatives: Did the MPP Bandwagon Lead

to a Cul-de-Sac?”, Communications of the ACM 39, no. 3 (March 1996) 11–15.

xxii Foreword

magnitude improvement in performance/price over the proprietary systems, includ-

ing their higher operational overhead.

In the past five years, the “Beowulf way” has emerged. It developed and in-

tegrated a programming environment that operates on scalable clusters built on

commodity parts—typically based on Intel but sometimes based on Alphas or Pow-

erPCs. It also leveraged a vendor-neutral operating system (Linux) and helped

mature tools such as GNU, MPI, PVM, Condor, and various schedulers. The in-

troduction of Windows Beowulf leverages the large software base, for example,

applications, office and visualization tools, and clustered SQL databases.

Beowulf’s lower price and standardization attracted a large user community to a

common software base. Beowulf follows the personal computer cycle of innovation:

platform availability attracts applications; applications attract users; user demand

attracts platform competition and more applications; lower prices come with vol-

ume and competition. Concurrently, proprietary platforms become less attractive

because they lack software, and hence live in niche markets.

Beowulf is the hardware vendor’s worst nightmare: there is little profit in Beo-

wulf clusters of commodity nodes and switches. By using COTS PCs, networks,

free Linux/GNU-based operating systems and tools, or Windows, Beowulf enables

any group to buy and build its own supercomputer. Once the movement achieved

critical mass, the world tipped to this new computing paradigm. No amount of gov-

ernment effort to prop up the ailing domestic industry, and no amount of industry

lobbying, could reverse that trend. Today, traditional vector supercomputer com-

panies are gone from the United States, and they are a vanity business in Japan,

with less than 10% of the Top500 being vector processors. Clusters beat vector

supercomputers, even though about eight scalar microprocessors are still needed to

equal the power of a vector processor.

The Beowulf movement unified the cluster community and changed the course

of technical computing by “commoditizing” it. Beowulf enabled users to have a

common platform and programming model independent of proprietary processors,

interconnects, storage, or software base. An applications base, as well as an industry

based on many low-cost “killer microprocessors,” is finally forming.

You are the cause of this revolution, but there’s still much to be done! There is

cause for concern, however. Beowulf is successful because it is a common base with

critical mass.

There will be considerable pressure to create Linux/Beowulf dialects (e.g., 64-

bit flavor and various vendor binary dialects), which will fragment the community,

user attention span, training, and applications, just as proprietary-platform Unix

dialects sprang from hardware vendors to differentiate and lock in users. The com-

Foreword xxiii

munity must balance this pseudo- and incremental innovation against standardiza-

tion, because standardization is what gives the Beowulf its huge advantage.

Having described the inevitable appearance of Linux/Beowulf dialects, and the

associated pitfalls, I am strongly advocating Windows Beowulf. Instead of frag-

menting the community, Windows Beowulf will significantly increase the Beowulf

community. A Windows version will support the large community of people who

want the Windows tools, layered software, and development style. Already, most

users of large systems operate a heterogeneous system that runs both, with Win-

dows (supplying a large scalable database) and desktop Visual-X programming

tools. Furthermore, competition will improve both. Finally, the big gain will come

from cross-fertilization of .NET capabilities, which are leading the way to the truly

distributed computing that has been promised for two decades.

Beowulf Becomes a Contender

In the mid-1980s an NSF supercomputing centers program was established in re-

sponse to Digital’s VAX minicomputers.3 Although the performance gap between

the VAX and a Cray could be as large as 100,4 the performance per price was usu-

ally the reverse: VAX gave much more bang for the buck. VAXen soon became the

dominant computer for researchers. Scientists were able to own and operate their

own computers and get more computing resources with their own VAXen, includ-

ing those that were operated as the first clusters. The supercomputer centers were

used primarily to run jobs that were too large for these personal or departmental

systems.

In 1983 ARPA launched the Scalable Computing Initiative to fund over a score

of research projects to design, build, and buy scalable, parallel computers. Many of

these were centered on the idea of the emerging “killer microprocessor.” Over forty

startups were funded with venture capital and our tax dollars to build different

parallel computers. All of these efforts failed. (I estimate these efforts cost between

one and three billion dollars, plus at least double that in user programming that

is best written off as training.) The vast funding of all the different species, which

varied only superficially, guaranteed little progress and no applications market.

The user community did, however, manage to defensively create lowest common

3The VAX 780 was introduced in 1978.
4VAXen lacked the ability to get 5–20 times the performance that a large, shared Cray provided

for single problems.

xxiv Foreword

denominator standards to enable programs to run across the wide array of varying

architectures.

In 1987, the National Science Foundation’s new computing directorate estab-

lished the goal of achieving parallelism of 100X by the year 2000. The goal got

two extreme responses: Don Knuth and Ken Thompson said that parallel pro-

gramming was too hard and that we shouldn’t focus on it; and others felt the goal

should be 1,000,000X! Everyone else either ignored the call or went along quietly

for the funding. This call was accompanied by an offer (by me) of yearly prizes

to reward those who achieved extraordinary parallelism, performance, and perfor-

mance/price. In 1988, three researchers at Sandia obtained parallelism of 600X on

a 1000-node system, while indicating that 1000X was possible with more memory.

The announcement of their achievement galvanized others, and the Gordon Bell

prizes continue, with gains of 100% nearly every year.

Interestingly, a factor of 1000 scaling seems to continue to be the limit for most

scalable applications, but 20–100X is more common. In fact, at least half of the

Top500 systems have fewer than 100 processors! Of course, the parallelism is deter-

mined largely by the fact that researchers are budget limited and have only smaller

machines costing $1,000–$3,000 per node or parallelism of < 100. If the nodes are

in a center, then the per node cost is multiplied by at least 10, giving an upper limit

of 1000–10,000 nodes per system. If the nodes are vector processors, the number

of processors is divided by 8–10 and the per node price raised by 100X.

In 1993, Tom Sterling and Don Becker led a small project within NASA to build

a gigaflops workstation costing under $50,000. The so-called Beowulf project was

outside the main parallel-processing research community: it was based instead on

commodity and COTS technology and publicly available software. The Beowulf

project succeeded: a 16-node, $40,000 cluster built from Intel 486 computers ran in

1994. In 1997, a Beowulf cluster won the Gordon Bell Prize for performance/price.

The recipe for building one’s own Beowulf was presented in a book by Sterling et

al. in 1999.5 By the year 2000, several thousand-node computers were operating.

In June 2001, 33 Beowulfs were in the Top500 supercomputer list (www.top500.

org). Today, in the year 2001, technical high schools can buy and assemble a

supercomputer from parts available at the corner computer store.

Beowulfs formed a do-it-yourself cluster computing community using commodity

microprocessors, local area network Ethernet switches, Linux (and now Windows

2000), and tools that have evolved from the user community. This vendor-neutral

5T. Sterling, J. Salmon, D. J. Becker, and D. V. Savarese, How to Build a Beowulf: A Guide
to the Implementation and Application of PC Clusters, MIT Press, Cambridge, MA, 1999.

Foreword xxv

platform used the MPI message-based programming model that scales with addi-

tional processors, disks, and networking.

Beowulf’s success goes beyond the creation of an “open source” model for the

scientific software community. It utilizes the two decades of attempts by the parallel

processing community to apply these mutant multicomputers to a variety of appli-

cations. Nearly all of these efforts, like Beowulf, have been created by researchers

outside the traditional funding stream (i.e., “pull” versus “push” research). In-

cluded among these efforts are the following:

• Operating system primitives in Linux and GNU tools that support the platform

and networking hardware to provide basic functions

• Message Passing Interface (MPI) programming model

• Various parallel programming paradigms, including Linda, the Parallel Virtual

Machine (PVM), and Fortran dialects.

• Parallel file systems, awaiting transparent database technology

• Monitoring, debugging, and control tools

• Scheduling and resource management (e.g., Wisconsin’s Condor, the Maui sched-

uler)

• Higher-level libraries (e.g., LINPACK, BLAS)

Challenges of “Do-It-Yourself Supercomputers”

Will the supercomputer center’s role change in light of personal Beowulfs? Beowulfs

are even more appealing than VAXen because of their ubiquity, scalability, and ex-

traordinary performance/price. A supercomputer center user usually gets no more

than 64–128 nodes6 for a single problem—comparable to the size that researchers

have or can build up in their labs. At a minimum, centers will be forced to rethink

and redefine their role.

An interesting scenario arises when Gigabit and 10 Gigabit Ethernets become

the de facto LAN. As network speed and latency increase more rapidly than pro-

cessing, message passing looks like memory access, making data equally accessible

to all nodes within a local area. These match the speed of the next-generation

Internet. This would mean any LAN-based collection of PCs would become a de

facto Beowulf! Beowulfs and Grid computing technologies will become more closely

6At a large center with over 600 processors, the following was observed: 65%, of the users were
assigned < 16 processors; 24%<32; 4%<64; 4%<128; and 1%<256.

xxvi Foreword

related to each other than they are now. I can finally see the environment that I

challenged the NSF computer science research community to build in 1987!

By 2010 we can expect several interesting paths that Beowulf could host for more

power through parallelism:

• In situ Condor-scheduled workstations providing de facto clusters, with scaleup

of 100–10,000X in many environments

• Large on-chip caches, with multiple processors to give much more performance

for single nodes

• Disks with embedded processors in a network attached storage architecture, as

opposed to storage area networking that connects disks to nodes and requires a

separate system area network to interconnect nodes

Already in 2001, a relatively large number of applications can utilize Beowulf

technology by “avoiding” parallel programming, including the following:

• Web and Internet servers that run embarrassingly parallel to serve a large client

base

• Commercial transaction processing, including inherent, parallelized databases

• Monte Carlo simulation and image rendering that are embarrassingly parallel

Great progress has been made in parallelizing applications (e.g., n-body prob-

lems) that had challenged us in the past. The most important remaining challenge

is to continue on the course to parallelize those applications heretofore deemed the

province of shared-memory multiprocessors. These include problems requiring ran-

dom variable access and adaptive mesh refinement. For example, automotive and

aerodynamic engineering, climate and ocean modeling, and applications involving

heterogeneous space remain the province of vector multiprocessors. We need to

have a definitive list of challenges to log progress; but, unfortunately, the vector

supercomputer community have not provided this list.

Another challenge must be to make the use of multicomputers for parallel oper-

ation as easy as scalar programming. Although great progress has been made by

computational scientists working with computer scientists, the effort to adopt, un-

derstand, and train computer scientists in this form of parallelism has been minimal.

Few computer science departments are prepared to take on this role.

Based on two decades of “no surprises” in overall architectures, will there be any

unforeseen advances outside of Moore’s law to help achieve petaflops? What will

high-performance systems look like in two or four more generations of Moore’s law,

considering processing, storage, networking, and user connections? Will Beowulf

Foreword xxvii

evolve to huge (100,000-node) clusters built from less costly nodes? Or will clusters

be just part of the international computing “Grid”?

Gordon Bell

Microsoft Research

 blank

Preface

Within the past three years, there has been a rapid increase in the deployment

and application of computer clusters to expand the range of available system capa-

bilities beyond those of conventional desktop and server platforms. By leveraging

the development of hardware and software for these widely marketed and heav-

ily used mainstream computer systems, clusters deliver order of magnitude or more

scaling of computational performance and storage capacity without incurring signif-

icant additional R&D costs. Beowulf-class systems, which exploit mass-market PC

hardware and software in conjunction with cost-effective commercial network tech-

nology, provide users with the dual advantages of unprecedented price/performance

and configuration flexibility for parallel computing. Beowulf-class systems may be

implemented by the end users themselves from available components. But with

their growth in popularity, so has evolved industry support for commercial Beowulf

systems. Today, depending on source and services, Beowulf systems can be installed

at a cost of between one and three dollars per peak megaflops and of a scale from

a few gigaflops to half a teraflops. Equally important is the rapid growth in diver-

sity of application. Originally targeted to the scientific and technical community,

Beowulf-class systems have expanded in scope to the broad commercial domain for

transaction processing and Web services as well as to the entertainment industry for

computer-generated special effects. Right now, the largest computer under devel-

opment in the United States is a commodity cluster that upon completion will be at

a scale of 30 teraflops peak performance. It is quite possible that, by the middle of

this decade, commodity clusters in general and Beowulf-class systems in particular

may dominate middle and high-end computing for a wide range of technical and

business workloads. It also appears that for many students, their first exposure to

parallel computing is through hands-on experience with Beowulf clusters.

The publication of How to Build a Beowulf by MIT Press marked an important

milestone in commodity computing. For the first time, there was an entry-level

comprehensive book showing how to implement and apply a PC cluster. The initial

goal of that book, which was released almost two years ago, was to capture the

style and content of the highly successful tutorial series that had been presented at

a number of conferences by the authors and their colleagues. The timeliness of this

book and the almost explosive interest in Beowulf clusters around the world made it

the most successful book of the MIT Press Scientific and Engineering Computation

series last year. While other books have since emerged on the topic of assembling

clusters, it still remains the most comprehensive work teaching hardware, software,

and programming methods. Nonetheless, in spite of its success, How to Build

a Beowulf addressed the needs of only a part of the rapidly growing commodity

xxx Preface

cluster community. And because of the rapid evolution in hardware and software,

aspects of its contents have grown stale in a very short period of time. How to

Build a Beowulf is still a very useful introduction to commodity clusters and has

been widely praised for its accessibility to first-time users. It has even found its

way into a number of high schools across the country. But the community requires

a much more extensive treatment of a topic that has changed dramatically since

that book was introduced.

In addition to the obvious improvements in hardware, over the past two years

there have been significant advances in software tools and middleware for managing

cluster resources. The early Beowulf systems ordinarily were employed by one or

a few closely associated workers and applied to a small easily controlled workload,

sometimes even dedicated to a single application. This permitted adequate super-

vision through direct and manual intervention, often by the users themselves. But

as the user base has grown and the nature of the responsibilities for the clusters

has rapidly diversified, this simple “mom-and-pop” approach to system operations

has proven inadequate in many commercial and industrial-grade contexts. As one

reviewer somewhat unkindly put it, How to Build a Beowulf did not address the

hard problems. This was, to be frank, at least in part true, but it reflected the

state of the community at the time of publication. Fortunately, the state of the art

has progressed to the point that a new snapshot of the principles and practices is

not only justified but sorely needed.

The book you are holding is far more than a second addition of the original How

to Build a Beowulf; it marks a major transition from the early modest experimental

Beowulf clusters to the current medium- to large-scale, industrial-grade PC-based

clusters in wide use today. Instead of describing a single depth-first minimalist path

to getting a Beowulf system up and running, this new reference work reflects a range

of choices that system users and administrators have in programming and managing

what may be a larger user base for a large Beowulf clustered system. Indeed, to

support the need for a potentially diverse readership, this new book comprises

three major parts. The first part, much like the original How to Build a Beowulf,

provides the introductory material, underlying hardware technology, and assembly

and configuration instructions to implement and initially use a cluster. But even

this part extends the utility of this basic-level description to include discussion and

tutorial on how to use existing benchmark codes to test and evaluate new clusters.

The second part focuses on programming methodology. Here we have given equal

treatment to the two most widely used programming frameworks: MPI and PVM.

This part stands alone (as do the other two) and provides detailed presentation of

parallel programming principles and practices, including some of the most widely

Preface xxxi

used libraries of parallel algorithms. The largest and third part of the new book

describes software infrastructure and tools for managing cluster resources. This

includes some of the most popular of the readily available software packages for

distributed task scheduling, as well as tools for monitoring and administering system

resources and user accounts.

To provide the necessary diversity and depth across a range of concepts, topics,

and techniques, I have developed a collaboration among some of the world’s experts

in cluster computing. I am grateful to the many contributors who have added their

expertise to the body of this work to bring you the very best presentation on so

many subjects. In many cases, the contributors are the original developers of the

software component being described. Many of the contributors have published

earlier works on these or other technical subjects and have experience conveying

sometimes difficult issues in readable form. All are active participants in the cluster

community. As a result, this new book is a direct channel to some of the most

influential drivers of this rapidly moving field.

One of the important changes that has taken place is in the area of node oper-

ating system. When Don Becker and I developed the first Beowulf-class systems

in 1994, we adopted the then-inchoate Linux kernel because it was consistent with

other Unix-like operating systems employed on a wide range of scientific compute

platforms from workstations to supercomputers and because it provided a full open

source code base that could be modified as necessary, while at the same time pro-

viding a vehicle for technology transfer to other potential users. Partly because of

these efforts, Linux is the operating system of choice for many users of Beowulf-class

systems and the single most widely used operating system for technical computing

with clusters. However, during the intervening period, the single widest source

of PC operating systems, Microsoft, has provided the basis for many commercial

clusters used for data transaction processing and other business-oriented workloads.

Microsoft Windows 2000 reflects years of development and has emerged as a mature

and robust software environment with the single largest base of targeted indepen-

dent software vendor products. Important path-finding work at NCSA and more

recently at the Cornell Theory Center has demonstrated that scientific and tech-

nical application workloads can be performed on Windows-based systems. While

heated debate continues as to the relative merit of the two environments, the mar-

ket has already spoken: both Linux and Windows have their own large respective

user base for Beowulf clusters.

As a result of attempting to represent the PC cluster community that clearly

embodies two distinct camps related to the node operating system, my colleagues

and I decided to simultaneously develop two versions of the same book. Beowulf

xxxii Preface

Cluster Computing with Linux and Beowulf Cluster Computing with Windows are

essentially the same book except that, as the names imply, the first assumes and

discusses the use of Linux as the basis of a PC cluster while the second describes

similar clusters using Microsoft Windows. In spite of this marked difference, the two

versions are conceptually identical. The hardware technologies do not differ. The

programming methodologies vary in certain specific details of the software packages

used but are formally the same. Many but not all of the resource management tools

run on both classes of system. This convergence is progressing even as the books

are in writing. But even where this is not true, an alternative and complementary

package exists and is discussed for the other system type. Approximately 80 percent

of the actual text is identical between the two books. Between them, they should

cover the vast majority of PC clusters in use today.

On behalf of my colleagues and myself, I welcome you to the world of low-cost

Beowulf cluster computing. This book is intended to facilitate, motivate, and drive

forward this rapidly emerging field. Our fervent hope is that you are able to benefit

from our efforts and this work.

Acknowledgments

I thank first the authors of the chapters contributed to this book:

David Bailey, Lawrence Berkeley National Laboratory

Peter H. Beckman,Turbolinux

Remy Evard, Argonne National Laboratory

Al Geist, Oak Ridge National Laboratory

William Gropp, Argonne National Laboratory

David B. Jackson, University of Utah

James Patton Jones, Veridian

Jim Kohl, Oak Ridge National Laboratory

Walt Ligon, Clemson University

Miron Livny, University of Wisconsin

Ewing Lusk, Argonne National Laboratory

Karen Miller, University of Wisconsin

Bill Nitzberg, Veridian

Rob Ross, Argonne National Laboratory

Daniel Savarese, University of Maryland

Stephen Scott, Oak Ridge National Laboratory

Todd Tanenbaum, University of Wisconsin

Preface xxxiii

Derek Wright, University of Wisconsin

Many other people helped in various ways to put this book together. Thanks are

due to Michael Brim, Philip Carns, Anthony Chan, Andreas Dilger, Michele Evard,

Tramm Hudson, Andrew Lusk, Richard Lusk, John Mugler, Thomas Naughton,

John-Paul Navarro, Daniel Savarese, Rick Stevens, and Edward Thornton.

Jan Lindheim of Caltech provided substantial information related to networking

hardware. Narayan Desai of Argonne provided invaluable help with both the node

and network hardware chapters. Special thanks go to Rob Ross and Dan Nurmi of

Argonne for their advice and help with the cluster setup chapter.

Paul Angelino of Caltech contributed the assembly instructions for the Beowulf

nodes. Susan Powell of Caltech performed the initial editing of several chapters of

the book.

The authors would like to respectfully acknowledge the important initiative and

support provided by George Spix, Svetlana Verthein, and Todd Needham of Mi-

crosoft that were critical to the development of this book. Dr. Sterling would like to

thank Gordon Bell and Jim Gray for their advice and guidance in its formulation.

Gail Pieper, technical writer in the Mathematics and Computer Science Division

at Argonne, was an indispensable guide in matters of style and usage and vastly

improved the readability of the prose.

 blank

Beowulf Cluster Computing with Linux

 blank

1 Introduction

Thomas Sterling

Clustering is a powerful concept and technique for deriving extended capabilities

from existing classes of components. In nature, clustering is a fundamental mech-

anism for creating complexity and diversity through the aggregation and synthesis

of simple basic elements. The result is no less than the evolution and structure of

the universe, the compound molecules that dictate the shape and attributes of all

materials and the form and behavior of all multicellular life, including ourselves.

To accomplish such synthesis, an intervening medium of combination and exchange

is required that establishes the interrelationships among the constituent elements

and facilitates their cooperative interactions from which is derived the emergent

behavior of the compound entity. For compound organizations in nature, the bind-

ing mechanisms may be gravity, coulombic forces, or synaptic junctions. In the

field of computing systems, clustering is being applied to render new systems struc-

tures from existing computing elements to deliver capabilities that through other

approaches could easily cost ten times as much. In recent years clustering hardware

and software have evolved so that today potential user institutions have a plethora

of choices in terms of form, scale, environments, cost, and means of implementa-

tion to meet their scalable computing requirements. Some of the largest computers

in the world are cluster systems. But clusters are also playing important roles in

medium-scale technical and commerce computing, taking advantage of low-cost,

mass-market PC-based computer technology. These Beowulf-class systems have

become extremely popular, providing exceptional price/performance, flexibility of

configuration and upgrade, and scalability to provide a powerful new tool, opening

up entirely new opportunities for computing applications.

1.1 Definitions and Taxonomy

In the most general terms, a cluster is any ensemble of independently operational

elements integrated by some medium for coordinated and cooperative behavior.

This is true in biological systems, human organizations, and computer structures.

Consistent with this broad interpretation, computer clusters are ensembles of inde-

pendently operational computers integrated by means of an interconnection network

and supporting user-accessible software for organizing and controlling concurrent

computing tasks that may cooperate on a common application program or work-

load. There are many kinds of computer clusters, ranging from among the world’s

largest computers to collections of throwaway PCs. Clustering was among the first

computer system architecture techniques for achieving significant improvements in

2 Chapter 1

overall performance, user access bandwidth, and reliability. Many research clusters

have been implemented in industry and academia, often with proprietary networks

and/or custom processing nodes.

Commodity clusters are local ensembles of computing nodes that are commer-

cially available systems employed for mainstream data-processing markets. The in-

terconnection network used to integrate the compute nodes of a commodity cluster

is dedicated to the cluster system and is also commercially available from its manu-

facturer. The network is dedicated in the sense that it is used internally within the

cluster supporting only those communications required between the compute nodes

making up the cluster, its host or master nodes, which are themselves “worldly,”

and possibly the satellite nodes responsible for managing mass storage resources

that are part of the cluster. The network of a commodity cluster must not be

proprietary to the cluster product of a single vendor but must be available for pro-

curement, in general, for the assembly of any cluster. Thus, all components of a

commodity cluster can be bought by third-party systems integrators or the end-user

installation site itself. Commodity clusters employ software, which is also available

to the general community. Software can be free, repackaged and distributed for

modest cost, or developed by third-party independent software vendors (ISVs) and

commercially marketed. Vendors may use and distribute as part of their commod-

ity cluster products their own proprietary software as long as alternate external

software is available that could be employed in its place. The twin motivating

factors that drive and restrict the class of commodity computers is (1) their use

of nonspecialty parts that exploits the marketplace for cost reduction and stable

reliability and (2) the avoidance of critical unique solutions restricted to a specific

cluster product that if unavailable in the future would disrupt end-user productivity

and jeopardize user investment in code base.

Beowulf-class systems are commodity clusters that exploit the attributes derived

from mass-market manufacturing and distribution of consumer-grade digital elec-

tronic components. Beowulfs are made of PCs, sometimes lots of them; cheap EIDE

(enchanced integrated drive electronics) (usually) hard disks; and low-cost DIMMs

(dual inline memory modules) for main memory. A number of different micropro-

cessor families have been used successfully in Beowulfs, including the long-lasting

Intel X86 family (80386 and above), their AMD binary compatible counterparts,

the Compaq Alpha 64-bit architecture, and the IBM PowerPC series. Beowulf sys-

tems deliver exceptional price/performance for many applications. They use low

cost/no cost software to manage the individual nodes and the ensemble as a whole.

A large part of the scientific and technical community using Beowulf has employed

the Linux open source operating system, while many of the business and commer-

Introduction 3

cial users of Beowulf support the widely distributed commercial Microsoft Windows

operating system. Both types of Beowulf system use middleware that is a combina-

tion of free open software and commercial ISV products. Many of these tools have

been ported to both environments, although some still are restricted to one or the

other environment. The nodes of Beowulfs are either uniprocessor or symmetric

multiprocessors (SMPs) of a few processors. The price/performance sweet spot ap-

pears to be the dual-node SMP systems, although performance per microprocessor

is usually less than for single-processor nodes. Beowulf-class systems are by far the

most popular form of commodity cluster today.

At the other end of the cluster spectrum are the constellations. A constellation

is a cluster of large SMP nodes scaled such that the number of processors per node

is greater than the number of such nodes making up the entire system. This is

more than an arbitrary distinction. Performance of a cluster for many applica-

tions is derived through program and system parallelism. For most commodity

clusters and Beowulf systems, the primary parallelism exploited is the internode

parallelism. But for clusters, the primary parallelism is intranode, meaning most

of the parallelism used is within the node. Generally, processors within an SMP

node are more tightly coupled through shared memory and can exploit finer-grained

parallelism than can Beowulf clusters. But shared-memory systems require the use

of a different programming model from that of distributed-memory systems, and

therefore programming constellations may prove rather different from programming

Beowulf clusters for optimal performance. Constellations are usually restricted to

the largest systems.

1.2 Opportunities and Advantages

Commodity clusters and Beowulf-class systems bring many advantages to scalable

parallel computing, opening new opportunities for users and application domains.

Many of these advantages are a consequence of superior price/performance over

many other types of system of comparable peak capabilities. But other impor-

tant attributes exhibited by clusters are due to the nature of their structure and

method of implementation. Here we highlight and expand on these, both to mo-

tivate the deployment and to guide the application of Beowulf-class systems for

myriad purposes.

Capability Scaling. More than even cost effectiveness, a Beowulf system’s prin-

ciple attribute is its scalability. Through the aggregation of commercial off-the-

shelf components, ensembles of specific resources deemed critical to a particular

4 Chapter 1

mode of operation can be integrated to provide a degree of capability not easily

acquired through other means. Perhaps most well known in high-end computing

circles is peak performance measured in flops (floating-point operations per sec-

ond). Even modest Beowulf systems can attain a peak performance between 10

and 100 gigaflops. The largest commodity cluster under development will achieve

30 teraflops peak performance. But another important capability is mass storage,

usually through collections of hard disk drives. Large commodity disks can contain

more than 100 gigabytes, but commercial database and scientific data-intensive

applications both can demand upwards of 100 terabytes of on-line storage. In ad-

dition, certain classes of memory intensive applications such as those manipulating

enormous matrices of multivariate data can be processed effectively only if sufficient

hardware main memory is brought to bear on the problem. Commodity clusters

provide one method of accumulating sufficient DRAM (dynamic random access

memory) in a single composite system for these large datasets. We note that while

clusters enable aggregation of resources, they do so with limited coupling, both

logical and physical, among the constituent elements. This fragmentation within

integrated systems can negatively impact performance and ease of use.

Convergence Architecture. Not anticipated by its originators, commodity clus-

ters and Beowulf-class systems have evolved into what has become the de facto

standard for parallel computer structure, having converged on a communitywide

system architecture. Since the mid-1970s, the high-performance computing indus-

try has dragged its small user and customer base through a series of often-disparate

parallel architecture types, requiring major software rework across successive gen-

erations. These changes were often a consequence of individual vendor decisions

and resulted in low customer confidence and a strong reticence to invest in porting

codes to a system that could easily be obsolete before the task was complete and

incompatible with any future generation systems. Commodity clusters employing

communitywide message-passing libraries offer a common structure that crosses

vendor boundaries and system generations, ensuring software investment longevity

and providing customer confidence. Through the evolution of clusters, we have

witnessed a true convergence of parallel system architectures, providing a shared

framework in which hardware and software suppliers can develop products with the

assurance of customer acceptance and application developers can devise advanced

user programs with the confidence of continued support from vendors.

Price/Performance. No doubt the single most widely recognized attribute of

Beowulf-class cluster systems is their exceptional cost advantage compared with

other parallel computers. For many (but not all) user applications and workloads,

Introduction 5

Beowulf clusters exhibit a performance-to-cost advantage of as much as an order

of magnitude or more compared with massively parallel processors (MPPs) and

distributed shared-memory systems of equivalent scale. Today, the cost of Beowulf

hardware is approaching one dollar per peak megaflops using consumer-grade com-

puting nodes. The implication of this is far greater than merely the means of saving

a little money. It has caused a revolution in the application of high-performance

computing to a range of problems and users who would otherwise be unable to work

within the regime of supercomputing. It means that for the first time, computing is

playing a role in industry, commerce, and research unaided by such technology. The

low cost has made Beowulfs ideal for educational platforms, enabling the training in

parallel computing principles and practices of many more students than previously

possible. More students are now learning parallel programming on Beowulf-class

systems than all other types of parallel computer combined.

Flexibility of Configuration and Upgrade. Depending on their intended user

and application base, clusters can be assembled in a wide array of configurations,

with very few constraints imposed by commercial vendors. For those systems con-

figured at the final site by the intended administrators and users, a wide choice

of components and structures is available, making possible a broad range of sys-

tems. Where clusters are to be dedicated to specific workloads or applications, the

system structure can be optimized for the required capabilities and capacities that

best suit the nature of the problem being computed. As new technologies emerge

or additional financial resources are available, the flexibility with which clusters are

imbued is useful for upgrading existing systems with new component technologies

as a midlife “kicker” to extend the life and utility of a system by keeping it current.

Technology Tracking. New technologies most rapidly find their way into those

products likely to provide the most rapid return: mainstream high-end personal

computers and SMP servers. Only after substantial lag time might such components

be incorporated into MPPs. Clustering, however, provides an immediate path to

integration of the latest technologies, even those that may never be adopted by

other forms of high-performance computer systems.

High Availability. Clusters provide multiple redundant identical resources that,

if managed correctly, can provide continued system operation through graceful

degradation even as individual components fail.

Personal Empowerment. Because high-end cluster systems are derived from

readily available hardware and software components, installation sites, their system

6 Chapter 1

administrators, and users have more control over the structure, elements, operation,

and evolution of this system class than over any other system. This sense of con-

trol and flexibility has provided a strong attractor to many, especially those in the

research community, and has been a significant motivation for many installations.

Development Cost and Time. The emerging cluster industry is being fueled by

the very low cost of development and the short time to product delivery. Based on

existing computing and networking products, vendor-supplied commodity clusters

can be developed through basic systems integration and engineering, with no com-

ponent design required. Because the constituent components are manufactured for

a much larger range of user purposes than is the cluster market itself, the cost to

the supplier is far lower than custom elements would otherwise be. Thus commod-

ity clusters provide vendors with the means to respond rapidly to diverse customer

needs, with low cost to first delivery.

1.3 A Short History

Cluster computing originated within a few years of the inauguration of the modern

electronic stored-program digital computer. SAGE was a cluster system built for

NORAD under Air Force contract by IBM in the 1950s based on the MIT Whirl-

wind computer architecture. Using vacuum tube and core memory technologies,

SAGE consisted of a number of separate standalone systems cooperating to man-

age early warning detection of hostile airborne intrusion of the North American

continent. Early commercial applications of clusters employed paired loosely cou-

pled computers, with one computer performing user jobs while the other managed

various input/output devices.

Breakthroughs in enabling technologies occurred in the late 1970s, both in hard-

ware and software, which were to have significant long-term effects on future cluster

computing. The first generations of microprocessors were designed with the initial

development of VLSI (very large scale integration) technology, and by the end of

the decade the first workstations and personal computers were being marketed.

The advent of Ethernet provided the first widely used local area network technol-

ogy, creating an industry standard for a modestly priced multidrop interconnection

medium and data transport layer. Also at this time, the multitasking Unix oper-

ating system was created at AT&T Bell Labs and extended with virtual memory

and network interfaces at the University of California–Berkeley. Unix was adopted

in its various commercial and public domain forms by the scientific and technical

Introduction 7

computing community as the principal environment for a wide range of computing

system classes from scientific workstations to supercomputers.

During the decade of the 1980s, increased interest in the potential of cluster

computing was marked by important experiments in research and industry. A

collection of 160 interconnected Apollo workstations was employed as a cluster

to perform certain computational tasks by the National Security Agency. Digital

Equipment Corporation developed a system comprising interconnected VAX 11/750

computers, coining the term “cluster” in the process. In the area of software, task

management tools for employing workstation farms were developed, most notably

the Condor software package from the University of Wisconsin. Different strategies

for parallel processing were explored during this period by the computer science

research community. From this early work came the communicating sequential

processes model more commonly referred to as the message-passing model, which

has come to dominate much of cluster computing today.

An important milestone in the practical application of the message-passing model

was the development of PVM (Parallel Virtual Machine), a library of linkable func-

tions that could allow routines running on separate but networked computers to

exchange data and coordinate their operation. PVM (developed by Oak Ridge Na-

tional Laboratory, Emery University, and the University of Tennessee) was the first

widely deployed distributed software system available across different platforms.

By the beginning of the 1990s, a number of sites were experimenting with clusters

of workstations. At the NASA Lewis Research Center, a small cluster of IBM work-

stations was used to simulate the steady-state behavior of jet aircraft engines in

1992. The NOW (network of workstations) project at UC Berkeley began operating

the first of several clusters there in 1993, which led to the first cluster to be entered

on the Top500 list of the world’s most powerful computers. Also in 1993, Myrinet,

one of the first commercial system area networks, was introduced for commodity

clusters, delivering improvements in bandwidth and latency an order of magnitude

better than the Fast Ethernet local area network (LAN) most widely used for the

purpose at that time.

The first Beowulf-class PC cluster was developed at the NASA Goddard Space

Flight center in 1994 using early releases of the Linux operating system and PVM

running on 16 Intel 100 MHz 80486-based personal computers connected by dual

10 Mbps Ethernet LANs. The Beowulf project developed the necessary Ether-

net driver software for Linux and additional low-level cluster management tools

and demonstrated the performance and cost effectiveness of Beowulf systems for

real-world scientific applications. That year, based on experience with many other

message-passing software systems, the first Message-Passing Interface (MPI) stan-

8 Chapter 1

dard was adopted by the parallel computing community to provide a uniform set

of message-passing semantics and syntax. MPI has become the dominant paral-

lel computing programming standard and is supported by virtually all MPP and

cluster system vendors. Workstation clusters running Sun Microsystems Solaris op-

erating system and NCSA’s PC cluster running the Microsoft NT operating system

were being used for real-world applications.

In 1996, the DOE Los Alamos National Laboratory and the California Institute of

Technology with the NASA Jet Propulsion Laboratory independently demonstrated

sustained performance of over 1 Gflops for Beowulf systems costing under $50,000

and was awarded the Gordon Bell Prize for price/performance for this accomplish-

ment. By 1997, Beowulf-class systems of over a hundred nodes had demonstrated

sustained performance of greater than 10 Gflops, with a Los Alamos system making

the Top500 list. By the end of the decade, 28 clusters were on the Top500 list with

a best performance of over 200 Gflops. In 2000, both DOE and NSF announced

awards to Compaq to implement their largest computing facilities, both clusters of

30 Tflops and 6 Tflops, respectively.

1.4 Elements of a Cluster

A Beowulf cluster comprises numerous components of both hardware and software.

Unlike pure closed-box turnkey mainframes, servers, and workstations, the user or

hosting organization has considerable choice in the system architecture of a cluster,

whether it is to be assembled on site from parts or provided by a systems integrator

or vendor. A Beowulf cluster system can be viewed as being made up of four major

components, two hardware and two software. The two hardware components are the

compute nodes that perform the work and the network that interconnects the node

to form a single system. The two software components are the collection of tools

used to develop user parallel application programs and the software environment

for managing the parallel resources of the Beowulf cluster. The specification of a

Beowulf cluster reflects user choices in each of these domains and determines the

balance of cost, capacity, performance, and usability of the system.

The hardware node is the principal building block of the physical cluster system.

After all, it is the hardware node that is being clustered. The node incorporates the

resources that provide both the capability and capacity of the system. Each node

has one or more microprocessors that provide the computing power of the node

combined on the node’s motherboard with the DRAM main memory and the I/O

interfaces. In addition the node will usually include one or more hard disk drives

Introduction 9

for persistent storage and local data buffering although some clusters employ nodes

that are diskless to reduce both cost and power consumption as well as increase

reliability.

The network provides the means for exchanging data among the cluster nodes

and coordinating their operation through global synchronization mechanisms. The

subcomponents of the network are the network interface controllers (NIC), the net-

work channels or links, and the network switches. Each node contains at least one

NIC that performs a series of complex operations to move data between the exter-

nal network links and the user memory, conducting one or more transformations on

the data in the process. The channel links are usually passive, consisting of a single

wire, multiple parallel cables, or optical fibers. The switches interconnect a num-

ber of channels and route messages between them. Networks may be characterized

by their topology, their bisection and per channel bandwidth, and the latency for

message transfer.

The software tools for developing applications depend on the underlying pro-

gramming model to be used. Fortunately, within the Beowulf cluster community,

there has been a convergence of a single dominant model: communicating sequen-

tial processes, more commonly referred to as message passing. The message-passing

model implements concurrent tasks or processes on each node to do the work of

the application. Messages are passed between these logical tasks to share data and

to synchronize their operations. The tasks themselves are written in a common

language such as Fortran or C++. A library of communicating services is called by

these tasks to accomplish data transfers with tasks being performed on other nodes.

While many different message-passing languages and implementation libraries have

been developed over the past two decades, two have emerged as dominant: PVM

and MPI (with multiple library implementations available for MPI).

The software environment for the management of resources gives system adminis-

trators the necessary tools for supervising the overall use of the machine and gives

users the capability to schedule and share the resources to get their work done.

Several schedulers are available and discussed in this book. For coarse-grained

job stream scheduling, the popular Condor scheduler is available. PBS and the

Maui scheduler handle task scheduling for interactive concurrent elements. For

lightweight process management, the new Scyld Bproc scheduler will provide ef-

ficient operation. PBS also provides many of the mechanisms needed to handle

user accounts. For managing parallel files, there is PVFS, the Parallel Virtual File

System.

10 Chapter 1

1.5 Description of the Book

Beowulf Cluster Computing is offered as a fully comprehensive discussion of the

foundations and practices for the operation and application of commodity clusters

with an emphasis on those derived from mass-market hardware components and

readily available software. The book is divided into three broad topic areas. Part

I describes the hardware components that make up a Beowulf system and shows

how to assemble such a system as well as take it out for an initial spin using

some readily available parallel benchmarks. Part II discusses the concepts and

techniques for writing parallel application programs to run on a Beowulf using the

two dominant communitywide standards, PVM and MPI. Part III explains how to

manage the resources of Beowulf systems, including system administration and task

scheduling. Each part is standalone; any one or pair of parts can be used without

the need of the others. In this way, you can just jump into the middle to get to the

necessary information fast. To help in this, Chapter 2 (the next chapter) provides

an overview and summary of all of the material in the book. A quick perusal of that

chapter should give enough context for any single chapter to make sense without

your having to have read the rest of the book.

The Beowulf book presents three kinds of information to best meet the require-

ments of the broad and varied cluster computing community. It includes foundation

material for students and people new to the field. It also includes reference material

in each topic area, such as the major library calls to MPI and PVM or the basic

controls for PBS. And, it gives explicit step-by-step guidance on how to accom-

plish specific tasks such as assembling a processor node from basic components or

installing the Maui scheduler.

This book can be used in many different ways. We recommend just sitting down

and perusing it for an hour or so to get a good feel for where the information is

that you would find most useful. Take a walk through Chapter 2 to get a solid

overview. Then, if you’re trying to get a job done, go after that material germane

to your immediate needs. Or if you are a first-time Beowulf user and just learning

about cluster computing, use this as your guide through the field. Every section

is designed both to be interesting and to teach you how to do something new and

useful.

One major challenge was how to satisfy the needs of the majority of the commod-

ity cluster community when a major division exists across the lines of the operating

system used. In fact, at least a dozen different operating systems have been used for

cluster systems. But the majority of the community use either Linux or Windows.

The choice of which of the two to use depends on many factors, some of them purely

Introduction 11

subjective. We therefore have taken the unprecedented action of offering a choice:

we’ve crafted two books, mostly the same, but differing between the two operating

systems. So, you are holding either Beowulf Cluster Computing with Windows or

Beowulf Cluster Computing with Linux. Whichever works best for you, we hope

you find it the single most valuable book on your shelf for making clusters and for

making clusters work for you.

 blank

I ENABLING TECHNOLOGIES

 blank

2 An Overview of Cluster Computing

Thomas Sterling

Commodity cluster systems offer an alternative to the technical and commercial

computing market for scalable computing systems for medium- and high-end com-

puting capability. For many applications they replace previous-generation mono-

lithic vector supercomputers and MPPs. By incorporating only components al-

ready developed for wider markets, they exploit the economy of scale not possible

in the high-end computing market alone and circumvent significant development

costs and lead times typical of earlier classes of high-end systems resulting in a

price/performance advantage that may exceed an order of magnitude for many user

workloads. In addition, users have greater flexibility of configuration, upgrade, and

supplier, ensuring longevity of this class of distributed system and user confidence

in their software investment. Beowulf-class systems exploit mass-market compo-

nents such as PCs to deliver exceptional cost advantage with the widest space of

choice for building systems. Beowulfs integrate widely available and easily accessi-

ble low-cost or no-cost system software to provide many of the capabilities required

by a system environment. As a result of these attributes and the opportunities they

imply, Beowulf-class clusters have penetrated almost every aspect of computing and

are rapidly coming to dominate the medium to high end.

Computing with a Beowulf cluster engages four distinct but interrelated areas of

consideration:

1. hardware system structure,

2. resource administration and management environment,

3. distributed programming libraries and tools, and

4. parallel algorithms.

Hardware system structure encompasses all aspects of the hardware node com-

ponents and their capabilities, the dedicated network controllers and switches, and

the interconnection topology that determines the system’s global organization. The

resource management environment is the battery of system software and tools that

govern all phases of system operation from installation, configuration, and initial-

ization, through administration and task management, to system status monitoring,

fault diagnosis, and maintenance. The distributed programming libraries and tools

determine the paradigm by which the end user coordinates the distributed com-

puting resources to execute simultaneously and cooperatively the many concurrent

logical components constituting the parallel application program. Finally, the do-

main of parallel algorithms provides the models and approaches for organizing a

16 Chapter 2

user’s application to exploit the intrinsic parallelism of the problem while operating

within the practical constraints of effective performance.

This chapter provides a brief and top-level overview of these four main domains

that constitute Beowulf cluster computing. The objective is to provide sufficient

context for you to understand any single part of the remaining book and how its

contribution fits in to the broader form and function of commodity clusters.

2.1 A Taxonomy of Parallel Computing

The goal of achieving performance through the exploitation of parallelism is as old

as electronic digital computing itself, which emerged from the World War II era.

Many different approaches and consequent paradigms and structures have been

devised, with many commercial or experimental versions being implemented over

the years. Few, however, have survived the harsh rigors of the data processing

marketplace. Here we look briefly at many of these strategies, to better appreciate

where commodity cluster computers and Beowulf systems fit and the tradeoffs and

compromises they represent.

A first-tier decomposition of the space of parallel computing architectures may

be codified in terms of coupling: the typical latencies involved in performing and

exploiting parallel operations. This may range from the most tightly coupled fine-

grained systems of the systolic class, where the parallel algorithm is actually hard-

wired into a special-purpose ultra-fine-grained hardware computer logic structure

with latencies measured in the nanosecond range, to the other extreme, often re-

ferred to as distributed computing, which engages widely separated computing re-

sources potentially across a continent or around the world and has latencies on the

order of a hundred milliseconds. Thus the realm of parallel computing structures

encompasses a range of 108, when measured by degree of coupling and, by impli-

cation, granularity of parallelism. In the following list, the set of major classes in

order of tightness of coupling is briefly described. We note that any such taxon-

omy is subjective, rarely orthogonal, and subject to debate. It is offered only as

an illustration of the richness of choices and the general space into which cluster

computing fits.

Systolic computers are usually special-purpose hardwired implementations of fine-

grained parallel algorithms exploiting one-, two-, or three-dimensional pipelining.

Often used for real-time postsensor processors, digital signal processing, image

processing, and graphics generation, systolic computing is experiencing a revival

through adaptive computing, exploiting the versatile FPGA (field programmable

An Overview of Cluster Computing 17

gate array) technology that allows different systolic algorithms to be programmed

into the same FPGA medium at different times.

Vector computers exploit fine-grained vector operations through heavy pipelining

of memory bank accesses and arithmetic logic unit (ALU) structure, hardware sup-

port for gather-scatter operations, and amortizing instruction fetch/execute cycle

overhead over many basic operations within the vector operation. The basis for the

original supercomputers (e.g., Cray), vector processing is still a formidable strategy

in certain Japanese high end systems.

SIMD (single instruction, multiple data) architecture exploits fine-grained data

parallelism by having many (potentially thousands) or simple processors performing

the same operation in lock step but on different data. A single control processor

issues the global commands to all slaved compute processors simultaneously through

a broadcast mechanism. Such systems (e.g., MasPar-2, CM-2) incorporated large

communications networks to facilitate massive data movement across the system

in a few cycles. No longer an active commercial area, SIMD structures continue to

find special-purpose application for postsensor processing.

Dataflow models employed fine-grained asynchronous flow control that depended

only on data precedence constraints, thus exploiting a greater degree of parallelism

and providing a dynamic adaptive scheduling mechanism in response to resource

loading. Because they suffered from severe overhead degradation, however, dataflow

computers were never competitive and failed to find market presence. Nonetheless,

many of the concepts reflected by the dataflow paradigm have had a strong influence

on modern compiler analysis and optimization, reservation stations in out-of-order

instruction completion ALU designs, and multithreaded architectures.

PIM (processor-in-memory) architectures are only just emerging as a possible force

in high-end system structures, merging memory (DRAM or SRAM) with processing

logic on the same integrated circuit die to expose high on-chip memory bandwidth

and low latency to memory for many data-oriented operations. Diverse structures

are being pursued, including system on a chip, which places DRAM banks and a

conventional processor core on the same chip; SMP on a chip, which places multiple

conventional processor cores and a three-level coherent cache hierarchical structure

on a single chip; and Smart Memory, which puts logic at the sense amps of the

DRAM memory for in-place data manipulation. PIMs can be used as standalone

systems, in arrays of like devices, or as a smart layer of a larger conventional

multiprocessor.

18 Chapter 2

MPPs (massively parallel processors) constitute a broad class of multiprocessor

architectures that exploit off-the-shelf microprocessors and memory chips in custom

designs of node boards, memory hierarchies, and global system area networks. Iron-

ically, “MPP” was first used in the context of SIMD rather than MIMD (multiple

instruction, multiple data) machines. MPPs range from distributed-memory ma-

chines such as the Intel Paragon, through shared memory without coherent caches

such as the BBN Butterfly and CRI T3E, to truly CC-NUMA (non-uniform memory

access) such as the HP Exemplar and the SGI Origin2000.

Clusters are an ensemble of off-the-shelf computers integrated by an intercon-

nection network and operating within a single administrative domain and usually

within a single machine room. Commodity clusters employ commercially avail-

able networks (e.g., Ethernet, Myrinet) as opposed to custom networks (e.g., IBM

SP-2). Beowulf-class clusters incorporate mass-market PC technology for their

compute nodes to achieve the best price/performance.

Distributed computing, once referred to as “metacomputing”, combines the pro-

cessing capabilities of numerous, widely separated computer systems via the In-

ternet. Whether accomplished by special arrangement among the participants, by

means of disciplines referred to as Grid computing, or by agreements of myriad

workstation and PC owners with some commercial (e.g., DSI, Entropia) or phil-

anthropic (e.g., SETI@home) coordinating host organization, this class of parallel

computing exploits available cycles on existing computers and PCs, thereby getting

something for almost nothing.

In this book, we are interested in commodity clusters and, in particular, those

employing PCs for best price/performance, specifically, Beowulf-class cluster sys-

tems. Commodity clusters may be subdivided into four classes, which are briefly

discussed here.

Workstation clusters — ensembles of workstations (e.g., Sun, SGI) integrated

by a system area network. They tend to be vendor specific in hardware and software.

While exhibiting superior price/performance over MPPs for many problems, there

can be as much as a factor of 2.5 to 4 higher cost than comparable PC-based

clusters.

Beowulf-class systems — ensembles of PCs (e.g., Intel Pentium 4) integrated

with commercial COTS local area networks (e.g., Fast Ethernet) or system area

networks (e.g., Myrinet) and run widely available low-cost or no-cost software for

An Overview of Cluster Computing 19

managing system resources and coordinating parallel execution. Such systems ex-

hibit exceptional price/performance for many applications.

Cluster farms — existing local area networks of PCs and workstations serving

either as dedicated user stations or servers that, when idle, can be employed to

perform pending work from outside users. Exploiting job stream parallelism, soft-

ware systems (e.g., Condor) have been devised to distribute queued work while

precluding intrusion on user resources when required. These systems are of lower

performance and effectiveness because of the shared network integrating the re-

sources, as opposed to the dedicated networks incorporated by workstation clusters

and Beowulfs.

Superclusters — clusters of clusters, still within a local area such as a shared

machine room or in separate buildings on the same industrial or academic campus,

usually integrated by the institution’s infrastructure backbone wide area netork.

Although usually within the same internet domain, the clusters may be under

separate ownership and administrative responsibilities. Nonetheless, organizations

are striving to determine ways to enjoy the potential opportunities of partnering

multiple local clusters to realize very large scale computing at least part of the time.

2.2 Hardware System Structure

The most visible and discussed aspects of cluster computing systems are their phys-

ical components and organization. These deliver the raw capabilities of the system,

take up considerable room on the machine room floor, and yield their excellent

price/performance. The two principal subsystems of a Beowulf cluster are its con-

stituent compute nodes and its interconnection network that integrates the nodes

into a single system. These are discussed briefly below.

2.2.1 Beowulf Compute Nodes

The compute or processing nodes incorporate all hardware devices and mechanisms

responsible for program execution, including performing the basic operations, hold-

ing the working data, providing persistent storage, and enabling external communi-

cations of intermediate results and user command interface. Five key components

make up the compute node of a Beowulf cluster: the microprocessor, main memory,

the motherboard, secondary storage, and packaging.

The microprocessor provides the computing power of the node with its peak

performance measured in Mips (millions of instructions per second) and Mflops

20 Chapter 2

(millions of floating-point operations per second). Although Beowulfs have been

implemented with almost every conceivable microprocessor family, the two most

prevalent today are the 32-bit Intel Pentium 3 and Pentium 4 microprocessors and

the 64-bit Compaq Alpha 21264 family. We note that the AMD devices (including

the Athlon), which are binary compatible with the Intel Pentium instruction set,

have also found significant application in clusters. In addition to the basic floating-

point and integer arithmetic logic units, the register banks, and execution pipeline

and control logic, the modern microprocessor, comprising on the order of 20 to 50

million transistors, includes a substantial amount of on-chip high-speed memory

called cache for rapid access of data. Cache is organized in a hierarchy usually

with two or three layers, the closest to the processor being the fastest but smallest

and the most distant being relatively slower but with much more capacity. These

caches buffer data and instructions from main memory and, where data reuse or

spatial locality of access is high, can deliver a substantial percentage of peak per-

formance. The microprocessor interfaces with the remainder of the node usually

by two external buses: one specifically optimized as a high-bandwidth interface to

main memory, and the other in support of data I/O.

Main memory stores the working dataset and programs used by the micropro-

cessor during job execution. Based on DRAM technology in which a single bit

is stored as a charge on a small capacitor accessed through a dedicated switch-

ing transistor, data read and write operations can be significantly slower to main

memory than to cache. However, recent advances in main memory design have im-

proved memory access speed and have substantially increased memory bandwidth.

These improvements have been facilitated by advances in memory bus design such

as RAMbus.

The motherboard is the medium of integration that combines all the components

of a node into a single operational system. Far more than just a large printed

circuit board, the motherboard incorporates a sophisticated chip set almost as

complicated as the microprocessor itself. This chip set manages all the interfaces

between components and controls the bus protocols. One important bus is PCI,

the primary interface between the microprocessor and most high-speed external

devices. Initially a 32-bit bus operating at 33 MHz, the most recent variation

operates at 66 MHz on 64-bit data, thus quadrupling its potential throughput.

Most system area network interface controllers are connected to the node by means

of the PCI bus. The motherboard also includes a substantial read-only memory

(which can be updated) containing the system’s BIOS (basic input/output system),

a set of low-level services, primarily related to the function of the I/O and basic

bootstrap tasks, that defines the logical interface between the higher-level operating

An Overview of Cluster Computing 21

system software and the node hardware. Motherboards also support several other

input/output ports such as the user’s keyboard/mouse/video monitor and the now-

ubiquitous universal serial bus (USB) port that is replacing several earlier distinct

interface types. Nonetheless, the vestigial parallel printer port can still be found,

whose specification goes to the days of the earliest PCs more than twenty years

ago.

Secondary storage provides high-capacity persistent storage. While main memory

loses all its contents when the system is powered off, secondary storage fully retains

its data in the powered-down state. While many standalone PCs include several

classes of secondary storage, some Beowulf-systems may have nodes that keep only

something necessary for holding a boot image for initial startup, all other data

being downloaded from an external host or master node. Secondary storage can go

a long way to improving reliability and reducing per node cost. However, it misses

the opportunity for low-cost, high-bandwidth mass storage. Depending on how the

system ultimately is used, either choice may be optimal. The primary medium for

secondary storage is the hard disk, based on a magnetic medium little different

from an audio cassette tape. This technology, almost as old as digital computing

itself, continues to expand in capacity at an exponential rate, although access speed

and bandwidths have improved only gradually. Two primary contenders, SCSI

(small computer system interface) and EIDE (enhanced integrated dual electronics),

are differentiated by somewhat higher speed and capacity in the first case, and

lower cost in the second case. Today, a gigabyte of EIDE disk storage costs the

user a few dollars, while the list price for SCSI in a RAID (redundant array of

independent disks) configuration can be as high as $100 per gigabyte (the extra

cost does buy more speed, density, and reliability). Most workstations use SCSI,

and most PCs employ EIDE drives, which can be as large as 100 GBytes per drive.

Two other forms of secondary storage are the venerable floppy disk and the optical

disk. The modern 3.5-inch floppy (they don’t actually flop anymore, since they

now come in a hard rather than a soft case), also more than twenty years old,

holds only 1.4 MBytes of data and should have been retired long ago. Because of

its ubiquity, however, it continues to hang on and is ideal as a boot medium for

Beowulf nodes. Largely replacing floppies are the optical CD (compact disk), CD-

RW (compact disk-read/write), and DVD (digital versatile disk). The first two hold

approximately 600 MBytes of data, with access times of a few milliseconds. (The

basic CD is read only, but the CD-RW disks are writable, although at a far slower

rate.) Most commercial software and data are now distributed on CDs because

they are very cheap to create (actually cheaper than a glossy one-page double-sided

commercial flyer). DVD technology also runs on current-generation PCs, providing

22 Chapter 2

direct access to movies.

Packaging for PCs originally was in the form of the “pizza boxes”: low, flat

units, usually placed on the desk with a fat monitor sitting on top. Some small

early Beowulfs were configured with such packages, usually with as many as eight

of these boxes stacked one on top of another. But by the time the first Beowulfs

were implemented in 1994, tower cases—vertical floor-standing (or sometimes on the

desk next to the video monitor) components—were replacing pizza boxes because of

their greater flexibility in configuration and their extensibility (with several heights

available). Several generations of Beowulf clusters still are implemented using this

low-cost, robust packaging scheme, leading to such expressions as “pile of PCs”

and “lots of boxes on shelves” (LOBOS). But the single limitation of this strategy

was its low density (only about two dozen boxes could be stored on a floor-to-

ceiling set of shelves) and the resulting large footpad of medium- to large-scale

Beowulfs. Once the industry recognized the market potential of Beowulf clusters, a

new generation of rack-mounted packages was devised and standardized (e.g., 1U,

2U, 3U, and 4U, with 1U boxes having a height of 1.75 inches) so that it is possible

to install a single floor-standing rack with as many as 42 processors, coming close

to doubling the processing density of such systems. Vendors providing complete

turnkey systems as well as hardware system integrators (“bring-your-own software”)

are almost universally taking this approach. Yet for small systems where cost is

critical and simplicity a feature, towers will pervade small labs, offices, and even

homes for a long time. (And why not? On those cold winter days, they make great

space heaters.)

Beowulf cluster nodes (i.e., PCs) have seen enormous, even explosive, growth over

the past seven years since Beowulfs were first introduced in 1994. We note that

the entry date for Beowulf was not arbitrary: the level of hardware and software

technologies based on the mass market had just (within the previous six months)

reached the point that ensembles of them could compete for certain niche applica-

tions with the then-well-entrenched MPPs and provide price/performance benefits

(in the very best cases) of almost 50 to 1. The new Intel 100 MHz 80486 made it

possible to achieve as much as 5 Mflops per node for select computationally intense

problems and the cost of 10 Mbps Ethernet network controllers and network hubs

had become sufficiently low that their cost permitted them to be employed as dedi-

cated system area networks. Equally important was the availability of the inchoate

Linux operating system with the all-important attribute of being free and open

source and the availability of a good implementation of the PVM message-passing

library. Of course, the Beowulf project had to fill in a lot of the gaps, including

writing most of the Ethernet drivers distributed with Linux and other simple tools,

An Overview of Cluster Computing 23

such as channel bonding, that facilitated the management of these early modest

systems. Since then, the delivered floating-point performance per processor has

grown by more than two orders of magnitude while memory capacity has grown by

more than a factor of ten. Disk capacities have expanded by as much as 1000X.

Thus, Beowulf compute nodes have witnessed an extraordinary evolution in capa-

bility. By the end of this decade, node floating-point performance, main memory

size, and disk capacity all are expected to grow by another two orders of magnitude.

One aspect of node structure not yet discussed is symmetric multiprocessing.

Modern microprocessor design includes mechanisms that permit more than one

processor to be combined, sharing the same main memory while retaining full co-

herence across separate processor caches, thus giving all processors a consistent

view of shared data in spite of their local copies in dedicated caches. While large

industrial-grade servers may incorporate as many as 512 processors in a single

SMP unit, a typical configuration for PC-based SMPs is two or four processors per

unit. The ability to share memory with uniform access times should be a source

of improved performance at lower cost. But both design and pricing are highly

complicated, and the choice is not always obvious. Sometimes the added complex-

ity of SMP design offsets the apparent advantage of sharing many of the node’s

resources. Also, performance benefits from tight coupling of the processors may

be outweighed by the contention for main memory and possible cache thrashing.

An added difficulty is attempting to program at the two levels: message passing

between nodes and shared memory between processors of the same node. Most

users don’t bother, choosing to remain with a uniform message-passing model even

between processors within the same SMP node.

2.2.2 Interconnection Networks

Without the availability of moderate-cost short-haul network technology, Beowulf

cluster computing would never have happened. Interestingly, the two leaders in

cluster dedicated networks were derived from very different precedent technologies.

Ethernet was developed as a local area network for interconnecting distributed

single user and community computing resources with shared peripherals and file

servers. Myrinet was developed from a base of experience with very tightly coupled

processors in MPPs such as the Intel Paragon. Together, Fast and Gigabit Ethernet

and Myrinet provide the basis for the majority of Beowulf-class clusters.

A network is a combination of physical transport and control mechanisms asso-

ciated with a layered hierarchy of message encapsulation. The core concept is the

“message.” A message is a collection of information organized in a format (order

and type) that both the sending and the receiving processes understand and can

24 Chapter 2

correctly interpret. One can think of a message as a movable record. It can be

as short as a few bytes (not including the header information) or as long as many

thousands of bytes. Ordinarily, the sending user application process calls a library

routine that manages the interface between the application and the network. Per-

forming a high-level send operation causes the user message to be packaged with

additional header information and presented to the network kernel driver software.

Additional routing information and additional converges are performed prior to

actually sending the message. The lowest-level hardware then drives the communi-

cation channel’s lines with the signal, and the network switches route the message

appropriately in accordance with the routing information encoded bits at the header

of the message packet. Upon receipt at the receiving node, the process is reversed

and the message is eventually loaded into the user application name space to be

interpreted by the application code.

The network is characterized primarily in terms of its bandwidth and its latency.

Bandwidth is the rate at which the message bits are transferred, usually cited in

terms of peak throughput as bits per second. Latency is the length of time required

to sends the message. Perhaps a fairer measure is the time from sending to receiv-

ing an application process, taking into consideration all of the layers of translation,

conversions, and copying involved. But vendors often quote the shorter time be-

tween their network interface controllers. To complicate matters, both bandwidth

and latency are sensitive to message length and message traffic. Longer messages

make better use of network resources and deliver improved network throughput.

Shorter messages reduce transmit, receive, and copy times to provide an overall

lower transfer latency but cause lower effective bandwidth. Higher total network

traffic (i.e., number of messages per unit time) increases overall network through-

put, but the resulting contention and the delays they incur result in longer effective

message transfer latency.

More recently, an industrial consortium has developed a new networking model

known as VIA. The goal of this network class is to support a zero-copy protocol,

avoiding the intermediate copying of the message in the operating system space

and permitting direct application-to-application message transfers. The result is

significantly reduced latency of message transfer. Emulex has developed the cLAN

network product, which provides a peak bandwidth in excess of 1 Gbps and for

short messages exhibits a transfer latency on the order of 7 microseconds.

An Overview of Cluster Computing 25

2.3 Node Software

A node in a cluster is often (but not always) an autonomous computing entity,

complete with its own operating system. Beowulf clusters exploit the sophistica-

tion of modern operating systems both for managing the node resources and for

communicating with other nodes by means of their interconnection network.

Linux has emerged as the dominant Unix-like operating system. Its develop-

ment was anything but traditional; it was started by a graduate student (Linus

Tovald) in Finland and contributed to by a volunteer force of hundreds of develop-

ers around the world via the Internet. Recently Linux has received major backing

from large computer vendors including IBM, Compaq, SGI, and HP. Linux is a full-

featured multiuser, multitasking, demand-paged virtual memory operating system

with advanced kernel software support for high-performance network operation.

2.4 Resource Management

Except in the most restrictive of cases, matching the requirements of a varied work-

load and the capabilities of the distributed resources of a Beowulf cluster system

demands the support and services of a potentially sophisticated software system for

resource management. The earliest Beowulfs were dedicated systems used by (at

most) a few people and controlled explicitly, one application at a time. But today’s

more elaborate Beowulf clusters, possibly comprising hundreds or even thousands

of processors and shared by a large community of users, both local and at remote

sites, need to balance contending demands and available processing capacity to

achieve rapid response for user programs and high throughput of cluster resources.

Fortunately, several such software systems are available to provide systems admin-

istrators and users alike with a wide choice of policies and mechanisms by which to

govern the operation of the system and its allocation to user tasks.

The challenge of managing the large set of compute nodes that constitute a

Beowulf cluster involves several tasks to match user-specified workload to existing

resources.

Queuing. User jobs are submitted to a Beowulf cluster by different people, po-

tentially from separate locations, who are possibly unaware of requirements being

imposed on the same system by other users. A queuing system buffers the randomly

submitted jobs, entered at different places and times and with varying requirements,

until system resources are available to process each of them. Depending on prior-

26 Chapter 2

ities and specific requirements, different distributed queues may be maintained to

facilitate optimal scheduling.

Scheduling. Perhaps the most complex component of the resource manager, the

scheduler has to balance the priorities of each job, with the demands of other

jobs, the existing system compute and storage resources, and the governing policies

dictated for their use by system administrators. Schedulers need to contend with

such varied requirements as large jobs needing all the nodes, small jobs needing

only one or at most a few nodes, interactive jobs during which the user must be

available and in the loop for such things as real-time visualization of results or

performance debugging during program development, or high-priority jobs that

must be completed quickly (such as medical imaging). The scheduler determines

the order of execution based on these independent priority assessments and the

solution to the classic bin-packing problem: What jobs can fit on the machine at

the same time?

Resource Control. Amiddleware component, resource control puts the programs

on the designated nodes, moves the necessary files to the respective nodes, starts

jobs, suspends jobs, terminates jobs, and offloads result files. It notifies the sched-

uler when resources are available and handles any exception conditions across the

set of nodes committed to a given user job.

Monitoring. The ongoing status of the Beowulf cluster must be continuously

tracked and reported to a central control site such as a master or host node of

the system. Such issues as resource availability, task status on each node, and

operational health of the nodes must be constantly monitored to aid in the suc-

cessful management of the total system in serving its incident user demand. Some

of this information must continuously update the system operators status presen-

tation, while other statistics and status parameters must be directly employed by

the automatic resource management system.

Accounting. In order to assess billing or at least to determine remaining user

allocation of compute time (often measured in node hours), as well as to assess

overall system utilization, availability, and demand response effectiveness, records

must be automatically kept of user accounts and system work. This is the primary

tool by which system administrators and managers assess effectiveness of scheduling

policies, maintenance practices, and user allocations.

While no single resource management system addresses all of these functions opti-

mally for all operational and demand circumstances, several tools have proven useful

An Overview of Cluster Computing 27

in operational settings and are available to users and administrators of Beowulf-

class cluster systems. An entire chapter is dedicated to each of these in Part III of

this book; here they are discussed only briefly.

Condor supports distributed job stream resource management emphasizing capac-

ity or throughput computing. Condor schedules independent jobs on cluster nodes

to handle large user workloads and provides many options in scheduling policy.

This venerable and robust package is particularly well suited for managing both

workloads and resources at remote sites.

PBS is a widely used system for distributing parallel user jobs across parallel

Beowulf cluster resources and providing the necessary administrative tools for pro-

fessional systems supervision. Both free and commercially supported versions of

this system are available, and it is professionally maintained, providing both user

and administrator confidence.

Maui is an advanced scheduler incorporating sophisticated policies and mecha-

nisms for handling a plethora of user demands and resource states. This package

actually sits on top of other lower-level resource managers, providing added capa-

bility.

PVFS manages the secondary storage of a Beowulf cluster, providing parallel file

management shared among the distributed nodes of the system. It can deliver

faster response and much higher effective disk bandwidth than conventional use of

NFS (network file system).

2.5 Distributed Programming

Exploitation of the potential of Beowulf clusters relies heavily on the development

of a broad range of new parallel applications that effectively takes advantage of

the parallel system resources to permit larger and more complex problems to be

explored in a shorter time. Programming a cluster differs substantially from that of

programming a uniprocessor workstation or even an SMP. This difference is in part

due to the fact that the sharing of information between nodes of a Beowulf cluster

can take a lot longer than between the nodes of a tightly coupled system, because the

fragmented memory space reflected by the distributed-memory Beowulfs imposes

substantially more overhead than that required by shared-memory systems, and

because a Beowulf may have many more nodes than a typical 32-processor SMP. As

a consequence, the developer of a parallel application code for a Beowulf must take

28 Chapter 2

into consideration these and other sources of performance degradation to achieve

effective scalable performance for the computational problem.

A number of different models have been employed for parallel programming and

execution, each emphasizing a particular balance of needs and desirable traits. The

models differ in part by the nature and degree of abstraction they present to the user

of the underlying parallel system. These vary in generality and specificity of control.

But one model has emerged as the dominant strategy. This is the “communicating

sequential processes” model, more often referred to as the message-passing model.

Through this methodology, the programmer partitions the problem’s global data

among the set of nodes and specifies the processes to be executed on each node,

each working primarily on its respective local data partition. Where information

from other nodes is required, the user establishes logical paths of communication

between cooperating processes on separate nodes. The application program for

each process explicitly sends and receives messages passed between itself and one

or more other remote processes. A message is a packet of information containing one

or more values in an order and format that both processes involved in the exchange

understand. Messages are also used for synchronizing concurrent processes in order

to coordinate the execution of the parallel tasks on different nodes.

Programmers can use low-level operating system kernel interfaces to the network,

such as Unix sockets or remote procedure calls. Fortunately, however, an easier way

exists. Two major message-passing programming systems have been developed to

facilitate parallel programming and application development. These are in the form

of linkable libraries that can be used in conjunction with conventional languages

such as Fortran or C. Benefiting from prior experiences with earlier such tools, PVM

has a significant following and has been used to explore a broad range of semantic

constructs and distributed mechanisms. PVM was the first programming system

to be employed on a Beowulf cluster and its availability was critical to this early

work. MPI, the second and more recently distributed programming system, was

developed as a product of a communitywide consortium. MPI is the model of choice

for the majority of the parallel programming community on Beowulf clusters and

other forms of parallel computer as well, even shared-memory machines. There

are a number of open and commercial sources of MPI with new developments,

especially in the area of parallel I/O, being incorporated in implementations of

MPI-2. Together, MPI and PVM represent the bulk of parallel programs being

developed around the world, and both languages are represented in this book.

Of course, developing parallel algorithms and writing parallel programs involves

a lot more than just memorizing a few added constructs. Entire books have been

dedicated to this topic alone (including threein this series), and it is a focus of active

An Overview of Cluster Computing 29

research. A detailed and comprehensive discourse of parallel algorithm design is

beyond the scope of this book. Instead, we offer specific and detailed examples

that provide templates that will satisfy many programming needs. Certainly not

exhaustive, these illustrations nonetheless capture many types of problem.

2.6 Conclusions

Beowulf cluster computing is a fascinating microcosm of parallel processing, pro-

viding hands-on exposure and experience with all aspects of the field, from low-

level hardware to high-level parallel algorithm design and everything in between.

While many solutions are readily available to provide much of the necessary ser-

vices required for effective use of Beowulf clusters in many roles and markets, many

challenges still remain to realizing the best of the potential of commodity clus-

ters. Research and advanced development is still an important part of the work

surrounding clusters, even as they are effectively applied to many real-world work-

loads. The remainder of this book serves two purposes: it represents the state of

the art for those who wish ultimately to extend Beowulf cluster capabilities, and it

guides those who wish immediately to apply these existing capabilities to real-world

problems.

 blank

3 Node Hardware

Thomas Sterling

Beowulf is a network of nodes, with each node a low-cost personal computer. Its

power and simplicity is derived from exploiting the capabilities of the mass-market

systems that provide both the processing and the communication. This chapter

explores all of the hardware elements related to computation and storage. Com-

munication hardware options will be considered in detail in Chapter 5.

Few technologies in human civilization have experienced such a rate of growth as

that of the digital computer and its culmination in the PC. Its low cost, ubiquity,

and sometimes trivial application often obscure its complexity and precision as one

of the most sophisticated products derived from science and engineering. In a single

human lifetime over the fifty-year history of computer development, performance

and memory capacity have grown by a factor of almost a million. Where once com-

puters were reserved for the special environments of carefully structured machine

rooms, now they are found in almost every office and home. A personal computer

today outperforms the world’s greatest supercomputers of two decades ago at less

than one ten-thousandth the cost. It is the product of this extraordinary legacy

that Beowulf harnesses to open new vistas in computation.

Hardware technology changes almost unbelievably rapidly. The specific proces-

sors, chip sets, and three-letter acronyms (TLAs) we define today will be obsolete

in a very few years. The prices quoted will be out of date before this book reaches

bookstore shelves. On the other hand, the organizational design of a PC and

the functions of its primary components will last a good deal longer. The rela-

tive strengths and weaknesses of components (e.g., disk storage is slower, larger,

cheaper and more persistent than main memory) should remain valid for nearly

as long. Fortunately, it is now easy to find up-to-date prices on the Web; see

Appendix C for some places to start.

This chapter concentrates on the practical issues related to the selection and

assembly of the components of a Beowulf node. You can assemble the nodes of the

Beowulf yourself, let someone else (a system integrator) do it to your specification,

or purchase a turnkey system. In either case, you’ll have to make some decisions

about the components. Many system integrators cater to a know-nothing market,

offering a few basic types of systems, for example, “office” and “home” models

with a slightly different mix of hardware and software components. Although these

machines would work in a Beowulf, with only a little additional research you can

purchase far more appropriate systems for less money. Beowulf systems (at least

those we know of) have little need for audio systems, speakers, joysticks, printers,

frame grabbers, and the like, many of which are included in the standard “home”

or “office” models. High-performance video is unnecessary except for specialized

32 Chapter 3

applications where video output is the primary function of the system. Purchasing

just the components you need, in the quantity you need, can be a tremendous

advantage. Fortunately, customizing your system this way does not mean that you

have to assemble the system yourself. Many system integrators, both large and

small, will assemble custom systems for little or no price premium. In fact, every

system they assemble is from component parts, so a custom system is no more

difficult for them than a standard one.

An enormous diversity of choice exists both in type and quantity of components.

More than one microprocessor family is available, and within each family are multi-

ple versions. There is flexibility in both the amount and the type of main memory.

Disk drives, too, offer a range of interface, speed, capacity, and number. Choices

concerning ancillary elements such as floppy disk drives and CD-ROM drives have

to be considered. Moreover, the choice of the motherboard and its chip set provide

yet another dimension to PC node implementation. This chapter examines each

of these issues individually and considers their interrelationships. A step-by-step

procedure for the assembly of a processor node is provided to guide the initiate and

protect the overconfident.

We reiterate that we make no attempt to offer a complete or exhaustive survey.

Far more products are available than can be explicitly presented in any single book,

and new products are being offered all the time. In spite of the impossibility of

exhaustive coverage, however, the information provided here should contain most

of what is required to implement a Beowulf node. Final details can be acquired

from documentation provided by the parts vendors.

3.1 Overview of a Beowulf Node

The Beowulf node is responsible for all activities and capabilities associated with

executing an application program and supporting a sophisticated software environ-

ment. These fall into four general categories:

1. instruction execution,

2. high-speed temporary information storage,

3. high-capacity persistent information storage, and

4. communication with the external environment, including other nodes.

The node is responsible for performing a set of designated instructions specified by

the application program code or system software. The lowest-level binary encoding

of the instructions and the actions they perform are dictated by the microprocessor

Node Hardware 33

instruction set architecture (ISA). Both the instructions and the data upon which

they act are stored in and loaded from the node’s random access memory (RAM).

The speed of a processor is often measured in megahertz, indicating that its clock

ticks so many million times per second. Unfortunately, data cannot be loaded

into or stored in memory at anywhere near the rate necessary to feed a modern

microprocessor (1GHz and higher rates are now common). Thus, the processor

often waits for memory, and the overall rate at which programs run is usually

governed as much by the memory system as by the processor’s clock speed.

Microprocessor designers employ numerous ingenious techniques to deal with

the problem of slow memories and fast processors. Usually, a memory hierarchy

is incorporated that includes one or more layers of very fast but very small and

very expensive cache memories, which hold copies of the contents of the slower

but much larger main memory. The order of instruction execution and the access

patterns to memory can profoundly affect the performance impact of the small

high-speed caches. In addition to holding the application dataset, memory must

support the operating system and provide sufficient space to keep the most fre-

quently used functions and system management tables and buffers coresident for

best performance.

Except for very carefully designed applications, a program’s entire dataset must

reside in RAM. The alternative is to use disk storage either explicitly (out-of-core

calculations) or implicitly (virtual memory swapping), but this usually entails a

severe performance penalty. Thus, the size of a node’s memory is an important

parameter in system design. It determines the size of problem that can practically

be run on the node. Engineering and scientific applications often obey a rule of

thumb that says that for every floating-point operation per second, one byte of RAM

is necessary. This is a gross approximation at best, and actual requirements can vary

by many orders of magnitude, but it provides some guidance; for example, a 1GHz

processor capable of sustaining 200Mflops should be equipped with approximately

200MBytes of RAM.

Information stored in RAM is not permanent. When a program finishes execu-

tion, the RAM that was assigned to it is recovered by the operating system and

reassigned to other programs. The data is not preserved. Thus, if one wishes to

permanently store the results of a calculation, or even the program itself, a per-

sistent storage device is needed. Hard disk devices that store data on a rotating

magnetic medium are the most common storage device in Beowulf nodes. Data

stored on hard disk is persistent even under power failures, a feature that makes

the hard disk the preferred location for the operating system and other utilities that

are required to restart a machine from scratch. A widely held guideline is that the

34 Chapter 3

local disk capacity be at least ten times the main memory capacity to provide an

adequate area for virtual-memory swap space; more room is required for software

and user-generated data. With the low cost of hard disk, a single drive can provide

this capacity at a small fraction of the overall system cost. An alternative is to pro-

vide permanent storage capability off-node, providing access via the system area

network to remote storage resources (e.g., an NFS server on one of the nodes). This

may be a practical solution for small Beowulf systems, but as the system grows, a

single server can easily be overwhelmed.

The results of computational activities performed on a Beowulf node must be

presented to the node’s external environment during and after a computation. This

requires communication with peripheral devices such as video monitors, printers,

and external networks. Furthermore, users need access to the system to start jobs

and to monitor and control jobs in progress. System managers may need console

access, the ability to install software distributions on CD-ROMs or other media, or

backup data to tape or other archival storage. The requirements are served by the

I/O subsystem of the node. On today’s PCs, these devices usually share the PCI

bus, with some low-performance devices using the older ISA bus. In fact, some

systems no longer have an ISA bus.

In a Beowulf system typically only one or two nodes have extensive I/O capabil-

ities beyond communication on the system area network. All external interaction

is then funneled through these worldly nodes. The specific I/O requirements vary

greatly from installation to installation, so a precise specification of the peripherals

attached to a worldly node is impossible. We can, however, make firm recommen-

dations about the I/O requirements of internal or compute nodes. The majority of

nodes in a Beowulf system lack the personality of a worldly node. They have one

major I/O requirement, which is to communicate with one another. The hardware

and software involved in interprocessor communication are discussed in Chapters 5

and 6, respectively. For now, we will simply observe that the processor commu-

nicates with the network through the network interface controller attached to a

high-speed bus.

3.1.1 Principal Specifications

In selecting the proper node configuration for a new Beowulf, the choices can appear

overwhelming. Fortunately, only a small number of critical parameters largely

characterize a particular Beowulf node. These parameters usually relate to a few

peak capabilities or capacities and are only roughly predictive of the performance of

any given application or workload. Nonetheless, they are widely used and provide

a reasonable calibration of the price/performance tradeoff space.

Node Hardware 35

Processor clock rate — the frequency (MHz or GHz) of the primary signal

within the processor that determines the rate at which instructions are issued

Peak floating-point performance — the combination of the clock rate and the

number of floating-point operations that can be issued and/or retired per instruc-

tion (Mflops)

Cache size — the storage capacity (KBytes) of the high-speed buffer memory

between the main memory and the processor

Main memory capacity — the storage capacity (MBytes) of the primary system

node memory in which resides the global dataset of the applications as well as

myriad other supporting program, buffering, and argument data

Disk capacity — the storage capacity (GBytes) of the permanent secondary stor-

age internal to the processing node

SAN network port peak bandwidth — the bandwidth (Mbps) of the network

control card and system area network communication channel medium

Other parameters that are sometimes of interest are the number of processors

included in symmetric multiprocessing configurations, memory latency and band-

width, measured performance of various benchmarks, and seek and access times to

disks.

3.1.2 Basic Elements

The general Beowulf node is a complex organization of multiple subsystems that

support the requirements for computation, communication, and storage discussed

above. Figure 3.1 shows a block diagram of a node architecture representative of

the general structures found in today’s PCs adapted to the purpose of Beowulf-class

computing.

Microprocessor — all of the logic required to perform instruction execution,

memory management and address translation, integer and floating-point opera-

tions, and cache management. Processor clock speeds can be as low as 100MHz

found on previous-generation Intel Pentium processors to as high as 1.7GHz on the

Intel Pentium 4 with an 800MHz Pentium3 representing near the sweet spot in

price/performance.

Cache — a small but fast buffer for keeping recently used data. Cache provides

the illusion of a much higher-speed memory than is actually available. Multiple

36 Chapter 3

Figure 3.1
Block diagram of a typical Beowulf node. Some additional components, e.g., keyboard, mouse,
additional network interfaces, graphics adaptors, CD-ROM drive, will be necessary on nodes
responsible for I/O services.

layers of cache may be employed; 16 KBytes of Level 1 (L1) and 256 KBytes of

Level 2 (L2) cache are common. The effect of cache can be dramatic, but not all

programs will benefit. Memory systems are so complex that often the only reliable

way to determine the effectiveness of cache for a given application is to test the

application on machines with different amounts of cache.

Main memory — high-density storage with rapid read/write access. Typical

access times of 70 nanoseconds can be found with DIMM memory modules with

memory capacities between 64MBytes and 512MBytes. This memory is often

optimized for throughput, delivering successive data items every 10 nanoseconds or

Image Not Available

Node Hardware 37

less after an initial setup step.

EIDE/SCSI disk controller — a sophisticated unit that manages the operation

of the hard disk and CD-ROM drives, buffers data blocks, and controls the transfer

of data directly to or from main memory.

Hard drive — persistent storage, even after processor power cycling, and backing

store to the main memory for problems requiring datasets larger than the main

memory can hold. Disk capacities range from 1 GByte to over 100, but the most

common and cost effective sizes today are between 20 and 80 GBytes. Hard disks

conform to either the EIDE or SCSI interface standards. Access times of a few

milliseconds are usual for these electromechanical rotating magnetic storage devices.

Floppy disk controller — a very low cost and low capacity storage medium of

nominally 1.4MBytes capacity (double sizes are available). Floppies are used pri-

marily at boot time to install a minimal system capable of bootstrapping itself into

a full configuration. Access times are long, and the small capacity makes them

unsuitable for other data storage roles. Nevertheless, their historical role as a boot

medium makes them a valuable part of every Beowulf node.

Motherboard chip set — a sophisticated special-purpose controller that man-

ages and coordinates the interactions of the various components of the PC through

PCI, USB, and other interfaces. It plays an important role in memory manage-

ment, especially for symmetric multiprocessors where cache coherence is maintained

through snooping cache protocols.

BIOS ROM memory — the minimum set of functional binary routines needed

to perform rudimentary functionality of the motherboard and its interfaces, includ-

ing bootstrap and diagnostic functions. Modern systems include writable BIOS

EEPROMs (electronically erasable, programmable ROMs) that can have their con-

tents directly upgraded from newer versions of the BIOS programs with replacement

on the actual chips.

PCI bus — the universal industry standard for high-speed controllers. The com-

mon PCI bus operates a 32-bit data path at 33MHz; PCI buses with 64-bit data

paths at 66MHz are also available.

Video controller — a card that converts digital signals from the processor into

analog signals suitable for driving a video display. Modern high-end video cards

contain powerful on-board processors and often have many megabytes of memory

and sophisticated programmable interfaces. Such a card might be appropriate for

38 Chapter 3

an I/O or interactive node intended to drive a high-resolution monitor for data

visualization and interactive display. Other Beowulf nodes, however, have little

need for video output. Indeed, were it were not for the fact that most BIOS

software will not boot without a video card, such cards would be unnecessary on

the majority of Beowulf nodes. Video cards are available with either PCI or AGP

connections.

Network interface controller — an interface that provide communication ac-

cess to the node’s external environment. One or more such interfaces couple the

node to the Beowulf’s system area network. A second network interface card (not

shown) on a worldly node can provide the link between the entire Beowulf ma-

chine and the local area network that connects it to other resources in the user’s

environment, such as file servers, printers, terminals, and the Internet.

Power supply — not part of the logical system, but an important component to

the overall operation. It provides regulated output voltages of 5 volts, −5 volts,

12 volts, and −12 volts to support system operation. Power supplies are rated in

watts and have a general range of between 200 and 400 watts per node.

Cooling systems — typically a fan mounted on the CPU carrier itself, for dissi-

pating heat from the processor. Other fans cool the rest of a node. Because fans

are mechanical devices, they are among the most likely components to fail in a

Beowulf cluster.

3.2 Processors

The microprocessor is the critical computational component of the PC-based node

and Beowulf-class systems. In the seven-year period since the first Beowulf was

completed in early 1994, central processing unit (CPU) clock speed has increased

by a factor of 16. More impressive is the single-node floating-point performance

sustained on scientific and engineering problems which has improved by two orders

of magnitude during the same period. A single PC today outperforms the entire

16-processor first-generation Beowulf of 1994.

With the proliferation of Linux ports to a wide array of processors, Beowulf-

like clusters are being assembled with almost every conceivable processor type.

Primary attention has been given to Intel processors and their binary compatible

siblings from AMD. The Compaq Alpha family of processors has also been effec-

tively applied in this arena. Compaq has recently announced that development of

Node Hardware 39

the Alpha family will continue only through 2003, with Compaq contributing the

Alpha technology to the development of future Intel IA64 processors.

This section presents a brief description of the most likely candidates of micropro-

cessors for future Beowulf-class systems. The choice is constrained by three factors:

performance, cost, and software compatibility. Raw performance is important to

building effective medium- and high-end parallel systems. To build an effective

parallel computer, you should start with the best uniprocessor. Of course, this

tendency must be tempered by cost. The overall price/performance ratio for your

favorite application is probably the most important consideration. The highest per-

formance processor at any point in time rarely has the best price/performance ratio.

Usually it is the processor one generation or one-half generation behind the cut-

ting edge that is available with the most attractive ratio of price to performance.

Recently, however, the Compaq Alpha has delivered both best performance and

best price/performance for many applications. The third factor of software com-

patibility is an important practical consideration. If a stable software environment

is not available for a particular processor family, even if it is a technical pacesetter,

it is probably inappropriate for Beowulf. Fortunately, Linux is now available on

every viable microprocessor family, and this should continue to be the case into

the foreseeable future. Some key features of current processors are summarized in

Table 3.1.

3.2.1 Intel Pentium Family

The Pentium 4 implements the IA32 instruction set but uses an internal architecture

that diverges substantially from the old P6 architecture. The internal architecture

is geared for high clock speeds; it produces less computing power per clock cycle

but is capable of extremely high frequencies.

The Pentium III is based on the older Pentium Pro architecture. It is a minor

upgrade from the Pentium II; it includes another optimized instruction set called

SSE for three-dimensional instructions and has moved the L2 cache onto the chip,

making it synchronized with the processor’s clock. The Pentium III can be used

within an SMP node with two processors; a more expensive variant, the Pentium

III Xeon, can be used in four-processor SMP nodes.

3.2.2 AMD Athlon

The AMD Athlon platform is similar to the Pentium III in its processor architecture

but similar to the Compaq Alpha in its bus architecture. It has two large 64 KByte

L1 caches and a 256 KByte L2 cache that runs at the processor’s clock speed. The

40 Chapter 3

Chip Vendor Speed (MHz) L1 Cache Size L2 Cache Size
I/D (KBytes) (KBytes)

Pentium III Intel 1000 16K/16K 256K
Pentium 4 Intel 1700 12K/8K 256K
Itanium Intel 800 16K/16K 96K
Athlon AMD 1330 64K/64K 256K
Alpha 21264B Compaq 833 64K 64K

Table 3.1
Key features of selected processors, mid-2001.

performance is a little ahead of the Pentium III in general, but either can be faster

(at the same clock frequency) depending on the application. The Athlon supports

dual-processor SMP nodes.

3.2.3 Compaq Alpha 21264

The Compaq Alpha processor is a true 64-bit architecture. For many years, the

Alpha held the lead in many benchmarks, including the SPEC benchmarks, and

was used in many of the fastest supercomputers, including the Cray T3D and T3E,

as well as the Compaq SC family.

The Alpha uses a Reduced Instruction Set Computer (RISC) architecture, distin-

guishing it from Intel’s Pentium processors. RISC designs, which have dominated

the workstation market of the past decade, eschew complex instructions and ad-

dressing modes, resulting in simpler processors running at higher clock rates, but

executing somewhat more instructions to complete the same task.

3.2.4 IA64

The IA64 is Intel’s first 64-bit architecture. This is an all-new design, with a new

instruction set, new cache design, and new floating-point processor design. With

clock rates approaching 1GHz and multiway floating-point instruction issue, Ita-

nium should be the first implementation to provide between 1 and 2Gflops peak

performance. The first systems with the Itanium processor were released in the

middle of 2001 and have delivered impressive results. For example, the HP Server

rx4610, using a single 800 MHz Itanium, delivered a SPECfp2000 of 701, compa-

rable to recent Alpha-based systems. The IA64 architecture does, however, require

significant help from the compiler to exploit what Intel calls EPIC (explicitly par-

allel instruction computing).

Node Hardware 41

3.3 Motherboard

The motherboard is a printed circuit board that contains most of the active elec-

tronic components of the PC node and their interconnection. The motherboard

provides the logical and physical infrastructure for integrating the subsystems of

the Beowulf PC node and determines the set of components that may be used. The

motherboard defines the functionality of the node, the range of performance that

can be exploited, the maximum capacities of its storage, and the number of subsys-

tems that can be interconnected. With the exception of the microprocessor itself,

the selection of the motherboard is the most important decision in determining

the qualities of the PC node to be used as the building block of the Beowulf-class

system. It is certainly the single most obvious piece of the Beowulf node other than

the case or packaging in which it is enclosed.

While the motherboard may not be the most interesting aspect of a computer, it

is, in fact, a critical component. Assembling a Beowulf node primarily involves the

insertion of modules into their respective interface sockets, plugging power and sig-

nal cables into their ports, and placing configuration jumpers across the designated

posts. The troubleshooting of nonfunctioning systems begins with verification of

these same elements associated with the motherboard.

The purpose of the motherboard is to integrate all of the electronics of the node

in a robust and configurable package. Sockets and connectors on the motherboard

include the following:

• Microprocessor(s)

• Memory

• Peripheral controllers on the PCI bus

• AGP port

• Floppy disk cables

• EIDE cables for hard disk and CD-ROM

• Power

• Front panel LEDs, speakers, switches, etc.

• External I/O for mouse, keyboard, joystick, serial line, USB, etc.

Other chips on the motherboard provide

• the system bus that links the processor(s) to memory,

• the interface between the peripheral buses and the system bus, and

• programmable read-only memory (PROM) containing the BIOS software.

42 Chapter 3

The motherboard restricts as well as enables functionality. In selecting a moth-

erboard as the basis for a Beowulf node, several requirements for its use should be

considered, including

• processor family,

• processor clock speed,

• number of processors,

• memory capacity,

• memory type,

• disk interface,

• required interface slots, and

• number of interface buses (32- and 64-bit PCI).

Currently the choice of processor is likely to be the Intel Pentium III, AMD

Athlon, or the Compaq Alpha 21264B. More processors, including native 64-bit

processors, will continue to be released. In most cases, a different motherboard is

required for each choice. Clock speeds for processors of interest range from 733MHz

to almost 2GHz, and the selected motherboard must support the desired speed.

Motherboards containing multiple processors in symmetric multiprocessor configu-

rations are available, adding to the diversity of choices. Nodes for compute intensive

problems often require large memory capacity with high bandwidth. Motherboards

have a limited number of memory slots, and memory modules have a maximum

size. Together, these will determine the memory capacity of your system. Memory

bandwidth is a product of the width and speed of the system memory bus.

Several types of memory are available, including conventional DRAM, EDO RAM

(extended data output RAM), SDRAM (synchronous DRAM), and RDRAM (Ram-

bus DRAM). The choice of memory type depends on your application needs. While

RDRAM currently provides the highest bandwidth, other types of memory, such

as SDRAM and DDR SDRAM (double data rate SDRAM) can provide adequate

bandwidth at a significantly reduced cost. The two disk interfaces in common use

are EIDE and SCSI. Both are good with the former somewhat cheaper and the lat-

ter slightly faster under certain conditions. Most motherboards come with EIDE

interfaces built in, and some include an SCSI interface as well, which can be conve-

nient and cost effective if you choose to use SCSI. On the other hand, separate SCSI

controllers may offer more flexibility and options. Motherboards have a fixed num-

ber of PCI slots, and it is important to select one with enough slots to meet your

needs. This is rarely a consideration in Beowulf compute nodes but can become an

issue in a system providing I/O services.

Node Hardware 43

3.4 Memory

The memory system of a personal computer stores the data upon which the pro-

cessor operates. We would like a memory system to be fast, cheap, and large, but

available components can simultaneously deliver only two (any two) of the three.

Modern memory systems use a hierarchy of components implemented with differ-

ent technologies that together, under favorable conditions, achieve all three. When

purchasing a computer system, you must select the size and type of memory to be

used. This section provides some background to help with that choice.

3.4.1 Memory Capacity

Along with processor speed, memory capacity has grown at a phenomenal rate,

quadrupling in size approximately every three years. Prices for RAM have continued

to decline and now are about ten cents per megabyte (a little more for higher-

speed/capacity SDRAMs). A general principle is that faster processors require

more memory. With increasingly sophisticated and demanding operating systems,

user interfaces, and advanced applications such as multimedia, there is demand

for ever-increasing memory capacity. As a result of both demand and availability,

the size of memory in Beowulf-class systems has progressively expanded. Today,

a typical Beowulf requires at least 256MBytes of main memory, and this can be

expected to grow to 2GBytes within the next two to three years.

3.4.2 Memory Speed

In addition to the capacity of memory, the memory speed can significantly affect

the overall behavior and performance of a Beowulf node. Speed may be judged by

the latency of memory access time and the throughput of data provided per unit

time. While capacities have steadily increased, access times have progressed only

slowly. However, new modes of interfacing memory technology to the processor

managed system bus have significantly increased overall throughput of memory

systems. This increase is due to the fact that the memory bandwidth internal to

the memory chip is far greater than that delivered to the system bus at its pins.

Significant advances in delivering these internal acquired bits to the system bus

in rapid succession have been manifest in such memory types as EDO-DRAM,

SDRAM, and Rambus DRAM. Further improvement to the apparent performance

of the entire memory system as viewed by the processor comes from mixing small

memories of fast technology with high-capacity memory of slower technology.

44 Chapter 3

3.4.3 Memory Types

Semiconductor memory is available in two fundamental types. Static random access

memory (SRAM) is high speed but moderate density, while dynamic random access

memory (DRAM) provides high-density storage but operates more slowly. Each

plays an important role in the memory system of the Beowulf node.

SRAM is implemented from bit cells fabricated as multitransistor flipflop cir-

cuits. These active circuits can switch state and be accessed quickly. They are

not as high density as are DRAMs and consume substantially more power. They

are reserved for those parts of the system principally requiring high speed and are

employed regularly in L1 and L2 caches. Current-generation processors usually

include SRAMs directly on the processor chip. L2 caches may be installed on the

motherboard of the system or included as part of the processor module.

Earlier SRAM was asynchronous (ASRAM) and provided access times of be-

tween 12 and 20 nanoseconds. Motherboards operating up to 66MHz or better use

synchronous burst SRAM (SBSRAM) providing access times on the order of ten

nanoseconds.

DRAM is implemented from bit cells fabricated as a capacitor and a single by-

pass transistor. The capacitor stores a charge passively. The associated switching

transistor deposits the state of the capacitor’s charge on the chip’s internal memory

bus when the cell is addressed. Unlike SRAM, reading a DRAM cell is destructive,

so after a bit is accessed, the charged state has to be restored by recharging the

capacitor to its former condition. As a consequence, DRAM can have a shorter

access time (the time taken to read a cell) than cycle time (the time until the

same cell may be accessed again). Also, isolation of the cell’s storage capacitor is

imperfect and the charge leaks away, requiring it to be refreshed (rewritten) every

few milliseconds. Finally, because the capacitor is a passive, nonamplifying device,

it takes longer to access a DRAM than an SRAM cell. However, the benefits are

substantial. DRAM density can exceed ten times that of SRAM, and its power

consumption is much lower. Also, new techniques for moving data from the DRAM

internal memory row buffers to the system bus have narrowed the gap in terms of

memory bandwidth between DRAM and SRAM. As a result, main memory for all

Beowulf nodes is provided by DRAM in any one of its many forms.

Of the many forms of DRAM, the two most likely to be encountered in Beo-

wulf nodes are EDO DRAM and SDRAM. Both are intended to increase memory

throughput. EDO DRAM provides a modified internal buffering scheme that main-

tains data at the output pins longer than conventional DRAM, improving memory

Node Hardware 45

data transfer rates. While many current motherboards support EDO DRAM, the

higher-speed systems likely to be used as Beowulf nodes in the immediate future

will employ SDRAM instead. SDRAM is a significant advance in memory interface

design. It supports a pipeline burst mode that permits a second access cycle to

begin before the previous one has completed. While one cycle is putting output

data on the bus, the address for the next access cycle is simultaneously applied

to the memory. Effective access speeds of 10 nanoseconds can be achieved with

systems using a 100MHz systems bus; such memory is labeled PC100 SDRAM.

Faster versions are available, including PC133 SDRAM.

Other, even higher-performance forms of DRAM memory are appearing. Two

of the most important are Rambus DRAM and DDR SDRAM. These may be

described as “PC1600” or “PC2100” memory. These are not 16 or 21 times as fast

as PC100; in these cases, the number refers to the peak transfer rate (in Mbps)

rather than the system bus clock speed. It is important to match both the memory

type (e.g., SDRAM or RDRAM) and the system bus speed (e.g., PC133) to the

motherboard.

3.4.4 Memory Hierarchy and Caches

The modern memory system is a hierarchy of memory types. Figure 3.2 shows a

typical memory hierarchy. Near the processor at the top of the memory system

are the high-speed Level-1 (L1) caches. Usually a separate cache is used for data

and instructions for high bandwidth to load both data and instructions into the

processor on the same cycle. The principal requirement is to deliver the data and

instruction words needed for processing on every processor cycle. These memories

run fast and hot, are relatively expensive, and now often incorporated directly on

the processor chip. For these reasons, they tend to be very small, with a typical

size of 16 KBytes. Because L1 caches are so small and the main memory requires

long access times, modern architectures usually include a second-level (L2) cache

to hold both data and instructions. Access time to acquire a block of L2 data may

take several processor cycles. A typical L2 cache size is 256 KBytes. Some systems

add large external caches (either L2 or L3) with sizes of up to 8 MBytes.

Cache memory is usually implemented in SRAM technology, which is fast (a

few nanoseconds) but relatively low density. Only when a datum required by the

processor is not in cache does the processor directly access the main memory. Main

memory is implemented in one of the DRAM technologies. Beowulf nodes will often

include between 256MBytes and 512MBytes of SDRAM memory.

46 Chapter 3

Figure 3.2
A node memory hierarchy with sizes typical of Beowulf nodes in 2001.

3.4.5 Package Styles

The packaging of memory has evolved along with the personal computers in which

they were installed and has converged on a few industrywide standards. Dual Inline

Memory Modules (DIMMs) are the primary means of packaging DRAMs, and most

modern motherboards use one or more of these forms. The most common form

factors are 168-pin and 184-pin DIMMs.

3.5 BIOS

Even with effective industrywide standardization, hardware components will differ

in detail. In order to avoid the necessity of customizing a different operating sys-

tem for each new hardware system, a set of low-level service routines is provided,

incorporated into read-only memory on the motherboard. This basic I/O system

Image Not Available

Node Hardware 47

(BIOS) software is a logical interface to the hardware, giving a layer of abstrac-

tion that facilitates and makes robust higher-level support software. Besides the

system BIOS that is hardwired to the motherboard, additional BIOS ROMs may

be provided with specific hardware peripherals. These include the video BIOS, the

drive controller BIOS, the network interface controller BIOS, and the SCSI drive

controller BIOS. The BIOS contains a large number of small routines organized in

three groups: startup or POST (for power-on self-test), setup, and system services.

The POST startup BIOS routines manage initialization activities, including run-

ning diagnostics, setting up the motherboard chip set, organizing scratchpad mem-

ory for the BIOS data area (BDA), identifying optional equipment and their re-

spective BIOS ROMs, and then bootstrapping the operating system. The CMOS

(complementary metal oxide semiconductor) setup routine provides access to the

system configuration information, which is stored in a small CMOS RAM. The

system services routines are called through interrupts directly from hardware on

the motherboard, from the processor itself, or from software. They allow access

to low-level services provided by the system including the CPU, memory, moth-

erboard chip set, integrated drive electronics, PCI, USB, boot drives, plug-n-play

capability, and power control interfaces.

3.6 Secondary Storage

With the exception of the BIOS ROM, all information in memory is lost during

power cycling except for that provided by a set of external (to the motherboard)

devices that fall under the category of secondary storage. Of these, disk drives,

floppy drives, and CD-ROM drives are most frequently found on Beowulf nodes.

Disk and floppy drives are spinning magnetic media, while CD-ROM drives (which

are also spinning media) use optical storage to hold approximately 650 MBytes

of data. The newer DVD technology is replacing CD-ROMs with greater storage

capacity. Besides persistence of storage, secondary storage is characterized by very

high capacity and low cost per bit. While DRAM may be purchased at about ten

cents per megabyte, disk storage costs less than half a cent per megabyte, and the

price continues to fall. For the particular case of Beowulf, these three modes of

secondary storage play very different roles.

CD-ROMs provide an easy means of installing large software systems but are

used for little else. Even for this purpose, only one or two nodes in a system are

likely to include a CD-ROM drive because installation of software on most of the

nodes is performed over the system area network.

48 Chapter 3

Floppy discs are fragile and slow and don’t hold very much data (about 1.44

MBytes). They would be useless except that they were the primary means of

persistent storage on early PCs, and PC designers have maintained backward com-

patibility that allows systems to boot from a program located on floppy disk. Oc-

casionally, something goes terribly wrong with a node (due either to human or to

system error), and it is necessary to restore the system from scratch. A floppy drive

and an appropriate “boot floppy” can make this a quick, painless, and trouble-free

procedure. Although other means of recovery are possible, the small price of about

$15 per node for a floppy drive is well worth the investment.

The hard drive serves three primary purposes. It maintains copies of system wide

programs and data so that these do not have to be repeatedly acquired over the

network. It provides a large buffer space to hold very large application datasets.

And it provides storage space for demand paging as part of the virtual memory

management system. When the user or system memory demands exceed the avail-

able primary memory, page blocks can be automatically migrated to hard disk,

making room in memory for other information to be stored.

Between the hard disk drive and the motherboard are two dominant interface

types: EIDE and SCSI. The earlier IDE interface evolved from the PC industry,

while SCSI was a product of the workstation and server industry. Today, both are

available. In the past, SCSI performance and cost were both significantly greater

than those of IDE. The EIDE standard closed the performance gap a few years

ago, but the price difference still exists. Perhaps equally important is that many

motherboards now include EIDE interfaces as integral components so that no sep-

arate control card is required to be purchased or to take up a PCI socket. SCSI

drive capacities can run a little higher than IDE drives, a factor that may be

important for some installations. Several different SCSI standards exist, including

Wide, UltraWide, SCSI-2, and SCSI-3. Systems are usually downwards compatible,

but it is safest to match the drive’s capabilities with that of your SCSI controller.

Beowulf-class systems have been implemented with both types, and your needs or

preferences should dictate your choice. (We have continued to rely on EIDE drives

because of their lower cost.)

The primary performance characteristic of a hard drive is its capacity. EIDE hard

drives with 80GByte capacities are available for under $300, and 40GByte drives

cost around $100. Also of interest is the rotation speed, measured in revolutions

per minute, which governs how quickly data can be accessed. The fastest rotation

speeds are found on SCSI drives, and are now around 15000 rpm and deliver transfer

rates in excess of 50 MBytes per second.

Node Hardware 49

3.7 PCI Bus

While the PC motherboard determines many of the attributes of the PC node, it

also provides a means for user-defined configuration through the Peripheral Compo-

nent Interconnect. This interface is incorporated as part of virtually every modern

motherboard, providing a widely recognized standard for designing separate func-

tional units. PCI is replacing the ISA and EISA buses as the principal means of

adding peripherals to personal computers.

The PCI standard permits rapid data transfer of 132 MBytes per second peak

using a 33MHz clock and 32-bit data path. A 64-bit extension is defined, enabling

peak throughput of 264 MBytes per second when used. A extension with a bus clock

rate of 66MHz provides a peak transfer bandwidth of 528 MBytes per second. A

new version, PCI-X, is expected toward the end of 2001.

The PCI bus permits direct interconnection between any pair of PCI devices,

between a PCI device and the system memory, or between the system processor

and the PCI devices. PCI supports multiple bus masters, allowing any PCI device

to take ownership of the bus and permitting (among other things) direct memory

access transfers without processor intervention. Arbitration among the pending

PCI masters for the next transfer action can be overlapped with the current PCI

bus operation, thereby hiding the arbitration latency and ensuring high sustained

bus throughput.

High throughput is enabled by a process called linear burst transfer. A block

of data being sent from one device to another on the PCI bus is moved without

having to send the address of each word of data. Instead, the length of the block

is specified along with the initial address of the location where the block is to be

moved. Each time a word is received, the accepting unit increments a local address

register in preparation for the next word of the block. PCI bus transfers can be

conducted concurrently with operation of the processor and its system bus to avoid

processor delays caused by PCI operation.

Although bus loading limits the number of PCI sockets to three or four, each

connected board can logically represent as many as eight separate PCI functions

for a total of 32. Up to 256 PCI buses can be incorporated into one system, although

rarely are more than two present.

The PCI standard includes complete bit-level specification of configuration reg-

isters. This makes possible the automatic configuration of connected peripheral

devices for plug-n-play reconfigurability.

50 Chapter 3

3.8 Example of a Beowulf Node

The majority of Beowulfs (over five generations of systems in the past seven years)

have employed microprocessors from Intel or AMD. This is because they have been

among the least expensive systems to build, the system architectures are open

providing a wealth of component choices, and the Linux operating system was first

available on them. While not the fastest processors in peak performance, their

overall capability has been good, and their price/performance ratios are excellent.

The most recent microprocessors in this family and their motherboards support

clock speeds of over 1 GHz.

The following table shows a snapshot of current costs for an AMD Athlon-based

node and illustrates the amazing value of commodity components. These prices

were taken from a variety of sources, including online retailers and Web pages

about recent Beowulf clusters. We note that, as discussed earlier, a CD-ROM is not

included in the list because it is assumed that system installation will be performed

over the network. A floppy drive is included to facilitate initial installation and

crash recovery. Moreover, since the BIOS requires a video card to boot, a very

inexpensive one is included on every system.

Many other choices exist, of course, and the products of other vendors in many

cases are as worthy of consideration as the ones listed here.

Processor AMD Athlon 1GHz $102
Processor Fan $8.50
Motherboard Generic $117.50
Memory 512 MB PC100 SDRAM $74
Hard Disk 40GB $141
Floppy Disk Sony 1.44MB $13.50
Network Interface Controller 100Mb/s Ethernet $16.50
Video Card Generic VGA $25

Package
Generic tower case with power
supply and cables

$58

Total $556

3.9 Boxes, Shelves, Piles, and Racks

A review of Beowulf hardware would be incomplete without some mention of the

technology used to physically support (i.e., keep it off the floor) a Beowulf system.

Packaging is an important engineering domain that can significantly influence the

cost and practical aspects of Beowulf implementation and operation. Packaging

Node Hardware 51

of Beowulfs has taken two paths: the minimalist “lots of boxes on shelves” strat-

egy, captured so well by the acronym of the NIH LOBOS system, and the “looks

count” strategy, adopted by several projects including the Hive system at NASA

Goddard Space Flight Center and the Japanese Real World Computing Initiative.

The minimalist approach was driven by more than laziness. It is certainly the

most economical approach and is remarkably reliable as well. This is due to the

same economies of scale that enable the other low-cost, high-reliability subsystems

in Beowulf. In the minimalist approach, individual nodes are packaged in exactly

the same “towers” that are found deskside in homes and offices. These towers in-

corporate power supplies, fan cooling, and cabling and cost less than a hundred

dollars. Towers provide uniform configuration, standardized interface cabling, ef-

fective cooling, and a structurally robust component mounting framework but are

flexible enough to support a variety of internal node configurations. Industrial-

grade shelving, usually of steel framework and particle board shelves, is strong,

readily available, easily assembled, and inexpensive. It is also flexible, extensible,

and easily reconfigured. You can find it at your nearest home and garden center.

When assembling such a system, care should be taken to design tidy power

distribution and networking wire runs. Extension cords and power strips work

fine but should be physically attached to the shelving with screws or wire-ties so

that the system does not become an unmaintainable mess. Similar considerations

apply to the Ethernet cables. Labeling cables so the ends can be identified without

laboriously tracing the entire run can save hours of headache.

Different approaches are possible for video and keyboard cables. In our systems,

most nodes do not have dedicated keyboard and video cables. Instead, we manually

attach cables to nodes in the very rare circumstances when necessary maintenance

cannot be carried out remotely. Linux’s powerful networking capabilities makes it

unnecessary to maintain constant console video and keyboard access to each and

every node of the system.

Rack mounting is considerably more expensive but offers the possibility of much

higher physical densities. New motherboards with rack-mountable form factors

that incorporate a Fast Ethernet controller, SCSI controller, and video controller

offer the possibility of building Beowulf nodes that can be packaged very tightly

because they don’t require additional daughter cards. These systems probably will

be important in the future, as larger Beowulf systems are deployed and machine

room space becomes a major consideration.

52 Chapter 3

3.10 Node Assembly

We conclude this chapter with a checklist for building a Beowulf node. Building

Beowulf nodes from component parts may not be the right choice for everyone.

Some will feel more comfortable with systems purchased from a system integrator,

or they simply won’t have the manpower or space for in-house assembly. Never-

theless, the cost should not be overlooked; a node can be several hundred dollars.

You should carefully weigh the luxury of having someone else wield the screwdriver

vs. owning 25 percent more computer power. Keep in mind that cables often come

loose in shipping, and there is no guarantee that the preassembled system will not

require as much or more on-site troubleshooting as the homemade system.

Although targeted at the reader who is building a Beowulf node from parts, this

checklist will also be useful to those who purchase preassembled systems. Over

the lifetime of the Beowulf system, technology advances will probably motivate

upgrades in such things as memory capacity, disk storage, or improved networking.

There is also the unavoidable problem of occasional maintenance. Yes, once in a

while, something breaks. Usually it is a fan, a memory module, a power supply,

or a disk drive, in that order of likelihood. More often than not, such a break will

occur in the first few weeks of operation. With hundreds of operational nodes in

a large Beowulf, some parts replacement will be required. The checklist below will

get you started if you decide to replace parts of a malfunctioning node.

To many, the list below will appear obvious, but, in fact, experience has shown

that a comprehensive list of steps is not only convenient but likely to simplify the

task and aid in getting a system working the first time. Many sites have put together

such procedures, and we offer the one used at Caltech as a helpful example.

Before you initiate the actual assembly, it helps to get organized. Five minutes of

preparation can save half an hour during the process. If you’re assembling a Beo-

wulf, you will probably build more than one unit at one time, and the preparation

phase is amortized over the number of units built.

• Collect and organize the small set of tools you will be using:

• #2 Phillips head screwdriver

• Antistatic wrist strap

• Antistatic mat on which to place assembly

• Needlenose pliers

• 1/8-inch blade flat blade screwdriver

• Small high-intensity flashlight

Node Hardware 53

• Organize all parts to be assembled. If more than one unit is to be built, collect

like parts together bin-style.

• Provide sufficient flat space for assembly, including room for keyboard, mouse,

and monitor used for initial check-out.

• Work in a well-lighted environment.

• Follow the same order of tasks in assembling all units; routine leads to reliability.

• Have a checklist, like this one, handy, even if it is used only as a reference.

• When first opening a case, collect screws and other small items in separate

containers.

• Keep food and drink on another table to avoid the inevitable accident.

After you have done one or two systems, the process becomes much quicker. We

find that we can assemble nodes in well under an hour once we become familiar

with the idiosyncrasies of any particular configuration.

Many of the instructions below may not apply in every case. Included are direc-

tions for such subassemblies as monitors, keyboards, and sound cards that rarely

show up in the majority of Beowulf nodes. Usually, however, at least one such

node is more heavily equipped to support user interface, operations support, and

external connections for the rest of the system.

In a number of cases, the specific action is highly dependent on the subsystems

being included. Only the documentation for that unit can describe exactly what

actions are to be performed. For example, every motherboard will have a different

set and positioning of jumpers, although many of the modern boards are reducing

or almost eliminating these. In these instances, all we can say is: “do the right

thing,” but we still indicate in general terms the class of action to take place.

3.10.1 Motherboard Preassembly

• Set every jumper on the motherboard properly.

• Look through your motherboard manual and verify every setting, since the de-

fault may not work for your CPU, memory, or cache configuration.

• Locate every jumper and connector: floppy, hard drive, PS/2, COM port, LPT

port, sound connectors, speaker connector, hard disk LED, power LED, reset

switch, keyboard lock switch, and so forth.

• Install the CPU.

• Processors are designed so that they can only be inserted correctly. Don’t

force.

• Whatever the chip, match the notched corner of the CPU with the notched

corner of the socket.

54 Chapter 3

• When using a ZIF socket, lift the handle 90 degrees, insert the CPU, and then

return the handle back to its locked position.

• Install the memory.

• Main memory DIMM. Note pin 1 on the DIMM, and find the pin 1 mark on

the motherboard. It is difficult to install 164-pin DIMMs incorrectly, but it is

possible. Begin by placing the DIMM at a 45 degree angle to the socket of bank

0. The DIMM will be angled toward the rest of the DIMM sockets (and away

from any DIMMs previously installed). Insert the DIMM firmly into the socket;

then rotate the DIMM until it sits perpendicular to the motherboard and the

two clips on each edge have snapped around the little circuit board. There may

or may not be a “snap,” but you should verify that the two clips are holding the

DIMM fast and that it doesn’t jiggle in the socket. Repeat this until you fill one,

two, or more banks.

• Cache memory (if so equipped). Some older units may have L2 caches on the

motherboard, while newer processors include them within the processor module.

Cache memory may be DIMM or SIMM; in any case, install it now.

3.10.2 The Case

• Open the case, remove all the internal drive bays, and locate all the connectors:

speaker, hard disk LED, power LED, reset switch, keyboard lock switch, mother

board power, peripheral power, and so forth.

• Mount the motherboard in the case.

• ATX-style cases use only screws to mount the motherboard, and it is very

straightforward.

• Plug in the keyboard, and see whether it fits.

• Plug in an adapter card, and see whether it fits.

• Start connecting the case cables to the motherboard.

• Pull out floppy cables, hard disk cables, PS/2 mouse cable, and lights. Line

up each pin 1 to the red side of cables.

• Install the speaker. It usually is a 4-pin connector with two wires (one red,

one black, which can be installed either way on the motherboard).

• If your case has holes for COM ports and LPT ports, punch these out, and

save a card slot by unscrewing the connectors that came on the slot-filler strip of

metal, removing the connector, and mounting it directly on the case.

• Attach power cables to the motherboard.

• ATX-style cases have only one power connector, which is keyed to only fit

one way.

Node Hardware 55

• The AT-style power connector comes in two pieces and must be connected

properly. The black wires must be placed together when they are plugged into

the motherboard.

• Ensure that the CPU cooling fan is connected to the power supply. This is

usually a 4-pin male connector that goes to one of the power supply connectors.

3.10.3 Minimal Peripherals

• Floppy disk drive

• Mechanical

• It may be necessary to reinstall the floppy mounting bay (if it was taken

out previously).

• The floppy drive must protrude from the front of the case. Take off one

of the 3.5 inch plastic filler panels from the front of the case. Then slide the

floppy drive in from the front until the front of the drive is flush with the front

of the case. Using two small screws that are supplied with the case, attach the

floppy drive’s left side. If the floppy drive bay is detachable, remove the bay

with the floppy half installed, and with the drive bay out, install the screws

for the right side.

• If the drive bay is going to contain hard disks in addition to floppy drives,

leave the drive bay out for now, and go to the hard disk installation section

before putting the drive bay back into the case.

• Electrical

• The floppy disk needs two connections: one to the power supply, and one to

the motherboard or floppy controller. The power supply connector is shaped

to prevent you from getting it backwards.

• Some floppy power connectors are smaller than the standard connector, and

most power supplies come with one of these plugs. These connectors can be

installed in only one way.

• For data, a flat ribbon cable is needed. It is gray with 34 conductors and a

red stripe to indicate pin 1. One end of the cable will usually have a twist in

it. The twisted portion connects to a second floppy drive (drive B:). The end

farthest from the twist connects to the motherboard or floppy controller.

• VGA card installation

• If the motherboard has an integrated video adapter, skip the next step.

• Plug the VGA card into the appropriate slot, depending on the type of card

purchased (PCI slot for a PCI card, ISA slot for an ISA card).

• Screw the top of the metal bracket that is attached to the adapter into the

case, using one of the screws supplied with the case.

56 Chapter 3

• Monitor

• Plug the monitor into a wall power outlet.

• Plug the video input plug, which is a 15-pin connector, into the back of the

video card.

3.10.4 Booting the System

Setup involves configuring the motherboard’s components, peripherals, and con-

trollers. The setup program is usually in ROM and can be run by pressing a

certain key during POST. Check the CMOS settings using the setup program be-

fore booting for the first time. If you make changes, you will need to exit setup and

save changes to CMOS for them to take effect. You will be able to change the date

and time kept by the real time clock. Memory configuration such as shadow RAM

and read/write wait states can be changed from their defaults. IDE hard disks can

be detected and configured. Boot sequence and floppy drives can be configured

and swapped. PCI cards and even ISA cards can be configured, and plug-n-play

disabled (which should be done if running a non-Windows operating system). ISA

bus speed can be changed and ports can be enabled or disabled.

IDE disks are almost always configured as auto detect or user-defined type. Use

shadow video unless you have problems. Shadow the ROM of your network interface

card (NIC) or SCSI card for better speed. For better speed and if you have EDO

memory, you can usually use the most aggressive memory settings—just try it out

before you stick with it to avoid corrupting data files.

Minimum requirements for booting the system are as follows:

• A bootable floppy disk

• Motherboard with CPU and memory installed

• Video card on the motherboard

• Floppy drive with one cable connected to it and power to it

• Monitor plugged into the wall and the video card

• Keyboard attached

To boot the system, proceed as follows:

• Making sure that the power switch is off, attach a power cord from the case to

the wall.

• Turn on the monitor.

• Turn on the power to the PC, and get ready to shut it off if you see, hear, or

smell any problems.

• Look for signs that all is working properly:

Node Hardware 57

• The speaker may make clicks or beeps.

• The monitor should fire up and show something.

• Make sure all of the memory counts.

• The floppy drive light should come on one time during POST.

To set up the system, proceed as follows:

• Enter setup by hitting the appropriate key (delete, F1, F10, Esc, or whatever

the motherboard manual specifies), and check the CMOS settings.

• Change the CMOS settings, and see whether the computer will remember them.

• Update the date and time.

• View every setup screen, and look at each of the settings.

• Make sure the first boot device is set to be the floppy drive.

• If you have EDO RAM, optimize the memory settings (if you wish) or make any

other changes you see fit.

• Save your changes and reboot; rerun setup, and make sure the updates were

made.

• Save any changes after the rerun. Make sure the bootable floppy is in the drive,

and let it try to boot from the floppy. If it does not boot, or there is some error

message—or nothing—on the screen, go to the troubleshooting section (Section

3.10.6).

3.10.5 Installing the Other Components

If your PC boots and runs setup, you’re almost done. Now you can install all of

the other components. First, unplug your PC and wait a few minutes. You should

begin to mount the drives if you have not already done so.

IDE Hard disk installation

• Mechanical. This is similar to the floppy installation above, with the exception

that the drive will not be visible from outside of the case.

• Electrical

• Most motherboard BIOS systems today can read the IDE drive’s specifications

and automatically configure them. If it does not, you will have to get the drive’s

parameters (usually written on the drive), which include number of cylinders,

number of heads, and number of sectors per track, and enter them in the drive

parameter table in the CMOS setup.

• A ribbon cable and power connector attach to each hard disk. The power

cable has four wires in it and is keyed so it cannot be installed incorrectly.

58 Chapter 3

• The documentation that came with the hard disk indicates how the jumpers

are set, if you are installing one disk and no other IDE device, the jumpers can

usually be removed. If you are installing more than one disk, decide which disk

will be booted. The boot disk should go on the primary hard disk controller.

Move the jumper(s) on the hard disk to make it a MASTER or PRIMARY.

Many newer hard disks will use pins labeled MA, SL, and CS; you will jumper

the MA pins. The second hard disk or CD-ROM will be configured as a SLAVE

or SECONDARY drive. You will jumper the SL pins on this device. Use your

drive’s manual or call the manufacturer’s 800 number for proper jumper settings.

If the CD-ROM drive will be alone on its own controller, follow the manufacturer’s

directions (usually it is okay to jumper it as a slave). Once jumpered properly,

the drives can be connected with the 18-inch 40-pin ribbon cables and powered

up. Pin 1 usually goes next to the power connector.

SCSI hard disk installation

• Mechanical. Follow the floppy installation above, with the exception that the

drive will not be visible from outside of the case.

• Electrical

• Unless the motherboard has the SCSI controller built in, the BIOS will not

read a SCSI drive, and the drive table should be set up with “not installed.”

• A ribbon cable and power connector attach to each hard disk. The power

cable has four wires in it and is keyed so it cannot be installed incorrectly. The

other end of the ribbon cable plugs into the SCSI controller itself.

• The documentation that came with the hard disk explains how the jumpers

are set. If you are installing one disk and no other SCSI devices, the jumpers can

usually be removed so that the disk will be set to ID 0. Each SCSI device on the

chain (ribbon cable) must have its own unique ID number, usually 0 through 7,

with 7 being reserved for the controller itself.

• The last physical device on the cable has to be terminated, depending on the

device, either with a jumper or with some type of resistor networks that are

plugged in. This is very important.

NIC installation

• This is similar to the VGA card installation described previously. If any jumpers

are to be set, do that now, and write the settings down. Read the installation

manual that came with the card.

Sound card installation

Node Hardware 59

• See NIC installation above. If you are setting jumpers, make sure you don’t set

two cards to the same resource (interrupt request, direct memory access, or port

address). Keep all settings distinct.

At this point, you are ready to begin installing the operating system. Don’t

forget to connect the mouse and external speakers and to make a network hookup,

if you have these options installed.

3.10.6 Troubleshooting

Each time you boot, you should connect at least the following four components to

your PC:

• Speaker

• Keyboard

• Floppy drive

• Monitor

What should a normal boot look and sound like?

• First, LEDs will illuminate everywhere—the motherboard, the hard disks, the

floppy drive, the case, the NIC, the printer, the CD-ROM, the speakers, the moni-

tor, and the keyboard.

• The hard disks usually spin up, although some disks, especially SCSIs, may wait

for a cue from the controller or may simply wait a fixed amount of time to begin

spinning to prevent a large power surge during boot.

• The P/S and CPU fans will start to spin.

• The first thing displayed on the monitor usually will be either memory counting

or a video card BIOS display.

• During the memory count, the PC speaker may click.

• When the memory is done counting, the floppy disk often screeches as its LED

comes on (called floppy seek).

• The monitor may have messages from the BIOS, including BIOS version, number

of CPUs, a password prompt, and nonfatal error messages.

• The last part of the power-on self-test is often a chart that lists the components

found during POST, such as CPU and speed, VGA card, serial ports, LPT ports,

IDE hard disks, and floppy disks. If no system files are found, either on a bootable

floppy or hard disk, you may get a message from the BIOS saying, “Insert Boot

disk and press any key” or something similar. This is a nonfatal error, and you can

put a bootable floppy in the drive and press a key.

60 Chapter 3

If the above happens, you will know that your motherboard is at least capable

of running the ROM’s POST. The POST has many potential problems, most of

which are nonfatal errors. Any consistent error, however, is a cause for concern.

The fatal POST errors will normally generate no video, so you need to listen to the

speaker and count beeps. The number of beeps and their length indicate codes for

a technician to use in repairing the PC.

At this point, the POST is done, and the boot begins.

What should I do if there is no video or bad video during boot?

• Check the monitor’s power and video connection.

• Try reseating the video card or putting it in a new socket (turn off the system

first!).

• Make sure the speaker is connected, in case you are getting a fatal POST message

that could have nothing to do with video.

• Swap out the video card and/or the monitor.

The two most notable and common POST messages are as follows:

• HDD (or FDD) controller error. Usually this is a cabling issue, such as a reversed

connector.

• Disk drive 0 failure. You forgot power to the hard disk, or you’ve got the wrong

drive set in CMOS (rerun setup). Also make sure the disk is properly connected to

the controller.

What about floppy problems?

• If the light stays on continuously after boot, you probably have the connector

on backwards.

If you are still experiencing problems, try the following:

• Check the cables or try someone else’s cables.

• Recheck all the jumper settings on the motherboard.

• Remove secondary cache, or disable it in setup. This can fix many problems.

• Slow down the CPU: it may have been sold to you at the wrong speed.

• Replace SIMMs with known working ones.

• Replace the video card.

• Remove unnecessary components such as extra RAM, sound card, mouse, mo-

dem, SCSI card, extra hard disks, tape drives, NIC, or other controller card.

• Remove all hard disks, and try booting from floppy.

• Remove the motherboard from the case, and run it on a piece of cardboard. This

will fix a problem caused by a motherboard grounded to the case.

4 Linux

Peter H. Beckman

Since the original AT&T and Berkeley Unix operating systems of the early 1970s,

many variants of the operating system have been launched. Some have prospered,

while others have fallen into obscurity. Have you ever heard of Concentrix or nX?

Many customized Unix derivatives are no doubt still occupying obsolete Winchester

drives and 8-inch floppies in the dusty storage rooms of businesses and laboratories,

right there next to the paper tape readers and acoustic modem couplers. Even

Microsoft tried its hand and sold a Unix back in 1980, when it released XENIX.

4.1 What Is Linux?

Simply put, LinuxTM is a flavor (clone) of the original UnixTM operating systems.

While Linux is relatively new on the operating system scene, arriving about two

decades after Ken Thompson and Dennis Ritchie of AT&T presented the first Unix

paper at a Purdue University symposium in 1973, it has rapidly become one of

the most widely known and used Unix derivatives. Ever since Linus Torvalds, the

creator of Linux, released it in October 1991, developers from all over the world have

been improving, extending, and modifying the source code. Linus has remained the

godfather of the Linux source code, ensuring that it does not get overwhelmed with

useless features, code bloat, and bad programming. As a result, Linux has become

so popular that International Data Corporation (IDC) reported that Linux was the

fastest-growing server operating system in both 1999 and 2000 and, after Microsoft

Windows, is the most-used server operating system.

4.1.1 Why Use Linux for a Beowulf?

Linux users tend to be some of the most fervent, inspired, and loyal computer users

in the world—probably in the same league as Apple Macintosh users. Both groups

of users are likely to rebut any criticism with a prolonged, sharp-tongued defense

of the capabilities of their system. For scientific computational clusters, however, a

cute penguin named Tux and lots of enthusiasm are insufficient; some pragmatism

is required.

Linux is the most popular open source operating system in the world. Its success

is the result of many factors, but its stability, maturity, and straightforward design

have certainly been keys to its growth and market share. The stability and avail-

ability of Linux have also created a booming commercial marketplace for products,

unmatched by any other open source operating system. Companies such as IBM,

Fujitsu, NEC, Compaq, and Dell have all incorporated Linux into their business

62 Chapter 4

model, creating a marketplace around a distribution of kernel source code that is

free. Other companies are simply using Linux because it makes practical business

sense.

The enthusiastic backing of multibillion dollar companies is certainly a vote of

confidence for Linux, but it is by no means sufficient for deciding to choose Linux.

Probably the most important reason for using Linux to build a Beowulf is its

flexibility. Because Linux is open source, it can easily be modified, rearranged,

and tweaked for whatever the task. Some individuals may grow pale at the idea

of modifying the operating system, but never fear: Linux is actually very friendly.

Because of the distributed development environment that has helped it become so

successful, it is also easily modified and tweaked. Later in this chapter, some simple

instructions will show just how easy modifying Linux can be.

Does Linux really need to be modified before you can use it to build a Beowulf?

Well, no. However, scientists are generally by their very nature extremely curious,

and even though a wonderfully fast and easy-to-use Beowulf can be constructed with

“stock” kernels, most cluster builders will soon give in to the nearly irresistible urge

to roll up their sleeves and pop the hood to see what is really inside the Linux kernel.

Be warned: many a plasma physicist or molecular biologist, fully intending to spend

all of her time solving the mysteries of the universe and writing technical papers,

has instead become completely drawn into the wonderful and creative release that

comes from modifying the source code. You can often see these expatriates roaming

the HPC and Beowulf mailing lists answering questions about the latest kernel and

support for new chip sets or features.

Another reason to choose Linux is that you will not be alone. The available

talent pool for knowledgeable system administrators that have Linux experience and

actually enjoy working with Linux is large. System administrators are scrambling

to find excuses for building a Beowulf with Linux. The same cannot often be said

for other operating systems. Furthermore, remote administration has been a part of

all Unix derivatives for decades. Many simple interfaces are available for updating

the configuration of remote machines and organizing a room full of servers. The

talent pool of Beowulf builders is growing. Linux clusters are popping up in every

nook and cranny, from small departments on campus to the world’s most prestigious

laboratories. A quick look at the Top500 list (www.top500.org) shows that Linux

is the unchallenged champion for building compute engines with commodity parts.

Google (www.google.com), one of the most popular and acclaimed search en-

gines, is now using more than 8,000 Linux nodes for its search engine server farm

[38]. While Google is not a scientific computing cluster, its size demonstrates the

flexibility and adaptability of Linux. From an embedded palm-sized computer to

Linux 63

running on an 8,000-processor cluster, Linux has demonstrated its utility and sta-

bility for nearly any task. There are even real-time versions of the Linux operating

system. No legacy operating system can even come close to such flexibility and

dominance among the largest clusters in the world.

Another reason to choose Linux is its support for many types of processors.

Alpha, PowerPC, IA32, IA64, and many others are all supported in Linux. You

can choose to build your Beowulf from the fastest Apple Macintosh servers or IBM

pSeries servers, or you can buy the biggest and hottest (literally) chip on the market,

the Intel IA64. As an example of the flexibility and speed with which the Linux

community ports to new hardware, take a quick look at the Intel IA64. The IA64

is already available in many places, and the operating system of choice is Linux.

Several distributions have already been released, and for many users, removing

Linux and installing a legacy operating system (should it become widely available)

is certainly not in their plans.

Finally, many people choose Linux for what it does not have, or what can be

removed. Linux is a sophisticated multitasking virtual memory kernel. However,

it can be trimmed down to a very small set of functions representing the bare

necessities. In fact, Linux can easily be compiled to use as little as 600 KBytes

of compressed disk space on a floppy. Linux can be made small. It can fit on

embedded devices. Although counterintuitive to some legacy companies, where

adding a new feature and urging all the users to upgrade are the status quo, smaller

and simpler is better when it comes to operating system kernels for a Beowulf. The

first reason that smaller is better comes from decades of experience with source

code development and stability. Whenever a line of code is added to a source tree,

the probability increases that a hidden bug has been introduced. For a kernel that

controls the memory system and precious data on disk, robustness is vital. Having

fewer functions running in privileged mode makes for a more stable environment.

A small kernel is a kernel that is more likely to be stable. Although it did not

run Linux, the NASA Sojourner that traveled to Mars was also designed with the

“smaller and simpler is better” mantra. The Sojourner sported a 2 MHz CPU and

less than 1 MByte of combined RAM and nonvolatile data storage. While NASA

certainly could have afforded a larger computer, as well as a large commercial

operating system, simpler was better. Making a service call to Mars to press Ctrl-

Alt-Del was not an option.

More down to earth, although nearly as cold, the NSF-funded Anubis project uses

Linux machines to monitor seismic conditions at unmanned monitoring stations on

Antartica [1]. The stations upload their data via ARGOS satellite transmitters.

The average annual temperature for the stations is –28 degrees Celsius to –54

64 Chapter 4

degrees Celsius. Linux was chosen for its stability, robustness, and the ease with

which it could be modified for the task. Traveling hundreds of miles across an ice

sheet to repair a blue screen of death was not seriously considered.

The second reason for a small kernel is that the most stable code path is the most

used code path. Bugs tend to congregate in out-of-the-way locations, away from

the well-worn code paths. The smaller the kernel, the fewer the hidden and rarely

tested code paths. Finally, smaller is better when it comes to kernel memory and

CPU cycles on a Beowulf. For scientific computing, nearly every instruction not

being performed by the scientific application, usually in the form of a floating-point

operation, is overhead. Every unnecessary kernel data structure that is walked by

the kernel pollutes the precious cache values intended for the scientific application.

Because kernel operations such as task switching are run extremely often, even

a small amount of additional kernel overhead can noticeably impact application

performance. Linux’s heritage of development on small machines forced developers

to pay extremely close attention to performance issues. For Beowulfs, a small kernel

is advantageous.

With its modular and easy-to-modify code base, support for a wide variety of

the hottest CPUs on the planet, and incredibly enthusiastic talent pool, Linux is a

winner for building Beowulfs.

4.1.2 A Kernel and a Distribution

The term “Linux” is most correctly applied to the name for the Unix-like kernel,

the heart of an operating system that directly controls the hardware and provides

true multitasking, virtual memory, shared libraries, demand loading, shared copy-

on-write executables, TCP/IP networking, and file systems. The kernel is lean and

mean. It contains neither an integrated Web browser nor a graphic windowing

system. Linux, in keeping with its Unix heritage, follows the rule that smaller and

simpler should be applied to every component in the system and that components

should be easily replaceable. However, the term “Linux” has also been applied in a

very general way to mean the entire system, the Linux kernel combined will all of

the other programs that make the system easy to use, such as the graphic interface,

the compiler tools, the e-mail programs, and the utilities for copying and naming

files. Strictly speaking, Linux is the kernel. Nevertheless, most users refer to a

“Linux system” or “Linux CD-ROM” or “Linux machine” when they really mean

the Linux kernel packaged up with all of the tools and components that work with

the kernel—a distribution.

A Linux distribution packages up all the common programs and interfaces that

most users think of when they imagine Linux, such as the desktop icons or the

Linux 65

Apache Web server or, more important, for scientific users, compilers, performance

monitoring tools, and the like. Many Linux distribution companies exist. They take

the freely available Linux kernel and add an “installer” and all the other goodies

just described. In fact, those companies (Red Hat, Turbolinux, Caldera, SuSE, and

a host of smaller companies) have the freedom to customize, optimize, support,

and extend their Linux distribution to satisfy the needs of their users. Several

volunteer efforts also bundle up all the software packages with the kernel and release

a distribution. Understanding how the Linux kernel and Linux distributions are

developed and maintained is key to understanding how to get support and how to

get a Beowulf cluster up and running on the network as quickly as possible.

4.1.3 Open Source and Free Software

Of course, before getting very far in any discussion about the Linux kernel or Linux

CD-ROM distributions, some time must be spent on the topic of open source and

free software. Several well-written books on the topic have already been published.

The book Open Sources [7] details the many intertwined and fascinating stories

of how the code bases that began as research projects or simply hobby tinkering

become the fundamental standards that are the lifeblood of the Internet. It is

important, however, to understand some of the basic concepts of freely distributable

software for building a Beowulf with Linux. Of course, the most important reason

for understanding some of the fundamental licensing issues surrounding the Linux

kernel is so that they can be adhered to. Even though the term “free” is cavalierly

used within the community, there can often be strict rules and practices that must

be followed. Another reason why it is important to understand these basic issues is

so that you can understand how the code base came to exist in the form it is today

and how you can contribute back to the community that provided the software for

your use.

The open source software movement has gathered both publicity and credibility

over the past couple of years. Richard Stallman began work in 1984 on creating a

free, publicly available set of Unix-compatible tools. He uses the term “free soft-

ware” to describe the freedom users have to modify it, not the price. Several years

later, the GNU General Public License (GPL) was released. The GPL (sometimes

called the “copyleft”) became the license for all of the GNU products, such as gcc

(a C compiler) and emacs (a text editor). The GPL strives to ensure that nobody

can restrict access to the original source code of GPL licensed software or can limit

other rights to using the software. Anyone may sell a copy of GPL software for

as much as people are willing to pay (without any obligation to give money back

to the original author), but nothing prevents the person who bought the software

66 Chapter 4

from doing the same. Moreover, all users must be given a copy of the source code

so that those users are able to fix and enhance the software to suit their needs.

However, probably the most important aspect of the GPL is that any modifications

to GPLed source code must also be GPLed.

For most Beowulf users, the strict rules for how free software may be distributed

will never come up. However, if code licensed under the GPL is modified, its

binary-only distribution is forbidden under the license. For example, if a Beowulf

user extends or patches one of Donald Becker’s Ethernet drivers or uses it as the

basis for writing a driver, that driver cannot be redistributed in binary-only form.

The Linux kernel also uses a clarified GPL license. Therefore, modifying the Linux

kernel for private use is fine, but users may not modify the kernel and then make

binary-only versions of the kernel for distribution. Instead, they must make the

source code available if they intend to share their changes with the rest of the

world.

More recently, Eric Raymond and others coined the term “open source” to re-

fer to freely distributable software (www.opensource.org). There are, however,

differences between the two monikers associated with freely distributable software.

GPLed source code cannot be the basis for a privately developed set of enhance-

ments that are then sold in binary-only shrink-wrapped form. Derived software

must remain essentially free. On the other hand, licenses that follow the open source

definition but are not the GPL are not so restricted. An open source–compliant

license that is not using the GPL permits programmers and users greater flexibility

in what they do with the code. They are free to use the source code however they

wish. They may develop private, “closed” code repositories and then sell products

that may be distributed in binary-only form.

Many licenses conform to the open source definition: Mozilla Public License

(Netscape), MIT License (used for the X-Windows Consortium), and the amended

BSD License. A company can enhance an open source–licensed program that is not

using the GPL and then sell a binary-only version. In fact, software developed by

the X-Windows Consortium and the BSD project was commercialized and used as

the basis for a wide range of products. For the Beowulf user, this means that code

licensed with a BSD or X-Windows–style license give the users the freedom to use

the software in whatever manner they see fit. Specifically, the MPICH version of

MPI, available from Argonne National Laboratory and explained in greater detail

in Chapter 9 of this book, is licensed using a non-GPL open source license. Beowulf

users may make changes to the source code and distribute binary-only versions, or

even create products based on the work done by the original authors. Many people

believe the careful choice of license for the MPICH project helped make the MPI

Linux 67

standard as successful as it is today.

Of course “giving back” to the community that has worked collectively to provide

the sophisticated toolset that makes Beowulf computation possible is part of the

scientific process and is highly encouraged by the authors of this book regardless

of what kind of license a particular piece of software uses. The scientific process

demands repeatability, and the freely distributable nature of most Beowulf software

provides an ideal environment for extending and corroborating other scientists re-

sults. Whenever possible, changes to the source code should be sent back to the

authors or maintainers, so the code can continue to grow and improve.

4.1.4 A Linux Distribution

A Linux distribution generally arrives on one or more CD-ROMs, with the Linux

kernel actually using a very small portion of that CD-ROM. Since a distribution can

be fashioned around a Linux kernel in practically any manner, Linux distributions

can vary quite widely in form and function. Since the Linux kernel is probably

the most portable kernel on the planet, it is running on an amazing array of CPUs

and devices, everything from handheld devices such as the Compaq iPAQ and

the IBM Linux wrist watch to the IBM S390, a large corporate enterprise server

getting a new lease on life with Linux. With such an incredible range of users and

hardware devices that can run Linux comes a plethora of distributions built around

those kernels and their target users. It can be quite daunting to choose among the

dozens of popular (and hundreds of specialized) Linux distributions. Linux Web

sites list dozens of distributions created with the Linux kernel. Of course, not all

such distributions are suitable for use in a Beowulf. Many are designed for the

embedded market, while others are built for a single-purpose appliance server, such

as a firewall or a file/print server.

One of the first steps to using Linux to build your Beowulf Linux cluster is to

pick a distribution and get comfortable with it. While it is beyond the scope of

this book to help you become a rabid Linux user, there are plenty of books on the

topic that can help guide you through the different installers and different graphic

desktops optimized for each distribution. The list below shows some of the most

popular Linux distribution companies or groups and where to find more information

about them.

Which distribution is best for building a Beowulf? Unfortunately, there is no

easy answer. Usually, the choice comes down to three factors: support, language,

and ease of use. While the core of all Linux distributions are, by nature of the GPL,

available for free and may downloaded from the Internet, the question of support is

very important, especially to the new user. Most commercial distributions include

68 Chapter 4

Company URL
Red hat www.redhat.com

Turbolinux www.turbolinux.com

Mandrake www.mandrake.com

Debian www.debian.org

SuSE www.suse.com

Slackware www.slackware.com

Caldera www.caldera.com

Table 4.1
Some companies or groups that release Linux distributions.

access to either phone or e-mail support. Some include the option of purchasing

additional support. Some integrate software that is not freely distributable. Other

companies, such as LinuxCare, do not produce a Linux distribution but simply

support all of them.

Local familiarity and popularity can be a factor in your choice. If everyone else in

your office or on your campus or at your laboratory is using the same Linux distribu-

tion, getting their help when things go awry may be easiest if you share a common

distribution. Another consideration is support for your native language and e-mail

support in that language. The SuSE distribution is very popular in Germany, and

naturally has very good support for the German language. Certainly, you can e-

mail your questions in German to their support staff. Likewise, the Turbolinux

distribution is very popular in Japan and China and supports double-byte charac-

ters and special input methods for typing in Japanese or Chinese. Naturally, your

choice of distribution may also be influenced by what the hardware company can

preload on your Beowulf nodes if you are not building them from scratch. Having

your nodes arrive preloaded with a Linux distribution can save a lot of time.

Another key detail for building a Beowulf with Linux is the licensing of the

distribution. Almost every commercial vendor, has, at times, included software

that could not be freely distributed. In some cases, a portion of the purchase price

is used to pay royalties for the software that is not freely distributable. Using such

a distribution to install 16 nodes would violate the licensing unless you actually

purchased 16 copies. Luckily, most distribution companies try to make it very clear

whether their distribution can be freely distributed and, in many cases, offer a freely

distributable version of the distribution on the Web site.

Linux 69

4.1.5 Version Numbers and Development Methods

The Linux kernel, Linux applications, and even the Linux distributions have differ-

ent development models, different version numbers, and different schedules. While

picking a Linux distribution for your Beowulf, a basic understanding of version num-

bers and distribution versions is required. A relatively small team of core developers

develops the Linux kernel. Yes, many many people from around the world, repre-

senting more than fifty different countries, have contributed to the Linux kernel,

but its stability and the organized introduction of new features are made possible

by a well-coordinated band of core programmers. With Linus Torvalds sometimes

called the “benevolent dictator,” core developers such as Donald Becker, Alan Cox,

Stephen Tweedie, and David Miller maintain and extend sections of the kernel

with the help of hundreds of programmers who send in contributions to the kernel.

This hierarchical model is clearly more efficient than everyone sending Linus their

patches and new ideas for how the kernel can be extended (not that they don’t

try). Of course, not all patches and extensions are included in the main line, or

“stock” kernel, no matter who sent them. Significant restraint and conservatism

are used for most sections of the code. Some programmers must lobby Linus or

other code developers for extended periods of time before their improvements are

incorporated. In some cases, the suggestions are never accepted and are therefore

made available only as a patch and not part of the “official” kernel tree.

Your Linux distribution will, of course, arrive with a Linux kernel, but upgrading

the kernel is one of the most common ways to update a Beowulf node, and will be

discussed later. It is important to understand that the version number of the kernel

and the version number of the distribution are in no way related. At any point in

time the Linux kernel has two most-up-to-date kernels: the “stable” release and

the “development” release. Stable kernels use an even minor kernel number, such

as 2.0, 2.2, or 2.4. Similarly, development kernels use odd minor kernel numbers,

such as 2.1 or 2.3. As work on a development kernel becomes more stable, the rate

of change begins to slow, and finally the core kernel developers stop adding new

features. There exists no definitive set of tests that indicate when a development

kernel is ready for general use, but at some point, Linus will “release” a new stable

kernel. After that, patches and updates take the form of incremental versions, such

as 2.4.9 or 2.4.11. With few exceptions, a kernel that is part of a popular CD-ROM

distribution comes from the “stable” kernel releases. Of course, nothing prevents

a would-be Beowulf builder from using the latest, most unstable versions of the

development kernel. However, the main kernel developers take the stability of the

Linux kernel very seriously, and it would be wise to be conservative in choosing a

70 Chapter 4

kernel.

Linux distributions, on the other hand, can create version numbers for their dis-

tribution however they please. Red Hat 7.0 simply means that it is newer than Red

Hat 6.0. Since distribution companies are separate, they use completely different

versioning schemes. Red Hat 7.0 is not necessarily any newer than Turbolinux 6.5.

In fact, because it is clearly to their advertising advantage, don’t be surprised to

find out that the distribution on the shelf with the highest version number is in fact

not the most recent release. Furthermore, distributions are free to use whatever ba-

sic version of the Linux kernel they believe will make their end-users most satisfied.

Then, they often add in a couple more changes to the kernel that may not be in

the mainline kernel. For example, a hardware company working with a distribution

company may ask for some special drivers or special options be added to the kernel,

so their hardware can work well with Linux. While certainly common practice, it

can lead to some confusion in infrequent cases because upgrading the kernel for

such a distribution may not always work unless the upgraded kernel came from the

distribution’s Web site and therefore contained the special additions, or the special

additions are added to the basic main-line kernel that can be downloaded from

www.kernel.org.

For the Beowulf user, this situation means that getting help with kernel issues

may involve some investigation. Generally, the distribution companies support

their product, or you can purchase support from a company such as LinuxCare.

However, that does not mean they wrote the code or are on a first-name basis with

the person who did. The commercial support company can certainly provide front-

line support, but what the industry often calls level-3 support requires some extra

work. Generally, open source programmers such as Donald Becker make a portion

of their time available to answer questions about the code they authored. However,

the author of the code could also have moved on to other endeavors, leaving the

source code behind. Kernel and Beowulf mailing lists help, but the burden can

often be on you to find the problem or find the person who can help you. When

trying to track down what you believe to be a kernel or driver issue, please follow

these guidelines:

1. Read the documentation. Because Linux support has traditionally been ad

hoc in nature, a large number of HOWTO documents have been written, ranging

from ones that are probably very important to you like the Kernel-HOWTO, the

Beowulf-HOWTO, and the Parallel-Processing-HOWTO, to more specific ones like

the Slovenian-HOWTO,the Kodak-Digitalcam-HOWTO, the Quake-HOWTO, and the

Linux 71

Coffee-mini-HOWTO. These documents are located under /usr/doc/HOWTO on most

distributions.

2. Second, search the Web. Google www.google.com is amazing. Many a per-

plexing, nasty bug or software incompatibility has been easily solved with fifteen

or twenty minutes of Web surfing.

3. Get some help from local Linux users. Often, there is a very simple answer

or widely known work-around for a problem. Talking to someone can also help you

better understand the problem, so Google can once again be queried or intelligent

e-mail sent.

4. Read the relevant mailing lists, and search for your topic of interest on the

mailing list. Several archives of Linux-specific mailing lists exist, such as can be

found at marc.theaimsgroup.com.

5. After the difficulty has been narrowed down to a very clear, reproducible

example, mail the appropriate mailing list, and ask for help. To make your bug

report useful to the readers (and get you a fix much faster), follow the guidelines

given in the kernel sources as REPORTING-BUGS, Documentation/BUG-HUNTING, and

Documentation/oops-tracing.

6. If you don’t make any progress, try looking at the source code and mailing

the author directly. Naturally, this should be used as a last resort. Authors of key

portions can often get dozens or hundreds of e-mail messages a day about their

code.

4.2 The Linux Kernel

As mentioned earlier, for the Beowulf user, a smaller, faster, and leaner kernel is a

better kernel. This section describes the important features of the Linux kernel for

Beowulf users and shows how a little knowledge about the Linux kernel can make

the cluster run faster and more smoothly.

What exactly does the kernel do? Its first responsibility is to be an interface to the

hardware and provide a basic environment for processes and memory management.

When user code opens a file, requests 30 megabytes of memory for user data, or

sends a TCP/IP message, the kernel does the resource management. If the Linux

server is a firewall, special kernel code can be used to filter network traffic. In

general, there are no additives to the Linux kernel to make it better for scientific

clusters—usually, making the kernel smaller and tighter is the goal. However,

72 Chapter 4

sometimes a virtual memory management algorithm can be twiddled to improve

cache locality, since the memory access patterns of scientific applications are often

much different from the patterns common Web servers and desktop workstations,

the applications for which Linux kernel parameters and algorithms are generally

tuned. Likewise, occasionally someone creates a TCP/IP patch that makes message

passing for Linux clusters work a little better. Before going that deep into Linux

kernel tuning, however, the kernel must first simply be compiled.

4.2.1 Compiling a Kernel

Almost all Linux distributions ship with a kernel build environment that is ready

for action. The transcript below shows how you can learn a bit about the kernel

running on the system.

% ls -l /proc/version

-r--r--r-- 1 root root 0 Jun 9 23:32 /proc/version

% cat /proc/version

Linux version 2.2.14-3 (support@kernel.turbolinux.com) (gcc driver

version 2.95.2 19991024 (release) executing gcc version 2.7.2.3)

#1 Wed Feb 23 14:09:33 PST 2000

% cd /usr/src

% ls -ld linux

lrwxrwxrwx 1 root root 12 May 16 2000 linux -> linux-2.2.14

The /proc file system is not really a file system in the traditional meaning. It

is not used to store files on the disk or some other secondary storage; rather, it

is a pseudo-file system that is used as an interface to kernel data structures—a

window into the running kernel. Linus likes the file system metaphor for gaining

access to the heart of the kernel. Therefore, the /proc file system does not really

have disk filenames but the names of parts of the system that can be accessed.

In the example above, we read from the handle /proc/version using the Unix

cat command. Notice that the file size is meaningless, since it is not really a file

with bytes on a disk but a way to ask the kernel “What version are you currently

running?” We can see the version of the kernel and some information about how

it was built.

The source code for the kernel is often kept in /usr/src. Usually, a symbolic

link from /usr/src/linux points to the kernel currently being built. Generally, if

you want to download a different kernel and recompile it, it is put in /usr/src,

Linux 73

and the symlink /usr/src/linux is changed to point to the new directory while

you work on compiling the kernel. If there is no kernel source in /usr/src/linux,

you probably did not select “kernel source” when you installed the system for the

first time, so in an effort to save space, the source code was not installed on the

machine. The remedy is to get the software from the company’s Web site or the

original installation CD-ROM.

The kernel source code often looks something like the following:

% cd /usr/src/linux

% ls

COPYING README configs init modules

CREDITS README.kernel-sources drivers ipc net

Documentation REPORTING-BUGS fs kernel pcmcia-cs-3.1.8

MAINTAINERS Rules.make ibcs lib scripts

Makefile arch include mm

If your Linux distribution has provided the kernel source in its friendliest form,

you can recompile the kernel, as it currently is configured, simply by typing

% make clean ; make bzImage

The server will then spend anywhere from a few minutes to twenty or more

minutes depending on the speed of the server and the size of the kernel. When it

is finished, you will have a kernel.

% ls -l /usr/src/linux-2.2.14/arch/i386/boot/bzImage

-rw-r--r-- 1 root root 574272 Jun 10 00:13

/usr/src/linux-2.2.14/arch/i386/boot/bzImage

4.2.2 Loadable Kernel Modules

For most kernels shipped with Linux distributions, the kernel is built to be mod-

ular. Linux has a special interface for loadable kernel modules, which provides a

convenient way to extend the functionality of the kernel in a dynamic way, without

maintaining the code in memory all the time, and without requiring the kernel be

recompiled every time a new or updated module arrived. Modules are most of-

ten used for device drivers, file systems, and special kernel features. For example,

Linux can read and write MSDOS file systems. However, that functionality is usu-

ally not required at all times. Most often, it is required when reading or writing

from an MSDOS floppy disk. The Linux kernel can dynamically load the MSDOS

file system kernel module when it detects a request to mount an MSDOS file sys-

tem. The resident size of the kernel remains small until it needs to dynamically

74 Chapter 4

add more functionality. By moving as many features out of the kernel core and

into dynamically loadable modules, the legendary stability of Linux compared with

legacy operating systems is achieved.

Linux distributions, in an attempt to support as many different hardware con-

figurations and uses as possible, ship with as many precompiled kernel modules as

possible. It is not uncommon to receive five hundred or more precompiled kernel

modules with the distribution. In the example above, the core kernel was recom-

piled. This does not automatically recompile the dynamically loadable modules.

4.2.3 The Beowulf Kernel Diet

It is beyond the scope of this book to delve into the inner workings of the Linux

kernel. However, for the Beowulf builder, slimming down the kernel into an even

leaner and smaller image can be beneficial and, with a little help, is not too difficult.

In the example above, the kernel was simply recompiled, not configured. In or-

der to slim down the kernel, the configuration step is required. There are several

interfaces to configuring the kernel. The README file in the kernel source out-

lines the steps required to configure and compile a kernel. Most people like the

graphic interface and use make xconfig to edit the kernel configuration for the

next compilation.

Removing and Optimizing. The first rule is to start slow and read the docu-

mentation. Plenty of documentation is available on the Internet that discusses the

Linux kernel and all of the modules. However, probably the best advice is to start

slow and simply remove a couple unneeded features, recompile, install the kernel,

and try it. Since each kernel version can have different configuration options and

module names, it is not possible simply to provide the Beowulf user a list of kernel

configuration options in this book. Some basic principles can be outlined, however.

Think compute server: Most compute servers don’t need support for amateur

radio networking. Nor do most compute servers need sound support, unless of

course your Beowulf will be used to provide a new type of parallel sonification. The

list for what is really needed for a compute server is actually quite small. IrDA

(infrared), quality of service, ISDN, ARCnet, Appletalk, Token ring, WAN, AX.25,

USB support, mouse support, joysticks, and telephony are probably all useless for

a Beowulf.

Optimize for your CPU: By default, many distributions ship their kernels com-

piled for the first-generation Pentium CPUs, so they will work on the widest range

of machines. For your high-performance Beowulf, however, compiling the kernel

Linux 75

to use the most advanced CPU instruction set available for your CPU can be an

important optimization.

Optimize for the number of processors: If the target server has only one

CPU, don’t compile a symmetric multiprocessing kernel, because this adds un-

needed locking overhead to the kernel.

Remove firewall or denial-of-service protections: Since Linux is usually op-

timized for Web serving or the desktop, kernel features to prevent or reduce the

severity of denial-of-services attacks are often compiled into the kernel. Unfortu-

nately, an extremely intense parallel program that is messaging bound can flood

the interface with traffic, often resembling a denial-of-service attack. Indeed, some

people have said that many a physicist’s MPI program is actually a denial-of-

service attack on the Beowulf cluster. Removing the special checks and detection

algorithms can make the Beowulf more vulnerable, but the hardware is generally

purchased with the intent to provide the most compute cycles per dollar possi-

ble, and putting it behind a firewall is relatively easy compared with securing and

hampering every node’s computation to perform some additional security checks.

Other Considerations. Many Beowulf users slim down their kernel and even

remove loadable module support. Since most hardware for a Beowulf is known,

and scientific applications are very unlikely to require dynamic modules be loaded

and unloaded while they are running, many administrators simply compile the re-

quired kernel code into the core. Particularly careful selection of kernel features can

trim the kernel from a 1.5-megabyte compressed file with 10 megabytes of possible

loadable modules to a 600-kilobyte compressed kernel image with no loadable mod-

ules. Some of the kernel features that should be considered for Beowulfs include

the following:

• NFS: While NFS does not scale to hundreds of node, it is very convenient for

small clusters.

• Serial console: Rather than using KVM (Keyboard, Video, Mouse) switches

or plugging a VGA (video graphics array) cable directly into a node, it is often

very convenient to use a serial concentrator to aggregate 32 serial consoles into one

device that the system administrator can control.

• Kernel IP configuration: This lets the kernel get its IP address from BOOTP or

DHCP, often convenient for initial deployment of servers.

• NFS root: Diskless booting is an important configuration for some Be-

owulfs. NFS root permits the node to mount the basic distribution files such as

/etc/passwd from an NFS server.

76 Chapter 4

• Special high-performance network drivers: Often, an extreme performance Beo-

wulf will use high-speed networking, such as Gigabit Ethernet or Myrinet. Natu-

rally, those specialized drivers as well as the more common 100BT Ethernet driver

can be compiled into the kernel.

• A file system: Later in this chapter a more thorough discussion of file systems

for Linux will be presented. It is important the kernel is compiled to support the

file system chosen for the compute nodes

Network Booting. Because of the flexibility of Linux, many options are avail-

able to the cluster builder. While certainly most clusters are built using a local

hard drive for booting the operating system, it is certainly not required. Network

booting permits the kernel to be loaded from a network-attached server. Gener-

ally, a specialized network adapters or system BIOS is required. Until recently,

there were no good standards in place for networking booting commodity hard-

ware. Now, however, most companies are offering network boot-capable machines

in their high-end servers. The most common standard is the Intel PXE 2.0 net

booting mechanism. On such machines, the firmware boot code will request a

network address and kernel from a network attached server, and then receive the

kernel using TFTP (Trivial File Transfer Protocol). Unfortunately, the protocol is

not very scalable, and attempting to boot more than a dozen or so nodes simul-

taneously will yield very poor results. Large Beowulfs attempting to use network

boot protocols must carefully consider the number of simultaneously booting nodes

or provide multiple TFTP servers and separate Ethernet collision domains. For a

Linux cluster, performing a network boot and then mounting the local hard drive

for the remainder of the operating system does not seem advantageous; it probably

would have been much simpler to store the kernel on hard drive. However, network

booting can be important for some clusters if it is used in conjunction with diskless

nodes.

4.2.4 Diskless Operation

Some applications and environments can work quite well without the cost or man-

agement overhead of a hard drive. For example, in secure or classified computing

environments, secondary storage can require special, labor-intensive procedures.

In some environments, operating system kernels and distributions may need to be

switched frequently, or even between runs of an application program. Reinstalling

the operating system on each compute node to switch over the system would be

impractical, as would maintaining multiple hard disk partitions with different op-

erating systems or configurations. In such cases, building the Beowulf without the

Linux 77

operating system on the local hard drive, if it even exists, can be a good solution.

Diskless operation also has the added benefit of making it possible to maintain only

one operating system image, rather than having to propagate changes across the

system to all of the Beowulf nodes.

For diskless operations, naturally, Linux can accommodate where other systems

may not be so flexible. A complete explanation of network booting and NFS-root

mechanisms is beyond the scope of this book (but they are documented in the

Diskless-HOWTO and Diskless-root-NFS-HOWTO) and certainly is a specialty area

for Beowulf machines. However, a quick explanation of the technology will help

provide the necessary insight to guide your decision in this regard.

In addition to hardware that is capable of performing a network boot and a

server to dole out kernels to requesting nodes, a method for accessing the rest of

the operating system is required. The kernel is only part of a running machine.

Files such as /etc/passwd and /etc/resolv.conf also need to be available to the

diskless server. In Linux, NFS root provides this capability. A kernel built with

NFS root capability can mount the root file system from a remote machine us-

ing NFS. Operating system files such as dynamic libraries, configuration files, and

other important parts of the complete operating system can be accessed transpar-

ently from the remote machine via NFS. As with network booting, there are certain

limitations to the scalability of NFS root for a large Beowulf. In Section 4.2.6, a

more detailed discussion of NFS scalability is presented. In summary, diskless oper-

ation is certainly an important option for a Beowulf builder but remains technically

challenging.

4.2.5 Downloading and Compiling a New Kernel

For most users, the kernel shipped with their Linux distribution will be adequate

for their Beowulf. Sometimes, however, there are advantages to downloading a

newer kernel. Occasionally a security weakness has been solved, or some portion of

TCP/IP has been improved, or a better, faster, more stable device driver arrives

with the new kernel. Downloading and compiling a new kernel may seem diffi-

cult but is really not much harder than compiling the kernel that came with the

distribution.

The first step is to download a new kernel from www.kernel.org. The impor-

tance of reading the online documents, readme files, and instructions cannot be

overstated. As mentioned earlier, sticking with a “stable” (even minor version)

kernel is recommended over the “development” (odd minor version) kernel. It is

also important to understand how far forward you can move your system simply

by adding a new kernel. The kernel is not an isolated piece of software. It in-

78 Chapter 4

terfaces with a myriad of program and libraries. For example, the Linux mount

command file system interfaces to the kernel; should significant changes to the ker-

nel occur, a newer, compatible mount command may also need to be upgraded.

Usually, however, the most significant link between the kernel and the rest of the

operating system programs occurs with what most people call libc. This is a li-

brary of procedures that must be linked with nearly every single Linux program.

It contains everything from the printf function to routines to generate random

numbers. The library libc is tied very closely to the kernel version, and since al-

most every program on the system is tied closely to libc, the kernel and LibC must

be in proper version synchronization. Of course, all of the details can be found at

www.kernel.org, or as a link from that site.

The next step is to determine whether you can use a “stock” kernel. While every

major distribution company uses as a starting point a stock kernel downloaded from

kernel.org, companies often apply patches or fixes to the kernel they ship on the

CD-ROM. These minor tweaks and fixes are done to support the market for which

the distribution is targeted or to add some special functionality required for their

user base or to distinguish their product. For example, one distribution company

may have a special relationship with a RAID device manufacturer and include a

special device driver with their kernel that is not found in the stock kernel. Or a

distribution company may add support for a high-performance network adapter or

even modify a tuning parameter deep in the kernel to achieve higher performance

over the stock kernels. Since the distribution company often modifies the stock

kernel, several options are available for upgrading the kernel:

• Download the kernel from the distribution company’s Web site instead of

kernel.org. In most cases, the distribution company will make available free,

upgraded versions of the kernel with all of their distribution-specific modifications

already added.

• Download the kernel from kernel.org, and simply ignore the distribution-

dependent modifications to the kernel. Unless you have a special piece of hardware

not otherwise supported by the stock kernel, it is usually safe to use the stock

kernel. However, any performance tuning performed by the distribution company

would not have been applied to the newly download kernel.

• Port the kernel modification to the newer kernel yourself. Generally, distribution

companies try to make it very clear where changes have been made. Normally, for

example, you could take a device driver from the kernel that shipped with your

distribution and add it to the newer stock kernel if that particular device driver

was required.

Linux 79

Of course, all of this may sound a little complicated to the first-time Beowulf

user. However, none of these improvements or upgrades are required. They are

by the very nature of Linux freely available to users to take or leave as they need

or see fit. Unless you know that a new kernel will solve some existing problem

or security issue, it is probably good advice to simply trim the kernel down, as

described earlier, and use what was shipped with your distribution.

4.2.6 Linux File Systems

Linux supports an amazing number of file systems. Because of its modular kernel

and the virtual file system interface used within the kernel, dynamically loaded

modules can be loaded and unloaded on the fly to support whatever file system is

being mounted. For Beowulf, however, simplicity is usually a good rule of thumb.

Even through there are a large number of potential file systems to compile into the

kernel, most Beowulf users will require only one or two.

The de facto standard file system on Linux is the second extended file system,

commonly called EXT2. EXT2 has been performing well as the standard file sys-

tem for years. It is fast and extremely stable. Every Beowulf should compile the

EXT2 file system into the kernel. It does, unfortunately, have one drawback, which

can open the door to including support for (and ultimately choosing) another file

system. EXT2 is not a “journaling” file system.

Journaling File Systems. The idea behind a journaling file system is quite

simple: Make sure that all of the disk writes are performed in such a way as

to ensure the disk always remains in a consistent state or can easily be put in

a consistent state. That is usually not the case with nonjournaling file systems

like EXT2. Flipping off the power while Linux is writing to an EXT2 file system

can often leave it in an inconsistent state. When the machine reboots, a file system

check, or “fsck,” must be run to put the disk file system back into a consistent state.

Performing such a check is not a trivial matter. It is often very time consuming.

One rule of thumb is that it requires one hour for every 100 gigabytes of used disk

space. If a server has a large RAID array, it is almost always a good idea to use a

journaling file system, to avoid the painful delays that can occur when rebooting

from a crash or power outage. However, for a Beowulf compute node, the choice of

a file system is not so clear.

Journaling file systems are slightly slower than nonjournaling file systems for

writing to the disk. Since the journaling file system must keep the disk in a con-

sistent state even if the machine were to suddenly crash (although not likely with

Linux), the file system must write a little bit of extra accounting information, the

80 Chapter 4

“journal,” to the disk first. This information enables the exact state of the file

system to be tracked and easily restored should the node fail. That little bit of

extra writing to the disk is what makes journaling file systems so stable, but it also

slows them down a little bit.

If a Beowulf user expects many of the programs to be disk-write bound, it may

be worth considering simply using EXT2, the standard nonjournaling file system.

Using EXT2 will eke out the last bit of disk performance for a compute node’s local

file writes. However, as described earlier, should a node fail during a disk write,

there is a chance that the file system will be corrupt or require an fsck that could

take several minutes or several hours depending on the size of the file system. Many

parallel programs use the local disk simply as a scratch disk to stage output files

that then must be copied off the local node and onto the centralized, shared file

system. In those cases, the limiting factor is the network I/O to move the partial

results from the compute nodes to the central, shared store. Improving disk-write

performance by using a nonjournaling file system would have little advantage in

such cases, while the improved reliability and ease of use of a journaling file system

would be well worth the effort.

Which Journaling File System? Once, unlike other legacy operating systems,

Linux is blessed with a wide range of journaling file systems from which to choose.

The most common are EXT3, ReiserFS, IBM’s JFS, and SGI’s XFS. EXT3 is proba-

bly the most convenient file system for existing Linux to tinker with. EXT3 uses the

well-known EXT2 file formatting but adds journaling capabilities; it does not im-

prove upon EXT2, however. ReiserFS, which was designed and implemented using

more sophisticated algorithms than EXT2, is being used in the SuSE distribution.

It generally has better performance characteristics for some operations, especially

systems that have many, many small files or large directories. IBM’s Journaling

File System (JFS) and SGI’s XFS files systems had widespread use with AIX and

IRIX before being ported to Linux. Both file systems not only do journaling but

were designed for the highest performance achievable when writing out large blocks

of data from virtual memory to disk. For the user not highly experienced with file

systems and recompiling the kernel, the final choice of journaling file system should

be based not on the performance characteristics but on the support provided by the

Linux distribution, local Linux users, and the completeness of Linux documentation

for the software.

Networked and Distributed File Systems. While most Linux clusters use a

local file system for scratch data, it is often convenient to use network-based or dis-

tributed file systems to share data. A network-based file system allows the node to

Linux 81

access a remote machine for file reads and writes. Most common and most popular

is the network file system, NFS, which has been around for about two decades. An

NFS client can mount a remote file system over an IP (Internet Protocol) network.

The NFS server can accept file access requests from many remote clients and store

the data locally. NFS is also standardized across platforms, making it convenient

for a Linux client to mount and read and write files from a remote server, which

could be anything from a Sun desktop to a Cray supercomputer.

Unfortunately, NFS does have two shortcomings for the Beowulf user: scalability

and synchronization. Most Linux clusters find it convenient to have each compute

node mount the user’s home directory from a central server. In this way, a user

in the typical edit, compile, and run development loop can recompile the parallel

program and then spawn the program onto the Beowulf, often with the use of an

mpirun or PBS command, which are covered in Chapters 9 and 16, respectively.

While using NFS does indeed make this operation convenient, the result can be

a B3 (big Beowulf bottleneck). Imagine for a moment that the user’s executable

was 5 megabytes, and the user was launching the program onto a 256-node Linux

cluster. Since essentially every single server node would NFS mount and read the

single executable from the central file server, 1,280 megabytes would need to be

sent across the network via NFS from the file server. At 50 percent efficiency

with 100-baseT Ethernet links, it would take approximately 3.4 minutes simply

to transfer the executable to the compute nodes for execution. To make matters

worse, NFS servers generally have difficulty scaling to that level of performance

for simultaneous connections. For most Linux servers, NFS performance begins

to seriously degrade if the cluster is larger than 64 nodes. Thus, while NFS is

extremely convenient for smaller clusters, it can become a serious bottleneck for

larger machines. Synchronization is also an issue with NFS. Beowulf users should

not expect to use NFS as a means of communicating between the computational

nodes. In other words, compute nodes should not write or modify small data files

on the NFS server with the expectation that the files can be quickly disseminated

to other nodes.

The best technical solution would be a file system or storage system that could use

a tree-based distribution mechanism and possibly use available high-performance

network adapters such as Myrinet or Gigabit Ethernet to transfer files to and from

the compute nodes. Unfortunately, while several such systems exist, they are re-

search projects and do not have a pervasive user base. Other solutions such as

shared global file systems, often using expensive fiber channel solutions, may in-

crease disk bandwidth but are usually even less scalable. For generic file server ac-

cess from the compute nodes to a shared server, NFS is currently the most common

82 Chapter 4

option.

Experimental file systems are available, however, that address many of the short-

comings described earlier. Chapter 17 discusses PVFS, the Parallel Virtual File

System. PVFS is different from NFS because it can distribute parts of the op-

erating system to possibly dozens of Beowulf nodes. When done properly, the

bottleneck is no longer an Ethernet adapter or hard disk. Furthermore, PVFS pro-

vides parallel access, so many readers or writers can access file data concurrently.

You are encouraged to explore PVFS as an option for distributed, parallel access

to files.

4.3 Pruning Your Beowulf Node

Even if recompiling your kernel, downloading a new one, or choosing a journaling

file system seems too adventuresome at this point, you can some very simple things

to your Beowulf node that can increase performance and manageability. Remember

that just as the kernel, with its nearly five hundred dynamically loadable modules,

provides drivers and capabilities you probably will never need, so too your Linux

distribution probably looks more like a kitchen sink than a lean and mean comput-

ing machine. While you may now be tired of the Linux Beowulf adage “a smaller

operating system is a better operating system,” it must be once again applied to

the auxiliary programs often run with a conventional Linux distribution. If we look

at the issue from another perspective, every single CPU instruction performed by

the kernel or operating system daemon not directly contributed to the scientific

calculation is a wasted CPU instruction. Fortunately, with Linux you can under-

stand and modify any daemon or process as you convert your kitchen sink of useful

utilities and programs into a designed-for-computation roadster. For a Beowulf,

eliminating useless tasks delivers more megaflop per dollar to the end user.

The first step to pruning the operating system daemons and auxiliary programs

is to find out what is running on the system. For most Linux systems there are at

least two standard ways to start daemons and other processes, which may waste

CPU resources as well as memory bandwidth (often the most precious commodity

on a cluster).

inetd: This is the “Internet superserver”. Its basic function is to wait for connec-

tions on a set of ports and then spawn and hand off the network connection to the

appropriate program when an incoming connection is made. The configuration for

what ports inetd is waiting as well as what will get spawned can been determined

by looking at /etc/inetd.conf and /etc/services.

Linux 83

/etc/rc.d/init.d: This special directory represents the scripts that are run during

the booting sequence and that often launch daemons that will run until the machine

is shut down.

4.3.1 inetd.conf

The file inetd.conf is a simple configuration file. Each line in the file represents a

single service, including the port associated with that service and the program to

launch when a connection to the port is made. Below are some simple examples:

ftp stream tcp nowait root /usr/sbin/tcpd in.proftpd

finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

talk dgram udp wait root /usr/sbin/tcpd in.talkd

The first column provides the name of the service. The file /etc/services maps

the port name to the port number, for example,

% grep ^talk /etc/services

talk 517/udp # BSD talkd(8)

To slim down your Beowulf node, get rid of the extra services in inetd.conf;

you probably will not require the /usr/bin/talk program on each of the compute

nodes. Of course, what is required will depend on the computing environment. In

many very secure environments, where ssh is run as a daemon and not launched

from inetd.conf for every new connection, inetd.conf has no entries. In such extreme

examples, the inetd process that normally reads inetd.conf and listens on ports,

ready to launch services, can even be eliminated.

4.3.2 /etc/rc.d/init.d

The next step is to eliminate any daemons or processes that are normally started

at boot. While occasionally Linux distributions differ in style, the organization of

the files that launch daemons or run scripts during the first phases of booting up a

system are very similar. For most distributions, the directory /etc/rc.d/init.d

contains scripts that are run when entering or leaving a run level. Below is an

example:

% cd /etc/rc.d/init.d

% ls

alsasound functions keytable named postgresql snmpd ypbind

apmd gpm killall network proftpd squid yppasswdd

atalk halt kparam nfs radiusd sshd ypserv

84 Chapter 4

atd httpd kudzu nfsfs random synctime

autofs identd ldap nfslock sendmail syslog

canna inet lpd nscd serial unicon

crond innd mars-nwe pcmcia single xinetd

dhcpd ipchains mysql portmap smb xntpd

However, the presence of the script does not indicate it will be run. Other

directories and symlinks control which scripts will be run. Most systems now use

the convenient chkconfig interface for managing all the scripts and symlinks that

control when they get turned on or off. Not every script spawns a daemon. Some

scripts just initialize hardware or modify some setting.

A convenient way to see all the scripts that will be run when entering run level 3

is the following:

% chkconfig --list | grep ’3:on’

syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off

pcmcia 0:off 1:off 2:on 3:on 4:on 5:on 6:off

xinetd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

lpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

mysql 0:off 1:off 2:on 3:on 4:on 5:on 6:off

httpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

sshd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

named 0:off 1:off 2:off 3:on 4:on 5:on 6:off

dhcpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off

inet 0:off 1:off 2:off 3:on 4:on 5:on 6:off

network 0:off 1:off 2:on 3:on 4:on 5:on 6:off

nfsfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off

random 0:off 1:off 2:on 3:on 4:on 5:on 6:off

keytable 0:off 1:off 2:on 3:on 4:on 5:on 6:off

nfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off

nfslock 0:off 1:off 2:off 3:on 4:on 5:on 6:off

ntpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

portmap 0:off 1:off 2:off 3:on 4:on 5:on 6:off

sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off

serial 0:off 1:off 2:on 3:on 4:on 5:on 6:off

squid 0:off 1:off 2:off 3:on 4:on 5:on 6:off

tltime 0:off 1:off 2:off 3:on 4:off 5:on 6:off

Linux 85

crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Remember that not all of these spawn cycle-stealing daemons that are not re-

quired for Beowulf nodes. The “serial” script, for example, simply initializes the

serial ports at boot time; its removal is not likely to reduce overall performance.

However, in this example many things could be trimmed. For example, there is

probably no need for lpd, mysql, httpd, named, dhcpd, sendmail, or squid on a

compute node. It would be a good idea to become familiar with the scripts and

use the “chkconfig” command to turn off unneeded scripts. With only a few ex-

ceptions, an X-Windows server should not be run on a compute node. Starting

an X session takes ever-increasing amounts of memory and spawns a large set of

processes. Except for special circumstances, run level 3 will be the highest run level

for a compute node.

4.3.3 Other Processes and Daemons

In addition to inetd.conf and the scripts in /etc/rc.d/init.d, there are other

common ways for a Beowulf node to waste CPU or memory resources. The cron

program is often used to execute programs at scheduled times. For example, cron

is commonly used to schedule a nightly backup or an hourly cleanup of system

files. Many distributions come with some cron scripts scheduled for execution.

The program slocate is often run as a nightly cron to create an index permitting

the file system to be searched quickly. Beowulf users may be unhappy to learn

that their computation and file I/O are being hampered by a system utility that is

probably not useful for a Beowulf. A careful examination of cron and other ways

that tasks can be started will help trim a Beowulf compute node.

The ps command can be invaluable during your search-and-destroy mission.

% ps -eo pid,pcpu,sz,vsize,user,fname --sort=vsize

This example command demonstrates sorting the processes by virtual memory size.

The small excerpt below illustrates how large server processes can use memory.

The example is taken from a Web server, not a well-tuned Beowulf node.

PID %CPU SZ VSZ USER COMMAND

26593 0.0 804 3216 web httpd

26595 0.0 804 3216 web httpd

3574 0.0 804 3216 web httpd

506 0.0 819 3276 root squid

637 0.0 930 3720 root AgentMon

86 Chapter 4

552 0.0 1158 4632 dbenl postmast

13207 0.0 1213 4852 root named

13209 0.0 1213 4852 root named

13210 0.0 1213 4852 root named

13211 0.0 1213 4852 root named

13212 0.0 1213 4852 root named

556 0.0 1275 5100 dbenl postmast

657 0.0 1280 5120 dbenl postmast

557 0.0 1347 5388 dbenl postmast

475 0.0 2814 11256 mysql mysqld

523 0.0 2814 11256 mysql mysqld

524 0.0 2814 11256 mysql mysqld

507 0.0 3375 13500 squid squid

In this example the proxy cache program squid is using a lot of memory (and

probably some cache), even though the CPU usage is negligible. Similarly, the ps

command can be used to locate CPU hogs. Becoming familiar with ps will help

quickly find runaway processes or extra daemons competing for cycles with the

scientific applications intended for your Beowulf.

4.4 Other Considerations

You can explore several other basic areas in seeking to understand the performance

and behavior of your Beowulf node running the Linux operating system. Many

scientific applications need just four things from a node: CPU cycles, memory, net-

working (message passing), and disk I/O. Trimming down the kernel and removing

unnecessary processes can free up resources from each of those four areas.

Because the capacity and behavior of the memory system are vital to many scien-

tific applications, it is important that memory be well understood. One of the most

common ways an application can get into trouble with the Linux operating system

is by using too much memory. Demand-paged virtual memory, where memory pages

are swapped to and from disk on demand, is one of the most important achieve-

ments in modern operating system design. It permits programmers to transparently

write applications that allocate and use more virtual memory than physical mem-

ory available on the system. The performance cost for declaring enormous blocks

of virtual memory and letting the clever operating system sort out which virtual

memory pages in fact get mapped to physical pages, and when, is usually very

small. Most Beowulf applications will cause memory pages to be swapped in and

Linux 87

out at very predictable points in the application. Occasionally, however, the worst

can happen. The memory access patterns of the scientific application can cause a

pathological behavior for the operating system.

The crude program below demonstrates this behavior:

#include <stdlib.h>

#include <stdio.h>

#define MEGABYTES 300

main() {

int *x, *p, t=1, i, numints = MEGABYTES*1024*1024/sizeof(int);

x = (int *) malloc(numints*sizeof(int));

if (!x) { printf("insufficient memory, aborting\n"); exit(1); }

for (i=1; i<=5; i++) {

printf("Loop %d\n",i);

for (p=x; p<x+numints-1; p+=1024) {

*p = *p + t;

}

}

}

On a Linux server with 256 megabytes of memory, this program—which walks

through 300 megabytes of memory, causing massive amounts of demand-paged

swapping—can take about 5 minutes to complete and can generate 377,093 page

faults. If, however, you change the size of the array to 150 megabytes, which fits

nicely on a 256-megabyte machine, the program takes only a half a second to run

and generates only 105 page faults.

While this behavior is normal for demand-paged virtual memory operating sys-

tems such as Linux, it can lead to sometimes mystifying performance anomalies. A

couple of extra processes on a node using memory can push the scientific applica-

tion into swapping. Since many parallel applications have regular synchronization

points, causing the application to run as slow as the slowest node, a few extra

daemons or processes on just one Beowulf node can cause an entire application to

halt. To achieve predictable performance, you must prune the kernel and system

processes of your Beowulf.

4.4.1 TCP Messaging

Another area of improvement for a Beowulf can be standard TCP messaging. As

mentioned earlier, most Linux distributions come tuned for general-purpose net-

working. For high-performance compute clusters, short low-latency messages and

88 Chapter 4

very long messages are common, and their performance can greatly affect the over-

all speed of many parallel applications. Linux is not generally tuned for messages

at the extremes. However, once again, Linux provides you the tools to tune it for

nearly any purpose.

For 2.2.x kernels, a series of in-depth performance studies from NASA ICASE [20]

detail the improvements made to the kernel for Beowulf-style messaging. In their

results, significant and marked improvement could be achieved with some simple

tweaks to the kernel. Other kernel modifications that improve performance of large

messages over high-speed adapters such as Myrinet have also been made available

on the Web. Since modifications and tweaks of that nature are very dependent on

the kernel version, they are not outlined here. You are encouraged to browse the

Beowulf mailing lists and Web sites and use the power of the Linux source code to

improve the performance of your Beowulf.

4.4.2 Hardware Performance Counters

Most modern CPUs have built-in performance counters. Each CPU design mea-

sures and counts metrics corresponding to its architecture. Several research groups

have attempted to make portable interfaces for the hardware performance counters

across the wide range of CPU architectures. One of the best known is PAPI: A

Portable Interface to Hardware Performance Counters [23]. Another interface, Rab-

bit [16], is available for Intel or AMD CPUs. Both provide access to performance

counter data from the CPU. Such low-level packages require interaction with the

kernel; they are extensions to its basic functionality. In order to use any of the

C library interfaces, either support must be compiled directly into the kernel, or

a special hardware performance counter module must be built and loaded. Beo-

wulf builders are encouraged to immediately extend their operating system with

support for hardware performance counters. Users find this low-level CPU informa-

tion, especially with respect to cache behavior, invaluable in their quest for better

node-OS utilization. Three components will be required: the kernel extensions (ei-

ther compiled in or built as a module), a compatible version of the Linux kernel,

and the library interfaces that connect the user’s code to the kernel interfaces for

the performance counters.

4.5 Final Tuning with /proc

As mentioned earlier, the /proc file system is not really a file system at all, but

a window on the running kernel. It contains handles that can be used to extract

Linux 89

information from the kernel or, in some cases, change parameters deep inside the

kernel. In this section, we discuss several of the most important parameters for

Beowulfs. A multitude of Linux Web pages are dedicated to tuning the kernel and

important daemons, with the goal of serving a few more Web pages per second.

A good place to get started is linuxperf.nl.linux.org. Many Linux users take

it as a personal challenge to tune the kernel sufficiently so their machine is faster

than every other operating system in the world.

However, before diving in, some perspective is in order. Remember that in a prop-

erly configured Beowulf node, nearly all of the available CPU cycles and memory

are devoted to the scientific application. As mentioned earlier, the Linux operating

system will perform admirably with absolutely no changes. Trimming down the

kernel and removing unneeded daemons and processes provides slightly more room

for the host application. Tuning up the remaining very small kernel can further

refine the results. Occasionally, a performance bottleneck can be dislodged with

some simple kernel tuning. However, unless performance is awry, tinkering with pa-

rameters in /proc will more likely yield a little extra performance and a fascinating

look at the interaction between Linux and the scientific application than incredible

speed increases.

Now for a look at the Ethernet device:

% cat /proc/net/dev

Inter-| Receive | Transmit

face |bytes packets errs drop fifo frame compressed multicast|bytes

packets errs drop fifo colls carrier compressed

lo:363880104 559348 0 0 0 0 0 0 363880104 559348 0 0 0 0 0 0

eth0:1709724751 195793854 0 0 357 0 0 0 4105118568 202431445

0 0 0 0 481 0

brg0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

It is a bit hard to read, but the output is raw columnar data. A better formatting

can be seen with /sbin/ifconfig. One set of important values is the total bytes

and the total packets sent or received on an interface. Sometimes a little basic

scientific observation and data gathering can go a long way. Are the numbers

reasonable? Is application traffic using the correct interface? You may need to tune

the default route to use a high-speed interface in favor of a 10-baseT Ethernet. Is

something flooding your network? What is the size of the average packet? Another

key set of values is for the collisions (colls), errs, drop, and frame. All of those

values represent some degree of inefficiency in the Ethernet. Ideally, they will all

be zero. A couple of dropped packets is usually nothing to fret about. But should

90 Chapter 4

those values grow at the rate of several per second, some serious problems are likely.

The “collisions” count will naturally be nonzero if traffic goes through an Ethernet

hub rather than an Ethernet switch. High collision rates for hubs are expected;

that’s why they are less expensive.

Tunable kernel parameters are in /proc/sys. Network parameters are generally

in /proc/sys/net. Many parameters can be changed. Some administrators tweak

a Beowulf kernel by modifying parameters such as tcp sack, tcp timestamps,

tcp window scaling, rmem default, rmem max, wmem default, or wmem max.

The exact changes and values depend on the kernel version and networking configu-

ration, such as private network, protected from denial of service attacks or a public

network where each node must guard against SYN flooding and the like. You are

encouraged to peruse the documentation available at www.linuxhq.com and other

places where kernel documentation or source is freely distributed, to learn all the

details pertaining to their system.

With regard to memory, the meminfo handle provides many useful data points:

% cat /proc/meminfo

total: used: free: shared: buffers: cached:

Mem: 263380992 152883200 110497792 64057344 12832768 44445696

Swap: 271392768 17141760 254251008

MemTotal: 257208 kB

MemFree: 107908 kB

MemShared: 62556 kB

Buffers: 12532 kB

Cached: 43404 kB

SwapTotal: 265032 kB

SwapFree: 248292 kB}

In the example output, the system has 256 megabytes of RAM, about 12.5

megabytes allocated for buffers and 108 megabytes of free memory.

The tunable virtual memory parameters are in /proc/sys/vm. Some Beowulf

administrators may wish to tune the amount of memory used for buffering.

% cat /proc/sys/vm/buffermem

2 10 60

The first value represents, as a percentage, the amount of the total system memory

used for buffering on the Beowulf node. For a 256-megabyte node, no less than

about 5 megabytes will be used for buffering. To change the value is simple:

Linux 91

% echo 4 10 60 > /proc/sys/vm/buffermem

Like networking and virtual memory, there are many /proc handles for tuning

or probing the file system. A node spawning many tasks can use many file handles.

A standard ssh to a remote machine, where the connection is maintained, and not

dropped, requires four file handles. The number of file handles permitted can be

displayed with the command

% cat /proc/sys/fs/file-max

4096

The command for a quick look at the current system is

% cat /proc/sys/fs/file-nr

1157 728 4096

This shows the high-water mark (in this case, we have nothing to worry about),

the current number of handles in use, and the max.

Once again, a simple echo command can increase the limit:

% echo 8192 > /proc/sys/fs/file-max

The utility /sbin/hdparm is especially handy at querying, testing, and even

setting hard disk parameters:

% /sbin/hdparm -I /dev/hda

/dev/hda:

Model=DW CDW01A0 A , FwRev=500.B550, SerialNo=DWW-AMC1211431 9

Config={ HardSect NotMFM HdSw>15uSec SpinMotCtl Fixed DTR>5Mbs FmtGapReq }

RawCHS=16383/16/63, TrkSize=57600, SectSize=600, ECCbytes=40

BuffType=3(DualPortCache), BuffSize=2048kB, MaxMultSect=16, MultSect=8

DblWordIO=no, maxPIO=2(fast), DMA=yes, maxDMA=0(slow)

CurCHS=17475/15/63, CurSects=16513875, LBA=yes

LBA CHS=512/511/63 Remapping, LBA=yes, LBAsects=19541088

tDMA={min:120,rec:120}, DMA modes: mword0 mword1 mword2

IORDY=on/off, tPIO={min:120,w/IORDY:120}, PIO modes: mode3 mode4

UDMA modes: mode0 mode1 *mode2 }

Using a Beowulf builder and a simple disk test,

92 Chapter 4

% /sbin/hdparm -t /dev/hda1

/dev/hda1:

Timing buffered disk reads: 64 MB in 20.05 seconds = 3.19 MB/sec

you can understand whether your disk is performing as it should, and as you expect.

Finally, some basic parameters of that kernel can be displayed or modified.

/proc/sys/kernel contains structures. For some message-passing codes, the key

may be /proc/sys/kernel/shmmax. It can be used to get or set the maximum size

of shared-memory segments. For example,

% cat /proc/sys/kernel/shmmax

33554432

shows that the largest shared-memory segment available is 32 megabytes. Espe-

cially on an SMP, some messaging layers may use shared-memory segments to pass

messages within a node, and for some systems and applications 32 megabytes may

be too small.

All of these examples are merely quick forays into the world of /proc. Naturally,

there are many, many more statistics and handles in /proc than can be viewed in

this quick overview. You are encouraged to look on the Web for more complete

documentation and to explore the Linux source—the definitive answer to the ques-

tion “What will happen if I change this?” A caveat is warranted: You can make

your Beowulf node perform worse as a result of tampering with kernel parameters.

Good science demands data collection and repeatability. Both will go a long way

toward ensuring that kernel performance increases, rather than decreases.

4.6 Conclusions

Linux is a flexible, robust node operating system for Beowulf computational clus-

ters. Stability and adaptability set it apart from the legacy operating systems

that dominate desktop environments. While not a “cancer” like some detractors

have labeled Linux, it has spread quickly from its humble beginnings as a student’s

hobby project to a full-featured server operating system with advanced features

and legendary stability. And while almost any Linux distribution will perform ad-

equately as a Beowulf node operating system, a little tuning and trimming will

skinny down the already lean Linux kernel, leaving more compute resources for

scientific applications. If this chapter seems a little overwhelming, we note that

there are companies that will completely configure and deliver Beowulf systems,

Linux 93

including all the aforementioned tweaks and modifications to the kernel. There

are also revolutionary systems such as the Beowulf software from Scyld Computing

Corporation (www.sycld.com). The software from Scyld combines a custom Linux

kernel and distribution with a complete environment for submitting jobs and ad-

ministering the cluster. With its extremely simple single-system image approach

to management, the Scyld software can make Beowulfs very easy indeed.

One final reminder is in order. Many Beowulf builders became acquainted with

Linux purely out of necessity. They started constructing their Beowulf saying, “Ev-

ery OS is pretty much like every other, and Linux is free. . . free is good, right?”. On

the back of restaurant napkins, they sketched out their improved price/performance

ratios. After the hardware arrived, the obligatory LINPACK report was sent to the

Top500 list, and the real scientific application ran endlessly on the new Beowulf.

Then it happened. Scientists using Linux purely as a tool stopped and peered in-

quisitively at the tool. They read the source code for the kernel. Suddenly, the

simulation of the impending collision of the Andromeda galaxy with our own Milky

Way seemed less interesting. Even though the two galaxies are closing at a rate

of 300,000 miles per hour and we have only 5 billion years to wait, the simulation

simply seemed less exciting than improving the virtual memory paging algorithm

in the kernel source, sending Linus Torvalds the patch, and reading all the kernel

mailing list traffic. Beware. Even the shortest of peeks down the rabbit’s hole can

sometimes lead to a wonderland much more interesting than your own.

 blank

5 Network Hardware

Thomas Sterling

Networking converts a shelf full of PCs into a single system. Networking also allows

a system to be accessed remotely and to provide services to remote clients. The

incredible growth of both the Internet and enterprise-specific intranets has resulted

in the availability of high-performance, low-cost networking hardware that Beowulf

systems use to create a single system from a collection of nodes. This chapter

reviews networking hardware, with a particular emphasis on Fast Ethernet because

of its superb price/performance ratio.

For Beowulf systems, the most demanding communication requirements are not

with the external environment but with the other nodes on the system area net-

work. In a Beowulf system, every Beowulf node may need to interact with every

other node, independently or together, to move a wide range of data types between

processors. Such data may be large blocks of contiguous information representing

subpartitions of very large global data sets, small packets containing single values,

or synchronization signals in support of collective operation. In the former case,

a high bandwidth communication path may be required. In the latter case, low

latency communication is required to expedite execution. Requirements in both

cases are highly sensitive to the characteristics of the parallel program being exe-

cuted. In any case, communications capability will determine the generality of the

Beowulf-class system and the degree of difficulty in constructing efficient programs.

The choice of network hardware and software dictates the nature of this capability.

Section 5.1 introduces some of the most popular networking technologies for

Beowulf clusters. In Section 5.2, we take a detailed look at the most popular net-

working choice, Fast Ethernet (and Gigabit Ethernet). We conclude in Section 5.3

with comments on interconnect technology choice and some other practical issues

5.1 Interconnect Technologies

In spite of its popular use in existing Beowulfs, Ethernet-based networking is not the

only technology choice for enabling internode communication. Other solutions exist

that can deliver equal or better performance depending on the application. Fast

Ethernet is a popular choice because of its ubiquity and consequent low price. A

Fast Ethernet card costs only about 2 percent of the price of today’s $1,000 Beowulf

nodes. Only the network switches have a significant impact on the overall price of

the system. With other networking technologies, each network interface card can

cost as much as a 16-port Fast Ethernet switch. So you have to think carefully

before committing to an alternative network. If the kinds of applications you intend

96 Chapter 5

to run require specific properties, such as low latency, which are not provided by

Fast Ethernet, then it is likely worth the additional cost. For example, real-time

image processing, parallel video streaming, and real-time transaction processing all

require low latencies and do not work well with Fast Ethernet. We will briefly

discuss the most common networking technologies used by Beowulf systems. Not

enough data has been collected on application performance in systems using these

technologies for us to comment on when each should be used.

5.1.1 The Ethernets

The most popular and inexpensive networking choice for Beowulfs is Ethernet,

particularly Fast Ethernet. Ethernet, first developed at Xerox PARC in the early

1970s and standardized by the IEEE in the early 1980s, is the most widely used

technology for local area networks. Ethernet continues to be an evolving technology:

10 Gigabit Ethernet (10 Gbps) has entered vendor field testing and should be

available in quantity by early 2002. With the very low cost of Fast Ethernet and

the rapid emergence of Gigabit and 10 Gigabit Ethernet, Ethernet will continue to

play a critical role in Beowulf-class computing for some time to come.

Fast Ethernet. Beowulf was enabled by the availability of a low-cost, moderate-

bandwidth networking technology. Ethernet, operating initially at 10 megabits per

second (Mbps) for early Beowulfs and shortly thereafter at 100 Mbps peak band-

width, provided a cost-effective means of interconnecting PCs to form an integrated

cluster. Used primarily for commercial local area network technology, Ethernet sup-

plied the means of implementing a system area network at about 20 percent of the

cost of the total system, even when employing low-cost personal computers. Fast

Ethernet with TCP/IP provides 90–95 Mbps to applications with latencies in the

hundreds of microseconds. Drivers for Fast Ethernet and TCP/IP have been in-

tegrated into the mainline Linux kernel sources for quite some time and are well

tested, with a large user base. Cost of Fast Ethernet interfaces has dropped to the

point that many motherboard vendors have begun to integrate single- or dual-port

interfaces into their products. While other networking continues to be available

(and used in some Beowulfs), Fast Ethernet will continue to be a mainstay of many

Beowulf implementations because of its extremely low cost.

Gigabit Ethernet. The success of 100 base-T Fast Ethernet and the growing de-

mands imposed on networks by high-resolution image data, real-time data browsing,

and Beowulf-class distributed applications have driven the industry to establish a

new set of standards for Ethernet technology capable of 1Gbps. Referred to as “Gi-

Network Hardware 97

gabit Ethernet,” a backward-compatible network infrastructure has been devised,

and products are available from various vendors. A number of changes were required

to Fast Ethernet, including the physical layer and a large part of the data exchange

protocols. However, to maintain compatibility with Fast Ethernet, or 100-baseT

systems, means for mixed-mode operation has been provided. Currently, Gigabit

Ethernet is not quite cost effective for Beowulf-class computing. The early product

offerings for Gigabit Ethernet, as the early offerings for 10 Gigabit Ethernet will

be, were for backbone service and traffic aggregation rather than for direct host

connections; hence, the demand for NICs was assumed to be low, and a large mar-

ket has not yet emerged to amortize development costs. Both switches and NICs

are substantially more expensive than their Fast Ethernet equivalents.

Several factors will motivate the migration of next-generation Gigabit Ethernet

into the role of system area networks for Beowulf-class systems. While Fast Eth-

ernet served well for 200MHz Intel PentiumPro processor-based Beowulf nodes,

current Pentium 4 processors are available at speeds of 1.7GHz. The PCI bus

now supports a data path twice as wide and twice the clock rate, permitting high-

bandwidth data transfers to peripheral devices including Gigabit NICs. A broader

range of Beowulf applications can be supported with higher bandwidth. Unfor-

tunately, Gigabit Ethernet with TCP/IP does not provide substantially better

latencies than does Fast Ethernet. Some Beowulf installations have already ex-

perimented with Gigabit Ethernet, and the Beowulf project has already delivered

drivers to the Linux operating system for several Gigabit Ethernet cards. Some

vendors have even begun to supply high-performance, open source gigabit drivers

for their NICs. The experience with Fast Ethernet demonstrated that a rapid

and dramatic drop in price can be expected once the technology is adopted by

the mass market. With the introduction of inexpensive combination ethernet/Fast

Ethernet/Gigabit Ethernet ASICs, motherboard integration and low-cost gigabit

adapters are beginning to appear. Gigabit switch prices have also begun to fall.

The 1Gbps technology is in place, and experience by manufacturers is leading to

rapid improvements and cost cutting. With these advances, we expect that Gigabit

Ethernet will become a leader in interconnect price/performance in the next one to

two years.

5.1.2 Myrinet

Myrinet is a system area network (SAN) designed by Myricom, Inc. On November

2, 1998, it was approved as American National Standard ANSI/VITA 26-1998. It

is designed around simple low-latency blocking switches. The path through these

switches is implemented with “header-stripping” source routing, where the sending

98 Chapter 5

node prepends the route through the network, and each switch removes the first

byte of the message and uses it as the output port. Packets can be of arbitrary

length.

The bandwidth of the adapter and switch is hidden from the application and has

regularly increased over time from the original 640Mbps to the current 2.4Gbps.

Myrinet delivers between 10 and 7 microseconds, depending on the generation of

adapter and switch. A limitation of Myrinet is that the switches are incrementally

blocking. If a destination port is busy in a multistage network, the packet is stalled,

and that stalled packet potentially blocks other packets traveling the network, even

to unrelated source and destination nodes. This problem is mitigated, however, by

the network’s high speed and the ability to construct topologies with rich intercon-

nects. Blocking is minimized by higher-density switches that reduce the number of

a stages traversed by a typical message in a network of fixed size.

While Myrinet is the strongest provider of high-bandwidth SANs, it has the lim-

itation of being provided by a single vendor. The price of the network adapters

and per port costs of switches has remained high, typically exceeding the price of

the entire computing node. Myrinet’s big advantage is its customized protocols.

These protocols are designed to yield high performance and low latency by offload-

ing as much work as possible to the NIC itself and bypassing the operating system

whenever possible. Myrinet NICs effectively provide a second processor that can

do much of the protocol work and avoid interrupting the host CPU during commu-

nication. This advantage could also be obtained for less money by adding a second

primary processor. This advantage is most significant with active messages, where

the on-board processor can handle the message and generate a reply without and in-

terrupting the host CPU. In order for the hardware to be used in this way, Myricom

provides a substantial amount of open source software, both drivers and a tuned

version of MPICH. Using customized protocols also encourages user-level access

to the hardware. This strategy has also been pursued with commodity hardware

(see Section 5.3.3 for a brief discussion of MVIA, an implementation for commod-

ity hardware by the Virtual Interface Architecture, VIA). Unfortunately, user-level

access protocols have the disadvantage of precluding clusters from transparently

scaling from standard TCP and Ethernet on small-scale machines to alternative

hardware such as Myrinet on big clusters.

5.1.3 cLAN

The cLAN high-performance cluster switches provide a native implementation of

the VIA (see www.viarch.org). Eight port and thirty port switches are available,

offering 1.25 Gbps per port (2.5 Gbps bidirectional). Because these implement the

Network Hardware 99

VIA directly in hardware, latencies are low (around 0.5 microsecond) and band-

widths are high (comparable to the other high-end networking solutions). The

developer of cLAN was Giganet, which was acquired by Emulex in March 2001.

While VIA is defined by a consortium and is not a single-vendor design, the VIA

standard specifies only a set of concepts and operations. There is no specification of

the signals (they can be electrical, optical, or anything else) or the interfaces to indi-

vidual computers. There is also no standard programmer interface, although most

VIA efforts (including cLAN) use the sample application programming interface

provided in the VIA specification. However, because the VIA standard does not

specify the hardware over which VIA is used, there is no possibility of interoperable

VIA solutions. Infiniband, discussed below, addresses this issue.

5.1.4 Scalable Coherent Interface

The Scalable Coherent Interface is an IEEE standard originally designed to provide

an interconnect for cache-coherent shared-memory systems. One of the first major

deployments of SCI was on the Convex Exemplar SPP-1000 in 1994. SCI has not

been able to gain ground in traditional networking markets, despite its ability to

serve as a general-purpose interconnect. The main reason Beowulf designers choose

to use SCI is for its low latency of well under 10 µs. Current PC motherboard chip

sets do not support the coherency mechanisms required to construct an SCI-based

shared-memory Beowulf. But if that functionality is ever added to commodity

motherboards, we may see an increase in the popularity of SCI as researchers ex-

periment with shared-memory Beowulf systems. Seven years ago, SCI delivered

many clear advantages, but today commodity network technology has caught up,

although SCI still delivers significantly lower latency. Dolphin Interconnect offers

an SCI-based interconnect for Beowulf systems along with closed-source binary

drivers and an implementation of MPI tuned for the SCI network.

5.1.5 QsNet

Another high-performance network, called QsNet, is produced by Quadrics. This

network provides a bandwidth of 340 Mbps and an MPI latency of around 5 µs.

While this network is one the costliest, it has been chosen by some of the largest clus-

ters, including Compaq SC systems for the ASCI Q system and the NSF teraflops

system at the Pittsburg Supercomputing Center. To provide high performance,

Quadrics uses many techniques similar to those mentioned above for Myrinet.

100 Chapter 5

Figure 5.1
Ethernet packet format.

5.1.6 Infiniband

Infiniband (www.infinibandta.org) combines many of the concepts of VIA with

a detailed electrical and interface specification that will allow vendors to produce

interoperable components. This addresses the major limitation of the VIA spec-

ification. One goal of the Infiniband trade organization (with over two hundred

members) is to increase the rate at which networking performance improves.

As of early 2001, no Infiniband products were available. Many are under devel-

opment, however, and by 2002 Infiniband may become an important alternative to

the other networks described here. Intel has committed to delivering integrated

Infiniband interfaces on its motherboards in the next one to two years. This should

provide another high-bandwidth, low-latency interconnect at a relatively low price

point.

5.2 A Detailed Look at Ethernet

Ethernet was originally developed as a packet-based, serial multidrop network re-

quiring no centralized control. All network access and arbitration control is per-

formed by distributed mechanisms. Variable-length message packets comprise a

sequence of bits including a header, data, and error-detecting nodes. A fixed-

topology (no switched line routing) network passes packets from the source to des-

tination through intermediate elements known as hubs or switches. The next step

through the network is determined by addressing information in the packet header.

The topology can be a shared multidrop passive cable to which many Ethernet con-

trollers are attached, a tree structure of hubs or switches, or some more complicated

switching technology for high bandwidths and low latency under heavy loads.

5.2.1 Packet Format

The Ethernet message packet comprises a sequence of seven multibit fields, one

of which is variable length. The fields include a combination of network control

information and data payload. The structure of the Ethernet packet is shown in

Image Not Available

Network Hardware 101

Figure 5.1 and is described below. The packet’s variable length allows improved

overall network performance across a wide range of payload requirements. Thus, a

transfer of only a few words between nodes does not impose the full burden of the

longest possible packet. However, even with this capability, sustained data transfer

throughput is sensitive to packet length and can vary by more than an order of

magnitude depending on payload size, even in the absence of network contention.

Preamble. Arrival of a message packet at a receiving node (whether or not the

message is addressed for that node) is asynchronous. Prior to data assimilation,

the node and the incident packet must first synchronize. The preamble field is a

62-bit sequence of alternating 1s and 0s that allows the phase lock loop circuitry

of the node receiver to lock on to the incoming signal and synchronize with the bit

stream.

Synch. The synch field is a 2-bit sequence of 1s (11) that breaks the sequence

of alternating 1s and 0s provided by the preamble and indicates where the re-

maining information in the packet begins. If the preamble provides carrier-level

synchronization, the synch field provides bit field registration.

Destination Address. The destination address field is 6 bytes (or 48 bits) in

length and specifies the network designation of the network node intended to receive

the packet. A message packet may be intended for an individual node or a group

of nodes. If the first bit of the destination address field is 0, then the message

is intended for a single receiving node. If the first bit is 1, then the message

is multicast, intended for some or all network nodes. In the case of multicast

communications, a group address is employed providing a logical association among

some subset of all receiving nodes. Any node that is a member of a group specified

by the message destination address field (with the first bit equal to 1) must accept

the message. In the case of a multicast transmitted packet, a destination address

field of all 1s indicates that the packet is a broadcast message intended for all nodes

on the network. Ethernet node receivers must be capable of receiving, detecting,

and accepting broadcast messages.

In addition to distinguishing among single destination and multicast transmis-

sion, the destination address also determines whether the specified address is a

globally or locally administered address. A globally administered address is unique

and is provided by an industrywide assignment process. The address is built into

the network adaptor (interface card) by the manufacturer. A locally administered

address is provided by the local systems administrator and can be changed by the

organization managing the network. The second bit of the destination address field

102 Chapter 5

is a 0 if globally administered and a 1 if the address designation is locally adminis-

tered. The sequence of bits of the destination address field is sent least significant

bit first.

Source Address. The source address is a 48-bit field that indicates the address

of the transmitting node. The format of the source address is the same as that of

the destination address. The source address is always the individual address and

never a group address of the node sending a packet. Therefore, the least significant

bit is always 0. Likewise, the broadcast address is never used in this field.

Type. The type field is 16 bits in length and designates the message protocol

type. This information is used at higher levels of message-handling software and

does not affect the actual exchange of data bits across the network. The most

significant of the two bytes is sent first, with the least significant bit of each byte

of the type field being sent first.

Data. The message payload of the packet is included in the data field. The data

field is variable length. It may have as few as 46 bytes and as many as 1,500 bytes.

Thus, a packet may be as small as 72 bytes or as long as 1,526 bytes. The contents

of the data field are passed to higher-level software and do no affect the network

transfer control. Data is transferred least significant bit first.

Frame Check Sequence. Error detection for message corruption in transmission

is provided by computing a cyclic redundancy check (CRC) for the destination

address, source address, type, and data fields. The four-byte CRC value is provided

as the last field of the message packet. It is computed by both the transmitting and

receiving nodes and compared by the receiving node to determine that the integrity

of the packet has been retained in transmission.

5.2.2 NIC Architecture

The Network Interface Controller accepts message data from the host node proces-

sor and presents an encapsulated and encoded version of the data to the physical

network medium for transmission. While there have been many different imple-

mentations of the Ethernet NIC hardware, with some enhancements, their basic

architecture is the same. Figure 5.2 shows a block diagram of the typical Ethernet

NIC architecture. The Data Link Layer of the architecture is responsible for con-

structing the message packet and controlling the logical network interface functions.

The Physical Layer is responsible for encoding the message packet in a form that

can actually be applied to the transmission medium.

Network Hardware 103

Figure 5.2
Ethernet NIC architecture.

Data Link Layer. The Data Link Layer provides the logical interface between

the host processor and the Physical Layer of the Ethernet. When a message is to

be transmitted, the Data Link Layer accepts, temporarily stores, and encapsulates

the message and controls the transmission process of the Physical Layer. When a

message is being received, it accepts the packet from the Physical Layer, determines

whether the node is the correct destination, verifies bit integrity, unpacks the data

into byte sequence, temporarily buffers the data, and passes it on to the processor.

The Data Link Layer is made up of the Logical Link Control sublayer and the

Media Access Control sublayer.

For most current-generation Beowulf nodes, the Logical Link Control sublayer

incorporates an interface to the PCI bus. This element of the Ethernet controller

provides all logical control required to accept commands from the host proces-

sor and to provide direct memory access to the node main memory for rapid data

transfers between memory and the network. Usually included is some form of FIFO

buffering within the Data Link Layer to hold one or more incoming or outgoing mes-

sages in the node. The Logical Link Control sublayer presents variable-length byte

sequences to the Media Access Control sublayer and accepts data byte sequences

from it. The exact form and operation of the Logical Link Control sublayer is not

standardized, and manufacturer differences are a source of headaches for device

driver writers.

The Media Access Controller (MAC) is largely responsible for conducting the

Ethernet protocol for both transmitted and received messages. Its two princi-

pal tasks are message encapsulation and packet collision handling. To transmit a

message, the MAC accepts the byte sequence of the data to be sent, as well as

Image Not Available

104 Chapter 5

the destination address, from the Logical Link Controller. It formats the message

packet including the preamble, synch bits, destination address, its own address in

the source address field, and the protocol type provided by the logical link con-

troller as well as the data field. It then computes the CRC value and appends it to

the message packet. When receiving an Ethernet packet from the Physical Layer,

the MAC strips away the preamble and synch bits and determines if the destina-

tion address is that of its host node. If not, the rest of the message is discarded

and the receive process terminates. If the Destination Address field matches the

local address, the MAC accepts the data, reformatting it into the correctly ordered

byte sequence for the Logical Link Controller. The MAC computes the cyclic re-

dundancy check and compares it with the value included in the message to verify

transmission integrity.

The MAC is also responsible for handling the CSMA/CD (Carrier Sense Multiple

Access/Collision Detect) arbitration protocol. The Physical Layer provides signals

to the MAC indicating whether there is packet transmission on the data link and

whether there is a collision among two or more packets on the link. When a

signal is available, the MAC operates as above to determine whether the message

is for the host node and, if so, acquires the data. In the case of a collision, the

MAC simply discards any partial incoming messages and waits for new packet

data. When transmitting, the MAC is responsible for handling collision avoidance

and resolution. As described above, the MAC waits for access to the data link and

supplies the packet to the physical layer that begins transmission. If in the process

of packet transmission the MAC receives a collision signal from the Physical Layer,

after briefly continuing transmission (to overcome the network propagation delay)

it terminates the message and begins its random roll-back sequence to determine a

new time when it will again attempt to transmit the message.

Physical Layer. The Physical Layer encodes the message packet provided by

the Data Link Layer and converts it to electrical signals appropriate for the phys-

ical transmission medium. Upon receiving messages transmitted by other nodes,

the Physical Layer acquires the electrical signals from the transmission medium,

converts them to digital signals, and decodes them into the message’s binary bit

sequence. The Physical Layer includes two major stages: the transceiver and the

Physical Line Signaling (PLS) sublayer. The transceiver, also referred to as the

Medium Attachment Unit (MAU), performs the electrical conversion from trans-

mission media signals to logical signal levels.

The interface between the PLS sublayer of the Physical Layer and the MAC

sublayer of the Data Link Layer exchanges data with bits represented as discrete

Network Hardware 105

voltage levels. This form of information representation is inadequate for Ethernet

for two reasons. First, in a highly noisy (in the electrical sense) environment such

as presented by a local area network, signal levels can be significantly attenuated

and distorted. Second, in a single bit-serial communication protocol such as that

employed by the Ethernet interconnect, both data and timing information need

to be incorporated in the signal. For this reason, Manchester encoding is used to

convey the information with the value of a bit specified by the sense (direction) of

the signal transition rather than a specific range of values. With data fixed at the

point of signal transition, the timing information is provided simultaneously.

The actual Ethernet signal is differential; that is, one line is high when the other

is low and vice versa. The PLS sublayer converts the message packet provided by

the MAC first into its Manchester encoded representation and then into differential

form. The PLS layer performs the decoding task for incoming signals from the

transceiver, converting Manchester sequences into regular bit strings. The PLS

layer also provides the collision detect signal to the MAC.

5.2.3 Hubs and Switches

The Network Interface Controllers provide the connection between the processor

node and the system area network. The effectiveness of the SAN and its scalability

depend on the means by which the nodes are interconnected. These include passive

multidrop coaxial cable, active repeaters, and intelligent routing switches, as well

as more complicated through-the-node store and forward techniques.

Repeaters and Hubs. An early advantage of Ethernet was that the medium of

communication was a passive multidrop coaxial cable. Over a limited distance and

number of nodes, such a cable located all expensive logic and electronics in the NICs.

As technology costs dropped and demands on network performance increased, other

approaches could compete. Ironically, the coax cables that had helped keep costs

down became the dominant cost driver. Twisted-pair connections using inexpensive

repeaters or hubs have now replaced coaxial cables in all but the oldest installations.

Logically, hubs provide the same NIC interface. All nodes are visible from all other

nodes, and the CSMA/CD arbitration protocol is still employed. A repeater is

an active unit that accepts signals from the distributed nodes on separate twisted

pair wires, actively cleans up the signals, amplifies them to desired levels, and then

redistributes them to all of the attached nodes.

Switches. The demand for higher sustained bandwidths and the need to include

larger number of nodes on a single network spurred development of more sophisti-

106 Chapter 5

cated means of exchanging messages among nodes. Switches, like hubs or repeaters,

accept packets on twisted-pair wires from the nodes. Unlike repeaters, however,

these signals are not broadcast to all connected nodes. Instead, the destination

address fields of the message packets are interpreted and the packet is sent only

to the target node or nodes. This functionality is much more complicated than

that of a simple repeater, requiring buffer space and logic not required by a hub.

At the time of the earliest Beowulfs, the cost of switches was prohibitive. By the

third generation of Beowulf systems (based on Intel PentiumPro processors), how-

ever, the cost of switches was sufficiently low that they became standard Beowulf

components.

Today, 16-way switches have dropped in price another factor of four or more, and

they are the backbone of many moderate-sized systems. Moderate-cost switches

with up to 48 connections are widely available. For greater connectivity, multiple

switches can be interconnected. There is a catch, however. The network must be a

tree; it may not contain any cycles.

A problem occurs with the tree topology. The bisection bandwidth of the root or

top level switch becomes a communication bottleneck. All the traffic might have to

go through this channel. A typical bandwidth for low-cost, 16-way Fast Ethernet

switches is near or at 1.6Gbps. Backplane saturation with Fast Ethernet switches is

not a serious problem at this point. Current generation of gigabit switches provides

much higher backplane bisection bandwidth and therefore the possibility of many

more network ports without contention. With a properly sized core gigabit switch,

the network core can be easily (with money) scaled to 192 Gbps or more. With

these, use of Fast Ethernet switches with dual or quad gigabit uplinks scale properly,

without serious contention in the network to a scale easily upwards of 1,000 nodes.

5.3 Network Practicalities: Interconnect Choice

Network choice for a system area network can be a difficult process. In this section

we consider various factors and present two examples illustrating how different

choices can affect performance.

5.3.1 Importance of the Interconnect

The cost for the NIC and switch complex can equal or exceed the cost of node

hardware on a large cluster: it is not a factor that should be taken lightly.

In the absence of financial considerations, however, the most important factor

when choosing an interconnect technology is the communication patterns of the

Network Hardware 107

intended workload for the cluster. While the peak CPU performance of the pro-

cessors in a cluster tends to add up rather quickly, a given application may or may

not be able to effectively utilize it without a high bandwidth and/or low latency

interconnect. This can account for up to a 95% penalty when comparing theoretical

speed with achieved performance. Because of this fact, and the high cost of inter-

connect hardware, it is important to build a properly sized system area network for

a given workload.

If a cluster is being built for a small number of applications, thorough application

benchmarking is in order. The spectrum of communication patterns exhibited

by applications ranges from occasional communication from one node to another

to consistent communication from all nodes to all other nodes. At one extreme

are applications that behave like Seti@Home, wherein compute nodes infrequently

query a master node for a work unit to process for hours or days. At the other

extreme are applications like MILC (MIMD Lattice Computation), where nodes

are in constant communication with one or more other nodes and the speed of the

computation is limited by the performance of the slowest node. As is obvious from

the communication pattern description, basically any interconnect would perform

admirably in the first case, while the fastest interconnect possible is desirable in

the second case.

5.3.2 Differences between the Interconnect Choices

As seen in the preceding descriptions, interconnects vary wildly with respect to

bandwidth, latency, scalability, and cost. Available interconnect bandwidth can

range from a shared 10 Mbps network segment for the entire cluster to upwards to

340 Mbps available to all nodes simultaneously. Latency delivered to applications

can range from in the hundreds of microseconds down to half a microsecond. This is

near the latency cost of using the PCI bus. Various interconnects scale to different

levels. Switched Ethernet-based interconnects, for example, basically work for any

number of nodes on a network segment, as reliable packet delivery is provided

by the TCP/IP layer. For this reason, Ethernet switch complexes deal well with

congestion. Interconnect networks do not universally possess these characteristics,

however; various interconnect types have topology scalability issues, and others

basically require a full bisectional bandwidth switch complex to be built to minimize

switch congestion. The cost of these technologies ranges from practically free to

into the thousands of dollars per node of up-front cost. This does not take into

consideration the substantial, recurring effort of integration, software, and hardware

debugging. Variance in the types of drivers provided can also affect difficulty in

integration. Some vendors provide binary drivers only for particular versions of

108 Chapter 5

the Linux kernel. These cause clusters using these interconnects to become kernel

“version locked.” In many cases, the kernel bugs that cluster administrators are

likely to encounter are fixed by subsequent releases of the kernel. Hence, version-

locked machines are harder to support.

5.3.3 Strategies to Improve Performance over Ethernet

Realistically, financial considerations are fairly important while designing a cluster.

This is clearly indicated by the high frequency of clusters with Ethernet as an

interconnect. As this is the slowest interconnect on the above list, performance

optimization is of the utmost importance. The simplest approach is to tune the

system’s Ethernet and TCP/IP stacks; these changes are fairly nonintrusive and

straightforward to implement, and there is a fairly good document detailing this

tuning process at www.psc.edu/networking/perf_tune.html. Other approaches

can be more intrusive. These fall into three categories: hardware choice, software

features, and other network topologies.

Ethernet card performance will be heavily influenced by the characteristics of the

NIC chosen. Higher-quality Ethernet NICs will deliver better throughput and la-

tency at a lower host CPU utilization. This better performance is achieved through

a number of techniques. Use of jumbo frames is one way to reduce host CPU uti-

lization. By using a large MTU setting of 9,000 bytes as opposed to the usual

1,500 bytes, the NIC has to package up a considerably smaller number of Ether-

net frames. Jumbo frames are supported only in Gigabit networks, but their use

can significantly increase network throughput. Some NICs support TCP checksum

calculation in hardware on the NIC itself. This removes one of the most expensive

tasks from the host CPU. Some NICs also support interrupt coalescing. This means

that the NIC has some quantity of local memory into which received packets can

be stored temporarily, to reduce the interrupt load of NIC use. Without interrupt

coalescing, heavy network use can induce enough context switching for interrupt

servicing that computational throughput of the host CPU drops substantially. This

feature is also really used only on Gigabit networks. Substantial differences in the

feature set are supported by Gigabit network adapters.

On the other hand, Fast Ethernet NICs have a basically comparable hardware

feature set and depend on drivers to deliver outstanding performance. There is a

large variation in the quality of Gigabit drivers as well. All of the hardware fea-

tures mentioned above need to be supported in software as well as in hardware

in order to be used. Alternatively, TCP/IP may not be used at all. All of the

properties a network protocol provides, such as reliable delivery and out-of-order

packet reassembly, come at the cost of latency and bandwidth penalties. Some of

Network Hardware 109

these properties are important, some not. The VIA specification (www.viarch.org)

describes an architecture that implements only those properties that are required

in cluster communication. This provides a protocol with far less overhead than

Ethernet’s CSMA/CD and TCP/IP have. By using the MVIA implementation

(www.nersc.gov/research/FTG/via/) of the VIA specification and its drivers for

Fast Ethernet or Gigabit Ethernet NICs, more bandwidth is delivered to appli-

cations with less latency using commodity hardware. (This is the same protocol

mentioned in Section 5.1.3.)

The final approach taken to maximize Ethernet performance is to use a different

network topology. One of these topologies is to use EtherChannel, or Ethernet

bonding. This software makes multiple physical Ethernet interfaces negotiate a

virtual aggregated connection from the switch (there is no benefit to doing this in a

shared network segment) to the client. This can increase the amount of bandwidth

available to applications by integer multiples based on the number of physical inter-

faces available. Unfortunately, this has no positive effect on latency, as the logical

path that a message takes from end to end has bonding routines to go through as

well. Another topology designed to improve bisectional bandwidth and latency is

FNN (www.aggregate.org/FNN), or Flat Network Neighborhoods. In this topol-

ogy, hosts have multiple network interfaces that each home on a different switch.

In a properly setup network, each host will have a NIC on the same switch as an in-

terface on any given other host in the network. This technique attempts to leverage

the large performance difference between backplanes and uplinks in a cost-effective

manner.

5.3.4 Cluster Network Pitfalls

Linux gigabit support doesn’t interact well with switch autonegotiation and time-

sensitive protocols such as DHCP. We have had several problems with gigabit switch

port initialization time. These long initialization times cause DHCP requests to

time out. We have tracked this problem to a number of factors on the switch, all

of which had to do with autonegotiation. Gigabit switches try to autonegotiate a

number of settings when link comes up. The list of settings that are autonegotiated

by default includes flow control, port negotiation, etherchannel (bonding), and

802.1q trunking. Then a spanning tree check is run to determine whether any

switching loops exist in the network. All said, this process can take up to a minute

to complete. This is certainly longer than the default DHCP request timeout.

On Fast Ethernet networks, a number of these same settings are autonegotiated.

While this list is shorter, and the port setup time is considerably less than on

Gigabit Ethernet, problems can still result if many hosts are brought up in parallel.

110 Chapter 5

To this end, disabling autonegotiation whenever possible will immensely simplify

the network itself and reduce the number of problems encountered.

As Fast Ethernet is the most common interconnect, and Ethernet is the most

common sort of Linux host networking, internode communication and cluster ad-

ministrative processes may compete with one another for resources. This event

should be avoided if at all possible. With the heavy usage of transparent network-

based services like NFS, it is possible to unintentionally use large quantities of

network bandwidth with fairly innocuous operations. Extraneous processes, even

administrative tasks, should be avoided if possible while user jobs are running.

The nature of cluster administrative operations, whether synchronous, like pdsh,

or asynchronous, like cron jobs, is that they run in a loosely parallel fashion. While

these jobs are not synchronized internally, their methods of invocation cause them

to be started in very small time windows. When these administrative operations

are performed in parallel, the load pattern on servers is more bursty than normal

Unix servers. In these cases, peak capacity is important more often than sustained

throughput.

5.3.5 An Example of an Ethernet Interconnected Beowulf

The Clemson Mini-grid Beowulf employs four switches. The processor pool utilizes

a Foundry Networks FastIron III with a backplane throughput of 480 Gbps and

supports up to 336 Fast Ethernet ports or up to 120 Gigabit Ethernet ports. The

configuration used in the Clemson machine includes 16 Gigabit Ethernet ports and

264 Fast Ethernet ports. The Mini-grid processor pool includes 130 nodes each

with two Fast Ethernet NICs connected to this switch. In addition, the processor

pool’s switch is connected to three primary clusters one of which employs a Foundry

Networks FastIron II Plus with a backplane throughput of 256 Gbps connected to

66 dual-NIC nodes, and two of which employ a Foundry Networks FastIron II with

a backplane throughput of 128 Gbps connected to 34 dual-NIC nodes. The switches

in the Mini-grid are connected by multiple trunked Gigabit Ethernet links. There

are four trunked links between the pool and the larger cluster and two trunked

links each between the pool and the two smaller clusters. The dual-NIC nodes in

the pool and the clusters use Linux channel bonding to double the throughput of a

normal Fast Ethernet NIC. The Foundry Networks switches use a similar technique

to trunk up to eight Gigabit Ethernet links between any two switches. Using this

approach one could build a Fast Ethernet switching system with up to 1080 ports

with no bottlenecks. In practice, considerably larger networks can be built, though

not with full bisection bandwidth. For many applications somewhat less bandwidth

Network Hardware 111

may be adequate. Other vendors with large Fast Ethernet switches include Hewlett

Packard, Cisco, and Extreme.

5.3.6 An Example of a Myrinet Interconnected Cluster

The Chiba City cluster at Argonne National Laboratory (discussed in more detail in

Chapter 18) has two discrete networks: (1) a Myrinet network consisting of 5 Clos

switches, 4 Spine switches, and 320 host ports, and (2) a Fast/Gigabit Ethernet

network consisting of 10 Cisco Catalyst 4000s and a Catalyst C6509 with 480 Fast

Ethernet ports and 102 Gigabit Ethernet ports. The Myrinet network is used

primarily as the system interconnect; however, if need be, Ethernet can be used as

well. The Myrinet topology is symmetric, as is the Ethernet topology. Each spine

switch has 128 network ports, with connections to all of the Clos switches in the

network, but no connections to other spines. Each Myrinet Clos switch has 64 host

ports and 64 network (switch interconnect) ports. Each Clos has its network ports

distributed across all four spine switches. This yields 4096 potential routes from

any given node to any other node in the network. This is required to guarantee full

bisectional bandwidth for all possible workloads.

The Ethernet network is also fairly symmetric. Each group of 32 nodes and

their management node are connected to a Catalyst 4000. Each of the 32 nodes is

connected with Fast Ethernet, and the manager is connected with Gigabit Ethernet.

Each of these switches has dual gigabit uplinks to the core Catalyst C6509. Because

of the oversubscription of uplinks between each Catalyst 4000 and the core C6509,

this network does not have full bisectional bandwidth. If this were primarily an

interconnect network, and full bisectional bandwidth were important, this could be

remedied by upgrading all switch uplinks from dual to quad gigabit connections.

 blank

6 Network Software

Thomas Sterling

In this chapter, we turn to the networking software options available to the

Beowulf programmer, administrator, and user. Networking software is usually de-

scribed as a stack, made up of different protocol layers that interoperate with one

another. We survey a few of the layers in the networking stack, focusing on those

services and tools that are used extensively on Beowulf systems.

6.1 TCP/IP

Parallel computers have traditionally used special high-performance interprocessor

communication networks that use custom protocols to transmit data between pro-

cessing elements. In contrast, Beowulf clusters rely on commodity networks whose

original design goals did not include serving as the interconnect for a commodity

supercomputer. The use of commodity networks implies the use of commodity pro-

tocols when costs must be kept down. Thanks to the tremendous growth of the

Internet during the last decade of the twentieth century, TCP/IP has become the

de facto standard network communication protocol. Network software vendors have

been forced to abandon their proprietary networking protocols in favor of this once

obscure but now ubiquitous protocol. Beowulfs naturally default to communicating

with this protocol.

The IP protocol is conceptually divided into different logical layers that combine

to form a protocol stack. The IP layer is a routable datagram layer. Data to

be transferred is fragmented into datagrams—individual packets of data. Packet

length is limited by the physical transport layer, and the IP layer contains the logic

to fragment requests that are too large into multiple IP packets that are reassembled

at the destination. Each datagram is individually routable and contains a four-

byte IP address that specifies the destination host. This version of IP is called

IPv4. A new version, called IPv6, will increase the address space available to IP

applications. The four-byte addresses used in IPv4 are too small for the total

number of computers currently connected to the world’s networks. This address

depletion will be remedied by IPv6, which uses 16 bytes to represent host addresses.

Currently, however, IPv4 remains dominant, particularly in the United States.

The IP stack commonly supports two services: TCP (Transmission Control Pro-

tocol) and UDP (User Datagram Protocol). TCP, the most common IP service,

provides a reliable, sequenced byte stream service. While the underlying physical

transport layer usually provides error checking, TCP provides its own final data in-

tegrity checking. Most multiple-hop physical transports provide only a best-effort

114 Chapter 6

delivery promise. TCP incorporates a positive-acknowledgment sliding-window re-

transmission mechanism that recovers from packet loss. It also tolerates latency

while maintaining high performance in the normal case of no packet loss. Moreover,

TCP provides its own data stream packetization, avoiding fragmentation in the IP

layer.

The drawbacks of TCP come from its ability to handle wide area networks.

New TCP streams use “slow start” to detect the bandwidth limit of the net-

work gradually. Congestion is detected by recording dropped packets. Any cor-

rupted or dropped packet immediately drops the offered load. The Nagel algo-

rithm used by TCP can cause problems for message-passing libraries. In order

to minimize “tinygrams” (short packets), Nagel’s algorithm delays the sending

of small messages until the acknowledgment for an initial small message is re-

turned. You can avoid this behavior either by compiling the Linux kernel with

an option not to use Nagel’s algorithm or by constructing your programs to use

large messages. You can also turn off the algorithm in an application by using

the TCP_NODELAY socket option, although some early versions of Linux did not

properly implement this feature. See www.icase.edu/coral/LinuxTCP.html and

www.icase.edu/coral/LinuxTCP2.html for a discussion of TCP performance is-

sues in Linux.

The other IP service, UDP, provides unsequenced, unreliable datagram transport.

The advantages of UDP are that it has a relatively low latency because it incurs

no startup delay. Its primary disadvantage is that you typically have to provide

retransmission services similar to those of TCP when you use UDP.

6.1.1 IP Addresses

The destination of an Internet Protocol packet is specified by a 32-bit IP address (or

128 bits) for IPv6) that uniquely identifies the destination host. IP addresses are

usually written in “dotted decimal notation,” with the bytes of the address written

as a decimal numbers separated by decimal points. The IP address range is divided

into networks along an address bit boundary. The portion of the address that

remains fixed within a network is called the network address, and the remainder is

the host address. The division between these two parts is specified by the netmask.

A typical netmask is 255.255.255.0, which specifies 24 bits of network address and

8 bits of host addresses.

Three IP address ranges have been reserved for private networks:

• 10.0.0.0 - 10.255.255.255

• 172.16.0.0 - 172.31.255.255

Network Software 115

• 192.168.0.0 - 192.168.255.255

These address ranges are permanently unassigned and will not be forwarded by

Internet backbone routers or conflict with publicly accessible IP addresses. We

will use IP addresses from the range 192.168.1.0–192.168.1.255 in the following

examples.

In the past only a few netmasks were permitted. The netmasks were split on byte

boundaries. These boundaries were given the names Class A (255.0.0.0 with about

16 million host addresses), Class B (255.255.0.0 with about 64,000 host addresses)

and Class C (255.255.255.0 with 254 host addresses). Netmasks may now fall on

any bit boundary but are split on byte boundaries where possible. The class names

are still used when this occurs. We will use the Class C network 192.168.1.0.

Two addresses in the host address range are reserved: the addresses with all host

bits 0 or 1. The host address with all bits set (e.g., 192.168.1.255) is the network

broadcast address. Packets sent to this address will be forwarded to every host

on the network. The address with all bits unset is not a host address at all—it is

the network address. Similarly when a larger network is divided into subnets the

highest and lowest address ranges are best avoided. While the Class C network

192.168.0.0 is valid, starting at 192.168.1.0 is recommended. It is syntactically

possible to specify an invalid netmask—one with noncontiguous set bits. A “slash”

notation is sometimes used to avoid this; for example, 192.168.1.0/24 specifies our

network of 192.168.1.0 with a netmask of 255.255.255.0.

An alternative to assigning specific IP addresses to each node is to use the Dy-

namic Host Configuration Protocol (DHCP).

6.1.2 Zero-Copy Protocols

One way to improve network performance, especially for high-performance net-

works, is to eliminate unnecessary copying of data between buffers in the kernel or

between the kernel and user space. So-called zero-copy protocols give applications

nearly direct access to the network hardware, which copies data directly to and

from buffers in the application program.

Implementing true zero-copy TCP from user-level applications is difficult. On

the transmit side the kernel must wire down the pages, so that they are not moved

during the network operation, and set copy-on-write in the virtual memory system,

so that there isn’t a race condition with an application writing the data while it is

being transferred. Transmit buffers are often quickly reused, so the copy-on-write

results in page copies rather than data buffer copies. If many small writes are done

to socket, all of the data pages must be wired down until the ACK is received.

116 Chapter 6

After all of this kernel overhead, not much work has been saved. Protocol layers

must still construct the protocol headers and do the TCP checksums over the data

to be transmitted.

When a frame arrives, the kernel has to decide where to put it. While it is

possible to only read the variable-length IP header and defer handling the data,

if the user-level process isn’t already waiting in a read() call with a large enough

buffer, the system has to perform a copy. The kernel also still has to process the

TCP checksum. Some of this work can be handled by a smart adapter, which

moves part of the protocol stack onto a coprocessor. When the protocol stack must

function with all types of network adapters, zero-copy becomes impossible because

of details such as byte alignment. The Ethernet header is 14 bytes, which always

misaligns the IP header fields. Several research projects have developed methods

for direct user-level-program access to the network because modifying the existing

socket interface to use a zero-copy mechanism is very difficult. The most notable

projects are the Virtual Interface Architecture (VIA) and U-Net, but neither is yet

in widespread use.

6.2 Sockets

Sockets are the low-level interface between user-level programs and the operating

system and hardware layers of a communication network. They provide a reason-

ably portable mechanism for two (or more) applications to communicate, and they

support a variety of addressing formats, semantics, and underlying protocols. Sock-

ets were introduced in the BSD 4.2 release of Unix and are being formally codified

by the POSIX 1003.1g draft standard. Since its introduction, the sockets API has

been widely adopted and is available on all modern Unix variants, including Linux.

On Linux, the socket API is supported directly by the operating system, but (as

noted above) research projects have proposed lower-level zero-copy protocols that

would allow applications more direct access to the kernel.

The socket API is powerful but not particularly elegant. Many programmers

avoid working with sockets directly, opting instead to hide the socket interface

behind one or more additional layers of abstraction (e.g., remote procedure calls or

a library like MPI). Nevertheless, our survey of networking would not be complete

without a brief introduction to sockets. If you intend to program with sockets, you

should consult both on-line (e.g., man socket) and printed documentation. The

excellent book by Stevens [31] has many examples and thoroughly covers the finer

points of sockets programming.

Network Software 117

The basic idea behind the socket abstraction is that network communication

resembles file I/O sufficiently closely that the same system calls can be used for both.

Once a network connection is established between two processes, the transmission

and receipt of data are performed with read and write, just as one sends data

to a file, a tape, or any other device. The socket API is primarily concerned with

naming and locating communication endpoints (i.e., sockets) and assigning them

to file descriptors suitable for use by read and write.

A socket is created by invoking the socket system call with arguments specifying

an address family, a socket type, and a protocol. Theoretically, an enormous number

of combinations are possible, but in practice only two make up the vast majority

of socket applications.

The first type is unreliable, connectionless, datagram sockets. The Internet ad-

dress family AF_INET, the stream socket type SOCK_DGRAM, and the Unreliable Data-

gram Protocol IPPROTO_UDP allow one to create connectionless datagram sockets.

These sockets allow for the transmission of a single message or datagram at a time.

Neither the integrity nor the delivery of the data is guaranteed by the underlying

protocol layers, so error-correcting codes, sequencing, and acknowledgment/retry

are up to the application. A UDP socket is analogous to a conventional postal

service mailbox. Many-to-one communication is the norm; that is, one UDP socket

(mailbox) can receive datagrams (letters) from multiple senders, and one-to-many

communication is possible simply by addressing datagrams (letters) to different

recipients. Bidirectional communication is possible if two parties regularly reply

to one another’s messages, but the correspondents must be aware that messages

can occasionally be lost, damaged, or delivered out of order. Return addresses

are always available for UDP datagrams. SOCK_DGRAM sockets are very lightweight,

consuming only one file descriptor and demanding minimal processing in the lower

levels of the protocol stack. They are small and fast and are appropriate for tasks

that can tolerate the lack of reliability and for which resource consumption may be

an issue. One must carefully weigh the costs, however. If reliability is established

at the application layer by means of acknowledgments, error correcting codes, and

the like, the speed and size advantage may disappear. Many implementations of

NFS use UDP datagram sockets as the underlying transport mechanism.

The second type of socket application is reliable, connection-oriented, stream-

type sockets. Sockets in the Internet address family AF_INET, of type SOCK_STREAM

generally use the Transmission Control Protocol IPPROTO_TCP and provide reliable,

connection-oriented virtual circuits. TCP provides a connection-oriented channel

like a conventional two-party telephone circuit. Once established, bidirectional

communication flows between two endpoints until one of them is closed. The chan-

118 Chapter 6

nel is stream oriented: individual messages are merged seamlessly into a continuous

stream of data. The receiver gets no information about the individual write re-

quests made by the sender. Data is returned to read requests in sequence, but

without message boundary markers of any kind. Reads do not correspond to whole

writes and it is very common for the operating system to deliver only part of the

data requested in a read or to accept only part of the data requested by a write.

SOCK_STREAM sockets are very reliable. Failure usually means that there is some

kind of misconfiguration or that the remote server has crashed, although failure

can also occur if the network is congested (even temporarily). Thus, the burden on

the programmer is greatly reduced. Occasionally, the lack of message boundaries

means that the application must insert markers of some kind into the data stream,

but this task is far easier than overcoming the unreliability of SOCK_DGRAM sockets.

The greatest shortcoming of SOCK_STREAM sockets is their resource consumption.

Each open circuit requires its own file descriptor, of which only a finite number

are available, as well as kernel resources to maintain the state of the connection.

Maintaining thousands of simultaneously active stream sockets would impose a

significant burden on a system.

Server vs. Client Programming. Frequently in network programs there is a

clear distinction between servers and clients. Servers are programs that run more

or less indefinitely, waiting for requests or connections that are initiated by clients.

This distinction is not always so clearcut, however, and the sockets API actually

allows considerable flexibility in cases where the roles are blurred.

Client tasks: The client has four basic tasks:

1. create a local socket with an otherwise unused address,

2. determine the address of the server,

3. establish a connection (TCP only), and

4. send and receive data.

Clients create sockets using the socket function discussed above. Since the client

is usually content to let the operating system choose an unused address, there is

no need to call bind (see below). Sending and receiving data are done with the

conventional read and write system calls (for SOCK_DGRAM sockets, however, the

sendto, sendmsg, recvfrom and recvmsg functions may be more convenient). The

only task of any complexity is identifying the address of the server. Once the

server’s address is known, the connect system call is used to establish a SOCK_-

STREAM channel.

Network Software 119

Socket addresses: Addresses in the AF_INET family are represented by a struct

sockaddr_in, found in the header file <netinet/in.h>. Internet family addresses

consist of two numbers: an IP address and a port number. The IP address con-

tains enough information to locate the host computer on the Internet using IP. It

is usually written in the familiar “dotted” notation (i.e., 131.215.145.137). In a

program it is represented as a four-byte integer in network (i.e., big-endian) byte

order. Obtaining the Internet address of a foreign server usually involves recourse to

one or more library functions such as gethostbyname, inet_aton, or the constants

INADDR_ANY, INADDR_LOOPBACK defined in the the include file ‘<netinet/in.h>’.

The port number is a 16-bit integer that is unique for each socket endpoint

on a single Internet host. Servers usually “advertise” their services so that their

port numbers are “well known.” There is a registry of officially recognized port

numbers,1 and the file ‘/etc/services’ contains a partial listing of that registry,

which can be searched by the library utility getservbyname. However, for new,

private, or experimental services it is more common for servers and clients to simply

agree on a port number in advance, for example, by referring to a macro in a shared

header file. Conventional wisdom is that such a port should be greater than 5,000,

less than 49,152 and different from any registered port.

One other subtlety is that the sin_port and sin_addr fields in the sockaddr_-

in structure must be stored in network byte order. The functions htonl, htons,

ntohl, and ntohs can be used to convert long and short integers between host

and network byte order. On big-endian machines (e.g., the IBM PowerPC family

of processors) these are no-ops, but on little-endian machines (e.g., the Intel x86

family of processors) they perform byte swapping.

Server tasks: Servers are more complicated than clients. There are a number of

different design choices for servers, with various tradeoffs between response time,

scalability (how many clients can be supported), resource consumption, program-

ming style, and robustness. Popular choices include a multithreaded server, a server

that forks a new process for every connection, or a server that is invoked by the

Internet daemon inetd. A few tasks are common to all these design choices:

1. create a local socket,

2. select a port number,

3. bind the port number to the socket,

4. make the port number known to clients,

5. listen for connections (TCP only),

1ftp://ftp.isi.in-notes/iana/assignments/port-numbers

120 Chapter 6

6. accept connections (TCP only), and

7. send and receive data.

Creating a local server socket is no different from creating a local client socket.

The process of selecting a port number and making it known to clients is discussed

above. Once a port number is selected, the server must call bind to associate

the address with the socket. The caller must specify a complete address, including

both the port number and IP address in the sockaddr_in structure. Usually, the IP

address is set to the constant htonl(INADDR_ANY), which indicates that the socket

should accept any connections (or datagrams for SOCK_DGRAM sockets) destined for

any IP address associated with the host. (Recall that machines may have several IP

addresses.) Other possibilities are htonl(INADDR_LOOPBACK) or a value obtained

from gethostname, gethostbyname, and the like.

Communication with recvfrom and sendto: Once a SOCK_DGRAM socket is

bound to an address, it is ready to send and receive datagrams. Read and write

may be used to communicate with clients. The recvfrom call is particularly useful

for servers because in addition to the contents of the datagram, it also supplies the

caller with a return address, suitable for use in a subsequent call to sendto.

Listening for and accepting connections: SOCK_STREAM sockets, on the other

hand, must take a few more steps before they are ready for use. First, they must

call listen to inform the operating system of their intention to accept connections.

The accept system call allocates a new file descriptor that can be used with read

and write to communicate with the foreign entity. In addition, accept supplies

the caller with the address of the connecting entity.

Many of the design choices for server software architecture are concerned with

the detailed behavior of accept. It can be made blocking or nonblocking, and upon

acceptance of a connection, a new thread or process may or may not be created.

Signals (including timer signals) may be used to force a premature return, and

select can be used to learn about status changes. The large number of possibilities

tends to make servers much more complex than clients.

6.3 Higher-Level Protocols

Sockets form the lowest layer of user-level network programming. If you go any

lower, you enter the realm of driver-writing and operating system internals. Most

Beowulf users don’t write applications using sockets. Sockets are usually reserved

for the systems programming arena, where basic client/server functions are im-

Network Software 121

plemented. Beowulf users depend on higher-level programming abstractions to

develop applications. MPI (Message Passing Interface), discussed in Chapters 9

and 10, and PVM (Parallel Virtual Machine), discussed in Chapters 11 and 12, are

the workhorses of scientific computing on Beowulfs, providing not only platform-

independent message passing semantics, but also frequently used parallel program-

ming constructs. These APIs are not familiar to the enterprise systems program-

mer first entering the world of parallel computing. Enterprise network applications

are distributed systems in the truest sense of the term and are developed by using

higher-level protocols that do not require meddling with sockets. Remote procedure

calls and distributed objects are the two most common programming interfaces ap-

plied in this vein; and they are equally suitable to parallel application development.

If you come from a corporate computing or distributed applications development

background, you will be happy to find that you can apply the same familiar software

technologies to develop Beowulf applications.

6.3.1 Remote Procedure Calls

Programming with sockets is part of the client/server programming model, where

all data exchange is explicitly performed with sends and receives. This model

exposes the underlying transport mechanisms to the programmer and is sometimes

compared with programming in assembly language. A remote procedure call (RPC)

follows a different paradigm of distributed computation, removing the programmer

from explicit message passing. The idea behind an RPC is to make distributed

programs look like sequential programs. A procedure is called inside a program;

rather than executing on the local machine, however, the local program suspends

while the procedure executes on a remote machine. When the procedure returns,

the local program wakes up and receives any results that may have been produced

by the procedure.

RPC was designed not so much for parallel programming as for distributed pro-

gramming. Parallel programming is a more tightly coupled concept where a single

program (conceptually) works on a problem, concurrently executing on multiple

processors. Distributed programming is a looser concept where two or more pro-

grams may require services from one another and therefore need to communicate,

but they are not necessarily working on the same problem. Web browsers and Web

servers are examples of distributed programs. Nevertheless, RPC can be used ef-

fectively on Beowulf systems, especially for porting applications that are already

designed to use it.

In principle, the remote procedure call is a simple idea that should eliminate all

the complexity of explicit message passing. As always, some difficulties exist. By

122 Chapter 6

invoking a remote procedure, you cause an action to be executed in a disjoint ad-

dress space. This requires the caller to marshal procedure parameters, converting

them to some platform-independent representation to allow for a heterogeneous en-

vironment. When marshaling parameters, if the native data representation format

differs significantly from the platform-independent representation, buffer allocation

and type conversion can be costly. In addition, procedures need to be exported

through a naming service so that they may be located and invoked. All of this

additional overhead can adversely impact performance.

Two different RPC implementations are commonly found on Unix systems. The

first is ONC RPC, originally known as Sun RPC, but later renamed ONC, for Open

Network Computing. This is the RPC standard used by Linux and Beowulf systems.

The second implementation is DCE RPC, which is the standard remote procedure

call interface for the Open Group’s Distributed Computing Environment. The

two systems are incompatible and offer different features. The advantages of the

DCE version are that it permits asynchronous procedure calls and provides a more

efficient parameter conversion protocol, which bypasses network-encoding when two

communicating machines share the same binary data representation format. ONC

RPC permits only synchronous procedure calls and requires parameter conversion

regardless of homogeneity. This makes it a less attractive candidate for writing

distributed programs on Beowulf clusters, even though it is standard software.

Writing RPC programs is not without difficulty. Although they provide a concep-

tually familiar mechanism, the data-encoding process introduces additional com-

plexity. Rather than simply call a procedure in your program, you must generate

support code that performs data encoding and the actual network communica-

tion. ONC RPC provides a tool called rpcgen and a data representation format

called XDR, for extended data representation, that automates this code generation.

XDR provides a language specification to describe data, which you use to specify

the types of parameters passed to a procedure. The rpcgen program then compiles

your procedure definition, generating code that will encode and decode parameters.

It also produces a header file that you include in your C program to reference the

remote procedure. Using pregenerated procedures is rather painless because it is

quite like calling normal library routines. Actually creating a remote procedure can

be an involved process, requiring an understanding of XDR and rpcgen.

The synchronous nature of ONC RPC calls makes it unsuitable for writing general

parallel programs. Synchronous calls effectively serialize your program because

the calling node stops doing all work while the called node executes a procedure.

Asynchronous RPC allows you to initiate independent actions on a remote node

without waiting for them to complete. This maps better to parallel programming

Network Software 123

on a Beowulf, because you can tell processors to perform arbitrary work without

blocking, and interprocessor coordination can be relegated to synchronous calls.

6.3.2 Distributed Objects: CORBA and Java RMI

As the software development advantages of object-oriented programming languages

became more evident during the late 1980s and early 1990s, programmers saw that

they could extend the concept of a remote procedure call to that of a remote

object allowing remote method invocations. You could represent network services

as objects distributed across a network and use method invocations to perform

transactions, rather than esoteric socket-based protocols or unwieldy collections of

remote procedure calls. Again, the idea was to simplify the programming model by

making distributed programs appear like sequential programs—you should be able

to reference objects and invoke their methods independent of their location on the

network.

Distributed objects are used mostly to build corporate enterprise applications

that require access to data spread out in different locations across the network.

Sometimes this process actually requires coordinating computation with machines

in different parts of the world. A common use is to simplify the implementation of

application-specific network databases that can become difficult to implement using

a client/server approach and queries in the Structured Query Language (SQL). It

is much easier for a programmer to write something like the following than to pass

an embedded SQL query to a vendor-specific client API.

EmployeeBenefits myBenefits;

EmployeeRetirementPlan myRetirement;

EmployeeID myID;

SSN mySSN;

mySSN = getSSN(); // Get my social security number from some input source

myID = employeeIDs.getID(mySSN); // Lookup my employee ID

myBenefits = employeeBenefits.getBenefits(myID); // Lookup my benefits

myRetirement = myBenefits.getRetirementPlan(); // Lookup my retirement plan

Here the program may be accessing anywhere from one to three databases in dif-

ferent parts of the network, but the programmer doesn’t have to be aware of that

fact. In a client/server program, the programmer would have to specifically set

up connections to network databases, issue queries in SQL or some other query

language, and convert results into a usable form. With distributed objects, a pro-

grammer can access network resources in a transparent manner. To the program-

mer, employeeIDs is just another object to be used through its public methods. In

reality, employeeIDs may represent a directory service on another machine. The

124 Chapter 6

employeeBenefits object may be a database located in yet another part of the

network, and the result of the getBenefits() call may be a reference to an addi-

tional database. Alternatively, all of the objects may actually reside in one location

as one database. The point is that the programmer doesn’t have to know.

Several distributed object systems have been designed over the years, but the

most promising ones for Beowulf application development are CORBA and Java

RMI. Microsoft’s DCOM is also a viable alternative for Windows-based clusters.

The Object Management Group (OMG), established in 1989, saw the need to es-

tablish a vendor-independent standard for programming with distributed objects

in heterogeneous systems. Their work has produced the Common Object Request

Broker Architecture specification, or CORBA for short.

The foundation of CORBA programming is tied to the CORBA Interface Defi-

nition Language (IDL), with which object interfaces are defined. Even though pro-

grammers manipulate CORBA objects as native language structures, IDL defines

them in a language and operating-system-independent manner. An IDL definition

specifies the relationships between objects and their attributes. IDL definitions

must be compiled with a preprocessor to generate native language code stubs with

which objects are actually implemented.

The other half of the CORBA system is the Object Request Broker (ORB), of

which the programmer does not have to be explicitly aware. An ORB is a server

process that provides the plumbing for distributed object communication. It pro-

vides services for locating objects, translating remote method invocations into local

invocations, and converting parameters to and from platform independent repre-

sentations. As you can probably guess, going through an intervening daemon to

perform object instantiation and method invocation sacrifices performance. How-

ever, ORBs have proven effective in providing the middleware necessary for hetero-

geneous distributed application development. Many free CORBA implementations,

as well as several commercial ones, are suitable for deployment on a Beowulf, but the

fastest and most preferred appears to be OmniORB, freely available from Olivetti

& Oracle Research Laboratory (www.orl.co.uk/omniORB/omniORB.html).

In 1995, Sun Microsystems introduced the Java programming language and run-

time environment. Since then, Java has gained enormous popularity and support

in both industry and academia. Java’s promise of platform-independent “write

once, run everywhere” programming has made many programmers willing to put

up with its growing pains and performance deficiencies. Java has been touted as

an ideal Internet programming language because of its platform independence, dy-

namic binding, mobile code properties, and built-in security model. To achieve all

of this, however, Java requires significant runtime support.

Network Software 125

Unlike programming languages such as C and Pascal, Java is normally not com-

piled to an assembly language that is native to the CPU’s instruction set. Rather,

it is compiled to a platform-independent byte-code that is interpreted by the Java

Virtual Machine (JVM).2 A JVM will often be implemented with a just-in-time

(JIT) compiler that will compile the byte-code into native code on the fly at run-

time to improve performance. Even with this enhancement, Java has yet to match

the performance of C or C++. Nevertheless, there is a good deal of interest in

using Java to program computing clusters.

Java has been used to write parallel programs from the very beginning since

it has a built-in platform-independent thread API. This makes it much easier to

write scalable multithreaded applications on symmetric multiprocessors. The Java

thread model allows parallel programming only in shared-memory environments.

Java threads cannot interact between disjoint address spaces, such as nodes in a

Beowulf cluster. That is why Java includes its own distributed object API, called

Remote Method Invocation (RMI).

Like CORBA, Java RMI allows the invocation of methods on remote objects.

Unlike CORBA, RMI is a language-intrinsic facility, built entirely in Java, and it

does not require an interface definition language. RMI does require an additional

server, called the Java Remote Object Registry. You can think of the RMI registry

as a lightweight ORB. It allows objects to register themselves with names and

for RMI programs to locate those objects. Java RMI programs are easy to write

because once you obtain a reference to a named object, it operates exactly as though

the object were local to your program. Some Beowulf users have already started

using Java RMI to simulate molecular dynamics and future processor architectures.

Using Java for these compute-intensive tasks is ill advised at this time, however,

because the performance of the Java runtimes available for Linux, and therefore

most Beowulfs, at this stage trails that of other platforms.

Using distributed objects for parallel programming on Beowulf is a natural way to

write nonperformance-oriented applications where the emphasis is placed on ease of

development and code maintainability. Distributed object technologies have been

designed with heterogeneous networks in mind. Beowulf clusters are largely ho-

mogeneous in terms of the operating system, data representation, and executable

program format. Therefore, distributed object systems often contain additional

overheads that are not necessary on Beowulf clusters. In the future, we may see dis-

2For more information about the JVM, see the “Java Virtual Machine Specification” at java.
sun.com/docs.

126 Chapter 6

tributed objects tailor their implementations for high performance on Beowulf-like

systems as the use of PC clusters becomes more common in corporate computing.

6.4 Distributed File Systems

Every node in a Beowulf cluster equipped with a hard drive has a local file system

that processes running on other nodes may want to access. Even diskless internal

nodes require access to the worldly node’s file system so that they may boot and

execute programs. The need for internode file system access requires Beowulf clus-

ters to adopt one or more distributed file systems. Most distributed file systems

possess the following set of characteristics that make them appear indistinguishable

from the local file system.

• Network transparency: Remote files can be accessed using the same operations

or system calls that are used to access local files.

• Location transparency: The name of a file is not bound to its network location.

The location of the file server host is not an intrinsic part of the file path.

• Location independence: When the physical location of a file changes, its name is

not forced to change. The name of the file server host is not an intrinsic part of

the file path.

6.4.1 NFS

Beowulf clusters almost always use the Network File System protocol to provide

distributed file system services. NFS started its steady climb in popularity in 1985,

after Sun Microsystems published the protocol specification for adoption as an open

standard. This version of the protocol, NFS version 2 (NFSv2), has been widely

adopted by every major version of the Unix operating system. A revision of the

protocol, NFSv3, was published in 1993 and has been implemented by most vendors,

including Linux.

NFS is structured as a client/server architecture, using RPC calls to communicate

between clients and servers. The server exports files to clients, which access the files

as though they were local files. Unlike other protocols, an NFS server is stateless:

it doesn’t save any information about a client between requests. In other words,

all client requests are considered independently and must therefore contain all the

information necessary for execution. All NFS read and write requests must include

file offsets, unlike local file reads and writes that proceed from where the last one left

off. The stateless nature of the NFS server causes messages to be larger, potentially

consuming network bandwidth. The advantage of statelessness is that the server is

Network Software 127

not affected when a client crashes. The best way to configure NFS on a Beowulf

system is to minimize the number of mount points, set the read and write buffer

sizes to the maximum allowable values (8,192 bytes), and use the autofs daemon

discussed later in this section. You can set the buffer sizes using the rsize and

wsize options for the NFS file systems listed /etc/fstab. A typical fstab entry

for mounting ‘/home’ may look like the following:

b001:/home /home nfs rw,hard,intr,bg,rsize=8192,wsize=8192 0 0

The original Linux NFS implementation allowed only a single NFS server to

run at a time. This presented severe scaling problems for Beowulf clusters, where

many internal nodes would mount home directories and other file systems from the

worldly node. A single NFS server would serialize all network file system accesses,

creating a severe bottleneck for disk writes. Disk reads were not as adversely im-

pacted because the clients would cache files locally. More recent versions of the

Linux NFS implementation allowed multiple servers operating in read-only mode.

While this was useful for certain local area network applications, where worksta-

tions might mount read-only ‘/usr/’ partitions, it was not of such great benefit to

Beowulf clusters, where internal nodes frequently require NFS for performing disk

writes. The versions of the Linux NFS code released in 1998, starting with version

2.2beta32, have added support for multiple servers in read/write mode, though

scaling remains an issue.

While the stateless nature of the NFS approach provides a relatively simple way

to achieve reliability in the presence of occasional failures, it introduces signifi-

cant performance penalties because each operation must “start from scratch.” To

address the performance issues, NFS is normally operated in a mode that caches

information at both the server (the system directly attached to the disk) and the

client (the node that is accessing the NFS-mounted file). The mechanisms pro-

vided by NFS are usually sufficient when only one client is accessing a file; this is

the usual situation encounter by users. Even in NFSv3, however, the mechanisms

are not sufficient to maintain cache consistency between clients. Hence, problems

can arise for parallel applications that attempt to write to a single NFS-mounted

file.

6.4.2 AFS

The Andrew File System (AFS) was originally developed at Carnegie Mellon Uni-

versity as a joint venture with IBM in the mid-1980s. Its purpose was to overcome

the scaling problems of other network file systems such as NFS. AFS proved to

128 Chapter 6

be able to reduce CPU usage and network traffic while still delivering efficient file

system access for larger numbers of clients. In 1989, development of AFS was

transferred to Transarc Corporation, which evolved AFS into the Distributed File

System (DFS) included as part of the Distributed Computing Environment (DCE).

AFS effectively became a proprietary technology before Linux was developed, so

AFS never played much of a role in the design of Beowulf systems. Recently, how-

ever, AFS-based file systems have become available for Linux, and a new interest

in this network file system has emerged in the Beowulf community. The inability

of NFS to effectively scale to systems containing on the order of 100 processors

has motivated this experimentation with more scalable file system architectures.

However, improvements have been made in the Linux NFS code that may obviate

the need to explore other network file systems.

6.4.3 Autofs: The Automounter

As more nodes are added to a Beowulf, the startup time of the system can in-

crease dramatically because of contention for the NFS server on the worldly node

that exports home directories to the rest of the system. NFS is implemented using

ONC RPC, which supports only synchronous RPC calls. Therefore the NFS server

becomes a single bottleneck through which the other systems must pass, one at

a time. This phenomenon was a problem on local area networks until Sun Mi-

crosystems developed an automounting mechanism for NFS. The Linux version of

this mechanism is the autofs service. Autofs mounts NFS partitions only when

they are first accessed, rather than automatically at startup. If the NFS partition

is not accessed for a configurable period of time (typically five minutes), autofs

will unmount it. Using autofs can reduce system startup times as well as reduce

overall system load.

6.5 Remote Command Execution

In the course of administering or using a Beowulf cluster, it is often necessary to

execute commands on nodes without explicitly logging into them and typing on the

command line. For example, the commands may be executed from within a shell

script or by a cron job.

6.5.1 BSD R Commands

The BSD R commands are a set of programs that first appeared in 4.2BSD to

execute commands and copy files on remote machines. The major commands are

Network Software 129

as follows:

• rsh: The remote shell allows you to execute shell commands on remote nodes

and also initiate interactive login sessions. Interactive login sessions are initiated

by invoking rlogin.

• rlogin: The remote login command allows you to start a terminal session by

logging in to a remote node.

• rcp: The remote copy command llows you to copy files from one node to the

other.

The rsh command is the standard way of executing commands and starting

parallel applications on other nodes. A considerable amount of system software,

including the PVM and some implementations of the MPI libraries, relies heavily

on rsh for remote command execution. The rsh command requires that an rsh

server (‘/usr/sbin/in.rshd’ on most Linux systems) run on the remote node. The

rsh program connects to the server, which then checks that the client’s originat-

ing port is a privileged port before taking any further action. On Unix systems,

only processes with root privileges may open privileged ports between 1 and 1024.

The rsh check is a historical artifact dating from the days when a connection

originating from a privileged port could be trusted on that basis alone. After per-

forming the check, the server compares the client’s host address with a file called

‘/etc/hosts.equiv’, which contains a list of trusted hosts. Connections originat-

ing from trusted hosts do not require a password to be granted system access. If

the host is not in ‘/etc/hosts.equiv’, the server checks the home directory of the

user with the same user id as the user originating the connection for a file called

‘.rhosts’. The ‘.rhosts’ file can contain a list of hosts from which a user can

connect without entering a password. It is like ‘hosts.equiv’, but checked on a

user basis rather than a global basis. If the host is not found in ‘.rhosts’, then

the user is challenged for a password in order to execute the remote command.

The rsh command is extremely useful for performing system administration tasks

and launching parallel applications. However, it allows the execution of a com-

mand only on one other node. Many times you will want to execute a command

on multiple nodes at a time. Typically, Beowulf users will write shell scripts that

spawn multiple copies of rsh to do this work. More comprehensive sets of parallel

remote shell commands, designed to be more robust in the presence of failures and

scalable to large numbers of nodes, have been described in [10] and implemented by

several groups. In fact, the need to execute commands in parallel is so great that

many groups have independently invented variations of the parallel remote shell

command.

130 Chapter 6

6.5.2 SSH—The Secure Shell

The secure shell, SSH, is a set of security-conscious drop-in replacements for the

BSD rsh, rlogin, and rcp commands. The SSH counterparts are ssh, slogin,

and scp. The main problem with the BSD R commands is that they transmit

passwords across the network in plain text, which makes it extremely easy to steal

passwords. In addition, the use of ‘.rhosts’ files tends be a weak point in system

security. Another problem is that the R commands have to be installed as suid

root because they must open privileged ports on the client node. The R commands

are more than adequate to use in an ostensibly secure environment, such as the

internal nodes of a guarded Beowulf system (see Section 7.1.3), which are normally

configured with their own private network. Nodes exposed to the external world,

however, should be allowed access only via a secure mechanism such as SSH.

SSH is a commercial product developed by SSH Communications Security, Ltd.,

which offers both Win32 and Unix versions. The Unix version is available as open

source software and can be downloaded from www.ssh.fi, with precompiled bina-

ries available at many sites. SSH encrypts all network communication, including

passwords, and uses a public key-based authentication system to verify host and

user identities. Many Beowulf systems install SSH as standard system software, a

practice we strongly recommend. Eventually, the use of rsh will have to be dis-

carded because of its reliance on a fundamentally insecure authentication model.

Also, rsh makes poor use of the limited number of privileged ports between 512

and 1024, using two of them for every connection that maintains a standard error

stream. Thus, the worldly node of a Beowulf with 32 internal nodes and only four

users executing commands on all nodes would have its allowable rsh connections

maxed out. Even if the additional security is unnecessary, SSH should be used to

keep from running out of privileged ports.

7 Setting Up Clusters: Installation and Configuration

Thomas Sterling and Daniel Savarese

If building a Beowulf only involved assembling nodes, installing software on each

one, and connecting the nodes to each other with a network, this book would end

right here. But as you may have guessed, there is more to building a Beowulf

than just those tasks. Once you have assembled a Beowulf, you have to keep

it running, maintain software, add and remove user accounts, organize the file

system layout, and perform countless other tasks that fall under the heading of

system management. Some of these management tasks are very similar to those of

traditional LAN administration, about which entire books have been written. But

the rules have not yet been fully established for Beowulf system administration. It

is still something of a black art, requiring not only familiarity with traditional LAN

management concepts, but also some parallel programming skills and a creative

ability to adapt workstation and LAN software to the Beowulf environment. This

chapter describes some of the more common approaches applied by practitioners of

this evolving craft and presents some other procedures that have not yet become

common practice.

Even though both corporate LANs and Beowulf systems comprise collections of

networked PCs, they differ significantly in terms of their installation, use, mainte-

nance, and overall management. A LAN is usually formed from a loosely coupled

heterogeneous collection of computers that share disk and printing resources, in

addition to some network services, such as Web and database servers. A Beowulf

cluster is a more tightly coupled collection of computers where the majority of

components are identically configured and collectively operate as a single machine.

This chapter begins by discussing the choices available for connecting your Beo-

wulf to the outside world. We then discuss the steps needed to set up the Beowulf

nodes. The remaining sections cover the rudiments of system administration for a

Beowulf.

7.1 System Access Models

Before assigning IP addresses to Beowulf nodes, designing the network topology, and

booting the machine, you need to decide how the system will be accessed. System

access literally refers to how a user can log in to a system and use the machine.

Allowable system access modes relate directly to how you configure your system

both logically and physically. There are three principal schemes for permitting user

access to Beowulf machines, the first of which is seldom used.

132 Chapter 7

7.1.1 The Standalone System

The most basic way of configuring a Beowulf is to set it up as a standalone system

unattached to any external networks. This design requires a user to be in the same

room as the Beowulf, sitting at its front-end keyboard and monitor to write and

execute programs. Usually this is done only when first assembling the system and

when upgrading or debugging the system. Certain high-security environments may

require that a system be configured in this manner, but the utility of the system

becomes limited when the system cannot be accessed over an external network.

Institutions that decide to configure a Beowulf in this manner should include mul-

tiple front-end nodes, so that multiple users may simultaneously use the machine.

When a system is configured in this manner, it is not necessary to pay any special

attention to the IP addresses used. Any valid set of network addresses will do, but

it is advisable to use the reserved address ranges mentioned in Section 6.1.1.

7.1.2 The Universally Accessible Machine

At the opposite end of the spectrum from the standalone configuration lies the

universally accessible machine. In this configuration, each system node draws its

IP address from the pool of addresses assigned to an organization. This allows

internal nodes to be directly accessible by outside connection requests. In other

words, every node is accessible from the entire Internet. The primary negative

aspect of this configuration is that it greatly increases management tasks associated

with security. It also unnecessarily consumes a large quantity of IP addresses that

could otherwise be used by the organization’s local area network. If your local area

network already sits behind a firewall and uses a reserved address range, then this

may be an appropriate configuration, allowing access to any node from any machine

on your LAN. Also, some applications, such as Web and database load-balancing

servers, may require exposing all nodes to the external network. However, you will

have to take care in arranging your network switches and associated connections so

as to prevent LAN traffic congestion from interfering with Beowulf system traffic.

In addition, if you choose to add multiple network interfaces to each node, you

should probably not attach them to the external network.

7.1.3 The Guarded Beowulf

Somewhere in between the first two configurations stands the guarded Beowulf,

which is probably the most commonly used configuration. The guarded Beowulf

assigns reserved IP addresses to all of its internal nodes, even when using multi-

ple networks. To communicate with the outside world, a single front-end, called

Setting Up Clusters: Installation and Configuration 133

the worldly node, is given an extra network interface with an IP address from the

organization’s local area network. Sometimes more than one worldly node is pro-

vided. But in all cases, to access the rest of the system, a user must first log in to

a worldly node. The benefits of this approach are that you don’t consume precious

organizational IP addresses and you constrain system access to a limited number

of controllable access points, facilitating overall system management and security

policy implementation. The disadvantage is that internal nodes cannot access the

external network. But that feature can be remedied by using IP masquerading (dis-

cussed later). For increased security, it is often desirable to place the worldly nodes

behind a firewall. In the rest of this chapter, we will use the Guarded Beowulf as

the canonical example system unless explicitly stated otherwise.

7.2 Assigning Names

Beowulf system components need to communicate with each other. For intercom-

ponent communication to be possible, each component, or node, requires a unique

name. For the purposes of this chapter, node naming refers to the assignment of

both IP addresses and hostnames. Naming workstations on a LAN can often be

quite arbitrary, except that sometimes segmentation of the network restricts the

IP addresses available to a set of workstations located on a particular segment.

Naming Beowulf nodes requires a bit more thought and care.

7.2.1 Statistically Assigned Addresses

Beowulf clusters communicate internally over one or more private system area net-

works. One (or perhaps more, for redundancy and performance) of the nodes has

an additional network connection to the outside. These nodes are referred to as

worldly nodes to distinguish them from internal nodes, which are connected only to

the private cluster network. Because the internal nodes are not directly connected to

the outside, they can use the reserved IP addresses discussed in Chapter 6. Specif-

ically, most clusters assign their worldly node to address 192.168.1.1, and assign

internal nodes sequentially to addresses in the range 192.168.1.2 to 192.168.1.253.

The worldly node will always have a second network interface, possessing a routable

IP address that provides connectivity to the organizational LAN.

From long experience, we have found that internal hostnames should be trivial.

Most Beowulf clusters have assigned very simple internal hostnames of the format

<cluster-letter><node-number>. For instance, the first Beowulf named its nodes

using simply the letter b as a prefix, but made the mistake of calling its first node

134 Chapter 7

b0. While it is natural for those steeped in the long-standing computer science

tradition of starting indices at zero, it is better to map the numbers contained in

hostnames directly to the last octet of the node IP address. For example, 198.168.1.1

becomes node b1, and 198.168.1.2 becomes b2. As you can see, there can be

no b0 node, because 198.168.1.0 is a network number, and not a host address.

Directly mapping the numbers starting from 1 facilitates the writing of custom

system utilities, diagnostic tools, and other short programs usually implemented as

shell scripts. If you plan to have more than 9 nodes in your system, it might be

desirable to name all of your nodes using two digits. For example, b1 becomes b01

and b2 becomes b02. Similarly, for systems with more than 99 nodes, b1 should

become b001 and b10 should become b010.

When physically administrating a cluster, you often need to know the MAC

addresses of the network cards in nodes, as well as their names and IP addresses.

The simplest reason is that when something goes wrong with a node, you have

to walk into the machine room and diagnose the problem, often simply rebooting

the culprit node. For this reason, you should label each node with its hostname,

IP address, and the MAC addresses of the network interface cards. If you use a

consistent IP address to hostname mapping, you can get by with labeling the nodes

with their names and MAC addresses. MAC addresses go in the ‘bootptab’ (see

Section 7.3.3), so you will want to record them when you install the NICs into their

cases. If you forgot to do this, the ifconfig command will report the MAC address

of configured controllers. For small systems, labeling of nodes is superfluous, but

for larger numbers of nodes, this simple measure could save you many hours.

7.2.2 Dynamically Assigned Addresses

So far we have discussed naming nodes with statically assigned addresses. Every

time a node is booted, it obtains its hostname and IP address from its local con-

figuration files. You need not always configure your system this way. If all of your

internal nodes have identical software images, there is no reason why they necessar-

ily require fixed IP addresses and hostnames. It is possible to configure a system so

that every time an internal node boots, it receives an IP address from a pool of avail-

able addresses. Worldly nodes, however, need to continue using fixed IP addresses

because they provide resources to internal nodes that must be accessed through

a known host address. The advantage of using dynamically assigned addresses is

that internal nodes become completely interchangeable, facilitating certain system

maintenance procedures. If you decide to convert your universally accessible ma-

chine to a guarded Beowulf, all you have to do is change the IP addresses in the

DHCP (Dynamic Host Configuration Protocol) or BOOTP server’s configuration

Setting Up Clusters: Installation and Configuration 135

files, rather than update config files on every single node. The downside of dy-

namic addressing is that unless you take proper precautions, it can become difficult

to determine what physical box in the machine room corresponds to a specific IP

address. This is where the suggested labeling of nodes with MAC addresses comes

in handy. If you know the MAC address of a misbehaving node, you can find it by

visually scanning the labels. All in all, it is easier if the mapping between MAC

addresses, hostnames, and IP addresses changes as infrequently as possible.

7.3 Installing Node Software

After choosing a configuration scheme, the next step in turning your mass of ma-

chines into a Beowulf is to install an operating system and standard software on all

of the nodes.

The internal nodes of a Beowulf cluster are almost always identically configured.1

The hardware can be slightly different, incorporating different generation proces-

sors, disks, and network interface cards. But the file system layout, kernel version,

and installed software are the same. Only the worldly node exhibits differences,

since it generally serves as the repository of user home directories and centralized

software installations exported via NFS.

In general, you will install the operating system and extra support software on

the worldly node first. Once this is complete, you can begin to install software on

the remainder of the nodes.

Years ago this was a daunting task involving the installation of nodes one at

a time by hand, building custom boot disks and installing over the network, or

copying entire disks. Today, a number of packages automate a great deal of the

process for most systems. Three examples of cluster installation packages are

• NPACI Rocks Clustering Toolkit, rocks.npaci.edu

• OSCAR Packaged Cluster Software Stack, www.csm.ornl.gov/oscar/software.

html

• Scalable Cluster Environment, smile.cpe.ku.ac.th/research/sce

All of these packages work in a similar manner. The desired configuration is de-

scribed via either text files or a GUI. This includes how the disk will be organized

into partitions and file systems, what packages should be installed, and what net-

work addresses should be used. Defaults for these are available as a starting point.

A boot floppy image for use in installation is provided. The nodes are booted and

1Management and use of a Beowulf are greatly simplified when all nodes are nearly identical.

136 Chapter 7

discovered by the server using DHCP or BOOTP and IP addresses are matched to

MAC addresses. Finally, the package configures the nodes as specified.

To provide a clearer picture of what goes on during this process, we will walk

through the necessary steps, most of which are now handled by the above-mentioned

software. You can skip to Section 7.4 if you do not need or want to know how this

works. The approach is simple. First, a single internal node is configured. Once

this is done, all other nodes are “cloned” from this installation. This way, only

two systems are configured by hand. Aside from saving time up front, cloning

also facilitates major system upgrades. Changes to the software configuration of

internal nodes that require an update to all of the nodes may be performed by

modifying a single node and pushing changes out to the remainder of the nodes. In

addition, cloning makes it easier to recover from certain unexpected events such as

disk failures or accidental file system corruption. Installing a new disk (in the case

of a disk failure), then recloning the node, returns it to working order.

Node cloning relies on the BOOTP protocol to provide a node with an IP address

and a root file system for the duration of the cloning procedure. In brief, the

following steps are involved:

1. Manually configure a single internal node.

2. Create tar files for each partition.

3. Set up a clone root directory on the worldly node.

4. Configure BOOTP on the worldly node.

5. Install a special init script in the clone root directory on the worldly node.

6. Create a boot disk with an NFSROOT kernel.

The basic premise behind our example cloning procedure is for the new node to

mount a root file system over NFS, which contains the cloning support programs,

configuration files, and partition archives. When the Linux kernel finishes loading,

it looks for a program called ‘/sbin/init’, which executes system initialization

scripts and puts the system into multiuser mode. The cloning procedure replaces

the standard ‘/sbin/init’ with a program that partitions the hard drives, untars

partition archives, and executes any custom cloning configuration scripts before

rebooting the newly cloned system.

7.3.1 Creating Tar Images

After configuring the internal node, an archive of each disk partition is made,

omitting ‘/proc’ because it is not a physical disk partition. The normal procedure

is to change the current working directory to the partition mount point and use a

tar command such as

Setting Up Clusters: Installation and Configuration 137

tar zlcf /worldly/nfsroot/partition-name.tgz .

The l option tells the tar command to archive files only in directories stored

on the local partition, avoiding files in directories that serve as mount points for

other partitions. A potential pitfall of this archiving method is that there may not

be enough room on the local disk to store the partitions. Rather than creating

them locally, one should store the tar file on an NFS partition on the worldly node.

Ultimately, the files must be moved to the worldly node, so it makes sense to store

them there in the first place.

7.3.2 Setting Up a Clone Root Partition

Next we create a root directory on the worldly node for use in the cloning process.

This directory is exported via NFS to the internal node network. The directory

contains the following subdirectories: ‘bin’, ‘dev’, ‘etc’, ‘lib’, ‘mnt’, ‘proc’, ‘sbin’,

‘tmp’. The ‘proc’ and ‘mnt’ directories are empty, as they will be used as mount

points during the cloning process. The ‘dev’ directory contains all the standard

Linux device files. Device files are special, and cannot be copied normally. The

easiest way to create this directory is by letting tar do the work by executing the

following command as root:

tar -C / -c -f - dev | tar xf -

This will create a ‘dev’ directory containing all the device files found on the worldly

node. All the remaining directories are copied normally, except for ‘tmp’ and ‘etc’,

which are left empty. The ‘usr’ directory tree should not be needed. An ‘fstab’

file should also be created in ‘etc’ containing only the following line, so that the

‘/proc’ file system may be mounted properly:

none /proc proc default 0 0

You also may need to include a ‘hosts’ file.

Once the NFS root file system is built, the partition archives are moved into

the file system as well. We place these in a separate directory which will be

accessed by our init script. We replace the ‘sbin/init’ executable with our

cloning init script. This script will be invoked by the clone node’s kernel to

perform the cloning process. Tasks performed by the script include drive parti-

tioning, archive extraction, and configuration file tweaking. Some configuration

files in the NFS root file system must be tweaked if nodes aren’t set up to con-

figure themselves through DHCP or BOOTP. The primary configuration files are

ones dependent on the node IP address, such as ‘/etc/sysconfig/network’ and

‘/etc/sysconfig/network-scripts/ifcfg-eth0’ on Red Hat–based systems.

138 Chapter 7

.default:\

:sm=255.255.255.0:\

:ht=ether:\

:gw=192.168.1.1:\

:rp=/export/nfsroot/:

b002:ip=192.168.1.2:ha=0080c8638a2c:tc=.default

b003:ip=192.168.1.3:ha=0080c86359d9:tc=.default

b004:ip=192.168.1.4:ha=0080c86795c8:tc=.default

Figure 7.1
Sample bootptab for a system with three nodes: b002, b003, and b004.

7.3.3 Setting Up BOOTP

BOOTP2 was originally devised to allow the booting of diskless clients over a net-

work. BOOTP provides a mapping between a hardware address and an IP address.

A BOOTP client needs to fetch an IP address before making use of any additional

information so that it may speak to NFS or other servers referenced by the config-

uration information. The BOOTP daemon further makes available the name of a

directory on the BOOTP server containing a boot kernel, the name of the kernel

file, and the name of a root directory structure exported via NFS that the diskless

client can mount. We will utilize this facility in our install process in order to assign

IP addresses to nodes as they are booted and to provide the location of our NFS

root file system.

The ‘bootptab’ file tells the bootpd daemon how to map hardware addresses

to IP addresses and hostnames. It also describes a root path entry for our NFS

exported root directory. The ‘bootptab’ file will look something like the example

shown in Figure 7.1.

The .default entry is a macro defining a set of options common to all of the

entries. Each entry includes these default options by including tc=.default. The

other entries are simply hostnames followed by IP addresses and hardware ad-

dresses. The rp option specifies our NFS root partition.

IP addresses to be used during the installation process are defined in this file.

It is convenient to define the permanent mapping of IP addresses to nodes at this

point and use these same addresses during the installation.

The BOOTP software distributed with Linux is well documented, so we won’t

describe it in length. To activate the BOOTP daemon, create the ‘/etc/bootptab’

2“Bootstrap Protocol (BOOTP),” Internet Engineering Task Force RFC 951, info.internet.
isi.edu/in-notes/rfc/files/rfc951.txt.

Setting Up Clusters: Installation and Configuration 139

configuration file, uncomment the line in ‘/etc/inetd.conf’ (see Section 4.3.1)

that invokes bootpd, and restart the inetd server on the BOOTP server (i.e., the

worldly node). At this point the worldly node is prepared to assign IP addresses

and serve files during the installation process.

On the client side, the diskless client boot sequence involves obtaining an IP

address using BOOTP, establishing a TFTP connection to the boot server and

fetching a kernel, loading the kernel, and mounting an NFS exported directory as a

root file system. In general this process is initiated either by a ROM-based facility

for operation without a drive or by a bootable floppy disk or CD-ROM. We will

assume that a hardware facility is not available, so next we must create the boot

floppy that will be used to initiate the cloning process on the client nodes.

7.3.4 Building a Clone Boot Floppy

The purpose of our boot disk is simply to bootstrap the cloning procedure by

obtaining an IP address and NFS file system location from the BOOTP server and

mounting this file system, over the network, as root. Unfortunately, it is not likely

that the kernel installed on the worldly node has these capabilities built in, so it

is necessary to build one. A kernel with these capabilities is commonly called an

NFSROOT kernel. Compiling the Linux kernel is relatively easy, as discussed in

Section 4.2.1.

The configuration of this kernel must include NFS root file system support as

well as support for the network interface cards. Once compiled, the kernel will be

stored in a file called ‘zImage’ or ‘bzImage’ depending on the compression option

used. This kernel must be further modified in order to force it to boot, using the

NFS directory obtained via BOOTP. The root device used by a kernel is stored

in the kernel image and can be altered with the rdev program, usually located in

‘/usr/sbin’. The root device must be the NFS file system, but no device file exists

for this purpose by default, so you must create one. This is accomplished with

mknod:

mknod /dev/nfsroot b 0 255

This creates a dummy block device with special major and minor device numbers

that have special meaning to the Linux kernel. Once this device file is available,

you should instruct the Linux kernel to use this as the root device with

rdev zImage /dev/nfsroot

Following this, write the kernel to a floppy with the dd command

140 Chapter 7

dd if=zImage of=/dev/fd0 bs=512

After creating your first clone disk, test it on a node to make sure everything

works. After this test, you can duplicate the floppy to clone multiple nodes at

once. Once the system is up and running, it is no longer necessary to use floppies

for cloning. Instead, you can clone nodes that already have an active operating

system by installing a clone kernel and rebooting; this can even be done remotely.

7.4 Basic System Administration

Simply getting a cluster up and running can be a challenging endeavor; but once

you’ve done it, it won’t seem so difficult anymore. For your first cluster, it will

probably be a lot easier to skip the cloning process. You can go ahead and install

identical software from scratch on all of your nodes, including your worldly node.

After you get a feel for how you are using the system, you can fine tune it by

removing nonessential software from internal nodes and setting up a node cloning

system.

7.4.1 Booting and Shutting Down

Perhaps one of the most inelegant features of a Beowulf cluster is how you turn it

on and off. There is no master switch you can flip to turn on the entire system.

This facility would be of limited usefulness in any case because Beowulfs usually

consist of many parts some of which depend on others to boot properly. A robust

and usable power management system is required, which also provides fine-grained

control over each piece of the machine. The least expensive solution is to walk from

machine to machine turning on or off individual nodes. While this method works

out fairly well for small to medium sized clusters, however, it is not acceptable for

any sizable cluster.

For large machines, remote control over the power state of each node is required.

Although some vendors are starting to support power management via special on-

board hardware, most node hardware is not equipped with remote power manage-

ment logic. When on-board support is unavailable, a network-accessible power strip

can provide a useful alternative. Multiple vendors offer network-accessible power

strips that allow you to control individual power ports over the network. While

these provide complete control over the power supplied to each node, a few re-

maining details must be considered before deployment. One important issue when

choosing a power management system is the “statefulness” of your node’s power

switch. Some motherboards do not automatically reboot on restoration of power;

Setting Up Clusters: Installation and Configuration 141

if this is the case with your hardware, then a network-enabled power strip is not

a viable solution. Finally, it is important when using this configuration to ensure

that your kernel does not power off the machine on shutdown. Otherwise extra

trips to the machine room will be in order.

An example of a large cluster using remote power management can be found in

Chapter 18.

7.4.2 The Node File System

The Linux operating system follows a convention called the Linux File system

Hierarchy Standard.3 Beowulf nodes by default follow the same convention with

one or two twists. The main consideration in deciding how to set up node file

systems isn’t so much how to organize the directory structure, but rather how to

partition the disks and what mount points to use for each partition. The primary

partitions usually correspond to the following directories:

/ The root partition, containing system configuration and log files

/boot An optional partition for storing kernel images, often just a regular directory

in the root partition

/home A partition containing all user directories

/opt An optional partition for additional software

/usr A partition containing all standard system software

/scratch A partition used as scratch space for large temporary data files (for

nodes with a very large disk or multiple disks, it is common to have several scratch

partitions, named ‘scratch1’, ‘scratch2’, and so on)

The real issue with regard to file systems on the cluster is the availability of

user home directories across the cluster. Typically, user data is stored in ‘/home’

on the worldly node. Users log in to this node and perform any number of in-

teractive tasks before spawning a parallel job on the cluster. Ideally, you would

like the same file system space seen on the worldly node to be seen on the nodes

by allowing networked access to the files. In practice, this is problematic, for

two reasons. First, this introduces additional nonapplication traffic on the inter-

nal network, which leads to poorer and less predictable application communication

3The Linux FHS was formerly known as the Linux File System Standard (FSSTND). The latest
version of the Linux FHS, as well as the older FSSTND, is published at www.pathname.com/fhs/.

142 Chapter 7

performance. Second, the most popular mechanism for providing this functionality,

NFS, has been shown to scale poorly to large clusters. This said, the convenience

of globally accessible home directories leads many cluster administrators to provide

this functionality, and one must hope that in the future an adequate “global file

system” will become available.

The most common alternative is to provide users with separate directory space

on each node and to provide utilities for aiding in application and data migration

onto the cluster. The advantages and disadvantages of this approach in the context

of a large cluster are discussed in Chapter 18.

Other less common file system configurations include “crossmounting” of file

systems, which makes the file systems of each node available on every other node

via NFS or some other network file system, and shared ‘/usr’ partitions. Cross-

mounting helps take advantage of unused disk space on nodes by making this space

available across the cluster; however, this comes at the expense of some network

performance due to the file system traffic. Shared ‘/usr’ partitions helps save space

on node disks. The drop in cost of storage space for commodity clusters has vir-

tually eliminated the use of shared shared partitions such as this, however, since

nodes tend to have more than adequate free space.

7.4.3 Account Management

User account management generally is handled in one of two ways. The first is to

assign an account to a user on the worldly node and then copy the ‘/etc/passwd’

file to every node. The second is to configure the internal nodes to use Network

Information System, either NIS or NIS+, for user authentication. This approach

requires that accounts be configured on the worldly node, which should be the home

of the NIS server. Each method has advantages and disadvantages, which we will

mention shortly. In both cases, setting up the account on the worldly node works

the same way. You can use either the useradd command, which supersedes the older

adduser command (this may be a symbolic link to useradd on some systems), or

one of the emerging Linux system administration tools such as linuxconf. These

commands will create a home directory for the new user containing system default

config files and will create an entry in ‘/etc/passwd’ storing the user’s encrypted

password, home directory location, and shell.

After a new user has an account on the worldly node, the internal nodes must

have some mechanism for accessing this data for authentication purposes. The

most commonly implemented method is to simply copy the ‘/etc/passwd’ file to

all the internal nodes, usually using one of rdist, rcp, or pdsh. The ‘/etc/group’

file is often modified in the process of adding a user, so it should be copied as well.

Setting Up Clusters: Installation and Configuration 143

When multiple administrators are granting or modifying accounts, care must be

taken that these configurations files remain identical on all the nodes. The use

of utilities such as userdel (or deluser) and groupdel helps to ensure that the

worldly node files are not simultaneously updated, which is a good first step in

maintaining consistency.

The alternative method of managing user accounts is to use a directory service,

such as NIS, to store user account information. NIS stores all directory data in a

central server, which is contacted by clients (the nodes) to perform authentication.

This eases system administration considerably, since only one point of control exists

for account management. However, this has the side effect of generating extra

network traffic. For example, every time a user logs into a node, the node must

contact the server to verify the user exists and check the supplied password. The

latency involved in this process can greatly slow parallel application launching as

well. For these reasons, many Beowulf sites forego NIS for distributing account

information.

7.4.4 Running Unix Commands in Parallel

Managing a Beowulf cluster involves an almost endless number of tasks that require

execution of a command on multiple nodes at a time. Common operations include

copying files to every node of a Beowulf (such as user applications, libraries, or

configuration files) or checking for and killing runaway processes. Many groups

have developed a command or suite of commands to run a program on every node

(or a subset of nodes) in a Beowulf. One set, called the Scalable Unix Tools and

defined in 1994 [10], was originally developed for massively parallel computers but is

equally appropriate for Beowulf clusters. Several implementations of these tools are

available at www.mcs.anl.gov/sut [25] and smile.cpe.ku.ac.th. For example,

ptexec may be used to execute the same command on any collection of nodes:

ptexec -M "node1 node2" /sbin/shutdown -h now

The command

ptexec -all killall amok

kills all versions of the process named amok on the cluster. The Scalable Unix Tools

follow the Unix philosophy of tool building; it is easy to build tools by piping the

output from one tool into the input of another. For example,

ptpred -all ’-f /home/me/myapp’ | ptdisp

presents a graphical display showing which nodes have the file ‘/home/me/myapp’.

144 Chapter 7

7.5 Avoiding Security Compromises

After the number of computers connected to the Internet exploded in the mid-

1990s, it became impossible to attach a computer to a network without paying

some attention to preventive security measures. The situation is no different with

Beowulf clusters and is even more important because making a Beowulf accessible

via the Internet is like setting up one or more new departmental LANs. We have

already made some minor references to security but will discuss it now in more

detail.

Linux workstations and Beowulf clusters are not inherently more insecure than

other computers. Any computer attached to a network has the potential to be

broken into. Even if one takes measures to restrict access to a computer as tightly

as possible, software running on it may have exploitable bugs that can grant unau-

thorized access to the system. The only way to maintain a secure network is to

keep abreast of the latest CERT advisories4 and take basic preventive measures.

Several Beowulf systems have been victimized by crackers5 in ways that could have

been prevented by paying a little bit of attention to security issues.

7.5.1 System Configuration

How you defend your Beowulf from attack will depend on the choice of system

access model. The universally accessible machine is the most vulnerable, while the

standalone machine is the most secure, since it is not attached to an external net-

work. The guarded Beowulf is the most practical configuration to defend, because

its only entry points are its worldly nodes. It is possible to focus on implementing

security measures for only the worldly nodes and allow the internal nodes to trust

each other completely. Even though it is possible for an intruder to gain access

to the internal nodes once a worldly node is compromised, it is not necessary to

completely secure the internal nodes. These nodes can easily be recreated through

cloning and generally do not store sensitive persistent data. Despite the security

advantages presented by the guarded Beowulf access model, however, other needs

may demand the implementation of a universally accessible machine. For such a

4CERT is the Computer Emergency Response Team, run by Carnegie Mellon’s Software En-
gineering Institute. CERT posts regular bulletins reporting the latest Internet security vulnera-
bilities at www.cert.org/.
5Cracker is the accepted term among computer programmers for a rogue hacker who tries to

gain unauthorized access to computer systems. The term hacker is restricted to those computer
programmers not seduced by the Dark Side of the Force.

Setting Up Clusters: Installation and Configuration 145

configuration, each individual node must be secured, since each one constitutes an

external access point.

7.5.2 Restricting Host Access

The primary way crackers force access to a machine is by exploiting known bugs

in commonly run server software. The easiest way to avoid compromises, then,

is to carefully control the ways in which the machine may be accessed. The first

step in controlling access is disabling unused services. This process has the side

benefit of freeing up additional resources on your machine, which can lead to better

performance. Chapter 4 thoroughly covers this process.

Some services must be left so that users can access the machine remotely. For

these remaining services it makes sense to limit who can connect to them; however,

many servers permit universal access without authentication. Two mechanisms are

commonly used to limit the hosts that can access these services: TCP wrappers

and IP filtering (i.e., using a firewall). The TCP wrappers package, distributed as

standard Linux software, acts as a intermediary between server daemons and po-

tential clients, performing additional authentication and host-based access checks

before allowing the client to communicate with the server. The TCP wrappers

package requires that a daemon be able to treat its standard input and output

as a socket connection. By requiring this, the TCP wrappers daemon, tcpd, can

accept connections for another daemon, check for authorization, and then invoke

the other daemon, turning the socket file descriptor into the daemon’s standard

input and output. The tcpd daemon is normally invoked by inetd and listed in

‘/etc/inetd.conf’ in front of each daemon. This is because all daemons that sup-

port inetd launching are TCP wrappers compatible. The TCP wrappers package

uses the ‘/etc/hosts.deny’ and ‘/etc/hosts.allow’ files to decide whether or not

to allow a server connection to proceed.

Rather than protecting every single one of the system daemons with TCP wrap-

pers, one can shield the entire system behind a firewall. This is becoming an increas-

ingly popular measure as security attacks become more common. Firewalls come in

many shapes and sizes, including dedicated hardware running custom ROMs. An

inexpensive option is to use the Linux operating system and a spare PC equipped

with two network interface cards. The Linux Documentation Project6 provides in-

formation on how to do this in its Firewall HOWTO document. Firewalls have two

advantages over the use of TCP wrappers. First, firewalls allow control of access at

6The Linux Documentation Project pages are mirrored at many Web sites across the world,
but the master page is located at www.linuxdoc.org.

146 Chapter 7

both the packet and protocol levels, which can provide protection from a larger va-

riety of attacks, including some denial-of-service attacks. Second, security policies

may be implemented at a single administrative point, simplifying the maintenance

of the system.

7.5.3 Secure Shell

The easiest way to break into a system is to steal someone’s password. Programs

for capturing the traffic across networks and extracting password information are

readily available on the Internet. While administrators have little control over the

quality of passwords users choose, eliminating access to the system via services that

transmit passwords in plaintext reduces the chances of passwords being “sniffed”

off the network.

Traditional host access protocols such as FTP, Telnet, and RSH require pass-

words to be transmitted over the network in the clear (in unencrypted plain text).

Although the local network may be secure, once packets leave this safe area they

travel through many other systems before reaching their ultimate destination. One

of those systems may have had its security compromised. When a user logs into a

Beowulf from across the country using such a service, all of his keystrokes might

be actively monitored by some sniffer in an intervening network. For this reason, it

is highly recommended not to allow Telnet, FTP, or RSH access to your Beowulf.

A universally accessible machine should disable these services on all of the nodes,

while a guarded Beowulf might disable the services only on the worldly node.

The best alternative to these services for remote access to a Beowulf is SSH, which

is now the standard remote login and remote execution method used on Unix ma-

chines on the Internet. SSH encrypts all communications between two endpoints,

including the X-Window display protocol, eliminating the chance that passwords

or other sensitive bits of information are discovered by intermediate eavesdroppers.

Many SSH implementations are available, including implementations for the Win-

dows platform. OpenSSH7 is becoming the most widely used implementation for

Unix systems, since it is well supported and current (it is also open source and

released under an unrestrictive license). Since OpenSSH is easy to install and very

portable, Beowulf machines have also started using it as an rsh replacement. Most

SSH packages also include a program called ‘scp’ as a replacement for ‘rcp’, thus

allowing secure file transfer as well as interactive login sessions.

7OpenSSH is available from www.openssh.com

Setting Up Clusters: Installation and Configuration 147

7.5.4 IP Masquerading

If a guarded configuration is implemented and it is necessary for nodes to con-

tact the outside world, network address translation is the best option. Network

Address Translation,8 commonly referred to as NAT, is a technique devised for

reusing IP addresses as a stopgap measure to slow the depletion of the IPv4 ad-

dress space. NAT permits IP address reuse by allowing multiple networks to use

the same addresses but having them communicate between each other through a

pair of nonshared IP address. IP masquerading is a type of NAT performed by the

worldly node of a Beowulf cluster that makes external network connections appear

to originate from the single worldly node. This feature allows the internal nodes to

originate network connections to external Internet hosts but provides security by

not having a mechanism for an external host to set up a connection to an internal

node.

A nice feature about IP masquerading is that it doesn’t involve too many steps

to set up. Only the node performing the masquerading requires any amount of

reconfiguration. The internal nodes simply require their default route to be set to

the internal network address of the worldly node, usually 192.168.1.1. You can do

this with the route command as follows:

route add default gw 192.168.1.1

However, most Linux distributions perform gateway assignment at boot time based

on a configuration file. Red Hat Linux stores gateway configuration information

in the file ‘/etc/sysconfig/network’, which contains two variables: GATEWAY and

GATEWAYDEV. These should be set to the IP address of the worldly node and the

primary internal network interface name of the internal node. A typical network

configuration file for an internal node might look something like the following:

NETWORKING=yes

FORWARD_IPV4=false

HOSTNAME=b001

DOMAINNAME=beowulf.org

GATEWAY=192.168.1.1

GATEWAYDEV=eth0

Configuring the worldly node to perform the IP masquerading requires a little

more work, but nothing particularly difficult. The first requirement is to compile

8“The IP Network Address Translator (NAT),” Internet Engineering Task Force RFC 1631,
info.internet.isi.edu/in-notes/rfc/files/rfc1631.txt.

148 Chapter 7

your kernel with support for network firewalls, IP forwarding/gatewaying, and IP

masquerading. There are also some additional options you may wish to include,

but these are the essential ones. More information about the particulars of each

option can be found in the Linux kernel source tree in the ‘masquerading.txt’

documentation file and also in the IP Masquerade HOWTO.9

After installing a kernel capable of IP masquerading, you need to enable IP

forwarding. You can do this on Red Hat Linux systems by setting the FORWARD_-

IPV4 variable to true in ‘/etc/sysconfig/network’. IP forwarding is the process

by which a host will forward to its destination a packet it receives for which it is not

itself the destination. This allows internal node packets to be forwarded to external

hosts.

The last step is to configure IP masquerading rules. You don’t want your worldly

node to forward packets coming from just anywhere, so you have to tell it specifically

what packets to forward. Currently, you can do this by using the iptables utility

with 2.4.x Linux kernels; this is the evolution of the pre-2.4.x ipfwadm and ipchains

utilities.

The program iptables configures firewall packet filtering and forwarding rules.

It can specify rules based on the source and destination of a packet, the network

interfaces on which a packet is received or transmitted, the network protocol used,

destination and source ports, and quite a bit of other information. For the purposes

of setting up a worldly node, you can use iptables to tell the kernel to masquer-

ade only for packets originating from an internal node. Use a command like the

following:

iptables -t nat -P PREROUTING DROP

iptables -t nat --source 192.168.1.0/24 -j ACCEPT

iptables -t nat -P PREROUTING -j LOG

The first command sets the default forwarding policy to DROP for the nat (network

address translation) table. This is a safety measure to make sure your worldly node

doesn’t forward packets not originating from internal nodes. The second command

asks the kernel to masquerade only for packets originating from within the internal

network (192.168.1.0) and destined for any location. iptables works on a system

of routing chains, such as POSTROUTING and PREROUTING that have lists of rules to

determine where packets matching given characteristics go. The -j switches specify

the destination policy for any packet matching that rule. Packets move down the

9The IP Masquerade HOWTO can be found online at the Linux Documentation Project www.
linuxdoc.org. Additional IP masquerading information is also stored at the Linux IP Masquerade
Resource, ipmasq.cjb.net/.

Setting Up Clusters: Installation and Configuration 149

chain of rules until they find a matching one; a common and helpful debugging

measure involves defining the last rule in a chain to have no constraints and send

packets to the policy LOG. These are handled by iptables, which sends them to

syslogd so that they can be examined. Ideally no packets should fall into this cat-

egory. Typically, these commands are placed at the end of ‘/etc/rc.d/rc.local’,

so that they will be executed at boot time, but you can also create a script suitable

for use in the ‘/etc/rc.d/init.d’ startup system. The meanings of the various

iptables options can be garnered from the iptablesman page (iptables is a very

complex utility, and a thorough perusal of the manual is highly recommended), but

a quick summary is in order for the options necessary to configure a worldly node:

-P sets the policy for a given chain.

-A appends rules to the end of a selected chain.

-D deletes a rule from the selected chain.

-j target specifies the target of a rule.

-s address/mask indicates that a rule applies only to packets originating from

the given source address range.

-d address/mask indicates that a rule applies only to packets destined for an

address in the indicated range.

While there is much more to system security than we have presented, these tips

should get you started. Beowulf systems can easily be made as secure as the policies

of your institution require. See Appendixes B and C for pointers to more specific

guides to system administation and security.

7.6 Job Scheduling

Many Beowulf administrators are interested in better job scheduling functions.

Beowulfs usually start out with only a few users in a single department, but as

news about the system spreads to neighboring departments, more users are added

to the system. Once that happens, it becomes important to keep user-developed

applications from interfering with each other. This is usually done by funneling all

user programs through a job scheduler, which decides in what order and on what

processors to execute the programs. Part III of this book describes scheduling

systems that are often used with Beowulf systems (as well as other kinds of parallel

computers).

150 Chapter 7

7.7 Some Advice on Upgrading Your Software

The world of Beowulf software development is about to start moving at the same

rapid pace as general Linux development. To avoid playing the constant game of

catchup, you will have to be prepared to decide when you have a satisfactory and

stable software environment. It will help if you separate out one or two experimental

nodes for software evaluation and testing. Before upgrading to a new kernel, make

sure you’ve stressed it on a single node for a week or two. Before installing a fancy

new scheduler, test it extensively. The last thing you want is for your entire Beowulf

to grind to a halt because a scheduler has a bug that swamps the entire system with

more processes than it can handle. If your users demand a new compiler, install

it in such a way that they still have access to the old compiler, in case the new

one doesn’t always do quite the right thing. If your production system is humming

along just fine, don’t mess with it. Users don’t like system down time. If they

can already do all the work they want, then you should think very carefully before

perturbing the system configuration. These are recommendations, not hard and

fast rules, but they tend to be useful guides in the course of managing a system.

The future of Beowulf system software promises to be very exciting. If you pick and

choose only those tools that do what you need, you will likely minimize problems

and increase the productivity of your system.

8 How Fast Is My Beowulf?

David Bailey

One of the first questions that a user of a new Beowulf-type system asks is “How fast

does my system run?” Performance is more than just a curiosity for cluster systems.

It is arguably the central motivation for building a clustered system in the first

place—a single node is not sufficient for the task at hand. Thus the measurement

of performance, as well as comparisons of performance between various available

system designs and constructions, is of paramount importance.

8.1 Metrics

Many different metrics for system performance exist, varying greatly in their mean-

ingfulness and ease of measurement. We discuss here some of the more widely used

metrics.

1. Theoretical peak performance. This statistic is merely the maximum

aggregate performance of the system. For scientific users, theoretical peak perfor-

mance means the maximum aggregate floating-point operations per second, usually

calculated as

P = N ∗ C ∗ F ∗R,
where P is the performance, N is the number of nodes, C is the number of CPUs

per node, F is the number of floating-point operations per clock period, and R

is the clock rate, measured in cycles per second. P is typically given in Mflops

or Gflops. For nonscientific applications, integer operations are counted instead of

floating-point operations per second, and rates are typically measured in Mops and

Gops, variantly given as Mips and Gips. For nonhomogeneous systems, P is calcu-

lated as the total of the theoretical peak performance figures for each homogeneous

subsystem.

The advantage of this metric is that is very easy to calculate. What’s more, there

is little disputing the result: the relevant data is in many cases publicly available.

The disadvantage of this metric is that by definition it is unattainable by ordinary

application programs. Indeed, a growing concern of scientific users—in particular,

users of parallel and distributed systems—is that the typical gap between peak and

sustained performance seems to be increasing, not decreasing.

2. Application performance. This statistic is the number of operations per-

formed while executing an application program, divided by the total run time. As

with theoretical peak performance, it is typically given in Mflops, Gflops, Mops, or

Gops. This metric, if calculated for an application program that reasonably closely

152 Chapter 8

resembles the program that the user ultimately intends to run on the system, is

obviously a much more meaningful metric than theoretical peak performance. The

metric is correspondingly harder to use, however, because you must first port the

benchmark program to the cluster system, often a laborious and time-consuming

task. Moreover, you must determine fairly accurately the number of floating-point

(or integer) operations actually performed by the code. Along this line, you should

ascertain that the algorithms used in the code are really the most efficient available

for this task, or you should use a floating-point operation count that corresponds

to that of an efficient algorithm implementation; otherwise, the results can be ques-

tioned. One key difficulty with this metric is the extent to which the source code

has been “tuned” for optimal performance on the given system: comparing results

that on one system are based on a highly tuned implementation to those on an-

other system where the application has not be highly tuned can be misleading.

Nonetheless, if used properly, this metric can be very useful.

3. Application run time. This statistic simply means the total wall-clock run

time for performing a given application. One advantage of this statistic is that it

frees you from having to count operations performed. Also, it avoids the potential

distortion of using a code to assess performance whose operation count is larger

than it needs be. In many regards, this is the ultimate metric, in the sense that

it is precisely the ultimate figure of merit for an application running on a system.

The disadvantage of this metric is that unless you are comparing two systems both

of which have run exactly the same application, it is hard to meaningfully compare

systems based solely on comparisons of runtime performance. Further, the issue of

tuning also is present here: In comparing performance between systems, you have

to ensure that both implementations have been comparably tuned.

4. Scalability. Users often cite scalability statistics when describing the per-

formance of their system. Scalability is usually computed as

S =
T (1)

T (N)
,

where T (1) is the wall clock run time for a particular program on a single pro-

cessor and T (N) is the run time on N processors. A scalability figure close to N

means that the program scales well. That is, the parallel implementation is very

efficient, and the parallel overhead very low, so that nearly a linear speedup has

been achieved. Scalability statistics can often provide useful information. For ex-

ample, they can help you determine an optimal number of processors for a given

application. But they can also be misleading, particularly if cited in the absence

How Fast Is My Beowulf? 153

of application performance statistics. For example, an impressive speedup statistic

may be due to a very low value of T (N), which appears in the denominator, but it

may also be due to a large value of T (1)—in other words, an inefficient one-processor

implementation. Indeed, researchers working with parallel systems commonly note

that their speedup statistic worsens when they accelerate their parallel program by

clever tuning. Also, it is often simply impossible to compute this statistic because,

while a benchmark test program may run on all or most of the processors in a

system, it may require too much memory to run on a single node.

5. Parallel efficiency. A variant of the scalability metric is parallel efficiency,

which is usually defined to be P (N)/N . Parallel efficiency statistics near one are

ideal. This metric suffers from the same potential difficulties as the scalability

metric.

6. Percentage of peak. Sometimes application performance statistics are

given in terms of the percentage of theoretical peak performance. Such statistics

are useful in highlighting the extent to which an application is using the full compu-

tational power of the system. For example, a low percentage of peak may indicate

a mismatch of the architecture and the application, deserving further study to de-

termine the source of the difficulty. However, a percentage-of-peak figure by itself

is not too informative. An embarrassingly parallel application can achieve a high

percentage of peak, but this is not a notable achievement. In general, percentage-

of-peak figures beg the question “What percentage of peak is a realistic target for

a given type of application?”

7. Latency and bandwidth. Many users are interested in the latency (time

delay) and bandwidth (transfer rate) of the interprocessor communications network,

since the network is one of the key elements of the system design. These metrics

have the advantage of being fairly easy to determine. The disadvantage is that the

network often performs differently under highly loaded situations from what the

latency and bandwidth figures by themselves reveal. And, needless to say, these

metrics characterize only the network and give no information on the computational

speed of individual processors.

8. System utilization. One common weakness of the cited metrics is that

they tend to ignore system-level effects. These effects include competition between

two different tasks running in the system, competition between I/O-intensive tasks

and non-I/O-intensive tasks, inefficiencies in job schedulers, and job startup delays.

To address this issue, some Beowulf system users have measured the performance of

154 Chapter 8

a system on a long-term throughput basis, as a contrast to conventional benchmark

performance testing.

Clearly, no single type of performance measurement—much less a single figure

of merit—is simultaneously easy to determine and completely informative. In one

sense, only one figure of merit matters, as emphasized above: the wall clock run

time for your particular application on your particular system. But this is not easy

to determine before a purchase or upgrade decision has been made. And even if you

can make such a measurement, it is not clear how to compare your results with the

thousands of other Beowulf system users around the world, not to mention other

types of systems and clusters.

These considerations have led many users of parallel and cluster systems to com-

pare performance based on a few standard benchmark programs. In this way, you

can determine whether your particular system design is as effective (as measured by

a handful of benchmarks) as another. Such comparisons might not be entirely rel-

evant to your particular application, but with some experience you can find one or

more well-known benchmarks that give performance figures that are well correlated

with your particular needs.

8.2 Ping-Pong Test

One of the most widely used measurements performed on cluster systems is the

Ping-Pong test, one of several test programs that measure the latency and band-

width of the interprocessor communications network. There are a number of tools

for testing TCP performance, including netperf and netpipe (see www.netperf.

org and www.scl.ameslab.gov/netpipe). Ping-Pong tests that are appropriate for

application developers measure the performance of the user API and are typically

written in C and assume that the MPI communications library is installed on the

system. More details on downloading and running these are given in Section 10.10.

8.3 The LINPACK Benchmark

The LINPACK benchmark dates back to the early 1980s, when Jack Dongarra

(then at Argonne National Laboratory) began collecting performance results of

systems, based on their speed in solving a 100 × 100 linear system using Fortran

routines from the LINPACK library. While a problem of this size is no longer

a supercomputer-class exercise, it is still useful for assessing the computational

performance of a single-processor system. In particular, it is a reasonable way to

How Fast Is My Beowulf? 155

measure the performance of a single node of a Beowulf-type system. One can obtain

the LINPACK source code, plus instructions for running the LINPACK benchmark,

from the www.netlib.org/benchmark.

More recently, Dongarra has released the “highly parallel computing” bench-

mark. This benchmark was developed for medium-to-large parallel and distributed

systems and has been tabulated on hundreds of computer systems [8, Table 3]. Un-

like the basic LINPACK benchmark, the scalable version does not specify a matrix

size. Instead, the user is invited to solve the largest problem that can reasonably

be run on the available system, given limitations of memory. Further, the user is

not restricted to running a fixed source code, as with the single-processor version.

Instead, almost any reasonable programming language and parallel computation

library can be run, including assembly-coded library routines if desired.

A portable implementation of the highly parallel LINPACK benchmark, called

the High Performance LINPACK (HPL) benchmark, is available. More details on

downloading and running the HPL benchmark are given in Section 10.10.3.

During the past ten years, Dongarra and Strohmaier have compiled a running

list of the world’s so-called Top500 computers, based on the scalable LINPACK

benchmark. The current listing is available from the www.top500.org. One of

the top-ranking systems is the ASCI Red system at Sandia National Laboratories

in Albuquerque, New Mexico. The ASCI Red system is a Pentium-based cluster

system, although not truly a “Beowulf” system because it has a custom-designed

interprocessor network. With an Rmax rating of 2.379 Tflops, it currently ranks

third in the Top500 list (based on the June 2001 listing).

The LINPACK benchmarks are fairly easy to download and run. Once a timing

figure is obtained, the calculation of performance is very easy. Most significant,

there is a huge collection of results for comparison: it is very easy to determine how

your system stacks up against other similar systems.

The principal disadvantage of the LINPACK benchmarks, both single processor

and parallel, is that they tend to overestimate the performance that real-world

scientific applications can expect to achieve on a given system. This is because the

LINPACK codes are “dense matrix” calculations, which have very favorable data

locality characteristics. It is not uncommon for the scalable LINPACK benchmark,

for example, to achieve 30 percent or more of the theoretical peak performance

potential of a system. Real scientific application codes, in contrast, seldom achieve

more than 10 percent of the peak figure on modern distributed-memory parallel

systems such as Beowulf systems.

156 Chapter 8

8.4 The NAS Parallel Benchmark Suite

The NAS Parallel Benchmark (NPB) suite was designed at NASA Ames Research

Center in 1990 to typify high-end aeroscience computations. This suite consists

of eight individual benchmarks, including five general computational kernels and

three simulated computational fluid dynamics applications:

EP: An “embarrassingly parallel” calculation, it requires almost no interprocessor

communication.

MG: A multigrid calculation, it tests both short- and long-distance communica-

tion.

CG: A conjugate gradient calculation, it tests irregular communication.

FT: A three-dimensional fast Fourier transform calculation, it tests massive all-to-

all communication.

IS: An integer sort, it involves integer data and irregular communication.

LU: A simulated fluid dynamics application, it uses the LU approach.

SP: A simulated fluid dynamics application, it uses the SP approach.

BT: A simulated fluid dynamics application, it uses the BT approach.

The original NPB suite was a “paper-and-pencil” specification—the specific cal-

culations to be performed for each benchmark were specified in a technical docu-

ment, even down to the detail of how to generate the initial data. Some straightfor-

ward one-processor sample program codes were provided in the original release, but

it was intended that those implementing this suite would use one of several vendor-

specific parallel programming models available at the time (1990). The original

NPB problem set was deemed Class A size. Subsequently some larger problem sets

were defined: Class B, which are about four times as large as the Class A problems,

and Class C, which are about four times as large as Class B problems. The small

single-processor sample codes are sometimes referred to as the Class W size.

Since the original NPB release, implementations of the NPB using MPI and

also OpenMP have been provided by the NASA team. These are available at

www.nas.nasa.gov/Software/NPB/.

As with the LINPACK benchmark, the NPB suite can be used to measure the

performance of either a single node of a Beowulf system or the entire system. In

How Fast Is My Beowulf? 157

particular, the Class W problems can easily be run on a single-processor system.

For a Beowulf system with, say, 32 processors, the Class A problems are an appro-

priate test. The Class B problems are appropriate for systems with roughly 32–128

processors. The Class C problems can be used for systems with up to 256 CPUs.

Unfortunately, almost the entire NASA research team that designed and cham-

pioned the NPB suite has now left NASA. As a result, NASA is no longer actively

supporting and promoting the benchmarks. Thus, there probably will not be any

larger problem sets developed. Further, NASA is no longer actively collecting

results.

The NPB suite does, however, continue to attract attention from the parallel

computing research community. This is because the suite reflects real-world parallel

scientific computation to a significantly greater degree than do most other available

benchmarks.

We recommend that users of Beowulf-type systems use the MPI version of the

NPB suite. Instructions for downloading, installing, and running the suite are given

at the NPB Web site.

 blank

II PARALLEL PROGRAMMING

 blank

9 Parallel Programming with MPI

William Gropp and Ewing Lusk

Parallel computation on a Beowulf is accomplished by dividing a computation into

parts and making use of multiple processes, each executing on a separate processor,

to carry out these parts. Sometimes an ordinary program can be used by all the

processes, but with distinct input files or parameters. In such a situation, no

communication occurs among the separate tasks. When the power of a parallel

computer is needed to attack a large problem with a more complex structure,

however, such communication is necessary.

One of the most straightforward approaches to communication is to have the

processes coordinate their activities by sending and receiving messages, much as

a group of people might cooperate to perform a complex task. This approach to

achieving parallelism is called message passing .

In this chapter and the next, we show how to write parallel programs using MPI,

the Message Passing Interface. MPI is a message-passing library specification. All

three parts of this description are significant.

• MPI addresses the message-passing model of parallel computation, in which pro-

cesses with separate address spaces synchronize with one another and move data

from the address space of one process to that of another by sending and receiving

messages.1

• MPI specifies a library interface, that is, a collection of subroutines and their

arguments. It is not a language; rather, MPI routines are called from programs

written in conventional languages such as Fortran, C, and C++.

• MPI is a specification, not a particular implementation. The specification was

created by the MPI Forum, a group of parallel computer vendors, computer scien-

tists, and users who came together to cooperatively work out a community stan-

dard. The first phase of meetings resulted in a release of the standard in 1994 that

is sometimes referred to as MPI-1. Once the standard was implemented and in

wide use a second series of meetings resulted in a set of extensions, referred to as

MPI-2. MPI refers to both MPI-1 and MPI-2.

As a specification, MPI is defined by a standards document, the way C, For-

tran, or POSIX are defined. The MPI standards documents are available at

www.mpi-forum.org and may be freely downloaded. The MPI-1 and MPI-2 stan-

dards are also available as journal issues [21, 22] and in annotated form as books

1Processes may be single threaded, with one program counter, or multithreaded, with multi-
ple program counters. MPI is for communication among processes rather than threads. Signal
handlers can be thought of as executing in a separate thread.

162 Chapter 9

in this series [29, 11]. Implementations of MPI are available for almost all paral-

lel computers, from clusters to the largest and most powerful parallel computers

in the world. In Section 9.8 we provide a summary of the most popular cluster

implementations.

A goal of the MPI Forum was to create a powerful, flexible library that could be

implemented efficiently on the largest computers and provide a tool to attack the

most difficult problems in parallel computing. It does not always do the simplest

things in the simplest way but comes into its own as more complex functionality is

needed. In this chapter and the next we work through a set of examples, starting

with the simplest.

9.1 Hello World in MPI

To see what an MPI program looks like, we start with the classic “hello world”

program. MPI specifies only the library calls to be used in a C, Fortran, or C++

program; consequently, all of the capabilities of the language are available. The

simplest “Hello World” program is shown in Figure 9.1.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello World\n");

MPI_Finalize();

return 0;

}

Figure 9.1
Simple “Hello World” program in MPI.

All MPI programs must contain one call to MPI_Init and one to MPI_Finalize.

All other2 MPI routines must be called after MPI_Init and before MPI_Finalize.

All C and C++ programs must also include the file ‘mpi.h’; Fortran programs must

either use the MPI module or include mpif.h.

The simple program in Figure 9.1 is not very interesting. In particular, all pro-

cesses print the same text. A more interesting version has each process identify

2There are a few exceptions, including MPI Initialized.

Parallel Programming with MPI 163

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello World from process %d of %d\n", rank, size);

MPI_Finalize();

return 0;

}

Figure 9.2
A more interesting version of “Hello World”.

itself. This version, shown in Figure 9.2, illustrates several important points. Of

particular note are the variables rank and size. Because MPI programs are made

up of communicating processes, each process has its own set of variables. In this

case, each process has its own address space containing its own variables rank and

size (and argc, argv, etc.). The routine MPI_Comm_size returns the number of

processes in the MPI job in the second argument. Each of the MPI processes is

identified by a number, called the rank , ranging from zero to the value of size

minus one. The routine MPI_Comm_rank returns in the second argument the rank

of the process. The output of this program might look something like the following:

Hello World from process 0 of 4

Hello World from process 2 of 4

Hello World from process 3 of 4

Hello World from process 1 of 4

Note that the output is not ordered from processes 0 to 3. MPI does not specify the

behavior of other routines or language statements such as printf; in particular, it

does not specify the order of output from print statements.

9.1.1 Compiling and Running MPI Programs

The MPI standard does not specify how to compile and link programs (neither do

C or Fortran). However, most MPI implementations provide tools to compile and

164 Chapter 9

link programs.

For example, one popular implementation, MPICH, provides scripts to ensure

that the correct include directories are specified and that the correct libraries are

linked. The script mpicc can be used just like cc to compile and link C programs.

Similarly, the scripts mpif77, mpif90, and mpiCC may be used to compile and link

Fortran 77, Fortran, and C++ programs.

If you prefer not to use these scripts, you need only ensure that the correct

paths and libraries are provided. The MPICH implementation provides the switch

-show for mpicc that shows the command lines used with the C compiler and is

an easy way to find the paths. Note that the name of the MPI library may be

‘libmpich.a’, ‘libmpi.a’, or something similar and that additional libraries, such

as ‘libsocket.a’ or ‘libgm.a’, may be required. The include path may refer to a

specific installation of MPI, such as ‘/usr/include/local/mpich-1.2.2/include’.

Running an MPI program (in most implementations) also requires a special pro-

gram, particularly when parallel programs are started by a batch system as de-

scribed in Chapter 13. Many implementations provide a program mpirun that can

be used to start MPI programs. For example, the command

mpirun -np 4 helloworld

runs the program helloworld using four processes. Most MPI implementations will

attempt to run each process on a different processor; most MPI implementations

provide a way to select particular processors for each MPI process.

The name and command-line arguments of the program that starts MPI pro-

grams were not specified by the original MPI standard, just as the C standard does

not specify how to start C programs. However, the MPI Forum did recommend, as

part of the MPI-2 standard, an mpiexec command and standard command-line ar-

guments to be used in starting MPI programs. By 2002, most MPI implementations

should provide mpiexec. This name was selected because no MPI implementation

was using it (many are using mpirun, but with incompatible arguments). The syn-

tax is almost the same as for the MPICH version of mpirun; instead of using -np

to specify the number of processes, the switch -n is used:

mpiexec -n 4 helloworld

The MPI standard defines additional switches for mpiexec; for more details, see

Section 4.1, “Portable MPI Process Startup”, in the MPI-2 standard.

Parallel Programming with MPI 165

9.1.2 Adding Communication to Hello World

The code in Figure 9.2 does not guarantee that the output will be printed in any

particular order. To force a particular order for the output, and to illustrate how

data is communicated between processes, we add communication to the “Hello

World” program. The revised program implements the following algorithm:

Find the name of the processor that is running the process

If the process has rank > 0, then

send the name of the processor to the process with rank 0

Else

print the name of this processor

for each rank,

receive the name of the processor and print it

Endif

This program is shown in Figure 9.3. The new MPI calls are to MPI_Send and

MPI_Recv and to MPI_Get_processor_name. The latter is a convenient way to get

the name of the processor on which a process is running. MPI_Send and MPI_Recv

can be understood by stepping back and considering the two requirements that

must be satisfied to communicate data between two processes:

1. Describe the data to be sent or the location in which to receive the data

2. Describe the destination (for a send) or the source (for a receive) of the data.

In addition, MPI provides a way to tag messages and to discover information about

the size and source of the message. We will discuss each of these in turn.

Describing the Data Buffer. A data buffer typically is described by an address

and a length, such as “a,100,” where a is a pointer to 100 bytes of data. For

example, the Unix write call describes the data to be written with an address and

length (along with a file descriptor). MPI generalizes this to provide two additional

capabilities: describing noncontiguous regions of data and describing data so that

it can be communicated between processors with different data representations. To

do this, MPI uses three values to describe a data buffer: the address, the (MPI)

datatype, and the number or count of the items of that datatype. For example, a

buffer containing four C ints is described by the triple “a, 4, MPI_INT.” There

are predefined MPI datatypes for all of the basic datatypes defined in C, Fortran,

and C++. The most common datatypes are shown in Table 9.1.

166 Chapter 9

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int numprocs, myrank, namelen, i;

char processor_name[MPI_MAX_PROCESSOR_NAME];

char greeting[MPI_MAX_PROCESSOR_NAME + 80];

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Get_processor_name(processor_name, &namelen);

sprintf(greeting, "Hello, world, from process %d of %d on %s",

myrank, numprocs, processor_name);

if (myrank == 0) {

printf("%s\n", greeting);

for (i = 1; i < numprocs; i++) {

MPI_Recv(greeting, sizeof(greeting), MPI_CHAR,

i, 1, MPI_COMM_WORLD, &status);

printf("%s\n", greeting);

}

}

else {

MPI_Send(greeting, strlen(greeting) + 1, MPI_CHAR,

0, 1, MPI_COMM_WORLD);

}

MPI_Finalize();

return(0);

}

Figure 9.3
A more complex “Hello World” program in MPI. Only process 0 writes to stdout; each process
sends a message to process 0.

Parallel Programming with MPI 167

C Fortran
MPI type MPI type

int MPI_INT INTEGER MPI_INTEGER

double MPI_DOUBLE DOUBLE PRECISION MPI_DOUBLE_PRECISION

float MPI_FLOAT REAL MPI_REAL

long MPI_LONG

char MPI_CHAR CHARACTER MPI_CHARACTER

LOGICAL MPI_LOGICAL

— MPI_BYTE — MPI_BYTE

Table 9.1
The most common MPI datatypes. C and Fortran types on the same row are often but not
always the same type. The type MPI BYTE is used for raw data bytes and does not coorespond to
any particular datatype. The C++ MPI datatypes have the same name as the C datatype, but
without the MPI prefix, for example, MPI::INT.

Describing the Destination or Source. The destination or source is specified

by using the rank of the process. MPI generalizes the notion of destination and

source rank by making the rank relative to a group of processes. This group may be

a subset of the original group of processes. Allowing subsets of processes and using

relative ranks make it easier to use MPI to write component-oriented software (more

on this in Section 10.4). The MPI object that defines a group of processes (and

a special communication context that will be discussed in Section 10.4) is called

a communicator . Thus, sources and destinations are given by two parameters: a

rank and a communicator. The communicator MPI_COMM_WORLD is predefined and

contains all of the processes started by mpirun or mpiexec. As a source, the special

value MPI_ANY_SOURCE may be used to indicate that the message may be received

from any rank of the MPI processes in this MPI program.

Selecting among Messages. The “extra” argument for MPI_Send is a nonneg-

ative integer tag value. This tag allows a program to send one extra number with

the data. MPI_Recv can use this value either to select which message to receive (by

specifying a specific tag value) or to use the tag to convey extra data (by specifying

the wild card value MPI_ANY_TAG). In the latter case, the tag value of the received

message is stored in the status argument (this is the last parameter to MPI_Recv

in the C binding). This is a structure in C, an integer array in Fortran, and a class

in C++. The tag and rank of the sending process can be accessed by referring to

the appropriate element of status as shown in Table 9.2.

168 Chapter 9

C Fortran C++
status.MPI_SOURCE status(MPI_SOURCE) status.Get_source()

status.MPI_TAG status(MPI_TAG) status.Get_tag()

Table 9.2
Accessing the source and tag after an MPI Recv.

Determining the Amount of Data Received. The amount of data received

can be found by using the routine MPI_Get_count. For example,

MPI_Get_count(&status, MPI_CHAR, &num_chars);

returns in num_chars the number of characters sent. The second argument should

be the same MPI datatype that was used to receive the message. (Since many appli-

cations do not need this information, the use of a routine allows the implementation

to avoid computing num_chars unless the user needs the value.)

Our example provides a maximum-sized buffer in the receive. It is also possible

to find the amount of memory needed to receive a message by using MPI_Probe, as

shown in Figure 9.4.

char *greeting;

int num_chars, src;

MPI_Status status;

...

MPI_Probe(MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status);

MPI_Get_count(&status, MPI_CHAR, &num_chars);

greeting = (char *)malloc(num_chars);

src = status.MPI_SOURCE;

MPI_Recv(greeting, num_chars, MPI_CHAR,

src, 1, MPI_COMM_WORLD, &status);

Figure 9.4
Using MPI Probe to find the size of a message before receiving it.

MPI guarantees that messages are ordered and that an MPI_Recv after an MPI_-

Probe will receive the message that the probe returned information on as long as

the same message selection criteria (source rank, communicator, and message tag)

are used. Note that in this example, the source for the MPI_Recv is specified as

status.MPI_SOURCE, not MPI_ANY_SOURCE, to ensure that the message received is

the same as the one about which MPI_Probe returned information.

Parallel Programming with MPI 169

9.2 Manager/Worker Example

We now begin a series of examples illustrating approaches to parallel computations

that accomplish useful work. While each parallel application is unique, a number

of paradigms have emerged as widely applicable, and many parallel algorithms are

variations on these patterns.

One of the most universal is the “manager/worker” or “task parallelism” ap-

proach. The idea is that the work that needs to be done can be divided by a “man-

ager” into separate pieces and the pieces can be assigned to individual “worker”

processes. Thus the manager executes a different algorithm from that of the work-

ers, but all of the workers execute the same algorithm. Most implementations of

MPI (including MPICH) allow MPI processes to be running different programs (ex-

ecutable files), but it is often convenient (and in some cases required) to combine

the manager and worker code into a single program with the structure shown in

Figure 9.5.

#include "mpi.h"

int main(int argc, char *argv[])

{

int numprocs, myrank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) /* manager process */

manager_code (numprocs);

else /* worker process */

worker_code ();

MPI_Finalize();

return 0;

}

Figure 9.5
Framework of the matrix-vector multiply program.

Sometimes the work can be evenly divided into exactly as many pieces as there

are workers, but a more flexible approach is to have the manager keep a pool of

units of work larger than the number of workers, and assign new work dynamically

170 Chapter 9

to workers as they complete their tasks and send their results back to the manager.

This approach, called self-scheduling , works well in the presence of tasks of varying

sizes and/or workers of varying speeds.

We illustrate this technique with a parallel program to multiply a matrix by a

vector. (A Fortran version of this same program can be found in [13].) This program

is not a particularly good way to carry out this operation, but it illustrates the

approach and is simple enough to be shown in its entirety. The program multiplies

a square matrix a by a vector b and stores the result in c. The units of work are

the individual dot products of the rows of a with the vector b. Thus the manager,

code for which is shown in Figure 9.6, starts by initializing a. The manager then

sends out initial units of work, one row to each worker. We use the MPI tag on each

such message to encode the row number we are sending. Since row numbers start

at 0 but we wish to reserve 0 as a tag with the special meaning of “no more work

to do”, we set the tag to one greater than the row number. When a worker sends

back a dot product, we store it in the appropriate place in c and send that worker

another row to work on. Once all the rows have been assigned, workers completing

a task are sent a “no more work” message, indicated by a message with tag 0.

The code for the worker part of the program is shown in Figure 9.7. A worker

initializes b, receives a row of a in a message, computes the dot product of that

row and the vector b, and then returns the answer to the manager, again using the

tag to identify the row. A worker repeats this until it receives the “no more work”

message, identified by its tag of 0.

This program requires at least two processes to run: one manager and one worker.

Unfortunately, adding more workers is unlikely to make the job go faster. We can

analyze the cost of computation and communication mathematically and see what

happens as we increase the number of workers. Increasing the number of workers

will decrease the amount of computation done by each worker, and since they

work in parallel, this should decrease total elapsed time. On the other hand, more

workers mean more communication, and the cost of communicating a number is

usually much greater than the cost of an arithmetical operation on it. The study

of how the total time for a parallel algorithm is affected by changes in the number

of processes, the problem size, and the speed of the processor and communication

network is called scalability analysis. We analyze the matrix-vector program as a

simple example.

First, let us compute the number of floating-point operations. For a matrix of size

n, we have to compute n dot products, each of which requires n multiplications and

n−1 additions. Thus the number of floating-point operations is n× (n+(n−1)) =
n×(2n−1) = 2n2−n. If Tcalc is the time it takes a processor to do one floating-point

Parallel Programming with MPI 171

#define SIZE 1000

#define MIN(x, y) ((x) < (y) ? x : y)

void manager_code(int numprocs)

{

double a[SIZE][SIZE], c[SIZE];

int i, j, sender, row, numsent = 0;

double dotp;

MPI_Status status;

/* (arbitrary) initialization of a */

for (i = 0; i < SIZE; i++)

for (j = 0; j < SIZE; j++)

a[i][j] = (double) j;

for (i = 1; i < MIN(numprocs, SIZE); i++) {

MPI_Send(a[i-1], SIZE, MPI_DOUBLE, i, i, MPI_COMM_WORLD);

numsent++;

}

/* receive dot products back from workers */

for (i = 0; i < SIZE; i++) {

MPI_Recv(&dotp, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

sender = status.MPI_SOURCE;

row = status.MPI_TAG - 1;

c[row] = dotp;

/* send another row back to this worker if there is one */

if (numsent < SIZE) {

MPI_Send(a[numsent], SIZE, MPI_DOUBLE, sender,

numsent + 1, MPI_COMM_WORLD);

numsent++;

}

else /* no more work */

MPI_Send(MPI_BOTTOM, 0, MPI_DOUBLE, sender, 0,

MPI_COMM_WORLD);

}

}

Figure 9.6
The matrix-vector multiply program, manager code.

172 Chapter 9

void worker_code(void)

{

double b[SIZE], c[SIZE];

int i, row, myrank;

double dotp;

MPI_Status status;

for (i = 0; i < SIZE; i++) /* (arbitrary) b initialization */

b[i] = 1.0;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank <= SIZE) {

MPI_Recv(c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

while (status.MPI_TAG > 0) {

row = status.MPI_TAG - 1;

dotp = 0.0;

for (i = 0; i < SIZE; i++)

dotp += c[i] * b[i];

MPI_Send(&dotp, 1, MPI_DOUBLE, 0, row + 1,

MPI_COMM_WORLD);

MPI_Recv(c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

}

}

}

Figure 9.7
The matrix-vector multiply program, worker code.

operation, then the total computation time is (2n2 − n)× Tcalc. Next, we compute
the number of communications, defined as sending one floating-point number. (We

ignore for this simple analysis the effect of message lengths.) Leaving aside the cost

of communicating b (perhaps it is computed locally in a preceding step), we have

to send each row of a and receive back one dot product answer. So the number of

floating-point numbers communicated is (n×n)+n = n2+n. If Tcomm is the time

to communicate one number, we get (n2+n)×Tcomm for the total communication

time. Thus the ratio of communication time to computation time is
(

n2 + n

2n2 − n

)

×
(

Tcomm
Tcalc

)

.

Parallel Programming with MPI 173

In many computations the ratio of communication to computation can be reduced

almost to 0 by making the problem size larger. Our analysis shows that this is not

the case here. As n gets larger, the term on the left approaches 12 . Thus we can

expect communication costs to prevent this algorithm from showing good speedups,

even on large problem sizes.

The situation is better in the case of matrix-matrix multiplication, which could

be carried out by a similar algorithm. We would replace the vectors b and c by

matrices, send the entire matrix b to the workers at the beginning of the compu-

tation, and then hand out the rows of a as work units, just as before. The workers

would compute an entire row of the product, consisting of the dot products of the

row of a with all of the column of b, and then return a row of c to the manager.

Let us now do the scalability analysis for the matrix-matrix multiplication. Again

we ignore the initial communication of b. The number of operations for one dot

product is n+(n+1) as before, and the total number of dot products calculated is

n2. Thus the total number of operations is n2 × (2n− 1) = 2n3 − n2. The number
of numbers communicated has gone up to (n× n) + (n× n) = 2n2. So the ratio of

communication time to computation time has become
(

2n2

2n3 − n2
)

×
(

Tcomm
Tcalc

)

,

which does tend to 0 as n gets larger. Thus, for large matrices the communication

costs play less of a role.

Two other difficulties with this algorithm might occur as we increase the size of

the problem and the number of workers. The first is that as messages get longer,

the workers waste more time waiting for the next row to arrive. A solution to this

problem is to “double buffer” the distribution of work, having the manager send

two rows to each worker to begin with, so that a worker always has some work to

do while waiting for the next row to arrive.

Another difficulty for larger numbers of processes can be that the manager can

become overloaded so that it cannot assign work in a timely manner. This problem

can most easily be addressed by increasing the size of the work unit, but in some

cases it is necessary to parallelize the manager task itself, with multiple managers

handling subpools of work units.

A more subtle problem has to do with fairness: ensuring that all worker processes

are fairly serviced by the manager. MPI provides several ways to ensure fairness;

see [13, Section 7.1.4].

174 Chapter 9

9.3 Two-Dimensional Jacobi Example with One-Dimensional De-
composition

A common use of parallel computers in scientific computation is to approximate the

solution of a partial differential equation (PDE). One of the most common PDEs,

at least in textbooks, is the Poisson equation (here shown in two dimensions):

∂2u

∂x2
+
∂2u

∂y2
= f(x, y) in Γ (9.3.1)

u = g(x, y) on ∂Γ (9.3.2)

This equation is used to describe many physical phenomena, including fluid flow

and electrostatics. The equation has two parts: a differential equation applied ev-

erywhere within a domain Γ (9.3.1) and a specification of the value of the unknown

u along the boundary of Γ (the notation ∂Γ means “the boundary of Γ”). For ex-

ample, if this equation is used to model the equilibrium distribution of temperature

inside a region, the boundary condition g(x, y) specifies the applied temperature

along the boundary, f(x, y) is zero, and u(x, y) is the temperature within the re-

gion. To simplify the rest of this example, we will consider only a simple domain Γ

consisting of a square (see Figure 9.8).

To compute an approximation to u(x, y), we must first reduce the problem to

finite size. We cannot determine the value of u everywhere; instead, we will approx-

imate u at a finite number of points (xi, yj) in the domain, where xi = i × h and

yj = j × h. (Of course, we can define a value for u at other points in the domain

by interpolating from these values that we determine, but the approximation is

defined by the value of u at the points (xi, yj).) These points are shown as black

disks in Figure 9.8. Because of this regular spacing, the points are said to make

up a regular mesh. At each of these points, we approximate the partial derivatives

with finite differences. For example,

∂2u

∂x2
(xi, yj) ≈

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2
.

If we now let ui,j stand for our approximation to solution of Equation 9.3.1 at the

point (xi, yj), we have the following set of simultaneous linear equations for the

values of u:

ui+1,j − 2ui,j + ui−1,j
h2

+

ui,j+1 − 2ui,j + ui,j−1
h2

= f(xi, yj). (9.3.3)

Parallel Programming with MPI 175

rank = 0 rank = 1 rank =2

i+1,j

i,j-1

i-1,j

i,j+1

i,j

Figure 9.8
Domain and 9× 9 computational mesh for approximating the solution to the Poisson problem.

For values of u along the boundary (e.g., at x = 0 or y = 1), the value of the

boundary condition g is used. If h = 1/(n + 1) (so there are n × n points in the

interior of the mesh), this gives us n2 simultaneous linear equations to solve.

Many methods can be used to solve these equations. In fact, if you have this

particular problem, you should use one of the numerical libraries described in Ta-

ble 10.1. In this section, we describe a very simple (and inefficient) algorithm

because, from a parallel computing perspective, it illustrates how to program more

effective and general methods. The method that we use is called the Jacobi method

for solving systems of linear equations. The Jacobi method computes successive ap-

proximations to the solution of Equation 9.3.3 by rewriting the equation as follows:

ui+1,j − 2ui,j + ui−1,j + ui,j+1 − 2ui,j + ui,j−1 = h
2f(xi, yj)

ui,j =
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − h2fi,j). (9.3.4)

Each step in the Jacobi iteration computes a new approximation to uN+1i,j in terms

of the surrounding values of uN :

uN+1i,j =
1

4
(uNi+1,j + u

N
i−1,j + u

N
i,j+1 + u

N
i,j−1 − h2fi,j). (9.3.5)

176 Chapter 9

This is our algorithm for computing the approximation to the solution of the Poisson

problem. We emphasize that the Jacobi method is a poor numerical method but

that the same communication patterns apply to many finite difference, volume, or

element discretizations solved by iterative techniques.

In the uniprocessor version of this algorithm, the solution u is represented by a

two-dimensional array u[max_n][max_n], and the iteration is written as follows:

double u[NX+2][NY+2], u_new[NX+2][NY+2], f[NX+2][NY+2];

int i, j;

...

for (i=1;i<=NX;i++)

for (j=1;j<=NY;j++)

u_new[i][j] = 0.25 * (u[i+1][j] + u[i-1][j] +

u[i][j+1] + u[i][j-1] - h*h*f[i][j]);

Here, we let u[0][j], u[n+1][j], u[i][0], and u[i][n+1] hold the values of the

boundary conditions g (these correspond to u(0, y), u(1, y), u(x, 0), and u(x, 1) in

Equation 9.3.1). To parallelize this method, we must first decide how to decompose

the data structure u and u_new across the processes. Many possible decompositions

exist. One of the simplest is to divide the domain into strips as shown in Figure 9.8.

Let the local representation of the array u be ulocal; that is, each process

declares an array ulocal that contains the part of u held by that process. No

process has all of u; the data structure representing u is decomposed among all

of the processes. The code that is used on each process to implement the Jacobi

method is

for (i=i_start;i<=i_end;i++)

for (j=1;j<=NY;j++)

ulocal_new[i-i_start][j] =

0.25 * (ulocal[i-i_start+1][j] + ulocal[i-i_start-1][j] +

ulocal[i-i_start][j+1] + ulocal[i-i_start][j-1] -

h*h*flocal[i-i_start][j]);

where i_start and i_end describe the strip on this process (in practice, the loop

would be from zero to i_end-i_start; we use this formulation to maintain the

correspondence with the uniprocessor code). We have defined ulocal so that

ulocal[0][j] corresponds to u[i_start][j] in the uniprocessor version of this

code. Using variable names such as ulocal that make it obvious which variables

are part of a distributed data structure is often a good idea.

Parallel Programming with MPI 177

From this code, we can see what data we need to communicate. For i=i_start

we need the values of u[i_start-1][j], and for i=i_end we need u[i_end+1][j].

These values belong to the adjacent processes and must be communicated. In

addition, we need a location in which to store these values. We could use a separate

array, but for regular meshes the most common approach is to use ghost or halo

cells, where extra space is set aside in the ulocal array to hold the values from

neighboring processes. In this case, we need only a single column of neighboring

data, so we will let u_local[1][j] correspond to u[i_start][j]. This changes

the code for a single iteration of the loop to

exchange_nbrs(ulocal, i_start, i_end, left, right);

for (i_local=1; i_local<=i_end-i_start+1; i_local++)

for (j=1; j<=NY; j++)

ulocal_new[i_local][j] =

0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +

ulocal[i_local][j+1] + ulocal[i_local][j-1] -

h*h*flocal[i_local][j]);

where we have converted the i index to be relative to the start of ulocal rather than

u. All that is left is to describe the routine exchange_nbrs that exchanges data

between the neighboring processes. A very simple routine is shown in Figure 9.9.

We note that ISO/ANSI C (unlike Fortran) does not allow runtime dimensioning

of multidimensional arrays. To keep these examples simple in C, we use compile-

time dimensioning of the arrays. An alternative in C is to pass the arrays a one-

dimensional arrays and compute the appropriate offsets.

The values left and right are used for the ranks of the left and right neighbors,

respectively. These can be computed simply by using the following:

int rank, size, left, right;

...

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

left = rank - 1;

right = rank + 1;

if (left < 0) left = MPI_PROC_NULL;

if (right >= size) right = MPI_PROC_NULL;

The special rank MPI_PROC_NULL indicates the edges of the mesh. If MPI_PROC_-

NULL is used as the source or destination rank in an MPI communication call, the

178 Chapter 9

void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,

int left, int right)

{

MPI_Status status;

int c;

/* Send and receive from the left neighbor */

MPI_Send(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD);

MPI_Recv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &status);

/* Send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Send(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD);

MPI_Recv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &status);

}

Figure 9.9
A simple version of the neighbor exchange code. See the text for a discussion of the limitations
of this routine.

operation is ignored. MPI also provides routines to compute the neighbors in a reg-

ular mesh of arbitrary dimension and to help an application choose a decomposition

that is efficient for the parallel computer.

The code in exchange_nbrs will work with most MPI implementations for small

values of n but, as described in Section 10.3, is not good practice (and will fail for

values of NY greater than an implementation-defined threshold). A better approach

in MPI is to use the MPI_Sendrecv routine when exchanging data between two

processes, as shown in Figure 9.10.

In Sections 10.3 and 10.7, we discuss other implementations of the exchange

routine that can provide higher performance. MPI support for more scalable de-

compositions of the data is described in Section 10.3.2.

9.4 Collective Operations

A collective operation is an MPI function that is called by all processes belong-

ing to a communicator. (If the communicator is MPI_COMM_WORLD, this means all

Parallel Programming with MPI 179

/* Better exchange code. */

void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,

int left, int right)

{

MPI_Status status;

int c;

/* Send and receive from the left neighbor */

MPI_Sendrecv(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,

&ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &status);

/* Send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Sendrecv(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,

&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &status);

}

Figure 9.10
A better version of the neighbor exchange code.

processes, but MPI allows collective operations on other sets of processes as well.)

Collective operations involve communication and also sometimes computation, but

since they describe particular patterns of communication and computation, the

MPI implementation may be able to optimize them beyond what is possible by

expressing them in terms of MPI point-to-point operations such as MPI_Send and

MPI_Recv. The patterns are also easier to express with collective operations.

Here we introduce two of the most commonly used collective operations and show

how the communication in a parallel program can be expressed entirely in terms

of collective operations with no individual MPI_Sends or MPI_Recvs at all. The

program shown in Figure 9.11 computes the value of π by numerical integration.

Since
∫ 1

0

1

1 + x2
dx = arctan(x)|10 = arctan(1)− arctan(0) = arctan(1) =

π

4
,

we can compute π by integrating the function f(x) = 4/(1 + x2) from 0 to 1.

We compute an approximation by dividing the interval [0,1] into some number of

subintervals and then computing the total area of these rectangles by having each

process compute the areas of some subset. We could do this with a manager/worker

180 Chapter 9

algorithm, but here we preassign the work. In fact, each worker can compute its set

of tasks, and so the “manager” can be a worker, too, instead of just managing the

pool of work. The more rectangles there are, the more work there is to do and the

more accurate the resulting approximation of π is. To experiment, let us make the

number of subintervals a command-line argument. (Although the MPI standard

does not guarantee that any process receives command-line arguments, in most

implementations, especially for Beowulf clusters, one can assume that at least the

process with rank 0 can use argc and argv, although they may not be meaningful

until after MPI_Init is called.) In our example, process 0 sets n, the number of

subintervals, to argv[1]. Once a process knows n, it can claim approximately 1
n

of the work by claiming every nth rectangle, starting with the one numbered by its

own rank. Thus process j computes the areas of rectangles j , j + n , j + 2n, and

so on.

Not all MPI implementations make the command-line arguments available to all

processes, however, so we start by having process 0 send n to each of the other

processes. We could have a simple loop, sending n to each of the other processes

one at a time, but this is inefficient. If we know that the same message is to be

delivered to all the other processes, we can ask the MPI implementation to do this

in a more efficient way than with a series of MPI_Sends and MPI_Recvs.

Broadcast (MPI_Bcast) is an example of an MPI collective operation. A col-

lective operation must be called by all processes in a communicator. This allows

an implementation to arrange the communication and computation specified by a

collective operation in a special way. In the case of MPI_Bcast, an implementation

is likely to use a tree of communication, sometimes called a spanning tree, in which

process 0 sends its message to a second process, then both processes send to two

more, and so forth. In this way most communication takes place in parallel, and

all the messages have been delivered in log2 n steps.

The precise semantics of MPI_Bcast is sometimes confusing. The first three

arguments specify a message with (address, count, datatype) as usual. The fourth

argument (called the root of the broadcast) specifies which of the processes owns

the data that is being sent to the other processes. In our case it is process 0.

MPI_Bcast acts like an MPI_Send on the root process and like an MPI_Recv on all

the other processes, but the call itself looks the same on each process. The last

argument is the communicator that the collective call is over. All processes in the

communicator must make this same call. Before the call, n is valid only at the root;

after MPI_Bcast has returned, all processes have a copy of the value of n.

Next, each process, including process 0, adds up the areas of its rectangles into

the local variable mypi. Instead of sending these values to one process and having

Parallel Programming with MPI 181

#include "mpi.h"

#include <stdio.h>

#include <math.h>

double f(double a) { return (4.0 / (1.0 + a*a)); }

int main(int argc,char *argv[])

{

int n, myid, numprocs, i;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x;

double startwtime = 0.0, endwtime;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if (myid == 0) {

startwtime = MPI_Wtime();

n = atoi(argv[1]);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += f(x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0) {

endwtime = MPI_Wtime();

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

printf("wall clock time = %f\n", endwtime-startwtime);

}

MPI_Finalize();

return 0;

}

Figure 9.11
Computing π using collective operations.

182 Chapter 9

that process add them up, however, we use another collective operation, MPI_-

Reduce. MPI_Reduce performs not only collective communication but also collective

computation. In the call

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

the sixth argument is again the root. All processes call MPI_Reduce, and the root

process gets back a result in the second argument. The result comes from per-

forming an arithmetic operation, in this case summation (specified by the fifth

argument), on the data items on all processes specified by the first, third, and

fourth arguments.

Process 0 concludes by printing out the answer, the difference between this ap-

proximation and a previously computed accurate value of π, and the time it took

to compute it. This illustrates the use of MPI_Wtime.

MPI_Wtime returns a double-precision floating-point number of seconds. This

value has no meaning in itself, but the difference between two such values is the wall-

clock time between the two calls. Note that calls on two different processes are not

guaranteed to have any relationship to one another, unless the MPI implementation

promises that the clocks on different processes are synchronized (see MPI_WTIME_-

IS_GLOBAL in any of the MPI books).

The routine MPI_Allreduce computes the same result as MPI_Reduce but returns

the result to all processes, not just the root process. For example, in the Jacobi

iteration, it is common to use the two-norm of the difference between two successive

iterations as a measure of the convergence of the solution.

...

norm2local = 0.0;

for (ii=1; ii<i_end-i_start+1; ii++)

for (jj=1; jj<NY; jj++)

norm2local += ulocal[ii][jj] * ulocal[ii][jj];

MPI_Allreduce(&norm2local, &norm2, 1, MPI_DOUBLE,

MPI_COMM_WORLD, MPI_SUM);

norm2 = sqrt(norm2);

Note that MPI_Allreduce is not a routine for computing the norm of a vector. It

merely combines values contributed from each process in the communicator.

Parallel Programming with MPI 183

9.5 Parallel Monte Carlo Computation

One of the types of computation that is easiest to parallelize is the Monte Carlo

family of algorithms. In such computations, a random number generator is used

to create a number of independent trials. Statistics done with the outcomes of the

trials provide a solution to the problem.

We illustrate this technique with another computation of the value of π. If we

select points at random in the unit square [0, 1]× [0, 1] and compute the percentage

of them that lies inside the quarter circle of radius 1, then we will be approximating
π
4 . (See [13] for a more detailed discussion together with an approach that does

not use a parallel random number generator.) We use the SPRNG parallel random

number generator (sprng.cs.fsu.edu). The code is shown in Figure 9.12.

The defaults in SPRNG make it extremely easy to use. Calls to the sprng

function return a random number between 0.0 and 1.0, and the stream of random

numbers on the different processes is independent. We control the grain size of the

parallelism by the constant BATCHSIZE, which determines how much computation

is done before the processes communicate. Here a million points are generated,

tested, and counted before we collect the results to print them. We use MPI_-

Bcast to distribute the command-line argument specifying the number of batches,

and we use MPI_Reduce to collect at the end of each batch the number of points

that fell inside the quarter circle, so that we can print the increasingly accurate

approximations to π.

9.6 Installing MPICH under Linux

The MPICH implementation of MPI [12] is one of the most popular versions of

MPI. In this section we describe how to obtain, build, and install MPICH on a

Beowulf cluster. We then describe how to set up an MPICH environment in which

MPI programs can be compiled, executed, and debugged.

9.6.1 Obtaining and Installing MPICH

The current version of MPICH is available at www.mcs.anl.gov/mpi/mpich.3 From

there one can download a gzipped tar file containing the complete MPICH distri-

bution, which contains

• all source code for MPICH,

3As this chapter is being written, the current version is version 1.2.2.

184 Chapter 9

#include "mpi.h"

#include <stdio.h>

#define SIMPLE_SPRNG /* simple interface */

#define USE_MPI /* use MPI */

#include "sprng.h" /* SPRNG header file */

#define BATCHSIZE 1000000

int main(int argc, char *argv[])

{

int i, j, numin = 0, totalin, total, numbatches, rank, numprocs;

double x, y, approx, pi = 3.141592653589793238462643;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

numbatches = atoi(argv[1]);

}

MPI_Bcast(&numbatches, 1, MPI_INT, 0, MPI_COMM_WORLD);

for (i = 0; i < numbatches; i++) {

for (j = 0; j < BATCHSIZE; j++) {

x = sprng(); y = sprng();

if (x * x + y * y < 1.0)

numin++;

}

MPI_Reduce(&numin, &totalin, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);

if (rank == 0) {

total = BATCHSIZE * (i + 1) * numprocs;

approx = 4.0 * ((double) totalin / total);

printf("pi = %.16f; error = %.16f, points = %d\n",

approx, pi - approx, total);

}

}

MPI_Finalize();

}

Figure 9.12
Computing π using the Monte Carlo method.

Parallel Programming with MPI 185

• configure scripts for building MPICH on a wide variety of environments, includ-

ing Linux clusters,

• simple example programs like the ones in this chapter,

• MPI compliance test programs,

• performance benchmarking programs,

• several MPI profiling libraries,

• the MPE library of MPI extensions for event logging and X graphics,

• some more elaborate examples, using the MPE library for graphic output,

• the Jumpshot performance visualization system, and

• the MPD parallel process management system.

MPICH is architected so that a number of communication infrastructures can be

used. These are called “devices.” The devices most relevant for the Beowulf en-

vironment are the ch p4 and ch p4mpd devices. The ch p4 device has a few more

features, including the ability to exploit shared-memory communication and to

have different processes execute different binaries. The ch p4mpd device, on the

other hand, provides much faster startup via the MPD process manager (see Sec-

tion 9.6.3) and supports debugging via gdb (see Section 9.6.5). To run your first

MPI program, carry out the following steps:

1. Download mpich.tar.gz from www.mcs.anl.gov/mpi/mpich or from ftp:

//ftp.mcs.anl.gov/pub/mpi/mpich.tar.gz

2. tar xvfz mpich.tar.gz; cd mpich

3. configure <configure options> > configure.log. Most users will want

to specify a prefix for the installation path when configuring:

configure --prefix=/usr/local/mpich-1.2.2 >& configure.log

By default, this creates the ch_p4 device.

4. make >& make.log

5. make install >& install.log

6. Add the ‘<prefix>/bin’ directory to your path; for example, for tcsh, do

setenv PATH <prefix>/bin:$PATH

rehash

186 Chapter 9

7. cd examples/basic

8. make cpi

9. If you configured using the ch p4mpd device, start the mpds (see Section 9.6.3).

10. mpirun -np 4 cpi

9.6.2 Running MPICH Jobs with the ch p4 Device

By default, on Beowulf systems MPICH is built to use the ch_p4 device for process

startup and communication. This device can be used in multiple ways. The mpirun

command starts process 0 on the local machine (the one where mpirun is executed).

The first process reads a file (called the procgroup file) and uses rsh (or ssh) to

start the other processes. The procgroup file contains lines specifying the processes

that are to be started on remote machines. For example,

mpirun -p4pg cpi.pg cpi 1000

executed on the machine donner, where ‘cpi.pg’ contains

local 0

mentat 1 /home/lusk/progs/cpi

flute 1 /home/lusk/progs/cpi rusty

will run cpi with an MPI_COMM_WORLD containing three processes. The first runs

on donner, the second runs on mentat, and the third on flute. Note that this

mechanism allows different executables to be run on different machines, and indeed

the ch_p4 device in MPICH is “heterogeneous”; that is, the machines do not even

have to be of the same hardware architecture. The “rusty” in the third line of the

file specifies an alternate user id on that machine.

If all the executables and user ids are the same, one can use a shorthand form:

mpirun -np 3 cpi 1000

This will use a machine’s file specified at installation time to select the hosts to run

on.

Finally, process startup time can be improved by using the p4 secure server. This

program is assumed to be running on each target machine ahead of time. See the

MPICH documentation for how to use the p4 secure server.

The ch_p4 device supports communication through shared memory when that is

possible. To allow for this case, MPICH must be configured with the options

Parallel Programming with MPI 187

--with-device=ch_p4 comm=shared

Then processes specified to share memory will use it for MPI communication, which

is more efficient that using TCP. The number of processes that should share memory

is specified in the ‘machines’ file For more detailed control of which processes should

use shared memory, you should use the “procgroup” method of starting processes.

Thus

mpirun -p4pg cpi.pg cpi 1000

where the file cpi.pg contains

local 1

castenet 2 /home/lusk/mpich/examples/basic/cpi

starts four processes, two of them sharing memory on the local machine and two

sharing memory on the machine castenet.

9.6.3 Starting and Managing MPD

Running MPI programs with the ch_p4mpd device assumes that the mpd daemon is

running on each machine in your cluster. In this section we describe how to start

and manage these daemons. The mpd and related executables are built when you

build and install MPICH after configuring with

--with-device=ch_p4mpd -prefix=<prefix directory> <other options>

and are found in <prefix-directory>/bin, which you should ensure is in your

path. A set of MPD daemons can be started with the command

mpichboot <file> <num>

where file is the name of a file containing the host names of your cluster and num

is the number of daemons you want to start. The startup script uses rsh to start

the daemons, but if it is more convenient, they can be started in other ways. The

first one can be started with mpd -t. The first daemon, started in this way, will

print out the port it is listening on for new mpds to connect to it. Each subsequent

mpd is given a host and port to connect to. The mpichboot script automates this

process. At any time you can see what mpds are running by using mpdtrace.

An mpd is identified by its host and a port. A number of commands are used to

manage the ring of mpds:

mpdhelp prints this information

188 Chapter 9

mpdcleanup deletes Unix socket files ‘/tmp/mpd.*’ if necessary.

mpdtrace causes each mpd in the ring to respond with a message identifying itself

and its neighbors.

mpdshutdown mpd id shuts down the specified mpd; mpd_id is specified as host_-

portnum.

mpdallexit causes all mpds to exit gracefully.

mpdlistjobs lists active jobs managed by mpds in ring.

mpdkilljob job id aborts the specified job.

Several options control the behavior of the daemons, allowing them to be run either

by individual users or by root without conflicts. The current set of command-line

options comprises the following:

-h <host to connect to>

-p <port to connect to>

-c allow console (the default)

-n don’t allow console

-d <debug (0 or 1)>

-w <working directory>

-l <listener port>

-b background; daemonize

-e don’t let this mpd start processes, unless root

-t echo listener port at startup

The -n option allows multiple mpds to be run on a single host by disabling the

console on the second and subsequent daemons.

Parallel Programming with MPI 189

9.6.4 Running MPICH Jobs under MPD

Because the MPD daemons are already in communication with one another be-

fore the job starts, job startup is much faster than with the ch_p4 device. The

mpirun command for the ch_p4mpd device has a number of special command-line

arguments. If you type mpirun with no arguments, they are displayed:

% mpirun

Usage: mpirun <args> executable <args_to_executable>

Arguments are:

-np num_processes_to_run (required as first two args)

[-s] (close stdin; can run in bkgd w/o tty input problems)

[-g group_size] (start group_size processes per mpd)

[-m machine_file] (filename for allowed machines)

[-l] (line labels; unique id for each process’ output

[-1] (do NOT start first process locally)

[-y] (run as Myrinet job)

The -1 option allows you, for example, to run mpirun on a “login” or “development”

node on your cluster but to start all the application processes on “computation”

nodes.

The program mpirun runs in a separate (non-MPI) process that starts the MPI

processes running the specified executable. It serves as a single-process represen-

tative of the parallel MPI processes in that signals sent to it, such as ^Z and ^C

are conveyed by the MPD system to all the processes. The output streams stdout

and stderr from the MPI processes are routed back to the stdout and stderr of

mpirun. As in most MPI implementations, mpirun’s stdin is routed to the stdin

of the MPI process with rank 0.

9.6.5 Debugging MPI Programs

Debugging parallel programs is notoriously difficult. Parallel programs are subject

not only to the usual kinds of bugs but also to new kinds having to do with tim-

ing and synchronization errors. Often, the program “hangs,” for example when

a process is waiting for a message to arrive that is never sent or is sent with the

wrong tag. Parallel bugs often disappear precisely when you adds code to try to

identify the bug, which is particularly frustrating. In this section we discuss three

approaches to parallel debugging.

The printf Approach. Just as in sequential debugging, you often wish to trace

interesting events in the program by printing trace messages. Usually you wish

190 Chapter 9

to identify a message by the rank of the process emitting it. This can be done

explicitly by putting the rank in the trace message. As noted above, using the “line

labels” option (-l) with mpirun in the ch p4mpd device in MPICH adds the rank

automatically.

Using a Commercial Debugger. The TotalView c© debugger from Etnus, Ltd.

[36] runs on a variety of platforms and interacts with many vendor implementations

of MPI, including MPICH on Linux clusters. For the ch_p4 device you invoke

TotalView with

mpirun -tv <other arguments>

and with the ch_p4mpd device you use

totalview mpirun <other arguments>

That is, again mpirun represents the parallel job as a whole. TotalView has special

commands to display the message queues of an MPI process. It is possible to attach

TotalView to a collection of processes that are already running in parallel; it is also

possible to attach to just one of those processes.

Using mpigdb. The ch_p4mpd device version of MPICH features a “parallel de-

bugger” that consists simply of multiple copies of the gdb debugger, together with a

mechanism for redirecting stdin. The mpigdb command is a version of mpirun that

runs each user process under the control of gdb and also takes control of stdin for

gdb. The ‘z’ command allows you to direct terminal input to any specified process

or to broadcast it to all processes. We demonstrate this by running the π example

under this simple debugger.

donner% mpigdb -np 5 cpi # default is stdin bcast

(mpigdb) b 29 # set breakpoint for all

0-4: Breakpoint 1 at 0x8049e93: file cpi.c, line 29.

(mpigdb) r # run all

0-4: Starting program: /home/lusk/mpich/examples/basic/cpi

0: Breakpoint 1, main (argc=1, argv=0xbffffa84) at cpi.c:29

1-4: Breakpoint 1, main (argc=1, argv=0xbffffa74) at cpi.c:29

0-4: 29 n = 0; # all reach breakpoint

(mpigdb) n # single step all

0: 38 if (n==0) n=100; else n=0;

1-4: 42 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

(mpigdb) z 0 # limit stdin to rank 0

Parallel Programming with MPI 191

(mpigdb) n # single step process 0

0: 40 startwtime = MPI_Wtime();

(mpigdb) n # until caught up

0: 42 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

(mpigdb) z # go back to bcast stdin

(mpigdb) n # single step all

... # until interesting spot

(mpigdb) n

0-4: 52 x = h * ((double)i - 0.5);

(mpigdb) p x # bcast print command

0: $1 = 0.0050000000000000001 # 0’s value of x

1: $1 = 0.014999999999999999 # 1’s value of x

2: $1 = 0.025000000000000001 # 2’s value of x

3: $1 = 0.035000000000000003 # 3’s value of x

4: $1 = 0.044999999999999998 # 4’s value of x

(mpigdb) c # continue all

0: pi is approximately 3.141600986923, Error is 0.000008333333

0-4: Program exited normally.

(mpigdb) q # quit

donner%

If the debugging process hangs (no mpigdb prompt) because the current process is

waiting for action by another process, ctl-C will bring up a menu that allows you

to switch processes. The mpigdb is not nearly as advanced as TotalView, but it is

often useful, and it is freely distributed with MPICH.

9.6.6 Other Compilers

MPI implementations are usually configured and built by using a particular set

of compilers. For example, the configure script in the MPICH implementation

determines many of the characteristics of the compiler and the associated runtime

libraries. As a result, it can be difficult to use a different C or Fortran compiler

with a particular MPI implementation. This can be a problem for Beowulf clusters

because it is common for several different compilers to be used.

The compilation scripts (e.g., mpicc) accept an argument to select a different

compiler. For example, if MPICH is configured with gcc but you want to use pgcc

to compile and build an MPI program, you can use

mpicc -cc=pgcc -o hellow hellow.c

mpif77 -fc=pgf77 -o hellowf hellowf.f

192 Chapter 9

This works as long as both compilers have similar capabilities and properties. For

example, they must use the same lengths for the basic datatypes, and their runtime

libraries must provide the functions that the MPI implementation requires. If the

compilers are similar in nature but require slightly different libraries or compiler

options, then a configuration file can be provided with the -config=name option:

mpicc -config=pgcc -o hellow hellow.c

Details on the format of the configuration files can be found in the MPICH instal-

lation manual.

The same approach can be used with Fortran as for C. If, however, the Fortran

compilers are not compatible (for example, they use different values for Fortran

.true. and .false.), then you must build new libraries. MPICH provides a way

to build just the necessary Fortran support. See the MPICH installation manual

for details.

9.7 Tools

A number of tools are available for developing, testing, and tuning MPI programs.

Although they are distributed with MPICH, they can be used with other MPI

implementations as well.

9.7.1 Profiling Libraries

The MPI Forum decided not to standardize any particular tool but rather to pro-

vide a general mechanism for intercepting calls to MPI functions, which is the sort

of capability that tools need. The MPI standard requires that any MPI imple-

mentation provide two entry points for each MPI function: its normal MPI_ name

and a corresponding PMPI version. This strategy allows a user to write a custom

version of MPI_Send, for example, that carries out whatever extra functions might

be desired, calling PMPI_Send to perform the usual operations of MPI_Send. When

the user’s custom versions of MPI functions are placed in a library and the library

precedes the usual MPI library in the link path, the user’s custom code will be

invoked around all MPI functions that have been replaced.

MPICH provides three such “profiling libraries” and some tools for creating more.

These libraries are easily used by passing an extra argument to MPICH’s mpicc

command for compiling and linking.

-mpilog causes a file to be written containing timestamped events. The log file

can be examined with tools such as Jumpshot (see below).

Parallel Programming with MPI 193

-mpitrace causes a trace of MPI calls, tagged with process rank in MPI_COMM_-

WORLD to be written to stdout.

-mpianim shows a simple animation of message traffic while the program is running.

The profiling libraries are part of the MPE subsystem of MPICH, which is sepa-

rately distributable and works with any MPI implementation.

9.7.2 Visualizing Parallel Program Behavior

The detailed behavior of a parallel program is surprisingly difficult to predict. It

is often useful to examine a graphical display that shows the exact sequence of

states that each process went through and what messages were exchanged at what

times and in what order. The data for such a tool can be collected by means

of a profiling library. One tool for looking at such log files is Jumpshot [39]. A

screenshot of Jumpshot in action is shown in Figure 9.13.

Figure 9.13
Jumpshot displaying message traffic

The horizontal axis represents time, and there is a horizontal line for each process.

The states that processes are in during a particular time interval are represented

194 Chapter 9

by colored rectangles. Messages are represented by arrows. It is possible to zoom

in for microsecond-level resolution in time.

9.8 MPI Implementations for Clusters

Many implementations of MPI are available for clusters; Table 9.3 lists some of the

available implementations. These range from commercially supported software to

supported, freely available software to distributed research project software.

Name URL
BeoMPI www.scyld.com

LAM www.lam-mpi.org

MPICH www.mcs.anl.gov/mpi/mpich

MPICH-GM www.myricom.com

MPICH-G2 www.niu.edu/mpi

MPICH-Madeleine www.ens-lyon.fr/~mercierg/mpi.html

MPI/GAMMA www.disi.unige.it/project/gamma/mpigamma/

MPI/Pro www.mpi-softtech.com

MPI-BIP lhpca.univ-lyon1.fr/mpibip.html

MP-MPICH www.lfbs.rwth-aachen.de/users/joachim/MP-MPICH/

MVICH www.nersc.gov/research/ftg/mvich/

ScaMPI www.scali.com

Table 9.3
Some MPI implementations for Linux.

9.9 MPI Routine Summary

This section provide a quick summary of the MPI routines used in this chapter for

C, Fortran, and C++. Although these are only a small fraction of the routines

available in MPI, they are sufficient for many applications.

C Routines.

int MPI Init(int *argc, char ***argv)

int MPI Comm size(MPI Comm comm, int *size)

int MPI Comm rank(MPI Comm comm, int *rank)

int MPI Bcast(void *buf, int count, MPI Datatype datatype, int root,

MPI Comm comm)

Parallel Programming with MPI 195

int MPI Reduce(void *sendbuf, void *recvbuf, int count, MPI Datatype datatype,

MPI Op op, int root, MPI Comm comm)

int MPI Finalize()

double MPI Wtime()

int MPI Send(void *buf, int count, MPI Datatype datatype, int dest, int tag,

MPI Comm comm)

int MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Status *status)

int MPI Probe(int source, int tag, MPI Comm comm, MPI Status *status)

int MPI Sendrecv(void *sendbuf, int sendcount,MPI Datatype sendtype, int dest,

int sendtag, void *recvbuf, int recvcount, MPI Datatype recvtype,

int source, MPI Datatype recvtag, MPI Comm comm,

MPI Status *status)

int MPI Allreduce(void *sendbuf, void *recvbuf, int count, MPI Datatype datatype,

MPI Op op, MPI Comm comm)

Fortran routines.

MPI INIT(ierror)

integer ierror

MPI COMM SIZE(comm, size, ierror)

integer comm, size, ierror

MPI COMM RANK(comm, rank, ierror)

integer comm, rank, ierror

MPI BCAST(buffer, count, datatype, root, comm, ierror)

<type> buffer(*)

integer count, datatype, root, comm, ierror

MPI REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

<type> sendbuf(*), recvbuf(*)

integer count, datatype, op, root, comm, ierror

MPI FINALIZE(ierror)

integer ierror

196 Chapter 9

double precision MPI WTIME()

MPI SEND(buf, count, datatype, dest, tag, comm, ierror)

<type> buf(*)

integer count, datatype, dest, tag, comm, ierror

MPI RECV(buf, count, datatype, source, tag, comm, status, ierror)

<type> buf(*)

integer count, datatype, source, tag, comm,

status(MPI STATUS SIZE), ierror

MPI PROBE(source, tag, comm, status, ierror)

logical flag

integer source, tag, comm, status(MPI STATUS SIZE), ierror

MPI SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,recvcount,

recvtype, source, recvtag, comm, status, ierror)

<type> sendbuf(*), recvbuf(*)

integer sendcount, sendtype, dest, sendtag, recvcount, recvtype,

source, recvtag, comm, status(MPI STATUS SIZE), ierror

MPI ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, ierror)

<type> sendbuf(*), recvbuf(*)

integer count, datatype, op, comm, ierror

C++ routines.

void MPI::Init(int& argc, char**& argv)

void MPI::Init()

int MPI::Comm::Get rank() const

int MPI::Comm::Get size() const

void MPI::Intracomm::Bcast(void* buffer, int count, const Datatype& datatype,

int root) const

void MPI::Intracomm::Reduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op, int root) const

void MPI::Finalize()

double MPI::Wtime()

Parallel Programming with MPI 197

int MPI::Status::Get source() const

int MPI::Status::Get tag() const

void MPI::Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag, Status& status) const

void MPI::Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void MPI::Comm::Send(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

void MPI::Comm::Probe(int source,int tag, Status& status) const

void MPI::Comm::Sendrecv(const void *sendbuf, int sendcount,

const Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source, int recvtag,

Status& status) const

void MPI::Intracomm::Allreduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op) const

 blank

10 Advanced Topics in MPI Programming

William Gropp and Ewing Lusk

In this chapter we continue our exploration of parallel programming with MPI. We

describe capabilities that are more specific to MPI rather than part of the message-

passing programming model in general. We cover the more advanced features of

MPI sometimes called MPI-2, such as dynamic process management, parallel I/O,

and remote memory access.

10.1 Dynamic Process Management in MPI

A new aspect of the MPI-2 standard is the ability of an MPI program to create

new MPI processes and communicate with them. (In the original MPI specification,

the number of processes was fixed at startup.) MPI calls this capability (together

with related capabilities such as connecting two independently started MPI jobs)

dynamic process management. Three main issues are introduced by this collection

of features:

• maintaining simplicity and flexibility;

• interacting with the operating system, a parallel process manager, and perhaps

a job scheduler; and

• avoiding race conditions that could compromise correctness.

The key to avoiding race conditions is to make creation of new processes a collective

operation, over both the processes creating the new processes and the new processes

being created.

10.1.1 Intercommunicators

Recall that an MPI communicator consists of a group of processes together with

a communication context. Strictly speaking, the communicators we have dealt

with so far are intracommunicators. There is another kind of communicator, called

an intercommunicator. An intercommunicator binds together a communication

context and two groups of processes, called (from the point of view of a particular

process) the local group and the remote group. Processes are identified by rank

in group, but ranks in an intercommunicator always refer to the processes in the

remote group. That is, an MPI_Send using an intercommunicator sends a message to

the process with the destination rank in the remote group of the intercommunicator.

Collective operations are also defined for intercommunicators; see [14, Chapter 7]

for details.

200 Chapter 10

10.1.2 Spawning New MPI Processes

We are now in a position to explain exactly how new MPI processes are created by

an already running MPI program. The MPI function that does this is MPI_Comm_-

spawn. Its key features are the following.

• It is collective over the communicator of processes initiating the operation (called

the parents) and also collective with the calls to MPI_Init in the processes being

created (called the children). That is, the MPI_Comm_spawn does not return in the

parents until it has been called in all the parents and MPI_Init has been called in

all the children.

• It returns an intercommunicator in which the local group contains the parents

and the remote group contains the children.

• The new processes, which must call MPI_Init, have their own MPI_COMM_WORLD,

consisting of all the processes created by this one collective call to MPI_Comm_spawn.

• The function MPI_Comm_get_parent, called by the children, returns an inter-

communicator with the children in the local group and the parents in the remote

group.

• The collective function MPI_Intercomm_merge may be called by parents and

children to create a normal (intra)communicator containing all the processes, both

old and new, but for many communication patterns this is not necessary.

10.1.3 Revisiting Matrix-Vector Multiplication

Here we illustrate the use of MPI_Comm_spawn by redoing the matrix-vector multi-

ply program of Section 9.2. Instead of starting with a fixed number of processes,

we compile separate executables for the manager and worker programs, start the

manager with

mpiexec -n 1 manager <number-of-workers>

and then let the manager create the worker processes dynamically. The program

for the manager is shown in Figure 10.1, and the code for the workers is shown

in Figure 10.2. Here we assume that only the manager has the matrix a and the

vector b and broadcasts them to the workers after the workers have been created.

Let us consider in detail the call in the manager that creates the worker processes.

MPI_Spawn("worker", MPI_ARGV_NULL, numworkers, MPI_INFO_NULL,

0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE);

It has eight arguments. The first is the name of the executable to be run by the

new processes. The second is the null-terminated argument vector to be passed to

Advanced Topics in MPI Programming 201

#include "mpi.h"

#include <stdio.h>

#define SIZE 10000

int main(int argc, char *argv[])

{

double a[SIZE][SIZE], b[SIZE], c[SIZE];

int i, j, row, numworkers;

MPI_Status status;

MPI_Comm workercomm;

MPI_Init(&argc, &argv);

if (argc != 2 || !isnumeric(argv[1]))

printf("usage: %s <number of workers>\n", argv[0]);

else

numworkers = atoi(argv[1]);

MPI_Spawn("worker", MPI_ARGV_NULL, numworkers, MPI_INFO_NULL,

0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE);

...

/* initialize a and b */

...

/* send b to each worker */

MPI_Bcast(b, SIZE, MPI_DOUBLE, MPI_ROOT, workercomm);

...

/* then normal manager code as before*/

...

MPI_Finalize();

return 0;

}

Figure 10.1
Dynamic process matrix-vector multiply program, manager part.

all of the new processes; here we are passing no arguments at all, so we specify

the special value MPI_ARGV_NULL. Next is the number of new processes to create.

The fourth argument is an MPI “Info” object, which can be used to specify special

environment- and/or implementation-dependent parameters, such as the names of

the nodes to start the new processes on. In our case we leave this decision to

the MPI implementation or local process manager, and we pass the special value

202 Chapter 10

MPI_INFO_NULL. The next argument is the “root” process for this call to MPI_-

Comm_spawn; it specifies which process in the communicator given in the following

argument is supplying the valid arguments for this call. The communicator we are

using consists here of just the one manager process, so we pass MPI_COMM_SELF.

Next is the address of the new intercommunicator to be filled in, and finally an

array of error codes for examining possible problems in starting the new processes.

Here we use MPI_ERRCODES_IGNORE to indicate that we will not be looking at these

error codes.

Code for the worker processes that are spawned is shown in Figure 10.2. It is

essentially the same as the worker subroutine in the preceding chapter but is an

MPI program in itself. Note the use of intercommunicator broadcast in order to

receive the vector b from the parents. We free the parent intercommunicator with

MPI_Comm_free before exiting.

10.1.4 More on Dynamic Process Management

For more complex examples of the use of MPI Comm spawn, including how to start

processes with different executables or different argument lists, see [14, Chapter 7].

MPI_Comm_spawn is only the most basic of the functions provided in MPI for dealing

with a dynamic MPI environment. By querying the attribute MPI_UNIVERSE_SIZE,

you can find out how many processes can be usefully created. Separately started

MPI computations can find each other and connect with MPI_Comm_connect and

MPI_Comm_accept. Processes can exploit non-MPI connections to “bootstrap” MPI

communication. These features are explained in detail in [14].

10.2 Fault Tolerance

Communicators are a fundamental concept in MPI. Their sizes are fixed at the

time they are created, and the efficiency and correctness of collective operations

rely on this fact. Users sometimes conclude from the fixed size of communicators

that MPI provides no mechanism for writing fault-tolerant programs. Now that we

have introduced intercommunicators, however, we are in a position to discuss how

this topic might be addressed and how you might write a manager-worker program

with MPI in such a way that it would be fault tolerant. In this context we mean

that if one of the worker processes terminates abnormally, instead of terminating

the job you will be able to carry on the computation with fewer workers, or perhaps

dynamically replace the lost worker.

The key idea is to create a separate (inter)communicator for each worker and

Advanced Topics in MPI Programming 203

#include "mpi.h"

int main(int argc, char *argv[])

{

int numprocs, myrank;

double b[SIZE], c[SIZE];

int i, row, myrank;

double dotp;

MPI_Status status;

MPI_Comm parentcomm;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_get_Parentp &parentcomm);

MPI_Bcast(b, SIZE, MPI_DOUBLE, 0, parentcomm);

...

/* same as worker code from original matrix-vector multiply */

...

MPI_Comm_free(parentcomm);

MPI_Finalize();

return 0;

}

Figure 10.2
Dynamic process matrix-vector multiply program, worker part.

use it for communications with that worker rather than use a communicator that

contains all of the workers. If an implementation returns “invalid communicator”

from an MPI_Send or MPI_Recv call, then the manager has lost contact only with one

worker and can still communicate with the other workers through the other, still-

intact communicators. Since the manager will be using separate communicators

rather than separate ranks in a larger communicator to send and receive message

from the workers, it might be convenient to maintain an array of communicators

and a parallel array to remember which row has been last sent to a worker, so

that if that worker disappears, the same row can be assigned to a different worker.

204 Chapter 10

Figure 10.3 shows these arrays and how they might be used. What we are doing

/* highly incomplete */

MPI_Comm worker_comms[MAX_WORKERS];

int last_row_sent[MAX_WORKERS];

rc = MPI_Send(a[numsent], SIZE, MPI_DOUBLE, 0, numsent+1,

worker_comms[sender]);

if (rc != MPI_SUCCESS) {

/* Check that error class is one we can recover from */

...

MPI_Comm_spawn("worker" , ...);

Figure 10.3
Fault-tolerant manager.

with this approach is recognizing that two-party communication can be made fault

tolerant, since one party can recognize the failure of the other and take appropriate

action. A normal MPI communicator is not a two-party system and cannot be

made fault tolerant without changing the semantics of MPI communication. If,

however, the communication in an MPI program can be expressed in terms of

intercommunicators, which are inherently two-party (the local group and the remote

group), then fault tolerance can be achieved.

Note that while the MPI standard, through the use of intercommunicators, makes

it possible to write an implementation of MPI that encourages fault-tolerant pro-

gramming, the MPI standard itself does not require MPI implementations to con-

tinue past an error. This is a “quality of implementation” issue and allows the

MPI implementor to trade performance for the ability to continue after a fault.

As this section makes clear, however, there is nothing in the MPI standard that

stands in the way of fault tolerance, and the two primary MPI implementations for

Beowulf clusters, MPICH and LAM/MPI, both endeavor to support some style of

fault tolerance for applications.

10.3 Revisiting Mesh Exchanges

The discussion of the mesh exchanges for the Jacobi problem in Section 9.3 concen-

trated on the algorithm and data structures, particularly the ghost-cell exchange.

In this section, we return to that example and cover two other important issues: the

Advanced Topics in MPI Programming 205

use of blocking and nonblocking communications and communicating noncontiguous

data.

10.3.1 Blocking and Nonblocking Communication

Consider the following simple code (note that this is similar to the simple version

of exchange_nbrs in Section 9.3):

if (rank == 0) {

MPI_Send(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD);

MPI_Recv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

}

else if (rank == 1) {

MPI_Send(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Recv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

}

What happens with this code? It looks like process 0 is sending a message to

process 1 and that process 1 is sending a message to process 0. But more is going

on here. Consider the steps that the MPI implementation must take to make this

code work:

1. Copy the data from the MPI_Send into a temporary, system-managed buffer.

2. Once the MPI_Send completes (on each process), start the MPI_Recv. The

data that was previously copied into a system buffer by the MPI_Send operation

can now be delivered into the user’s buffer (rbuf in this case).

This approach presents two problems, both related to the fact that data must be

copied into a system buffer to allow the MPI_Send to complete. The first problem

is obvious: any data motion takes time and reduces the performance of the code.

The second problem is more subtle and important: the amount of available system

buffer space always has a limit. For values of n in the above example that exceed the

available buffer space, the above code will hang : neither MPI_Send will complete,

and the code will wait forever for the other process to start an MPI_Recv. This

is true for any message-passing system, not just MPI. The amount of buffer space

available for buffering a message varies among MPI implementations, ranging from

many megabytes to as little as 128 bytes.

How can we write code that sends data among several processes and that does

not rely on the availability of system buffers? One approach is to carefully order

the send and receive operations so that each send is guaranteed to have a matching

206 Chapter 10

receive. For example, we can swap the order of the MPI_Send and MPI_Recv in the

code for process 1:

if (rank == 0) {

MPI_Send(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD);

MPI_Recv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

}

else if (rank == 1) {

MPI_Recv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

MPI_Send(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

However, this can be awkward to implement, particularly for more complex com-

munication patterns; in addition, it does not address the extra copy that may be

performed by MPI_Send.

The approach used by MPI, following earlier message-passing systems as well as

nonblocking sockets (see [13, Chapter 9]), is to split the send and receive operations

into two steps: one to initiate the operation and one to complete the operation.

Other operations, including other communication operations, can be issued between

the two steps. For example, an MPI receive operation can be initiated by a call to

MPI_Irecv and completed with a call to MPI_Wait. Because the routines that initi-

ate these operations do not wait for them to complete, they are called nonblocking

operations. The “I” in the routine name stands for “immediate”; this indicates

that the routine may return immediately without completing the operation. The

arguments to MPI_Irecv are the same as for MPI_Recv except for the last (status)

argument. This is replaced by an MPI_Request value; it is a handle that is used to

identify an initiated operation. To complete a nonblocking operation, the request

is given to MPI_Wait, along with a status argument; the status argument serves

the same purpose as status for an MPI_Recv. Similarly, the nonblocking counter-

part to MPI_Send is MPI_Isend; this has the same arguments as MPI_Send with the

addition of an MPI_Request as the last argument (in C). Using these routines, our

example becomes the following:

if (rank == 0) {

MPI_Request req1, req2;

MPI_Isend(sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req1);

MPI_Irecv(rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req2);

MPI_Wait(&req1, &status);

MPI_Wait(&req2, &status);

Advanced Topics in MPI Programming 207

}

else if (rank == 1) {

MPI_Request req1, req2;

MPI_Irecv(rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req1);

MPI_Isend(sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req2);

MPI_Wait(&req1, &status);

MPI_Wait(&req2, &status);

}

The buffer sbuf provided to MPI_Isend must not be modified until the operation is

completed with MPI_Wait. Similarly, the buffer rbuf provided to MPI_Irecv must

not be modified or read until the MPI_Irecv is completed.

The nonblocking communication routines allow the MPI implementation to wait

until the message can be sent directly from one user buffer to another (e.g., from

sbuf to rbuf) without requiring any copy or using any system buffer space.

Because it is common to start multiple nonblocking operations, MPI provides

routines to test or wait for completion of any one, all, or some of the requests. For

example, MPI_Waitall waits for all requests in an array of requests to complete.

Figure 10.4 shows the use of nonblocking communication routines for the Jacobi

example.1

MPI nonblocking operations are not the same as asynchronous operations. The

MPI standard does not require that the data transfers overlap computation with

communication. MPI specifies only the semantics of the operations, not the details

of the implementation choices. The MPI nonblocking routines are provided pri-

marily for correctness (avoiding the limitations of system buffers) and performance

(avoidance of copies).

10.3.2 Communicating Noncontiguous Data in MPI

The one-dimensional decomposition used in the Jacobi example (Section 9.3) is

simple but does not scale well and can lead to performance problems. We can

analyze the performance of the Jacobi following the discussion in Section 9.2. Let

the time to communicate n bytes be

Tcomm = s+ rn,

where s is the latency and r is the (additional) time to communicate one byte.

The time to compute one step of the Jacobi method, using the one-dimensional

decomposition in Section 9.3, is

1On many systems, calling MPI Isend before MPI Irecv will improve performance.

208 Chapter 10

void exchange_nbrs(double ulocal[][NY+2], int i_start, int i_end,

int left, int right)

{

MPI_Status statuses[4];

MPI_Request requests[4];

int c;

/* Begin send and receive from the left neighbor */

MPI_Isend(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[0]);

MPI_Irecv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[1]);

/* Begin send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Isend(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[2]);

MPI_Irecv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[3]);

/* Wait for all communications to complete */

MPI_Waitall(4, requests, statuses);

}

Figure 10.4
Nonblocking exchange code for the Jacobi example.

5n

p
f + 2(s+ rn),

where f is the time to perform a floating-point operation and p is the number

of processes. Note that the cost of communication is independent of the number

of processes; eventually, this cost will dominate the calculation. Hence, a better

approach is to use a two-dimensional decomposition, as shown in Figure 10.5.

The time for one step of the Jacobi method with a two-dimensional decomposition

is just

5n

p
f + 4

(

s+ r
n√
p

)

.

This is faster than the one-dimensional decomposition as long as

n >
2

1− 4/
√
p

s

r

Advanced Topics in MPI Programming 209

Figure 10.5
Domain and 9× 9 computational mesh for approximating the solution to the Poisson problem
using a two-dimensional decomposition.

(assuming p ≥ 16). To implement this decomposition, we need to communicate

data to four neighbors, as shown in Figure 10.6.

The left and right edges can be sent and received by using the same code as

for the one-dimensional case. The top and bottom edges have noncontiguous data.

For example, the top edge needs to send the tenth, sixteenth, and twenty-second

element. There are four ways to move this data:

1. Each value can be sent separately. Because of the high latency of message

passing, this approach is inefficient and normally should not be used.

2. The data can be copied into a temporary buffer using a simple loop, for

example,

for (i=0; i<3; i++) {

tmp[i] = u_local[i][6];

}

MPI_Send(tmp, 3, MPI_DOUBLE, ..);

210 Chapter 10

60 121824

1 7 131925

2 8 142026

3 9 152127

4 10162228

5 11172329

Ghostpoints

Figure 10.6
Locations of mesh points in ulocal for a two-dimensional decomposition.

This is a common approach and, for some systems and MPI implementations, may

be the most efficient.

3. MPI provides two routines to pack and unpack a buffer. These routines are

MPI_Pack and MPI_Unpack. A buffer created with these routines should be sent and

received with MPI datatype MPI_PACKED. We note, however, that these routines are

most useful for complex data layouts that change frequently within a program.

4. MPI provides a way to construct new datatypes representing any data layout.

These routines can be optimized by the MPI implementation, in principle providing

better performance than the user can achieve using a simple loop [37]. In addition,

using these datatypes is crucial to achieving high performance with parallel I/O.

MPI provides several routines to create datatypes representing common patterns

of memory. These new datatypes are called derived datatypes. For this case, MPI_-

Type_vector is what is needed to create a new MPI datatype representing data

values separated by a constant stride. In this case, the stride is NY+2, and the

number of elements is i_end-i_start+1.

MPI_Type_vector(i_end - i_start + 1, 1, NY+2,

MPI_DOUBLE, &vectype);

MPI_Type_commit(&vectype);

The second argument is a block count and is the number of the basic datatype items

(MPI_DOUBLE in this case); this is useful particularly in multicomponent PDE prob-

lems. The routine MPI_Type_commit must be called to commit the MPI datatype;

Advanced Topics in MPI Programming 211

this call allows the MPI implementation to optimize the datatype (the optimiza-

tion is not included as part of the routines that create MPI datatypes because some

complex datatypes are created recursively from other derived datatypes).

Using an MPI derived datatype representing a strided data pattern, we can write

a version of exchange_nbr for a two-dimensional decomposition of the mesh; the

code is shown in Figure 10.7. Note that we use the same derived datatype vectype

for the sends and receives at the top and bottom by specifying the first element

into which data is moved in the array u_local in the MPI calls.

When a derived datatype is no longer needed, it should be freed with MPI_Type_-

free. Many other routines are available for creating datatypes; for example, MPI_-

Type_indexed is useful for scatter-gather patterns, and MPI_Type_create_struct

can be used for an arbitrary collection of memory locations.

10.4 Motivation for Communicators

Communicators in MPI serve two purposes. The most obvious purpose is to describe

a collection of processes. This feature allows collective routines, such as MPI_Bcast

or MPI_Allreduce, to be used with any collection of processes. This capability is

particularly important for hierarchical algorithms, and also facilitates dividing a

computation into subtasks, each of which has its own collection of processes. For

example, in the manager-worker example in Section 9.2, it may be appropriate to

divide each task among a small collection of processes, particularly if this causes the

problem description to reside only in the fast memory cache. MPI communicators

are perfect for this; the MPI routine MPI_Comm_split is the only routine needed

when creating new communicators. Using ranks relative to a communicator for

specifying the source and destination of messages also facilitates dividing parallel

tasks among smaller but still parallel subtasks, each with its own communicator.

A more subtle but equally important purpose of the MPI communicator involves

the communication context that each communicator contains. This context is es-

sential for writing software libraries that can be safely and robustly combined with

other code, both other libraries and user-specific application code, to build complete

applications. Used properly, the communication context guarantees that messages

are received by appropriate routines even if other routines are not as careful. Con-

sider the example in Figure 10.8 (taken from [13, Section 6.1.2]). In this example,

there are two routines, provided by separate libraries or software modules. One,

SendRight, sends a message to the right neighbor and receives from the left. The

other, SendEnd, sends a message from process 0 (the leftmost) to the last process

212 Chapter 10

void exchange_nbrs2d(double ulocal[][NY+2],

int i_start, int i_end, int j_start, int j_end,

int left, int right, int top, int bottom,

MPI_Datatype vectype)

{

MPI_Status statuses[8];

MPI_Request requests[8];

int c;

/* Begin send and receive from the left neighbor */

MPI_Isend(&ulocal[1][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[0]);

MPI_Irecv(&ulocal[0][1], NY, MPI_DOUBLE, left, 0,

MPI_COMM_WORLD, &requests[1]);

/* Begin send and receive from the right neighbor */

c = i_end - i_start + 1;

MPI_Isend(&ulocal[c][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[2]);

MPI_Irecv(&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0,

MPI_COMM_WORLD, &requests[3]);

/* Begin send and receive from the top neighbor */

MPI_Isend(&ulocal[1][NY], 1, vectype, top, 0,

MPI_COMM_WORLD, &requests[4]);

MPI_Irecv(&ulocal[1][NY+1], 1, vectype, top, 0,

MPI_COMM_WORLD, &requests[5]);

/* Begin send and receive from the bottom neighbor */

MPI_Isend(&ulocal[1][1], 1, vectype, bottom, 0,

MPI_COMM_WORLD, &requests[6]);

MPI_Irecv(&ulocal[1][0], 1, vectype, bottom, 0,

MPI_COMM_WORLD, &requests[7]);

/* Wait for all communications to complete */

MPI_Waitall(8, requests, statuses);

}

Figure 10.7
Nonblocking exchange code for the Jacobi problem for a two-dimensional decomposition of the
mesh.

Advanced Topics in MPI Programming 213

(the rightmost). Both of these routines use MPI_ANY_SOURCE instead of a particular

source in the MPI_Recv call. As Figure 10.8 shows, the messages can be confused,

causing the program to receive the wrong data. How can we prevent this situation?

Several approaches will not work. One is to avoid the use of MPI_ANY_SOURCE. This

fixes this example, but only if both SendRight and SendEnd follow this rule. The

approach may be adequate (though fragile) for code written by a single person or

team, but it isn’t adequate for libraries. For example, if SendEnd was written by

a commercial vendor and did not use MPI_ANY_SOURCE, but SendRight, written by

a different vendor or an inexperienced programmer, did use MPI_ANY_SOURCE, then

the program would still fail, and it would look like SendEnd was at fault (because

the message from SendEnd was received first).

Another approach that does not work is to use message tags to separate messages.

Again, this can work if one group writes all of the code and is very careful about

allocating message tags to different software modules. However, using MPI_ANY_-

TAG in an MPI receive call can still bypass this approach. Further, as shown in

Figure 6.5 in [13], even if MPI_ANY_SOURCE and MPI_ANY_TAG are not used, it is still

possible for separate code modules to receive the wrong message.

The communication context in an MPI communicator provides a solution to these

problems. The routine MPI_Comm_dup creates a new communicator from an input

communicator that contains the same processes (in the same rank order) but with a

new communication context. MPI messages sent in one communication context can

be received only in that context. Thus, any software module or library that wants

to ensure that all of its messages will be seen only within that library needs only to

call MPI_Comm_dup at the beginning to get a new communicator. All well-written

libraries that use MPI create a private communicator used only within that library.

Enabling the development of libraries was one of the design goals of MPI. In that

respect MPI has been very successful. Many libraries and applications now use

MPI, and, because of MPI’s portability, most of these run on Beowulf clusters. Ta-

ble 10.1 provides a partial list of libraries that use MPI to provide parallelism. More

complete descriptions and lists are available at www.mcs.anl.gov/mpi/libraries

and at sal.kachinatech.com/C/3.

10.5 More on Collective Operations

One of the strengths of MPI is its collection of scalable collective communication

and computation routines. Figure 10.9 shows the capabilities of some of the most

important collective communication routines. As an example of their utility, we

214 Chapter 10

MPI_Send MPI_Recv

(a) Intended message path

Process 0 Process 1 Process 2

SendRight

SendEnd

MPI_Send

MPI_RecvMPI_Recv

MPI_Send

MPI_Send MPI_Recv

(b) Possible but unintended path

Process 0 Process 1 Process 2

SendRight

SendEnd

MPI_Send

MPI_RecvMPI_Recv

MPI_Send

Figure 10.8
Two possible message-matching patterns when MPI ANY SOURCE is used in the MPI Recv calls
(from [13]).

consider a simple example.

Suppose we want to gather the names of all of the nodes that our program is

running on, and we want all MPI processes to have this list of names. This is an

easy task using MPI_Allgather:

char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];

MPI_Allgather(my_hostname, MAX_LEN, MPI_CHAR,

all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD);

This code assumes that no hostname is longer than MAX_LEN characters (including

the trailing null). A better code would check this:

char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN];

MPI_Allreduce(&my_name_len, &max_name_len, 1, MPI_INT, MPI_MAX,

MPI_COMM_WORLD);

if (max_name_len > MAX_LEN) {

Advanced Topics in MPI Programming 215

Library Description URL
PETSc Linear and nonlinear solvers

for PDEs
www.mcs.anl.gov/petsc

Aztec Parallel iterative solution of
sparse linear systems

www.cs.sandia.gov/CRF/

aztec1.html

Cactus Framework for PDE
solutions

www.cactuscode.org

FFTW Parallel FFT www.fftw.org

PPFPrint Parallel print www.llnl.gov/sccd/lc/

ptcprint

HDF Parallel I/O for Hierarchical
Data Format (HDF) files

hdf.ncsa.uiuc.edu/Parallel_

HDF

NAG Numerical library www.nag.co.uk/numeric/fd/

FDdescription.asp

ScaLAPACK Parallel linear algebra www.netlib.org/scalapack

SPRNG Scalable pseudorandom
number generator

sprng.cs.fsu.edu

Table 10.1
A sampling of libraries that use MPI.

printf("Error: names too long (%d)", max_name_len);

}

MPI_Allgather(my_hostname, MAX_LEN, MPI_CHAR,

all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD);

Both of these approaches move more data than necessary, however. An even

better approach is to first gather the size of each processor’s name and then gather

exactly the number of characters needed from each processor. This uses the “v” (for

vector) version of the allgather routine, MPI_Allgatherv, as shown in Figure 10.10.

This example provides a different way to accomplish the action of the example

in Section 9.3. Many parallel codes can be written with MPI collective routines

instead of MPI point-to-point communication; such codes often have a simpler

logical structure and can benefit from scalable implementations of the collective

communications routines.

10.6 Parallel I/O

MPI-2 provides a wide variety of parallel I/O operations, more than we have space

to cover here. See [14, Chapter 3] for a more thorough discussion of I/O in MPI.

216 Chapter 10

Figure 10.9
Schematic representation of collective data movement in MPI.

The fundamental idea in MPI’s approach to parallel I/O is that a file is opened

collectively by a set of processes that are all given access to the same file. MPI thus

associates a communicator with the file, allowing a flexible set of both individual

and collective operations on the file.

Image Not Available

Advanced Topics in MPI Programming 217

mylen = strlen(my_hostname) + 1; /* Include the trailing null */

MPI_Allgather(&mylen, 1, MPI_INT, all_lens, 1, MPI_INT,

MPI_COMM_WORLD);

totlen = all_lens[size-1];

for (i=0; i<size-1; i++) {

displs[i+1] = displs[i] + all_lens[i];

totlen += all_lens[i];

}

all_names = (char *)malloc(totlen);

if (!all_names) MPI_Abort(MPI_COMM_WORLD, 1);

MPI_Allgatherv(my_hostname, mylen, MPI_CHAR,

all_names, all_lens, displs, MPI_CHAR,

MPI_COMM_WORLD);

/* Hostname for the jth process is &all_names[displs[j]] */

Figure 10.10
Using MPI Allgather and MPI Allgatherv.

10.6.1 A Simple Example

We first provide a simple example of how processes write contiguous blocks of data

into the same file in parallel. Then we give a more complex example, in which the

data in each process is not contiguous but can be described by an MPI datatype.

For our first example, let us suppose that after solving the Poisson equation as

we did in Section 9.3, we wish to write the solution to a file. We do not need the

values of the ghost cells, and in the one-dimensional decomposition the set of rows

in each process makes up a contiguous area in memory, which greatly simplifies the

program. The I/O part of the program is shown in Figure 10.11.

Recall that the data to be written from each process, not counting ghost cells

but including the boundary data, is in the array ulocal[i][j] for i=i_start to

i_end and j=0 to NY+1.

Note that the type of an MPI file object is MPI_File. Such file objects are

opened and closed much the way normal files are opened and closed. The most

significant difference is that opening a file is a collective operation over a group of

processes specified by the communicator in the first argument of MPI_File_open.

A single process can open a file by specifying the single-process communicator

MPI_COMM_SELF. Here we want all of the processes to share the file, and so we use

MPI_COMM_WORLD.

In our discussion of dynamic process management, we mentioned MPI_Info ob-

218 Chapter 10

MPI_File outfile;

size = NX * (NY + 2);

MPI_File_open(MPI_COMM_WORLD, "solutionfile",

MPI_MODE_CREATE | MPI_MODE_WRONLY,

MPI_INFO_NULL, &outfile);

MPI_File_set_view(outfile,

rank * (NY+2) * (i_end - i_start) * sizeof(double),

MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL);

MPI_File_write(outfile, &ulocal[1][0], size, MPI_DOUBLE,

MPI_STATUS_IGNORE);

MPI_File_close(&outfile);

Figure 10.11
Parallel I/O of Jacobi solution. Note that this choice of file view works only for a single output
step; if output of multiple steps of the Jacobi method are needed, the arguments to
MPI File set view must be modified.

jects. An MPI info object is a collection of key=value pairs that can be used to

encapsulate a variety of special-purpose information that may not be applicable to

all MPI implementations. In this section we will use MPI_INFO_NULL whenever this

type of argument is required, since we have no special information to convey. For

details about MPI_Info, see [14, Chapter 2].

The part of the file that will be seen by each process is called the file view and

is set for each process by a call to MPI_File_set_view. In our example the call is

MPI_File_set_view(outfile, rank * (NY+2) * (...),

MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL)

The first argument identifies the file; the second is the displacement (in bytes) into

the file of where the process’s view of the file is to start. Here we simply multiply

the size of the data to be written by the process’s rank, so that each process’s view

starts at the appropriate place in the file. The type of this argument is MPI_Offset,

which can be expected to be a 64-bit integer on systems that support large files.

The next argument is called the etype of the view; it specifies the unit of data

in the file. Here it is just MPI_DOUBLE, since we will be writing some number of

doubles. The next argument is called the filetype; it is a flexible way of describing

noncontiguous views in the file. In our case, with no noncontiguous units to be

written, we can just use the etype, MPI_DOUBLE. In general, any MPI predefined or

derived datatype can be used for both etypes and filetypes. We explore this use in

more detail in the next example.

Advanced Topics in MPI Programming 219

The next argument is a string defining the data representation to be used. The

native representation says to represent data on disk exactly as it is in memory,

which provides the fastest I/O performance, at the possible expense of portability.

We specify that we have no extra information by providing MPI_INFO_NULL for the

final argument.

The call to MPI_File_write is then straightforward. The data to be written

is a contiguous array of doubles, even though it consists of several rows of the

(distributed) matrix. On each process it starts at &ulocal[0][1] so the data is de-

scribed in (address, count, datatype) form, just as it would be for an MPI message.

We ignore the status by passing MPI_STATUS_IGNORE. Finally we (collectively) close

the file with MPI_File_close.

10.6.2 A More Complex Example

Parallel I/O requires more than just calling MPI_File_write instead of write. The

key idea is to identify the object (across processes), rather than the contribution

from each process. We illustrate this with an example of a regular distributed array.

The code in Figure 10.12 writes out an array that is distributed among processes

with a two-dimensional decomposition. To illustrate the expressiveness of the MPI

interface, we show a complex case where, as in the Jacobi example, the distributed

array is surrounded by ghost cells. This example is covered in more depth in

Chapter 3 of Using MPI 2 [14], including the simpler case of a distributed array

without ghost cells.

This example may look complex, but each step is relatively simple.

1. Set up a communicator that represents a virtual array of processes that

matches the way that the distributed array is distributed. This approach uses the

MPI_Cart_create routine and uses MPI_Cart_coords to find the coordinates of

the calling process in this array of processes. This particular choice of process

ordering is important because it matches the ordering required by MPI_Type_-

create_subarray.

2. Create a file view that describes the part of the file that this process will

write to. The MPI routine MPI_Type_create_subarray makes it easy to construct

the MPI datatype that describes this region of the file. The arguments to this

routine specify the dimensionality of the array (two in our case), the global size

of the array, the local size (that is, the size of the part of the array on the calling

process), the location of the local part (start_indices), the ordering of indices

(column major is MPI_ORDER_FORTRAN and row major is MPI_ORDER_C), and the

basic datatype.

220 Chapter 10

/* no. of processes in vertical and horizontal dimensions

of process grid */

dims[0] = 2; dims[1] = 3;

periods[0] = periods[1] = 1;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);

MPI_Comm_rank(comm, &rank);

MPI_Cart_coords(comm, rank, 2, coords);

/* global indices of the first element of the local array */

/* no. of rows and columns in global array*/

gsizes[0] = m; gsizes[1] = n;

lsizes[0] = m/dims[0]; /* no. of rows in local array */

lsizes[1] = n/dims[1]; /* no. of columns in local array */

start_indices[0] = coords[0] * lsizes[0];

start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,

MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);

MPI_File_open(comm, "/pfs/datafile",

MPI_MODE_CREATE | MPI_MODE_WRONLY,

MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",

MPI_INFO_NULL);

/* create a derived datatype that describes the layout of the local

array in the memory buffer that includes the ghost area. This is

another subarray datatype! */

memsizes[0] = lsizes[0] + 8; /* no. of rows in allocated array */

memsizes[1] = lsizes[1] + 8; /* no. of columns in allocated array */

start_indices[0] = start_indices[1] = 4;

/* indices of the first element of the local array in the

allocated array */

MPI_Type_create_subarray(2, memsizes, lsizes, start_indices,

MPI_ORDER_C, MPI_FLOAT, &memtype);

MPI_Type_commit(&memtype);

MPI_File_write_all(fh, local_array, 1, memtype, &status);

MPI_File_close(&fh);

Figure 10.12
C program for writing a distributed array that is also noncontiguous in memory because of a
ghost area (derived from an example in [14]).

Advanced Topics in MPI Programming 221

3. Open the file for writing (MPI_MODE_WRONLY), and set the file view with the

datatype we have just constructed.

4. Create a datatype that describes the data to be written. We can use MPI_-

Type_create_subarray here as well to define the part of the local array that does

not include the ghost points. If there were no ghost points, we could instead use

MPI_FLOAT as the datatype with a count of lsizes[0]*lsizes[1] in the call to

MPI_File_write_all.

5. Perform a collective write to the file with MPI_File_write_all, and close

the file.

By using MPI datatypes to describe both the data to be written and the des-

tination of the data in the file with a collective file write operation, the MPI im-

plementation can make the best use of the I/O system. The result is that file

I/O operations performed with MPI I/O can achieve hundredfold improvements in

performance over using individual Unix I/O operations [35].

10.7 Remote Memory Access

The message-passing programming model requires that both the sender and the

receiver (or all members of a communicator in a collective operation) participate

in moving data between two processes. An alternative model where one process

controls the communication, called one-sided communication, can offer better per-

formance and in some cases a simpler programming model. MPI-2 provides support

for this one-sided approach. The MPI-2 model was inspired by the work on the

bulk synchronous programming (BSP) model [17] and the Cray SHMEM library

used on the massively parallel Cray T3D and T3E computers [6].

In one-sided communication, one process may put data directly into the memory

of another process, without that process using an explicit receive call. For this

reason, this also called remote memory access (RMA).

Using RMA involves four steps:

1. Describe the memory into which data may be put.

2. Allow access to the memory.

3. Begin put operations (e.g., with MPI_Put).

4. Complete all pending RMA operations.

222 Chapter 10

The first step is to describe the region of memory into which data may be

placed by an MPI_Put operation (also accessed by MPI_Get or updated by MPI_-

Accumulate). This is done with the routine MPI_Win_create:

MPI_Win win;

double ulocal[MAX_NX][NY+2];

MPI_Win_create(ulocal, (NY+2)*(i_end-i_start+3)*sizeof(double),

sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win);

The input arguments are, in order, the array ulocal, the size of the array in bytes,

the size of a basic unit of the array (sizeof(double) in this case), a “hint” object,

and the communicator that specifies which processes may use RMA to access the

array. MPI_Win_create is a collective call over the communicator. The output is

an MPI window object win. When a window object is no longer needed, it should

be freed with MPI_Win_free.

RMA operations take place between two sentinels. One begins a period where

access is allowed to a window object, and one ends that period. These periods are

called epochs.2 The easiest routine to use to begin and end epochs is MPI_Win_-

fence. This routine is collective over the processes that created the window object

and both ends the previous epoch and starts a new one. The routine is called

a “fence” because all RMA operations before the fence complete before the fence

returns, and any RMA operation initiated by another process (in the epoch begun

by the matching fence on that process) does not start until the fence returns. This

may seem complex, but it is easy to use. In practice, MPI_Win_fence is needed

only to separate RMA operations into groups. This model closely follows the BSP

and Cray SHMEM models, though with the added ability to work with any subset

of processes.

Three routines are available for initiating the transfer of data in RMA. These are

MPI_Put, MPI_Get, and MPI_Accumulate. All are nonblocking in the same sense

MPI point-to-point communication is nonblocking (Section 10.3.1). They complete

at the end of the epoch that they start in, for example, at the closing MPI_Win_-

fence. Because these routines specify both the source and destination of data,

they have more arguments than do the point-to-point communication routines.

The arguments can be easily understood by taking them a few at a time.

2MPI has two kinds of epochs for RMA: an access epoch and an exposure epoch. For the
example used here, the epochs occur together, and we refer to both of them as just epochs.

Advanced Topics in MPI Programming 223

1. The first three arguments describe the origin data; that is, the data on the

calling process. These are the usual “buffer, count, datatype” arguments.

2. The next argument is the rank of the target process. This serves the same

function as the destination of an MPI_Send. The rank is relative to the communi-

cator used when creating the MPI window object.

3. The next three arguments describe the destination buffer. The count and

datatype arguments have the same meaning as for an MPI_Recv, but the buffer

location is specified as an offset from the beginning of the memory specified to

MPI_Win_create on the target process. This offset is in units of the displacement

argument of the MPI_Win_create and is usually the size of the basic datatype.

4. The last argument is the MPI window object.

Note that there are no MPI requests; the MPI_Win_fence completes all preceding

RMA operations. MPI_Win_fence provides a collective synchronization model for

RMA operations in which all processes participate. This is called active target

synchronization.

With these routines, we can create a version of the mesh exchange that uses

RMA instead of point-to-point communication. Figure 10.13 shows one possible

implementation.

Another form of access requires no MPI calls (not even a fence) at the target

process. This is called passive target synchronization. The origin process uses MPI_-

Win_lock to begin an access epoch and MPI_Win_unlock to end the access epoch.3

Because of the passive nature of this type of RMA, the local memory (passed as the

first argument to MPI_Win_create) should be allocated with MPI_Alloc_mem and

freed with MPI_Free_mem. For more information on passive target RMA operations,

see [14, Chapter 6]. Also note that as of 2001, few MPI implementations support

passive target RMA operation. More implementations are expected to support

these operations in 2002.

A more complete discussion of remote memory access can be found in [14, Chap-

ters 5 and 6]. Note that MPI implementations are just beginning to provide the

RMA routines described in this section. Most current RMA implementations em-

phasize functionality over performance. As implementations mature, however, the

performance of RMA operations will also improve.

3The names MPI Win lock and MPI Win unlock are really misnomers; think of them as begin-
RMA and end-RMA.

224 Chapter 10

void exchang_nbrs(double u_local[][NY+2], int i_start, int i_end,

int left, int right, MPI_Win win)

{

MPI_Aint left_ghost_disp, right_ghost_disp;

int c;

MPI_Win_fence(0, win);

/* Put the left edge into the left neighbors rightmost

ghost cells. See text about right_ghost_disp */

right_ghost_disp = 1 + (NY+2) * (i_end-i-start+2);

MPI_Put(&u_local[1][1], NY, MPI_DOUBLE,

left, right_ghost_disp, NY, MPI_DOUBLE, win);

/* Put the right edge into the right neighbors leftmost ghost

cells */

left_ghost_disp = 1;

c = i_end - i_start + 1;

MPI_Put(&u_local[c][1], NY, MPI_DOUBLE,

right, left_ghost_disp, NY, MPI_DOUBLE, win);

MPI_Win_fence(0, win)

}

Figure 10.13
Neighbor exchange using MPI remote memory access.

10.8 Using C++ and Fortran 90

MPI-1 defined bindings to C and Fortran 77. These bindings were very similar; the

only major difference was the handling of the error code (returned in C, set through

the last argument in Fortran 77). In MPI-2, a binding was added for C++, and an

MPI module was defined for Fortran 90.

The C++ binding provides a lightweight model that is more than just a C++

version of the C binding but not a no-holds-barred object-oriented model. MPI

objects are defined in the MPI namespace. Most MPI objects have correspond-

ing classes, such as Datatype for MPI_Datatype. Communicators and requests are

slightly different. There is an abstract base class Comm for general communica-

tors with four derived classes: Intracomm, Intercomm, Graphcomm, and Cartcomm.

Most communicators are Intracomms; GraphComm and CartComm are derived from

Intracomm. Requests have two derived classes: Prequest for persistent requests

and Grequest for generalized requests (new in MPI-2). Most MPI operations are

Advanced Topics in MPI Programming 225

methods on the appropriate objects; for example, most point-to-point and collec-

tive communications are methods on the communicator. A few routines, such as

Init and Finalize, stand alone. A simple MPI program in C++ is shown in

Figure 10.14.

#include "mpi.h"

#include <iostream.h>

int main(int argc, char *argv[])

{

int data;

MPI::Init();

if (MPI::COMM_WORLD.Get_rank() == 0) {

// Broadcast data from process 0 to all others

cout << "Enter an int" << endl;

data << cin;

}

MPI::COMM_WORLD.Bcast(data, 1, MPI::INT, 0);

MPI::Finalize();

return 0;

}

Figure 10.14
Simple MPI program in C++.

The C++ binding for MPI has a few quirks. One is that the multiple completion

operations such as MPI::Waitall are methods on requests, even though there is no

unique request to use for these methods. Another is the C++ analogue to MPI_-

Comm_dup. In the C++ binding, MPI::Comm is an abstract base class (ABC). Since

it is impossible to create an instance of an abstract base class, there can be no

general “dup” function that returns a new MPI::Comm. Since it is possible in C++

to create a reference to an ABC, however, MPI defines the routine (available only

in the C++ binding) MPI::Clone that returns a reference to a new communicator.

Two levels of Fortran 90 support are provided in MPI. The basic support pro-

vides an ‘mpif.h’ include file. The extended support provides an MPI module. The

module makes it easy to detect the two most common errors in Fortran MPI pro-

grams: forgetting to provide the variable for the error return value and forgetting

to declare status as an array of size MPI_STATUS_SIZE. There are a few drawbacks.

226 Chapter 10

Fortran derived datatypes cannot be directly supported (the Fortran 90 language

provides no way to handle an arbitrary type). Often, you can use the first element

of the Fortran 90 derived type. Array sections should not be used in receive op-

erations, particularly nonblocking communication (see Section 10.2.2 in the MPI-2

standard for more information). Another problem is that while Fortran 90 enables

the user to define MPI interfaces in the MPI module, a different Fortran 90 interface

file must be used for each combination of Fortran datatype and array dimension

(scalars are different from arrays of dimension one, etc.). This leads to a Fortran 90

MPI module library that is often (depending on the Fortran 90 compiler) far larger

than the entire MPI library. However, particularly during program development,

the MPI module is very helpful.

10.9 MPI, OpenMP, and Threads

The MPI standard was carefully written to be a thread-safe specification. That

means that the design of MPI doesn’t include concepts such as “last message” or

“current pack buffer” that are not well defined when multiple threads are present.

MPI implementations can choose whether to provide thread-safe implementations.

Allowing this choice is particularly important because thread safety usually comes

at the price of performance due to the extra overhead required to ensure that

internal data structures are not modified inconsistently by two different threads.

Most early MPI implementations were not thread safe.

MPI-2 introduced four levels of thread safety that an MPI implementation could

provide. The lowest level, MPI_THREAD_SINGLE, allows only single threaded pro-

grams. The next level, MPI_THREAD_FUNNELED, allows multiple threads provided

that all MPI calls are made in a single thread; most MPI implementations provide

MPI_THREAD_FUNNELED. The next level, MPI_THREAD_SERIALIZED, allows many user

threads to make MPI calls, but only one thread at a time. The highest level of

support, MPI_THREAD_MULTIPLE, allows any thread to call any MPI routine.

Understanding the level of thread support is important when combining MPI with

approaches to thread-based parallelism. OpenMP [26] is a popular and powerful

language for specifying thread-based parallelism. While OpenMP provides some

tools for general threaded parallelism, one of the most common uses is to parallelize

a loop. If the loop contains no MPI calls, then OpenMP may be combined with

MPI. For example, in the Jacobi example, OpenMP can be used to parallelize the

loop computation:

exchange_nbrs(u_local, i_start, i_end, left, right);

Advanced Topics in MPI Programming 227

#pragma omp for

for (i_local=1; i<=i_end-i_start+1; i++)

for (j=1; j<=NY; j++)

ulocal_new[i_local][j] =

0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] +

ulocal[i_local][j+1] + ulocal[i_local][j-1] -

h*h*flocal[i_local][j]);

This exploits the fact that MPI was designed to work well with other tools,

leveraging improvements in compilers and threaded parallelism.

10.10 Measuring MPI Performance

Many tools have been developed for measuring performance. The best is always

your own application, but a number of tests are available that can give a more

general overview of the performance of MPI on a cluster. Measuring communication

performance is actually quite tricky; see [15] for a discussion of some of the issues

in making reproducible measurements of performance. That paper describes the

methods used in the mpptest program for measuring MPI performance.

10.10.1 mpptest

The mpptest program allows you to measure many aspects of the performance of

any MPI implementation. The most common MPI performance test is the Ping-

Pong test (see Section 8.2). The mpptest program provides Ping-Pong tests for

the different MPI communication modes, as well as providing a variety of tests for

collective operations and for more realistic variations on point-to-point communica-

tion, such as halo communication (like that in Section 9.3) and communication that

does not reuse the same memory locations (thus benefiting from using data that is

already in memory cache). The mpptest program can also test the performance of

some MPI-2 functions, including MPI_Put and MPI_Get.

Using mpptest. The mpptest program is distributed with MPICH in the direc-

tory ‘examples/perftest’. You can also download it separately from www.mcs.

anl.gov/mpi/perftest. Building and using mpptest is very simple:

% tar zxf perftest.tar.gz

% cd perftest-1.2.1

% ./configure --with-mpich

% make

228 Chapter 10

% mpirun -np 2 ./mpptest -logscale

% mpirun -np 16 ./mpptest -bisect

% mpirun -np 2 ./mpptest -auto

To run with LAM/MPI, simply configure with the option --with-lammpi. The

‘README’ file contains instructions for building with other MPI implementations.

10.10.2 SKaMPI

The SKaMPI test suite [27] is a comprehensive test of MPI performance, covering

virtually all of the MPI-1 communication functions.

One interesting feature of the SKaMPI benchmarks is the online tables showing

the performance of MPI implementations on various parallel computers, ranging

from Beowulf clusters to parallel vector supercomputers.

10.10.3 High Performance LINPACK

Perhaps the best known benchmark in technical computing is the LINPACK Bench-

mark, discussed in Section 8.3. The version of this benchmark that is appropriate

for clusters is the High Performance LINPACK (HPL). Obtaining and running this

benchmark is relatively easy, though getting good performance can require a sig-

nificant amount of effort. In addition, as pointed out in Section 8.3, while the

LINPACK benchmark is widely known, it tends to significantly overestimate the

achieveable performance for many applications.

The HPL benchmark depends on another library, the basic linear algebra sub-

routines (BLAS), for much of the computation. Thus, to get good performance on

the HPL benchmark, you must have a high-quality implementation of the BLAS.

Fortunately, several sources of these routines are available. You can often get

implementations of the BLAS from the CPU vendor directly, sometimes at no cost.

Another possibility is to use the ATLAS implementation of the BLAS.

ATLAS. ATLAS is available from www.netlib.org/atlas. If prebuilt binaries

fit your system, you should use those. Note that ATLAS is tuned for specific system

characteristics including clock speed and cache sizes; if you have any doubts about

whether your configuration matches that of a prebuilt version, you should build

ATLAS yourself.

To build ATLAS, first download ATLAS from the Web site and then extract it.

This will create an ‘ATLAS’ directory into which the libraries will be built, so extract

this where you want the libraries to reside.

% tar zxf atlas3.2.1.tgz

Advanced Topics in MPI Programming 229

% cd ATLAS

Check the ‘errata.html’ file at www.netlib.org/atlas/errata.html for updates.

You may need to edit various files (no patches are supplied for ATLAS). Next, have

ATLAS configure itself. Select a compiler; note that you should not use the Portland

Group compiler here.

% make config CC=gcc

Answer yes to most questions, including threaded and express setup, and accept

the suggested architecture name. Next, make ATLAS:

% make install arch=<thename> >&make.log

Note that this is not an “install” in the usual sense; the ATLAS libraries are not

copied to ‘/usr/local/lib’ and the like by the install. This step may take as long

as several hours, unless ATLAS finds a precomputed set of parameters that fits

your machine. At the end of this step, the BLAS are in ‘ATLAS/lib/<archname>’.

You are ready for the next step.

HPL. Download the HPL package from www.netlib.org/benchmark/hpl:

% tar zxf hpl.tgz

% cd hpl

Create a ‘Make.<archname>’ in the ‘hpl’ directory. Consider an archname like

Linux_P4_CBLAS_p4 for a Linux system on Pentium 4 processors, using the C

version of the BLAS constructed by ATLAS, and using the ch_p4 device from the

MPICH implementation of MPI. To create this file, look at the samples in the

‘hpl/makes’ directory, for example,

% cp makes/Make.Linux_PII_CBLAS_gm Make.Linux_P4_CBLAS_p4

Edit this file, changing ARCH to the name you selected (e.g., Linux_P4_CBLAS_p4),

and set LAdir to the location of the ATLAS libraries. Then do the following:

% make arch=<thename>

% cd bin/<thename>

% mpirun -np 4 ./xhpl

Check the output to make sure that you have the right answer. The file ‘HPL.dat’

controls the actual test parameters. The version of ‘HPL.dat’ that comes with the

hpl package is appropriate for testing hpl. To run hpl for performance requires

modifying ‘HPL.dat’. The file ‘hpl/TUNING’ contains some hints on setting the

values in this file for performance. Here are a few of the most important:

230 Chapter 10

1. Change the problem size to a large value. Don’t make it too large, however,

since the total computational work grows as the cube of the problem size (doubling

the problem size increases the amount of work by a factor of eight). Problem sizes

of around 5,000–10,000 are reasonable.

2. Change the block size to a modest size. A block size of around 64 is a good

place to start.

3. Change the processor decomposition and number of nodes to match your

configuration. In most cases, you should try to keep the decomposition close to

square (e.g., P and Q should be about the same value), with P ≥ Q.

4. Experiment with different values for RFACT and PFACT. On some systems,

these parameters can have a significant effect on performance. For one large cluster,

setting both to right was preferable.

10.11 MPI-2 Status

MPI-2 is a significant extension of the MPI-1 standard. Unlike the MPI-1 standard,

where complete implementations of the entire standard were available when the

standard was released, complete implementations of all of MPI-2 have been slow

in coming. As of June 2001, there are few complete implementations of MPI-2

and none for Beowulf clusters. Most MPI implementations include the MPI-IO

routines, in large part because of the ROMIO implementation of these routines.

Significant parts of MPI-2 are available, however, including the routines described

in this book. Progress continues in both the completeness and performance of

MPI-2 implementations, and we expect full MPI-2 implementations to appear in

2002.

10.12 MPI Routine Summary

This section provides a quick summary in C, Fortran, C++, and other MPI routines

used in this chapter. Although these are only a small fraction of the routines

available in MPI, they are sufficient for many applications.

C Routines.

int MPI Irecv(void* buf, int count, MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Request *request)

Advanced Topics in MPI Programming 231

int MPI Wait(MPI Request *request, MPI Status *status)

int MPI Test(MPI Request *request, int *flag, MPI Status *status)

int MPI Waitall(int count, MPI Request *array of requests,

MPI Status *array of statuses)

int MPI Win create(void *base, MPI Aint size, int disp unit, MPI Info info,

MPI Comm comm, MPI Win *win)

int MPI Win free(MPI Win *win)

int MPI Put(void *origin addr, int origin count, MPI Datatype origin datatype,

int target rank, MPI Aint target disp, int target count,

MPI Datatype target datatype, MPI Win win)

int MPI Get(void *origin addr, int origin count,MPI Datatype origin datatype,

int target rank, MPI Aint target disp, int target count,

MPI Datatype target datatype, MPI Win win)

int MPI Win fence(int assert, MPI Win win)

int MPI File open(MPI Comm comm, char *filename, int amode, MPI Info info,

MPI File *fh)

int MPI File set view(MPI File fh, MPI Offset disp, MPI Datatype etype,

MPI Datatype filetype, char *datarep, MPI Info info)

int MPI File read(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File write(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File read all(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File write all(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File close(MPI File *fh)

232 Chapter 10

int MPI Comm spawn(char *command, char *argv[], int maxprocs, MPI Info info,

int root, MPI Comm comm, MPI Comm *intercomm,

int array of errcodes[])

int MPI Comm get parent(MPI Comm *parent)

Fortran routines.

MPI ISEND(buf, count, datatype, dest, tag, comm, request, ierror)

<type> buf(*)

integer count, datatype, dest, tag, comm, request, ierror

MPI IRECV(buf, count, datatype, source, tag, comm, request,ierror)

<type> buf(*)

integer count, datatype, source, tag, comm, request, ierror

MPI WAIT(request, status, ierror)

integer request,status(MPI STATUS SIZE), ierror

MPI TEST(request, flag, status, ierror)

logical flag

integer request, status(MPI STATUS SIZE), ierror

MPI WAITALL(count, array of requests, array of statuses,ierror)

integer count, array of requests(*),

array of statuses(MPI STATUS SIZE,*), ierror

MPI WIN CREATE(base, size, disp unit, info, comm, win, ierror)

<type> base(*)

integer(kind=MPI ADDRESS KIND) size

integer disp unit, info, comm, win, ierror

MPI WIN FREE(win, ierror)

integer win, ierror

MPI PUT(origin addr, origin count, origin datatype, target rank, target disp,

target count, target datatype, win, ierror)

<type> origin addr(*)

integer(kind=MPI ADDRESS KIND) target disp

integer origin count, origin datatype, target rank, target count,

target datatype, win, ierror

Advanced Topics in MPI Programming 233

MPI GET(origin addr, origin count, origin datatype,target rank, target disp,

target count, target datatype, win, ierror)

<type> origin addr(*)

integer(kind=MPI ADDRESS KIND) target disp

integer origin count, origin datatype, target rank, target count,

target datatype, win, ierror

MPI WIN FENCE(assert, win, ierror)

integer assert, win, ierror

MPI FILE OPEN(comm, filename, amode, info, fh, ierror)

character*(*) filename

integer comm, amode, info, fh, ierror

MPI FILE SET VIEW(fh, disp, etype, filetype, datarep, info, ierror)

integer fh, etype, filetype, info, ierror

character*(*) datarep

integer(kind=MPI OFFSET KIND) disp

MPI FILE READ(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE WRITE(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE READ ALL(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE WRITE ALL(fh, buf, count, datatype, status, ierror)

<type> buf(*)

integer fh, count, datatype, status(MPI STATUS SIZE), ierror

MPI FILE CLOSE(fh, ierror)

integer fh, ierror

MPI COMM SPAWN(command, argv, maxprocs, info, root, comm, intercomm,

array of errcodes, ierror)

character*(*) command, argv(*)

234 Chapter 10

integer info, maxprocs, root, comm, intercomm, array of errcodes(*),

ierror

MPI COMM GET PARENT(parent, ierror)

integer parent, ierror

C++ routines.

Request MPI::Comm::Isend(const void* buf, int count,

const Datatype& datatype, int dest, int tag) const

Request MPI::Comm::Irecv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void MPI::Request::Wait(Status& status)

void MPI::Request::Wait()

bool MPI::Request::Test(Status& status)

bool MPI::Request::Test()

void MPI::Request::Waitall(int count, Request array of requests[],

Status array of statuses[])

void MPI::Request::Waitall(int count, Request array of requests[])

MPI::Win MPI::Win::Create(const void* base, Aint size, int disp unit,

const Info& info, const Intracomm& comm)

void MPI::Win::Free()

void MPI::Win::Put(const void* origin addr, int

origin count, const Datatype& origin datatype, int target rank, Aint

target disp, int target count, const Datatype& target datatype) const

void MPI::Win::Get(void *origin addr, int

origin count, const MPI::Datatype& origin datatype, int target rank,

MPI::Aint target disp, int target count,

const MPI::Datatype& target datatype) const

void MPI::Win::Fence(int assert) const

Advanced Topics in MPI Programming 235

MPI::File MPI::File::Open(const MPI::Intracomm& comm, const char* filename,

int amode, const MPI::Info& info)

MPI::Offset MPI::File::Get size const

void MPI::File::Set view(MPI::Offset disp, const MPI::Datatype& etype,

const MPI::Datatype& filetype, const char* datarep,

const MPI::Info& info)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Read all(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read all(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Write all(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write all(const void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Close

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info, int root,

int array of errcodes[]) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info, int root) const

MPI::Intercomm MPI::Comm::Get parent()

 blank

11 Parallel Programming with PVM

Al Geist and Stephen Scott

PVM (Parallel Virtual Machine) is an outgrowth of an ongoing computing re-

search project involving Oak Ridge National Laboratory, the University of Ten-

nessee, and Emory University. The general goals of this project are to investigate

issues in, and develop solutions for, heterogeneous concurrent computing. PVM is

an integrated set of software tools and libraries that emulates a general-purpose,

flexible, heterogeneous parallel computing framework on interconnected computers

of varied architecture. The overall objective of the PVM system is to enable such a

collection of computers to be used cooperatively for a concurrent or parallel compu-

tation. This chapter provides detailed descriptions and discussions of the concepts,

logistics, and methodologies involved in programming with PVM.

11.1 Overview

PVM is based on the following principles:

• User-configured host pool: The application’s computational tasks execute

on a set of machines that are selected by the user for a given run of the PVM pro-

gram. Both single-CPU machines and hardware multiprocessors (including shared-

memory and distributed-memory computers) may be part of the host pool. The

host pool may be altered by adding and deleting machines during operation (an

important feature for fault tolerance). When PVM is used on Beowulf clusters, the

nodes make up the host pool.

• Translucent access to hardware: Application programs may view the hard-

ware environment as an attributeless collection of virtual processing elements or

may exploit the capabilities of specific machines in the host pool by positioning

certain computational tasks on the most appropriate computers.

• Process-based computation: The unit of parallelism in PVM is a task, an

independent sequential thread of control that has communication and computation

capabilities. No process-to-processor mapping is implied or enforced by PVM; in

particular, multiple tasks may execute on a single processor.

• Explicit message-passing model: Collections of computational tasks, each

performing a part of an application’s workload, cooperate by explicitly sending to

and receiving messages from one another. PVM dynamically allocates space for

message buffers so message size is limited only by the amount of available memory.

• Heterogeneity support: The PVM system supports heterogeneity in terms

of machines, networks, and applications. With regard to message passing, PVM

238 Chapter 11

permits messages containing more than one datatype to be exchanged between

machines having different data representations.

• Multiprocessor support: PVM uses the native message-passing facilities on

multiprocessors to take advantage of the underlying hardware. For example, on the

IBM SP, PVM transparently uses IBM’s MPI to move data. On the SGI Origin,

PVM uses shared memory to move data.

The PVM system is composed of two parts. The first part is a daemon, called

pvmd3 and sometimes abbreviated pvmd, that resides on all the computers making

up the virtual machine. (An example of a daemon program is the mail program

that runs in the background and handles all the incoming and outgoing electronic

mail on a computer.) The daemon pvmd3 is designed so any user with a valid login

can install this daemon on a machine. To run a PVM application, you first create

a virtual machine by starting up PVM (Section 11.7.2 details how this is done).

You can then start the PVM application on any of the hosts. Multiple users can

configure virtual machines that overlap the same cluster nodes, and each user can

execute several PVM applications simultaneously.

The second part of the system is a library of PVM interface routines. It contains

a functionally complete repertoire of primitives that are needed for cooperation

between tasks of an application. This library contains user-callable routines for

message passing, spawning processes, coordinating tasks, and modifying the virtual

machine.

The PVM computing model is based on the notion that an application consists

of several tasks each responsible for a part of the application’s computational work-

load. Sometimes an application is parallelized along its functions. That is, each

task performs a different function, for example, input, problem setup, solution,

output, or display. This is often called functional parallelism. A more common

method of parallelizing an application is called data parallelism. In this method

all the tasks are the same, but each one knows and solves only a small part of the

data. This is also referred to as the SPMD (single program, multiple data) model of

computing. PVM supports either or a mixture of both these methods. Depending

on their functions, tasks may execute in parallel and may need to synchronize or

exchange data.

The PVM system currently supports C, C++, and Fortran languages. These lan-

guage interfaces have been included based on the observation that the predominant

majority of target applications are written in C and Fortran, with an emerging

trend in experimenting with object-based languages and methodologies. Third-

Parallel Programming with PVM 239

party groups have created freely available Java, Perl, Python, and IDL interfaces

to PVM.

The C and C++ language bindings for the PVM user interface library are imple-

mented as functions, following the general conventions used by most C systems. To

elaborate, function arguments are a combination of value parameters and pointers

as appropriate, and function result values indicate the outcome of the call. In ad-

dition, macro definitions are used for system constants, and global variables such

as errno and pvm errno are the mechanism for discriminating between multiple

possible outcomes. Application programs written in C and C++ access PVM li-

brary functions by linking against an archival library (libpvm3.a) that is part of

the standard distribution.

Fortran language bindings are implemented as subroutines rather than as func-

tions. This approach was taken because some compilers on the supported architec-

tures would not reliably interface Fortran functions with C functions. One immedi-

ate implication of this is that an additional argument is introduced into each PVM

library call for status results to be returned to the invoking program. Another

difference is that library routines for the placement and retrieval of typed data in

message buffers are unified, with an additional parameter indicating the datatype.

Apart from these differences (and the standard naming prefixes pvm for C, and

pvmf for Fortran), a one-to-one correspondence exists between the two language

bindings. Fortran interfaces to PVM are implemented as library stubs that in turn

invoke the corresponding C routines, after casting and/or dereferencing arguments

as appropriate. Thus, Fortran applications are required to link against the stubs

library (libfpvm3.a) as well as the C library.

All PVM tasks are identified by an integer task identifier tid. Messages are sent

to tids and received from tids. Since tids must be unique across the entire virtual

machine, they are supplied by the local pvmd and are not user chosen. Although

PVM encodes information into each tid, the user is expected to treat the tids as

opaque integer identifiers. PVM contains several routines that return tid values so

that the user application can identify other tasks in the system.

In some applications it is natural to think of a group of tasks. And there are

cases where you would like to identify your tasks by the numbers 0 to (p − 1),

where p is the number of tasks. PVM includes the concept of user-named groups.

When a task joins a group, it is assigned a unique “instance” number in that group.

Instance numbers start at 0 and count up. In keeping with the PVM philosophy,

the group functions are designed to be very general and transparent to the user.

For example, any PVM task can join or leave any group at any time without having

to inform any other task in the affected groups, groups can overlap, and tasks can

240 Chapter 11

broadcast messages to groups of which they are not a member. To use any of the

group functions, a program must be linked with libgpvm3.a.

The general paradigm for application programming with PVM is as follows. You

write one or more sequential programs in C, C++, or Fortran 77 that contain

embedded calls to the PVM library. Each program corresponds to a task making

up the application. These programs are compiled for each architecture in the host

pool, and the resulting object files are placed at a location accessible from machines

in the host pool. To execute an application, you typically start one copy of one task

(typically the “manager” or “initiating” task) by hand from a machine within the

host pool. This process subsequently starts other PVM tasks eventually resulting

in a collection of active tasks that then compute locally and exchange messages

with each other to solve the problem.

Note that while this scenario is typical, as many tasks as appropriate may be

started manually. As mentioned earlier, tasks interact through explicit message

passing, identifying each other with a system-assigned, opaque tid.

#include "pvm3.h"

main()

{

int cc, tid, msgtag;

char buf[100];

printf("i’m t%x\n", pvm_mytid());

cc = pvm_spawn("hello_other", (char**)0, 0, "", 1, &tid);

if (cc == 1) {

msgtag = 1;

pvm_recv(tid, msgtag);

pvm_upkstr(buf);

printf("from t%x: %s\n", tid, buf);

} else

printf("can’t start hello_other\n");

pvm_exit();

}

Figure 11.1
PVM program ‘hello.c’.

Parallel Programming with PVM 241

Shown in Figure 11.1 is the body of the PVM program ‘hello.c’, a simple ex-

ample that illustrates the basic concepts of PVM programming. This program is

intended to be invoked manually; after printing its task id (obtained with pvm

mytid()), it initiates a copy of another program called ‘hello other.c’ using the

pvm spawn() function. A successful spawn causes the program to execute a block-

ing receive using pvm recv. After receiving the message, the program prints the

message sent by its counterpart, as well its task id; the buffer is extracted from the

message using pvm upkstr. The final pvm exit call dissociates the program from

the PVM system.

#include "pvm3.h"

main()

{

int ptid, msgtag;

char buf[100];

ptid = pvm_parent();

strcpy(buf, "hello, world from ");

gethostname(buf + strlen(buf), 64);

msgtag = 1;

pvm_initsend(PvmDataDefault);

pvm_pkstr(buf);

pvm_send(ptid, msgtag);

pvm_exit();

}

Figure 11.2
PVM program ‘hello other.c’.

Figure 11.2 is a listing of the “slave,” or spawned program; its first PVM action is

to obtain the task id of the “master” using the pvm parent call. This program then

obtains its hostname and transmits it to the master using the three-call sequence:

pvm initsend to initialize the (transparent) send buffer; pvm pkstr to place a string

in a strongly typed and architecture independent manner into the send buffer; and

pvm send to transmit it to the destination process specified by ptid, “tagging” the

message with the number 1.

242 Chapter 11

11.2 Program Examples

In this section we discuss several complete PVM programs in detail. The first

example, forkjoin.c, shows how to spawn off processes and synchronize with them.

We then discuss a Fortran dot product program PSDOT.F and a matrix multiply

example. Lastly, we show how PVM can be used to compute heat diffusion through

a wire.

11.3 Fork/Join

The fork/join example demonstrates how to spawn off PVM tasks and synchronize

with them. The program spawns several tasks, three by default. The children

then synchronize by sending a message to their parent task. The parent receives

a message from each of the spawned tasks and prints out information about the

message from the child tasks.

This program contains the code for both the parent and the child tasks. Let’s ex-

amine it in more detail. The very first thing the program does is call pvm_mytid().

In fork/join we check the value of mytid; if it is negative, indicating an error, we call

pvm_perror() and exit the program. The pvm_perror() call will print a message

indicating what went wrong with the last PVM call. In this case the last call was

pvm_mytid(), so pvm_perror() might print a message indicating that PVM hasn’t

been started on this machine. The argument to pvm_perror() is a string that will

be prepended to any error message printed by pvm_perror(). In this case we pass

argv[0], which is the name of the program as it was typed on the command-line.

The pvm_perror() function is modeled after the Unix perror() function.

Assuming we obtained a valid result for mytid, we now call pvm_parent(). The

pvm_parent() function will return the tid of the task that spawned the calling task.

Since we run the initial forkjoin program from a command prompt, this initial

task will not have a parent; it will not have been spawned by some other PVM

task but will have been started manually by the user. For the initial fork/join task

the result of pvm_parent() will not be any particular task id but an error code,

PvmNoParent. Thus we can distinguish the parent fork/join task from the children

by checking whether the result of the pvm_parent() call is equal to PvmNoParent.

If this task is the parent, then it must spawn the children. If it is not the parent,

then it must send a message to the parent.

Let’s examine the code executed by the parent task. The number of tasks is taken

from the command-line as argv[1]. If the number of tasks is not legal then we

Parallel Programming with PVM 243

exit the program, calling pvm_exit() and then returning. The call to pvm_exit()

is important because it tells PVM this program will no longer be using any of the

PVM facilities. (In this case the task exits and PVM will deduce that the dead task

no longer needs its services. Regardless, it is good style to exit cleanly.) Assuming

the number of tasks is valid, fork/join will then attempt to spawn the children.

The pvm_spawn() call tells PVM to start ntask tasks named argv[0]. The

second parameter is the argument list given to the spawned tasks. In this case

we don’t care to give the children any particular command-line arguments, so this

value is null. The third parameter to spawn, PvmTaskDefault, is a flag telling PVM

to spawn the tasks in the default location. Had we been interested in placing the

children on a specific machine or a machine of a particular architecture, we would

have used PvmTaskHost or PvmTaskArch for this flag and specified the host or

architecture as the fourth parameter. Since we don’t care where the tasks execute,

we use PvmTaskDefault for the flag and null for the fourth parameter. Finally,

ntask tells spawn how many tasks to start, and the integer array child will hold

the task ids of the newly spawned children. The return value of pvm_spawn()

indicates how many tasks were successfully spawned. If info is not equal to ntask,

then some error occurred during the spawn. In case of an error, the error code is

placed in the task id array, child, instead of the actual task id; forkjoin loops over

this array and prints the task ids or any error codes. If no tasks were successfully

spawned, then the program exits.

For each child task, the parent receives a message and prints out information

about that message. The pvm_recv() call receives a message from any task as long

as the tag for that message is JOINTAG. The return value of pvm_recv() is an integer

indicating a message buffer. This integer can be used to find out information about

message buffers. The subsequent call to pvm_bufinfo() does just this; it gets the

length, tag, and task id of the sending process for the message indicated by buf. In

forkjoin the messages sent by the children contain a single integer value, the task

id of the child task. The pvm_upkint() call unpacks the integer from the message

into the mydata variable. As a sanity check, forkjoin tests the value of mydata

and the task id returned by pvm_bufinfo(). If the values differ, the program has

a bug, and an error message is printed. Finally, the information about the message

is printed, and the parent program exits.

The last segment of code in forkjoin will be executed by the child tasks. Be-

fore data is placed in a message buffer, the buffer must be initialized by calling

pvm_initsend(). The parameter PvmDataDefault indicates that PVM should do

whatever data conversion is needed to assure that the data arrives in the correct

format on the destination processor. In some cases this may result in unneces-

244 Chapter 11

sary data conversions. If you are sure no data conversion will be needed since the

destination machine uses the same data format, then you can use PvmDataRaw as

a parameter to pvm_initsend(). The pvm_pkint() call places a single integer,

mytid, into the message buffer. It is important to make sure the corresponding

unpack call exactly matches the pack call. Packing an integer and unpacking it

as a float will not work correctly. There should be a one-to-one correspondence

between pack and unpack calls. Finally, the message is sent to the parent task

using a message tag of JOINTAG.

/*

Fork Join Example

Demonstrates how to spawn processes and exchange messages

*/

/* defines and prototypes for the PVM library */

#include <pvm3.h>

/* Maximum number of children this program will spawn */

#define MAXNCHILD 20

/* Tag to use for the joing message */

#define JOINTAG 11

int

main(int argc, char* argv[])

{

/* number of tasks to spawn, use 3 as the default */

int ntask = 3;

/* return code from pvm calls */

int info;

/* my task id */

int mytid;

/* my parents task id */

int myparent;

/* children task id array */

int child[MAXNCHILD];

int i, mydata, buf, len, tag, tid;

/* find out my task id number */

mytid = pvm_mytid();

/* check for error */

if (mytid < 0) {

/* print out the error */

Parallel Programming with PVM 245

pvm_perror(argv[0]);

/* exit the program */

return -1;

}

/* find my parent’s task id number */

myparent = pvm_parent();

/* exit if there is some error other than PvmNoParent */

if ((myparent < 0) && (myparent != PvmNoParent)

&& (myparent != PvmParentNotSet)) {

pvm_perror(argv[0]);

pvm_exit();

return -1;

}

/* if i don’t have a parent then i am the parent */

if (myparent == PvmNoParent || myparent == PvmParentNotSet) {

/* find out how many tasks to spawn */

if (argc == 2) ntask = atoi(argv[1]);

/* make sure ntask is legal */

if ((ntask < 1) || (ntask > MAXNCHILD)) { pvm_exit(); return 0; }

/* spawn the child tasks */

info = pvm_spawn(argv[0], (char**)0, PvmTaskDefault, (char*)0,

ntask, child);

/* print out the task ids */

for (i = 0; i < ntask; i++)

if (child[i] < 0) /* print the error code in decimal*/

printf(" %d", child[i]);

else /* print the task id in hex */

printf("t%x\t", child[i]);

putchar(’\n’);

/* make sure spawn succeeded */

if (info == 0) { pvm_exit(); return -1; }

/* only expect responses from those spawned correctly */

ntask = info;

for (i = 0; i < ntask; i++) {

/* recv a message from any child process */

buf = pvm_recv(-1, JOINTAG);

if (buf < 0) pvm_perror("calling recv");

246 Chapter 11

info = pvm_bufinfo(buf, &len, &tag, &tid);

if (info < 0) pvm_perror("calling pvm_bufinfo");

info = pvm_upkint(&mydata, 1, 1);

if (info < 0) pvm_perror("calling pvm_upkint");

if (mydata != tid) printf("This should not happen!\n");

printf("Length %d, Tag %d, Tid t%x\n", len, tag, tid);

}

pvm_exit();

return 0;

}

/* i’m a child */

info = pvm_initsend(PvmDataDefault);

if (info < 0) {

pvm_perror("calling pvm_initsend"); pvm_exit(); return -1;

}

info = pvm_pkint(&mytid, 1, 1);

if (info < 0) {

pvm_perror("calling pvm_pkint"); pvm_exit(); return -1;

}

info = pvm_send(myparent, JOINTAG);

if (info < 0) {

pvm_perror("calling pvm_send"); pvm_exit(); return -1;

}

pvm_exit();

return 0;

}

Figure 11.3 shows the output of running fork/join. Notice that the order the

messages were received is nondeterministic. Since the main loop of the parent

processes messages on a first-come first-served basis, the order of the prints are

determined simply by the time it takes messages to travel from the child tasks to

the parent.

11.4 Dot Product

Here we show a simple Fortran program, PSDOT, for computing a dot product.

The program computes the dot product of two arrays, X and Y. First PSDOT

calls PVMFMYTID() and PVMFPARENT(). The PVMFPARENT call will return

PVMNOPARENT if the task wasn’t spawned by another PVM task. If this is the

case, then PSDOT task is the master and must spawn the other worker copies of

PSDOT. PSDOT then asks the user for the number of processes to use and the

Parallel Programming with PVM 247

% forkjoin

t10001c t40149 tc0037

Length 4, Tag 11, Tid t40149

Length 4, Tag 11, Tid tc0037

Length 4, Tag 11, Tid t10001c

% forkjoin 4

t10001e t10001d t4014b tc0038

Length 4, Tag 11, Tid t4014b

Length 4, Tag 11, Tid tc0038

Length 4, Tag 11, Tid t10001d

Length 4, Tag 11, Tid t10001e

Figure 11.3
Output of fork/join program.

length of vectors to compute. Each spawned process will receive n/nproc elements

of X and Y, where n is the length of the vectors and nproc is the number of processes

being used in the computation. If nproc does not divide n evenly, then the master

will compute the dot product on extra the elements. The subroutine SGENMAT

randomly generates values for X and Y. PSDOT then spawns nproc − 1 copies of

itself and sends each new task a part of the X and Y arrays. The message contains

the length of the subarrays in the message and the subarrays themselves. After

the master spawns the worker processes and sends out the subvectors, the master

then computes the dot-product on its portion of X and Y. The master process then

receives the other local dot products from the worker processes. Notice that the

PVMFRECV call uses a wild card (−1) for the task id parameter. This indicates

that a message from any task will satisfy the receive. Using the wild card in this

manner results in a race condition. In this case the race condition does not cause a

problem since addition is commutative. In other words, it doesn’t matter in which

order we add up the partial sums from the workers. Unless one is certain that the

race will not affect the program adversely, race conditions should be avoided.

Once the master receives all the local dot products and sums them into a global

dot product, it then calculates the entire dot product locally. These two results

are then subtracted and the difference between the two values is printed. A small

difference can be expected due to the variation in floating-point roundoff errors.

If the PSDOT program is a worker, then it receives a message from the master

process containing subarrays of X and Y. It calculates the dot product of these

subarrays and sends the result back to the master process. In the interests of

brevity we do not include the SGENMAT and SDOT subroutines.

248 Chapter 11

PROGRAM PSDOT

*

* PSDOT performs a parallel inner (or dot) product, where the vectors

* X and Y start out on a master node, which then sets up the virtual

* machine, farms out the data and work, and sums up the local pieces

* to get a global inner product.

*

* .. External Subroutines ..

EXTERNAL PVMFMYTID, PVMFPARENT, PVMFSPAWN, PVMFEXIT, PVMFINITSEND

EXTERNAL PVMFPACK, PVMFSEND, PVMFRECV, PVMFUNPACK, SGENMAT

*

* .. External Functions ..

INTEGER ISAMAX

REAL SDOT

EXTERNAL ISAMAX, SDOT

*

* .. Intrinsic Functions ..

INTRINSIC MOD

*

* .. Parameters ..

INTEGER MAXN

PARAMETER (MAXN = 8000)

INCLUDE ’fpvm3.h’

*

* .. Scalars ..

INTEGER N, LN, MYTID, NPROCS, IBUF, IERR

INTEGER I, J, K

REAL LDOT, GDOT

*

* .. Arrays ..

INTEGER TIDS(0:63)

REAL X(MAXN), Y(MAXN)

*

* Enroll in PVM and get my and the master process’ task ID number

*

CALL PVMFMYTID(MYTID)

CALL PVMFPARENT(TIDS(0))

*

* If I need to spawn other processes (I am master process)

*

IF (TIDS(0) .EQ. PVMNOPARENT) THEN

*

* Get starting information

*

Parallel Programming with PVM 249

WRITE(*,*) ’How many processes should participate (1-64)?’

READ(*,*) NPROCS

WRITE(*,2000) MAXN

READ(*,*) N

TIDS(0) = MYTID

IF (N .GT. MAXN) THEN

WRITE(*,*) ’N too large. Increase parameter MAXN to run’//

$ ’this case.’

STOP

END IF

*

* LN is the number of elements of the dot product to do

* locally. Everyone has the same number, with the master

* getting any left over elements. J stores the number of

* elements rest of procs do.

*

J = N / NPROCS

LN = J + MOD(N, NPROCS)

I = LN + 1

*

* Randomly generate X and Y

* Note: SGENMAT() routine is not provided here

*

CALL SGENMAT(N, 1, X, N, MYTID, NPROCS, MAXN, J)

CALL SGENMAT(N, 1, Y, N, I, N, LN, NPROCS)

*

* Loop over all worker processes

*

DO 10 K = 1, NPROCS-1

*

* Spawn process and check for error

*

CALL PVMFSPAWN(’psdot’, 0, ’anywhere’, 1, TIDS(K), IERR)

IF (IERR .NE. 1) THEN

WRITE(*,*) ’ERROR, could not spawn process #’,K,

$ ’. Dying . . .’

CALL PVMFEXIT(IERR)

STOP

END IF

*

* Send out startup info

*

CALL PVMFINITSEND(PVMDEFAULT, IBUF)

CALL PVMFPACK(INTEGER4, J, 1, 1, IERR)

250 Chapter 11

CALL PVMFPACK(REAL4, X(I), J, 1, IERR)

CALL PVMFPACK(REAL4, Y(I), J, 1, IERR)

CALL PVMFSEND(TIDS(K), 0, IERR)

I = I + J

10 CONTINUE

*

* Figure master’s part of dot product

* SDOT() is part of the BLAS Library (compile with -lblas)

*

GDOT = SDOT(LN, X, 1, Y, 1)

*

* Receive the local dot products, and

* add to get the global dot product

*

DO 20 K = 1, NPROCS-1

CALL PVMFRECV(-1, 1, IBUF)

CALL PVMFUNPACK(REAL4, LDOT, 1, 1, IERR)

GDOT = GDOT + LDOT

20 CONTINUE

*

* Print out result

*

WRITE(*,*) ’ ’

WRITE(*,*) ’<x,y> = ’,GDOT

*

* Do sequential dot product and subtract from

* distributed dot product to get desired error estimate

*

LDOT = SDOT(N, X, 1, Y, 1)

WRITE(*,*) ’<x,y> : sequential dot product. <x,y>^ : ’//

$ ’distributed dot product.’

WRITE(*,*) ’| <x,y> - <x,y>^ | = ’,ABS(GDOT - LDOT)

WRITE(*,*) ’Run completed.’

*

* If I am a worker process (i.e. spawned by master process)

*

ELSE

*

* Receive startup info

*

CALL PVMFRECV(TIDS(0), 0, IBUF)

CALL PVMFUNPACK(INTEGER4, LN, 1, 1, IERR)

CALL PVMFUNPACK(REAL4, X, LN, 1, IERR)

CALL PVMFUNPACK(REAL4, Y, LN, 1, IERR)

Parallel Programming with PVM 251

*

* Figure local dot product and send it in to master

*

LDOT = SDOT(LN, X, 1, Y, 1)

CALL PVMFINITSEND(PVMDEFAULT, IBUF)

CALL PVMFPACK(REAL4, LDOT, 1, 1, IERR)

CALL PVMFSEND(TIDS(0), 1, IERR)

END IF

*

CALL PVMFEXIT(0)

*

1000 FORMAT(I10,’ Successfully spawned process #’,I2,’, TID =’,I10)

2000 FORMAT(’Enter the length of vectors to multiply (1 -’,I7,’):’)

STOP

*

* End program PSDOT

*

END

11.5 Matrix Multiply

In this example we program a matrix multiply algorithm described by Fox et al.

in [9]. The mmult program can be found at the end of this section. The mmult

program will calculate C = AB where C, A, and B are all square matrices. For

simplicity we assume that m × m tasks are used to calculate the solution. Each

task calculates a subblock of the resulting matrix C. The block size and the value

of m are given as a command-line argument to the program. The matrices A and

B are also stored as blocks distributed over the m2 tasks. Before delving into the

details of the program, let us first describe the algorithm at a high level.

In our grid of m×m tasks, each task (tij , where 0 ≤ i, j < m), initially contains

blocks Cij , Aij , and Bij . In the first step of the algorithm the tasks on the diagonal

(tij where i = j) send their block Aii to all the other tasks in row i. After the

transmission of Aii, all tasks calculate Aii×Bij and add the result into Cij . In the

next step, the column blocks of B are rotated. That is, tij sends its block of B to

t(i−1)j . (Task t0j sends its B block to t(m−1)j). The tasks now return to the first

step, Ai(i+1) is multicast to all other tasks in row i, and the algorithm continues.

After m iterations the C matrix contains A×B, and the B matrix has been rotated

back into place.

Let us now go over the matrix multiply as it is programmed in PVM. In PVM

there is no restriction on which tasks may communicate with which other tasks.

252 Chapter 11

However, for this program we would like to think of the tasks as a two-dimensional

conceptual torus. In order to enumerate the tasks, each task joins the group mmult.

Group ids are used to map tasks to our torus. The first task to join a group is given

the group id of zero. In the mmult program, the task with group id zero spawns the

other tasks and sends the parameters for the matrix multiply to those tasks. The

parameters are m and bklsize, the square root of the number of blocks and the size

of a block, respectively. After all the tasks have been spawned and the parameters

transmitted, pvm_barrier() is called to make sure all the tasks have joined the

group. If the barrier is not performed, later calls to pvm_gettid() might fail, since

a task may not have yet joined the group.

After the barrier, the task ids for the other tasks are stored in the row in the array

myrow. Specifically, the program calculates group ids for all the tasks in the row,

and we ask PVM for the task id for the corresponding group id. Next the program

allocates the blocks for the matrices using malloc(). (In an actual application

program we would expect that the matrices would already be allocated.) Then the

program calculates the row and column of the block of C it will be computing;

this is based on the value of the group id. The group ids range from 0 to m − 1

inclusive. Thus, the integer division of (mygid/m) will give the task’s row and

(mygid mod m) will give the column if we assume a row major mapping of group

ids to tasks. Using a similar mapping, we calculate the group id of the task directly

above and below in the torus and store their task ids in up and down, respectively.

Next the blocks are initialized by calling InitBlock(). This function simply

initializes A to random values, B to the identity matrix, and C to zeros. This

will allow us to verify the computation at the end of the program by checking that

A = C.

Finally we enter the main loop to calculate the matrix multiply. First the tasks

on the diagonal multicast their block of A to the other tasks in their row. Note

that the array myrow actually contains the task id of the task doing the multicast.

Recall that pvm_mcast() will send to all the tasks in the tasks array except the

calling task. This works well in the case of mmult, since we don’t want to have

to needlessly handle the extra message coming into the multicasting task with an

extra pvm_recv(). Both the multicasting task and the tasks receiving the block

calculate the AB for the diagonal block and the block of B residing in the task.

After the subblocks have been multiplied and added into the C block, we now

shift the B blocks vertically. This is done by packing the block of B into a message

and sending it to the up task id and then receiving a new B block from the down

task id.

Parallel Programming with PVM 253

Note that we use different message tags for sending the A blocks and the B blocks

as well as for different iterations of the loop. We also fully specify the task ids when

doing a pvm_recv(). It’s tempting to use wild cards for the fields of pvm_recv();

however, such use can be dangerous. For instance, had we incorrectly calculated

the value for up and used a wild card for the pvm_recv() instead of down, it is

possible that we would be sending messages to the wrong tasks without knowing

it. In this example we fully specify messages, thereby reducing the possibility of

receiving a message from the wrong task or the wrong phase of the algorithm.

Once the computation is complete, we check to see that A = C just to verify

that the matrix multiply correctly calculated the values of C. This step would not

be done in a matrix multiply library routine, for example.

You do not have to call pvm_lvgroup() because PVM will realize that the task

has exited and will remove it from the group. It is good form, however, to leave

the group before calling pvm_exit(). The reset command from the PVM console

will reset all the PVM groups. The pvm_gstat command will print the status of

any groups that currently exist.

/*

Matrix Multiply

*/

/* defines and prototypes for the PVM library */

#include <pvm3.h>

#include <stdio.h>

/* Maximum number of children this program will spawn */

#define MAXNTIDS 100

#define MAXROW 10

/* Message tags */

#define ATAG 2

#define BTAG 3

#define DIMTAG 5

void

InitBlock(float *a, float *b, float *c, int blk, int row, int col)

{

int len, ind;

int i,j;

srand(pvm_mytid());

len = blk*blk;

254 Chapter 11

for (ind = 0; ind < len; ind++)

{ a[ind] = (float)(rand()%1000)/100.0; c[ind] = 0.0; }

for (i = 0; i < blk; i++) {

for (j = 0; j < blk; j++) {

if (row == col)

b[j*blk+i] = (i==j)? 1.0 : 0.0;

else

b[j*blk+i] = 0.0;

}

}

}

void

BlockMult(float* c, float* a, float* b, int blk)

{

int i,j,k;

for (i = 0; i < blk; i++)

for (j = 0; j < blk; j ++)

for (k = 0; k < blk; k++)

c[i*blk+j] += (a[i*blk+k] * b[k*blk+j]);

}

int

main(int argc, char* argv[])

{

/* number of tasks to spawn, use 3 as the default */

int ntask = 2;

/* return code from pvm calls */

int info;

/* my task and group id */

int mytid, mygid;

/* children task id array */

int child[MAXNTIDS-1];

int i, m, blksize;

/* array of the tids in my row */

int myrow[MAXROW];

float *a, *b, *c, *atmp;

int row, col, up, down;

/* find out my task id number */

mytid = pvm_mytid();

pvm_setopt(PvmRoute, PvmRouteDirect);

Parallel Programming with PVM 255

/* check for error */

if (mytid < 0) {

/* print out the error */

pvm_perror(argv[0]);

/* exit the program */

return -1;

}

/* join the mmult group */

mygid = pvm_joingroup("mmult");

if (mygid < 0) {

pvm_perror(argv[0]); pvm_exit(); return -1;

}

/* if my group id is 0 then I must spawn the other tasks */

if (mygid == 0) {

/* find out how many tasks to spawn */

if (argc == 3) {

m = atoi(argv[1]);

blksize = atoi(argv[2]);

}

if (argc < 3) {

fprintf(stderr, "usage: mmult m blk\n");

pvm_lvgroup("mmult"); pvm_exit(); return -1;

}

/* make sure ntask is legal */

ntask = m*m;

if ((ntask < 1) || (ntask >= MAXNTIDS)) {

fprintf(stderr, "ntask = %d not valid.\n", ntask);

pvm_lvgroup("mmult"); pvm_exit(); return -1;

}

/* no need to spawn if there is only one task */

if (ntask == 1) goto barrier;

/* spawn the child tasks */

info = pvm_spawn("mmult", (char**)0, PvmTaskDefault, (char*)0,

ntask-1, child);

/* make sure spawn succeeded */

if (info != ntask-1) {

pvm_lvgroup("mmult"); pvm_exit(); return -1;

}

256 Chapter 11

/* send the matrix dimension */

pvm_initsend(PvmDataDefault);

pvm_pkint(&m, 1, 1);

pvm_pkint(&blksize, 1, 1);

pvm_mcast(child, ntask-1, DIMTAG);

}

else {

/* recv the matrix dimension */

pvm_recv(pvm_gettid("mmult", 0), DIMTAG);

pvm_upkint(&m, 1, 1);

pvm_upkint(&blksize, 1, 1);

ntask = m*m;

}

/* make sure all tasks have joined the group */

info = pvm_barrier("mmult",ntask);

if (info < 0) pvm_perror(argv[0]);

/* find the tids in my row */

for (i = 0; i < m; i++)

myrow[i] = pvm_gettid("mmult", (mygid/m)*m + i);

/* allocate the memory for the local blocks */

a = (float*)malloc(sizeof(float)*blksize*blksize);

b = (float*)malloc(sizeof(float)*blksize*blksize);

c = (float*)malloc(sizeof(float)*blksize*blksize);

atmp = (float*)malloc(sizeof(float)*blksize*blksize);

/* check for valid pointers */

if (!(a && b && c && atmp)) {

fprintf(stderr, "%s: out of memory!\n", argv[0]);

free(a); free(b); free(c); free(atmp);

pvm_lvgroup("mmult"); pvm_exit(); return -1;

}

/* find my block’s row and column */

row = mygid/m; col = mygid % m;

/* calculate the neighbor’s above and below */

up = pvm_gettid("mmult", ((row)?(row-1):(m-1))*m+col);

down = pvm_gettid("mmult", ((row == (m-1))?col:(row+1)*m+col));

/* initialize the blocks */

InitBlock(a, b, c, blksize, row, col);

Parallel Programming with PVM 257

/* do the matrix multiply */

for (i = 0; i < m; i++) {

/* mcast the block of matrix A */

if (col == (row + i)%m) {

pvm_initsend(PvmDataDefault);

pvm_pkfloat(a, blksize*blksize, 1);

pvm_mcast(myrow, m, (i+1)*ATAG);

BlockMult(c,a,b,blksize);

}

else {

pvm_recv(pvm_gettid("mmult", row*m + (row +i)%m), (i+1)*ATAG);

pvm_upkfloat(atmp, blksize*blksize, 1);

BlockMult(c,atmp,b,blksize);

}

/* rotate the columns of B */

pvm_initsend(PvmDataDefault);

pvm_pkfloat(b, blksize*blksize, 1);

pvm_send(up, (i+1)*BTAG);

pvm_recv(down, (i+1)*BTAG);

pvm_upkfloat(b, blksize*blksize, 1);

}

/* check it */

for (i = 0 ; i < blksize*blksize; i++)

if (a[i] != c[i])

printf("Error a[%d] (%g) != c[%d] (%g) \n", i, a[i],i,c[i]);

printf("Done.\n");

free(a); free(b); free(c); free(atmp);

pvm_lvgroup("mmult");

pvm_exit();

return 0;

}

11.6 One-Dimensional Heat Equation

Here we present a PVM program that calculates heat diffusion through a substrate,

in this case a wire. Consider the one-dimensional heat equation on a thin wire:

∂A

∂t
=
∂2A

∂x2
(11.6.1)

and a discretization of the form

258 Chapter 11

Ai+1,j −Ai,j
△t =

Ai,j+1 − 2Ai,j +Ai,j−1
△x2 , (11.6.2)

giving the explicit formula

Ai+1,j = Ai,j +
△t
△x2 (Ai,j+1 − 2Ai,j +Ai,j−1). (11.6.3)

The initial and boundary conditions are

A(t, 0) = 0, A(t, 1) = 0 for all t
A(0, x) = sin(πx) for 0 ≤ x ≤ 1.

The pseudocode for this computation is as follows:

for i = 1:tsteps-1;

t = t+dt;

a(i+1,1)=0;

a(i+1,n+2)=0;

for j = 2:n+1;

a(i+1,j)=a(i,j) + mu*(a(i,j+1)-2*a(i,j)+a(i,j-1));

end;

end

For this example we use a master/worker programming model. The master,

heat.c, spawns five copies of the program heatslv. The workers compute the

heat diffusion for subsections of the wire in parallel. At each time step the workers

exchange boundary information, in this case the temperature of the wire at the

boundaries between processors.

Let’s take a closer look at the code. In heat.c the array solution will hold the

solution for the heat diffusion equation at each time step. First the heatslv tasks

are spawned. Next, the initial dataset is computed. Notice the ends of the wires

are given initial temperature values of zero.

The main part of the program is then executed four times, each with a different

value for ∆t. A timer is used to compute the elapsed time of each compute phase.

The initial datasets are sent to the heatslv tasks. The left and right neighbor

task ids are sent along with the initial dataset. The heatslv tasks use these to

communicate boundary information. Alternatively, we could have used the PVM

group calls to map tasks to segments of the wire. By using this approach we would

have avoided explicitly communicating the task ids to the slave processes.

Parallel Programming with PVM 259

After sending the initial data, the master process waits for results. When the

results arrive, they are integrated into the solution matrix, the elapsed time is

calculated, and the solution is written to the output file.

Once the data for all four phases have been computed and stored, the master

program prints out the elapsed times and kills the slave processes.

/*

heat.c

Use PVM to solve a simple heat diffusion differential equation,

using 1 master program and 5 slaves.

The master program sets up the data, communicates it to the slaves

and waits for the results to be sent from the slaves.

Produces xgraph ready files of the results.

*/

#include "pvm3.h"

#include <stdio.h>

#include <math.h>

#include <time.h>

#define SLAVENAME "heatslv"

#define NPROC 5

#define TIMESTEP 100

#define PLOTINC 10

#define SIZE 1000

int num_data = SIZE/NPROC;

main()

{ int mytid, task_ids[NPROC], i, j;

int left, right, k, l;

int step = TIMESTEP;

int info;

double init[SIZE], solution[TIMESTEP][SIZE];

double result[TIMESTEP*SIZE/NPROC], deltax2;

FILE *filenum;

char *filename[4][7];

double deltat[4];

time_t t0;

int etime[4];

260 Chapter 11

filename[0][0] = "graph1";

filename[1][0] = "graph2";

filename[2][0] = "graph3";

filename[3][0] = "graph4";

deltat[0] = 5.0e-1;

deltat[1] = 5.0e-3;

deltat[2] = 5.0e-6;

deltat[3] = 5.0e-9;

/* enroll in pvm */

mytid = pvm_mytid();

/* spawn the slave tasks */

info = pvm_spawn(SLAVENAME,(char **)0,PvmTaskDefault,"",

NPROC,task_ids);

/* create the initial data set */

for (i = 0; i < SIZE; i++)

init[i] = sin(M_PI * ((double)i / (double)(SIZE-1)));

init[0] = 0.0;

init[SIZE-1] = 0.0;

/* run the problem 4 times for different values of delta t */

for (l = 0; l < 4; l++) {

deltax2 = (deltat[l]/pow(1.0/(double)SIZE,2.0));

/* start timing for this run */

time(&t0);

etime[l] = t0;

/* send the initial data to the slaves. */

/* include neighbor info for exchanging boundary data */

for (i = 0; i < NPROC; i++) {

pvm_initsend(PvmDataDefault);

left = (i == 0) ? 0 : task_ids[i-1];

pvm_pkint(&left, 1, 1);

right = (i == (NPROC-1)) ? 0 : task_ids[i+1];

pvm_pkint(&right, 1, 1);

pvm_pkint(&step, 1, 1);

pvm_pkdouble(&deltax2, 1, 1);

pvm_pkint(&num_data, 1, 1);

pvm_pkdouble(&init[num_data*i], num_data, 1);

pvm_send(task_ids[i], 4);

}

/* wait for the results */

Parallel Programming with PVM 261

for (i = 0; i < NPROC; i++) {

pvm_recv(task_ids[i], 7);

pvm_upkdouble(&result[0], num_data*TIMESTEP, 1);

/* update the solution */

for (j = 0; j < TIMESTEP; j++)

for (k = 0; k < num_data; k++)

solution[j][num_data*i+k] = result[wh(j,k)];

}

/* stop timing */

time(&t0);

etime[l] = t0 - etime[l];

/* produce the output */

filenum = fopen(filename[l][0], "w");

fprintf(filenum,"TitleText: Wire Heat over Delta Time: %e\n",

deltat[l]);

fprintf(filenum,"XUnitText: Distance\nYUnitText: Heat\n");

for (i = 0; i < TIMESTEP; i = i + PLOTINC) {

fprintf(filenum,"\"Time index: %d\n",i);

for (j = 0; j < SIZE; j++)

fprintf(filenum,"%d %e\n",j, solution[i][j]);

fprintf(filenum,"\n");

}

fclose (filenum);

}

/* print the timing information */

printf("Problem size: %d\n",SIZE);

for (i = 0; i < 4; i++)

printf("Time for run %d: %d sec\n",i,etime[i]);

/* kill the slave processes */

for (i = 0; i < NPROC; i++) pvm_kill(task_ids[i]);

pvm_exit();

}

int wh(x, y)

int x, y;

{

return(x*num_data+y);

}

The heatslv programs do the actual computation of the heat diffusion through

the wire. The worker program consists of an infinite loop that receives an initial

262 Chapter 11

dataset, iteratively computes a solution based on this dataset (exchanging bound-

ary information with neighbors on each iteration), and sends the resulting partial

solution back to the master process. As an alternative to using an infinite loop in

the worker tasks, we could send a special message to the slave ordering it to exit.

Instead, we simply use the infinite loop in the worker tasks and kill them off from

the master program. A third option would be to have the workers execute only

once, exiting after processing a single dataset from the master. This would require

placing the master’s spawn call inside the main for loop of heat.c. While this

option would work, it would needlessly add overhead to the overall computation.

For each time step and before each compute phase, the boundary values of the

temperature matrix are exchanged. The left-hand boundary elements are first sent

to the left neighbor task and received from the right neighbor task. Symmetrically,

the right-hand boundary elements are sent to the right neighbor and then received

from the left neighbor. The task ids for the neighbors are checked to make sure no

attempt is made to send or receive messages to nonexistent tasks.

/*

heatslv.c

The slaves receive the initial data from the host,

exchange boundary information with neighbors,

and calculate the heat change in the wire.

This is done for a number of iterations, sent by the master.

*/

#include "pvm3.h"

#include <stdio.h>

int num_data;

main()

{

int mytid, left, right, i, j, master;

int timestep;

double *init, *A;

double leftdata, rightdata, delta, leftside, rightside;

/* enroll in pvm */

mytid = pvm_mytid();

Parallel Programming with PVM 263

master = pvm_parent();

/* receive my data from the master program */

while(1) {

pvm_recv(master, 4);

pvm_upkint(&left, 1, 1);

pvm_upkint(&right, 1, 1);

pvm_upkint(×tep, 1, 1);

pvm_upkdouble(&delta, 1, 1);

pvm_upkint(&num_data, 1, 1);

init = (double *) malloc(num_data*sizeof(double));

pvm_upkdouble(init, num_data, 1);

/* copy the initial data into my working array */

A = (double *) malloc(num_data * timestep * sizeof(double));

for (i = 0; i < num_data; i++) A[i] = init[i];

/* perform the calculation */

for (i = 0; i < timestep-1; i++) {

/* trade boundary info with my neighbors */

/* send left, receive right */

if (left != 0) {

pvm_initsend(PvmDataDefault);

pvm_pkdouble(&A[wh(i,0)],1,1);

pvm_send(left, 5);

}

if (right != 0) {

pvm_recv(right, 5);

pvm_upkdouble(&rightdata, 1, 1);

/* send right, receive left */

pvm_initsend(PvmDataDefault);

pvm_pkdouble(&A[wh(i,num_data-1)],1,1);

pvm_send(right, 6);

}

if (left != 0) {

pvm_recv(left, 6);

pvm_upkdouble(&leftdata,1,1);

}

/* do the calculations for this iteration */

for (j = 0; j < num_data; j++) {

264 Chapter 11

leftside = (j == 0) ? leftdata : A[wh(i,j-1)];

rightside = (j == (num_data-1)) ? rightdata : A[wh(i,j+1)];

if ((j==0)&&(left==0))

A[wh(i+1,j)] = 0.0;

else if ((j==(num_data-1))&&(right==0))

A[wh(i+1,j)] = 0.0;

else

A[wh(i+1,j)]=

A[wh(i,j)]+delta*(rightside-2*A[wh(i,j)]+leftside);

}

}

/* send the results back to the master program */

pvm_initsend(PvmDataDefault);

pvm_pkdouble(&A[0],num_data*timestep,1);

pvm_send(master,7);

}

/* just for good measure */

pvm_exit();

}

int wh(x, y)

int x, y;

{

return(x*num_data+y);

}

In this section we have given a variety of example programs written in both For-

tran and C. These examples demonstrate various ways of writing PVM programs.

Some divide the application into two separate programs while others use a single

program with conditionals to handle spawning and computing phases. These exam-

ples show different styles of communication, both among worker tasks and between

worker and master tasks. In some cases messages are used for synchronization, and

in others the master processes simply kill of the workers when they are no longer

needed. We hope that these examples will help you understand how to write better

PVM programs and to evaluate the design tradeoffs involved.

Parallel Programming with PVM 265

11.7 Using PVM

This section describes how to set up the PVM software package, how to configure a

simple virtual machine, and how to compile and run the example programs supplied

with PVM. The first part describes the straightforward use of PVM and the most

common problems in setting up and running PVM. The latter part describes some

of the more advanced options available for customizing your PVM environment.

11.7.1 Setting Up PVM

One of the reasons for PVM’s popularity is that it is simple to set up and use.

PVM does not require special privileges to be installed. Anyone with a valid login

on the hosts can do so. In addition, only one person at an organization needs to

get and install PVM for everyone at that organization to use it.

PVM uses two environment variables when starting and running. Each PVM

user needs to set these two variables to use PVM. The first variable is PVM ROOT,

which is set to the location of the installed pvm3 directory. The second variable is

PVM ARCH, which tells PVM the architecture of this host and thus what executables

to pick from the PVM ROOT directory.

The easiest method is to set these two variables in your .cshrc file (this assumes

you are using csh). Here is an example for setting PVM ROOT:

setenv PVM_ROOT /home/hostnme/username/pvm3

The recommended method to set PVM ARCH is to append the file PVM ROOT/lib/

cshrc.stub onto your .cshrc file. The stub should be placed after PATH and

PVM ROOT are defined. This stub automatically determines the PVM ARCH for this

host and is particularly useful when the user shares a common file system (such as

NFS) across several different architectures.

If PVM is already installed at your site, you can skip ahead to “Starting PVM.”

The PVM source comes with directories and makefiles for Linux and most archi-

tectures you are likely to have. Building for each architecture type is done auto-

matically by logging on to a host, going into the PVM ROOT directory, and typing

make. The makefile will automatically determine which architecture it is being

executed on, create appropriate subdirectories, and build pvmd3, libpvm3.a, and

libfpvm3.a, pvmgs, and libgpvm3.a. It places all these files in PVM ROOT/lib/PVM

ARCH with the exception of pvmgs, which is placed in PVM ROOT/bin/PVM ARCH.

Setup Summary

• Set PVM ROOT and PVM ARCH in your .cshrc file.

266 Chapter 11

• Build PVM for each architecture type.

• Create an .rhosts file on each host listing all the hosts.

• Create a $HOME/.xpvm hosts file listing all the hosts prepended by an “&”.

11.7.2 Starting PVM

Before we go over the steps to compile and run parallel PVM programs, you should

be sure you can start up PVM and configure a virtual machine. On any host on

which PVM has been installed you can type

% pvm

and you should get back a PVM console prompt signifying that PVM is now running

on this host. You can add hosts to your virtual machine by typing at the console

prompt

pvm> add hostname

You also can delete hosts (except the one you are on) from your virtual machine

by typing

pvm> delete hostname

If you get the message “Can’t Start pvmd,” PVM will run autodiagnostics and

report the reason found.

To see what the present virtual machine looks like, you can type

pvm> conf

To see what PVM tasks are running on the virtual machine, you type

pvm> ps -a

Of course, you don’t have any tasks running yet. If you type “quit” at the console

prompt, the console will quit, but your virtual machine and tasks will continue to

run. At any command prompt on any host in the virtual machine you can type

% pvm

and you will get the message “pvm already running” and the console prompt. When

you are finished with the virtual machine you should type

pvm> halt

Parallel Programming with PVM 267

This command kills any PVM tasks, shuts down the virtual machine, and exits the

console. This is the recommended method to stop PVM because it makes sure that

the virtual machine shuts down cleanly.

You should practice starting and stopping and adding hosts to PVM until you

are comfortable with the PVM console. A full description of the PVM console and

its many command options is given in Sections 11.8 and 11.9.

If you don’t wish to type in a bunch of hostnames each time, there is a hostfile

option. You can list the hostnames in a file one per line and then type

% pvm hostfile

PVM will then add all the listed hosts simultaneously before the console prompt

appears. Several options can be specified on a per host basis in the hostfile; see Sec-

tion 11.9 if you wish to customize your virtual machine for a particular application

or environment.

PVM may also be started in other ways. The functions of the console and a per-

formance monitor have been combined in a graphical user interface called XPVM,

which is available from the PVM web site. If XPVM has been installed at your

site, then it can be used to start PVM. To start PVM with this interface type:

% xpvm

The menu button labeled “hosts” will pull down a list of hosts you can add. By

clicking on a hostname it is added and an icon of the machine appears in an ani-

mation of the virtual machine. A host is deleted if you click on a hostname that

is already in the virtual machine. On startup XPVM reads the file $HOME/.xpvm

hosts, which is a list of hosts to display in this menu. Hosts without leading “&”

are added all at once at start up.

The quit and halt buttons work just like the PVM console. If you quit XPVM

and then restart it, XPVM will automatically display what the running virtual

machine looks like. Practice starting and stopping and adding hosts with XPVM.

If there are errors they should appear in the window where you started XPVM.

11.7.3 Running PVM Programs

In this section you will learn how to compile and run the example programs supplied

with the PVM software. These example programs make useful templates on which

to base your own PVM programs.

The first step is to copy the example programs into your own area:

% cp -r $PVM_ROOT/examples $HOME/pvm3/examples

% cd $HOME/pvm3/examples

268 Chapter 11

The examples directory contains a Makefile.aimk and Readme file that describe

how to build the examples. PVM supplies an architecture independent make, aimk

that automatically determines PVM ARCH and links any operating system specific

libraries to your application. aimk was automatically added to your $PATH when

you placed the cshrc.stub in your .cshrc file. Using aimk allows you to leave the

source code and makefile unchanged as you compile across different architectures.

The master/worker programming model is the most popular model used in cluster

computing. To compile the master/slave C example, type

% aimk master slave

If you prefer to work with Fortran, compile the Fortran version with

% aimk fmaster fslave

Depending on the location of PVM ROOT, the INCLUDE statement at the top of the

Fortran examples may need to be changed. If PVM ROOT is not HOME/pvm3, then

change the include to point to $PVM ROOT/include/fpvm3.h. Note that PVM ROOT

is not expanded inside the Fortran, so you must insert the actual path.

The makefile moves the executables to $HOME/pvm3/bin/PVM ARCH which is the

default location PVM will look for them on all hosts. If your file system is not

common across all your PVM hosts, then you will have to build or copy (depending

on the architecture) these executables on all your PVM hosts.

From one window start up PVM and configure some hosts. These examples are

designed to run on any number of hosts, including one. In another window, cd to

the location of the PVM executables and type

% master

The program will ask about the number of tasks. This number does not have to

match the number of hosts in these examples. Try several combinations.

The first example illustrates the ability to run a PVM program from a prompt on

any host in the virtual machine. This is how you would run a serial a.out program

on a workstation. Te next example, which is also a master/slave model called hitc,

shows how to spawn PVM jobs from the PVM console and also from XPVM.

The model hitc illustrates dynamic load balancing using the pool of tasks

paradigm. In this paradigm, the master program manages a large queue of tasks,

always sending idle slave programs more work to do until the queue is empty. This

paradigm is effective in situations where the hosts have very different computational

powers because the least-loaded or more powerful hosts do more of the work and

all the hosts stay busy until the end of the problem. To compile hitc, type

Parallel Programming with PVM 269

% aimk hitc hitc_slave

Since hitc does not require any user input, it can be spawned directly from the

PVM console. Start the PVM console, and add a few hosts. At the PVM console

prompt, type

pvm> spawn -> hitc

The “->” spawn option causes all the print statements in hitc and in the slaves to

appear in the console window. This can be a useful feature when debugging your

first few PVM programs. You may wish to experiment with this option by placing

print statements in hitc.f and hitc slave.f and recompiling.

To get an idea of XPVM’s real-time animation capabilities, you again can use

hitc. Start up XPVM, and build a virtual machine with four hosts. Click on the

“tasks” button and select “spawn” from the menu. Type “hitc” where XPVM asks

for the command, and click on “start”. You will see the host icons light up as the

machines become busy. You will see the hitc slave tasks get spawned and see

all the messages that travel between the tasks in the Space Time display. Several

other views are selectable from the XPVM “views” menu. The “task output” view

is equivalent to the “->” option in the PVM console. It causes the standard output

from all tasks to appear in the window that pops up.

Programs that are spawned from XPVM (and the PVM console) are subject to

one restriction: they must not contain any interactive input, such as asking for how

many slaves to start up or how big a problem to solve. This type of information can

be read from a file or put on the command-line as arguments, but there is nothing

in place to get user input from the keyboard to a potentially remote task.

11.8 PVM Console Details

The PVM console, called pvm, is a standalone PVM task that allows you to inter-

actively start, query, and modify the virtual machine. The console may be started

and stopped multiple times on any of the hosts in the virtual machine without

affecting PVM or any applications that may be running.

When the console is started, pvm determines whether PVM is already running

and, if not, automatically executes pvmd on this host, passing pvmd the command-

line options and hostfile. Thus, PVM need not be running to start the console.

pvm [-n<hostname>] [hostfile]

270 Chapter 11

The −n option is useful for specifying another name for the master pvmd (in

case hostname doesn’t match the IP address you want). This feature becomes very

useful with Beowulf clusters because the nodes of the cluster sometime are on their

own network. In this case the front-end node will have two hostnames: one for

the cluster and one for the external network. The −n option lets you specify the

cluster name directly during PVM atartup.

Once started, the console prints the prompt

pvm>

and accepts commands from standard input. The available commands are as fol-

lows:

add followed by one or more hostnames, adds these hosts to the virtual machine.

alias defines or lists command aliases.

conf lists the configuration of the virtual machine including hostname, pvmd task

ID, architecture type, and a relative speed rating.

delete followed by one or more hostnames, deletes these hosts from the virtual

machine. PVM processes still running on these hosts are lost .

echo echoes arguments.

halt kills all PVM processes including console and then shuts down PVM. All

daemons exit.

help can be used to get information about any of the interactive commands. The

help command may be followed by a command name that will list options and flags

available for this command.

id prints console task id.

jobs lists running jobs.

kill can be used to terminate any PVM process.

mstat shows status of specified hosts.

ps -a lists all processes currently on the virtual machine, their locations, their task

IDs, and their parents’ task IDs.

pstat shows status of a single PVM process.

Parallel Programming with PVM 271

quit exits the console, leaving daemons and PVM jobs running.

reset kills all PVM processes except consoles, and resets all the internal PVM

tables and message queues. The daemons are left in an idle state.

setenv displays or sets environment variables.

sig followed by a signal number and tid, sends the signal to the task.

spawn starts a PVM application. Options include the following:

-count shows the number of tasks; default is 1

-(host) spawn on host; default is any

-(PVM ARCH) spawn of hosts of type PVM ARCH

-? enable debugging

-> redirect task output to console

->file redirect task output to file

->>file redirect task output append to file

- trace job; display output on console

-file trace job; output to file

unalias undefines command alias.

version prints version of PVM being used.

The console reads $HOME/.pvmrc before reading commands from the tty, so you

can do things like

alias ? help

alias h help

alias j jobs

setenv PVM_EXPORT DISPLAY

print my id

echo new pvm shell

id

PVM supports the use of multiple consoles. It is possible to run a console on any

host in an existing virtual machine and even multiple consoles on the same machine.

It is possible to start up a console in the middle of a PVM application and check

on its progress.

272 Chapter 11

11.9 Host File Options

As noted earlier, only one person at a site needs to install PVM, but each PVM

user can have his own hostfile, which describes his personal virtual machine.

The hostfile defines the initial configuration of hosts that PVM combines into a

virtual machine. It also contains information about hosts that you may wish to

add to the configuration later.

The hostfile in its simplest form is just a list of hostnames one to a line. Blank

lines are ignored, and lines that begin with a # are comment lines. This approach

allows you to document the hostfile and also provides a handy way to modify the

initial configuration by commenting out various hostnames.

Configuration used for my PVM run

node4

node6

node9

node10

node11

Several options can be specified on each line after the hostname. The options are

separated by white space.

lo= userid allows you to specify another login name for this host; otherwise, your

login name on the startup machine is used.

so=pw causes PVM to prompt you for a password on this host. This is useful

when you have a different userid and password on a remote system. PVM uses

rsh by default to start up remote pvmds, but when pw is specified, PVM will use

rexec() instead.

dx= location of pvmd allows you to specify a location other than the default

for this host. This is useful if you wish to use your own copy of pvmd.

ep= paths to user executables allows you to specify a series of paths to search

down to find the requested files to spawn on this host. Multiple paths are separated

by a colon. If ep= is not specified, then PVM looks for the application tasks in

$HOME/pvm3/bin/PVM ARCH.

sp= value specifies the relative computational speed of the host compared with

other hosts in the configuration. The range of possible values is 1 to 1,000,000,

with 1,000 as the default.

Parallel Programming with PVM 273

bx= location of debugger specifies which debugger script to invoke on this host

if debugging is requested in the spawn routine. Note that the environment variable

PVM DEBUGGER can also be set. The default debugger is pvm3/lib/debugger.

wd= working directory specifies a working directory in which all spawned tasks

on this host will execute. The default is $HOME.

so=ms specifies that a slave pvmd will be started manually on this host. This is

useful if rsh and rexec network services are disabled but IP connectivity exists.

When using this option you will see the following in the tty of the pvmd3:

[t80040000] ready Fri Aug 27 18:47:47 1993

*** Manual startup ***

Login to "honk" and type:

pvm3/lib/pvmd -S -d0 -nhonk 1 80a9ca95:0cb6 4096 2 80a95c43:0000

Type response:

On honk, after typing the given line, you should see

ddpro<2312> arch<ALPHA> ip<80a95c43:0a8e> mtu<4096>

which you should relay back to the master pvmd. At that point, you will see

Thanks

and the two pvmds should be able to communicate.

If you wish to set any of the above options as defaults for a series of hosts, you can

place these options on a single line with a * for the hostname field. The defaults

will be in effect for all the following hosts until they are overridden by another

set-defaults line.

Hosts that you don’t want in the initial configuration but may add later can be

specified in the hostfile by beginning those lines with an &. An example hostfile

displaying most of these options is shown below.

Comment lines start with a # (blank lines ignored)

gstws

ipsc dx=/usr/geist/pvm3/lib/I860/pvmd3

ibm1.scri.fsu.edu lo=gst so=pw

274 Chapter 11

set default options for following hosts with *

* ep=$sun/problem1:~/nla/mathlib

sparky

#azure.epm.ornl.gov

midnight.epm.ornl.gov

replace default options with new values

* lo=gageist so=pw ep=problem1

thud.cs.utk.edu

speedy.cs.utk.edu

machines for adding later are specified with &

these only need listing if options are required

&sun4 ep=problem1

&castor dx=/usr/local/bin/pvmd3

&dasher.cs.utk.edu lo=gageist

&elvis dx=~/pvm3/lib/SUN4/pvmd3

11.10 XPVM

It is often useful and always reassuring to be able to see the present configuration

of the virtual machine and the status of the hosts. It would be even more useful

if you could also see what your program is doing—what tasks are running, where

messages are being sent, and the like. The PVM GUI called XPVM was developed

to display this information and more.

XPVM combines the capabilities of the PVM console, a performance monitor,

and a call-level debugger in single, easy-to-use graphical user interface. XPVM

is available from Netlib (www.netlib.org) in the directory pvm3/xpvm. It is dis-

tributed as precompiled ready-to-run executables for SUN4, RS6K, ALPHA, SUN-

SOL2, and SGI5. The XPVM source is also available for compiling on other ma-

chines.

XPVM is written entirely in C using the TCL/TK toolkit and runs as just another

PVM task. If you want to build XPVM from the source, you must first obtain and

install the TCL/TK software on your system. TCL and TK were developed by

John Ousterhout and can be obtained from www.scriptics.com. The TCL and

XPVM source distributions each contain a README file that describes the most

up-to-date installation procedure for each package, respectively.

Parallel Programming with PVM 275

Figure 11.4 shows a snapshot of XPVM in use.

Figure 11.4
Snapshot of XPVM interface during use

Like the PVM console, XPVM will start PVM if it is not already running or just

attach to the local pvmd if it is. The console can take an optional hostfile argument,

whereas XPVM always reads $HOME/.xpvm hosts as its hostfile. If this file does

not exist, XPVM just starts PVM on the local host (or attaches to the existing

PVM). In typical use, the hostfile .xpvm hosts contains a list of hosts prepended

with an &. These hostnames then get added to the Hosts menu for addition and

deletion from the virtual machine by clicking on them.

The top row of buttons performs console-like functions. The Hosts button dis-

plays a menu of hosts. Clicking on a host toggles whether it is added or deleted

from the virtual machine. At the bottom of the menu is an option for adding a

host not listed. The Tasks button brings up a menu whose most used selection is

276 Chapter 11

spawn. Selecting spawn brings up a window where the executable name, spawn

flags, starting place, number of copies to start, and so forth can be set. By default

XPVM turns on tracing in all tasks (and their children) that are started inside

XPVM. Clicking on Start in the spawn window starts the task, which will then

appear in the Space-time view. The Reset button has a menu for resetting PVM

(i.e., kill all PVM tasks) or resetting different parts of XPVM. The Quit button

exits XPVM while leaving PVM running. If XPVM is being used to collect trace

information, the information will not be collected if XPVM is stopped. The Halt

button is to be used when you are through with PVM. Clicking on this button kills

all running PVM tasks, shuts down PVM cleanly, and exits the XPVM interface.

The Help button brings up a menu of topics for which information is available.

While an application is running, XPVM collects and displays the information in

real time. Although XPVM updates the views as fast as it can, there are cases

when XPVM cannot keep up with the events and falls behind the actual run time.

In the middle of the XPVM interface are tracefile controls. Here you can specify

a tracefile; a default tracefile in ‘/tmp’ is initially displayed. There are buttons

to specify whether the specified tracefile is to be played back or overwritten by a

new run. XPVM saves trace events in a file using the “self-defining data format”

(SDDF) described in Dan Reed’s Pablo trace displaying package (other packages

such as Pablo can be used to analyze the PVM traces).

XPVM can play back its own SDDF files. The tape playerlike buttons allow

you to rewind the tracefile, stop the display at any point, and step through the

execution. A time display specifies the number of seconds from when the trace

display began.

The Views button allows you to open or close any of several views presently

supplied with XPVM. These views are described below.

During startup, XPVM joins a group called xpvm. This is done so tasks that

are started outside the XPVM interface can get the tid of XPVM by doing tid

= pvm gettid(xpvm, 0). This tid would be needed if you wanted to manually

turn on tracing inside such a task and pass the events back to XPVM for display.

The expected TraceCode for these events is 666.

11.10.1 Network View

The Network view displays the present virtual machine configuration and the ac-

tivity of the hosts. Each host is represented by an icon that includes the PVM ARCH

and hostname inside the icon. In the current release of XPVM, the icons are ar-

ranged arbitrarily on both sides of a bus network. In future releases the view will

Parallel Programming with PVM 277

be extended to visualize network activity as well. At that time you will be able to

specify the network topology to display.

These icons are illuminated in different colors to indicate their status in executing

PVM tasks. Green implies that at least one task on that host is busy executing

useful work. Yellow indicates that no tasks are executing user computation but at

least one task is busy executing PVM system routines. When there are no tasks

on a given host, its icon is left uncolored or white. The specific colors used in each

case are user customizable.

You can tell at a glance how well the virtual machine is being utilized by your

PVM application. If all the hosts are green most of the time, then machine utiliza-

tion is good. The Network view does not display activity due to other users’ PVM

jobs or other processes that may be running on the hosts.

In future releases the view will allow you to click on a multiprocessor icon and

get information about the number of processors, number of PVM tasks, and the

like that are running on the host.

11.10.2 Space-Time View

The Space-time view displays the activities of individual PVM tasks that are run-

ning on the virtual machine. Listed on the left-hand side of the view are the

executable names of the tasks preceded by the host they are running on. The task

list is sorted by host so that it is easy to see whether tasks are being clumped on

one host. This list also shows the task to host mappings (which are not available

in the Network view).

The Space-time view combines three different displays. The first is like a Gantt

chart. Beside each listed task is a horizontal bar stretching out in the “time”

direction. The color of this bar at any time indicates the state of the task. Green

indicates that user computations are being executed. Yellow marks the times when

the task is executing PVM routines. White indicates when a task is waiting for

messages. The bar begins at the time when the task starts executing and ends when

the task exits normally. The specific colors used in each case are user customizable.

The second display overlays the first display with the communication activity

among tasks. When a message is sent between two tasks, a red line is drawn

starting at the sending task’s bar at the time the message is sent and ending at the

receiving task’s bar when the message is received. Note that this is not the time

the message arrived, but rather the time the task called pvm recv(). Visually, the

patterns and slopes of the red lines combined with white “waiting” regions reveal

a lot about the communication efficiency of an application.

278 Chapter 11

The third display appears only when you click on interesting features of the

Space-time view with the left mouse button. A small “pop-up” window appears,

giving detailed information regarding specific task states or messages. If a task

bar is clicked on, the state begin and end times are displayed along with the last

PVM system call information. If a message line is clicked on, the window displays

the send and receive time as well as the number of bytes in the message and the

message tag.

When the mouse is moved inside the Space-time view, a blue vertical line tracks

the cursor, and the time corresponding to this vertical line is displayed as Query

time at the bottom of the display. This vertical line also appears in the other “some-

thing vs. time” views so you can correlate a feature in one view with information

given in another view.

You can zoom into any area of the Space-time view by dragging the vertical line

with the middle mouse button. The view will unzoom back one level when the

right mouse button is clicked. Often, very fine communication or waiting states are

visible only when the view is magnified with the zoom feature. As with the Query

time, the other views also zoom along with the Space-time view.

11.10.3 Other Views

XPVM is designed to be extensible. New views can be created and added to the

Views menu. At present, there are three other views: Utilization, Call Trace, and

Task Output. Unlike the Network and Space-time views, these views are closed

by default. Since XPVM attempts to draw the views in real time, the fewer open

views the faster XPVM can draw.

The Utilization view shows the number of tasks computing, in overhead, or wait-

ing for each instant. It is a summary of the Space-time view for each instant. Since

the number of tasks in a PVM application can change dynamically, the scale on the

Utilization view will change dynamically when tasks are added, but not when they

exit. When this happens, the displayed portion of the Utilization view is completely

redrawn to the new scale.

The Call Trace view provides a textual record of the last PVM call made in each

task. The list of tasks is the same as in the Space-time view. As an application

runs, the text changes to reflect the most recent activity in each task. This view is

useful as a call-level debugger to identify where a PVM program’s execution hangs.

XPVM automatically tells all tasks it spawns to redirect their standard output

back to XPVM when the Task Output view is opened. This view gives you the

option of redirecting the output into a file. If you type a file name in the “Task

Output” box, the output is printed in the window and into the file.

Parallel Programming with PVM 279

As with the trace events, a task started outside XPVM can be programmed to

send standard output to XPVM for display by using the options in pvm setopt().

XPVM expects the OutputCode to be set to 667.

 blank

12 Fault-Tolerant and Adaptive Programs with PVM

Al Geist and Jim Kohl

The use of Beowulf clusters has expanded rapidly in the past several years. Orig-

inally created by researchers to do scientific computing, today these clusters are

being used in business and commercial settings where the requirements and ex-

pectations are quite different. For example, at a large Web hosting company the

reliability and robustness of their applications are often more important than their

raw performance.

A number of factors must be considered when you are developing applications for

Beowulf clusters. In the preceding chapters the basic methods of message passing

were illustrated so that you could create your own parallel programs. This chapter

describes the issues and common methods for making parallel programs that are

fault tolerant and adaptive.

Fault tolerance is the ability of an application to continue to run or make progress

even if a hardware or software problem causes a node in the cluster to fail. It is also

the ability to tolerate failures within the application itself. For example, one task

inside a parallel application may get an error and abort. Because Beowulf clusters

are built from commodity components that are designed for the desktop rather than

heavy-duty computing, failures of components inside a cluster are higher than in

a more expensive multiprocessor system that has an integrated RAS (Reliability,

Availability, Serviceability) system.

While fault-tolerant programs can be thought of as adaptive, the term “adaptive

programs” is used here more generally to mean parallel (or serial) programs that

dynamically change their characteristics to better match the application’s needs and

the available resources. Examples include an application that adapts by adding or

releasing nodes of the cluster according to its present computational needs and an

application that creates and kills tasks based on what the computation needs.

In later chapters you will learn about Condor and other resource management

tools that automatically provide some measure of fault tolerance and adaptability

to jobs submitted to them. This chapter teaches the basics of how to write such

tools yourself.

PVM is based on a dynamic computing model in which cluster nodes can be added

and deleted from the computation on the fly and parallel tasks can be spawned or

killed during the computation. PVM doesn’t have nearly as rich a set of message-

passing features as MPI; but, being a virtual machine model, PVM has a number

of features that make it attractive for creating dynamic parallel programs. For

this reason, PVM will be used to illustrate the concepts of fault tolerance and

adaptability in this chapter.

282 Chapter 12

12.1 Considerations for Fault Tolerance

A computational biologist at Oak Ridge National Laboratory wants to write an

parallel application that runs 24/7 on his Beowulf cluster. The application involves

calculations for the human genome and is driven by a constant stream of new data

arriving from researchers all around the world. The data is not independent since

new data helps refine and extend previously calculated sequences. How can he write

such a program?

A company wants to write an application to process a constant stream of sales

orders coming in from the Web. The program needs to be robust, since down time

costs not only the lost revenue stream but also wages of workers who are idle. The

company has recently purchased a Beowulf cluster to provide a reliable cost effective

solution. But how do they write the fault-tolerant parallel program to run on the

cluster?

When you are developing algorithms that must be reliable the first consideration

is the hardware. The bad news is that your Beowulf cluster will have failures; it

will need maintenance. It is not a matter of whether some node in the cluster will

fail but when. Experience has shown that the more nodes the cluster has, the more

likely one will fail within a given time. How often a hardware failure occurs varies

widely between clusters. Some have failures every week; others run for months.

It is not uncommon for several nodes to fail at about the same time with similar

hardware problems. Evaluate your particular cluster under a simulated load for a

couple of weeks to get data on expected mean time between failures (MTBF). If the

MTBF is many times longer than your average application run time, then it may

not make sense to restructure the application to be fault tolerant. In most cases it

is more efficient simply to rerun a failed application if it has a short run time.

The second consideration is the fault tolerance of the underlying software en-

vironment. If the operating system is not stable, then the hardware is the least

of your problems. The PVM system sits between the operating system and the

application and, among other things, monitors the state of the virtual machine.

The PVM system is designed to be fault tolerant and to reconfigure itself automat-

ically when a failure is detected. It was discovered early in the PVM project that

it doesn’t help your fault-tolerant application if the underlying failure detection

system crashes during a failure. The PVM failure detection system is responsible

for detecting problems and notifying running applications about the problem. It

makes no attempt to recover a parallel application automatically.

The third consideration is the application. Not every parallel application can

recover from a failure; recovery depends on the design of the application and the

Fault-Tolerant and Adaptive Programs with PVM 283

nature of the failure. For example, in the manager/worker programs of the preced-

ing chapters, if the node that fails was running a worker, then recovery is possible;

but if the node was running the manager, then key data may be lost that can’t be

recovered.

At the least, any parallel program can be made fault tolerant by restarting it

automatically from the beginning if a failure in detected.

Recovery of parallel programs is complicated because data in messages may be

in flight when the recovery begins. There is a race condition. If the data did not

arrive, then it will need to be resent as part of the recovery. But if the data managed

to be received just before the recovery, then there isn’t an outstanding receive call,

and the data shouldn’t be resent.

File I/O is another problem that complicates recovery. File pointers may need

to be reset to the last checkpoint to avoid getting a repeated set of output data in

the file.

Despite all these issues, a few common methods can be used to improve the fault

tolerance of many parallel applications.

12.2 Building Fault-Tolerant Parallel Applications

From the application’s view three steps must be performed for fault tolerance:

notification, recovery, and continue.

The PVM system has a monitoring and notification feature built into it. Any or

all tasks in an application can asked to be notified of specific events. These include

the exiting of a task within the application. The requesting task can specify a

particular task or set of tasks or can ask to be notified if any task within the

application fails. In the last case the notification message contains the ID of the

task that failed. There is no need for the notified task and the failed task ever to

have communicated in order to detect the failure.

The failure or deletion of a node in the cluster is another notify event that can

be specified. Again the requesting application task can specify a particular node,

set of nodes, or all nodes. And, as before, the notification message returns the ID

of the failed node(s).

The addition of one or more cluster nodes to the application’s computational

environment is also an event that PVM can notify an application about. In this

case no ID can be specified, and the notification message returns the ID of the new

node(s).

int info = pvm_notify(int EventType, int msgtag, int cnt, int *ids)

284 Chapter 12

The EventType options are PvmTaskExit, PvmHostDelete, or PvmHostAdd. A

separate notify call must be made for each event type that the application wishes

to be notified about. The msgtag argument specifies what message tag the task

will be using to listening for events. The cnt argument is the number task or node

IDs in the ids list for which notification is requested.

Given the flexibility of the pvm notify command, there are several options for

how the application can be designed to receive notification from the PVM system.

The first option is designing a separate watcher task. One or more of these watcher

tasks are spawned across the cluster and often have the additional responsibility of

managing the recovery phase of the application. The advantage of this approach

is that the application code can remain cleaner. Note that in the manager/worker

scheme the manager often assumes the additional duty as watcher.

A second option is for the application tasks to watch each other. A common

method is to have each task watch its neighbor in a logical ring. Thus each task

just watches one or two other tasks. Another common, but not particularly effi-

cient, method is to have every task watch all the other tasks. Remember that the

PVM system is doing the monitoring, not the application tasks. So the monitor-

ing overhead is the same with all these options. The difference is the number of

notification messages that get sent in the event of a failure.

Recovery is very dependent on the type of parallel algorithm used in the appli-

cation. The most commonly used options are restart from the beginning, roll back

to the last checkpoint, or reassign the work of a failed task.

The first option is the simplest to implement but the most expensive in the

amount of calculation that must be redone. This option is used by many batch

systems because it requires no knowledge of the application. It guarantees that the

application will complete even if failures occur, although it does not guarantee how

long this will take. On average the time is less than twice the normal run time. For

short-running applications this is the best option.

For longer-running applications, checkpointing is a commonly used option. With

this option you must understand the parallel application and modify it so that

the application can restart from a input data file. You then have to modify the

application to write out such a data file periodically. In the event of a failure, only

computations from the last checkpoint are lost. The application restarts itself from

the last successful data file written out. How often checkpoints are written out

depends on the size of the restart file and how long the application is going to run.

For large, scientific applications that run for days, checkpointing is typically done

every few hours.

Fault-Tolerant and Adaptive Programs with PVM 285

Note that if a failure is caused by the loss of a cluster node, then the application

cannot be restarted until the node is repaired or is replaced by another node in

the cluster. The restart file is almost always written out assuming that the same

number of nodes are available during the restart.

In the special case where an application is based on a manager/worker scheme,

it is often possible to reassign the job sent to the failed worker to another worker or

to spawn a replacement worker to take its place. Manager/worker is a very popular

parallel programming scheme for Beowulf clusters, so this special case arises often.

Below is an example of a fault-tolerant manager/worker program.

/* Fault Tolerant Manager / Worker Example

* using notification and task spawning.

* example1.c

*/

#include <stdio.h>

#include <math.h>

#include <pvm3.h>

#define NWORK 4

#define NPROB 10000

#define MSGTAG 123

int main()

{

double sum = 0.0, result, input = 1.0;

int tids[NWORK], numt, probs[NPROB], sent=0, recvd=0;

int aok=0, cc, bufid, done=0, i, j, marker, next, src;

/* If I am a Manager Task */

if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

/* Spawn NWORK Worker Tasks */

numt = pvm_spawn("example1", (char **) NULL, PvmTaskDefault,

(char *) NULL, NWORK, tids);

/* Set Up Notify for Spawned Tasks */

pvm_notify(PvmTaskExit, MSGTAG, numt, tids);

/* Send Problem to Spawned Workers */

for (i=0 ; i < NPROB ; i++) probs[i] = -1;

for (i=0 ; i < numt ; i++) {

pvm_initsend(PvmDataDefault);

286 Chapter 12

pvm_pkint(&aok, 1, 1); /* Valid Problem Marker */

input = (double) (i + 1);

pvm_pkdouble(&input, 1, 1);

pvm_send(tids[i], MSGTAG);

probs[i] = i; sent++; /* Next Problem */

}

/* Collect Results / Handle Failures */

do {

/* Receive Result */

bufid = pvm_recv(-1, MSGTAG);

pvm_upkint(&marker, 1, 1);

/* Handle Notify */

if (marker > 0) {

/* Find Failed Task Index */

for (i=0, next = -1 ; i < numt ; i++)

if (tids[i] == marker)

/* Find Last Problem Sent to Task */

for (j=(sent-1) ; j > 0 ; j--)

if (probs[j] == i) {

/* Spawn Replacement Task */

if (pvm_spawn("example1", (char **) NULL,

PvmTaskDefault, (char *) NULL, 1,

&(tids[i])) == 1) {

pvm_notify(PvmTaskExit, MSGTAG, 1,

&(tids[i]));

next = i; sent--;

}

probs[j] = -1; /* Reinsert Prob */

break;

}

} else {

/* Get Source Task & Accumulate Solution */

pvm_upkdouble(&result, 1, 1);

sum += result;

recvd++;

/* Get Task Index */

pvm_bufinfo(bufid, (int *) NULL, (int *) NULL, &src);

for (i=0 ; i < numt ; i++)

if (tids[i] == src) next = i;

}

/* Send Another Problem */

Fault-Tolerant and Adaptive Programs with PVM 287

if (next >= 0) {

for (i=0, input = -1.0 ; i < NPROB ; i++)

if (probs[i] < 0) {

input = (double) (i + 1);

probs[i] = next; sent++; /* Next Problem */

break;

}

pvm_initsend(PvmDataDefault);

pvm_pkint(&aok, 1, 1); /* Valid Problem Marker */

pvm_pkdouble(&input, 1, 1);

pvm_send(tids[next], MSGTAG);

if (input < 0.0) tids[next] = -1;

}

} while (recvd < sent);

printf("Sum = %lf\n", sum);

}

/* If I am a Worker Task */

else if (cc > 0) {

/* Notify Me If Manager Fails */

pvm_notify(PvmTaskExit, MSGTAG, 1, &cc);

/* Solve Problems Until Done */

do {

/* Get Problem from Master */

pvm_recv(-1, MSGTAG);

pvm_upkint(&aok, 1, 1);

if (aok > 0) /* Master Died */

break;

pvm_upkdouble(&input, 1, 1);

if (input > 0.0) {

/* Compute Result */

result = sqrt((2.0 * input) - 1.0);

/* Send Result to Master */

pvm_initsend(PvmDataDefault);

pvm_pkint(&aok, 1, 1); /* Ask for more... */

pvm_pkdouble(&result, 1, 1);

pvm_send(cc, MSGTAG);

} else

done = 1;

} while (!done);

}

288 Chapter 12

pvm_exit();

return(0);

}

This example illustrates another useful function: pvm spawn(). The ability to

spawn a replacement task is a powerful capability in fault tolerance. It is also a

key function in adaptive programs, as we will see in the next section.

int numt = pvm_spawn(char *task, char **argv, int flag,

char *node, int ntasks, int *tids)

The routine pvm spawn() starts up ntasks copies of an executable file task on

the virtual machine. The PVM virtual machine is assumed to be running on the

Beowulf cluster. Here argv is a pointer to an array of arguments to task with the

end of the array specified by NULL. If task takes no arguments then argv is NULL.

The flag argument is used to specify options and is a sum of the following options:

PvmTaskDefault: has PVM choose where to spawn processes

PvmTaskHost: uses a where argument to specify a particular host or cluster node

to spawn on

PvmTaskArch: uses a where argument to specify an architecture class to spawn on

PvmTaskDebug: starts up these processes under debugger

PvmTaskTrace: uses PVM calls to generate trace data

PvmMppFront: starts process on MPP front-end/service node

PvmHostComp: starts process on complementary host set

For example, flag = PvmTaskHost + PvmHostCompl spawns tasks on every node

but the specified node (which may be the manager, for instance).

On return, numt is set to the number of tasks successfully spawned or an error

code if no tasks could be started. If tasks were started, then pvm spawn() returns

a vector of the spawned tasks’ tids. If some tasks could not be started, the

corresponding error codes are placed in the last (ntask − numt) positions of the
vector.

In the example above, pvm spawn() is used by the manager to start all the worker

tasks and also is used to replace workers who fail during the computation. This

type of fault-tolerant method is useful for applications that run continuously with

a steady stream of new work coming in, as was the case in our two initial examples.

Both used a variation on the above PVM example code for their solution.

Fault-Tolerant and Adaptive Programs with PVM 289

12.3 Adaptive Programs

In this section, we use some more of the PVM virtual machine functions to illustrate

how cluster programs can be extended to adapt not only to faults but also to

many other metrics and circumstances. The first example demonstrates a parallel

application that dynamically adapts the size of the virtual machine through adding

and releasing nodes based on the computational needs of the application. Such a

feature is used every day on a 128-processor Beowulf cluster at Oak Ridge National

Laboratory that is shared by three research groups.

int numh = pvm_addhosts(char **hosts, int nhost, int *infos)

int numh = pvm_delhosts(char **hosts, int nhost, int *infos)

The PVM addhosts and delhosts routines add or delete a set of hosts in the

virtual machine. In a Beowulf cluster this corresponds to adding or deleting nodes

from the computation; numh is returned as the number of nodes successfully added

or deleted. The argument infos is an array of length nhost that contains the

status code for each individual node being added or deleted. This allows you to

check whether only one of a set of hosts caused a problem, rather than trying to

add or delete the entire set of hosts again.

/*

* Adaptive Host Allocation Example adds and removes cluster nodes

* from computation on the fly for different computational phases

*/

#include <stdio.h>

#include <pvm3.h>

static char *host_set_A[] = { "msr", "nova", "sun4" };

static int nhosts_A = sizeof(host_set_A) / sizeof(char **);

static char *host_set_B[] = { "davinci", "nimbus" };

static int nhosts_B = sizeof(host_set_B) / sizeof(char **);

#define MAX_HOSTS 255

#define MSGTAG 123

double phase1(int prob) {

return((prob == 1) ? 1 : ((double) prob * phase1(prob - 1))); }

double phase2(int prob) {

290 Chapter 12

return((prob == 1) ? 1 : ((double) prob + phase2(prob - 1))); }

int main(int argc, char **argv)

{

double sum1 = 0.0, sum2 = 0.0, result;

int status[MAX_HOSTS], prob, cc, i;

char *args[3], input[16];

/* If I am the Manager Task */

if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

/* Phase #1 of computation - Use Host Set A */

pvm_addhosts(host_set_A, nhosts_A, status);

/* Spawn Worker Tasks - One Per Host */

args[0] = "phase1"; args[1] = input; args[2] = (char *) NULL;

for (i=0, prob=0 ; i < nhosts_A ; i++)

if (status[i] > 0) { /* Successful Host Add */

sprintf(input, "%d", prob++);

pvm_spawn("example2", args, PvmTaskDefault | PvmTaskHost,

host_set_A[i], 1, (int *) NULL);

}

/* Collect Results */

for (i=0 ; i < prob ; i++) {

pvm_recv(-1, MSGTAG);

pvm_upkdouble(&result, 1, 1);

sum1 += result;

}

/* Remove Host Set A after Phase #1 */

for (i=0 ; i < nhosts_A ; i++)

if (status[i] > 0) /* Only Delete Successful Hosts */

pvm_delhosts(&(host_set_A[i]), 1, (int *) NULL);

/* Phase #2 of Computation - Use Host Set B */

pvm_addhosts(host_set_B, nhosts_B, status);

/* Spawn Worker Tasks - One Per Host (None Locally) */

args[0] = "phase2";

for (i=0, prob=0 ; i < nhosts_B ; i++)

if (status[i] > 0) { /* Successful Host Add */

sprintf(input, "%d", prob++);

pvm_spawn("example2", args, PvmTaskDefault | PvmTaskHost,

host_set_B[i], 1, (int *) NULL);

Fault-Tolerant and Adaptive Programs with PVM 291

}

/* Collect Results */

for (i=0 ; i < prob ; i++) {

pvm_recv(-1, MSGTAG);

pvm_upkdouble(&result, 1, 1);

sum2 += result;

}

/* Remove Host Set B from Phase #2 */

for (i=0 ; i < nhosts_B ; i++)

if (status[i] > 0) /* Only Delete Successful Hosts */

pvm_delhosts(&(host_set_B[i]), 1, (int *) NULL);

/* Done */

printf("sum1 (%lf) / sum2 (%lf) = %lf\n", sum1, sum2, sum1/sum2);

}

/* If I am a Worker Task */

else if (cc > 0) {

/* Compute Result */

prob = atoi(argv[2]);

if (!strcmp(argv[1], "phase1"))

result = phase1(prob + 1);

else if (!strcmp(argv[1], "phase2"))

result = phase2(100 * (prob + 1));

/* Send Result to Master */

pvm_initsend(PvmDataDefault);

pvm_pkdouble(&result, 1, 1);

pvm_send(cc, MSGTAG);

}

pvm_exit();

return(0);

}

One of the main difficulties of writing libraries for message-passing applications

is that messages sent inside the application may get intercepted by the message-

passing calls inside the library. The same problem occurs when two applications

want to cooperate, for example, a performance monitor and a scientific applica-

tion or an airframe stress application coupled with an aerodynamic flow applica-

tion. Whenever two or more programmers are writing different parts of the overall

message-passing application, there is the potential that a message will be inadver-

292 Chapter 12

tently received by the wrong part of the application. The solution to this problem is

communication context. As described earlier in the MPI chapters, communication

context in MPI is handled cleanly through the MPI communicator.

In PVM 3.4, pvm recv() requests a message from a particular source with a user-

chosen message tag (either or both of these fields can be set to accept anything).

In addition, communication context is a third field that a receive must match on

before accepting a message; the context cannot be specified by a wild card. By

default there is a base context that is a predefined and is similar to the default

MPI COMM WORLD communicator in MPI.

PVM has four routines to manage communication contexts.

new_context = pvm_newcontext()

old_context = pvm_setcontext(new_context)

info = pvm_freecontext(context)

context = pvm_getcontext()

Pvm newcontext() returns a systemwide unique context tag generated by the local

daemon (in a way similar to the way the local daemon generates systemwide unique

task IDs). Since it is a local operation, pvm newcontext is very fast. The returned

context can then be broadcast to all the tasks that are cooperating on this part

of the application. Each of the tasks calls pvm setcontext, which switches the

active context and returns the old context tag so that it can be restored at the

end of the module by another call to pvm setcontext. Pvm freecontext and pvm

getcontext are used to free memory associated with a context tag and to get the

value of the active context tag, respectively.

Spawned tasks inherit the context of their parent. Thus, if you wish to add

context to an existing parallel routine already written in PVM, you need to add

only four lines to the source:

int mycxt, oldcxt;

/* near the beginning of the routine set a new context */

mycxt = pvm_newcontext();

oldcxt = pvm_setcontext(mycxt);

/* spawn slave tasks to help */

/* slave tasks require no source code change */

/* leave all the PVM calls in master unchanged */

/* just before exiting the routine restore previous context */

Fault-Tolerant and Adaptive Programs with PVM 293

mycxt = pvm_setcontext(oldcxt);

pvm_freecontext(mycxt);

return;

PVM has always had message handlers internally, which were used for controlling

the virtual machine. In PVM 3.4 the ability to define and delete message handlers

was raised to the user level so that parallel programs can be written that can add

new features while the program is running.

The two new message handler functions are

mhid = pvm_addmhf(src, tag, context, *function);

pvm_delmhf(mhid);

Once a message handler has been added by a task, whenever a message arrives at

this task with the specified source, message tag, and communication context, the

specified function is executed. The function is passed the message so that it may

unpack the message if desired. PVM places no restrictions on the complexity of

the function, which is free to make system calls or other PVM calls. A message

handler ID is returned by the add routine, which is used in the delete message

handler routine.

There is no limit on the number of handlers you can set up, and handlers can be

added and deleted dynamically by each application task independently.

By setting up message handlers, you can now write programs that can dynami-

cally change the features of the underlying virtual machine. For example, message

handlers could be added that implement active messages; the application then

could use this form of communication rather than the typical send/receive. Similar

opportunities exist for almost every feature of the virtual machine.

The ability of the application to adapt features of the virtual machine to meet its

present needs is a powerful capability that has yet to be fully exploited in Beowulf

clusters.

/* Adapting available Virtual Machine features with

* user redefined message handlers.

*/

#include <stdio.h>

#include <pvm3.h>

#define NWORK 4

#define MAIN_MSGTAG 123

#define CNTR_MSGTAG 124

294 Chapter 12

int counter = 0;

int handler(int mid) {

int ack, incr, src;

/* Increment Counter */

pvm_upkint(&incr, 1, 1);

counter += incr;

printf("counter = %d\n", counter);

/* Acknowledge Counter Task */

pvm_bufinfo(mid, (int *) NULL, (int *) NULL, &src);

pvm_initsend(PvmDataDefault);

ack = (counter > 1000) ? -1 : 1;

pvm_pkint(&ack, 1, 1);

pvm_send(src, CNTR_MSGTAG);

return(0);

}

int main(int argc, char **argv)

{

int ack, cc, ctx, bufid, incr=1, iter=1, max, numt, old, value=1, src;

char *args[2];

/* If I am a Manager Task */

if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

/* Generate New Message Context for Counter Task messages */

ctx = pvm_newcontext();

/* Register Message Handler Function for Independent Counter */

pvm_addmhf(-1, CNTR_MSGTAG, ctx, handler);

/* Spawn 1 Counter Task */

args[0] = "counter"; args[1] = (char *) NULL;

old = pvm_setcontext(ctx); /* Set Message Context for Task */

if (pvm_spawn("example3", args, PvmTaskDefault,

(char *) NULL, 1, (int *) NULL) != 1)

counter = 1001; /* Counter Failed to Spawn, Trigger Exit */

pvm_setcontext(old); /* Reset to Base Message Context */

/* Spawn NWORK Worker Tasks */

Fault-Tolerant and Adaptive Programs with PVM 295

args[0] = "worker";

numt = pvm_spawn("example3", args, PvmTaskDefault,

(char *) NULL, NWORK, (int *) NULL);

/* Increment & Return Worker Values */

do {

/* Get Value */

bufid = pvm_recv(-1, MAIN_MSGTAG);

pvm_upkint(&value, 1, 1);

max = (value > max) ? value : max;

printf("recvd value = %d\n", value);

/* Send Reply */

pvm_bufinfo(bufid, (int *) NULL, (int *) NULL, &src);

if (counter <= 1000) value += iter++;

else { value = -1; numt--; } /* Tell Workers to Exit */

pvm_initsend(PvmDataDefault);

pvm_pkint(&value, 1, 1);

pvm_send(src, MAIN_MSGTAG);

} while (numt > 0);

printf("Max Value = %d\n", max);

}

/* If I am a Worker Task */

else if (cc > 0 && !strcmp(argv[1], "worker")) {

/* Grow Values Until Done */

do {

/* Send Value to Master */

value *= 2;

pvm_initsend(PvmDataDefault);

pvm_pkint(&value, 1, 1);

pvm_send(cc, MAIN_MSGTAG);

/* Get Incremented Value from Master */

pvm_recv(cc, MAIN_MSGTAG);

pvm_upkint(&value, 1, 1);

} while (value > 0);

}

/* If I am a Counter Task */

else if (cc > 0 && !strcmp(argv[1], "counter")) {

/* Grow Values Until Done */

do {

/* Send Counter Increment to Master */

296 Chapter 12

pvm_initsend(PvmDataDefault);

pvm_pkint(&incr, 1, 1);

pvm_send(cc, CNTR_MSGTAG);

incr *= 2;

/* Check Ack from Master */

pvm_recv(cc, CNTR_MSGTAG);

pvm_upkint(&ack, 1, 1);

} while (ack > 0);

}

pvm_exit();

return(0);

}

In a typical message-passing system, messages are transient, and the focus is

on making their existence as brief as possible by decreasing latency and increasing

bandwidth. But there are a growing number of situations in the parallel applications

seen today in which programming would be much easier if there was a way to have

persistent messages. This is the purpose of the Message Box feature in PVM. The

Message Box is an internal tuple space in the virtual machine.

Four functions make up the Message Box:

index = pvm_putinfo(name, msgbuf, flag)

pvm_recvinfo(name, index, flag)

pvm_delinfo(name, index, flag)

pvm_getmboxinfo(pattern, matching_names, info)

Tasks can use regular PVM pack routines to create an arbitrary message and then

use pvm putinfo() to place this message into the Message Box with an associated

name. Copies of this message can be retrieved by any PVM task that knows the

name. If the name is unknown or is changing dynamically, then pvm getmboxinfo()

can be used to find the list of names active in the Message Box. The flag defines

the properties of the stored message, such as who is allowed to delete this message,

whether this name allows multiple instances of messages, and whether a put to the

same name can overwrite the message.

The Message Box has been used for many other purposes. For example, the

PVM group server functionality has all been implemented in the new Message

Box functions; the Cumulvs computational steering tool uses the Message Box to

query for the instructions on how to attach to a remote distributed simulation; and

performance monitors leave their findings in the Message Box for other tools to use.

Fault-Tolerant and Adaptive Programs with PVM 297

The capability to have persistent messages in a parallel computing opens up many

new application possibilities not only in high-performance computing but also in

collaborative technologies.

/* Example using persistent messages to adapt to change

* Monitor tasks are created and killed as needed

* Information is exchanged between these tasks using persistent messages

*/

#include <stdio.h>

#include <sys/time.h>

#include <pvm3.h>

#define MSGBOX "load_stats"

int main()

{

int cc, elapsed, i, index, load, num;

struct timeval start, end;

double value;

/* If I am a Manager Task */

if ((cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet) {

/* Periodically Spawn Load Monitor, Check Current System Load */

do {

/* Spawn Load Monitor Task */

if (pvm_spawn("example4", (char **) NULL, PvmTaskDefault,

(char *) NULL, 1, (int *) NULL) != 1) {

perror("spawning load monitor"); break;

}

sleep(1);

/* Check System Load (Microseconds Per Megaflop) */

for (i=0, load=0.0, num=0 ; i < 11 ; i++)

if (pvm_recvinfo(MSGBOX, i, PvmMboxDefault) >= 0) {

pvm_upkint(&elapsed, 1, 1);

load += elapsed; num++;

}

if (num)

printf("Load Avg = %lf usec/Mflop\n",

(double) load / (double) num);

sleep(5);

} while (1);

}

298 Chapter 12

/* If I am a Load Monitor Task */

else if (cc > 0) {

/* Time Simple Computation */

gettimeofday(&start, (struct timezone *) NULL);

for (i=0, value=1.0 ; i < 1000000 ; i++)

value *= 1.2345678;

gettimeofday(&end, (struct timezone *) NULL);

elapsed = (end.tv_usec - start.tv_usec)

+ 1000000 * (end.tv_sec - start.tv_sec);

/* Dump Into Next Available Message Mbox */

pvm_initsend(PvmDataDefault);

pvm_pkint(&elapsed, 1, 1);

index = pvm_putinfo(MSGBOX, pvm_getsbuf(),

PvmMboxDefault | PvmMboxPersistent

| PvmMboxMultiInstance | PvmMboxOverWritable);

/* Free Next Mbox Index for Next Instance (Only Save 10) */

pvm_delinfo(MSGBOX, (index + 1) % 11, PvmMboxDefault);

}

pvm_exit();

return(0);

}

III MANAGING CLUSTERS

 blank

13 Cluster Workload Management

James Patton Jones, David Lifka, Bill Nitzberg, and Todd Tannenbaum

A Beowulf cluster is a powerful (and attractive) tool. But managing the workload

can present significant challenges. It is not uncommon to run hundreds or thousands

of jobs or to share the cluster among many users. Some jobs may run only on

certain nodes because not all the nodes in the cluster are identical; for instance,

some nodes have more memory than others. Some nodes temporarily may not be

functioning correctly. Certain users may require priority access to part or all of

the cluster. Certain jobs may have to be run at certain times of the day or only

after other jobs have completed. Even in the simplest environment, keeping track

of all these activities and resource specifics while managing the ever-increasing web

of priorities is a complex problem. Workload management software attacks this

problem by providing a way to monitor and manage the flow of work through the

system, allowing the best use of cluster resources as defined by a supplied policy.

Basically, workload management software maximizes the delivery of resources to

jobs, given competing user requirements and local policy restrictions. Users package

their work into sets of jobs, while the administrator (or system owner) describes

local use policies (e.g., Tom’s jobs always go first). The software monitors the state

of the cluster, schedules work, enforces policy, and tracks usage.

A quick note on terminology: Many terms have been used to describe this area

of management software. All of the following topics are related to workload man-

agement: distributed resource management, batch queuing, job scheduling, and,

resource and task scheduling.

13.1 Goal of Workload Management Software

The goal of workload management software is to make certain the submitted jobs

ultimately run to completion by utilizing cluster resources according to a supplied

policy. But in order to achieve this goal, workload management systems usually

must perform some or all of the following activities:

• Queuing

• Scheduling

• Monitoring

• Resource management

• Accounting

The typical relationship between users, resources, and these workload manage-

ment activities is depicted in Figure 13.1. As shown in this figure, workload man-

agement software sits between the cluster users and the cluster resources. First,

302 Chapter 13

users submit jobs to a queue in order to specify the work to be performed. (Once

a job has been submitted, the user can request status information about that job

at any time.) The jobs then wait in the queue until they are scheduled to start

on the cluster. The specifics of the scheduling process are defined by the policy

rules. At this point, resource management mechanisms handle the details of prop-

erly launching the job and perhaps cleaning up any mess left behind after the job

either completes or is aborted. While all this is going on, the workload management

system is monitoring the status of system resources and accounting for which users

are using what resources.

Figure 13.1
Activities performed by a workload management system.

13.2 Workload Management Activities

Now let us take a look in more detail at each of the major activities performed by

a cluster workload management system.

13.2.1 Queueing

The first of the five aspects of workload management is queuing, or the process of

collecting together “work” to be executed on a set of resources. This is also the

portion most visible to the user.

The tasks the user wishes to have the computer perform, the work, is submitted

to the workload management system in a container called a “batch job”. The

Image Not Available

Cluster Workload Management 303

batch job consists of two primary parts: a set of resource directives (such as the

amount of memory or number of CPUs needed) and a description of the task to be

executed. This description contains all the information the workload management

system needs in order to start a user’s job when the time comes. For instance, the

job description may contain information such as the name of the file to execute, a

list of data files required by the job, and environment variables or command-line

arguments to pass to the executable.

Once submitted to the workload management system, the batch jobs are held

in a “queue” until the matching resources (e.g., the right kind of computers with

the right amount of memory or number of CPUs) become available. Examples of

real-life queues are lines at the bank or grocery store. Sometimes you get lucky

and there’s no wait, but usually you have to stand in line for a few minutes. And

on days when the resources (clerks) are in high demand (like payday), the wait is

substantially longer.

The same applies to computers and batch jobs. Sometimes the wait is very short,

and the jobs run immediately. But more often (and thus the need for the workload

management system) resources are oversubscribed, and so the jobs have to wait.

One important aspect of queues is that limits can be set that restrict access to

the queue. This allows the cluster manager greater control over the usage policy of

the cluster. For example, it may be desirable to have a queue that is available for

short jobs only. This would be analogous to the “ten items or fewer express lane”

at the grocery store, providing a shorter wait for “quick tasks.”

Each of the different workload management systems discussed later in this volume

offers a rich variety of queue limits and attributes.

13.2.2 Scheduling

The second area of workload management is scheduling, which is simply the process

of choosing the best job to run. Unlike in our real-life examples of the bank and

grocery store (which employ a simple first-come, first-served model of deciding

who’s next), workload management systems offer a variety of ways by which the

best job is identified.

As we have discussed earlier, however, best can be a tricky goal, and depends

on the usage policy set by local management, the available workload, the type

and availability of cluster resources, and the types of application being run on the

cluster. In general, however, scheduling can be broken into two primary activities:

policy enforcement and resource optimization.

Policy encapsulates how the cluster resources are to be used, addressing such

issues as priorities, traffic control, and capability vs. high throughput. Scheduling

304 Chapter 13

is then the act of enforcing the policy in the selection of jobs, ensuring the priorities

are met and policy goals are achieved.

While implementing and enforcing the policy, the scheduler has a second set of

goals. These are resource optimization goals, such as “pack jobs efficiently” or

“exploit underused resources.”

The difficult part of scheduling, then, is balancing policy enforcement with re-

source optimization in order to pick the best job to run.

Logically speaking, one could think of a scheduler as performing the following

loop:

1. Select the best job to run, according to policy and available resources.

2. Start the job.

3. Stop the job and/or clean up after a completed job.

4. Repeat.

The nuts and bolts of scheduling is, of course, choosing and tuning the policy

to meet your needs. Although different workload management systems each have

their own idiosyncrasies, they typically all provide ways in which their scheduling

policy can be customized. Subsequent chapters of this book will discuss the various

scheduling policy mechanisms available in several popular workload management

systems.

13.2.3 Monitoring

Resource monitoring is the third part of any cluster workload management system.

It provides necessary information to administrators, users and the scheduling sys-

tem itself on the status of jobs and resources. There are basically three critical

times that resource monitoring comes into play:

1. When nodes are idle, to verify that they are in working order before starting

another job on them.

2. When nodes are busy running a job. Users and administrators may want

to check memory, CPU, network, I/O, and utilization of other system resources.

Such checks often are useful in parallel programming when users wish to verify that

they have balanced their workload correctly and are effectively using all the nodes

they’ve been allocated.

Cluster Workload Management 305

3. When a job completes. Here, resource monitoring is used to ensure that

there are no remaining processes from the completed job and that the node is still

in working order before starting another job on it.

Workload management systems query the compute resources at these times and

use the information to make informed decisions about running jobs. Much of the

information is cached so that it can be reported quickly in answer to status re-

quests. Some information is saved for historical analysis purposes. Still other bits

of the information are used in the enforcement of local policy. The method of col-

lection may differ between different workload management systems, but the general

purposes are the same.

13.2.4 Resource Management

The fourth area, resource management, is essentially responsible for the starting,

stopping, and cleaning up after jobs that are run on cluster nodes. In a batch

system resource management involves running a job for a user, under the identity

of the user, on the resources the user was allocated in such a way that the user

need not be present at that time.

Many cluster workload management systems provide mechanisms to ensure the

successful startup and cleanup of jobs and to maintain node status data internally,

so that jobs are started only on nodes that are available and functioning correctly.

In addition, limits may need to be placed on the job and enforced by the workload

management system. These limits are yet another aspect of policy enforcement, in

addition to the limits on queues and those enacted by the scheduling component.

Another aspect of resource management is providing the ability to remove or

add compute resources to the available pool of systems. Clusters are rarely static;

systems go down, or new nodes are added. The “registration” of new nodes and

the marking of nodes as unavailable are both additional aspects of resource man-

agement.

13.2.5 Accounting

The fifth aspect of workload management is accounting and reporting. Workload

accounting is the process of collecting resource usage data for the batch jobs that

run on the cluster. Such data includes the job owner, resources requested by the

job, and total amount of resources consumed by the job. Other data about the job

may also be available, depending on the specific workload managment system in

use.

Cluster workload accounting data can used for a variety of purposes, such as

306 Chapter 13

1. producing weekly system usage reports,

2. preparing monthly per user usage reports,

3. enforcing per project allocations,

4. tuning the scheduling policy,

5. calculating future resource allocations,

6. anticipating future computer component requirements, and

7. determining areas of improvement within the computer system.

The data for these purposes may be collected as part of the resource monitoring

tasks or may be gathered separately. In either case, data is pulled from the available

sources in order to meet the objectives of workload accounting. Details of using

the workload accounting features of specific workload management systems are

discussed in subsequent chapters of this book.

14 Condor: A Distributed Job Scheduler

Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny

Condor is a sophisticated and unique distributed job scheduler developed by the

Condor research project at the University of Wisconsin-Madison Department of

Computer Sciences.

A public-domain version of the Condor software and complete documentation is

freely available from the Condor project’s Web site at www.cs.wisc.edu/condor.

Organizations may purchase a commercial version of Condor with an accompanying

support contract; for additional information see www.condorcomputing.com.

This chapter introduces all aspects of Condor, from its ability to satisfy the needs

and desires of both submitters and resource owners, to the management of Condor

on clusters. Following an overview of Condor and Condor’s ClassAd mechanism is a

description of Condor from the user’s perspective. The architecture of the software

is presented along with overviews of installation and management. The chapter

ends with configuration scenarios specific to clusters.

14.1 Introduction to Condor

Condor is a specialized workload management system for compute-intensive jobs.

Like other full-featured batch systems, Condor provides a job queuing mechanism,

scheduling policy, priority scheme, resource monitoring, and resource management.

Users submit their jobs to Condor, and Condor places them into a queue, chooses

when and where to run them based upon a policy, monitors their progress, and

ultimately informs the user upon completion.

While providing functionality similar to that of a more traditional batch queuing

system, Condor’s novel architecture allows it to succeed in areas where traditional

scheduling systems fail. Condor can be used to manage a cluster of dedicated

Beowulf nodes. In addition, several unique mechanisms enable Condor to effectively

harness wasted CPU power from otherwise idle desktop workstations. Condor can

be used to seemlessly combine all of your organization’s computational power into

one resource.

Condor is the product of the Condor Research Project at the University of

Wisconsin-Madison (UW-Madison) and was first installed as a production system

in the UW-Madison Department of Computer Sciences nearly ten years ago. This

Condor installation has since served as a major source of computing cycles to UW-

Madison faculty and students. Today, just in our department alone, Condor man-

ages more than one thousand workstations, including the department’s 500-CPU

Linux Beowulf cluster. On a typical day, Condor delivers more than 650 CPU-days

308 Chapter 14

to UW researchers. Additional Condor installations have been established over the

years across our campus and the world. Hundreds of organizations in industry,

government, and academia have used Condor to establish compute environments

ranging in size from a handful to hundreds of workstations.

14.1.1 Features of Condor

Condor’s features are extensive. Condor provides great flexibility for both the user

submitting jobs and for the owner of a machine that provides CPU time toward

running jobs. The following list summarizes some of Condor’s capabilities.

Distributed submission: There is no single, centralized submission ma-

chine. Instead, Condor allows jobs to be submitted from many machines,

and each machine contains its own job queue. Users may submit to a cluster

from their own desktop machines.

Job priorities: Users can assign priorities to their submitted jobs in order to

control the execution order of the jobs. A “nice-user” mechanism requests

the use of only those machines that would have otherwise been idle.

User priorities: Administrators may assign priorities to users using a flexible

mechanism that enables a policy of fair share, strict ordering, fractional

ordering, or a combination of policies.

Job dependency: Some sets of jobs require an ordering because of depen-

dencies between jobs. “Start job X only after jobs Y and Z successfully

complete” is an example of a dependency. Enforcing dependencies is easily

handled.

Support for multiple job models: Condor handles both serial jobs and

parallel jobs incorporating PVM, dynamic PVM, and MPI.

ClassAds: The ClassAd mechanism in Condor provides an extremely flex-

ible and expressive framework for matching resource requests (jobs) with

resource offers (machines). Jobs can easily state both job requirements and

job preferences. Likewise, machines can specify requirements and preferences

about the jobs they are willing to run. These requirements and preferences

can be described in powerful expressions, resulting in Condor’s adaptation

to nearly any desired policy.

Job checkpoint and migration: With certain types of jobs, Condor can

transparently take a checkpoint and subsequently resume the application. A

checkpoint is a snapshot of a job’s complete state. Given a checkpoint, the

job can later continue its execution from where it left off at the time of the

Condor: A Distributed Job Scheduler 309

checkpoint. A checkpoint also enables the transparent migration of a job

from one machine to another machine.

Periodic checkpoint: Condor can be configured to periodically produce a

checkpoint for a job. This provides a form of fault tolerance and safeguards

the accumulated computation time of a job. It reduces the loss in the event

of a system failure such as the machine being shut down or hardware failure.

Job suspend and resume: Based on policy rules, Condor can ask the oper-

ating system to suspend and later resume a job.

Remote system calls: Despite running jobs on remote machines, Condor

can often preserve the local execution environment via remote system calls.

Users do not need to make data files available or even obtain a login account

on remote workstations before Condor executes their programs there. The

program behaves under Condor as if it were running as the user that submit-

ted the job on the workstation where it was originally submitted, regardless

of where it really executes.

Pools of machines working together: Flocking allows jobs to be sched-

uled across multiple Condor pools. It can be done across pools of machines

owned by different organizations that impose their own policies.

Authentication and authorization: Administrators have fine-grained con-

trol of access permissions, and Condor can perform strong network authen-

tication using a variety of mechanisms including Kerberos and X.509 public

key certificates.

Heterogeneous platforms: In addition to Linux, Condor has been ported

to most of the other primary flavors of Unix as well as Windows NT. A single

pool can contain multiple platforms. Jobs to be executed under one platform

may be submitted from a different platform. As an example, an executable

that runs under Windows 2000 may be submitted from a machine running

Linux.

Grid computing: Condor incorporates many of the emerging Grid-based

computing methodologies and protocols. It can interact with resources man-

aged by Globus.

14.1.2 Understanding Condor ClassAds

The ClassAd is a flexible representation of the characteristics and constraints of

both machines and jobs in the Condor system. Matchmaking is the mechanism by

which Condor matches an idle job with an available machine. Understanding this

unique framework is the key to harness the full flexibility of the Condor system.

310 Chapter 14

ClassAds are employed by users to specify which machines should service their jobs.

Administrators use them to customize scheduling policy.

Conceptualizing Condor ClassAds: Just Like the Newspaper. Condor’s

ClassAds are analogous to the classified advertising section of the newspaper. Sell-

ers advertise specifics about what they have to sell, hoping to attract a buyer.

Buyers may advertise specifics about what they wish to purchase. Both buyers and

sellers list constraints that must be satisfied. For instance, a buyer has a maximum

spending limit, and a seller requires a minimum purchase price. Furthermore, both

want to rank requests to their own advantage. Certainly a seller would rank one

offer of $50 higher than a different offer of $25. In Condor, users submitting jobs

can be thought of as buyers of compute resources and machine owners are sellers.

All machines in a Condor pool advertise their attributes, such as available RAM

memory, CPU type and speed, virtual memory size, current load average, current

time and date, and other static and dynamic properties. This machine ClassAd

also advertises under what conditions it is willing to run a Condor job and what

type of job it prefers. These policy attributes can reflect the individual terms and

preferences by which the different owners have allowed their machines to participate

in the Condor pool.

After a job is submitted to Condor, a job ClassAd is created. This ClassAd

includes attributes about the job, such as the amount of memory the job uses, the

name of the program to run, the user who submitted the job, and the time it was

submitted. The job can also specify requirements and preferences (or rank) for the

machine that will run the job. For instance, perhaps you are looking for the fastest

floating-point performance available. You want Condor to rank available machines

based on floating-point performance. Perhaps you care only that the machine has

a minimum of 256 MBytes of RAM. Or, perhaps you will take any machine you

can get! These job attributes and requirements are bundled up into a job ClassAd.

Condor plays the role of matchmaker by continuously reading all the job ClassAds

and all the machine ClassAds, matching and ranking job ads with machine ads.

Condor ensures that the requirements in both ClassAds are satisfied.

Structure of a ClassAd. A ClassAd is a set of uniquely named expressions.

Each named expression is called an attribute. Each attribute has an attribute name

and an attribute value. The attribute value can be a simple integer, string, or

floating-point value, such as

Memory = 512

OpSys = "LINUX"

Condor: A Distributed Job Scheduler 311

NetworkLatency = 7.5

An attribute value can also consist of a logical expression that will evaluate to

TRUE, FALSE, or UNDEFINED. The syntax and operators allowed in these ex-

pressions are similar to those in C or Java, that is, == for equals, != for not equals,

&& for logical and, || for logical or, and so on. Furthermore, ClassAd expressions

can incorporate attribute names to refer to other attribute values. For instance,

consider the following small sample ClassAd:

MemoryInMegs = 512

MemoryInBytes = MemoryInMegs * 1024 * 1024

Cpus = 4

BigMachine = (MemoryInMegs > 256) && (Cpus >= 4)

VeryBigMachine = (MemoryInMegs > 512) && (Cpus >= 8)

FastMachine = BigMachine && SpeedRating

In this example, BigMachine evaluates to TRUE and VeryBigMachine evaluates to

FALSE. But, because attribute SpeedRating is not specified, FastMachine would

evaluate to UNDEFINED.

Condor provides meta-operators that allow you to explicitly compare with the

UNDEFINED value by testing both the type and value of the operands. If both

the types and values match, the two operands are considered identical ; =?= is used

for meta-equals (or, is-identical-to) and =!= is used for meta-not-equals (or, is-not-

identical-to). These operators always return TRUE or FALSE and therefore enable

Condor administrators to specify explicit policies given incomplete information.

A complete description of ClassAd semantics and syntax is documented in the

Condor manual.

Matching ClassAds. ClassAds can be matched with one another. This is the

fundamental mechanism by which Condor matches jobs with machines. Figure 14.1

displays a ClassAd from Condor representing a machine and another representing

a queued job. Each ClassAd contains a MyType attribute, describing what type of

resource the ad represents, and a TargetType attribute. The TargetType specifies

the type of resource desired in a match. Job ads want to be matched with machine

ads and vice versa.

Each ClassAd engaged in matchmaking specifies a Requirements and a Rank

attribute. In order for two ClassAds to match, the Requirements expression in

both ads must evaluate to TRUE. An important component of matchmaking is

the Requirements and Rank expression can refer not only to attributes in their

own ad but also to attributes in the candidate matching ad. For instance, the

312 Chapter 14

Job ClassAd Machine ClassAd
MyType = “Job”
TargetType = “Machine”
Requirements = ((Arch==“INTEL” && Op-
Sys==“LINUX”) && Disk > DiskUsage)
Rank = (Memory * 10000) + KFlops
Args = “-ini ./ies.ini”
ClusterId = 680
Cmd = “/home/tannenba/bin/sim-exe”
Department = “CompSci”
DiskUsage = 465
StdErr = “sim.err”
ExitStatus = 0
FileReadBytes = 0.000000
FileWriteBytes = 0.000000
ImageSize = 465
StdIn = “/dev/null”
Iwd = “/home/tannenba/sim-m/run 55”
JobPrio = 0
JobStartDate = 971403010
JobStatus = 2
StdOut = “sim.out”
Owner = “tannenba”
ProcId = 64
QDate = 971377131
RemoteSysCpu = 0.000000
RemoteUserCpu = 0.000000
RemoteWallClockTime = 2401399.000000
TransferFiles = “NEVER”
WantCheckpoint = FALSE
WantRemoteSyscalls = FALSE

.

.

.

MyType = “Machine”
TargetType = “Job”
Requirements = Start
Rank = TARGET.Department==MY.Department
Activity = “Idle”
Arch = “INTEL”
ClockDay = 0
ClockMin = 614
CondorLoadAvg = 0.000000
Cpus = 1
CurrentRank = 0.000000
Department = “CompSci”
Disk = 3076076
EnteredCurrentActivity = 990371564
EnteredCurrentState = 990330615
FileSystemDomain = “cs.wisc.edu”
IsInstructional = FALSE
KeyboardIdle = 15
KFlops = 145811
LoadAvg = 0.220000
Machine = “nostos.cs.wisc.edu”
Memory = 511
Mips = 732
OpSys = “LINUX”
Start = (LoadAvg <= 0.300000) &&
(KeyboardIdle > (15 * 60))
State = “Unclaimed”
Subnet = “128.105.165”
TotalVirtualMemory = 787144

.

.

.

Figure 14.1
Examples of ClassAds in Condor.

Requirements expression for the job ad specified in Figure 14.1 refers to Arch,

OpSys, and Disk, which are all attributes found in the machine ad.

What happens if Condor finds more than one machine ClassAd that satisfies the

constraints specified by Requirements? That is where the Rank expression comes

into play. The Rank expression specifies the desirability of the match (where higher

numbers mean better matches). For example, the job ad in Figure 14.1 specifies

Requirements = ((Arch=="INTEL" && OpSys=="LINUX") && Disk > DiskUsage)

Rank = (Memory * 100000) + KFlops

In this case, the job requires a computer running the Linux operating system and

more local disk space than it will use. Among all such computers, the user prefers

those with large physical memories and fast floating-point CPUs (KFlops is a met-

ric of floating-point performance). Since the Rank is a user-specified metric, any

expression may be used to specify the perceived desirability of the match. Con-

Condor: A Distributed Job Scheduler 313

dor’s matchmaking algorithms deliver the best resource (as defined by the Rank

expression) while satisfying other criteria.

14.2 Using Condor

The road to using Condor effectively is a short one. The basics are quickly and

easily learned.

14.2.1 Roadmap to Using Condor

The following steps are involved in running jobs using Condor:

Prepare the Job to Run Unattended. An application run under Condor must

be able to execute as a batch job. Condor runs the program unattended and in the

background. A program that runs in the background will not be able to perform

interactive input and output. Condor can redirect console output (stdout and

stderr) and keyboard input (stdin) to and from files. You should create any

needed files that contain the proper keystrokes needed for program input. You

should also make certain the program will run correctly with the files.

Select the Condor Universe. Condor has five runtime environments from which

to choose. Each runtime environment is called a Universe. Usually the Universe

you choose is determined by the type of application you are asking Condor to run.

There are six job Universes in total: two for serial jobs (Standard and Vanilla),

one for parallel PVM jobs (PVM), one for parallel MPI jobs (MPI), one for Grid

applications (Globus), and one for meta-schedulers (Scheduler). Section 14.2.4

provides more information on each of these Universes.

Create a Submit Description File. The details of a job submission are defined

in a submit description file. This file contains information about the job such as

what executable to run, which Universe to use, the files to use for stdin, stdout,

and stderr, requirements and preferences about the machine which should run

the program, and where to send e-mail when the job completes. You can also tell

Condor how many times to run a program; it is simple to run the same program

multiple times with different data sets.

Submit the Job. Submit the program to Condor with the condor submit com-

mand.

Once a job has been submitted, Condor handles all aspects of running the

job. You can subsequently monitor the job’s progress with the condor q and

314 Chapter 14

condor status commands. You may use condor prio to modify the order in which

Condor will run your jobs. If desired, Condor can also record what is being done

with your job at every stage in its lifecycle, through the use of a log file specified

during submission.

When the program completes, Condor notifies the owner (by e-mail, the user-

specified log file, or both) the exit status, along with various statistics including

time used and I/O performed. You can remove a job from the queue at any time

with condor rm.

14.2.2 Submitting a Job

To submit a job for execution to Condor, you use the condor submit command.

This command takes as an argument the name of the submit description file, which

contains commands and keywords to direct the queuing of jobs. In the submit

description file, you define everything Condor needs to execute the job. Items

such as the name of the executable to run, the initial working directory, and

command-line arguments to the program all go into the submit description file.

The condor submit command creates a job ClassAd based on the information,

and Condor schedules the job.

The contents of a submit description file can save you considerable time when

you are using Condor. It is easy to submit multiple runs of a program to Condor.

To run the same program 500 times on 500 different input data sets, the data files

are arranged such that each run reads its own input, and each run writes its own

output. Every individual run may have its own initial working directory, stdin,

stdout, stderr, command-line arguments, and shell environment.

The following examples illustrate the flexibility of using Condor. We assume that

the jobs submitted are serial jobs intended for a cluster that has a shared file system

across all nodes. Therefore, all jobs use the Vanilla Universe, the simplest one for

running serial jobs. The other Condor Universes are explored later.

Example 1. Example 1 is the simplest submit description file possible. It queues

up one copy of the program ‘foo’ for execution by Condor. A log file called

‘foo.log’ is generated by Condor. The log file contains events pertaining to the

job while it runs inside of Condor. When the job finishes, its exit conditions are

noted in the log file. We recommend that you always have a log file so you know

what happened to your jobs. The queue statement in the submit description file

tells Condor to use all the information specified so far to create a job ClassAd and

place the job into the queue. Lines that begin with a pound character (#) are

comments and are ignored by condor submit.

Condor: A Distributed Job Scheduler 315

Example 1 : Simple submit file

universe = vanilla

executable = foo

log = foo.log

queue

Example 2. Example 2 queues two copies of the program ‘mathematica’. The

first copy runs in directory ‘run 1’, and the second runs in directory ‘run 2’. For

both queued copies, ‘stdin’ will be ‘test.data’, ‘stdout’ will be ‘loop.out’, and

‘stderr’ will be ‘loop.error’. Two sets of files will be written, since the files are

each written to their own directories. This is a convenient way to organize data for

a large group of Condor jobs.

Example 2: demonstrate use of multiple

directories for data organization.

universe = vanilla

executable = mathematica

Give some command line args, remap stdio

arguments = -solver matrix

input = test.data

output = loop.out

error = loop.error

log = loop.log

initialdir = run_1

queue

initialdir = run_2

queue

Example 3. The submit description file for Example 3 queues 150 runs of pro-

gram ‘foo’. This job requires Condor to run the program on machines that have

greater than 128 megabytes of physical memory, and it further requires that the

job not be scheduled to run on a specific node. Of the machines that meet the

requirements, the job prefers to run on the fastest floating-point nodes currently

available to accept the job. It also advises Condor that the job will use up to 180

megabytes of memory when running. Each of the 150 runs of the program is given

its own process number, starting with process number 0. Several built-in macros

can be used in a submit description file; one of them is the $(Process) macro which

Condor expands to be the process number in the job cluster. This causes files

‘stdin’, ‘stdout’, and ‘stderr’ to be ‘in.0’, ‘out.0’, and ‘err.0’ for the first run

of the program, ‘in.1’, ‘out.1’, and ‘err.1’ for the second run of the program, and

so forth. A single log file will list events for all 150 jobs in this job cluster.

316 Chapter 14

Example 3: Submit lots of runs and use the

pre-defined $(Process) macro.

universe = vanilla

executable = foo

requirements = Memory > 128 && Machine != "server-node.cluster.edu"

rank = KFlops

image_size = 180

Error = err.$(Process)

Input = in.$(Process)

Output = out.$(Process)

Log = foo.log

queue 150

Note that the requirements and rank entries in the submit description file will

become the requirements and rank attributes of the subsequently created ClassAd

for this job. These are arbitrary expressions that can reference any attributes of

either the machine or the job; see Section 14.1.2 for more on requirements and rank

expressions in ClassAds.

14.2.3 Overview of User Commands

Once you have jobs submitted to Condor, you can manage them and monitor their

progress. Table 14.1 shows several commands available to the Condor user to view

the job queue, check the status of nodes in the pool, and perform several other

activities. Most of these commands have many command-line options; see the

Command Reference chapter of the Condor manual for complete documentation.

To provide an introduction from a user perspective, we give here a quick tour

showing several of these commands in action.

When jobs are submitted, Condor will attempt to find resources to service

the jobs. A list of all users with jobs submitted may be obtained through

condor status with the -submitters option. An example of this would yield output

similar to the following:

% condor status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0

nice-user.condor@cs. cardinal.c 6 504 0

wright@cs.wisc.edu finch.cs.w 1 1 0

jbasney@cs.wisc.edu perdita.cs 0 0 5

Condor: A Distributed Job Scheduler 317

Command Description
condor checkpoint Checkpoint jobs running on the specified hosts
condor compile Create a relinked executable for submission to the

Standard Universe
condor glidein Add a Globus resource to a Condor pool
condor history View log of Condor jobs completed to date
condor hold Put jobs in the queue in hold state
condor prio Change priority of jobs in the queue
condor qedit Modify attributes of a previously submitted job
condor q Display information about jobs in the queue
condor release Release held jobs in the queue
condor reschedule Update scheduling information to the central manager
condor rm Remove jobs from the queue
condor run Submit a shell command-line as a Condor job
condor status Display status of the Condor pool
condor submit dag Manage and queue jobs within a specified DAG for

interjob dependencies.
condor submit Queue jobs for execution
condor userlog Display and summarize job statistics from job log files

Table 14.1
List of user commands.

RunningJobs IdleJobs HeldJobs

ballard@cs.wisc.edu 0 11 0

jbasney@cs.wisc.edu 0 0 5

nice-user.condor@cs. 6 504 0

wright@cs.wisc.edu 1 1 0

Total 7 516 5

Checking on the Progress of Jobs. The condor q command displays the sta-

tus of all jobs in the queue. An example of the output from condor q is

% condor q

-- Schedd: uug.cs.wisc.edu : <128.115.121.12:33102>

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

55574.0 jane 6/23 11:33 4+03:35:28 R 0 25.7 seycplex seymour.d

55575.0 jane 6/23 11:44 0+23:24:40 R 0 26.8 seycplexpseudo sey

83193.0 jane 3/28 15:11 48+15:50:55 R 0 17.5 cplexmip test1.mp

83196.0 jane 3/29 08:32 48+03:16:44 R 0 83.1 cplexmip test3.mps

83212.0 jane 4/13 16:31 41+18:44:40 R 0 39.7 cplexmip test2.mps

318 Chapter 14

5 jobs; 0 idle, 5 running, 0 held

This output contains many columns of information about the queued jobs. The

ST column (for status) shows the status of current jobs in the queue. An R in

the status column means the the job is currently running. An I stands for idle.

The status H is the hold state. In the hold state, the job will not be scheduled

to run until it is released (via the condor release command). The RUN_TIME

time reported for a job is the time that job has been allocated to a machine as

DAYS+HOURS+MINS+SECS.

Another useful method of tracking the progress of jobs is through the user log. If

you have specified a log command in your submit file, the progress of the job may be

followed by viewing the log file. Various events such as execution commencement,

checkpoint, eviction, and termination are logged in the file along with the time at

which the event occurred. Here is a sample snippet from a user log file

000 (8135.000.000) 05/25 19:10:03 Job submitted from host: <128.105.146.14:1816>

...

001 (8135.000.000) 05/25 19:12:17 Job executing on host: <128.105.165.131:1026>

...

005 (8135.000.000) 05/25 19:13:06 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage

Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage

9624 - Run Bytes Sent By Job

7146159 - Run Bytes Received By Job

9624 - Total Bytes Sent By Job

7146159 - Total Bytes Received By Job

...

The condor jobmonitor tool parses the events in a user log file and can use the

information to graphically display the progress of your jobs. Figure 14.2 contains

a screenshot of condor jobmonitor in action.

You can locate all the machines that are running your job with the condor status

command. For example, to find all the machines that are running jobs submitted

by breach@cs.wisc.edu, type

% condor status -constraint ’RemoteUser == "breach@cs.wisc.edu"’

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02

Condor: A Distributed Job Scheduler 319

Figure 14.2
Condor jobmonitor tool.

biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00

cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00

falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03

happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00

istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01

istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00

istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00

...

To find all the machines that are running any job at all, type

% condor status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.cs.wisc.

Image Not Available

320 Chapter 14

alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchatel.cs.w

amul.cs.wi INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

anfrom.cs. INTEL LINUX 1.023 ashoks@jules.ncsa.ui jules.ncsa.uiuc

anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.cs.wisc.

astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

aura.cs.wi INTEL LINUX 0.996 nice-user.condor@cs. chevre.cs.wisc.

balder.cs. INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.cs.wisc.e

bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre.cs.wisc.

...

Removing a Job from the Queue. You can remove a job from the queue at any

time using the condor rm command. If the job that is being removed is currently

running, the job is killed without a checkpoint, and its queue entry is removed. The

following example shows the queue of jobs before and after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0

Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Changing the Priority of Jobs. In addition to the priorities assigned to each

user, Condor provides users with the capability of assigning priorities to any sub-

mitted job. These job priorities are local to each queue and range from −20 to

+20, with higher values meaning better priority.

The default priority of a job is 0. Job priorities can be modified using the

condor prio command. For example, to change the priority of a job to −15, type

% condor_q raman

Condor: A Distributed Job Scheduler 321

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

% condor_prio -p -15 126.0

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

We emphasize that these job priorities are completely different from the user

priorities assigned by Condor. Job priorities control only which one of your jobs

should run next; there is no effect whatsoever on whether your jobs will run before

another user’s jobs.

Determining Why a Job Does Not Run. A specific job may not run for

several reasons. These reasons include failed job or machine constraints, bias due to

preferences, insufficient priority, and the preemption throttle that is implemented

by the condor negotiator to prevent thrashing. Many of these reasons can be

diagnosed by using the -analyze option of condor q. For example, the following

job submitted by user jbasney had not run for several days.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

Running condor q’s analyzer provided the following information:

% condor_q 125.0 -analyze

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu

125.000: Run analysis summary. Of 323 resource offers,

322 Chapter 14

323 do not satisfy the request’s constraints

0 resource offer constraints are not satisfied by this request

0 are serving equal or higher priority customers

0 are serving more preferred customers

0 cannot preempt because preemption has been held

0 are available to service your request

WARNING: Be advised:

No resources matched request’s constraints

Check the Requirements expression below:

Requirements = Arch == "INTEL" && OpSys == "IRIX6" &&

Disk >= ExecutableSize && VirtualMemory >= ImageSize

The Requirements expression for this job specifies a platform that does not exist.

Therefore, the expression always evaluates to FALSE.

While the analyzer can diagnose most common problems, there are some situa-

tions that it cannot reliably detect because of the instantaneous and local nature

of the information it uses to detect the problem. The analyzer may report that

resources are available to service the request, but the job still does not run. In

most of these situations, the delay is transient, and the job will run during the next

negotiation cycle.

If the problem persists and the analyzer is unable to detect the situation, the

job may begin to run but immediately terminates and return to the idle state.

Viewing the job’s error and log files (specified in the submit command file) and

Condor’s SHADOW LOG file may assist in tracking down the problem. If the cause is

still unclear, you should contact your system administrator.

Job Completion. When a Condor job completes (either through normal means

or abnormal means), Condor will remove it from the job queue (therefore, it will

no longer appear in the output of condor q) and insert it into the job history file.

You can examine the job history file with the condor history command. If you

specified a log file in your submit description file, then the job exit status will be

recorded there as well.

By default, Condor will send you an e-mail message when your job completes.

You can modify this behavior with the condor submit “notification” command.

The message will include the exit status of your job or notification that your job

terminated abnormally.

Condor: A Distributed Job Scheduler 323

14.2.4 Submitting Different Types of Jobs: Alternative Universes

A Universe in Condor defines an execution environment. Condor supports the

following Universes on Linux:

• Vanilla

• MPI

• PVM

• Globus

• Scheduler

• Standard

The Universe attribute is specified in the submit description file. If the Universe

is not specified, it will default to Standard.

Vanilla Universe. The Vanilla Universe is used to run serial (nonparallel) jobs.

The examples provided in the preceding section use the Vanilla Universe. Most

Condor users prefer to use the Standard Universe to submit serial jobs because of

several helpful features of the Standard Universe. However, the Standard Universe

has several restrictions on the types of serial jobs supported. The Vanilla Universe,

on the other hand, has no such restrictions. Any program that runs outside of

Condor will run in the Vanilla Universe. Binary executables as well as scripts are

welcome in the Vanilla Universe.

A typical Vanilla Universe job relies on a shared file system between the submit

machine and all the nodes in order to allow jobs to access their data. However, if a

shared file system is not available, Condor can transfer the files needed by the job

to and from the execute machine. See Section 14.2.5 for more details on this.

MPI Universe. The MPI Universe allows parallel programs written with MPI

to be managed by Condor. To submit an MPI program to Condor, specify the

number of nodes to be used in the parallel job. Use the machine count attribute

in the submit description file, as in the following example:

Submit file for an MPI job which needs 8 large memory nodes

universe = mpi

executable = my-parallel-job

requirements = Memory >= 512

machine_count = 8

queue

Further options in the submit description file allow a variety of parameters, such

as the job requirements or the executable to use across the different nodes.

324 Chapter 14

By late 2001, Condor expects your MPI job to be linked with the MPICH imple-

mentation of MPI configured with the ch p4 device (see Section 9.6.1). Support for

different devices and MPI implementations is expected, however, so check the docu-

mentation included with your specific version of Condor for additional information

on how your job should be linked with MPI for Condor.

If your Condor pool consists of both dedicated compute machines (that is, Beo-

wulf cluster nodes) and opportunistic machines (that is, desktop workstations), by

default Condor will schedule MPI jobs to run on the dedicated resources only.

PVM Universe. Several different parallel programming paradigms exist. One

of the more common is the “master/worker” or “pool of tasks” arrangement. In

a master/worker program model, one node acts as the controlling master for the

parallel application and sends out pieces of work to worker nodes. The worker node

does some computation and sends the result back to the master node. The master

has a pool of work that needs to be done, and it assigns the next piece of work out

to the next worker that becomes available.

The PVM Universe allows master/worker style parallel programs written for the

Parallel Virtual Machine interface (see Chapter 11) to be used with Condor. Condor

runs the master application on the machine where the job was submitted and will

not preempt the master application. Workers are pulled in from the Condor pool

as they become available.

Specifically, in the PVM Universe, Condor acts as the resource manager for the

PVM daemon. Whenever a PVM program asks for nodes via a pvm addhosts()

call, the request is forwarded to Condor. Using ClassAd matching mechanisms,

Condor finds a machine in the Condor pool and adds it to the virtual machine. If

a machine needs to leave the pool, the PVM program is notified by normal PVM

mechanisms, for example, the pvm notify() call.

A unique aspect of the PVM Universe is that PVM jobs submitted to Condor

can harness both dedicated and nondedicated (opportunistic) workstations through-

out the pool by dynamically adding machines to and removing machines from the

parallel virtual machine as machines become available.

Writing a PVM program that deals with Condor’s opportunistic environment can

be a tricky task. For that reason, the MW framework has been created. MW is a

tool for making master-worker style applications in Condor’s PVM Universe. For

more information, see the MW Home page online at www.cs.wisc.edu/condor/mw.

Submitting to the PVM Universe is similar to submitting to the MPI Universe,

except that the syntax for machine count is different to reflect the dynamic nature

of the PVM Universe. Here is a simple sample submit description file:

Condor: A Distributed Job Scheduler 325

Require Condor to give us one node before starting

the job, but we’ll use up to 75 nodes if they are

available.

universe = pvm

executable = master.exe

machine_count = 1..75

queue

By using machine_count = <min>..<max>, the submit description file tells Condor

that before the PVM master is started, there should be at least <min> number of

machines given to the job. It also asks Condor to give it as many as <max>machines.

More detailed information on the PVM Universe is available in the Condor man-

ual as well as on the Condor-PVM home page at URL www.cs.wisc.edu/condor/

pvm.

Globus Universe. The Globus Universe in Condor is intended to provide the

standard Condor interface to users who wish to submit jobs to machines being

managed by Globus (www.globus.org).

Scheduler Universe. The Scheduler Universe is used to submit a job that will

immediately run on the submit machine, as opposed to a remote execution machine.

The purpose is to provide a facility for job meta-schedulers that desire to manage

the submission and removal of jobs into a Condor queue. Condor includes one such

meta-scheduler that utilizes the Scheduler Universe: the DAGMan scheduler, which

can be used to specify complex interdependencies between jobs. See Section 14.2.6

for more on DAGMan.

Standard Universe. The Standard Universe requires minimal extra effort on

the part of the user but provides a serial job with the following highly desirable

services:

• Transparent process checkpoint and restart

• Transparent process migration

• Remote system calls

• Configurable file I/O buffering

• On-the-fly file compression/inflation

Process Checkpointing in the Standard Universe. A checkpoint of an ex-

ecuting program is a snapshot of the program’s current state. It provides a way

for the program to be continued from that state at a later time. Using checkpoints

gives Condor the freedom to reconsider scheduling decisions through preemptive-

resume scheduling. If the scheduler decides to rescind a machine that is running a

326 Chapter 14

Condor job (for example, when the owner of that machine returns and reclaims it

or when a higher-priority user desires the same machine), the scheduler can take a

checkpoint of the job and preempt the job without losing the work the job has al-

ready accomplished. The job can then be resumed later when the Condor scheduler

allocates it a new machine. Additionally, periodic checkpoints provide fault toler-

ance. Normally, when performing long-running computations, if a machine crashes

or must be rebooted for an administrative task, all the work that has been done is

lost. The job must be restarted from the beginning, which can mean days, weeks,

or even months of wasted computation time. With checkpoints, Condor ensures

that progress is always made on jobs and that only the computation done since the

last checkpoint is lost. Condor can be take checkponts periodically, and after an

interruption in service, the program can continue from the most recent snapshot.

To enable taking checkpoints, you do not need to change the program’s source

code. Instead, the program must be relinked with the Condor system call library

(see below). Taking the checkpoint of a process is implemented in the Condor

system call library as a signal handler. When Condor sends a checkpoint signal to

a process linked with this library, the provided signal handler writes the state of

the process out to a file or a network socket. This state includes the contents of the

process’s stack and data segments, all CPU state (including register values), the

state of all open files, and any signal handlers and pending signals. When a job is to

be continued using a checkpoint, Condor reads this state from the file or network

socket, restoring the stack, shared library and data segments, file state, signal

handlers, and pending signals. The checkpoint signal handler then restores the

CPU state and returns to the user code, which continues from where it left off when

the checkpoint signal arrived. Condor jobs submitted to the Standard Universe

will automatically perform a checkpoint when preempted from a machine. When

a suitable replacement execution machine is found (of the same architecture and

operating system), the process is restored on this new machine from the checkpoint,

and computation is resumed from where it left off.

By default, a checkpoint is written to a file on the local disk of the submit

machine. A Condor checkpoint server is also available to serve as a repository for

checkpoints.

Remote System Calls in the Standard Universe. One hurdle to overcome

when placing an job on a remote execution workstation is data access. In order to

utilize the remote resources, the job must be able to read from and write to files on

its submit machine. A requirement that the remote execution machine be able to

access these files via NFS, AFS, or any other network file system may significantly

Condor: A Distributed Job Scheduler 327

limit the number of eligible workstations and therefore hinder the ability of an envi-

ronment to achieve high throughput. Therefore, in order to maximize throughput,

Condor strives to be able to run any application on any remote workstation of a

given platform without relying upon a common administrative setup. The enabling

technology that permits this is Condor’s Remote System Calls mechanism. This

mechanism provides the benefit that Condor does not require a user to possess a

login account on the execute workstation.

When a Unix process needs to access a file, it calls a file I/O system function

such as open(), read(), or write(). These functions are typically handled by

the standard C library, which consists primarily of stubs that generate a corre-

sponding system call to the local kernel. Condor users link their applications with

an enhanced standard C library via the condor compile command. This library

does not duplicate any code in the standard C library; instead, it augments certain

system call stubs (such as the ones that handle file I/O) into remote system call

stubs. The remote system call stubs package the system call number and arguments

into a message that is sent over the network to a condor shadow process that runs

on the submit machine. Whenever Condor starts a Standard Universe job, it also

starts a corresponding shadow process on the initiating host where the user orig-

inally submitted the job (see Figure 14.3). This shadow process acts as an agent

for the remotely executing program in performing system calls. The shadow then

executes the system call on behalf of the remotely running job in the normal way.

The shadow packages up the results of the system call in a message and sends it

back to the remote system call stub in the Condor library on the remote machine.

The remote system call stub returns its result to the calling procedure, which is

unaware that the call was done remotely rather than locally. In this fashion, calls

in the user’s program to open(), read(), write(), close(), and all other file

I/O calls transparently take place on the machine that submitted the job instead

of on the remote execution machine.

Relinking and Submitting for the Standard Universe. To convert a pro-

gram into a Standard Universe job, use the condor compile command to relink

with the Condor libraries. Place condor compile in front of your usual link com-

mand. You do not need to modify the program’s source code, but you do need

access to its unlinked object files. A commercial program that is packaged as a

single executable file cannot be converted into a Standard Universe job.

For example, if you normally link your job by executing

% cc main.o tools.o -o program

328 Chapter 14

Figure 14.3
Remote System calls in the Standard Universe.

You can relink your job for Condor with

% condor_compile cc main.o tools.o -o program

After you have relinked your job, you can submit it. A submit description file for

the Standard Universe is similar to one for the Vanilla Universe. However, several

additional submit directives are available to perform activities such as on-the-fly

compression of data files. Here is an example:

Submit 100 runs of my-program to the Standard Universe

universe = standard

executable = my-program.exe

Each run should take place in a seperate subdirectory: run0, run1, ...

initialdir = run$(Process)

Ask the Condor remote syscall layer to automatically compress

on-the-fly any writes done by my-program.exe to file data.output

compress_files = data.output

queue 100

Standard Universe Limitations. Condor performs its process checkpoint and

migration routines strictly in user mode; there are no kernel drivers with Condor.

Because Condor is not operating at the kernel level, there are limitations on what

process state it is able to checkpoint. As a result, the following restrictions are

imposed upon Standard Universe jobs:

Image Not Available

Condor: A Distributed Job Scheduler 329

1. Multiprocess jobs are not allowed. This includes system calls such as fork(),

exec(), and system().

2. Interprocess communication is not allowed. This includes pipes, semaphores,

and shared memory.

3. Network communication must be brief. A jobmay make network connections

using system calls such as socket(), but a network connection left open for long

periods will delay checkpoints and migration.

4. Multiple kernel-level threads are not allowed. However, multiple user-level

threads (green threads) are allowed.

5. All files should be accessed read-only or write-only. A file that is both read

and written to can cause trouble if a job must be rolled back to an old checkpoint

image.

6. On Linux, your job must be statically linked. Dynamic linking is allowed in

the Standard Universe on some other platforms supported by Condor, and perhaps

this restriction on Linux will be removed in a future Condor release.

14.2.5 Giving Your Job Access to Its Data Files

Once your job starts on a machine in your pool, how does it access its data files?

Condor provides several choices.

If the job is a Standard Universe job, then Condor solves the problem of data

access automatically using the Remote System call mechanism described above.

Whenever the job tries to open, read, or write to a file, the I/O will actually take

place on the submit machine, whether or not a shared file system is in place.

Condor can use a shared file system, if one is available and permanently mounted

across the machines in the pool. This is usually the case in a Beowulf cluster. But

what if your Condor pool includes nondedicated (desktop) machines as well? You

could specify a Requirements expression in your submit description file to require

that jobs run only on machines that actually do have access to a common, shared file

system. Or, you could request in the submit description file that Condor transfer

your job’s data files using the Condor File Transfer mechanism.

When Condor finds a machine willing to execute your job, it can create a tempo-

rary subdirectory for your job on the execute machine. The Condor File Transfer

mechanism will then send via TCP the job executable(s) and input files from the

submitting machine into this temporary directory on the execute machine. After

the input files have been transferred, the execute machine will start running the

330 Chapter 14

job with the temporary directory as the job’s current working directory. When the

job completes or is kicked off, Condor File Transfer will automatically send back to

the submit machine any output files created or modified by the job. After the files

have been sent back successfully, the temporary working directory on the execute

machine is deleted.

Condor’s File Transfer mechanism has several features to ensure data integrity in

a nondedicated environment. For instance, transfers of multiple files are performed

atomically.

Condor File Transfer behavior is specified at job submission time using the submit

description file and condor submit. Along with all the other job submit descrip-

tion parameters, you can use the following File Transfer commands in the submit

description file:

transfer input files = < file1, file2, file... >: Use this parameter to list all the

files that should be transferred into the working directory for the job before the job

is started.

transfer output files = < file1, file2, file... >: Use this parameter to explic-

itly list which output files to transfer back from the temporary working directory

on the execute machine to the submit machine. Most of the time, however, there is

no need to use this parameter. If transfer output files is not specified, Condor

will automatically transfer in the job’s temporary working directory all files that

have been modified or created by the job.

transfer files = <ONEXIT | ALWAYS | NEVER>: If transfer files is

set to ONEXIT, Condor will transfer the job’s output files back to the submitting

machine only when the job completes (exits). Specifying ALWAYS tells Condor to

transfer back the output files when the job completes or when Condor kicks off

the job (preempts) from a machine prior to job completion. The ALWAYS option is

specifically intended for fault-tolerant jobs that periodocially write out their state

to disk and can restart where they left off. Any output files transferred back to the

submit machine when Condor preempts a job will automatically be sent back out

again as input files when the job restarts.

14.2.6 The DAGMan Scheduler

The DAGMan scheduler within Condor allows the specification of dependencies

between a set of programs. A directed acyclic graph (DAG) can be used to represent

a set of programs where the input, output, or execution of one or more programs

is dependent on one or more other programs. The programs are nodes (vertices)

Condor: A Distributed Job Scheduler 331

in the graph, and the edges (arcs) identify the dependencies. Each program within

the DAG becomes a job submitted to Condor. The DAGMan scheduler enforces

the dependencies of the DAG.

An input file to DAGMan identifies the nodes of the graph, as well as how to

submit each job (node) to Condor. It also specifies the graph’s dependencies and

describes any extra processing that is involved with the nodes of the graph and

must take place just before or just after the job is run.

A simple diamond-shaped DAG with four nodes is given in Figure 14.4.

C

A

B

D

Figure 14.4
A directed acyclic graph with four nodes.

A simple input file to DAGMan for this diamond-shaped DAG may be

file name: diamond.dag

Job A A.condor

Job B B.condor

Job C C.condor

Job D D.condor

PARENT A CHILD B C

PARENT B C CHILD D

The four nodes are named A, B, C, and D. Lines beginning with the keyword Job

identify each node by giving it a name, and they also specify a file to be used as

a submit description file for submission as a Condor job. Lines with the keyword

PARENT identify the dependencies of the graph. Just like regular Condor submit

description files, lines with a leading pound character (#) are comments.

332 Chapter 14

The DAGMan scheduler uses the graph to order the submission of jobs to Con-

dor. The submission of a child node will not take place until the parent node has

successfully completed. No ordering of siblings is imposed by the graph, and there-

fore DAGMan does not impose an ordering when submitting the jobs to Condor.

For the diamond-shaped example, nodes B and C will be submitted to Condor in

parallel.

Each job in the example graph uses a different submit description file. An exam-

ple submit description file for job A may be

file name: A.condor

executable = nodeA.exe

output = A.out

error = A.err

log = diamond.log

universe = vanilla

queue

An important restriction for submit description files of a DAG is that each node of

the graph use the same log file. DAGMan uses the log file in enforcing the graph’s

dependencies.

The graph for execution under Condor is submitted by using the Condor tool

condor submit dag. For the diamond-shaped example, submission would use the

command

condor_submit_dag diamond.dag

14.3 Condor Architecture

A Condor pool comprises a single machine that serves as the central manager and

an arbitrary number of other machines that have joined the pool. Conceptually,

the pool is a collection of resources (machines) and resource requests (jobs). The

role of Condor is to match waiting requests with available resources. Every part of

Condor sends periodic updates to the central manager, the centralized repository

of information about the state of the pool. The central manager periodically as-

sesses the current state of the pool and tries to match pending requests with the

appropriate resources.

Condor: A Distributed Job Scheduler 333

14.3.1 The Condor Daemons

In this subsection we describe all the daemons (background server processes) in

Condor and the role each plays in the system.

condor master: This daemon’s role is to simplify system administration. It is re-

sponsible for keeping the rest of the Condor daemons running on each machine in

a pool. The master spawns the other daemons and periodically checks the times-

tamps on the binaries of the daemons it is managing. If it finds new binaries,

the master will restart the affected daemons. This allows Condor to be upgraded

easily. In addition, if any other Condor daemon on the machine exits abnormally,

the condor master will send e-mail to the system administrator with informa-

tion about the problem and then automatically restart the affected daemon. The

condor master also supports various administrative commands to start, stop, or

reconfigure daemons remotely. The condor master runs on every machine in your

Condor pool.

condor startd: This daemon represents a machine to the Condor pool. It ad-

vertises a machine ClassAd that contains attributes about the machine’s capabil-

ities and policies. Running the startd enables a machine to execute jobs. The

condor startd is responsible for enforcing the policy under which remote jobs will

be started, suspended, resumed, vacated, or killed. When the startd is ready to

execute a Condor job, it spawns the condor starter, described below.

condor starter: This program is the entity that spawns the remote Condor job

on a given machine. It sets up the execution environment and monitors the job once

it is running. The starter detects job completion, sends back status information to

the submitting machine, and exits.

condor schedd: This daemon represents jobs to the Condor pool. Any machine

that allows users to submit jobs needs to have a condor schedd running. Users

submit jobs to the condor schedd, where they are stored in the job queue. The var-

ious tools to view and manipulate the job queue (such as condor submit, condor q,

or condor rm) connect to the condor schedd to do their work.

condor shadow: This program runs on the machine where a job was submitted

whenever that job is executing. The shadow serves requests for files to transfer,

logs the job’s progress, and reports statistics when the job completes. Jobs that are

linked for Condor’s Standard Universe, which perform remote system calls, do so

via the condor shadow. Any system call performed on the remote execute machine

334 Chapter 14

is sent over the network to the condor shadow. The shadow performs the system

call (such as file I/O) on the submit machine and the result is sent back over the

network to the remote job.

condor collector: This daemon is responsible for collecting all the information

about the status of a Condor pool. All other daemons periodically send ClassAd

updates to the collector. These ClassAds contain all the information about the

state of the daemons, the resources they represent, or resource requests in the

pool (such as jobs that have been submitted to a given condor schedd). The

condor collector can be thought of as a dynamic database of ClassAds. The

condor status command can be used to query the collector for specific information

about various parts of Condor. The Condor daemons also query the collector for

important information, such as what address to use for sending commands to a

remote machine. The condor collector runs on the machine designated as the

central manager.

condor negotiator: This daemon is responsible for all the matchmaking within

the Condor system. The negotiator is also responsible for enforcing user priorities

in the system.

14.3.2 The Condor Daemons in Action

Within a given Condor installation, one machine will serve as the pool’s central

manager. In addition to the condor master daemon that runs on every ma-

chine in a Condor pool, the central manager runs the condor collector and the

condor negotiator daemons. Any machine in the installation that should be ca-

pable of running jobs should run the condor startd, and any machine that should

maintain a job queue and therefore allow users on that machine to submit jobs

should run a condor schedd.

Condor allows any machine simultaneously to execute jobs and serve as a sub-

mission point by running both a condor startd and a condor schedd. Figure 14.5

displays a Condor pool in which every machine in the pool can both submit and

run jobs, including the central manager.

The interface for adding a job to the Condor system is condor submit, which

reads a job description file, creates a job ClassAd, and gives that ClassAd to the

condor schedd managing the local job queue. This triggers a negotiation cycle.

During a negotiation cycle, the condor negotiator queries the condor collector

to discover all machines that are willing to perform work and all users with idle

jobs. The condor negotiator communicates in user priority order with each

Condor: A Distributed Job Scheduler 335

Figure 14.5
Daemon layout of an idle Condor pool.

condor schedd that has idle jobs in its queue, and performs matchmaking to match

jobs with machines such that both job and machine ClassAd requirements are sat-

isfied and preferences (rank) are honored.

Once the condor negotiator makes a match, the condor schedd claims the cor-

responding machine and is allowed to make subsequent scheduling decisions about

the order in which jobs run. This hierarchical, distributed scheduling architecture

enhances Condor’s scalability and flexibility.

When the condor schedd starts a job, it spawns a condor shadow process on

the submit machine, and the condor startd spawns a condor starter process on

the corresponding execute machine (see Figure 14.6). The shadow transfers the

job ClassAd and any data files required to the starter, which spawns the user’s

application.

If the job is a Standard Universe job, the shadow will begin to service remote

system calls originating from the user job, allowing the job to transparently access

data files on the submitting host.

When the job completes or is aborted, the condor starter removes every process

spawned by the user job, and frees any temporary scratch disk space used by the

job. This ensures that the execute machine is left in a clean state and that resources

(such as processes or disk space) are not being leaked.

Image Not Available

336 Chapter 14

Figure 14.6
Daemon layout when a job submitted from Machine 2 is running.

14.4 Installing Condor under Linux

The first step toward the installation of Condor is to download the software from

the Condor Web site at www.cs.wisc.edu/condor/downloads. There is no cost to

download or use Condor.

On the Web site you will find complete documentation and release notes for

the different versions and platforms supported. You should take care to download

the appropriate version of Condor for your platform (the operating system and

processor architecture).

Before you begin the installation, there are several issues you need to consider

and actions to perform.

Creation of User Condor. For both security and performance reasons, the Con-

dor daemons should execute with root privileges. However, to avoid running as root

except when absolutely necessary, the Condor daemons will run with the privileges

of user condor on your system. In addition, the user condor simplifies installation,

since files owned by the user condor will be created, and the home directory of

the user condor can be used to specify file locations. For Linux clusters, we highly

Image Not Available

Condor: A Distributed Job Scheduler 337

recommend that you create the user condor on all machines before installation

begins.

Location. Administration of your pool is eased when the release directory (which

includes all the binaries, libraries, and configuration files used by Condor) is placed

on a shared file server. Note that one set of binaries is needed for each platform in

your pool.

Administrator. Condor needs an e-mail address for an administrator. Should

Condor need assistance, this is where e-mail will be sent.

Central Manager. The central manager of a Condor pool does matchmaking and

collects information for the pool. Choose a central manager that has a good network

connection and is likely to be online all the time (or at least rebooted quickly in

the event of a failure).

Once you have decided the answers to these questions (and set up the condor user)

you are ready to begin installation. The tool called condor install is executed to

begin the installation. The configuration tool will ask you a short series of questions,

mostly related to the issues addressed above. Answer the questions appropriately

for your site, and Condor will be installed.

On a large Linux cluster, you can speed the installation process by running

condor install once on your fileserver node and configuring your entire pool at

the same time. If you use this configuration option, you will need to run only the

condor init script (which requires no input) on each of your compute nodes.

The default Condor installation will configure your pool to assume nondedicated

resources. Section 14.5 discusses how to configure and customize your pool for a

dedicated cluster.

After Condor is installed, you will want to customize a few security configuration

right away. Condor implements security at the host (or machine) level. A set of

configuration defaults set by the installation deal with access to the Condor pool by

host. Given the distributed nature of the daemons that implement Condor, access

to these daemons is naturally host based. Each daemon can be given the ability to

allow or deny service (by host) within its configuration. Within the access levels

available, Read, Write, Administrator, and Config are important to set correctly

for each pool of machines.

Read: allows a machine to obtain information from Condor. Examples of infor-

mation that may be read are the status of the pool and the contents of the job

queue.

338 Chapter 14

Write: allows a machine to provide information to Condor, such as submit a job

or join the pool.

Administrator: allows a user on the machine to affect privileged operations such

as changing a user’s priority level or starting and stopping the Condor system from

running.

Config: allows a user on the machine to change Condor’s configuration settings

remotely using the condor config val tool’s -set and -rset options. This has very

serious security implications, so we recommend that you not enable Config access

to any hosts.

The defaults during installation give all machines read and write access. The

central manager is also given administrator access. You will probably wish to

change these defaults for your site. Read the Condor Administrator’s Manual for

details on network authorization in Condor and how to customize it for your wishes.

14.5 Configuring Condor

This section describes how to configure and customize Condor for your site. It

discusses the configuration files used by Condor, describes how to configure the

policy for starting and stopping jobs in your pool, and recommends settings for

using Condor on a cluster.

A number of configuration files facilitate different levels of control over how Con-

dor is configured on each machine in a pool. The top-level or global configuration

file is shared by all machines in the pool. For ease of administration, this file should

be located on a shared file system. In addition, each machine may have multiple

local configuration files allowing the local settings to override the global settings.

Hence, each machine may have different daemons running, different policies for

when to start and stop Condor jobs, and so on.

All of Condor’s configuration files should be owned and writable only by root.

It is important to maintain strict control over these files because they contain

security-sensitive settings.

14.5.1 Location of Condor’s Configuration Files

Condor has a default set of locations it uses to try to find its top-level configuration

file. The locations are checked in the following order:

1. The file specified in the CONDOR CONFIG environment variable.

Condor: A Distributed Job Scheduler 339

2. ‘/etc/condor/condor config’, if it exists.

3. If user condor exists on your system, the ‘condor config’ file in this user’s

home directory.

If a Condor daemon or tool cannot find its global configuration file when it starts,

it will print an error message and immediately exit. Once the global configuration

file has been read by Condor, however, any other local configuration files can be

specified with the LOCAL CONFIG FILE macro.

This macro can contain a single entry if you want only two levels of configuration

(global and local). If you need a more complex division of configuration values (for

example, if you have machines of different platforms in the same pool and desire

separate files for platform-specific settings), LOCAL CONFIG FILE can contain a list

of files.

Condor provides other macros to help you easily define the location of the local

configuration files for each machine in your pool. Most of these are special macros

that evaluate to different values depending on which host is reading the global

configuration file:

• HOSTNAME: The hostname of the local host.
• FULL HOSTNAME: The fully qualified hostname of the local host.

• TILDE: The home directory of the user condor on the local host.

• OPSYS: The operating system of the local host, such as “LINUX,” “WINNT4”

(for Windows NT), or “WINNT5” (for Windows 2000). This is primarily useful in

heterogeneous clusters with multiple platforms.

• RELEASE DIR: The directory where Condor is installed on each host. This macro

is defined in the global configuration file and is set by Condor’s installation program.

By default, the local configuration file is defined as

LOCAL_CONFIG_FILE = $(TILDE)/condor_config.local

14.5.2 Recommended Configuration File Layout for a Cluster

Ease of administration is an important consideration in a cluster, particularly if

you have a large number of nodes. To make Condor easy to configure, we highly

recommend that you install all of your Condor configuration files, even the per-node

local configuration files, on a shared file system. That way, you can easily make

changes in one place.

340 Chapter 14

You should use a subdirectory in your release directory for holding all of the

local configuration files. By default, Condor’s release directory contains an ‘etc’

directory for this purpose.

You should create separate files for each node in your cluster, using the hostname

as the first half of the filename, and “.local” as the end. For example, if your cluster

nodes are named “n01”, “n02” and so on, the files should be called ‘n01.local’,

‘n02.local’, and so on. These files should all be placed in your ‘etc’ directory.

In your global configuration file, you should use the following setting to describe

the location of your local configuration files:

LOCAL_CONFIG_FILE = $(RELEASE_DIR)/etc/$(HOSTNAME).local

The central manager of your pool needs special settings in its local configuration

file. These attributes are set automatically by the Condor installation program.

The rest of the local configuration files can be left empty at first.

Having your configuration files laid out in this way will help you more easily cus-

tomize Condor’s behavior on your cluster. We discuss other possible configuration

scenarios at the end of this chapter.

Note: We recommend that you store all of your Condor configuration files under

a version control system, such as CVS. While this is not required, it will help you

keep track of the changes you make to your configuration, who made them, when

they occurred, and why. In general, it is a good idea to store configuration files

under a version control system, since none of the above concerns are specific to

Condor.

14.5.3 Customizing Condor’s Policy Expressions

Certain configuration expressions are used to control Condor’s policy for execut-

ing, suspending, and evicting jobs. Their interaction can be somewhat complex.

Defining an inappropriate policy impacts the throughput of your cluster and the

happiness of its users. If you are interested in creating a specialized policy for your

pool, we recommend that you read the Condor Administrator’s Manual. Only a

basic introduction follows.

All policy expressions are ClassAd expressions and are defined in Condor’s con-

figuration files. Policies are usually poolwide and are therefore defined in the global

configuration file. If individual nodes in your pool require their own policy, however,

the appropriate expressions can be placed in local configuration files.

The policy expressions are treated by the condor startd as part of its machine

ClassAd (along with all the attributes you can view with condor_status -long).

Condor: A Distributed Job Scheduler 341

They are always evaluated against a job ClassAd, either by the condor negotiator

when trying to find a match or by the condor startd when it is deciding what to

do with the job that is currently running. Therefore, all policy expressions can

reference attributes of a job, such as the memory usage or owner, in addition to

attributes of the machine, such as keyboard idle time or CPU load.

Most policy expressions are ClassAd Boolean expressions, so they evaluate to

TRUE, FALSE, or UNDEFINED. UNDEFINED occurs when an expression refer-

ences a ClassAd attribute that is not found in either the machine’s ClassAd or the

ClassAd of the job under consideration. For some expressions, this is treated as

a fatal error, so you should be sure to use the ClassAd meta-operators, described

in Section 14.1.2 when referring to attributes which might not be present in all

ClassAds.

An explanation of policy expressions requires an understanding of the different

stages that a job can go through from initially executing until the job completes or

is evicted from the machine. Each policy expression is then described in terms of

the step in the progression that it controls.

The Lifespan of a Job Executing in Condor. When a job is submitted to

Condor, the condor negotiator performs matchmaking to find a suitable resource

to use for the computation. This process involves satisfying both the job and the

machine’s requirements for each other. The machine can define the exact conditions

under which it is willing to be considered available for running jobs. The job can

define exactly what kind of machine it is willing to use.

Once a job has been matched with a given machine, there are four states the job

can be in: running, suspended, graceful shutdown, and quick shutdown. As soon as

the match is made, the job sets up its execution environment and begins running.

While it is executing, a job can be suspended (for example, because of other

activity on the machine where it is running). Once it has been suspended, the job

can resume execution or can move on to preemption or eviction.

All Condor jobs have two methods for preemption: graceful and quick. Standard

Universe jobs are given a chance to produce a checkpoint with graceful preemption.

For the other universes, graceful implies that the program is told to get off the sys-

tem, but it is given time to clean up after itself. On all flavors of Unix, a SIGTERM

is sent during graceful shutdown by default, although users can override this default

when they submit their job. A quick shutdown involves rapidly killing all processes

associated with a job, without giving them any time to execute their own cleanup

procedures. The Condor system performs checks to ensure that processes are not

left behind once a job is evicted from a given node.

342 Chapter 14

Condor Policy Expressions. Various expressions are used to control the policy

for starting, suspending, resuming, and preempting jobs.

START: when the condor startd is willing to start executing a job.

RANK: how much the condor startd prefers each type of job running on it. The

RANK expression is a floating-point instead of a Boolean value. The condor startd

will preempt the job it is currently running if there is another job in the system

that yields a higher value for this expression.

WANT SUSPEND: controls whether the condor startd should even consider suspend-

ing this job or not. In effect, it determines which expression, SUSPEND or PREEMPT,

should be evaluated while the job is running. WANT SUSPEND does not control when

the job is actually suspended; for that purpose, you should use the SUSPEND expres-

sion.

SUSPEND: when the condor startd should suspend the currently running job. If

WANT SUSPEND evaluates to TRUE, SUSPEND is periodically evaluated whenever a job

is executing on a machine. If SUSPEND becomes TRUE, the job will be suspended.

CONTINUE: if and when the condor startd should resume a suspended job. The

CONTINUE expression is evaluated only while a job is suspended. If it evaluates

to TRUE, the job will be resumed, and the condor startd will go back to the

Claimed/Busy state.

PREEMPT: when the condor startd should preempt the currently running job. This

expression is evaluated whenever a job has been suspended. If WANT SUSPEND eval-

uates to FALSE, PREEMPT is checked while the job is executing.

WANT VACATE: whether the job should be evicted gracefully or quickly if Condor is

preempting a job (because the PREEMPT expression evaluates to TRUE). If WANT

VACATE is FALSE, the condor startd will immediately kill the job and all of its

child processes whenever it must evict the application. If WANT VACATE is TRUE,

the condor startd performs a graceful shutdown, instead.

KILL: when the condor startd should give up on a graceful preemption and move

directly to the quick shutdown.

PREEMPTION REQUIREMENTS: used by the condor negotiator when it is perform-

ing matchmaking, not by the condor startd. While trying to schedule jobs on

resources in your pool, the condor negotiator considers the priorities of the var-

ious users in the system (see Section 14.6.3 for more details). If a user with a

Condor: A Distributed Job Scheduler 343

better priority has jobs waiting in the queue and no resources are currently idle,

the matchmaker will consider preempting another user’s jobs and giving those re-

sources to the user with the better priority. This process is known as priority

preemption. The PREEMPTION REQUIREMENTS expression must evaluate to TRUE

for such a preemption to take place.

PREEMPTION RANK: a floating-point value evaluated by the condor negotiator. If

the matchmaker decides it must preempt a job due to user priorities, the macro

PREEMPTION RANK determines which resource to preempt. Among the set of all

resources that make the PREEMPTION REQUIREMENTS expression evaluate to TRUE,

the one with the highest value for PREEMPTION RANK is evicted.

14.5.4 Customizing Condor’s Other Configuration Settings

In addition to the policy expressions, you will need to modify other settings to

customize Condor for your cluster.

DAEMON LIST: the comma-separated list of daemons that should be spawned by

the condor master. As described in Section 14.3.1 discussing the architecture of

Condor, each host in your pool can play different roles depending on which daemons

are started on it. You define these roles using the DAEMON LIST in the appropriate

configuration files to enable or disable the various Condor daemons on each host.

DedicatedScheduler: the name of the dedicated scheduler for your cluster. This

setting must have the form

DedicatedScheduler = "DedicatedScheduler@full.host.name.here"

14.6 Administration Tools

Condor has a rich set of tools for the administrator. Table 14.2 gives an overview of

the Condor commands typically used solely by the system administrator. Of course,

many of the “user-level” Condor tools summarized in Table 14.2 can be helpful for

cluster administration as well. For instance, the condor status tool can easily

display the status for all nodes in the cluster, including dynamic information such

as current load average and free virtual memory.

14.6.1 Remote Configuration and Control

All machines in a Condor pool can be remotely managed from a centralized loca-

tion. Condor can be enabled, disabled, or restarted remotely using the condor on,

344 Chapter 14

Command Description
condor checkpoint Checkpoint jobs running on the specified hosts
condor config val Query or set a given Condor configuration variable
condor master off Shut down Condor and the condor master
condor off Shut down Condor daemons
condor on Start up Condor daemons
condor reconfig Reconfigure Condor daemons
condor restart Restart the condor master
condor stats Display historical information about the Condor pool
condor userprio Display and manage user priorities
condor vacate Vacate jobs that are running on the specified hosts

Table 14.2
Commands reserved for the administrator.

condor off, and condor restart commands, respectively. Additionally, any as-

pect of Condor’s configuration file on a node can be queried or changed remotely

via the condor config val command. Of course, not everyone is allowed to change

your Condor configuration remotely. Doing so requires proper authorization, which

is set up at installation time (see Section 14.4).

Many aspects of Condor’s configuration, including its scheduling policy, can be

changed on the fly without requiring the pool to be shut down and restarted.

This is accomplished by using the condor reconfig command, which asks the

Condor daemons on a specified host to reread the Condor configuration files and

take appropriate action—on the fly if possible.

14.6.2 Accounting and Logging

Condor keeps many statistics about what is happening in the pool. Each daemon

can be asked to keep a detailed log of its activities; Condor will automatically rotate

these log files when they reach a maximum size as specified by the administrator.

In addition to the condor history command, which allows users to view job

ClassAds for jobs that have previously completed, the condor stats tool can be

used to query for historical usage statistics from a poolwide accounting database.

This database contains information about how many jobs were being serviced for

each user at regular intervals, as well as how many machines were busy. For in-

stance, condor stats could be asked to display the total number of jobs running

at five-minute intervals for a specified user between January 15 and January 30.

The condor view tool takes the raw information obtainable with condor stats

and converts it into HTML, complete with interactive charts. Figure 14.7 shows

Condor: A Distributed Job Scheduler 345

a sample display of the output from condor view in a Web browser. The site ad-

ministrator, using condor view, can quickly put detailed, real-time usage statistics

about the Condor pool onto a Web site.

Figure 14.7
CondorView displaying machine usage.

14.6.3 User Priorities in Condor

The job queues in Condor are not strictly first-in, first-out. Instead, Condor im-

plements priority queuing. Different users will get different-sized allocations of

machines depending on their current user priority, regardless of how many jobs

from a competing user are “ahead” of them in the queue. Condor can also be

configured to perform priority preemption if desired. For instance, suppose user A

is using all the nodes in a cluster, when suddenly a user with a superior priority

submits jobs. With priority preemption enabled, Condor will preempt the jobs

of the lower-priority user in order to immediately start the jobs submitted by the

higher-priority user.

Image Not Available

346 Chapter 14

Starvation of the lower-priority users is prevented by a fair-share algorithm, which

attempts to give all users the same amount of machine allocation time over a

specified interval. In addition, the priority calculations in Condor are based on

ratios instead of absolutes. For example, if Bill has a priority that is twice as good

as that of Fred, Condor will not starve Fred by allocating all machines to Bill.

Instead, Bill will get, on average, twice as many machines as will Fred because

Bill’s priority is twice as good.

The condor userprio command can be used by the administrator to view or edit

a user’s priority. It can also be used to override Condor’s default fair-share policy

and explicitly assign users a better or worse priority in relation to other users.

14.7 Cluster Setup Scenarios

This section explores different scenarios for how to configure your cluster. Five

scenarios are presented, along with a basic idea of what configuration settings you

will need to modify or what steps you will need to take for each scenario:

1. A uniformly owned, dedicated compute cluster, with a single front-end node

for submission, and support for MPI applications.

2. A cluster of multiprocessor nodes.

3. A cluster of distributively owned nodes. Each node prefers to run jobs sub-

mitted by its owner.

4. Desktop submission to the cluster.

5. Expanding the cluster to nondedicated (desktop) computing resources.

Most of these scenarios can be combined. Each scenario builds on the previous

one to add further functionality to the basic cluster configuration.

14.7.1 Basic Configuration: Uniformly Owned Cluster

The most basic scenario involves a cluster where all resources are owned by a single

entity and all compute nodes enforce the same policy for starting and stopping

jobs. All compute nodes are dedicated, meaning that they will always start an idle

job and they will never preempt or suspend until completion. There is a single

front-end node for submitting jobs, and dedicated MPI jobs are enabled from this

host.

Condor: A Distributed Job Scheduler 347

In order to enable this basic policy, your global configuration file must contain

these settings:

START = True

SUSPEND = False

CONTINUE = False

PREEMPT = False

KILL = False

WANT_SUSPEND = True

WANT_VACATE = True

RANK = Scheduler =?= $(DedicatedScheduler)

DAEMON_LIST = MASTER, STARTD

The final entry listed here specifies that the default role for nodes in your pool

is execute-only. The DAEMON LIST on your front-end node must also enable the

condor schedd. This front-end node’s local configuration file will be

DAEMON_LIST = MASTER, STARTD, SCHEDD

14.7.2 Using Multiprocessor Compute Nodes

If any node in your Condor pool is a symmetric multiprocessor machine, Condor

will represent that node as multiple virtual machines (VMs), one for each CPU. By

default, each VM will have a single CPU and an even share of all shared system

resources, such as RAM and swap space. If this behavior satisfies your needs, you

do not need to make any configuration changes for SMP nodes to work properly

with Condor.

Some sites might want different behavior of their SMP nodes. For example,

assume your cluster was composed of dual-processor machines with 1 gigabyte of

RAM, and one of your users was submitting jobs with a memory footprint of 700

megabytes. With the default setting, all VMs in your pool would only have 500

megabytes of RAM, and your user’s jobs would never run. In this case, you would

want to unevenly divide RAM between the two CPUs, to give half of your VMs 750

megabytes of RAM. The other half of the VMs would be left with 250 megabytes

of RAM.

There is more than one way to divide shared resources on an SMP machine

with Condor, all of which are discussed in detail in the Condor Administrator’s

Manual. The most basic method is as follows. To divide shared resources on

an SMP unevenly, you must define different virtual machine types and tell the

348 Chapter 14

condor startd how many virtual machines of each type to advertise. The simplest

method to define a virtual machine type is to specify what fraction of all shared

resources each type should receive.

For example, if you wanted to divide a two-node machine where one CPU received

one-quarter of the shared resources, and the other CPU received the other three-

quarters, you would use the following settings:

VIRTUAL_MACHINE_TYPE_1 = 1/4

VIRTUAL_MACHINE_TYPE_2 = 3/4

NUM_VIRTUAL_MACHINES_TYPE_1 = 1

NUM_VIRTUAL_MACHINES_TYPE_2 = 1

If you want to divide certain resources unevenly but split the rest evenly, you

can specify separate fractions for each shared resource. This is described in detail

in the Condor Administrator’s Manual.

14.7.3 Scheduling a Distributively Owned Cluster

Many clusters are owned by more than one entity. Two or more smaller groups

might pool their resources to buy a single, larger cluster. In these situations, the

group that paid for a portion of the nodes should get priority to run on those nodes.

Each resource in a Condor pool can define its own RANK expression, which specifies

the kinds of jobs it would prefer to execute. If a cluster is owned by multiple entities,

you can divide the cluster’s nodes up into groups, based on ownership. Each node

would set Rank such that jobs coming from the group that owned it would have the

highest priority.

Assume there is a 60-node compute cluster at a university, shared by three de-

partments: astronomy, math, and physics. Each department contributed the funds

for 20 nodes. Each group of 20 nodes would define its own Rank expression. The

astronomy department’s settings, for example, would be

Rank = Department == "Astronomy"

The users from each department would also add a Department attribute to all of

their job ClassAds. The administrators could configure Condor to add this attribute

automatically to all job ads from each site (see the Condor Administrator’s Manual

for details).

If the entire cluster was idle and a physics user submitted 40 jobs, she would see

all 40 of her jobs start running. If, however, a user in math submitted 60 jobs and a

Condor: A Distributed Job Scheduler 349

user in astronomy submitted 20 jobs, 20 of the physicist’s jobs would be preempted,

and each group would get 20 machines out of the cluster.

If all of the astronomy department’s jobs completed, the astronomy nodes would

go back to serving math and physics jobs. The astronomy nodes would continue to

run math or physics jobs until either some astronomy jobs were submitted, or all

the jobs in the system completed.

14.7.4 Submitting to the Cluster from Desktop Workstations

Most organizations that install a compute cluster have other workstations at their

site. It is usually desirable to allow these machines to act as front-end nodes for

the cluster, so users can submit their jobs from their own machines and have the

applications execute on the cluster. Even if there is no shared file system between

the cluster and the rest of the computers, Condor’s remote system calls and file

transfer functionality can enable jobs to migrate between the two and still access

their data (see Section 14.2.5 for details on accessing data files).

To enable a machine to submit into your cluster, run the Condor installation

program and specify that you want to setup a submit-only node. This will set the

DAEMON LIST on the new node to be

DAEMON_LIST = MASTER, SCHEDD

The installation program will also create all the directories and files needed by

Condor.

Note that you can have only one node configured as the dedicated scheduler for

your pool. Do not attempt to add a second submit node for MPI jobs.

14.7.5 Expanding the Cluster to Nondedicated (Desktop) Computing

Resources

One of the most powerful features in Condor is the ability to combine dedicated and

opportunistic scheduling within a single system. Opportunistic scheduling involves

placing jobs on nondedicated resources under the assumption that the resources

might not be available for the entire duration of the jobs. Opportunistic scheduling

is used for all jobs in Condor with the exception of dedicated MPI applications.

If your site has a combination of jobs and uses applications other than MPI,

you should strongly consider adding all of your computing resources, even desktop

workstations, to your Condor pool. With checkpointing and process migration, sus-

pend and resume capabilities, opportunistic scheduling and matchmaking, Condor

can harness the idle CPU cycles of any machine and put them to good use.

350 Chapter 14

To add other computing resources to your pool, run the Condor installation

program and specify that you want to configure a node that can both submit and

execute jobs. The default installation sets up a node with a policy for starting,

suspending, and preempting jobs based on the activity of the machine (for example,

keyboard idle time and CPU load). These nodes will not run dedicated MPI jobs,

but they will run jobs from any other universe, including PVM.

14.8 Conclusion

Condor is a powerful tool for scheduling jobs across platforms, both within and

beyond the boundaries of your Beowulf clusters. Through its unique combination of

both dedicated and opportunistic scheduling, Condor provides a unified framework

for high-throughput computing.

15 Maui Scheduler: A Multifunction Cluster Scheduler

David B. Jackson

In this chapter we describe the Maui scheduler, a job-scheduling component that

can interact with a number of different resource managers.

Like virtually every major development project, Maui grew out of a pressing need.

In Maui’s case, various computing centers including the Maui High-Performance

Computing Center, Pacific Northwest National Laboratory, San Diego Supercom-

puter Center, and Argonne National Laboratory were investing huge sums of money

in new, top-of-the-line hardware, only to be frustrated by the inability to use these

new resources in an efficient or controlled manner. While existing resource man-

agement systems allowed the basic ability to submit and run jobs, they did not

empower the site to maximize the use of the cluster. Sites could not translate local

mission policies into scheduling behavior, and the scheduling decisions that were

made were often quite suboptimal. Worse, the resulting system was often so com-

plex that management, administrators, and users were unable to tell how well the

system was running or what could be done to improve it.

Maui was designed to address these issues and has been developed and tested

over the years at many leading-edge computing centers. It was built to enable sites

to control, understand, and use their clusters effectively. Maui picks up where many

scheduling systems leave off, providing a suite of advanced features in the areas of

reservations, backfill, fairshare, job prioritization, quality of service, metaschedul-

ing, and more.

15.1 Overview

Maui is an external scheduler, meaning it does not include a resource manager but

rather extends the capabilities of the existing resource manager. Maui uses the

native scheduling APIs of OpenPBS, PBSPro and Loadleveler to obtain system

information and direct cluster scheduling activities. While the underlying resource

manager continues to maintain responsibility for managing nodes and tracking jobs,

Maui controls the decisions of when, where, and how jobs will run.

System administrators control Maui via a master config file, maui.cfg, and text

or Web-based administrator commands. On the other hand, end users are not

required to learn any new commands or job submission language, and need not

even know that Maui has been installed. While Maui provides numerous commands

to provide users with additional job information and control, these commands are

optional and may be introduced to the users as needed.

352 Chapter 15

15.2 Installation and Initial Configuration

The Maui scheduler is available in many of the most popular cluster-building tool-

kits, including Rocks and OSCAR. For the most recent version of Maui, you can

download the code from the Maui home page at supercluster.org/maui. This

site also contains online documentation, FAQs, links to the Maui users mailing

list, and other standard open source utilities. To build the code once it has been

downloaded, you need simply to issue the standard configure, make, and make

install.

15.2.1 Basic Configuration

The configure script will prompt you for some basic information regarding the

install directory and desired resource manager type. It then creates the Maui

home directory, builds executables in the bin subdirectory, and copies these to the

install directory. Finally, the script creates an initial maui.cfg file using tem-

plates located in the samples subdirectory and user-supplied information. This

file is a flat text config file used for virtually all scheduler configuration and con-

tains a number of parameters that should be verified, particularly, SERVERHOST,

SERVERMODE, and ADMIN1. Initially, these should be set to the name of the host

where Maui will run, NORMAL, and the user name of the Maui administrator, re-

spectively. At any time when Maui is running, the schedctl command can be used

with the ‘-l’ flag to list the value of any parameter whether explicitly set or not,

while the ‘-m’ flag can be used to dynamically modify parameter values. The online

parameters documentation provides further details about these and all other Maui

parameters.

15.2.2 Simulation and Testing

With the initial configuration complete, the next step is testing the scheduler to

become familiar with its capabilities and to verify basic functionality. Maui can

be run in a completely safe manner by setting SERVERMODE to TEST. In test mode,

Maui contacts the resource manager to obtain up-to-date configuration, node, and

job information; however, in this mode, interfaces to start or modify these jobs

are disabled. To start Maui, you must make the parameter changes and issue

the command maui. You may also use commands such as showq, diagnose, and

checknode to verify proper scheduler-resource manager communication and sched-

uler functionality. Full details on the suite of Maui commands are available online

or in documentation included with your distribution.

Maui Scheduler: A Multifunction Cluster Scheduler 353

15.2.3 Production Scheduling

Once you’ve taken the scheduler for a test drive and have verified its proper be-

havior, you can run Maui live by disabling the default scheduler and changing the

SERVERMODE parameter to NORMAL. Information on disabling the default resource

manager scheduler is provided in the resource manager’s documentation and in the

online Maui migration guides located at supercluster.org/documentation/maui.

These changes will allow Maui to start, modify, and cancel jobs according to the

specified scheduling policies.

Out of the box, Maui essentially duplicates the behavior of a vanilla cluster sched-

uler, providing first-in, first-out scheduling with backfill enabled. The parameters

documentation explains in detail each of the parameters needed to enable advanced

scheduling features. In most cases, each site will require only a small subset of the

available parameters to meet local needs.

15.3 Advanced Configuration

With the initial configuration and testing completed, you can now configure Maui

to end your administration pilgrimage and reach the long-sought cluster mecca—

running the right jobs at the right time, in the right way, at the right place. To

this end, Maui can be thought of as an integrated scheduling toolkit providing

a number of capabilities that may be used individually or together to obtain the

desired system behavior. These include

• job prioritization,

• node allocation policies,

• throttling policies,

• fairshare,

• reservations,

• allocation management,

• quality of service,

• backfill,

• node sets, and

• preemption policies.

Each of these is described below. While this coverage will be adequate to intro-

duce and initially configure these capabilities, you should consult the online Maui

Administrators Manual for full details. We reiterate that while Maui possesses a

354 Chapter 15

wide range of features and associated parameters, most capabilities are disabled by

default; thus, a site need configure only the features of interest.

15.3.1 Assigning Value: Job Prioritization and Node Allocation

In general, prioritization is the process of determining which of many options best

fulfills overall goals. n the case of scheduling, a site will often have multiple, in-

dependent goals that may include maximizing system utilization, giving preference

to users in specific projects, or making certain that no job sits in the queue for

more than a given period of time. One approach to representing a multifaceted

set of site goals is to assign weights to the various objectives so an overall value or

priority can be associated with each potential scheduling decision. With the jobs

prioritized, the scheduler can roughly fulfill site objectives by starting the jobs in

priority order.

Maui was designed to allow component and subcomponent weights to be asso-

ciated with many aspects of a job. To realize this fine-grained control, Maui uses

a simple priority-weighting hierarchy where the contribution of a priority factor

is calculated as PRIORITY-FACTOR-VALUE * SUBFACTORWEIGHT * FACTORWEIGHT.

Component and subcomponent weights are listed in Table 15.1. Values for all

weights may be set in the maui.cfg file by using the associated component-weight

parameter specified as the name of the weight followed by the string WEIGHT (e.g.,

SERVICEWEIGHT or PROCWEIGHT).

By default, Maui runs jobs in order of actual submission, using the QUEUETIME.

By using priority components, however, you can incorporate additional information,

such as current level of service, service targets, resources requested, and historical

usage. You can also limit the contribution of any component, by specifying a

priority component cap, such as RESOURCECAP. A job’s priority is equivalent to the

sum of all enabled priority factors.

Each component or subcomponent may be used for different purposes. WALLTIME

can be used to favor (or disfavor) jobs based on their duration; ACCOUNT can be

used to favor jobs associated with a particular project; QUEUETIME can be used

to favor those jobs that have been waiting the longest. By mixing and matching

priority weights, sites generally obtain the desired job-start behavior. At any time,

you can issue the diagnose -p command to determine the impact of the current

priority-weight settings on idle jobs.

While most subcomponents are metric based (i.e., number of seconds queued or

number of nodes requested), the credential subcomponents are based on priorities

specified by the administrator. Maui allows you to use the *CFG parameters to rank

Maui Scheduler: A Multifunction Cluster Scheduler 355

Component Subcomponent

SERVICE (Level of QUEUETIME (Current queue time in minutes)

Service) XFACTOR (Current expansion factor)

BYPASS (Number of times jobs were bypassed via backfill)

TARGET (Proximity to Ser-
vice

TARGETQUEUETIME (Delta to queue-time target in minutes)

Target - Exponential) TARGETXFACTOR (Delta to Xfactor target)

RESOURCE (Resources PROC (Processors)

Requested) MEM (Requested memory in MBytes)

SWAP (Requested virtual memory in MBytes)

DISK (Requested local disk in MBytes)

NODE (Requested number of nodes)

WALLTIME (Requested wall time in seconds)

PS (Requested processor-seconds)

PE (Requested processor-equivalents)

FS (Fairshare) FSUSER (User fairshare percentage)

FSGROUP (Group fairshare percentage)

FSACCOUNT (Account fairshare percentage)

FSCLASS (Class fairshare percentage)

FSQOS (QoS fairshare percentage)

CRED (Credential) USER (User priority)

GROUP (Group priority)

ACCOUNT (Account priority)

CLASS (Class priority)

QOS (QoS priority)

Table 15.1
Maui priority components.

jobs by individual job credentials. For example, to favor jobs submitted by users

bob and john and members of the group staff, a site might specify the following:

USERCFG[bob] PRIORITY=100

USERCFG[john] PRIORITY=500

GROUPWEIGHT[staff] PRIORITY=1000

USERWEIGHT 1

GROUPWEIGHT 1

CREDWEIGHT 1

Note that both component and subcomponent weights are specified to enable these

credential priorities to take effect. Further details about the use of these com-

356 Chapter 15

ponent factors, as well as anecdotal usage information, are available in the Maui

Administrators Manual.

Complementing the issue of job prioritization is that of node allocation. When

the scheduler selects a job to run, it must also determine which resources to allocate

to the job. Depending on the use of the cluster, you can specify different policies

by using NODEALLOCATIONPOLICY. Legal parameter values include the following:

• MINRESOURCE: This algorithm selects the nodes with the minimum configured

resources which still meet the requirements of the job. The algorithm leaves more

richly endowed nodes available for other jobs that may specifically request these

additional resources.

• LASTAVAILABLE: This algorithm is particularly useful when making reservations

for backfill. It determines the earliest time a job can run and then selects the

resources available at a time such that, whenever possible, currently idle resources

are left unreserved and are thus available for backfilling.

• NODEPRIORITY: This policy allows a site to create its own node allocation priori-

tization scheme, taking into account issues such as installed software or other local

node configurations.

• CPULOAD: This policy attempts to allocate the most lightly loaded nodes first.

15.3.2 Fairness: Throttling Policies and Fairshare

The next issue most often confronting sites is fairness. Fairness seems like a simple

concept but can be terribly difficult to map onto a cluster. Should all users get to

run the same number of jobs or use the same number of nodes? Do these usage

constraints cover the present time only or a specified time frame? If historical

information is used, what is the metric of consumption? What is the time frame?

Does fair consumption necessarily mean equal consumption? How should resources

be allocated if user X bought two-thirds of the nodes and user Y purchased the

other third? Is fairness based on a static metric, or is it conditional on current

resource demand?

While Maui is not able to address all these issues, it does provide some flexible

tools that help with 90 percent of the battle. Specifically, these tools are throttling

policies and fairshare used to control immediate and historical usage, respectively.

Throttling Policies. The term “throttling policies” is collectively applied to

a set of policies that constrain instantaneous resource consumption. Maui sup-

ports limits on the number of processors, nodes, proc-seconds, jobs, and proces-

sor equivalents allowed at any given time. Limits may be applied on a per user,

group, account, QoS, or queue basis via the *CFG set of parameters. For example,

Maui Scheduler: A Multifunction Cluster Scheduler 357

specifying USERCFG[bob] MAXJOB=3 MAXPROC=32 will constrain user bob to run-

ning no more than 3 jobs and 32 total processors at any given time. Specifying

GROUPCFG[DEFAULT] MAXNODE=64 will limit each group to using no more than 64

nodes simultaneously unless overriding limits for a particular group are specified.

ACCOUNTCFG, QOSCFG, and CLASSCFG round out the *CFG family of parameters

providing a means to throttle instantaneous use on accounts, QoS’s, and classes,

respectively.

With each of the parameters, hard and soft limits can be used to apply a form

of demand -sensitive limits. While hard limits cannot be violated under any condi-

tions, soft limits may be violated if no other jobs can run. For example, specifying

USERCFG[DEFAULT] MAXNODE=16,24 will allow each user to cumulatively allocate

up to 16 nodes while jobs from other users can use available resources. If no other

jobs can use these resources, a user may run on up to 24 nodes simultaneously.

Throttling policies are effective in preventing cluster “hogging” by an individ-

ual user or group. They also provide a simple mechanism of fairness and cycle

distribution. Such policies may lead to lower overall system utilization, however.

For instance, resources might go unused if these policies prevent all queued jobs

from running. When possible, throttling policies should be set to the highest feasi-

ble level, and the cycle distribution should be managed by tools such as fairshare,

allocation management systems, and QoS-based prioritization.

Fairshare. A typical fairshare algorithm attempts to deliver a fair resource dis-

tribution over a given time frame. As noted earlier, however, this general statement

leaves much to interpretation. In particular, how is the distribution to be measured,

and what time frame should be used?

Maui provides the parameter FSPOLICY to allow each site to determine how re-

source distribution is to be measured, and the parameters FSINTERVAL, FSDEPTH,

and FSDECAY to determine how historical usage information is to be weighted.

To control resource distribution, Maui uses fairshare targets that can be applied

to users, groups, accounts, queues, and QoS mechanisms with both default and

specific targets available. Each target may be one of four different types: target,

floor, ceiling, or cap. In most cases, Maui adjusts job priorities to meet fairshare

targets. With the standard target, Maui attempts to adjust priorities at all times in

an attempt to meet the target. In the case of floors, Maui will increase job priority

only to maintain at least the targeted usage. With ceilings, the converse occurs.

Finally, with fairshare caps, job eligibility rather than job priority is adjusted to

prevent jobs from running if the cap is exceeded during the specified fairshare

interval.

358 Chapter 15

The example below shows a possible fairshare configuration.

maui.cfg

FSPOLICY DEDICATEDPS

FSDEPTH 7

FSINTERVAL 24:00:00

FSDECAY 0.80

USERCFG[DEFAULT] FSTARGET=10.0

USERCFG[john] FSTARGET=25.0+

GROUPCFG[staff] FSTARGET=20.0-

In this case, fairshare usage will track delivered system processor seconds over a

seven-day period with a 0.8 decay factor. All users will have a fairshare target of

10 percent of these processor seconds—with the exception of john, who will have

a floor of 25 percent. Also, the group staff will have a fairshare ceiling of 20

percent. At any time, you can examine the fairshare status of the system by using

the diagnose -f command.

15.3.3 Managing Resource Access: Reservations, Allocation Managers,

and Quality of Service

In managing any cluster system, half of the administrative effort involves config-

uring it to handle the steady-state situation. The other half occurs when a very

important user has a special one-time request. Maui provides two features, advance

reservations and QoS, to handle many types of such special requests.

Advance Reservations. Reservations allow a site to set aside a block of re-

sources for various purposes such as cluster maintenance, special user projects, or

benchmarking nodes. In order to create a reservation, a start and end time must

be determined, as well as the resources to be reserved and a list of those who can

access these resources. Reservations can be created dynamically by scheduler ad-

ministrators using the setres command or managed directly by Maui via config

file parameters.

For example, to reserve nodeA and nodeB for a four-hour maintenance at 2:30

P.M., you could issue the following command:

> setres -s 14:30 -d 4:00:00 ’node[AB]’

Maui Scheduler: A Multifunction Cluster Scheduler 359

A reservation request can specify allocation of particular resources or a given quan-

tity of resources. The following reservation will allocate 20 processors to users john

and sam starting on April 14 at 5:00 P.M.

> setres -u john:sam -s 17:00_04/14 TASKS==20

With no duration or end time specified, this reservation will default to an infinite

length and will remain in place until removed by a scheduler administrator using

the releaseres command.

Access to reservations is controlled by an access control list (ACL). Reservation

access is based on job credentials, such as user or group, and job attributes, such

as wall time requested. Reservation ACLs can include multiple access types and

individuals. For example, a reservation might reserve resources for users A and B,

jobs in class C, and jobs that request less than 30 minutes of wall time. Reservations

may also overlap each other if desired, in which case access is granted only if the

job meets the access policies of all active reservations.

At many sites, reservations are used on a permanent or periodic basis. In such

cases, it is best to use standing reservations. Standing reservations allow a site to

apply reservations as an ongoing part of cluster policies. The parameter SRPERIOD

can be set to DAY, WEEK, or INFINITE to indicate the periodicity of the reservation,

with additional parameters available to determine what time of the day or week the

reservation should be enabled. For example, the following configuration will create

a reservation named development that, during primetime hours, will set aside 16

nodes for exclusive use by jobs requiring less than 30 minutes.

SRPERIOD[development] DAY

SRDAYS[development] Mon Tue Wed Thu Fri

SRSTARTTIME[development] 8:00:00

SRENDTIME[development] 17:00:00

SRMAXTIME[development] 00:30:00

SRTASKCOUNT[development] 16

At times, a site may want to allow access to a set of resources only if there are

no other resources available. Maui enables this conditional usage through reser-

vation affinity. When specifying any reservation access list, each access value can

be associated with positive, negative, or neutral affinity by using the ‘+’, ‘-’, or

‘=’ characters. If nothing is specified, positive affinity is assumed. For example,

consider the following reservation line:

SRUSERLIST[special] bob john steve= bill-

360 Chapter 15

With this specification, bob and john’s jobs receive the default positive affinity and

are essentially attracted to the reservation. For these jobs, Maui will attempt to use

resources in the special reservation first, before considering any other resources.

Jobs belonging to steve, on the other hand, can use these resources but are not

attracted to them. Finally, bill’s jobs will use resources in the special reservation

only if no other resources are available. You can get detailed information about

reservations by using the showres and diagnose -r commands.

Allocation Managers. Allocation management systems allow a site to control

total resource access in real time. While interfaces to support other systems exist,

the allocation management system most commonly used with the Maui scheduler is

QBank (http://www.emsl.pnl.gov:80/mscf/docs/qbank-2.9), provided by Pa-

cific Northwest National Laboratory. This system and others like it allow sites

to provide distinct resource allocations much like the creation of a bank account.

As jobs run, the resources used are translated into a charge and debited from the

appropriate account. In the case of QBank, expiration dates may be associated

with allocations, private and shared accounts maintained, per machine allocations

created, and so forth.

Within Maui, the allocation manager interface is controlled through a set of

BANK* parameters such as in the example below:

BANKTYPE QBANK

BANKHOST bank.univ.edu

BANKCHARGEPOLICY DEBITSUCCESSFULWC

BANKDEFERJOBONFAILURE TRUE

BANKFALLBACKACCOUNT freecycle

This configuration enables a connection to an allocation manager located on

bank.univ.edu using the QBank interface. The unit of charge is configured to be

dedicated processor-seconds and users will be charged only if their job completes

successfully. If the job does not have adequate allocations in the specified account,

Maui will attempt to redirect the job to use allocations in the freecycle account.

In many cases, a fallback account is configured so as to be associated with lower

priorities and/or additional limitations. If the job is not approved by the allocation

manager, Maui will defer the job for a period of time and try it again later.

Quality of Service. Maui’s QoS feature allows sites to control access to special

functions, resources, and service levels. Each QoS consists of an access control

list controlling which users, groups, accounts, and job queues can access the QoS

Maui Scheduler: A Multifunction Cluster Scheduler 361

privileges. Associated with each QoS are special service-related priority weights

and service targets. Additionally, each QoS can be configured to span resource

partitions, preempt other jobs, and the like.

Maui also enables a site to charge a premium rate for the use of some QoS

services. For example, the following configuration will cause user john’s jobs to use

QoS hiprio by default and allow members of the group bio to access it by request:

USERCFG[john] QLIST=hiprio:normal QDEF=hiprio

GROUPCFG[bio] QLIST=hiprio:medprio:development QDEF=medprio

QOSCFG[hiprio] PRIORITY=50 QTTARGET=30 FLAGS=PREEMPTOR:IGNMAXJOB \

MAXPROC=150

Jobs using QoS hiprio receive the following privileges and constraints:

• A priority boost of 50 * QOSWEIGHT * DIRECTWEIGHT

• A queue-time target of 30 minutes

• The ability to preempt lower priority PREEMPTEE jobs

• The ability to ignore MAXJOB policy limits defined elsewhere

• A cumulative limit of 150 processors allocated to QoS hiprio jobs

A site may have dozens of QoS objects described and may allow users access to

any number of these. Depending on the type of service desired, users may then

choose the QoS that best meets their needs.

15.3.4 Optimizing Usage: Backfill, Node Sets, and Preemption

The Maui scheduler provides several features to optimize performance in terms of

system utilization, job throughput, and average job turnaround time.

Backfill. Backfill is a now common method used to improve both system utiliza-

tion and average job turnaround time by running jobs out of order. Backfill, simply

put, enables the scheduler to run any job so long as it does not delay the start of

jobs of higher priority. Generally, the algorithm prevents delay of high-priority jobs

through some form of reservation. Backfill can be thought of as a process of filling

in the resource holes left by the high priority jobs. Since holes are being filled,

it makes sense that the jobs most commonly backfilled are the ones requiring the

least time and/or resources. With backfill enabled, sites typically report system

utilization improvements of 10 to 25% and a slightly lower average job queue time.

By default, backfill scheduling is enabled in Maui under control of the param-

eter BACKFILLPOLICY. While the default configuration generally is adequate, sites

may want to adjust the job selection policy, the reservation policy, the depth of

362 Chapter 15

reservations, or other aspects of backfill scheduling. You should consult the online

documentation for details about associated parameters.

Allocation Based on Node Set. While backfill improves the scheduler’s per-

formance, this is only half the battle. The efficiency of a cluster, in terms of actual

work accomplished, is a function of both scheduling performance and individual job

efficiency. In many clusters, job efficiency can vary from node to node as well as

with the node mix allocated. Since most parallel jobs written in popular languages

such as MPI or PVM do not internally load balance their workload, they run only

as fast as the slowest node allocated. Consequently, these jobs run most effectively

on homogeneous sets of nodes. While many clusters start out as homogeneous, how-

ever, they quickly evolve as new generations of compute nodes are integrated into

the system. Research has shown that this integration, while improving scheduling

performance due to increased scheduler selection, can actually decrease average job

efficiency.

A feature called node sets allows jobs to request sets of common resources with-

out specifying exactly what resources are required. Node set policy can be specified

globally or on a per job basis and can be based on node processor speed, memory,

network interfaces, or locally defined node attributes. In addition to forcing jobs

onto homogeneous nodes, these policies may also be used to guide jobs to one or

more types of nodes on which a particular job performs best, similar to job prefer-

ences available in other systems. For example, an I/O-intensive job may run best

on a certain range of processor speeds, running slower on slower nodes while wast-

ing cycles on faster nodes. A job may specify ANYOF:PROCSPEED:450:500:650 to

request nodes in the range of 450 to 650 MHz. Alternatively, if a simple procspeed-

homogeneous node set is desired, ONEOF:PROCSPEED may be specified. On the other

hand, a communication-sensitive job may request a network-based node set with

the configuration ONEOF:NETWORK:via:myrinet:ethernet, in which case Maui will

first attempt to locate adequate nodes where all nodes contain VIA network inter-

faces. If such a set cannot be found, Maui will look for sets of nodes containing

the other specified network interfaces. In highly heterogeneous clusters, the use of

node sets has been found to improve job throughput by 10 to 15 percent.

Preemption. Many sites possess workloads of varying importance. While it may

be critical that some jobs obtain resources immediately, other jobs are less sensitive

to turnaround time but have an insatiable hunger for compute cycles, consuming

every available cycle for years on end. These latter jobs often have turnaround

times on the order of weeks or months. The concept of cycle stealing, popularized

by systems such as Condor, handles such situations well and enables systems to run

Maui Scheduler: A Multifunction Cluster Scheduler 363

low-priority preemptible jobs whenever something more pressing is not running.

These other systems are often employed on compute farms of desktops where the

jobs must vacate whenever interactive system use is detected.

Maui’s QoS-based preemption system allows a dedicated, noninteractive cluster

to be used in much the same way. Certain QoS objects may be marked with

the flag PREEMPTOR and others with the flag PREEMPTEE. With this configuration,

low-priority “preemptee” jobs can be started whenever idle resources are available.

These jobs will be allowed to run until a “preemptor” job arrives, at which point the

preemptee job will be checkpointed if possible and vacated. This strategy allows

almost immediate resource access for the preemptor job. Using this approach, a

cluster can maintain nearly 100 percent system utilization while still delivering

excellent turnaround time to the jobs of greatest value.

Use of the preemption system need not be limited to controlling low-priority jobs.

Other uses include optimistic scheduling and development job support.

15.3.5 Evaluating System Performance: Diagnostics, Profiling, Testing,

and Simulation

High-performance computing clusters are complicated. First, such clusters have an

immense array of attributes that affect overall system performance, including pro-

cessor speed, memory, networks, I/O systems, enterprise services, and application

and system software. Second, each of these attributes is evolving over time, as is

the usage pattern of the system’s users. Third, sites are presented with an equally

immense array of buttons, knobs, and levers which they can push, pull, kick, and

otherwise manipulate. How does one evaluate the success of a current configura-

tion? And how does one establish a causal effect between pushing one of the many

provided buttons and improved system performance when the system is constantly

changing in multiple simultaneous dimensions?

To help alleviate this problem, Maui offers several useful features.

Diagnostics. Maui possesses many internal diagnostic functions that both locate

problems and present system state information. For example, the priority diagnos-

tic aggregates priority relevant information, presenting configuration settings and

their impact on the current idle workload; administrators can see the contribution

associated with each priority factor on a per job and systemwide average basis.

The node diagnostic presents significant node-relevant information together with

messages regarding any unexpected conditions. Other diagnostics are available for

jobs, reservations, QoS, fairshare, priorities, fairness policies, users, groups, and

accounts.

364 Chapter 15

Profiling Current and Historical Usage. Maui maintains internal statistics

and records detailed information about each job as it completes. The showstats

command provides detailed usage information for users, groups, accounts, nodes,

and the system as a whole. The showgrid command presents scheduler performance

statistics in a job size/duration matrix to aid in analyzing the effectiveness of current

policies.

The completed job statistics are maintained in a flat file located in the stats

directory. These statistics are useful for two primary purposes: driving simulations

(described later) and profiling actual system usage. The profiler command allows

the processing of these historical scheduler statistics and generation of usage reports

for specific time frames or for selected users, groups, accounts, or types of jobs.

Testing. To test new policies, you can run a TEST mode instance of Maui con-

currently with the production scheduler. This allows a site to analyze the effects

of the new policies on the scheduling behavior of the test instance, while safely

running the production workload under tried and true policies. When running an

instance of Maui in test mode, it is often best to create a second Maui directory

with associated log and stats subdirectories. To run multiple, concurrent Maui

instances, you should take the following into account:

• Configuration file: The test version of Maui should have its own maui.cfg file

to allow specification of the SERVERMODE parameter and allow policy differences as

needed by the test.

• User interface port: To avoid conflicts between different scheduler instances

and client commands, the test version of the maui.cfg file should specify a unique

parameter value for SERVERPORT.

• Log and statistics files: Both production and test runs will create and update

log and statistics files. To avoid file conflicts, each instance of the scheduler should

point to different files using the LOGDIR and STATDIR parameters.

• Home directory: When Maui was initially installed, the configure script

prompted for a home directory where the default maui.cfg file could be found.

To run multiple instances of Maui, you should override this default by using the

-c command line flag or by specifying the environment variable MAUIHOMEDIR. The

latter approach is most often used, with the variable set to the new home direc-

tory before starting the test version of the scheduler or running test version client

commands.

Once the test version is started, all scheduler behavior will be identical to the

production system with the exception that Maui’s ability to start, cancel, or other-

Maui Scheduler: A Multifunction Cluster Scheduler 365

wise modify jobs is disabled. You can, however, observe Maui’s behavior under the

new set of policies and validate the scheduler either directly via client commands

or indirectly by analyzing the Maui log files.

Simulation. Simulation allows a site to specify a workload and resource con-

figuration trace file. These traces, specified via the SIMWORKLOADTRACEFILE and

SIMRESOURCETRACEFILE, can accurately and reproducibly replicate the workload

and resources recorded at the site. To run a simulation, an adjusted maui.cfg file

is created with the policies of interest in place and the parameter SERVERMODE set to

SIMULATION. Once started, Maui can be stepped through simulated time using the

schedctl command. All Maui commands continue to function as before, allowing

interactive querying of status, adjustment to parameters, or even submission or

cancellation of jobs.

This feature enables sites to analyze the impact of different scheduling policies on

their own workload and system configuration. The effects of new reservations or job

prioritizations can be evaluated in a zero-exposure environment, allowing sites to

determine ideal policies without experimenting on a production system. Sites can

also evaluate the impact of additional or modified workloads or changes in available

resources. What impact will removing a block of resources for maintenance have on

average queue time? How much benefit will a new reservation dedicated exclusively

to development jobs have on development job turnaround time? How much pain

will it cause nondevelopment jobs? Using simulation makes it easier to obtaining

answers to such questions.

This same simulation feature can be used to test a new algorithm against work-

load and resource traces from various supercomputing centers. Moreover, with the

simulator, you can create and plug in modules to emulate the behavior of various

job types on different hardware platforms, across bottlenecking networks, or under

various data migration conditions.

The capabilities and use of simulation cannot be adequately covered in a chapter

of this size. Further information is given in the Simulation section of the Maui

Administrators Manual.

15.4 Steering Workload and Improving Quality of Information

A good scheduler can improve the use of a cluster significantly, but its effectiveness

is limited by the scheduling environment in which it must work and the quality of

information it receives. Often, a cluster is underutilized because users overestimate

a job’s resource requirements. Other times, inefficiencies crop up when users request

366 Chapter 15

job constraints in terms of job duration or processors required that are not easily

packed onto the cluster. Maui provides tools to allow fine tuning of job resource

requirement information and steering of cluster workload so as to allow maximum

utilization of the system.

One such tool is a feedback interface, which allows a site to report detailed job

usage statistics to users. This interface provides information about the resources

requested and those actually used. Using the FEEDBACKPROGRAM parameter, local

scripts can be executed that use this information to help users improve resource

requirement estimates. For example, a site with nodes with various memory con-

figurations may choose to create a script such as the following that automates the

mailing of notices at job completion:

Job 1371 completed successfully}. Note that it requested nodes

with 512 MBytes of RAM yet used only 112 MBytes. Had the job provided a

more accurate estimate, it would have, on average, started 02:27:16

earlier.

Such notices can be used to improve memory, disk, processor, and wall-time esti-

mates. Another route that is often used is to set the allocation manager charge

policy so that users are charged for requested resources rather than used resources.

The showbf command is designed to help tailor jobs that can run immediately.

This command allows you to specify details about your desired job (such as user,

group, queue, and memory requirements) and returns information regarding the

quantity of available nodes and the duration of their availability.

A final area of user feedback is job scaling. Often, users will submit parallel jobs

that scale only moderately scale, hoping that by requesting more processors, their

job will run faster and provide results sooner. A job’s completion time is simply the

sum of its queue time plus its execution time. Users often fail to realize that a larger

job may be more difficult to schedule, resulting in a longer queue time, and may run

less efficiently, with a sublinear speedup. The increased queue-time delay, together

with the limitations in execution time improvements, generally results in larger

jobs having a greater average turnaround time than smaller jobs performing the

same work. Maui commands such as showgrid can provide real-time job efficiency

and average queue-time stats correlated to job size. The output of the profiler

command can also be used to provide per user job efficiency and average queue

time correlated by job size and can alert administrators and users to this problem.

Maui Scheduler: A Multifunction Cluster Scheduler 367

15.5 Troubleshooting

When troubleshooting scheduling issues, you should start with Maui’s diagnostic

and informational commands. The diagnose command together with checknode

and checkjob provides detailed state information about the scheduler, including its

various facilities, nodes, and jobs. Additionally, each of these commands initiates

an extensive internal sanity check in the realm of interest. Results of this check

are reported in the form of WARNING messages appended to the normal command

output. Use of these commands typically identifies or resolves 95 percent of all

scheduling issues.

If you need further information, Maui writes out detailed logging infor-

mation in the directory pointed to by the LOGFILE parameter (usually in

${MAUIHOME}/log/maui.log). Using the LOGLEVEL and LOGFACILITY parameters,

you can control the verbosity and focus of these logs. (Note, however, that these

logs can become very verbose, so keeping the LOGLEVEL below 4 or so unless

actually tracking problems is advised.) These logs contain a number of entries,

including the following:

INFO: provides status information about normal scheduler operations.

WARNING: indicates that an unexpected condition was detected and handled.

ALERT: indicates that an unexpected condition occurred that could not be fully

handled.

ERROR: indicates that problem was detected that prevents Maui from fully operat-

ing. This may be a problem with the cluster that is outside of Maui’s control or

may indicate corrupt internal state information.

Function header: indicates when a function is called and the parameters passed.

A simple grep through the log file will usually indicate whether any serious

issues have been detected and is of significant value when obtaining support or

locally diagnosing problems. If neither commands nor logs point to the source of

the problem, you may consult the Maui users list (mauiusers@supercluster.org)

or directly contact Supercluster support at support@supercluster.org.

15.6 Conclusions

This chapter has introduced some of the key Maui features currently available. With

hundreds of sites now using and contributing to this open source project, Maui is

368 Chapter 15

evolving and improving faster than ever. To learn about the latest developments

and to obtain more detailed information about the capabilities described above, see

the Maui home page at www.supercluster.org/maui.

16 PBS: Portable Batch System

James Patton Jones

The Portable Batch System (PBS) is a flexible workload management and job

scheduling system originally developed to manage aerospace computing resources at

NASA. PBS has since become the leader in supercomputer workload management

and the de facto standard job scheduler for Linux.

Today, growing enterprises often support hundreds of users running thousands

of jobs across different types of machines in different geographical locations. In

this distributed heterogeneous environment, it can be extremely difficult for ad-

ministrators to collect detailed, accurate usage data or to set systemwide resource

priorities. As a result, many computing resources are left underused, while others

are overused. At the same time, users are confronted with an ever-expanding array

of operating systems and platforms. Each year, scientists, engineers, designers, and

analysts waste countless hours learning the nuances of different computing environ-

ments, rather than being able to focus on their core priorities. PBS addresses these

problems for computing-intensive industries such as science, engineering, finance,

and entertainment.

PBS allows you to unlock the potential in the valuable assets you already have,

while at the same time reducing demands on system administrators, freeing them

to focus on other activities. PBS can also help you effectively manage growth by

tracking use levels across your systems and enhancing effective utilization of future

purchases.

16.1 History of PBS

In the past, computers were used in a completely interactive manner. Background

jobs were just processes with their input disconnected from the terminal. As the

number of processors in computers continued to increase, however, the need to

be able to schedule tasks based on available resources rose in importance. The

advent of networked compute servers, smaller general systems, and workstations

led to the requirement of a networked batch scheduling capability. The first such

Unix-based system was the Network Queueing System (NQS) from NASA Ames

Research Center in 1986. NQS quickly became the de facto standard for batch

queuing.

Over time, distributed parallel systems began to emerge, and NQS was inade-

quate to handle the complex scheduling requirements presented by such systems.

In addition, computer system managers wanted greater control over their compute

resources, and users wanted a single interface to the systems. In the early 1990s

370 Chapter 16

NASA needed a solution to this problem, but after finding nothing on the market

that adequately addressed their needs, led an international effort to gather require-

ments for a next-generation resource management system. The requirements and

functional specification were later adopted as an IEEE POSIX standard (1003.2d).

Next, NASA funded the development of a new resource management system com-

pliant with the standard. Thus the Portable Batch System was born.

PBS was quickly adopted on distributed parallel systems and replaced NQS on

traditional supercomputers and server systems. Eventually the entire industry

evolved toward distributed parallel systems, taking the form of both special-purpose

and commodity clusters. Managers of such systems found that the capabilities of

PBS mapped well onto cluster systems.

The latest chapter in the PBS story began when Veridian (the research and

development contractor that developed PBS for NASA) released the Portable Batch

System Professional Edition (PBS Pro), a complete workload management solution.

The cluster administrator can now choose between two versions of PBS: OpenPBS,

an older Open Source release of PBS; and PBS Pro, the new hardened and enhanced

commercial version.

This chapter gives a technical overview of PBS and information on installing,

using, and managing both versions of PBS. However, it is not possible to cover all

the details of a software system the size and complexity of PBS in a single chapter.

Therefore, we limit this discussion to the recommended configuration for Linux

clusters, providing references to the various PBS documentation where additional,

detailed information is available.

16.1.1 Acquiring PBS

While both OpenPBS and PBS Pro are bundled in a variety of cluster kits, the best

sources for the most current release of either product are the official Veridian PBS

Web sites: www.OpenPBS.org and www.PBSpro.com. Both sites offers downloads of

the software and documentation, as well as FAQs, discussion lists, and current PBS

news. Hardcopy documentation, support services, training and PBS Pro software

licenses are available from the PBS Online Store, accessed through the PBS Pro

Web site.

16.1.2 PBS Features

PBS Pro provides many features and benefits to the cluster administrator. A few

of the more important features are the following:

PBS: Portable Batch System 371

Enterprisewide resource sharing provides transparent job scheduling on any PBS

system by any authorized user. Jobs can be submitted from any client system, both

local and remote, crossing domains where needed.

Multiple user interfaces provide a graphical user interface for submitting batch

and interactive jobs; querying job, queue, and system status; and monitoring job

progress. Also provided is a traditional command line interface.

Security and access control lists permit the administrator to allow or deny access

to PBS systems on the basis of username, group, host, and/or network domain.

Job accounting offers detailed logs of system activities for charge-back or usage

analysis per user, per group, per project, and per compute host.

Automatic file staging provides users with the ability to specify any files that

need to be copied onto the execution host before the job runs and any that need to

be copied off after the job completes. The job will be scheduled to run only after

the required files have been successfully transferred.

Parallel job support works with parallel programming libraries such as MPI,

PVM, and HPF. Applications can be scheduled to run within a single multiprocessor

computer or across multiple systems.

System monitoring includes a graphical user interface for system monitoring.

PBS displays node status, job placement, and resource utilization information for

both standalone systems and clusters.

Job interdependency enables the user to define a wide range of interdependencies

between jobs. Such dependencies include execution order, synchronization, and

execution conditioned on the success or failure of another specific job (or set of

jobs).

Computational Grid support provides an enabling technology for meta-computing

and computational Grids, including support for the Globus Toolkit.

Comprehensive API includes a complete application programming interface for

sites that wish to integrate PBS with other applications or to support unique job-

scheduling requirements.

Automatic load-leveling provides numerous ways to distribute the workload across

a cluster of machines, based on hardware configuration, resource availability, key-

board activity, and local scheduling policy.

Distributed clustering allows customers to use physically distributed systems and

clusters, even across wide area networks.

Common user environment offers users a common view of the job submission,

job querying, system status, and job tracking over all systems.

372 Chapter 16

Cross-system scheduling ensures that jobs do not have to be targeted to a specific

computer system. Users may submit their job and have it run on the first available

system that meets their resource requirements.

Job priority allows users the ability to specify the priority of their jobs; defaults

can be provided at both the queue and system level.

User name mapping provides support for mapping user account names on one

system to the appropriate name on remote server systems. This allows PBS to fully

function in environments where users do not have a consistent username across all

the resources they have access to.

Full configurability makes PBS easily tailored to meet the needs of different sites.

Much of this flexibility is due to the unique design of the scheduler module, which

permits complete customization.

Broad platform availability is achieved through support of Windows 2000 and

every major version of Unix and Linux, from workstations and servers to super-

computers. New platforms are being supported with each new release.

System integration allows PBS to take advantage of vendor-specific enhancements

on different systems (such as supporting cpusets on SGI systems and interfacing

with the global resource manager on the Cray T3E).

For a comparison of the features available in the latest versions of OpenPBS

and PBS Pro, visit the PBS Product Comparison Web page: www.OpenPBS.org/

product_comparison.html.

16.1.3 PBS Architecture

PBS consists of two major component types: user-level commands and system

daemons. A brief description of each is given here to help you make decisions

during the installation process.

PBS supplies both command-line programs that are POSIX 1003.2d conforming

and a graphical interface. These are used to submit, monitor, modify, and delete

jobs. These client commands can be installed on any system type supported by PBS

and do not require the local presence of any of the other components of PBS. There

are three classifications of commands: user commands that any authorized user can

use, operator commands, and manager (or administrator) commands. Operator and

manager commands require specific access privileges. (See also the security sections

of the PBS Administrator Guide.)

The job server daemon is the central focus for PBS. Within this document, it

is generally referred to as the Server or by the execution name pbs_server. All

commands and the other daemons communicate with the Server via an Internet

Protocol (IP) network. The Server’s main function is to provide the basic batch

PBS: Portable Batch System 373

services such as receiving or creating a batch job, modifying the job, protecting the

job against system crashes, and running the job. Typically, one Server manages a

given set of resources.

The job executor is the daemon that actually places the job into execution. This

daemon, pbs_mom, is informally called MOM because it is the mother of all execut-

ing jobs. (MOM is a reverse-engineered acronym that stands for Machine Oriented

Mini-server.) MOM places a job into execution when it receives a copy of the job

from a Server. MOM creates a new session as identical to a user login session as

possible. For example, if the user’s login shell is csh, then MOM creates a session

in which .login is run as well as .cshrc. MOM also has the responsibility for

returning the job’s output to the user when directed to do so by the Server. One

MOM daemon runs on each computer that will execute PBS jobs.

The job scheduler daemon, pbs_sched, implements the site’s policy controlling

when each job is run and on which resources. The Scheduler communicates with the

various MOMs to query the state of system resources and with the Server to learn

about the availability of jobs to execute. The interface to the Server is through

the same API (discussed below) as used by the client commands. Note that the

Scheduler interfaces with the Server with the same privilege as the PBS manager.

16.2 Using PBS

From the user’s perspective, a workload mangement system enables you to make

more efficient use of your time by allowing you to specify the tasks you need run

on the cluster. The system takes care of running these tasks and returning the

results to you. If the cluster is full, then it holds your tasks and runs them when

the resources are available.

With PBS you create a batch job that you then submit to PBS. A batch job is

a shell script containing the set of commands you want run on the cluster. It also

contains directives that specify the resource requirements (such as memory or CPU

time) that your job needs. Once you create your PBS job, you can reuse it, if you

wish, or you can modify it for subsequent runs. Example job scripts are shown

below.

PBS also provides a special kind of batch job called interactive batch. This job is

treated just like a regular batch job (it is queued up and must wait for resources to

become available before it can run). But once it is started, the user’s terminal input

and output are connected to the job in what appears to be an rlogin session. It

appears that the user is logged into one of the nodes of the cluster, and the resources

374 Chapter 16

requested by the job are reserved for that job. Many users find this feature useful

for debugging their applications or for computational steering.

PBS provides two user interfaces: a command-line interface (CLI) and a graphical

user interface (GUI). You can use either to interact with PBS: both interfaces have

the same functionality.

16.2.1 Creating a PBS Job

Previously we mentioned that a PBS job is simply a shell script containing resource

requirements of the job and the command(s) to be executed. Here is what a sample

PBS job might look like the following:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l mem=400mb

#PBS -l ncpus=4

#PBS -j oe

cd ${HOME}/PBS/test

mpirun -np 4 myprogram

This script would then be submitted to PBS using the qsub command.

Let us look at the script for a moment. The first line tells what shell to use to

interpret the script. Lines 2–4 are resource directives, specifying arguments to the

“resource list” (“-l”) option of qsub. Note that all PBS directives begin with #PBS.

These lines tell PBS what to do with your job. Any qsub option can also be placed

inside the script by using a #PBS directive. However, PBS stops parsing directives

with the first blank line encountered.

Returning to our example above, we see a request for 1 hour of wall-clock time,

400 MBytes of memory and 4 CPUs. The fifth line is a request for PBS to merge

the stdout and stderr file streams of the job into a single file. The last two lines are

the commands the user wants executed: change directory to a particular location,

then execute an MPI program called ‘myprogram’.

This job script could have been created in one of two ways: using a text editor,

or using the xpbs graphical interface (see below).

16.2.2 Submitting a PBS Job

The command used to submit a job to PBS is qsub. For example, say you created a

file containing your PBS job called ‘myscriptfile’. The following example shows

how to submit the job to PBS:

PBS: Portable Batch System 375

% qsub myscriptfile

12322.sol.pbspro.com

The second line in the example is the job identifier returned by the PBS server.

This unique identifier can be used to act on this job in the future (before it completes

running). The next section of this chapter discusses using this “job id” in various

ways.

The qsub command has a number of options that can be specified either on the

command-line or in the job script itself. Note that any command-line option will

override the same option within the script file.

Table 16.1 lists the most commonly used options to qsub. See the PBS User

Guide for the complete list and full description of the options.

Option Purpose
-l list List of resources needed by job

-q queue Queue to submit job to
-N name Name of job
-S shell Shell to execute job script

-p priority Priority value of job
-a datetime Delay job under after datetime

-j oe Join output and error files
-h Place a hold on job

Table 16.1
PBS commands.

The “-l resource_list” option is used to specify the resources needed by the

job. Table 16.2 lists all the resources available to jobs running on clusters.

16.2.3 Getting the Status of a PBS Job

Once the job has been submitted to PBS, you can use either the qstat or xpbs

commands to check the job status. If you know the job identifier for your job, you

can request the status explicitly. Note that unless you have multiple clusters, you

need only specify the sequence number portion of the job identifier:

% qstat 12322

Job id Name User Time Use S Queue

------------- ------------ ------ -------- - -----

12322.sol myscriptfile jjones 00:06:39 R submit

376 Chapter 16

Resource Meaning
arch System architecture needed by job
cput CPU time required by all processes in job
file Maximum single file disk space requirements
mem Total amount of RAM memory required
ncpus Number of CPUs (processors) required
nice Requested “nice” (Unix priority) value
nodes Number and/or type of nodes needed
pcput Maximum per-process CPU time required
pmem Maximum per-process memory required

wall time Total wall-clock time needed
workingset Total disk space requirements

Table 16.2
PBS resources.

If you run the qstat command without specifing a job identifier, then you will

receive status on all jobs currently queued and running.

Often users wonder why their job is not running. You can query this information

from PBS using the “-s” (status) option of qstat, for example,

% qstat 12323

Job id Name User Time Use S Queue

------------- ------------ ------ -------- - -----

12323.sol myscriptfile jjones 00:00:00 Q submit

Requested number of CPUs not currently available.

A number of options to qstat change what information is displayed. The PBS

User Guide gives the complete list.

16.2.4 PBS Command Summary

So far we have seen several of the PBS user commands. Table 16.3 is provided as

a quick reference for all the PBS user commands. Details on each can be found in

the PBS manual pages and the PBS User Guide.

16.2.5 Using the PBS Graphical User Interface

PBS provides two GUI interfaces: a TCL/TK-based GUI called xpbs and an op-

tional Web-based GUI.

The GUI xpbs provides a user-friendly point-and-click interface to the PBS com-

mands. To run xpbs as a regular, nonprivileged user, type

PBS: Portable Batch System 377

Command Purpose
qalter Alter job(s)
qdel Delete job(s)
qhold Hold job(s)
qmsg Send a message to job(s)
qmove Move job(s) to another queue
qrls Release held job(s)
qrerun Rerun job(s)
qselect Select a specific subset of jobs
qsig Send a signal to job(s)
qstat Show status of job(s)
qsub Submit job(s)
xpbs Graphical Interface (GUI) to PBS commands

Table 16.3
PBS commands.

setenv DISPLAY your_workstation_name:0

xpbs

To run xpbs with the additional purpose of terminating PBS Servers, stopping and

starting queues, or running or rerunning jobs, type

xpbs -admin

Note that you must be identified as a PBS operator or manager in order for the

additional “-admin” functions to take effect.

The optional Web-based user interface provides access to all the functionality of

xpbs via almost any Web browser. To access it, you simply type the URL of your

PBS Server host into your browser. The layout and usage are similar to those of

xpbs. For details, see The PBS User Guide.

16.2.6 PBS Application Programming Interface

Part of the PBS package is the PBS Interface Library, or IFL. This library provides

a means of building new PBS clients. Any PBS service request can be invoked

through calls to the interface library. Users may wish to build a PBS job that will

check its status itself or submit new jobs, or they may wish to customize the job

status display rather than use the qstat command. Administrators may use the

interface library to build new control commands.

The IFL provides a user-callable function that corresponds to each PBS client

command. There is (approximately) a one-to-one correlation between commands

378 Chapter 16

and PBS service requests. Additional routines are provided for network connection

management. The user-callable routines are declared in the header file ‘PBS_ifl.h’.

Users request service of a batch server by calling the appropriate library routine

and passing it the required parameters. The parameters correspond to the options

and operands on the commands. The user must ensure that the parameters are in

the correct syntax. Each function will return zero upon success and a nonzero error

code on failure. These error codes are available in the header file ‘PBS_error.h’.

The library routine will accept the parameters and build the corresponding batch

request. This request is then passed to the server communication routine. (The

PBS API is fully documented in the PBS External Reference Specification.)

16.3 Installing PBS

PBS is able to support a wide range of configurations. It may be installed and used

to control jobs on a single system or to load balance jobs on a number of systems.

It may be used to allocate nodes of a cluster or parallel system to both serial and

parallel jobs. It can also deal with a mix of these situations. However, given the

topic of this book, we focus on the recommended configuration for clusters. The

PBS Administrator Guide explains other configurations.

When PBS is installed on a cluster, a MOM daemon must be on each execution

host, and the Server and Scheduler should be installed on one of the systems or on

a front-end system.

For Linux clusters, PBS is packaged in the popular RPM format (Red Hat’s

Package Manager). (See the PBS Administrator Guide for installation instructions

on other systems.) PBS RPM packages are provided as a single tar file containing

• the PBS Administrator Guide in both Postscript and PDF form,

• the PBS User Guide in both Postscript and PDF form (PBS Pro only),

• multiple RPM packages for different components of PBS (see below),

• a full set of Unix-style manual pages, and

• supporting text files: software license, README, release notes, and the like.

When the PBS tar file is extracted, a subtree of directories is created in which

all these files are created. The name of the top-level directory of this subtree will

reflect the release number and patch level of the version of PBS being installed.

For example, the directory for PBS Pro 5.1 will be named ‘PBSPro_5_1_0’.

To install PBS Pro, change to the newly created directory, and run the installation

program:

PBS: Portable Batch System 379

cd PBSPro_5_1_0

./INSTALL

The installation program will prompt you for the names of directories for the dif-

ferent parts of PBS and the type of installation (full, server-only, execution host

only). Next, you will be prompted for your software license key(s). (See Section

16.1.1 if you do not already have your software license key.)

For OpenPBS, there are multiple RPMs corresponding to the different installa-

tion possibilities: full installation, execution host only, or client commands only.

Select the correct RPM for your installation; then install it manually:

cd pbspro_v5.1

rpm -i RPMNAME...

Note that in OpenPBS, the RPMs will install into predetermined locations under

‘/usr/pbs’ and ‘/usr/spool/PBS’.

16.4 Configuring PBS

Now that PBS has been installed, the Server and MOMs can be configured and

the scheduling policy selected. Note that further configuration of may not be re-

quired since PBS Pro comes preconfigured, and the default configuration may com-

pletely meet your needs. However, you are advised to read this section to determine

whether the defaults are indeed complete for you or whether any of the optional

settings may apply.

16.4.1 Network Addresses and PBS

PBS makes use of fully qualified host names for identifying the jobs and their

location. A PBS installation is known by the host name on which the Server is

running. The name used by the daemons or used to authenticate messages is the

canonical host name. This name is taken from the primary name field, h_name,

in the structure returned by the library call gethostbyaddr(). According to the

IETF RFCs, this name must be fully qualified and consistent for any IP address

assigned to that host.

16.4.2 The Qmgr Command

The PBS manager command, qmgr, provides a command-line administrator inter-

face. The command reads directives from standard input. The syntax of each

380 Chapter 16

directive is checked and the appropriate request sent to the Server(s). A qmgr

directive takes one of the following forms:

command server [names] [attr OP value[,...]]

command queue [names] [attr OP value[,...]]

command node [names] [attr OP value[,...]]

where command is the command to perform on an object. The qmgr commands are

listed in Table 16.4.

Command Explanation
active Set the active objects.
create Create a new object, applies to queues and nodes.
delete Destroy an existing object (queues or nodes).
set Define or alter attribute values of the object.
unset Clear the value of the attributes of the object.
list List the current attributes and values of the object.
print Print all the queue and server attributes.

Table 16.4
qmgr commands.

The list or print subcommands of qmgr can be executed by the general user.

Creating or deleting a queue requires PBS Manager privilege. Setting or unsetting

server or queue attributes requires PBS Operator or Manager privilege.

Here are several examples that illustrate using the qmgr command. These and

other qmgr commands are fully explained below, along with the specific tasks they

accomplish.

% qmgr

Qmgr: create node mars np=2,ntype=cluster

Qmgr: create node venus properties="inner,moonless"

Qmgr: set node mars properties = inner

Qmgr: set node mars properties += haslife

Qmgr: delete node mars

Qmgr: d n venus

Commands can be abbreviated to their minimum unambiguous form (as shown

in the last line in the example above). A command is terminated by a new line

character or a semicolon. Multiple commands may be entered on a single line.

A command may extend across lines by marking the new line character with a

PBS: Portable Batch System 381

backslash. Comments begin with a pound sign and continue to the end of the line.

Comments and blank lines are ignored by qmgr. See the qmgr manual page for

detailed usage and syntax description.

16.4.3 Nodes

Where jobs will be run is determined by an interaction between the Scheduler and

the Server. This interaction is affected by the contents of the PBS ‘nodes’ file and

the system configuration onto which you are deploying PBS. Without this list of

nodes, the Server will not establish a communication stream with the MOM(s),

and MOM will be unable to report information about running jobs or to notify the

Server when jobs complete. In a cluster configuration, distributing jobs across the

various hosts is a matter of the Scheduler determining on which host to place a

selected job.

Regardless of the type of execution nodes, each node must be defined to the Server

in the PBS nodes file, (the default location of which is ‘/usr/spool/PBS/server_-

priv/nodes’). This is a simple text file with the specification of a single node per

line in the file. The format of each line in the file is

node_name[:ts] [attributes]

The node name is the network name of the node (host name), it does not have to

be fully qualified (in fact, it is best kept as short as possible). The optional “:ts”

appended to the name indicates that the node is a timeshared node.

Nodes can have attributes associated with them. Attributes come in three types:

properties, name=value pairs, and name.resource=value pairs.

Zero or more properties may be specified. The property is nothing more than

a string of alphanumeric characters (first character must be alphabetic) without

meaning to PBS. Properties are used to group classes of nodes for allocation to a

series of jobs.

Any legal node name=value pair may be specified in the node file in the same

format as on a qsub directive: attribute.resource=value. Consider the following

example:

NodeA resource_available.ncpus=3 max_running=1

The expression np=Nmay be used as shorthand for resources_available.ncpus=N,

which can be added to declare the number of virtual processors (VPs) on the node.

This syntax specifies a numeric string, for example, np=4. This expression will allow

the node to be allocated up to N times to one job or more than one job. If np=N is

not specified for a cluster node, it is assumed to have one VP.

382 Chapter 16

You may edit the nodes list in one of two ways. If the server is not running, you

may directly edit the nodes file with a text editor. If the server is running, you

should use qmgr to edit the list of nodes.

Each item on the line must be separated by white space. The items may be listed

in any order except that the host name must always be first. Comment lines may

be included if the first nonwhite space character is the pound sign.

The following is an example of a possible nodes file for a cluster called “planets”:

The first set of nodes are cluster nodes.

Note that the properties are provided to

logically group certain nodes together.

The last node is a timeshared node.

#

mercury inner moonless

venus inner moonless np=1

earth inner np=1

mars inner np=2

jupiter outer np=18

saturn outer np=16

uranus outer np=14

neptune outer np=12

pluto:ts

16.4.4 Creating or Adding Nodes

After pbs_server is started, the node list may be entered or altered via the qmgr

command:

create node node_name [attribute=value]

where the attributes and their associated possible values are shown in Table 16.5.

Below are several examples of setting node attributes via qmgr:

% qmgr

Qmgr: create node mars np=2,ntype=cluster

Qmgr: create node venus properties="inner,moonless"

Once a node has been created, its attributes and/or properties can be modified

by using the following qmgr syntax:

set node node_name [attribute[+|-]=value]

PBS: Portable Batch System 383

Attribute Value

state free, down, offline
properties any alphanumeric string
ntype cluster, time-shared
resources_available.ncpus (np) number of virtual processors > 0
resources_available list of resources available on node
resources_assigned list of resources in use on node
max_running maximum number of running jobs
max_user_run maximum number of running jobs per user
max_group_run maximum number of running jobs per group
queue queue name (if any) associated with node
reservations list of reservations pending on the node
comment general comment

Table 16.5
PBS node syntax.

where attributes are the same as for create, for example,

% qmgr

Qmgr: set node mars properties=inner

Qmgr: set node mars properties+=haslife

Nodes can be deleted via qmgr as well, using the delete node syntax, as the

following example shows:

% qmgr

Qmgr: delete node mars

Qmgr: delete node pluto

Note that the busy state is set by the execution daemon, pbs_mom, when a load-

average threshold is reached on the node. See max_load in MOM’s config file. The

job-exclusive and job-sharing states are set when jobs are running on the node.

16.4.5 Default Configuration

Server management consist of configuring the Server and establishing queues and

their attributes. The default configuration, shown below, sets the minimum server

settings and some recommended settings for a typical PBS cluster.

% qmgr

Qmgr: print server

Create queues and set their attributes

384 Chapter 16

#

Create and define queue workq

#

create queue workq

set queue workq queue_type = Execution

set queue workq enabled = True

set queue workq started = True

#

Set Server attributes

#

set server scheduling = True

set server default_queue = workq

set server log_events = 511

set server mail_from = adm

set server query_other_jobs = True

set server scheduler_iteration = 600

16.4.6 Configuring MOM

The execution server daemons, MOMs, require much less configuration than does

the Server. The installation process creates a basic MOM configuration file that

contains the minimum entries necessary in order to run PBS jobs. This section

describes the MOM configuration file and explains all the options available to cus-

tomize the PBS installation to your site.

The behavior of MOM is controlled via a configuration file that is read upon

daemon initialization (startup) and upon reinitialization (when pbs_mom receives a

SIGHUP signal). The configuration file provides several types of runtime informa-

tion to MOM: access control, static resource names and values, external resources

provided by a program to be run on request via a shell escape, and values to pass to

internal functions at initialization (and reinitialization). Each configuration entry

is on a single line, with the component parts separated by white space. If the line

starts with a pound sign, the line is considered to be a comment and is ignored.

A minimal MOM configuration file should contain the following:

$logevent 0x1ff

$clienthost server-hostname

The first entry, $logevent, specifies the level of message logging this daemon should

perform. The second entry, $clienthost, identifies a host that is permitted to

PBS: Portable Batch System 385

connect to this MOM. You should set the server-hostname variable to the name of

the host on which you will be running the PBS Server (pbs_server). Advanced

MOM configuration options are described in the PBS Administrator Guide.

16.4.7 Scheduler Configuration

Now that the Server and MOMs have been configured, we turn our attention to the

PBS Scheduler. As mentioned previously, the Scheduler is responsible for imple-

menting the local site policy regarding which jobs are run and on what resources.

This section discusses the recommended configuration for a typical cluster. The full

list of tunable Scheduler parameters and detailed explanation of each is provided

in the PBS Administrator Guide.

The PBS Pro Scheduler provides a wide range of scheduling policies. It provides

the ability to sort the jobs in several different ways, in addition to FIFO order. It

also can sort on user and group priority. The queues are sorted by queue priority

to determine the order in which they are to be considered. As distributed, the

Scheduler is configured with the defaults shown in Table 16.6.

Option Default Value
round_robin False

by_queue True

strict_fifo False

load_balancing False

load_balancing_rr False

fair_share False

help_starving_jobs True

backfill True

backfill_prime False

sort_queues True

sort_by shortest_job_first

smp_cluster_dist pack

preemptive_sched True

Table 16.6
Default scheduling policy parameters.

Once the Server and Scheduler are configured and running, job scheduling can

be initiated by setting the Server attribute scheduling to a value of true:

qmgr -c "set server scheduling=true"

386 Chapter 16

The value of scheduling is retained across Server terminations or starts. After the

Server is configured, it may be placed into service.

16.5 Managing PBS

This section is intended for the PBS administrator: it discusses several important

aspects of managing PBS on a day-to-day basis.

During the installation of PBS Pro, the file ‘/etc/pbs.conf’ was created. This

configuration file controls which daemons are to be running on the local system.

Each node in a cluster should have its own ‘/etc/pbs.conf’ file.

16.5.1 Starting PBS Daemons

The daemon processes (pbs_server, pbs_sched, and pbs_mom) must run with

the real and effective uid of root. Typically, the daemons are started automat-

ically by the system upon reboot. The boot-time start/stop script for PBS is

‘/etc/init.d/pbs’. This script reads the ‘/etc/pbs.conf’ file to determine which

daemons should be started.

The startup script can also be run by hand to get status on the PBS daemons,

and to start/stop all the PBS daemons on a given host. The command line syntax

for the startup script is

/etc/init.d/pbs [status | stop | start]

Alternatively, you can start the individual PBS daemons manually, as discussed

in the following sections. Furthermore, you may wish to change the options specified

to various daemons, as discussed below.

16.5.2 Monitoring PBS

The node monitoring GUI for PBS is xpbsmon. It is used for displaying graphically

information about execution hosts in a PBS environment. Its view of a PBS en-

vironment consists of a list of sites where each site runs one or more Servers and

each Server runs jobs on one or more execution hosts (nodes).

The system administrator needs to define the site’s information in a global X re-

sources file, ‘PBS_LIB/xpbsmon/xpbsmonrc’, which is read by the GUI if a personal

‘.xpbsmonrc’ file is missing. A default ‘xpbsmonrc’ file is created during installa-

tion defining (under *sitesInfo resource) a default site name, the list of Servers

that run on the site, the set of nodes (or execution hosts) where jobs on a particular

Server run, and the list of queries that are communicated to each node’s pbs_mom.

PBS: Portable Batch System 387

If node queries have been specified, the host where ‘xpbsmon’ is running must have

been given explicit permission by the pbs_mom daemon to post queries to it; this is

done by including a $restricted entry in the MOM’s config file.

16.5.3 Tracking PBS Jobs

Periodically you (or the user) will want track the status of a job. Or perhaps you

want to view all the log file entries for a given job. Several tools allow you to track

a job’s progress, as Table 16.7 shows.

Command Explanation
qstat Shows status of jobs, queues, and servers
xpbs Can alert user when job starts producing output
tracejob Collates and sorts PBS log entries for specified job

Table 16.7
Job-tracking commands.

16.5.4 PBS Accounting Logs

The PBS Server daemon maintains an accounting log. The log name defaults

to ‘/usr/spool/PBS/server_priv/accounting/yyyymmdd’ where yyyymmdd is the

date. The accounting log files may be placed elsewhere by specifying the -A option

on the pbs_server command line. The option argument is the full (absolute) path

name of the file to be used. If a null string is given, for example

pbs_server -A ""

then the accounting log will not be opened, and no accounting records will be

recorded.

The accounting file is changed according to the same rules as the log files. If the

default file is used, named for the date, the file will be closed and a new one opened

every day on the first event (write to the file) after midnight. With either the

default file or a file named with the -A option, the Server will close the accounting

log and reopen it upon the receipt of a SIGHUP signal. This strategy allows you

to rename the old log and start recording anew on an empty file. For example, if

the current date is December 1, the Server will be writing in the file ‘20011201’.

The following actions will cause the current accounting file to be renamed ‘dec1’

and the Server to close the file and starting writing a new ‘20011201’.

mv 20011201 dec1

kill -HUP (pbs_server’s PID)

388 Chapter 16

16.6 Troubleshooting

The following is a list of common problems and recommended solutions. Additional

information is always available on the PBS Web sites.

16.6.1 Clients Unable to Contact Server

If a client command (such as qstat or qmgr) is unable to connect to a Server there

are several possible errors to check. If the error return is 15034, No server to connect

to, check (1) that there is indeed a Server running and (2) that the default Server

information is set correctly. The client commands will attempt to connect to the

Server specified on the command line if given or, if not given, the Server specified

in the default server file, ‘/usr/spool/PBS/default_server’.

If the error return is 15007, No permission, check for (2) as above. Also check

that the executable pbs_iff is located in the search path for the client and that it

is setuid root. Additionally, try running pbs_iff by typing

pbs_iff server_host 15001

where server_host is the name of the host on which the Server is running and

15001 is the port to which the Server is listening (if started with a different port

number, use that number instead of 15001). The executable pbs_iff should print

out a string of garbage characters and exit with a status of 0. The garbage is the

encrypted credential that would be used by the command to authenticate the client

to the Server. If pbs_iff fails to print the garbage and/or exits with a nonzero

status, either the Server is not running or it was installed with a different encryption

system from that used for pbs_iff.

16.6.2 Nodes Down

The PBS Server determines the state of nodes (up or down), by communicating

with MOM on the node. The state of nodes may be listed by two commands: qmgr

and pbsnodes.

% qmgr

Qmgr: list node @active

% pbsnodes -a

Node jupiter

state = down, state-unknown

properties = sparc, mine

PBS: Portable Batch System 389

ntype = cluster

A node in PBS may be marked down in one of two substates. For example, the

state above of node “jupiter” shows that the Server has not had contact with MOM

on that since the Server came up. Check to see whether a MOM is running on the

node. If there is a MOM and if the MOM was just started, the Server may have

attempted to poll her before she was up. The Server should see her during the next

polling cycle in ten minutes. If the node is still marked down, state-unknown after

ten minutes, either the node name specified in the Server’s node file does not map

to the real network hostname or there is a network problem between the Server’s

host and the node.

If the node is listed as

% pbsnodes -a

Node jupiter

state = down

properties = sparc, mine

ntype = cluster

then the Server has been able to communicate with MOM on the node in the past,

but she has not responded recently. The Server will send a ping PBS message to

every free node each ping cycle (10 minutes). If a node does not acknowledge the

ping before the next cycle, the Server will mark the node down.

16.6.3 Nondelivery of Output

If the output of a job cannot be delivered to the user, it is saved in a special

directory ‘/usr/spool/PBS/undelivered’ and mail is sent to the user. The typical

causes of nondelivery are the following:

• The destination host is not trusted and the user does not have a .rhost file.

• An improper path was specified.

• A directory in the specified destination path is not writable.

• The user’s .cshrc on the destination host generates output when executed.

The ‘/usr/spool/PBS/spool’ directory on the execution host does not have the

correct permissions. This directory must have mode 1777 (drwxrwxrwxt).

16.6.4 Job Cannot Be Executed

If a user receives a mail message containing a job identifier and the line “Job

cannot be executed,” the job was aborted by MOM when she tried to place it into

390 Chapter 16

execution. The complete reason can be found in one of two places: MOM’s log file

or the standard error file of the user’s job.

If the second line of the message is “See Administrator for help,” then MOM

aborted the job before the job’s files were set up. The reason will be noted in

MOM’s log. Typical reasons are a bad user/group account or a system error.

If the second line of the message is “See job standard error file,” then MOM had

already created the job’s file, and additional messages were written to standard

error.

17 PVFS: Parallel Virtual File System

Walt Ligon and Rob Ross

An increasing number of cluster-based systems are being used for applications

that involve not only a significant computational component but also a large amount

of I/O. These applications consume or produce very large data sets, generate large

checkpoint dumps, or use very large databases. In these situations, a Beowulf com-

puter may be especially attractive because each node of the cluster includes a fully

functional I/O subsystem. By using all of the available I/O hardware as a parallel

I/O system, you can realize serious performance gains at low cost. As is typically

the case in Beowulf systems, the key ingredient is software that allows these hard-

ware resources to be orchestrated for use in high-performance applications. In this

chapter we discuss parallel file systems—software that allows all of the disks in

a cluster to be used as a single high-performance storage resource. In particular,

we present details of the Parallel Virtual File Systems (PVFS), an open source

implementation of a parallel file system designed for use on Beowulf computers.

17.1 Introduction

In this section we discuss in general terms what a parallel file system is, what one

can do, and when it might be appropriate to use one. We also cover ways to use a

parallel file system in parallel applications and issues that might affect performance.

Subsequent sections present the details of installing and using PVFS.

17.1.1 Parallel File Systems

A parallel file system (PFS) is system software for a parallel computer that pro-

vides data distribution and parallel access. Data distribution allows file data to

be distributed among disks attached to different nodes of the computer. Parallel

access facilitates coordinated access to that file data by the multiple tasks of a par-

allel application. The primary goal of a parallel file system is to provide very high

performance I/O access to large data sets for parallel applications. This point is as

important in what it does not say as in what it does say. In particular, parallel file

systems may not provide especially good performance for single-task applications.

Parallel file systems may not provide especially low latency for small random ac-

cesses. Parallel file systems may not provide redundancy or other means of security

or reliability. That said, the designer of any file system strives to incorporate these

features to the extent possible, but in the case of a parallel file system these con-

siderations are typically secondary to the goal of high-performance access to large

data sets.

392 Chapter 17

For purposes of this discussion, a parallel computer is a collection of processor

nodes connected with an interconnection network. Some of these nodes have I/O

devices attached. A parallel application consists of a number of tasks that are

distributed among some of the nodes for processing. We call nodes that have

attached I/O devices I/O nodes and nodes that run an application task compute

nodes. These sets of nodes may be distinct or may overlap, even to the extent that

all nodes are both I/O nodes and compute nodes.

A parallel file system generally consists of two software components: client code,

which runs on the compute nodes; and server code, which runs on the I/O nodes.

Application tasks, or clients, present I/O requests to the client code on the compute

node where the task is running. The client code decomposes the request and sends

it to each of the I/O nodes where the affected data resides. The server code on

the I/O nodes transfers data between the network and the storage devices. In a

typical I/O request, communication between the compute nodes and I/O nodes is

an “all-to-all” pattern. For a read operation, data from each I/O node must be

scattered to the various compute nodes, and on the compute nodes, data from the

various I/O nodes must be gathered into the read buffer. A write request is similar,

but the data flow is reversed.

The other critical component of a parallel file system is the file metadata. All file

systems must maintain file metadata, which indicates important properties of the

file such as its name, owner, access permissions, and type. In a parallel file system,

additional information relating the physical distribution of the data must also be

maintained. This includes which I/O nodes hold the file data and how the data is

split among the I/O nodes. Special files such as directories and symbolic links more

closely resemble metadata than true files and may be stored as such. At least one

node on a parallel computer must act as a manager node where file metadata is

stored. Metadata can be stored in a single location or distributed much as file data

is distributed. Generally, all metadata for a single file is stored in a single location

and is not distributed as file data is.

How is PFS different from NFS or Samba? In many ways a parallel file

system is like a network file system such as NFS [30] or Samba [2]. These systems

allow applications running on one system, the client system, to access file data

stored on another system, the server. While it is possible to use more than one server

with NFS or Samba, only one server manages a given file system (or subdirectory)

for the client at a time. Individual files are stored entirely on the one server, along

with their metadata. See Chapter 6 for more information on file systems such as

these.

PVFS: Parallel Virtual File System 393

In a parallel file system, on the other hand, the data representing a single file is

distributed among several servers. In addition, the file metadata may be stored on

yet another server. This feature allows a parallel file system to take advantage of

multiple I/O subsystems to achieve a performance gain. A parallel file system may

provide various interfaces that allow the programmer to access file data in different

ways. Moreover, a parallel file system may provide a choice of access semantics that

affect how multiple tasks coordinate access to file data. This aspect is significant in

that it determines when and where data read or written by multiple tasks is stored

in the file and how concurrent update of a file is coordinated or synchronized. In

contrast, the semantics and interfaces implemented for network file systems such

as NFS and Samba generally do not allow for efficient and deterministic access in

the presence of concurrent accesses.

Another important difference between general-purpose network file systems and

a parallel file system is in the performance characteristics relative to different work-

loads. Typical network file systems are designed for interactive workloads. Policies

for such features as the minimum transfer unit and local caching are relatively

conservative and favor frequent small accesses with high locality. A parallel file

system, on the other hand, is more typically designed to provide high throughput

for relatively large accesses and optimizes transfers based on the access patterns of

parallel applications. Thus, while a parallel file system may functionally serve as a

general-purpose network file system, the performance of a PFS in this role may be

poor.

What is PVFS? The Parallel Virtual File System is an open source implemen-

tation of a parallel file system developed specifically for Beowulf clusters and the

Linux operating system [3]. PVFS runs as a set of user-level daemons and libraries

and includes an optional Linux kernel module that allows standard utilities to ac-

cess PVFS files. PVFS provides a simple striping distribution that allows the user

to specify the stripe size and the number of I/O nodes on which data is striped on

a per file basis. PVFS also provides a POSIX-like interface that allows transparent

access to PVFS files and a number of other interfaces that offer more powerful and

flexible access to the PVFS request mechanism. These interfaces are accessed via

user-level libraries to provide the best access performance. Additionally, there is at

least one implementation of the MPI-IO interface for PVFS.

The PVFS software consists of three daemons. The first is the mgr daemon,

which maintains metadata for a file system. One copy of this daemon runs for a

given file system. Second is the iod daemon, which services requests to read and

write file data. One of these daemons runs on each node that will act as an I/O

394 Chapter 17

node. The third daemon, pvfsd, works with the optional kernel module to perform

PVFS requests for the kernel. One of these daemons is needed on each client node

if and only if that node will make use of the optional kernel module interface.

The PVFS client interface is a library in both shared (libpvfs.so) and static

(libpvfs.a) versions. This library also includes the other user interfaces such

as the multidimensional block interface (MDBI) and the partitioned file interface

(discussed in Section 17.2.1). These are needed on the node(s) used to compile

PVFS applications and, in the case of the shared library, on each client node. The

optional PVFS kernel module allows a PVFS file system to be mounted to provide

transparent use by client applications. All file system requests are relayed via the

pvfsd on the client node. This module must be loaded into the kernel on each

client node that will have non-PVFS applications access PVFS file systems. A

good example of such applications are utilities such as ls, cat, cp, and mv.

PVFS uses the Berkeley sockets interface to communicate between the clients and

servers via TCP/IP (see Chapter 6 for more information on sockets and TCP/IP).

In general, a PVFS application will establish a TCP connection with each iod for

each open file. The iods store file data on the I/O nodes under one subdirectory,

using whatever file system that subdirectory is implemented with to store the actual

data. File metadata is stored on the node running the mgr daemon in standard Unix

files, one per file in the PVFS file system. Each file in this metadata directory has

a unique inode number on that node. That inode number is used to identify each

segment of the file data on each of the I/O nodes.

Clients access the PVFS manager in order to obtain metadata for PVFS files.

Using this metadata, they can then directly access data stored on I/O servers. The

interface used by the application defines the semantics of this access and constrains

how data might be described; we will cover interface options later in this and the

following sections.

17.1.2 Setting Up a Parallel File System

The first step in configuring a PFS is deciding what role each node in the system will

play, that is, which nodes will act as I/O nodes, which node will serve the metadata,

and which nodes will be compute nodes. While assigning these roles may seem to be

fairly straightforward, in fact several different approaches are possible. As is often

the case, different approaches may be more suitable to different applications. This

section outlines the concepts related to setting up a parallel file system. Specific

details of administering PVFS are covered in Section 17.3.

PVFS: Parallel Virtual File System 395

How do I decide on a configuration? Typically, the first consideration in

configuring a parallel file system is deciding how many I/O nodes will be used.

This can reasonably vary from selecting a single I/O node to using all of the nodes

in the system as I/O nodes. The primary consideration for a node to be an I/O

node is that each I/O node must have at least one disk drive. Technically an I/O

node can serve data from a remote mounted disk, but this approach will create

unneeded network traffic. For many clusters, each node has a disk installed, and

in this case it is reasonable to make every node an I/O node. Note that files need

not be distributed to every I/O node in the network, but making each node an I/O

node allows every node to be used for I/O. Alternatively, some cluster designs may

include larger disks or additional disks on a subset of the nodes or may include

disks on only a few of the nodes. In these cases it is more reasonable to limit the

set of I/O nodes to those nodes that naturally lend themselves to that role because

of their available resources.

A related issue is whether the applications intend to use some or all of the nodes

as both I/O nodes and compute nodes at the same time. Here, one extreme is to

use every node in the system in both roles, and the other extreme is to have two

distinct sets of nodes: one for computation and one for I/O. This choice may reflect

having the budget available to build specialized nodes and having a strong sense

of the needs of the application(s). Ideally, these considerations can be addressed

at the time the cluster is built so that node hardware will suitably match the role

that is planned for each node.

What are the key components of an I/O node? If node hardware is to be

tuned to the role of the node, hardware that may impact a node’s role includes the

disks, device bus, network interface, processors, and memory. The guidelines given

here should be considered in light of the material in Chapter 3, where a detailed

discussion of hardware issues for Beowulf machines is given. An I/O node needs to

provide a certain amount of disk I/O throughput, which depends on both the ratio

of I/O nodes to compute nodes and the required I/O throughput needed by the

applications. In selecting an I/O node, the choice of SCSI versus IDE disks, number

of disks, number of disk controllers, and configuration of the peripheral bus (such

as PCI) are all important. An I/O node also needs enough network throughput to

deliver the available disk throughput to all of the compute nodes. In fact, it is often

desirable that an I/O node be able to deliver more throughput via the network than

is available at the disk subsystem, because caching often allows for bursts of traffic

that exceed the throughput limits of the disk subsystem. This implies not only that

the network interface can provide the required throughput but that the peripheral

396 Chapter 17

bus can support both the network and disk I/O load. This also has implications

for the choice of network itself.

For dedicated I/O nodes, less powerful CPUs than used in compute nodes might

be more cost effective. On the other hand, nodes that serve as both compute and

I/O nodes tend to need even more CPU performance, since a certain amount of

CPU load is required by the I/O servers in addition to the computational load.

Experimental results have shown that having dual CPUs can be advantageous in

both dedicated I/O nodes and nodes performing both roles.

17.1.3 Programming with a Parallel File System

Once a parallel file system is operational, data can be stored and accessed by using

normal programs and utilities. To really take advantage of a parallel file system,

however, you must understand some concepts key to efficient parallel file access and

must use these concepts when implementing applications.

The POSIX I/O interface [18] is the standard for file and directory access on

Linux systems. With this interface you may seek specific byte positions within a

file and access contiguous regions of data at these positions. The semantics of the

POSIX I/O interface defines what happens when applications write to overlapping

regions as well, placing guarantees on the resulting file. This interface was created

to serve as a standard for uniprocessing applications running on Unix machines

accessing local file systems.

With parallel file systems, the costs associated with access are often different from

those with local access. In particular, performing a single write or read operation

often involves a noticeable amount of overhead required to initiate the operation.

Thus, when large numbers of small accesses are performed in a parallel I/O envi-

ronment, performance often suffers. Parallel applications often divide data among

processes. This division often leads to situations where different processes want to

read from a file a number of records that are not located in a contiguous block [24].

Since each access involves substantial overhead, it would be more efficient to access

these regions with a single operation [33] and also more convenient for the program-

mer. To address this situation, parallel file systems typically offer an interface that

allows a large number of noncontiguous regions to be accessed with a single I/O

request.

Many parallel applications alternate between I/O and computation. In these

types of application a large number of I/O-related operations occur simultaneously,

often to the same file. If the operations are all performed independently, it is

difficult for the underlying file system to identify and optimize for the access pattern.

Grouping these accesses into a “collective access” can allow for further optimization.

PVFS: Parallel Virtual File System 397

Collective I/O is a mechanism provided by many parallel file systems where a single

global request to the file system allows each task to access different data in the same

file. Collective I/O has been provided in a number of special-purpose interfaces such

as PASSION [33] and Panda [28] and is provided in MPI-IO [11]. Collective I/O to

PVFS file systems is currently supported through the use of the ROMIO MPI-IO

interface [34] (also discussed later in this chapter).

The POSIX semantics also imposes strict requirements on the order in which op-

erations may be completed on I/O servers in a parallel environment. The semantics

cripples the ability to perform I/O in parallel in many situations. Interfaces with

more relaxed semantics provide more opportunities for parallelism by eliminat-

ing the overhead associated with atomicity of access; the application programmer

ensures consistency instead.

All of these concepts, aggregating requests, collective I/O, and access semantics

boil down to making the best use of available interfaces. We cover these next.

What other interfaces do I have to work with? Many interfaces and op-

timizations have been proposed and implemented to address the three issues of

noncontiguous access, collective I/O, and the semantics of parallel access. These

interfaces can be categorized into POSIX-like interfaces, general-purpose parallel

I/O interfaces, and specialized (or application-specific) interfaces.

POSIX-like interfaces use the POSIX interface as their basis and provide various

extensions in order to better describe parallel access. One such extension is file

partitioning. File partitioning allows the interface to create a “view” of a file that

contains of some subset of the data in the file. Partitions are usually based on some

systematic subsetting of the file, for example, “Starting with the second byte of the

file, view every fourth byte of the file.” A more useful view might consider the file

as a sequence of n byte records and take every pth record starting with record k.

If there are p parallel tasks, and each creates a partition with the same value of n

but with a different value of k ranging from 0 to p − 1, then the set of partitions

will cover the entire file, and none of the partitions will overlap. This is one way to

evenly distribute file data among p tasks.

With an interface that supports partitioning, once the partition is defined, the

program accesses the data in the partition as if it is the only thing in the file. In

other words, any data not in the partition no longer appears in the file, and the

data in the partition appears to be contiguous in the partitioned file. This is a

convenient abstraction in that all of the information regarding the distribution of

data among the tasks in located only in the part of the program that creates the

partition. This can be especially nice in converting sequential programs to parallel

398 Chapter 17

programs because sometimes all that is needed is to set up the partition and then

let the program run as originally written. Partitioning is also one way that the

programmer can specify a large set of noncontiguous accesses with a single request,

which may allow the file system opportunities for optimization. This optimization

would be impossible if instead seek() were used to access each contiguous region

one at a time.

File partitioning has been included in the Vesta interface [5] and MPI-IO [11] (as

file views), among others, and is supported by PVFS. Some partitioning interfaces

require all tasks accessing a file to specify a common partitioning scheme that

provides no overlap and complete file coverage. Other interfaces, such as the one

implemented for PVFS, may allow individual tasks to specify different partitions,

including those that overlap or that do not cover all of the data in the file. Details

of the PVFS partitioning interface are given in Section 17.2.

Some applications require that output data from different tasks be interleaved,

and yet cannot predict how much data each task will produce for each output.

In this case a shared file pointer can be an effective mechanism for coordinating

file I/O. With a shared file pointer, sequential access proceeds not from the last

location accessed by the task performing I/O but from the last location accessed

by any task. In one variation, a shared file pointer can be used with a collective

operation, and each task’s data is stored in the file in task order.

Shared file pointer interfaces are useful for low-volume I/O such as log messages

and infrequent tracing data. A collective shared file pointer interface can also

be useful for applications that synchronize well but generate data of varying size.

Care must be taken in using a shared file pointer interface, however, since some

implementations entail substantial overhead or result in serialized access. Shared

file pointers have been provided by the Intel PFS, Vesta [5], and MPI-IO [11]. PVFS

does not currently support shared file pointers.

Extensions or modifications to the POSIX interface such as partitioning and

shared file pointers can help in providing more usable and higher-performance in-

terfaces for some applications. However, more flexible interfaces can allow for even

more convenient access and higher performance for a broader range of applications.

One such interface is MPI-IO.

MPI-IO is a parallel I/O interface defined as part of the MPI-2 specification [11].

It is supported by a number of parallel file systems and provides all of the features

described above: partitioning, collective operations, a mechanism to create non-

contiguous I/O requests, and relaxed access semantics. MPI-IO is a very powerful

application-independent interface and is probably the interface of choice for MPI

programs. PVFS supports MPI-IO through the use of ROMIO, an MPI-IO imple-

PVFS: Parallel Virtual File System 399

mentation built on top of MPI [34]. Details of MPI-IO are given in Chapter 10 and

in [14, Chapter 3].

A number of I/O interfaces also have been designed for special purposes. Ex-

amples include Panda [28], HDF5, and PVFS’s multidimensional block interface

(MDBI) [4]. MDBI provides special methods to allow you to define a regularly

spaced n-dimensional data set that will be stored in the file. This description is

similar to that of an n-dimensional array of some base type. Once this definition

is in place, you can access any element of the data set with its corresponding co-

ordinates. Additional methods allow you to control buffering of elements from the

data set. Details of MDBI are given below in Section 17.2.1.

How do I tune my application for high performance? Parallel applications

that use a parallel file system typically work by distributing the data in the file

among the application’s tasks. Exactly how this is done will vary from application

to application, but in many cases there are natural divisions in the data. For

example, a file may contain an array of records each of which includes several

scalar data values. The records may represent a linear sequence or may represent

a matrix of two or more dimensions. In the former case, the record boundaries are

natural divisions. Thus most tasks will read a multiple of the record size (in bytes)

from the file. In the latter case, the rows and columns are perhaps more natural

divisions. Thus a task may read one or more whole rows at a time.

With such an application it is important to consider how the data will be dis-

tributed. Often this means considering these natural boundaries when selecting a

stripe size for file distribution (assuming a striped physical data distribution). If

the stripe size is matched to the natural boundaries in the data set, accesses by

applications tend to be more uniformly distributed across the I/O servers. One

pitfall is that many files include a header that is not the same size as a record. In

this case the presence of the header can force the data not to align properly on

the I/O nodes, and poor performance can result. The most common solution is to

pad the header with blank space to the next physical boundary (depending on the

distribution) so that the records will align. Another solution is to store the header

information in a separate file or at the end of the file instead of the beginning.

PVFS performs better when multiple clients are accessing the same file, rather

than each client accessing its own file. This is because the underlying storage

systems respond better to single-file traffic. Thus, for PVFS it is best to aggregate

output data into a single file; luckily this is often the most convenient option.

The next consideration is how the data accessed by each task is spread across the

I/O nodes. When using PVFS, it is often best to store and access data distributed

400 Chapter 17

across multiple I/O servers with single requests. This approach makes the best use

of the underlying network by moving data through multiple TCP streams. This

same approach applies in the case of multiple simultaneous accesses as well; just as

PVFS clients perform more efficiently when exchanging data with multiple servers,

PVFS servers perform at their best when servicing multiple clients simultaneously.

What this means is that some experimentation is often necessary to determine the

optimal matching of natural boundaries to the stripe; sometimes it is more efficient

to place multiple rows, for example, in a single stripe. All that said, there are also

advantages to accessing data residing locally when an overlapped compute/server

environment is in place, especially when the interconnect in the cluster is relatively

slow.

We discussed the coordination of access and the advantages of collective I/O

earlier in this section. It is important to note, however, that there are cases when

collective I/O doesn’t pay off. In particular, if an application spends a great major-

ity of its time computing, it might be more optimal to stagger the tasks’ accesses

to the I/O system. This approach lightens the load on the I/O servers and simul-

taneously allows more time for the I/O as a whole to take place. In all cases it is

important to attempt to keep all I/O servers busy.

We emphasize that not all parallel file systems share these characteristics. Many

such systems do not perform well with large numbers of clients simultaneously

accessing single servers or simultaneously accessing the same file [19]. You should

consider these issues when moving an application from one platform to another.

What is out-of-core computation? Another issue to consider is how the file

system will be used in a computation. Some applications tend to read an input

data file and produce an output data file. Other applications might not do much

I/O at all, except that they require an extremely large amount of storage for their

data structures and cannot keep everything in memory. In this case, the parallel

file system can be used as a large shared-memory region using a technique known

as out-of-core (OOC) computation. OOC techniques are similar to virtual memory

use in that data is moved between disk and memory as needed for computation.

Unlike virtual memory, however, OOC requires the programmer to explicitly read

and write data rather than doing it transparently via a demand paged memory

management system. While using virtual memory is much easier than OOC, a

well-designed OOC program will outperform a virtual memory program by better

utilizing memory and by moving data in and out of memory in large blocks, rather

than moving a page at a time as demand paging would.

Facilities that support OOC allow the programmer to describe the data structures

PVFS: Parallel Virtual File System 401

stored in the parallel file and then access them in a manner consistent with that

logical view of the data. For example, the MDBI provided by PVFS (discussed in

Section 17.2.1) allows the program to describe a file as a multidimensional array

and then read and write blocks of that array by using array subscripts.

Could you give me a tuning example? Many parallel applications involve

regularly structured data that is evenly distributed to the tasks. Records can be

assigned to tasks in groups. These groups may consist of contiguous records or non-

contiguous but regularly spaced records. For example, consider an image-processing

application. Each scan line of the image can be considered a record. Suppose the

image has 512 scan lines, and you are using 16 processors. One distribution would

be to assign the first 32 scan lines to the first processor, the second 32 to the second

processor, and so on. Another distribution would be to assign one of each of the

first 16 scan lines to each processor, in order, and then start over again and assign

a second scan line from the second set of 16. A third option might be to assign

8 scan lines to each processor until the first 128 scan lines are assign, and then

start over and assign the next 128, 8 at a time. In each case each processor gets

32 scan lines. The advantages and disadvantages of each depend on the algorithm

being implemented and are beyond the scope of this book. Suffice it say each is a

potentially useful distribution.

This example illustrates the concept known as “strided access.” In strided access,

a task accesses a contiguous region of data (in this case one or more scan lines),

skips a region, and then accesses another region of the same size as the first, skips

a region the same size as the first, and so on. Strided access can be used to access

rows in a matrix, groups of rows in a matrix, columns in a matrix, groups of columns

in a matrix, and other patterns. Because this is such a common distribution, many

interfaces, including the PVFS library and MPI-IO, provide mechanisms to issue

requests for strided accesses.

As alluded to above, the choice of distribution can affect algorithm performance,

but it can also have an impact on I/O performance in that it can affect how I/O

requests are distributed among the I/O nodes. Continuing the above example,

assume each scan line of the image has 512 pixels and each pixel is 4 bytes. Thus

an image is a total of 1 MByte. Suppose the file system uses a striped distribution,

and you choose a 32 KByte strip size, which results in stripes of 512 KBytes.

The the image will be evenly distributed to all 16 disks, two 32 KByte blocks per

node. Now consider the three distributions discussed above for the computational

tasks. In the first, each task will access 32 scan lines of 2 KBytes each, which will

be evenly distributed across 2 disks; 2 tasks will share 2 disks (consider disks 0 and

402 Chapter 17

Figure 17.1
Example system.

1, which hold scan lines 0 to 15, 16 to 31, 128 to 143, and 144 to 159, which will

map to tasks 0, 0, 8, and 8, respectively). In the second distribution, each task will

access 2 scan lines from each of all 16 disks. Thus all 16 disks will service requests

from all 16 tasks. In the third distribution, each task’s data will map to 4 disks,

and each disk will service 4 tasks. Thus the choice of distribution and stripe size

affects how requests are spread across disks.

17.2 Using PVFS

In this section we discuss the options for accessing PVFS file systems from applica-

tions. We assume that a PVFS file system is already configured and available for

use.

For the purposes of discussion we will pretend that PVFS is running on a small

cluster of nine machines. In our example system, shown in Figure 17.1, there is

one “head” node, called head, and eight other nodes, n1–n8. Each of these systems

has a local disk, they are connected via some switch or hub, IP is up and running,

and they can talk to each other via these short names. We will come back to

this example throughout this chapter in order to clarify installation, configuration,

and usage issues. This section, and the following one, are rife with example shell

interactions in order to show exactly how things are configured.

head

network

n2 n3 n4 n5 n6 n7 n8n1

PVFS: Parallel Virtual File System 403

17.2.1 Writing PVFS Programs

Programs written to use normal Unix I/O will work fine with PVFS without any

changes. Files created this way will be striped according to the file system defaults

set at compile time, usually set to a 256 KByte stripe size across all of the I/O

nodes, starting with the first node listed in the .iodtab file. We note that use of

Unix system calls read() and write() results in exactly the data specified being

exchanged with the I/O nodes each time the call is made. Large numbers of small

accesses performed with these calls will not perform well at all. In contrast, the

buffered routines of the standard I/O library fread() and fwrite() locally buffer

small accesses and perform exchanges with the I/O nodes in chunks of at least some

minimum size. Utilities such as tar have options (e.g., --block-size) for setting

the I/O access size as well. Generally PVFS will perform better with larger buffer

sizes.

For applications using stdio routines to access PVFS files, you may want to

increase the buffer size used by fread() and fwrite(). The setvbuf() call may

be used to specify the buffering characteristics of a stream (FILE *) after opening.

This call must be made before any other operations are performed, for example,

FILE *fp;

fp = fopen("foo", "r+");

setvbuf(fp, NULL, _IOFBF, 256*1024);

/* now we have a 256K buffer and are fully buffering I/O */

See the man page on setvbuf() for more information.

This transparent access involves significant overhead both due to data movement

through the kernel and due to our user-space client-side daemon (pvfsd). To get

around this, the PVFS libraries can be used either directly (via the native PVFS

calls) or indirectly (through the ROMIO MPI-IO interface, the MDBI interface, or

some higher-level interface such as HDF5).

In this section we begin by covering how to write and compile programs with the

PVFS libraries. Next we cover how to specify the physical distribution of a file and

how to set logical partitions. Following this we cover the MDBI interface. Finally

we touch upon the use of ROMIO with PVFS. In addition to these interfaces, it is

important to know how to control the physical distribution of files. In the next three

sections, we will discuss how to specify the physical partitioning, or striping, of a

file, how to set logical partitions on file data, and how the PVFS multidimensional

block interface can be used.

404 Chapter 17

n1 n2 n3 n4 n5 n6 n7 n8

ssize

Figure 17.2
Striping example with base of 0 and pcount of 4

Preliminaries. When compiling programs to use PVFS, you should include in

the source the PVFS include file, typically installed in /usr/local/include/, by

#include <pvfs.h>

To link to the PVFS library, typically installed in /usr/local/lib/, you should

add -lpvfs to the link line and possibly -L/usr/local/lib to ensure that the

directory is included in the library search.

The PVFS interface calls will also operate correctly on standard, non-PVFS, files,

including the MDBI interface. When you are debugging code, this feature can help

isolate application problems from bugs in the PVFS system.

Specifying Striping Parameters. The current physical distribution mechanism

used by PVFS is a simple striping scheme. The distribution of data is described

with three parameters:

base — index of the starting I/O node, with 0 being the first in the file system

pcount — number of servers on which data will be stored (partitions, a misnomer)

ssize — strip size, the size of the contiguous chunks stored on I/O servers

In Figure 17.2 we show an example where the base node is 0 and the pcount is

4 for a file stored on our example PVFS file system. As you can see, only four of

the I/O servers will hold data for this file, because of the striping parameters.

Physical distribution is determined when the file is first created. Using pvfs

open(), you can specify the following parameters:

pvfs_open(char *pathname, int flag, mode_t mode);

pvfs_open(char *pathname, int flag, mode_t mode,

struct pvfs_filestat *dist);

PVFS: Parallel Virtual File System 405

If the first set of parameters is used, a default distribution will be imposed.

If, instead, a structure defining the distribution is passed in and the O META flag is

OR’d into the flag parameter, you can define the physical distribution via the pvfs

filestat structure passed in by reference as the last parameter. This structure is

defined in the PVFS header files as follows:

struct pvfs_filestat {

int base; /* The first iod node to be used */

int pcount; /* The number of iod nodes for the file */

int ssize; /* stripe size */

int soff; /* NOT USED */

int bsize; /* NOT USED */

}

The soff and bsize fields are artifacts of previous research and are not in use

at this time. Setting the pcount value to -1 will use all available I/O daemons for

the file. Setting -1 in the ssize and base fields will result in the default values being

used (see Section 17.3.4 for more information on default values).

To obtain information on the physical distribution of a file, you should use pvfs

ioctl() on an open file descriptor:

pvfs_ioctl(int fd, GETMETA, struct pvfs_filestat *dist);

It will fill in the pvfs filestat structure with the physical distribution information

for the file. On the command line the pvstat utility can be used to obtain this

information (see Section 17.2.2).

Setting a Logical Partition. The PVFS logical partitioning system allows you

to describe the regions of interest in a file and subsequently access those regions

efficiently. Access is more efficient because the PVFS system allows disjoint regions

that can be described with a logical partition to be accessed as single units. The

alternative would be to perform multiple seek-access operations, which is inferior

because of both the number of separate operations and the reduced data movement

per operation. PVFS logical partitioning is an implementation of file partitioning;

it is named “logical” because it is independent of any physical characteristics of the

file (such as the stripe size).

If applicable, logical partitioning can also ease parallel programming by simpli-

fying data access to a shared data set by the tasks of an application. Each task can

set up its own logical partition, and once this is done all I/O operations will “see”

only the data for that task.

406 Chapter 17

offset gsize stride

= partition data

Figure 17.3
Partitioning parameters.

With the current PVFS partitioning mechanism, partitions are defined with three

parameters: offset, group size (gsize), and stride. The offset is the distance in bytes

from the beginning of the file to the first byte in the partition. Group size is the

number of contiguous bytes included in the partition. Stride is the distance from the

beginning of one group of bytes to the next. Figure 17.3 shows these parameters.

To set the file partition, the program uses a pvfs ioctl() call. The parameters

are as follows:

pvfs_ioctl(fd, SETPART, &part);

where part is a structure defined as follows:

struct fpart {

int offset;

int gsize;

int stride;

int gstride; /* NOT USED */

int ngroups; /* NOT USED */

};

The last two fields, gstride and ngroups, are remnants of previous research, are

no longer used, and should be set to zero. The pvfs ioctl() call can also be used

to get the current partitioning parameters by specifying the GETPART flag. Note

that whenever the partition is set, the file pointer is reset to the beginning of the

new partition. Also note that setting the partition is a purely local call; it does not

involve contacting any of the PVFS daemons. Thus it is reasonable to reset the

partition as often as needed during the execution of a program. When a PVFS file

is first opened, a “default partition” is imposed on it that allows the process to see

the entire file.

As an example, suppose a file contains 40,000 records of 1,000 bytes each, there

are four parallel tasks, and each task needs to access a partition of 10,000 records

each for processing. In this case you would set the group size to 10,000 records

PVFS: Parallel Virtual File System 407

= partition data for task 3

= partition data for task 2= partition data for task 0

= partition data for task 1

offset = 30,000,000

offset = 20,000,000

offset = 10,000,000

3

2

1

gsize = 10,000,000

Figure 17.4
Partitioning Example 1, block distribution.

= partition data for task 1

= partition data for task 0 = partition data for task 2

= partition data for task 3

offset = 3000

offset = 2000

offset = 1000

3

2

1

stride = 4000 gsize = 1000

Figure 17.5
Partitioning Example 2, cyclic distribution.

times 1,000 bytes, or 10,000,000 bytes. Then each task would set its offset so that

it would access a disjoint portion of the data. This is shown in Figure 17.4.

Alternatively, suppose you want to allocate the records in a cyclic, or “round-

robin,” manner. In this case the group size would be set to 1,000 bytes, the stride

would be set to 4,000 bytes, and the offsets would again be set to access disjoint

regions, as shown in Figure 17.5.

Setting the partition for one task has no effect whatsoever on any other tasks.

There is also no reason for the partitions set by each task to be distinct; the parti-

tions of different tasks can be overlapped, if desired. Finally, no direct relationship

exists between partitioning and striping for a given file; while it is often desirable

to match the partition to the striping of the file, you have the option of selecting

any partitioning scheme independent of the striping of a file.

Simple partitioning is useful for one-dimensional data and simple distributions of

two-dimensional data. More complex distributions and multidimensional data are

often more easily partitioned by using the multidimensional block interface.

408 Chapter 17

Using Multidimensional Blocking. The PVFS multidimensional block in-

terface provides a slightly higher level view of file data than does the native PVFS

interface. With the MDBI, file data is considered as an n-dimensional array of

records. This array is divided into “blocks” of records by specifying the dimensions

of the array and the size of the blocks in each dimension. The parameters used to

describe the array are as follows:

D — number of dimensions

rs — record size

nbn — number of blocks (in each dimension)

nen — number of elements in a block (in each dimension)

bfn — blocking factor (in each dimension), described later

Once you have defined the view of the data set, blocks of data can be read with

single function calls, greatly simplifying the act of accessing these types of data

sets. This is done by specifying a set of index values, one per dimension.

Five basic calls are used for accessing files with MDBI:

int open blk(char *path, int flags, int mode);

int set blk(int fd, int D, int rs, int ne1, int nb1, ..., int nen,

int nbn);

int read blk(int fd, char *buf, int index1, ..., int indexn);

int write blk(int fd, char *buf, int index1, ..., int indexn);

int close blk(int fd);

The open blk() and close blk() calls operate similarly to the standard Unix

open() and close(). The call set blk() is used to set the blocking parameters for

the array before reading or writing; this process will be described in a moment. It

can be used as often as necessary and does not entail communication. The two calls

read blk() and write blk() are used to read blocks of records once the blocking

has been set.

Figure 17.6 gives an example of blocking. Here a file has been described as a

two-dimensional array of blocks, with blocks consisting of a two by three array of

records. Records are shown with dotted lines, with groups of records organized into

blocks denoted with solid lines.

In this example, the array would be described with a call to set blk() as follows:

PVFS: Parallel Virtual File System 409

= 1 superblock= 1 block= 1 record

ne2

(5,2)

ne1

(2,0) (3,0)(0,0)
D

im
e

n
s

io
n

 2

Dimension 1

(D = 2, rs = 500, ne1 = 2, nb1 = 6, ne2 = 3, nb2 = 3, bf1 = 2, bf2 = 1)

Figure 17.6
MDBI Example 1.

set_blk(fd, 2, 500, 2, 6, 3, 3);

If you wanted to read block (2, 0) from the array, you could then

read_blk(fd, &buf, 2, 0);

Similarly, to read block (5, 2), you could use

write_blk(fd, &blk, 5, 2);

A final feature of the MDBI is block buffering. Sometimes multidimensional

blocking is used to set the size of the data that the program wants to read and write

from disk. Other times the block size has some physical meaning in the program

and is set for other reasons. In this case, individual blocks may be rather small,

resulting in poor I/O performance and underutilization of memory. MDBI provides

a buffering mechanism that causes multiple blocks to be read and written from disk

and stored in a buffer in the program’s memory address space. Subsequent transfers

using read blk() and write blk() result in memory-to-memory transfers unless

a block outside of the current buffer is accessed.

Since it is difficult to predict what blocks should be accessed when, PVFS relies

on user cues to determine what to buffer. This is done by defining “blocking factors”

that group blocks together. The blocking factor indicates how many blocks in the

given dimension should be buffered. A single function is used to define the blocking

factor: int buf blk(int fd, int bf1, ..., int bfn).

Looking at Figure 17.6 again, we can see how blocking factors can be defined. In

the example, the call

buf_blk(fd, 2, 1);

410 Chapter 17

is used to specify the blocking factor. We denote the larger resulting buffered blocks

as superblocks (a poor choice of terms in retrospect), one of which is shaded in the

example.

Whenever a block is accessed, if its superblock is not in the buffer, the current

superblock is written back to disk (if dirty), and the new superblock is read in its

place; then the desired block is copied into the given buffer. The default blocking

factor for all dimensions is 1, and any time the blocking factor is changed the buffer

is written back to disk if dirty.

We emphasize that no cache coherency is performed here; if application tasks

are sharing superblocks, unexpected results will occur if writes are performed. The

user must ensure that this does not happen. A good strategy for buffering is to

develop a program with buffering turned off, and then enable it later in order to

improve performance.

Using the ROMIO MPI-IO Implementation. The MPI specification pro-

vides a de facto standard for message passing in parallel programs. The MPI-2

specification, which builds on the successful MPI-1 specification, includes a section

on I/O that is commonly referred to as MPI-IO [14, 11]. Just as MPI has become the

interface of choice for message passing in parallel applications, the MPI-IO interface

has become a prominent low-level interface for I/O access in parallel applications.

ROMIO is one implementation of the MPI-IO interface [34]. ROMIO is unique

in that it implements an abstract I/O device (ADIO) layer that aids in porting

ROMIO to new underlying I/O systems. The success of this design is evident in

the number of systems for which ROMIO provides MPI-IO support, including HP,

IBM, NEC, SGI, and Linux.

In addition to merely mapping MPI-IO operations into the correct underlying

operations, ROMIO implements two important optimizations that can be of great

benefit in a number of scenarios. The first of these is data sieving [33], which

allows ROMIO to take advantage of MPI-IO noncontiguous requests by accessing

larger, contiguous regions containing desired data with single calls. Combining

many small accesses into a single large one is a very effective optimization in many

I/O systems. The second of these optimizations is a collective optimization termed

two-phase I/O [32]. The goal of two-phase I/O is to more optimally access the disk.

In collective operations, multiple processes often will read small adjoining regions

from a single server. Two-phase I/O combines these adjoining accesses into a single

access by a single process. Data for the access is then scattered (in the read case)

or first gathered (in the write case) in order to attain the desired distribution.

PVFS: Parallel Virtual File System 411

In Linux clusters ROMIO can be configured to operate on top of PVFS, pro-

viding applications using the MPI-IO interface direct access to PVFS file systems.

This strategy allows applications to use this high-performance I/O option without

constraining application programmers to using the PVFS interface. Chapter 10

includes details on using MPI-IO in applications.

The MPI hints mechanism may be used to pass striping information to PVFS

through the MPI-IO interface. Hints are passed by the “info” object that is an

argument to MPI File open(). The following three keywords are valid for PVFS:

striping unit — ssize value

striping factor — pcount value

start iodevice — base value

When using ROMIO with PVFS, you must be aware of three important cases.

First, if ROMIO was not compiled with PVFS support, it will access files only

through the kernel-supported interface (i.e., a mounted PVFS file system). If PVFS

support was compiled into ROMIO and you attempt to access a PVFS-mounted

volume, the PVFS library will detect that these are PVFS files (if the pvfstab file

is correct) and use the library calls to avoid the kernel overhead. If PVFS support

is compiled into ROMIO and you attempt to access a PVFS file for which there is

no mounted volume, the file name must be prefixed with pvfs: to indicate that

the file is a PVFS file; otherwise ROMIO will not be able to find the file.

17.2.2 PVFS Utilities

A few utilities are provided for dealing with PVFS files and file systems.

Copying Files to PVFS. While the cp utility can copy files onto a PVFS file

system, the user then loses control over the physical distribution of the file (the

default is used). Instead, the u2p command supplied with PVFS can be used to copy

an existing Unix file to a PVFS file system while specifying physical distribution

parameters. The syntax for u2p is

u2p -s <stripe size> -b <base> -n <# of nodes> <srcfile> <destfile>

This function is most useful in converting pre-existing data files to PVFS so that

they can be used in parallel programs. The u2p command relies on the existence

of the /etc/pvfstab file to operate correctly.

412 Chapter 17

Examining PVFS File Distributions. The pvstat utility will print out the

physical distribution parameters for a PVFS file. After earlier creating a file on our

example PVFS file system, we see

[root@head /root]# /usr/local/bin/pvstat /pvfs/foo

/pvfs/foo: base = 0, pcount = 8, ssize = 65536

The pvstat utility relies on the existence of the /etc/pvfstab file to operate

correctly.

Checking on Server Status. The iod-ping utility can be used to determine

whether a given I/O server is running:

[root@head /root]# /usr/local/bin/iod-ping -h n1 -p 7000

n1:7000 is responding.

[root@head /root]# /usr/local/bin/iod-ping -h head -p 7000

head:7000 is down.

In this case, we have started the I/O server on n1, so it is up and running. We

are not running an I/O server on the head, so it is reported as down. Likewise the

mgr-ping utility can be used to check the status of metadata servers:

[root@head /root]# /usr/local/bin/mgr-ping -h head -p 3000

head:3000 is responding.

[root@head /root]# /usr/local/bin/mgr-ping -h n1 -p 3000

n1:3000 is down.

The mgr is up and running on head, but we’re not running one on n1.

These two utilities also set their exit values appropriately for use with scripts; in

other words, they set their exit value to 0 on success (responding) and 1 on failure

(down). If no additional parameters are specified, the program will automatically

check for a server on localhost at the default port for the server type (7000 for I/O

server, 3000 for metadata server). If the “-p” option is not specified, the default

port is used.

No fsck currently exists for PVFS, although arguably there should be one.

17.3 Administering PVFS

In this section we cover the specifics of administering PVFS, first building the

PVFS components, then installing and configuring the servers, next installing and

configuring client software, and finally starting things up and verifying that the

PVFS: Parallel Virtual File System 413

system is operating. We continue to rely on the system described in Section 17.2

and shown in Figure 17.1 as an example.

17.3.1 Building the PVFS Components

The PVFS package has come a long way in the past few versions in terms of ease

of compilation. The process is now fairly simple.

Two tar files are needed for compiling PVFS:

• pvfs (e.g., pvfs-1.5.0.tgz)
• pvfs-kernel (e.g., pvfs-kernel-0.9.0.tgz)

The first of these contains code for the PVFS servers and for the PVFS library. The

second contains code specific to the Linux VFS support, which allows PVFS file

systems to be mounted on Linux PCs. This code is not essential for using PVFS,

but it makes accessing PVFS files much more convenient.

Obtaining the Source. PVFS is open source and is freely available on the Web.

Currently there are two consistent sources for obtaining PVFS via the FTP proto-

col:

• ftp://ftp.parl.clemson.edu:/pub/pvfs/
• ftp://mirror.chpc.utah.edu:/pub/pvfs/ (mirror site)

Within one of these directories are the files pvfs-v1.tgz and pvfs-kernel-v2.tgz,

where v1 and v2 are version numbers. These files are tar archives of the PVFS

source that have subsequently been compressed with the gzip tool. You should

download the latest versions of each; the version numbers of the two packages will

not match each other. (At the time of writing, the newest version of the pvfs archive

was 1.5.1, and the newest version of the pvfs-kernel archive was 0.9.1.)

Untarring the Packages. It is a bit easier to perform the compilations if both
the archives are untarred in the same directory, since the pvfs-kernel source relies
on include files from the pvfs source tree. In our example, we will untar into
/usr/src/ on the head node:

[root@head /root]# cp pvfs-1.5.0.tgz pvfs-kernel-0.9.0.tgz /usr/src

[root@head /usr/src]# cd /usr/src

[root@head /usr/src]# tar xzf pvfs-1.5.0.tgz

[root@head /usr/src]# tar xzf pvfs-kernel-0.9.0.tgz

[root@head /usr/src]# ln -s pvfs-1.5.0 pvfs

[root@head /usr/src]# ls -lF

total 476

lrwxrwxrwx 1 root root 15 Dec 14 17:42 pvfs -> pvfs-1.5.0/

414 Chapter 17

drwxr-xr-x 12 root root 512 Dec 14 10:11 pvfs-1.5.0/

-rw-r--r-- 1 root root 371535 Dec 14 17:41 pvfs-1.5.0.tgz

drwxr-xr-x 6 root root 1024 Dec 14 10:10 pvfs-kernel-0.9.0/

-rw-r--r-- 1 root root 105511 Dec 14 17:41 pvfs-kernel-0.9.0.tgz

The symbolic link allows the pvfs-kernel package easily to find the include files it

needs. Once this is finished, the source is ready to be compiled.

Compiling the Packages. Next we will compile the two packages. We also

will discuss how to install the packages on the local system; however, most users

will wish to wait and distribute the files to the correct machines after compiling is

complete. In the Section 17.3.2 we discuss what components need to be where.

First we will compile the pvfs package (leaving out the output):

[root@head /usr/src]# cd pvfs

[root@head /usr/src/pvfs-1.5.0]# ./configure

[root@head /usr/src/pvfs-1.5.0]# make

Then the components can be installed:

[root@head /usr/src/pvfs-1.5.0]# make install

The following are installed by default:

• mgr, iod in /usr/local/sbin/
• libpvfs.a in /usr/local/lib/
• include files in /usr/local/include/
• test programs and utilities in /usr/local/bin/

• man pages in /usr/local/man/

These installation directories can be changed via options to configure. See

configure --help in the package source directory.

The PVFS-kernel package will perform tests for features based on header files

and the running kernel, so it is important that the desired the kernel be running

and the matching header files available on the machine on which the compilation

will take place. With the matching headers, compiling is easy. Again we omit the

output of the compile process:

[root@head /usr/src/pvfs-1.5.0]# cd ../pvfs-kernel-0.9.0

[root@head /usr/src/pvfs-kernel-0.9.0]# ./configure \

--with-libpvfs-dir=../pvfs/lib

[root@head /usr/src/pvfs-kernel-0.9.0]# make

PVFS: Parallel Virtual File System 415

The configure option here lets the package know where it can find the PVFS I/O

library libpvfs.a, which is used by this package. The README and INSTALL files in

the source directory contain hints for working around common compilation prob-

lems.

Once these steps are complete, the kernel components can be installed:

[root@head /usr/src/pvfs-kernel-0.9.0]# make install

The following are installed by default:

• /usr/local/sbin/pvfsd
• /sbin/mount.pvfs

The program mount.pvfs is put in that location because that is the only location

the system utility mount will look in for a file system-specific executable; this is

covered in more detail in Section 17.3.5.

You must install pvfs.o in the right place. This is usually

/lib/modules/<kernel-version>/misc/.

17.3.2 Installation

PVFS is a somewhat complicated package to get up and running. The reason is,

in part, because it is a multicomponent system, but also because the configuration

is a bit unintuitive. The purpose of this section is to shed light on the process of

installing, configuring, starting, and using the PVFS system.

It is important to have in mind the roles that machines (a.k.a. nodes) will play

in the PVFS system. Remember that there are three potential roles that a machine

might play: metadata server, I/O server, and client. A machine can fill one, two,

or all of these roles simultaneously. Each role requires a specific set of binaries and

configuration information. There will be one metadata server for the PVFS file

system. There can be many I/O servers and clients. In this section we discuss the

components and configuration files needed to fulfill each role.

Again, we configure our example system so that the “head” node provides meta-

data service, the eight other nodes provide I/O service, and all nodes can act as

clients.

For additional information on file system default values and other configuration

options, see Section 17.3.4.

Directories Used by PVFS. In addition to the roles that a machine may play,

three types of directories are used in PVFS. A great deal of confusion seems to

surround these, so before we begin our example installation we will attempt to

416 Chapter 17

dispel this confusion. The three types of directories are metadata directory, data

directory, and mount point.

There is a single metadata directory for a PVFS file system. It exists on the

machine that is filling the role of the metadata server. In this directory information

is stored describing the files stored on the PVFS file system, including the owner

of files, the permissions, and the way the files are distributed across I/O servers.

Additionally, two special files are stored in this directory, .iodtab and .pvfsdir,

which are used by the metadata server to find I/O servers and PVFS files.

There is a data directory on each I/O server. This directory is used to store

the data that makes up PVFS files. The data is stored in individual files in a

subdirectory hierarchy.

Finally there is a mount point on each client. This is an empty directory on

which the PVFS file system is mounted and at which pvfstab files point (see

Section 17.3.4). This empty directory is identical to any other mount point.

Installing and Configuring the PVFS Servers. Three files are necessary for

a metadata server to operate:

• mgr executable
• .iodtab file
• .pvfsdir file

The mgr executable is the daemon that provides metadata services in the PVFS

system. It normally runs as root. It must be started before clients attempt to

access the system.

The .iodtab file contains an ordered list of IP addresses and ports for contacting

I/O daemons (iods). Since this list is ordered, once it is created it must not be

modified, because this can destroy the integrity of data stored on PVFS.

The .pvfsdir file describes the permissions of the directory in which the meta-

data is stored.

Both the .iodtab and .pvfsdir files may be created with the mkmgrconf script.

In our example we will use the directory /pvfs-meta as our metadata directory.

[root@head /usr/src/pvfs-kernel-0.9.0]# cd /

[root@head /]# mkdir /pvfs-meta

[root@head /]# cd /pvfs-meta

[root@head /pvfs-meta]# /usr/local/bin/mkmgrconf

This script will make the .iodtab and .pvfsdir files

in the metadata directory of a PVFS file system.

PVFS: Parallel Virtual File System 417

Enter the root directory:

/pvfs-meta

Enter the user id of directory:

root

Enter the group id of directory:

root

Enter the mode of the root directory:

777

Enter the hostname that will run the manager:

localhost

Searching for host...success

Enter the port number on the host for manager:

(Port number 3000 is the default)

3000

Enter the I/O nodes: (can use form node1, node2, ... or

nodename#-#,#,#)

n1-8

Searching for hosts...success

I/O nodes: n1 n2 n3 n4 n5 n6 n7 n8

Enter the port number for the iods:

(Port number 7000 is the default)

7000

Done!

[root@head /pvfs-meta]# ls -al

total 9

drwxr-xr-x 2 root root 82 Dec 17 15:01 ./

drwxr-xr-x 21 root root 403 Dec 17 15:01 ../

-rwxr-xr-x 1 root root 84 Dec 17 15:01 .iodtab*

-rwxr-xr-x 1 root root 43 Dec 17 15:01 .pvfsdir*

The mkmgrconf script is installed with the rest of the utilities.

I/O servers have their own executable and configuration file, distinct from client

and metadata server files:

• iod executable
• iod.conf file

418 Chapter 17

The iod executable is the daemon that provides I/O services in the PVFS system.

It normally is started as root, after which time it changes its group and user to some

nonsuperuser ids. These iods must be running in order for file I/O to take place.

The iod.conf file describes the iod’s environment. In particular it describes the

location of the PVFS data directory on the machine and the user and group under

which iod should run. There should be a comparable configuration file for the mgr,

but there is not at this time.

In our example we’re going to run our I/O server as user nobody and group

nobody, and we’re going to have it store data in a directory called /pvfs-data

(this could be a mount point or a subdirectory and doesn’t have to be this name).

Lines that begin with a pound sign are comments. Here’s our iod.conf file:

iod.conf file for example cluster

datadir /pvfs-data

user nobody

group nobody

We then create the data directory and change the owner, group, and permissions

to protect the data from inappropriate access while allowing the iod to store and

retrieve data. We’ll do this on our first I/O server (n1) first:

[root@n1 /]# cd /

[root@n1 /]# mkdir /pvfs-data

[root@n1 /]# chmod 700 /pvfs-data

[root@n1 /]# chown nobody.nobody /pvfs-data

[root@n1 /]# ls -ald /pvfs-data

drwx------ 2 nobody nobody 35 Dec 1 09:41 /pvfs-data/

This must be repeated on each I/O server. In our example case, the

/etc/iod.conf file is exactly the same on each server, and we create the

/pvfs-data directory in the same way as well.

Installing and Configuring Clients. Five files and one directory are necessary

for a client to access PVFS file systems:

• pvfsd executable
• pvfs.o kernel module (compiled to match kernel)

• /dev/pvfsd device file
• mount.pvfs executable
• pvfstab file

PVFS: Parallel Virtual File System 419

• mount point

As mentioned in Section 17.2.1 there are two approaches to client access: di-

rect library access and kernel support. The first four items in the above list are

specifically for kernel access and may be ignored if this method of access is not

desired.

The pvfsd executable is a daemon that performs network transfers on behalf of

client programs. It is normally started as root. It must be running before a PVFS

file system is mounted on the client.

The pvfs.o kernel module registers the PVFS file system type with the Linux

kernel, allowing PVFS files to be accessed with system calls. This is what allows

existing programs to access PVFS files once a PVFS file system is mounted.

The /dev/pvfsd device file is used as a point of communication between the

pvfs.o kernel module and the pvfsd daemon. It must exist before the pvfsd is

started. It need be created only once on each client machine.

The mount.pvfs executable is used by mount to perform the PVFS-specific mount

process. Alternatively it can be used in a standalone manner to mount a PVFS file

system directly. This will be covered in Section 17.3.3.

The pvfstab file provides an fstab-like entry that describes to applications using

the PVFS libraries how to access PVFS file systems. This is not needed by the

kernel client code. It is used only if code is directly or indirectly linked to libpvfs.

This includes using the ROMIO MPI-IO interface.

The mount point, as mentioned earlier, is just an empty directory. In our example

we are placing our mount point in the root directory so that we can mount our PVFS

file system to /pvfs. We then create the PVFS device file. The mknod program

is used to create device files, which are special files used as interfaces to system

resources. The mknod program takes four parameters: a name for the device, a

type (“c” for character special file in our case), and a major and minor number.

We have somewhat arbitrarily chosen 60 for our major number for now.

We’ll do this first on the head machine:

[root@head /]# mkdir /pvfs

[root@head /]# ls -ald /pvfs

drwxr-xr-x 2 root root 35 Dec 1 09:37 /pvfs/

[root@head /]# mknod /dev/pvfsd c 60 0

[root@head /]# ls -l /dev/pvfsd

crw-r--r-- 1 root root 60, 0 Dec 1 09:45 /dev/pvfsd

If one is using the devfs system, it is not necessary to create the /dev/pvfsd file,

but it will not hurt to do so.

420 Chapter 17

In our example system we are going to use the PVFS libraries on our nodes, so

we will also create the pvfstab file using vi or emacs. It’s important that users be

able to read this file. Here’s what it looks like:

[root@head /]# chmod 644 /etc/pvfstab

[root@head /]# ls -al /etc/pvfstab

-rw-r--r-- 1 root root 46 Dec 17 15:19 /etc/pvfstab

[root@head /]# cat /etc/pvfstab

head:/pvfs-meta /pvfs pvfs port=3000 0 0

This process must be repeated on each node that will be a PVFS client. In our

example we would need to copy out these files to each node and create the mount

point.

Installing PVFS Development Components. A few components should also

be installed if applications are going to be compiled for PVFS:

• libpvfs.a library
• include files
• man pages
• pvfstab file

The libpvfs.a library and include files are used when compiling programs to

access the PVFS system directly (what we term “native access”). The man pages

are useful for reference. The pvfstab file was described in the preceding section;

it is necessary for applications to access PVFS file systems without going through

the kernel.

In our example we expect to compile some programs that use native PVFS access

on our “head” node. By performing a make install in the PVFS source on the

head, everything is automatically installed.

Configuring ROMIO to Use PVFS. In order for ROMIO to access PVFS

files most optimally, it must be configured with PVFS support. Since ROMIO is

typically installed as part of the MPICH package, a full coverage of the configura-

tion, compilation, and installation process is outside the scope of this section. One

should instead reference Section 9.6.1 for this information.

In short, when compiling ROMIO either as a standalone package or as part of

MPICH, two important additional flags must be provided:

• -file system=pvfs+ufs+nfs
• -lib=/usr/local/lib/libpvfs.a

PVFS: Parallel Virtual File System 421

The first of these specifies that ROMIO support regular Unix files, PVFS files, and

NFS files. The second indicates the location of the PVFS library for linking to the

ROMIO package.

17.3.3 Startup and Shutdown

At this point all the binaries and configuration files should be in place. Now we will

start up the PVFS file system and verify that it is working. First we will start the

server daemons. Then we will initialize the client software and mount the PVFS file

system. Next we will create some files to show that things are working. Following

this we will discuss unmounting file systems. Finally we will discuss shutting down

the components.

Starting PVFS Servers. First we need to get the servers running. It doesn’t

matter what order we start them in as long as they are all running before we start

accessing the system.

Going back to our example, we’ll start the metadata server daemon first. It stores

its log file in /tmp/ by default:

[root@head /root]# /usr/local/sbin/mgr

[root@head /root]# ls -l /tmp

total 5

-rwxr-xr-x 1 root root 0 Dec 18 18:22 mgrlog.MupejR

The characters at the end of the log filename are there to ensure a unique name.

A new file will be created each time the server is started.

Next we start the I/O server daemon on each of our I/O server nodes:

[root@n1 /root]# /usr/local/sbin/iod

[root@n1 /root]# ls -l /tmp

total 5

-rwxr-xr-x 1 root root 82 Dec 18 18:28 iolog.n2MjK4

This process must be repeated on each node.

Getting a Client Connected. With the servers started, we can now start up

the client-side components. First we load the module, then we start the client

daemon pvfsd, and then we mount the file system:

[root@head /root]# insmod pvfs.o

[root@head /root]# lsmod

Module Size Used by

422 Chapter 17

pvfs 32816 0 (unused)

eepro100 17104 1 (autoclean)

[root@head /root]# /usr/local/sbin/pvfsd

[root@head /root]# ls -l /tmp

total 7

-rwxr-xr-x 1 root root 0 Dec 18 18:22 mgrlog.MupejR

-rwxr-xr-x 1 root root 102 Dec 18 18:22 pvfsdlog.Wt0w7g

[root@head /root]# /sbin/mount.pvfs head:/pvfs-meta /pvfs

[root@head /root]# ls -al /pvfs

total 1

drwxrwxrwx 1 root root 82 Dec 18 18:33 ./

drwxr-xr-x 20 root root 378 Dec 17 15:01 ../

[root@head /root]# df -h /pvfs

Filesystem Size Used Avail Use% Mounted on

head:/pvfs-meta 808M 44M 764M 5% /pvfs

Now we should be able to access the file system. As an aside, we note that the -h

option to df simply prints things in more human-readable form.

Checking Things Out. Let’s create a couple of files:

[root@head /root]# cp /etc/pvfstab /pvfs/

[root@head /root]# dd if=/dev/zero of=/pvfs/zeros bs=1M count=10

[root@head /root]# ls -l /pvfs

total 10240

-rw-r--r-- 1 root root 46 Dec 18 18:41 pvfstab

-rw-r--r-- 1 root root 10485760 Dec 18 18:41 zeros

[root@head /root]# cat /pvfs/pvfstab

head:/pvfs-meta /pvfs pvfs port=3000 0 0

Everything looks good. Now we must repeat this on the other nodes so that they

can access the file system as well.

Unmounting File Systems and Shutting Down Components. As with any

other file system type, if a client is not accessing files on a PVFS file system, you

can simply unmount it:

[root@head /root]# umount /pvfs

[root@head /root]# ls -al /pvfs

total 1

drwxrwxrwx 1 root root 82 Dec 18 18:33 ./

PVFS: Parallel Virtual File System 423

drwxr-xr-x 20 root root 378 Dec 17 15:01 ../

You could then remount to the same mount point or some other mount point. It is

not necessary to restart the pvfsd daemon or reload the pvfs.o module in order

to change mounts.

For clean shutdown, all clients should unmount PVFS file systems before the

servers are shut down. The preferred order of shutdown is as follows:

• unmount PVFS file systems on clients

• stop pvfsd daemons using kill or killall

• unload pvfs.o module using rmmod

• stop mgr daemon using kill or killall

• stop iod daemons using kill or killall

17.3.4 Configuration Details

As the preceding discussion suggests, the current PVFS configuration system is

a bit complex. Here we try to shed more light on configuration file formats, file

system defaults, and other options. This information is all supplementary, but it

might be useful in the event of an error.

The .pvfsdir and .iodtab Files. In Section 17.3.2, we discussed the creation

of both the .pvfsdir and the .iodtab files. In this section we cover the details of

the file formats. The .pvfsdir file holds information for the metadata server for

the file system. The .iodtab file holds a list of the I/O daemon locations and port

numbers that make up the file system. Both of these files can be created by using

the mkmgrconf script, whose use is also described in Section 17.3.2.

The .pvfsdir file is in text format and includes the following information in this

order, with an entry on each line:

• inode number of the directory in which the .pvfsdir resides

• userid for the directory

• groupid for the directory

• permissions for the directory

• port number for metadata server

• hostname for the metadata server

• metadata directory name

• name of this subdirectory (for the .pvfsdir file in the metadata directory this

will be “/”)

424 Chapter 17

Here’s a sample .pvfsdir file that might have been produced for our example

file system:

116314

0

0

0040775

3000

head

/pvfs-meta

/

This file would reside in the metadata directory, which in our example case is

/pvfs-meta. There will be a .pvfsdir file in each subdirectory under this as well.

The metadata server will automatically create these new files when subdirectories

are created.

The .iodtab file is also created by the system administrator. It consists simply

of an ordered list of hosts (or IP addresses) and optional port numbers. Lines

beginning with # are comments and are ignored by the system. It is stored in the

metadata directory of the PVFS file system.

An example of a .iodtab file is as follows:

example .iodtab file using IP addresses and explicit ports

192.168.0.1:7000

192.168.0.2:7000

192.168.0.3:7000

192.168.0.4:7000

192.168.0.5:7000

192.168.0.6:7000

192.168.0.7:7000

192.168.0.8:7000

Another example, assuming the default port (7000) and using hostnames (as in

our example system), is the following:

example .iodtab file using hostnames and default port (7000)

n1

n2

n3

n4

PVFS: Parallel Virtual File System 425

n5

n6

n7

n8

Manually creating .iodtab files, especially for large systems, is encouraged. How-

ever, once files are stored on a PVFS file system, it is no longer safe to modify this

file.

iod.conf Files. The iod will look for an optional configuration file named

iod.conf in the /etc directory when it is started. This file can specify a num-

ber of configuration parameters for the I/O daemon, including changing the data

directory, the user and group under which the I/O daemon runs, and the port on

which the I/O daemons operate.

Every line consists of two fields: a key field and a value field. These two fields

are separated by one or more spaces or tabs. The key field specifies a configuration

parameter whose value should be changed. The key is followed by this new value.

Lines starting with a pound sign and empty lines are ignored. Keys are case insen-

sitive. If the same key is used again, it will override the first instance. The valid

keys are as follows:

port — specifies the port on which the iod should accept requests. Default is

7000.

user — specifies the user under which the iod should run. Default is nobody.

group — specifies the group under which the iod should run. Default is nobody.

rootdir — gives the directory the iod should use as its rootdir. The iod uses

chroot(2) to change to this directory before accessing files. Default is /.

logdir — gives the directory in which the iod should write log files. Default is

/tmp.

datadir — gives the directory the iod should use as its data directory. The iod

uses chdir(2) to change to this directory after changing the root directory. Default

is /pvfs data.

debug — sets the debugging level; currently zero means don’t log debug info and

nonzero means do log debug info. This is useful mainly for helping find bugs in

PVFS.

426 Chapter 17

The rootdir keyword allows you to create a chroot jail for the iod. Here is a

list of the steps the iod takes on startup:

1. read iod.conf

2. open log file in logdir

3. chroot() to rootdir

4. chdir() to datadir

5. setuid() and setgid()

The log file is always opened with the entire file system visible, while the datadir

is changed into after the chroot() call. In almost all cases this option should be

left as the default value.

Here is an example iod.conf file that could have been used for our example

system:

IOD Configuration file, iod.conf

port 7000

user nobody

group nobody

rootdir /

datadir /pvfs-data

logdir /tmp

debug 0

An alternative location for the iod.conf file may be specified by passing the

filename as the first parameter on the command line to iod. Thus, running “iod”

is equivalent to running “iod /etc/iod.conf”.

pvfstab Files. When the client library is used, it will search for a /etc/pvfstab

file in order to discover the local directories for PVFS files and the locations of the

metadata server responsible for each of these file systems. The format of this file is

the same as that of the fstab file:

head:/pvfs-meta /pvfs pvfs port=3000 0 0

Here we have specified that the metadata server is called head, that the directory

the server is storing metadata in is /pvfs-meta, that this PVFS file system should

PVFS: Parallel Virtual File System 427

be considered as “mounted” on the mount point /pvfs on the client (local) system,

and that the TCP port on which the server is listening is 3000. The third field (the

file system type) should be set to “pvfs” and the last two fields to 0. The fourth

field is for options; the only valid option at this time is port.

It is occasionally convenient to be able to specify an alternative location for the

information in this file. For example, if you want to use PVFS calls but cannot

create a file in /etc, you might instead want to store the file in your home directory.

The PVFSTAB FILE environment variable may be set before running a program to

specify another location for the pvfstab file. In a parallel processing environment

it may be necessary to define the variable in a .cshrc, .bashrc, or .login file to

ensure that all tasks get the correct value.

Compile-Time Options. The majority of file system configuration values are

defined in pvfs config.h in the PVFS distribution. You can modify these values

and recompile in order to obtain new default parameters such as ports, directories,

and data distributions. Here are some of the more important ones:

ALWAYS CONN — if defined, all connections to all I/O servers will be established

immediately when a file is opened. This is poor use of resources but makes perfor-

mance more consistent.

PVFSTAB PATH — default path to pvfstab file.

PVFS SUPER MAGIC — magic number for PVFS file systems returned by statfs().

CLIENT SOCKET BUFFER SIZE — send and receive size used by clients.

MGR REQ PORT — manager request port. This should be an option to the manager,

but it isn’t at the moment.

DEFAULT SSIZE — default strip size.

RANDOM BASE — if defined, the manager will pick a random base number (start-

ing I/O server) for each new file. This can help with disk utilization. There is also

a manager command line parameter to enable this.

Additionally a --with-log-dir option to configure has recently been added to

the PVFS package. This option specifies a new subdirectory in which to place log

files. It has the side effect of turning off the use of unique strings on the end of log

file names, making it easier to manage the log files.

428 Chapter 17

17.3.5 Miscellanea

This section contains some notes on options to the mgr and on using mount with

PVFS.

Currently the only important option to mgr is “-r”, which enables random selec-

tion of base nodes for new PVFS files. The mgr by default logs a message any time

a file is opened. Here is an example:

i 2580, b 0, p 4, s 65536, n 1, /pvfs-meta/foo

The fields printed are as follows:

i — inode number/handle

b — base node number

p — pcount

s — strip size

n — number of processes which have this file open

Finally the name of the metadata file is listed. This information is particularly

helpful when debugging applications using parallel I/O.

We mentioned earlier that the mount.pvfs program is used to mount PVFS

file systems. This is a little bit different from most file systems, in that usually

the mount program can be used to mount any kind of file system. Some versions

of the Linux mount, which is distributed as part of the util-linux package, will

automatically look in /sbin for an external file system-specific mount program to

use for a given file system type. At the time of writing all versions later than 2.10f

seem to have this feature enabled. If this is enabled, then mount will automatically

call /sbin/mount.pvfs when a PVFS file system mount is attempted. Using our

example, we have

[root@head /root]# /sbin/mount -t pvfs head:/pvfs-meta /pvfs

If this works, then the administrator can also add entries into /etc/fstab for PVFS

file systems. However, it is important to remember that the module must be loaded,

the pvfsd daemon must be running, and the server daemons must be running on

remote systems before a PVFS file system can be mounted.

PVFS: Parallel Virtual File System 429

17.4 Final Words

PVFS is an ever-developing system. As the system evolves, it’s fairly likely that

documentation updates will trail software development.

The PVFS development team is open to suggestions and contributions to the

project. We are especially interested in scripts and tools that people develop to

make managing PVFS easier. Users who have developed utilities to help manage

their system are encouraged to contact us. We’ll try to include such programs into

the next PVFS release.

Lots of development is taking place in PVFS, particularly to help handle issues

such as redundancy, more interesting data distributions, and the use of zero-copy

network protocols (described in Chapter 6). For the newest information on PVFS,

check the Web site: www.parl.clemson.edu/pvfs.

 blank

18 Chiba City: The Argonne Scalable Cluster

Remy Evard

With 256 dual-CPU computing nodes, Chiba City is the largest cluster in the

Argonne scalable clusters project.

Chiba City was designed with a unique purpose in mind: to support scalable

computer science and the development of scalable systems software. We believe that

advances in the state of system software for high-performance computing are critical

in order to improve the performance and reliability of high-end machines. Yet the

developers and researchers who will bring about those advances often find it very

difficult to gain access to the largest systems because those computers are dedicated

to running large code. With the advent of commodity clusters, the solution to this

problem became clear: using relatively inexpensive parts, it was now possible to

build a system that could be used to support activities that required development

and testing at large scale without the usual large price tag. This was the basis of

the idea for Chiba City.

In addition, Chiba City was built to support a wide range of parallel computa-

tional science applications. In the Mathematics and Computer Science (MCS) Di-

vision of Argonne National Laboratory, we collaborate with hundreds of researchers

around the world who use our computing facilities in partnership with the scien-

tists in our division. Chiba City was meant to be used by these scientists in order

to tackle real scientific problems while they simultaneously worked with computer

scientists to expand the scope of problem that they could address.

In essence, Chiba City is intended to support two distinct goals that are occa-

sionally in conflict: scalable computer science research, which needs a dynamic and

interactive testbed, and computational science, which has historically used stable,

batch-oriented systems. We believe that Chiba City has achieved a comfortable

balance between these two worlds and has helped promote good science in both.

The difference in requirements between experimentation and classic production

computing has kept us—Chiba City’s designers and administrators—living in two

worlds at once, trying to keep the cluster both stable and interesting. We hope

that this case study will achieve both goals as well.

18.1 Chiba City Configuration

In this section, we describe the configuration of the cluster from multiple perspec-

tives. We cover not only what has gone into the cluster but why it is there and

how it is used.

432 Chapter 18

8 Computing Towns
256 Dual Pentium III systems

1 Visualization Town
32 Pentium III systems

with Matrox G400 cards

1 Storage Town
8 Xeon systems

with 300G disk each

Cluster Management
12 PIII Mayor Systems

4 PIII Front End Systems
2 Xeon File Servers

3.4 TB disk

High Performance
Net

64-bit Myrinet

Management Net
Gigabit and Fast Ethernet

Gigabit External Link

Figure 18.1
Chiba City schematic.

18.1.1 Node Configuration

Chiba City includes the following computing components (see Figure 18.1):

• 256 computing nodes

• 32 visualization nodes

• 8 storage nodes

• 18 management nodes

Computing Nodes. The 256 computing nodes are the workhorse portion of the

cluster. These are the primary nodes that run the user’s programs.

CPU. Each computing node has two 550 MHz Pentium III CPUs. This lets

us play the game of sometimes referring to the system as a “512-CPU computer”

rather than a “256-node computer.” (Of course, some people actually include every

CPU on the system when they count, not just the ones available to the users. In

Chiba’s case, this would be 574 CPUs, not including the CPUs in the networking

equipment.)

Chiba City: The Argonne Scalable Cluster 433

One of the more hotly debated issue throughout the design phase of Chiba was

the question of how many CPUs each node should have. From a pure performance

viewpoint, it makes the most sense to have only one CPU per system, for several

reasons. First, the memory bandwidth on Pentium IIIs is quite limited; thus one

CPU alone can easily saturate the memory bus, making any more than the first

one potentially useless. Second, in order to most efficiently use all of the CPUs in

the system with an MPI job, the communication between processes must use both

network and shared-memory communication, which is difficult. Third, at the time

of the installation, Linux didn’t run on more than one CPU particularly well.

On the other hand, from a price/performance perspective, it makes much more

sense to have multiple CPUs on each node—and in fact, four would have been

better than two from this viewpoint. It’s typically cheaper to buy a dual-CPU

system than to buy two of the same system, each with only one CPU. Furthermore,

it’s far cheaper to install a network for 256 nodes than for 512 nodes. (On the

other hand, if the network is the bottleneck, then some people who use multi-CPU

systems end up installing two or more network interfaces per computer.)

On Chiba City, we decided to go with dual-CPUs for flexibility. We wanted

to be able to support experiments and development on both types of MPI pro-

gramming. Those wishing to go for maximal node performance could ignore the

second CPU. Alternatively, those wishing to use or experiment with mixed-mode

MPI programming would have that option as well.

In retrospect, this is exactly what has happened. Some users find that their code

is more efficient if they use only one processor. Others find that two processors work

well for them. And developers have needed access to both types of configurations.

Computing Node Memory. Each computing node has 512 megabytes of RAM.

We felt that this was a minimum for dual CPUs at the time. We do occasionally see

applications run out of free memory and start swapping, particularly when using

both CPUs, but in general this has proven to be sufficient.

Computing Node Footprint. The nodes themselves are 2U units. (Equipment

that can be housed in computer racks is measured in the unit U, where 1U is 1.75

inches. A standard rack is 42U.) We went with these because they were the smallest

system we could find at the time. In fact, the size of the units was a major driver:

one of the initial proposals we received from vendors had 3U and 5U units, which

would essentially doubled the floor space required for the cluster. We simply didn’t

have that much space in our machine room.

434 Chapter 18

Ironically, 1U Pentium systems hit the market a few months after we installed

Chiba City. We knew they were likely be available around then, but renegotiating

the cluster purchase to have 1Us was simply not an option.

Computing Node Disks. Some cluster builders include disks in all nodes. Oth-

ers go completely diskless. Diskless nodes have a number of advantages in a cluster.

First, it’s a little easier to configure the operating systems on the nodes when they’re

diskless, because those configurations are stored on management nodes. (This ad-

vantage can be negated if adequate configuration tools are used to manage diskful

nodes.) Also, disks tend to break. If the nodes don’t have disks, that’s one less

thing on each node that may require service. On large clusters, it’s a good idea to

eliminate any situation that involves touching the nodes.

On Chiba City, we have 9 gigabyte hard drives on each node. We decided to

install disks in each node for maximum flexibility. Some applications that the

scientists run make extensive use of local disk. We also anticipated that system-

software experiments or alternative operating systems might need to use the local

disk. It has turned out that, for us, this was the right choice. Many, many uses of

the system rely on or take advantage of the local disk. And while we do occasionally

have drives that fail, this has been much less of an issue than many other hardware

components, particularly the fans.

Other Computing Node Hardware. In addition to the CPUs, the RAM, and

the hard drive, each computing node has

• one 32-bit PCI slot that is used for a Myrinet card,

• a 10/100 Ethernet port on the motherboard,

• a floppy drive (because that was included), and

• serial, parallel, keyboard, and the other usual PC ports.

Computing Node Connections. Looking at the back of a node can be instruc-

tive. Each connection plugs into another component of the cluster, all of which are

described in detail in following sections of this chapter.

• The Myrinet card is a part of the Myrinet network. Each node has one fairly

large Myrinet cable that runs under the floor to a Myrinet Clos64 switch.

• The Ethernet port is used for to connect to the Ethernet network. Each node

connects to an Ethernet switch in its rack or in a neighboring rack.

• The serial port that Linux uses as the console plugs into a serial concentrator in

the rack, which enables remote access to all of the consoles.

Chiba City: The Argonne Scalable Cluster 435

• The “management” serial port on each node plugs into a separate serial concen-

trator, to be used for low-level hardware and management. This is a motherboard-

specific management interface, and we’ve never needed to use it.

• The power cable runs to a Baytech power control unit that allows us to remotely

monitor and control the power to each node.

• The keyboard and video ports are left vacant. In rare situations, such as hard-

ware diagnosis or BIOS upgrades, we may plug a keyboard and monitor into them.

In an ideal world, we would never use these at all. Other clusters built since Chiba

use daisy-chain mechanisms to allow somewhat remote access to the keyboard and

video.

Visualization Nodes. The 32 visualization nodes are used by computer scien-

tists for research into cluster-based image synthesis and computer graphics. They

are sometimes used as their own independent 32-node cluster and sometimes used

in conjunction with the computing nodes as part of one large program.

The primary feature of the visualization nodes is that they include high-end video

cards that can be used for graphics and image synthesis. Ideally, these cards can

be used in two ways:

• Simply as video cards. In our environment, we have a remote console infras-

tructure for graphics systems that allows us to connect the display port of graphics

systems located in one spot to display systems located in a laboratory. This means

that the visualization nodes can be housed in the machine room and still be used to

drive the CAVE or our 15-projector Powerwall, both of which are in other rooms.

• As pipelines for generating images.

The world of commodity PC graphics cards is still far more focused on the first

application than the second, so we end up using the nodes more as drivers for

high-end display devices than as graphics computing engines.

These video cards typically require an AGP slot. The requirement for the AGP

slot drives every other detail of the visualization nodes. For example, computers

with AGP slots are usually desktop systems or workstations rather than servers.

Our visualization nodes are workstation-style systems that don’t fit into racks well

and are actually kept on shelves. The systems that were available at the time

we purchased Chiba City were 550 MHz Pentium III systems configured with 13

GBytes of disk and 384 MBytes of RAM. We manage them the same way that we

do the compute nodes, including remote serial and power control.

The video cards were originally Matrox Millenium 32 MBytes G400Max cards.

Since installing Chiba City, we’ve upgraded the video cards to NVidea GEFORCE3

cards.

436 Chapter 18

Storage Nodes. The eight storage nodes are not accessed directly by most of

the users of Chiba City. Instead, they provide file system service to the computing

nodes, as described in Section 18.3.1.

Each storage node has a 500 MHz Xeon, 512 MBytes of RAM, and, most impor-

tant, 300 Gbytes of SCSI-attached disk. So, in aggregate, the storage nodes provide

2.4 TBytes of raw disk space to the computing nodes.

The storage nodes are a part of the Myrinet network. In some cases, cluster

builders will choose to put their storage nodes exclusively on the Ethernet network.

This choice is primarily an issue of performance versus cost. With an even order

of two number of computing nodes (i.e., 64, 128, 256, etc.), one can often build

an interconnect network with a lot less hardware than would be required for those

same compute nodes plus a few storage nodes. The difference may be negligible

or may be substantial. In our case, getting the storage nodes onto the Myrinet

meant that we needed to purchase several additional Myrinet switches. Because

I/O performance and experiments are important to our user community, we felt

the cost was worth it.

The storage nodes interface with the rest of the cluster in the same way that the

rest of nodes on the cluster do. In addition to being available over Myrinet, they’re

also on the Ethernet. They also have remote power and console control.

Under normal conditions users don’t have direct access to the storage nodes.

However, scientists working on a project specifically related to I/O research may

have access to the I/O servers. In this case, it’s possible that their programs will

run simultaneously on both the compute nodes and the storage nodes.

Management Nodes and Servers. The nodes used for cluster management

come in several different flavors:

• 12 systems used as the cluster “mayors,” or monitor systems

• 4 front ends

• 2 file servers

The mayors provide a scalable management mechanism, which is described in

greater detail in Section 18.1.2.

Mayor systems: Every set of 32 computers in the cluster is associated with a

computer, called their “mayor,” that monitors and manages them. The mayors are

never used as part of any computation or experiment running on the cluster but

are instead used to configure the cluster for that experiment and recover from any

problems it might cause. Each mayor is system with a single 550 MHz Pentium

Chiba City: The Argonne Scalable Cluster 437

III, 512 MBytes of RAM, 10/100 Ethernet, Gigabit Ethernet, and 200 GBytes of

SCSI disk. Two of the mayor units have special functions. One serves as the “city

mayor” and is used to control the other mayors. The other runs the scheduler for

the cluster.

Front ends: Chiba City was originally configured with four front ends: systems

that users could login to in order to build their programs and launch them onto

the compute nodes. Since these systems are identical to the compute nodes, the

users’ build environment would be the same as program’s execution environment.

In practice we found that two front ends was sufficient, and we have used the other

two nodes as test systems.

File servers: The two file servers provide file systems via NFS to the login nodes

and to the mayors. They house all of the user’s home file systems and all of the

configuration files (kernels, RPMs, config files, and so on) for the nodes. They do

not export file systems directly to the nodes—that’s the job of the storage nodes.

The file servers have exactly the same hardware configuration as the storage nodes.

Each has 500 GBytes of disk.

Nodes We Missed. After a few years of running the cluster, we’ve concluded

that the configuration that we put together is almost correct, but we missed a few

pieces.

First, we could use more test systems. Linux kernels, file systems, system soft-

ware, and applications all change rapidly. Having between four and eight test

machines for testing individual pieces of code and cluster functions would be ex-

tremely helpful. At present, we usually allocate some of the compute nodes in order

to test new software. This procedure works okay, but since it reduces the pool of

compute nodes the users can access, it tends to be a short-term solution.

Second, we could use a few spare nodes. We always seem to have a small handful

of nodes with hardware problems, which makes it difficult to reliably be able to run

jobs on all 256 nodes. We would like to have a pool of spare nodes that we would

swap in for a node with broken hardware. Then, once that node was repaired, it

would go into the pool of spare nodes. Four spare nodes would probably cover most

situations.

We actually considered both of these in the original plan, but for financial reasons

they were removed. It’s difficult to justify between eight and twelve computers that

aren’t really being used most of the time.

438 Chapter 18

mayor

node node node

node node node node

node node node node

node node node node

node node node node

node node node node

node node node node

node node node node

node

Figure 18.2
A Chiba City town.

18.1.2 Logical Configuration

Chiba City is conceptually divided into cluster building units which we call “towns.”

In our definition, a town consists of a set of computers and a single “mayor” node

that manages them. For example, each of the eight towns of computing nodes in

Chiba City includes one mayor and thirty-two computing nodes.

In Chiba City, there are eleven towns:

• 8 computing towns, each with 32 computing nodes

• 1 visualization town of 32 visualization nodes

• 1 storage town with the 8 storage nodes

• 1 server/mayor town with the 10 mayors, login nodes, and file servers

The towns are a mechanism to allow scalable management (see Figure 18.2). From a

systems administration perspective, we would like to be able to completely manage

every node in a town by interacting with its mayor. So, in order to manage the

256 computing nodes in Chiba, one merely needs to manage the 8 mayors of those

computing nodes. To accomplish this, the mayor provides boot service, operating

system configuration, console management, and file services to each of the other

Chiba City: The Argonne Scalable Cluster 439

nodes in its town. It monitors those nodes to make sure that they’re running

correctly. The mayor performs management functions only and never participates

in the computing activity of the nodes, so the users of the cluster never work with

the mayors directly.

In most cases on Chiba City, each mayor monitors 32 nodes. In a few cases, such

as the storage town, there are fewer nodes in the town. We chose 32 clients for a

number of reasons:

• Our tests indicated that NFS performed reasonably with 32 clients. Thus, NFS

would be an option within a town if we so chose.

• In a 1024-node cluster, there would be 32 towns of 32 nodes.

• The hardware for a 32-node town fit nearly perfectly into two racks.

The town relationship is hierarchical. A collection of mayors can be managed

by a higher-level mayor in the same way that a collection of nodes is managed by

a mayor. In Chiba City, we have one node, which we refer to as the City Mayor,

that is responsible for managing each of the mayors. This gives us a single point of

control from which the entire cluster can be managed.

The concept of building the larger system out of smaller replicated systems,

each with their own server, wasn’t a new one. Beyond being a classic computer

science technique, it was used to some degree in the IBM SP, has been a standard

approach for years in the systems administration community, and was demonstrated

on clusters by the Sandia National Laboratories CPlant project.

We’ve made a number of observations about the mayor/town concept while op-

erating the cluster:

• The mayor concept has proven its worth over and over. We could not manage

the cluster without some sort of hierarchical approach.

• Some network services already have scalability mechanisms built in, or scale to

the size of the cluster. The Dynamic Host Configuration Protocol (DHCP) is one

of these. Breaking these down so that it runs on each mayor and supports only the

local town isn’t worth the time. In other words, some services for the cluster can

and should be global.

• The ratio of clients to mayor is highly dependent on what those clients are

doing. With 32 nodes, we’re comfortable supporting network booting and remote

operating system installation. If we were also supporting high-capacity file systems

or other services, we might need to scale down. On the other hand, if every node

was largely independent except for monitoring and time service, for example, then

we could probably shift to 64 nodes per mayor.

440 Chapter 18

We have often been asked why we call the building blocks “towns.” In the early

design phases of Chiba City, we talked to a lot of people in a lot of companies

who had never heard of clusters before. We had trouble explaining that we wanted

to build the cluster out of these subclusters that had a monitoring agent, so we

started to call them “towns” as a part of the city metaphor. This explanation

helped quite a bit even though, of course, real cities aren’t made up of towns that

look identical—they’re made up of neighborhoods that are usually very different.

But the metaphor helped explain the concept, and the name stuck.

18.1.3 Network Configuration

Chiba City has two types of networks—Myrinet and Ethernet. In this section, we

describe their configuration and their use.

Myrinet. The Myrinet network is used to support high-speed communication

between nodes as part of a user’s program, usually related to computation or I/O.

On Chiba City, a high-performance network is essential. Many of the jobs that

run on the cluster are bound by the performance of the network: the faster the

network, the better the performance of their code. Also, a lot of the computer

science research on Chiba is related to communication.

We chose to use Myrinet, a product of Myricom, because it was the most cost-

effective high-performance networking solution on the market at the time we pur-

chased the cluster. Myrinet has a number of nice characteristics. It can deliver

a full bisection bandwith network between all of the nodes of a cluster. The net-

work cards that we installed can support a theoretical 1.28 Gbps transfer rate, with

latencies from process to process in the 10–15 microsecond range.

The specific Myrinet hardware on Chiba City includes 4 Myrinet spine switches,

5 CLOS-64 switches, and 320 Lanai 7.2 NICs. The hosts that usually participate

on the Myrinet network include the computing nodes, the visualization nodes, the

storage nodes, and the login nodes. In other words, everything except the man-

agement nodes and the file servers is typically on Myrinet. At different times over

the life of the cluster, we have connected the file servers and mayors to support

experiments.

It is possible to run IP over Myrinet, and we do. From an IP standpoint, the

Myrinet network is a flat IP subnet and is not accessible from outside of the cluster.

Ethernet. The Ethernet network is used for everything that the Myrinet network

isn’t. For the most part, this means management functions, remote access, and

Chiba City: The Argonne Scalable Cluster 441

Fast
Eth

Switch
…

Gig
Eth

Switch

…

ANL network

Control Systems

Front Ends

Test Clusters

Gigabit Ethernet

Fast Ethernet

mayor

n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

n

…

…

Figure 18.3
The Chiba City Ethernet.

a fallback communications network for applications if the Myrinet network isn’t

available.

Figure 18.3 is a diagram of the Ethernet network, which is arranged in a simple

tree structure. Each computing, visualization, and storage node is connected via

Fast Ethernet to an Ethernet switch near that node. There are 10 Cisco Catalyst

4000s distributed around the cluster, each connecting approximately 32 nodes.

A central Gigabit Ethernet switch, a Cisco Catalyst 6509, is connected to each of

the Catalyst 4000s with two channel bonded Gigabit Ethernet links. The remain-

ing computers—the front end nodes, the file servers, and the mayors—all connect

442 Chapter 18

directly to the Catalyst 6509. Also, Chiba City’s link to the outside world comes

in through the Catalyst 6509.

In essence, Chiba City has a completely switched Ethernet. The IP network

layered on top of this Ethernet is one flat subnet with no routing. Every node in

the cluster is at most three Ethernet switch hops away from every other node.

18.1.4 Physical Configuration

The physical layout of a cluster is particularly important space is limited, as is the

case for us. Chiba City occupies twenty-seven standard 19-inch racks arranged into

two rows (see Figure 18.4). The racks include

• 16 racks of computing nodes. Each computing town fits precisely into two racks.

This include the 32 compute nodes, the mayor and its disk, the serial and power

management systems, and the Ethernet switch for the town.

• 4 racks of storage nodes. The storage nodes and their associated disk each take

up half of a rack.

• 2 double-layer shelving units for the visualization nodes. Because of cable length

limits for the video systems, these are located in another part of our machine room

from the rest of Chiba City.

• 3 racks for the Myrinet switches. These racks have the heaviest cable density in

Chiba, because every node has a cable that runs to some port in these racks.

• 1 rack for the file servers and their disk.

• 1 rack for the Gigabit Ethernet switch and remaining servers.

18.2 Chiba City Timeline

In this section of the case study, we examine the phases of activity that Chiba City

has gone through, starting with the early seeds of the idea up through full-time

operation. These are similar to the phases that most other clusters go through.

18.2.1 Phase 1: Motivation

As noted at the beginning of this chapter, the primary driver for Chiba City was

to create a testbed that could be used to support scalability testing and research

into scalability issues. We believe that this area is the most important aspect of

computing to address in order to advance the state of high-performance computing.

Furthermore, we felt that it was important to build a system that could be used

for general computer science and development, rather than on applications and

simulations, which is typically what large computers are used for.

Chiba City: The Argonne Scalable Cluster 443

Figure 18.4
One of two rows of Chiba City.

We had been building and running small clusters for several years, including clus-

ters based on Windows NT, Linux, and FreeBSD. We had used those to support

research into communication, visualization, and several other areas of experimenta-

tion. But, by fall of 1998, we still had not yet been convinced that the large system

in MCS would be a cluster.

However, once we considered the issues of scalability, the need for a computer

science testbed, and the price/performance of commodity clusters, it became clear

that a large-scale cluster could probably address all of these needs as well as become

the next major MCS platform for simulation and computational science.

We originally considered installing a 1024-node system. However, we decided to

start with a 256-node system in order to test many of the concepts. Thus, Chiba

City was started as the first step toward a thousand-node (or larger) cluster, with

a primary goal of supporting scalable computer science and a secondary goal of

supporting scientific applications.

444 Chapter 18

18.2.2 Phase 2: Design and Purchase

Having convinced ourselves that a large cluster was the right direction for MCS,

we started, in December 1998, to design the system and arrange to purchase it.

We spent the next several months repeating this cycle over and over:

1. Think about what we needed and how we would use it.

2. Talk to vendors, integrators, and the cluster community in order to find out

what would be available on our time frame.

3. Consider various funding options and match those with design and availabil-

ity.

We discovered, among other things, that the traditional set of high-performance

computing vendors were all trying to decide what to do about clusters (and what

to do about Linux). At the time, it was possible to buy an actual cluster from

Compaq and from a number of small integrators, but none of the larger vendors

had yet created cluster product lines. No one was selling anything like what we

wanted for Chiba City.

Eventually we put together a presentation to use to explain to vendors what we

wanted to buy. The presentation explained what clusters were, what the cluster

would be used for, how we wanted to operate it, and what we thought the necessary

parts might be. As we updated our internal designs for the system software, we

updated the purchasing presentation. We talked to a lot of different vendors and

then went through the formal purchasing process. Eventually we agreed to buy the

system through IBM. IBM arranged to provide subsets of the system from other

vendors, including the Ethernet hardware from Cisco, the Myrinet from Myricom,

and the 2U compute nodes from VA Linux.

These days, the purchasing phase is a lot easier. Almost every vendor can sell

you a small or medium cluster without much thought, and even large clusters are

relatively simple. However, the very large clusters with focused requirements still

require a great deal of interaction with the vendor.

Throughout this period, we continued the design of the management infrastruc-

ture and system software for Chiba City, developing and testing it on a small cluster.

(We called the nodes in the small cluster “the freakies.” No one seems to knows

why. That small cluster is long gone, but the name continues to live on in code

references and machine configurations. Be warned.)

Chiba City: The Argonne Scalable Cluster 445

18.2.3 Phase 3: Installation

In October 1999, we installed the cluster.

During the preceding month, truck after truck had backed up to our loading dock

and dropped off boxes. We had piles of computers, racks, cables, network boxes,

disks, and miscellaneous hardware stacked everywhere. Fortunately we had been

through large computer installations before, so we were careful to keep rigorous

track of which boxes arrived from which vendor on which truck on which day.

Despite this, there were still a few missing boxes that took weeks to locate.

During the purchase phase of the system, we realized that the installation of the

cluster would be interesting. While the vendors were willing to provide installation

technicians as part of the package, we were the ones who knew how the cluster

should be connected. We needed to be actively involved in the installation.

Once we realized this, we decided this was an opportunity rather than a problem.

Many of the scientists at Argonne are interested in the details of the computers,

and we felt that they would probably enjoy being able to help install the system.

We decided to assemble the cluster in the style of an old-fashioned barnraising,

inviting everyone to join in. Everyone was enthusiastic about the idea. Over forty

people signed up to help.

Before the installation, the MCS Systems Group built one of the computing

towns. We took detailed notes on what we did and then put together a twelve-page

installation manual. Based on the amount of time it took us and the space to work

in the machine room, we estimated that we could build the entire cluster in two

days. We spent the day before the barnraising working with technicians from VA

to assemble the racks and to put the Ethernet and serial cables under the floor.

The barnraising itself was great fun. We divided the volunteers into teams of four

people. Each team was led by a member of the Systems Group or a VA technician.

We ran four teams at a time. Each team took half a day to assemble one rack,

and each rack was half a town. So, by the end of the first day, four computing

towns—half of Chiba City—was assembled.

While the teams worked, lots of other things were going on. IBM engineers

assembled the storage nodes. The Chiba development team fine-tuned the software

for some initial testing. And, most important, Janet Sayre of the Systems Group

created just the right kind of atmosphere by sitting in the middle of all the activity

and playing the banjo.

At the end of the second day, we connected all of the towns and booted every

node. There were a few minor hardware problems with a few systems, so we weren’t

able to bring them all up, but we were able to run an MPI job on 248 of the nodes.

446 Chapter 18

A time-lapse video of the barnraising is available on the Chiba City Web page

www.mcs.anl.gov/chiba/barnraising/video.html.

18.2.4 Phase 4: Final Development

For the next four months, the cluster was primarily in development mode. While we

had demonstrated that the nodes were running an operating system and connected

to each other at the end of the barnraising, a lot of work had to be completed before

the system was ready for users.

Among other things, we needed to finish the cluster environment: to get a cluster

schedule installed, arrange for data management, and tune the communications

networks. We also had to get the management system working, including the

ability to create user accounts, push out node configuration changes, and so on.

During this time, we asked a few users to try various tests on the system, but it

was not available to more than three or four users.

18.2.5 Phase 5: Early Users

Starting in March 2000, we opened up the cluster to the first set of early application

users. There were around four early users at first, all of whom were trying to use

the cluster but were also providing detailed feedback to us so that we could fix

problems they found.

Once things were relatively stable for them, we opened up the cluster to a few

more users, and then a few more, and so on. By the end of the early user phase,

we had around sixty user accounts on the cluster.

The majority of the problems that we had to address during this time were related

to the scheduler and to the Myrinet communication libraries.

18.2.6 Phase 6: Full Operation

In June 2000, we felt that we had eliminated most of problems that would impact

users of the system, and we opened up the cluster for general use.

From this point on, account requests for Chiba City were handled in the same

way that requests are handled for other MCS computing facilities—the account

request is approved based on whether the use matches the mission (and therefore

the funding) of the system. These decisions are made by a group of MCS scientists

who are responsible for the activities on the MCS systems.

Chiba City has been in full operation mode since that point. In the future, Chiba

will no doubt go through the next phase: upgrade or become obsolete. We will see

how that turns out.

Chiba City: The Argonne Scalable Cluster 447

18.3 Chiba City Software Environment

In this section we examine two aspects of the Chiba City software environment:

computing and management.

18.3.1 The Computing Environment

The computing environment on Chiba City is, like the rest of the cluster, optimized

to support computer science yet intended to support other uses. In this section, we

describe the standard computing environment on the cluster as well as the special

modifications we’ve made to support computer science and scalability research.

The Default Node Environment. The “node computing environment” is the

set of programs and services available on the user-accessible nodes of the system,

that is, the computing nodes, the visualization nodes, and the login nodes.

All machines in the cluster run Linux by default. The original distribution that

we started with when building the node operating system was Red Hat 6.2. Over

time, we’ve added and removed RPMs, changed much of the default behavior, and

added software from all over. The nodes are still vaguely recognizable as Red Hat,

but they could just as easily have been another distribution.

The specific kernel installed on these nodes varies over time—and varies a bit

more than we would like. In an ideal world, we would have a stable kernel installed

that meets all of the requirements of our users, but we have yet to find one.

The compilers available on the front end include C, C++, and Fortran 90. Some

users also program in Java, Perl, Python, and PHP.

The Default Cluster Environment. The software glue that we use to turn the

pile of nodes into a functional cluster includes a number of different packages.

Communications libraries: The vast majority of jobs on Chiba City use MPI

for communication. Our preferred version of MPI is MPICH. We have multiple

versions of MPICH installed in order to allow users to choose their favorite compiler

and flavor of network. To use generic messages over Myrinet, you must link with

MPICH-GM from Myricom.

The set of MPICH installations on Chiba got so large, in fact, that we built a

small tool that lists all of the MPICH installations and allows you to pick the one

you will be working with by default. The number of MPICH installations inspired

the MPICH group to provide an alternative for handling multiple compilers; see

Section 9.6.6.

448 Chapter 18

Scheduling: We use the Portable Batch Scheduler (PBS) for queue management

(see Chapter 16 for a detailed discussion of PBS). Since we Chiba was built, PBS

has been picked up by Veridian Systems, and the open source version of PBS has

become known as OpenPBS. In other words, we are running OpenPBS on Chiba

City.

OpenPBS wasn’t designed for environments as large or distributed as Chiba City

and therefore has some scalability issues. Most of the problems that users of the

cluster have are related to OpenPBS. We believe that many of these are being

tackled by the community (we have worked on some of them ourselves) and that a

set of patches will be available in the future that address many of these problems.

OpenPBS can be interfaced with an external scheduler that makes the decisions

about which jobs in the queue will run at what time. We use the Maui scheduler

for this purpose (see Chapter 15 for a detailed discussion of the Maui scheduler).

We’ve been quite happy with Maui.

Global file systems: A global file system is one that is available on every node of

the cluster and presents the same view of the data in the file system. It is not neces-

sarily capable of supporting high-performance use, but at least provides a common

name space. This normally is used for home directories, common applications, and

so on.

One of the early design decisions on Chiba City was that we would not use

NFS as a global file system on the cluster. NFS performs badly and scales worse.

We felt that if it were really necessary, NFS could be made to work on the 256+

nodes of Chiba City, perhaps by using an optimized NFS server such as a Network

Appliance box. However, Chiba City is meant in part to be a prototype of a much

larger cluster of 1024 nodes or more, and at that level we expect NFS to be useless.

Therefore, we decided to try to run the cluster without a global NFS file system to

see how it worked out.

This has been an experiment with mixed results.

One approach to avoiding NFS is to use some other networked file system as a

global file system. We have toyed with several but have found nothing that instills

any confidence in us. Several network file systems have just recently become open

source or will be released in the near future, so we have some hope that this situation

will improve.

Another approach to avoiding NFS is to simply not have a global file system.

This is what we have done. It’s fairly simple to survive without a global file system

for administration purposes—one simply uses rdist or other file synchronization

mechanisms. On the user side, though, we’ve had two primary problems:

Chiba City: The Argonne Scalable Cluster 449

• Job staging. The user’s program, support files, and data must be copied out to

that user’s nodes at the beginning of their job. After the job has completed, any

output files that were created must be staged off the nodes before the nodes can

be used by the next user. We’ve tackled this problem from a number of angles

and have a solution in place that works but is not as fast as we would like. We

believe that multicast file copying is the right solution to this problem and will be

investigating it in the near future.

• Confusion. Users tend to expect that the cluster will have a global file system.

When they log in to their nodes and look around, they don’t see the files they

expect in their home file system on that node. Even when the entire environment

is explained, it is difficult to use the data transfer tools to copy in the right files

and copy out the right files.

It’s fairly clear that a nicely scalable global file system would be the best solution.

Parallel file systems: In contrast to a global file system, a parallel file system is

specifically meant to provide high-performance access to application data for large

parallel jobs. For example, one might store a very large input dataset on a parallel

file system and subsequently start an application consisting of a few hundred tasks,

all of which simultaneously access portions of this dataset. The parallel file system

provides both a single logical space for application processes to look for data files

and also the performance necessary for these parallel applications to have timely

access to their data.

The only parallel file system available on Linux clusters is the Parallel Virtual

File System (PVFS), which is described in detail in Chapter 17. PVFS and Chiba

have a comfortable relationship, and over the years Chiba has become the primary

development platform for PVFS. In this environment PVFS has been proven to scale

to hundreds of I/O servers and compute processes, and peak aggregate throughput

of over 3 GBytes per second has been shown. Running at these scales also served

to highlight some reliability issues in PVFS that were not evident when running

in smaller configurations. As these problems have been addressed and PVFS has

begun to stabilize, we have begun to make a PVFS file system available as a full-

time resource for the users of Chiba City. This has two benefits for users: it provides

a high-performance data storage space for use by applications, and it gives users a

single place to store datasets that can be accessed from any node.

Job invocation: Job startup of hundreds of processes using MPICH with its de-

fault ch_p4 device is slow. Especially for interactive jobs, something more scalable

450 Chapter 18

is needed. Chiba provided some of the motivation for the ch_p4mpd device described

in Section 9.6.2. Chiba City has provided a valuable testbed for the development

of the MPD system and the version of MPICH that relies on it for job startup. The

MPD daemons can run as root, and we have been experimenting with using them

to run a mix of user jobs. Our long-term plan is to eventually transition to using

MPD as our primary process manager.

Parallel Unix commands: Chiba City is also serving as testbed for the Scal-

able Unix Commands [10], which provide parallel versions of the common Unix

commands such as ps and cp. A new version of these [25] is now available at

www.mcs.anl.gov/sut. The new version implements these interactive commands

as MPI applications, so the fast startup of MPI jobs made possible by MPD is

critical. We plan to make these familiar commands available to all users as part of

the Chiba environment.

Support for Computer Science. Computer scientists have a few general re-

quirements that conflict with running applications on a system: interactivity, a

license to crash the system, and the need to modify the system software.

Interactivity: Computer scientists, as well as developers of all types, often want

to use the computer in “interactive” mode. They want to edit code, compile it, and

then test it immediately. The test, and even the production run, may last only for

a few seconds, but it often needs to use the entire system.

If the computer scientist has to submit a test job in a queue and wait until it

can be scheduled, it can take hours or even days to complete a one-minute run.

If the scheduler is optimized to allow access to the entire machine quickly, the

resulting schedule will have huge numbers of unused node time. Production sites

and computers that have real dollars tied to machine utilization simply can’t afford

to have that type of scheduling policy.

This need for interactivity is not unique to computer scientists, of course. Ap-

plication developers need interactive test cycles while building code that will even-

tually run for hours. But many of these developers can get away with testing on

a small set of nodes, which is easier to acquire, and computer scientists may never

need the entire cluster for more than a few minutes at a time.

On Chiba City, we do run a batch scheduler because we have not yet found a

better way to equitably share the system between many users. But we clear the

cluster of all jobs every day for a two-hour period, during which time no job longer

than five minutes can run. This gives computer scientists a two-hour window every

Chiba City: The Argonne Scalable Cluster 451

day for quick turnaround. Long-running jobs have to wait until the weekend, when

we allow jobs to go from Friday evening until Monday morning.

Also, it’s possible to schedule a number of nodes and then simply use them in

interactive mode during that timeslot.

License to crash: Some computer scientists and developers work on low-level

pieces of code that can have bugs that impact the entire operating system on a

node. In some cases, such as in file systems and job managers, they may even crash

the entire cluster. It’s important to have some kind of facility where code like this

can be tested in a real-world environment.

Crashing a node on Chiba, even to the point of requiring a rebuild, is fairly minor.

We have remote power control, remote monitoring, and the ability to rebuild a node

from scratch. (All of these systems are described in Section 18.3.2.) If a node needs

to be rebuilt, we simply set a flag in the City database for that node, and that

node’s mayor will initiate a rebuild the next time that node reboots. If necessary,

the mayor can force the reboot.

Crashing the entire cluster is a bigger problem. Still, we set the expectation that

we actively support development of the cluster’s system software and that we expect

things will occasionally crash. We try to minimize the frequency of these large-scale

problems and try to minimize their impact. But in a worst-case situation, we can

rebuild all the nodes and reboot in 20–30 minutes.

Modifiable node environment: A small number of developers actually need

a completely different node environment. They might be testing a set of device

drivers that are unusual, or comparing FreeBSD to Windows 2000 to Linux. In any

of these cases, the scientists may need to have root access on their nodes or may

want to replace the node operating system entirely for the duration of their job.

We support the ability to arbitrarily modify the node computing environment.

The mayors build their nodes from a node “image,” where an image is a set of files

or binary file system data. The mayor will write that to the node’s disk, then boot

it.

You can build an image of any operating system desired, as long as it boots.

During the time that the nodes are reserved for you by the scheduler, you can do

whatever is necessary on those nodes. Once your scheduled time is up, the mayor

power cycles the node, catches the booting system, and reinstalls the Chiba City

default Linux image on the node. This process is illustrated in Figure 18.5.

452 Chapter 18

Power on.

Wait at LILO
for Mayor.

Boot from
local disk.

Boot from
mayor.

Network boot.

Node has
correct OS. Node needs

new OS.

Network
install of OS

image.

Error
condition.

Halt

Figure 18.5
Node image management.

18.3.2 Management Environment

Starting with the very first design for the cluster, we put a great deal of emphasis

on scalable management of Chiba City. For example, one of our goals was never to

have to physically touch a node unless it was having hardware problems.

We emphasized scalable administration because we must. All management func-

tions of a very large system, of which Chiba City is a prototype, must scale for

obvious reasons. Furthermore, we need scalable management for Chiba itself. The

management team for Chiba City consists of three people who are responsible for

all aspects of the administration of the cluster, all user support, the development

of management tools and system software, involvement in experiments, and other

aspects of the MCS computing environment.

The management approach for Chiba City incorporates a number of philosophies:

• Support all the needs of the diverse user community, ranging from stable batch-

oriented computing to letting individual users have root access on their nodes.

• Don’t change the model too much, because our scientists need to work in the

common model to make their tools applicable to others. For example, we couldn’t

switch over to a shared-memory model of the cluster.

Chiba City: The Argonne Scalable Cluster 453

• Manage from a central point. The mayor/town architecture—in which the city

mayor presides over the mayors, each of whom manages a set of nodes—is designed

to strongly support central management.

• Use open source and existing tools as much as possible. As much as we like to

invent cooler wheels, we don’t have time.

The remainder of this section describes the individual components of the man-

agement environment.

City Database. The city mayor keeps a database of relatively static cluster

information. We call this database the City Database or “citydb.” The database

describes the node/mayor relationship, keeps track of which nodes have what types

of hardware, and knows which nodes should have which operating system image at

which time.

The City Database is different from the database kept by the scheduler, which is

much more dynamic. The dynamic database includes job information, which users

own which nodes, and which nodes are currently up. Optimally, both databases

would be more closely related, but in practice it has been easier for us to keep the

functionality split.

The City Database is authoritative. If the database and reality don’t match, then

reality must be wrong. Using this philosophy, we can describe the desired cluster

configuration in the database and then tell the mayors to make sure the cluster con-

forms to the configuration. The configuration management tools described below

take care of this.

Citydb is built on MySQL using standard SQL.

Configuration Management. At the highest level, the configuration model

works this way:

• The configuration for every node is described on the city mayor. Since many

nodes are identical, this is not as bad as it might seem.

• The city mayor is the source for all configuration files, images, and RPMs. All

mayors keep a mirror image of those files.

• When a configuration change is necessary, the administrator makes a change on

the city mayor and then invokes a process to push that change out.

• The nodes themselves are checked at boot up and after user jobs run to make

sure that they have the correct configuration.

The primary configuration management tool that we use on Chiba City is a pro-

gram called sanity. The idea behind sanity is that it can install RPMs, modify

454 Chapter 18

file2

n33 n34 n35 n36

n37 n38 n39 n40

n41 n42 n43 n44

n45 n46 n47 n48

n49 n50 n51 n52

n53 n54 n55 n56

n57 n58 n59 n60

n61 n62 n63 n64

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

n17 n18 n19 n20

n21 n22 n23 n24

n25 n26 n27 n28

n29 n30 n31 n32

mayor2mayor1
citymayor

scheduler

login1 login2

file1

n20
a sanity run:

(triggered on command
and in daily cron)

checking sanity... ok
checking RPMs.... ok
checking links.... ok
checking cfg files... ok

RPMs and cfg
files transfer from

mayor.

Mayor looks up
configuration in db.

Figure 18.6
OS image management.

configuration files, and execute scripts. It decides what to do based on a configu-

ration file that can be general or very specific to a node. Once it has established

that the node matches the configuration in that file, the node is pronounced sane.

The mayors have the ability to invoke sanity on each of their nodes. The

nodes also run sanity when they first boot and after a user job completes. The

configuration for sanity is an aspect of the image on that node, and the image for

each node is recorded in the citydb on the city mayor.

In order to make a change to all of the nodes on the system, one would modify

the sanity configuration file for the default image, then invoke a global sanity

push on the city mayor. It tells each mayor to kick off a sanity run, and each

mayor in turn tells each node to run sanity.

This process is illustrated in Figure 18.6.

Serial Infrastructure. Another tool in the management arsenal is remote con-

sole management. The console of every system in Chiba City is available over the

network. The system works in the following way:

• The console port on each node is connected to a serial concentrator for that

town.

Chiba City: The Argonne Scalable Cluster 455

scheduler

n33 n34 n35 n36

n37 n38 n39 n40

n41 n42 n43 n44

n45 n46 n47 n48

n49 n50 n51 n52

n53 n54 n55 n56

n57 n58 n59 n60

n61 n62 n63 n64

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

n17 n18 n19 n20

n21 n22 n23 n24

n25 n26 n27 n28

n29 n30 n31 n32

mayor2mayor1Citymayor
database w/

hardware info

login1 login2

file1 file2

Serial
cablesmayor1

process to
manage
consoles

PCI
Serial

Expansion

n20 com1

serial
concentrator

serial
concentrator

Figure 18.7
Serial infrastructure.

• The serial concentrator is connected to the mayor.

• The mayor runs a daemon called conserver that enables remote access to the

console from anywhere on the network that has permission. This daemon is an

open source tool that is widely used in the system administration community.

• From any point on the MCS network, an administrator can type console <node>

and get access to the console of that node.

This process is illustrated in Figure 18.7.

In practice, we use this feature only when debugging. Ideally we don’t want to

actually have to go to all the consoles of all the nodes. Sometimes, though, a node

will quit responding for no reason. It’s frequently possible to recover the node via

the console—or at least get a hint from the console messages what might have gone

wrong.

The conserver daemon has another feature of console management that is also

critical to Chiba City. It can log all of the output of any console to a file or to a

process. We wrote a program called chex that monitors the output of each console,

looking for particular strings. Among other things, this lets us know whether a

456 Chapter 18

node is rebooting, whether it has panicked, or whether some other error condition

has taken place.

We take advantage of this console monitoring to capture node-specific information

such as the node’s MAC address. See the section below entitled “The First Boot

Process” for an example of why this is useful.

Low-Level Diagnostics. Some motherboards have the ability to provide useful

information about the hardware, such as the temperature of the node and the fan

speed. Some can also control the power of the system.

The nodes that we are using have this ability. Initially, however, this functionality

was accessible only if you used a Windows NT system to monitor the node remotely.

Since then, people have created open source software that runs on Linux to manage

these ports.

Unfortunately, we have never taken advantage of this system. It would be nice,

but we haven’t had time to get to it.

Power Control. We do, however, have remote power control for every component

of Chiba City. The power control system works as follows:

• Every computer and network box is plugged into a Baytech power unit. There

are, on average, five Baytech units per town.

• The Baytech unit is somewhat like a power strip with an Ethernet port. It’s

possible to telnet to the Baytech and then power on, power off, or query the power

status of anything plugged into it.

• We have a simple tool called city_power that allows a Chiba City administrator

to control the power of any device or set of devices in Chiba City.

The Baytechs are connected to their own network, which is built of very simple

Ethernet hubs. We could connect them using the Chiba City Ethernet, but then, if

something went wrong with the network, we couldn’t access the Baytechs to reset

the Ethernet devices. The power network is accessible only via the City Mayor.

The power configuration is shown in detail in Figure 18.8.

The First Boot Process. To explain how the management tools work together,

we give an example. One of the more complicated scenarios on a cluster is when

a node is booted for the very first time. The cluster software needs to be made

aware of that process, and the node needs to get the right operating system. Many

people ignore this situation and take care of the details by hand.

Here is what happens on Chiba City when a completely new node is installed in

the cluster:

Chiba City: The Argonne Scalable Cluster 457

scheduler

n33 n34 n35 n36

n37 n38 n39 n40

n41 n42 n43 n44

n45 n46 n47 n48

n49 n50 n51 n52

n53 n54 n55 n56

n57 n58 n59 n60

n61 n62 n63 n64

n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16

n17 n18 n19 n20

n21 n22 n23 n24

n25 n26 n27 n28

n29 n30 n31 n32

mayor2mayor1Citymayor
database w/

hardware info

login1 login2

file1 file2

non-routed
network connection

power

power

power

power

power

dumb
enet
hub

Figure 18.8
Power infrastructure.

1. We set a flag in the City Database indicating that this is a new node.

2. The node is installed in the correct spot in the rack and cabled appropriately.

3. We install the correct BIOS in the node. This, unfortunately, is still done

manually, although we are looking into a boot floppy approach that will do the

right thing. Among other things, the BIOS is set to boot using PXE, a type of

network booting. This means that on all subsequent power cycles, the node will

boot from the network.

4. The node is turned on, and it boots from the network. Some server on the

net, usually that node’s mayor, responds with the boot image.

5. The boot code is a Linux boot image that includes LILO and a kernel. LILO

is configured to launch and then wait forever at its boot prompt, occasionally

reissuing the prompt.

6. The LILO boot prompt is issued over the serial line.

458 Chapter 18

7. The node’s mayor sees the Boot prompt. It knows which node this is because

it knows which serial lines it is watching. Thus, at this point, the mayor knows

that it node15 (for example) is waiting to boot.

8. The mayor checks the City Database to see what image should be on that

node. It discovers that this is a new node.

9. Based on this information, it issues a boot command over the serial line to

the node, handing it a set of boot parameters. This command tells the node to

boot from the mayor from the Build Image.

10. The node receives the command and boots the Build Image kernel that was

transferred back in Step 4.

11. As a part of booting the Build Image, the setup scripts partition the node’s

disk and install the correct image files.

12. At the end of the Build Image, the node displays certain relevant pieces of

information to its console, including its Ethernet MAC address.

13. The mayor, which is monitoring the console, now knows that this new node

has successfully built. Furthermore, it has the MAC address of that node.

14. The mayor updates the DHCP tables on the city mayor with the new MAC

address and queues a DHCP restart request.

15. The mayor updates Citydb with a flag saying that the node has the correct

image installed.

16. The node waits for a minute and then reboots. Once again, it PXE boots

and loads the boot image from the mayor. It issues the LILO boot prompt to the

serial console and waits.

17. The mayor checks Citydb and notes that this node has already built the

correct image onto its local disk. It issues a “boot from local disk” command to

the LILO boot prompt over the serial line.

18. The node boots from the local disk. Among other things, it will send out a

DHCP request to get its IP address and will be sent the correct IP address for the

node in that spot of the cluster.

19. After rebooting, the node runs sanity. It installs any modifications neces-

sary for that operating system image.

Chiba City: The Argonne Scalable Cluster 459

20. Finally, the node is ready to run. The scheduler notes that the node is up

and adds it to the pool of allocatable resources.

This whole process is long to describe but fast to run. The only slow part is the

operating system build in Step 11, when the bits are being installed on the local

disk. That can take 10–15 minutes, with the exact time dependent on the size of

the image and the activity on the network. Once the node has been installed and

the BIOS updated, the process requires no intervention from an administrator.

18.4 Chiba City Use

The average user of Chiba City interacts with it just like any other cluster of

distributed supercomputer. Consider the following scenario.

A user logs into the front end node using SSH. She compiles her code on that

system, or perhaps copy in precompiled code. If she wants to test the code on

several nodes before submitting a large job, she can choose nodes on the 32 nodes

of the cluster that we refer to as the interactive town. This set of nodes is configured

in the same way as the standard computing nodes, but is never scheduled. It is

always available specifically for testing purposes. It’s quite possible that two users’

codes will conflict with each other, so it’s not useful for performance testing or long-

running code. Once she is confident that her code will run successfully, she prepares

her code and her job data to be copied out to the nodes that she will eventually

be allocated. She does this by putting everything together in a directory. Finally,

she submits her job to the PBS queue using the qsub command. She can check on

the status of her job with qstat. Eventually she will be assigned a set of nodes for

the duration of her timeslot, and her job will be invoked on those nodes. During

this time, she will be able to login to her nodes, which she will want to do if she’s

running an interactive job. If there are any errors with her job, she will be notified

by e-mail. Once her job has completed or her time is up, whichever comes first, the

datafiles she created are copied back to her home directory on the front end node.

Nonstandard use of Chiba City can entail endless variations of this scenario. A

user might arrange to have dedicated access to the cluster for a long period of

time—this requires administrator and, in some cases, management approval. Or a

user might have a custom image to be tested and then arranged for installation on

that user’s nodes. Some people use the storage nodes as part of I/O experiments.

Others use the visualization nodes, sometimes in conjunction with the jobs on the

computing nodes, and other times as a completely separate activity.

460 Chapter 18

Currently, we have about one hundred active users on Chiba City. We expect

to add several hundred more in the next few months as a result of changes in the

allocation policies on some of our other supercomputers.

Since its installation, Chiba has been used for many different types of activities.

Notable among these are the following:

• Monte Carlo simulations in nuclear physics

• Computational optimization

• Parallel and numerical library development

• Distributed supercomputing development

• Communication library development

• File system development

• Astrophysical simulation

• Scalable system software development

• Visualization

• Genomics

• Automated reasoning

• Climate modeling of both Earth and Mars

• Molecular dynamics simulations

• Scalability testing of open source tools

A detailed description of these projects is beyond the scope of this chapter; this list

is merely meant to give a feel for the different types of use that the cluster enables.

18.5 Final Thoughts

In this case study, we have described in detail the kinds of issues that we encounter

when designing, building, and running a multipurpose large cluster. We hope that

the topics discussed here will be useful to others who may find themselves in a

similar situation.

18.5.1 Lessons Learned

This entire case study is about lessons that we’ve learned while running Chiba City.

We still have a few that are worth mentioning.

• It is surprisingly difficult to run a job on the entire cluster. Most users don’t

care about this, but management would always like to confirm that a job has used

every possible resource on the system. It seems like there is always at least one

node that is down for hardware maintenance, or one network interface this is flaky,

Chiba City: The Argonne Scalable Cluster 461

or a node that just isn’t in the mood to play. We have actually run jobs on all of

the nodes using both types of network, but these jobs take focused effort and are

relatively rare.

• In a cluster, the hardware gets stressed beyond what any vendor expects because

it is always being used, sometimes in ways that the designer never anticipated.

We’ve had bad AGP and PCI slots, large-scale memory problems, fan lossage,

bad cables, and everything else. Furthermore, when buying commodity hardware,

one gets commodity quality. This hardware doesn’t take abuse the way high-end

supercomputing equipment does. It’s a very good idea to invest in a three-year

hardware maintenance option.

• When running a cluster like Chiba City, it is essential to have at least one person

who lives in the Linux world. Two or three people is even better. Those people

should follow the important Linux mailing lists, track bugs, and follow discussions

on Web sites. The success of the cluster often rides on figuring out exactly which

version of the kernel works best with which set of applications, or knowing that a

particular feature will be available (or removed) in a few weeks.

18.5.2 Future Directions

Chiba City has largely been a success. We would like for some portions of the sys-

tem, notably the scheduler and the I/O system, to be more reliable and functional,

but despite these failings, good science has been accomplished on the computer,

both in the realm of computer science and in scientific simulation. The model

that we use to manage and operate the cluster has worked well and shows every

sign of scaling to a much larger cluster. We have a number of plans for software

modifications to improve the system and to support new capabilities.

In the near future, the scalability work that has been started on Chiba City

must continue to expand to larger and larger testbed systems. Many open scientific

questions require systems that can deliver sustained petaflops of computation. It

is not yet clear what the path to building a petaflop system is, but it is very

likely that such a computer will be built from many tens or hundreds of thousands

of individual computing components. As a community, in order to build such a

system, we must have systems software that can operate a machine of that scale,

and we must have algorithms and applications that can make reasonable use of it.

Thus, while the computing industry forges ahead with building better and faster

processors, we must have a strategy for connecting them together and making them

run well. Scalability testbeds such as Chiba City are an important part of this plan,

and we hope that research and activities in this space will continue to be expanded.

462 Chapter 18

For more information on Chiba City and the software used to drive it, see www.

mcs.anl.gov/chiba.

19 Conclusions

Thomas Sterling

This book represents the practical state of the art in hardware and software for

Beowulf cluster computing. But it also exemplifies the extreme rate at which com-

modity clusters are maturing and in so doing, gaining utility across ever-broader

domains of application. Only two years ago our first work in this area, How to

Build a Beowulf, was published by MIT Press. But in the short interval since then,

the art and practice of cluster computing have evolved dramatically. Then, such

systems were used in rather restrictive ways with limited software support beyond

the basic node operating systems and message-passing libraries. System size rarely

exceeded a hundred processors. Today, systems exceeding a thousand processors

are employed for both technical and commercial computing. But more significant is

the array of software tools available and under development to manage the imple-

mentation, maintenance, administration, and resource allocation of workloads on

Beowulf clusters both large and small. Thus, in the brief period between this offer-

ing and our original modest work, Beowulf commodity cluster computing has come

of age. Then, Beowulf systems were only a narrow element of the parallel com-

puting domain. Today, they are often the system of choice and are rapidly coming

to dominate even the highest end of computing. It is telling that at the most re-

cent Supercomputing conference, the industrial exhibits included more commodity

clusters on the floor than all other forms of parallel computing systems combined.

In spite of these enormous gains, Beowulf cluster computing is very much a

field in transition. There is no one universally accepted distributed environment

or, for that matter, hardware foundation on which the cluster community relies.

Of course, the flexibility this implies is part of its strength and invulnerability to

vendor changes. Indeed, both hardware and software are in a state of flux, with

continued changes foreseen for the next one to three years. It is worth considering

where these likely changes will occur.

19.1 Future Directions for Hardware Components

Processor technology is witnessing three areas of change. The first is continued

growth of processor capability, most notably in clock speed. Predictions to the

contrary, clock rates continue to grow. At the time of this writing, the Pentium

4 with a clock rate of 1.7 GHz is available in consumer-grade packages. Memory

enhancements and cache size also expand to attempt to match the processor peak

performance. The second change is a new generation of 64-bit architecture with

the commercial release of the Intel IA-64 64-bit family of processors. The third

464 Chapter 19

area of change is the likely integration of multiple processors per chip in SMP

configurations. Should this trend become reality, then nodes of commodity clusters

could all be SMP structures of two or more processors. All of these advances are

driven by the continued reduction of integration feature size, with logic moving

below 0.18 micron.

Network technology is expected to make significant strides as gigahertz per node

channels become commonplace and costs continue to drop. Myrinet and Ethernet

dominate Beowulf cluster configurations, but other network technologies are having

significant impact. The Quadrics QSW networks are providing a high-bandwidth

framework for the highest end of the Compaq Alpha processor-based systems, and

larger configurations have been proposed that could yield clusters capable of over

100 teraflops peak performance. The VIA architecture continues to make inroads

in the cluster market delivering gigabit per second throughputs and latencies well

below 10 microseconds. Foremost among these is the Emulex cLAN network. But

perhaps the most interesting advance is the emergence of the new industry Infini-

band architecture (IBA) standard (well over 1,500 pages). Infiniband provides a

new tightly integrated strategy and technology for all I/O needs including cluster

interconnection networks. Instead of connecting to an intermediary I/O interface

such as PCI, Infiniband will be tied more directly to the processor communications,

increasing I/O bandwidth and reducing latencies down toward a microsecond. Al-

ready specified are several levels of bandwidth including the use of optical media

that will work in the 10 Gbps regime. Infiniband is supported by a large indus-

trial consortium and may become the new dominant I/O interface. Products based

on IBA should be available within the next eighteen months. However, in spite

of wide optimism, costs to customers have yet to be determined. It is interesting

to note that the external network bandwidths are approaching the main memory

bandwidths of the processing nodes. With another order of magnitude gain in

bandwidth anticipated in the next few years, it may be that network bandwidth

will cease to be the dominant bottleneck to realizable performance.

Although less widely discussed, significant advances in mass storage are expected.

These are being fueled by the rapidly growing PDA, digital camera, and cellular

phone markets that require high-capacity storage in small, lightweight, and low-

power components. “Matchbox” disk drives will provide multigigabyte capacities

in the near future. For larger units, advanced EIDE drives will provide hundreds

of gigabytes per unit at a cost of less than $10 per gigabyte. For many technical

and commercial problems, mass storage is the bottleneck, both in capacity and

in bandwidth. Commodity clusters provide a rich tradeoff space within which to

configure and operate large disk farms. But reliability and software support for

Conclusions 465

distributed file spaces continue to offer considerable challenges that have not been

fully resolved.

Packaging of systems will continue to evolve and have impact on Beowulf clus-

ters in two important ways. Historically, Beowulfs have taken up a lot of room.

Although the very first Beowulf was custom packaged with 16 motherboards in a

half-height rack, the majority of systems leveraged the low-cost, high-reliability PC

tower packages with power supply. But the density of this class of package is low.

For all but the smallest systems, floor space has become a problem. Because the

market for Beowulf-class clusters has become significant, however, vendors are pro-

viding new packaging options with high-density rack-mounted units available such

that 40 or more processors can now be installed in a single floor standing rack. As

higher-degree SMPs are built into such units, the number of processors per rack

will continue to expand allowing larger systems to be installed in modest machine

rooms. But this also leads to the second way future machines will be impacted

and that is the scale of the largest Beowulf-clusters. In the near future, the largest

systems in the world will be commodity clusters comprising 10,000 processors or

more. Within the lifetime of this edition of this book, clusters delivering as much

as 100 teraflops may be implemented on this scale.

19.2 Future Directions for Software Components

While enormous strides have been made in the area of cluster middleware within

the past few years, the general consensus is that continued advances are required to

bring this class of system to a level of usability and robustness equivalent to other

server technology. Key attributes sought are completeness, commonality, usability,

generality, and reliability.

Completeness relates to the need for a comprehensive software environment that

spans all aspects of the distributed cluster system and supports the major activ-

ities associated with the operation of a commodity cluster, large or small. These

activities include installation, configuration and initialization, status monitoring

and maintenance, administration, and resource scheduling.

Commonality is the property of such an environment to be broadly used across

the majority of Beowulf clusters throughout the community. Linux, Windows, and

MPI all exhibit this property, which has been an important enabler to the wide

dissemination of Beowulf systems. To that extent, if you’ve used one Beowulf, you

are likely to be able, with little trouble, to work with any other. But at the middle-

ware level, there is not such uniformity of environments. This is partly intentional

466 Chapter 19

and partly due to history. As vendors have successfully advanced into the arena,

middleware has been one area in which they could provide product differentiation,

to enhance the apparent value of their respective offerings. Historically, low-level

tools—especially for monitoring system status, operation, and health—have been

developed in house with only limited sharing. As we have seen, however, other

tools such as schedulers have seen much wider use.

Usability combined with generality relates to the ease of system operation through

the abstraction presented by the middleware environment. A highly valued at-

tribute, perceived to strongly contribute to usability, is “single-system image.”

Originally, Beowulf clusters were treated as an ensemble of separate loosely coupled

processing systems, each being managed individually. In the earliest days, there

would even be some kind of a switchbox connecting the operator’s keyboard and

monitor to any designated processor node. While this can work for small, dedicated

systems, it is untenable for larger, multiuser clusters and undesirable in any case.

A system includes a number of name spaces with which the user must contend.

Some of these include the user application’s global variables, the file space, the set

of process IDs and jobs, and I/O. In the worst case, these all need to be dealt with

on a per node basis. As systems grow to the scale of a thousand or more proces-

sors, this too can prove untenable. Even for much smaller systems, such explicit

per node control is prone to operator error. Single-system image is the property by

which the entire cluster presents only a single name space for each class of named

object for the entire system, independent of the number of processors employed.

The user sees one process ID space, one distributed file space, and the same for

others. Generality extends the property of usability to include a broad range of

operating modes from dedicated single user to multi-user, multiprogram operation.

System reliability is critical to long-term acceptance of Beowulf clusters by the

information processing market. Opinions differ widely concerning the actual relia-

bility of Beowulf systems. Infant mortality lasting weeks for moderate-sized systems

can be high with fans, power supplies, disk drives, and even memories breaking in

a short time interval. After this period, however, systems often experience long

stable operation, potentially of many months between required maintenance. After

two to three years, age begins to take its toll, and failures begin to escalate. But

for very large systems on the order of thousands of processors, single point failures

can be significantly more prevalent. For either class of system, rapid detection,

diagnosis, repair, restart, and recovery are essential to high availability. Software

tools to aid in all facets of reliability are essential as well, but little work has been

done in this area, and no accepted general set of tools is in use, although some

experimental systems have been explored. One important capability is checkpoint

Conclusions 467

and restart, and some tools exist but involve direct application programmer inter-

vention. Tools for logging and reporting soft errors can be used to identify likely

future failures, directing preemptive controlled replacement of system components

without disrupting application execution. Much more work is required in this area.

A valuable effort is the collection and integration of a critical subset of exist-

ing tools to build a useful environment meeting at least some of the requirements

above. OSCAR led out of Oak Ridge National Lab, Rocks being done at the San

Diego Supercomputing Center, the integrated tool set at the Cornell Theory Cen-

ter (CTC), and the integrated software system provided by Scyld are all examples

of such efforts. OSCAR is a collaboration of a number of organizations including

industry partners and is worth watching as it evolves. The tool set from CTC

is one of the most comprehensive to be based on Windows. The Scyld software

environment provides a good example of a user level single system image. While

most Beowulf cluster software supports full operating systems on every node, each

operating semi-independently, the Scyld model is different. By employing a logical

structure of a master processor and multiple slave processors, all name spaces are

managed through the master processor, presenting a single system image to the

user. Processes are controlled by the master but delegated to the slave proces-

sors to be executed. The slave node kernels are very limited and lightweight and

are downloaded by the master. This can be performed very efficiently, much more

quickly than on conventional clusters, and solves the problem of version consistency

control. Nevertheless, while the Scyld software environment exhibits many desir-

able properties, there is a question regarding scalability. A single master processor

can create a bottleneck, and the coordination of multiple masters is nontrivial.

With increased prevalence of SMP nodes in cluster systems, means of exploiting

this class of tightly coupled unit is called for. OpenMP has been developed as one

way to apply these resources within a shared-memory paradigm. But between nodes

is still the fragmented name space so typical of most clusters. Ironically, even on

systems with distributed shared memory hardware support, the majority of parallel

programmers today use MPI with its message-passing model. The underlying mech-

anisms supporting the MPI implementation take advantage of the shared-memory

hardware support, thereby making at least some of its operators more efficient than

between cluster nodes, and this is done in a way that is transparent to the user.

But a clean way of using shared memory within a node and distributed memory

between nodes has not found a satisfactory solution in common practice. A class

of programming models sometimes referred to as “put-get” models may provide at

least a partial solution. Inspired in part by the Cray T3E programming model,

this approach gives the impression of a distributed shared memory but assumes

468 Chapter 19

no cache coherence. Within an SMP node, conventional load/store operations are

used, but for remote accesses the corresponding get and put operators are used

within the same programming model. Examples of this include UPC developed at

IDA CCS and the experimental Earth-C developed at the University of Delaware.

19.3 Final Thoughts

It is hard to forecast where such a volatile technology as parallel computing will

take us, as so many factors and trends influence the final outcome. A decade

ago, clusters were in their infancy, and Beowulf was still in the future. A decade

from now will see as many changes. Nonetheless, at least some of the possibilities

can be considered. Extrapolating both the Top500 list and the Semiconductor

Industry Association roadmap implies that the largest computers in the world, in

all likelihood commodity clusters, will achieve a peak performance of 1 petaflops

by the year 2010. Integrated circuits of a billion devices most likely comprising a

number of processors will be capable of a performance on the order of 100 Gflops or

more. DRAM densities will grow a factor of a hundred in that same timeframe. And

if optical communications are employed to their fullest, per channel bandwidths of

1 Tbps or more are possible. In such a scenario, almost every small Beowulf will

be a teraflops machine by 2010.

As long as there is a need for servers of one type or another, there will be the

opportunity for performance gains through commodity clusters. But a number of

trends in the market are not aligned with a future with clusters. Portable com-

puting devices including personal digital assistants, laptop computers, and soon to

be released (probably) electronic books all have built-in human interfaces including

screens and keyboards that make them unsuitable for clustering. It is true that

their technology push helps reduce cost, power, and size, which can have a positive

influence on cluster nodes. But the mass-market products themselves are not likely

to be used in clusters generally. Admittedly, there have already been cases of clus-

tering laptops. But these are not cost effective. Desktop (or desk side) computers

in their ungainly tower cases may already be becoming extinct. A growing number

of users have simply migrated their complete user environment onto their laptops.

The laptop is everything, their entire world. With wireless interconnect in the office

and home, even cellular Internet connections on the road, and disk capacities that

will shortly exceed 100 Gbytes, the desktop is rapidly becoming a dinosaur. But it

was from these devices that the first Beowulfs were devised. Beowulf-class systems

exploited the existing mass-market devices, and now these may disappear.

Conclusions 469

But this is no longer a problem because the value of clusters to the market

has been proven. Vendors are now manufacturing processor nodes explicitly for

the purpose of building high-density clusters. Thus the components are no longer

hand-me-downs from other markets but optimized for this purpose. In a sense,

the day of Beowulf classic is passing—not yet, but eventually. Commodity clusters

were offered as a cheap alternative to MPPs to help offload these more expensive

machines of at least part of their workload. But with the next-generation high-

bandwidth networks and their tight integration with the processor/memory core,

much of the distinction between MPPs and clusters is beginning to disappear. And

with efficient implementations of such operations as put and get, a shared mem-

ory space (without cache coherence) model may be available, further eroding the

distinction between cluster and MPP. If this happens, we will have truly witnessed

the convergence of parallel architecture.

And yet, that will not be the end of the story. The programming models de-

scribed so far are still primitive and require a close and explicit relationship be-

tween the physical system and the programmer. In the limit, the programmer

should be responsible for describing the application’s parallel algorithm, but not

responsible for hand manipulating the management of the physical resources and

their direct association to the application task and data objects. As processors

become ubiquitous in the tens of thousands and the critical resource is recognized

to be memory bandwidth, these parallel systems will motivate the development of

a new family of programming models where once again, as in the earliest days of

computing, the programmer will treat the computer as a single system and not a

distributed collection of many machines. We have had only tantalizing glimpses of

what such models might contain, but already researchers are considering just such

new paradigms. Beowulf cluster computing is leading parallel processing into the

future. Each step is an accomplishment in its own right and the foundation for

progress to the next.

 blank

A Glossary of Terms

AFS: Andrew File System

AMD: Advanced Micro Devices

ASIC: Application Specific Integrated Circuits

ASRAM: Asynchronous Static Random Access Memory

ATM: Asynchronous Transfer Mode; a network and protocol for wide area net-

works (WAN); while employed as the interconnection medium for some commodity

clusters, it has not seen wide use for clusters because it is not optimized for this

use and is fairly expensive

BDA: BIOS Data Area

Beowulf-class system: commodity cluster employing personal computers or low-

cost SMP servers to achieve excellent price-performance initially developed by the

Beowulf project at the NASA Goddard Space Flight Center

BIOS: Basic Input Output System

bit: the fundamental unit of information representing a two-state value; a digital

circuit capable of storing a two-state value

BLAS: basic linear algebra subroutines

BOOTP: Bootstrap Protocol

bps: bits per second, a unit measure of data transfer rate

byte: a commonly addressed quantity of digital information storage of eight bits

reflecting one of 256 distinct values

CD-ROM: Compact Disc Read Only Memory

CERT: Computer Emergency Response Team

cluster: in the general sense, any interconnected ensemble of computers capable

of independent operation but employed to service a common workload

CMOS: Complimentary Metal Oxide Semiconductor

commodity cluster: a cluster of commercial computing nodes integrated with a

commercial system area network

472 Appendix A

Condor: a software package developed at the University of Wisconson to manage

the scheduling of a job workload across a distributed computing system including

clusters

constellation: a cluster of large DSM, SMP, or MPP computing nodes incorpo-

rating more microprocessors per node than there are nodes in the system

CORBA: Common Object Request Broker Architecture

COW: cluster of workstations; an early project at the University of Wisconsin

CPU: Central Processing Unit

CRC: Cyclic Redundancy Check

DCE: Distributed Computing Environment

DCOM: Distributed Component Object Model

DDR: Double Data Rate

DFS: Distributed File System

DHCP: Dynamic Host Configuration Protocol

DRAM: Dynamic Random Access Memory

DSM: distributed shared memory multiprocessor, tightly coupled cache coherent

multiprocessor with non-uniform memory access

DVD: Digital Versatile Disc

EDO: Extended Data Out

EEPROM: Electrically Erasable Programmable Read Only Memory

EIDE: Enhanced Integrated Drive Electronics

Emulex: vendor, distributor, and developer of the cLAN network for commodity

clusters

EPIC: Explicitly Parallel Instruction Computing

Ethernet: the first widely used and truly ubiquitous local area network operating

at 10 Mbps

Glossary of Terms 473

Fast Ethernet: a cost effective local area network based on the original Ether-

net protocol that has become very popular with low end Beowulf-class systems;

providing 100 Mbps

FDD: Floppy Disk Drive

FHS: File system Hierarchy Standard

FSSTND: File System Standard

FTP: File Transfer Protocol

Gigabit Ethernet: a LAN that is the successor of Fast Ethernet providing peak

bandwidth of 1 Gbps. While employed for some clusters, its use is limited by its

relatively high cost

GNU: a project resulting in a number of open source and free software tools

including the GNU C compiler and Emacs

GPL: GNU Public License; a legal framework protecting open source software

HDD: Hard Disk Drive

HDF: Hierarchical data format, both a file format and high level interface for I/O

access in both sequential and parallel applications

HPL: High Performance Linpack

I/O: Input/Output

IBM: International Business Machines

IDE: Integrated Drive Electronics

IDL: Interface Definition Language

IP: Internet Protocol

IPv4: Internet Protocol, version 4

IPv6: Internet Protocol, version 6

IRQ: Interrupt Request

JIT: Just In Time

474 Appendix A

JVM: Java Virtual Machine

LAN: Local Area Network; a network employed within a single administrative

domain such as a laboratory or office complex, connecting PCs and workstations

together to file servers, printers and other peripherals, and to the Internet. Low

cost LAN technology has been adopted to provide Beowulf-class systems with in-

expensive moderate bandwidth interconnect

LED: Light Emitting Diode

Linux: the dominant Unix-like cross-platform operating system developed by a

broad international community enabled by an open source code framework

LOBOS: Lots of Boxes on Shelves

LPT: Line Printer

MAC: Media Access Controller

MAU: Medium Attachment Unit

Mbps: 1 million bits per second data transfer rate or bandwidth

Mega: prefix meaning 1 million or in the case of storage 220

message passing: An approach to parallelism based on communicating data be-

tween processes running (usually) on separate computers.

metadata: Used in the context of file systems, this is the information describing

the file, including owner, permissions, and location of data

MPI: message passing interface, a community derived logical standard for the

transfer of program messages between separate concurrent processes

MPP: or Massively Parallel Processors

MTBF: Mean Time Between Failure

Myricom: vendor, distributor, and developer of the Myrinet network for commod-

ity clusters

NAT: Network Address Translator

network: the combination of communication channels, switches, and interface con-

trollers that transfer digital messages between Beowulf cluster nodes

Glossary of Terms 475

NFS: Network File System

NIC: network interface controller; usually the combination of hardware and soft-

ware that matches the network transport layer to the computer node of a cluster

NIH: National Institutes of Health

NIS: Network Information System

NOW: network or workstations, and early influential commodity cluster project

at UC Berkeley

OMG: Object Management Group

ONC: Open Network Computing

ORB: Object Request Broker

PC: see Personal Computer

PCI: the dominant external interface standard for PCs and workstations to sup-

port I/O controllers including NICs

Personal Computer or PC: mass market microprocessor based computer em-

ployed by both commercial and consumer users for everything from games to spread-

sheets and internet browsers; emphasizing performance/cost for maximum market

share, these nodes are the basis for low cost Beowulf-class clusters

PLS: Physical Line Signaling

PnP: Plug ’n Play

POST: Power On Self Test

PROM: Programmable Read Only Memory

PVFS: Parallel virtual file system

PVM: Parallel Virtual Machine, a library of functions supporting an advanced

message-passing semantics

QSW: high bandwidth network employed in very large clusters, specifically the

SC series developed by Compaq

Quadrics: commercial vendor of networking hardware and software. See QSW

476 Appendix A

RAM: Random Access Memory

RFC: Request For Comments

RISC: Reduced Instruction Set Computer

RMI: Remote Method Invocation

ROM: Read Only Memory

ROMIO: Portable implementation of MPI-IO interface (not an acronym)

RPC: Remote Procedure Call

RSH: Remote SHell

RTC: Real Time Clock

RWCP: major Japanese initiative to develop robust and sophisticated cluster soft-

ware environment

SAN: System Area Network; a network optimized for use as a dedicated commu-

nication medium within a commodity cluster

SBSRAM: Synchronous Burst Static Random Access Memory

Scheduler: a software tool which is part of the node operating system or system

middleware that manages the assignment of tasks to cluster nodes and determines

the timing of their execution

SCI: Scalable Coherent Interconnect

SCSI: Small Computer System Interface

SDRAM: Synchronous Dynamic Random Access Memory

SMP: Symmetric MultiProcessor, tightly coupled cache coherent multiprocessor

with uniform memory access

SQL: Structured Query Language

SRAM: Static Random Access Memory

SSH: Secure SHell

TCP: Transmission Control Protocol

Glossary of Terms 477

TFTP: Trivial File Transfer Protocol

TLA: Three Letter Acronym

UDP: Unreliable Datagram Protocol

VGA: Video Graphics Array

VIA: Virtual Interface Architecture

WAN: Wide Area Networks used to connect distant sites, even on a continental

scale

XDR: eXternal Data Representation

XTI: X/Open Transport Interface

 blank

B Annotated Reading List

This appendix contains an annotated reading list of books and papers of interest

to builders and users of Beowulf clusters.

Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

Also at: http://www.mcs.anl.gov/dbpp/. A general introduction to the process

of creating parallel applications. It includes short sections on MPI and HPF.

William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill

Nitzberg, William Saphir, and Marc Snir. MPI—The Complete Reference: Volume

2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998. An annotated ver-

sion of the MPI Standard; this contains additional examples and discussion about

MPI-2.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface, 2nd edition. MIT Press, 1999.

A tutorial introduction to the MPI Standard, with examples in C and Fortran.

William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features

of the Message-Passing Interface. MIT Press, Cambridge, MA, 1999. A tutorial

introduction to the MPI-2 Standard, with examples in C and Fortran. This is the

best place to find information on using MPI I/O in applications.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. PTR

Prentice Hall, 2nd edition, 1988. The original book describing the C programming

language.

John M. May. Parallel I/O for High Performance Computing. Morgan Kaufmann,

2001. A thorough introduction to parallel I/O including MPI I/O and higher-level

libraries such as HDF.

Evi Nemeth, Garth Snyder, Scott Seebass, and Trent R. Hein. Unix System Ad-

ministration Handbook. Prentice Hall PTR, 3rd edition, 2001. A comprehensive

and practical book on Unix system administration, it covers all major varieties of

Unix, not just Linux.

Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, 1997. A

good introductory text on parallel programming using MPI.

Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel

Computing, 2nd ed. Prentice Hall, Englewood Cliffs, NJ, 1995 edition, 1998. A

480 Appendix B

delightful book advocating clusters for many problems, including for commercial

computing. It has nice sections on parallel programming and (as part of his argu-

ment for clusters) a good discussion of shared-memory systems and the issues of

correctness and performance that are often brushed under the rug. See Pfister’s

annotated bibliography for more books and articles on clusters.

Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack

Dongarra. MPI—The Complete Reference: Volume 1, The MPI Core, 2nd edition.

MIT Press, Cambridge, MA, 1998. An annotated version of the MPI-1 Standard,

it contains more examples than the official copy and is a good reference on MPI.

Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F. Savarese. How

to Build a Beowulf. MIT Press, 1999. The original and best-selling Beowulf book.

W. Richard Stevens. Advanced Programming in the UNIX Environment. Addi-

son-Wesley, Reading, MA, USA, 1992. A thorough and highly readable reference

on programming under Unix.

W. Richard Stevens. UNIX Network Programming: Interprocess Communications,

volume 2. Prentice-Hall, Upper Saddle River, NJ 07458, USA, second edition,

1998. A companion to Stevens’ excellent book on sockets and XTI, this book

covers POSIX and System V interprocess communication mechanisms including

shared memory, remote procedure calls, and semaphores.

W. Richard Stevens. UNIX Network Programming: Networking APIs: Sockets

and XTI, volume 1. Prentice-Hall PTR, Upper Saddle River, NJ 07458, USA,

second edition, 1998. An excellent reference for network programming under Unix;

it provides a highly readable and detailed description of all aspects of Unix socket

programming.

David Wright, editor. Beowulf. Penguin Classics, 1957. A highly regarded

translation (into prose) of the Beowulf Epic.

C Annotated URLs

Below is a sampling of URLs that are helpful for those building or using a Beowulf.

This is not an exhaustive list, and we encourage the reader to browse the Web for

other sites. A good place to start is the general Beowulf Web sites.

C.1 General Beowulf Information

www.beowulf.org: The original Beowulf Web site.

beowulf-underground.org: The Beowulf Underground provides “unsanctioned

and unfettered information on building and using Beowulf systems.” It is a site

that allows the Beowulf community to post brief articles about software, documen-

tation, and announcements related to Beowulf computing. Each article includes

links to Web sites and downloads for the various items. A separate commercial

and vendor area keeps free software well delineated. Moderators work to keep the

material brief and on topic and to prevent abuses. This is the one stop for all things

Beowulf.

C.2 Node and Network Hardware

www.cs.virginia.edu/stream: The STREAM Benchmark provides a simple mea-

sure of the performance of the memory system on a node. This site also includes

results for a wide variety of platforms, from PC nodes suitable for a Beowulf, to

workstations, to supercomputers.

www.tomshardware.com: Aimed at hobbyists building their own computers, this

is a good site for general background on node hardware and includes up-to-date

instructions on building your own node.

C.3 Performance Tools

www.netlib.org/benchmark/hpl: Home of the High Performance Linpack Bench-

mark

C.4 Parallel Programming and Software

www.mpi-forum.org: The official MPI Forum Web site, contains Postscript and

HTML versions of the MPI-1 and MPI-2 Standards.

482 Appendix C

www.mcs.anl.gov/mpi: A starting point for information about MPI, including li-

braries and tools that use MPI and papers about the implementation or use of

MPI.

www.mcs.anl.gov/mpich: Home of the MPICH implementation of MPI. Download

source, documentation, and Unix and Windows versions of MPI from here. Also

check the bug list page for patches and announcements of releases.

www.mcs.anl.gov/mpi/mpptest: Performance tests for MPI, including a guide for

how not to measure communication performance.

www.netlib.org: A valuable collection of mathematical software and related in-

formation.

www.csm.ornl.gov/pvm: PVM home page.

www.mcs.anl.gov/romio: Home of the ROMIO implementation of the I/O chapter

from MPI-2. ROMIO is included in MPICH and LAM but can also be downloaded

separately. Information on tuning ROMIO for performance can be found here.

hdf.ncsa.uiuc.edu: Home of HDF. Included here are I/O libraries; tools for an-

alyzing, visualizing, and converting scientific data; and software downloads, docu-

mentation, and support information.

www.parl.clemson.edu/pvfs: Home of PVFS, a parallel file system designed for

Beowulf. This site includes online documentation, FAQ, source code downloads,

mailing lists, developer’s area, and research papers about PVFS.

www.cs.dartmouth.edu/pario: Home of the Parallel I/O Archive. This includes

a list of projects in parallel I/O, people working in parallel I/O, and conferences

on parallel I/O. Its biggest claim to fame is an extensive annotated bibliography of

parallel I/O resources.

C.5 Scheduling and Management

www.openpbs.org: The OpenPBS site is the official Web site for the open source

version of PBS. Maintained by Veridian, it offers downloads of software, patches,

and documentation, and it hosts FAQs, discussion lists, searchable archives, and

general PBS community announcements.

Annotated URLs 483

www.pbspro.com: Focused on the Professional Version of PBS, the PBS Pro Web

site includes software downloads, documentation, evaluation versions, beta releases

of new software, news, and information for the PBS administrator.

www.supercluster.org: The Supercluster Web site contains documentation for

the Maui scheduler and Silver metascheduler. It also includes cluster-relevant re-

search in areas of simulation, metascheduling, data staging, allocation management,

and resource optimization.

 blank

References

[1] Sridhar Anandakrishnan. Penguins everywhere: GNU/Linux in Antarctica. IEEE Software,
16(6):90–96, Nov/Dec 1999.

[2] John D. Blair. Samba: Integrating UNIX and Windows. Specialized Systems Consultants,
Inc., 1998.

[3] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur. PVFS: A
parallel file system for Linux clusters. In Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327, Atlanta, GA, October 2000. USENIX Association.

[4] Matthew Cettei, Walter Ligon, and Robert Ross. Support for parallel out of core applications
on beowulf workstations. In Proceedings of the 1998 IEEE Aerospace Conference, March
1998.

[5] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM Transactions
on Computer Systems, 14(3):225–264, August 1996.

[6] Cray Research. Application Programmer’s Library Reference Manual, 2nd edition, Novem-
ber 1995. Publication SR-2165.

[7] Chris DiBona, Sam Ockman, and Mark Stone. Open Sources: Voices from the Open Source
Revolution. O’Reilly & Associates, Inc., 1999.

[8] Jack Dongarra. Performance of various computers using standard linear equations software.
Technical Report Number CS-89–85, University of Tennessee, Knoxville TN, 37996, 2001.
http://www.netlib.org/benchmark/performance.ps.

[9] G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix algorithms on a hypercube I: Matrix
multiplication. Parallel Computing, 4:17–31, 1987.

[10] W. Gropp and E. Lusk. Scalable Unix tools on parallel processors. In Proceedings of the
Scalable High-Performance Computing Conference, May 23–25, 1994, Knoxville, Tennessee,
pages 56–62, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. IEEE
Computer Society Press.

[11] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Marc Snir. MPI—The Complete Reference: Volume 2, The MPI-2
Extensions. MIT Press, Cambridge, MA, 1998.

[12] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the MPI Message-Passing Interface standard. Parallel Comput-
ing, 22(6):789–828, 1996.

[13] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA,
1999.

[14] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

[15] William D. Gropp and Ewing Lusk. Reproducible measurements of MPI performance char-
acteristics. In Jack Dongarra, Emilio Luque, and Tomàs Margalef, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, volume 1697 of Lecture Notes
in Computer Science, pages 11–18. Springer Verlag, 1999. 6th European PVM/MPI Users’
Group Meeting, Barcelona, Spain, September 1999.

486 References

[16] Don Heller. Rabbit: A performance counters library for Intel/AMD processors and Linux.
www.scl.ameslab.gov/Projects/Rabbit/.

[17] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,
T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming library. Parallel Com-
puting, 24(14):1947–1980, December 1998.

[18] IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX)–part 1: System
application program interface (API) [C language], 1996 edition.

[19] John Krystynak and Bill Nitzberg. Performance characteristics of the iPSC/860 and CM-2
I/O systems. In Proceedings of the Seventh International Parallel Processing Symposium,
pages 837–841, Newport Beach, CA, 1993. IEEE Computer Society Press.

[20] Josip Loncaric. Linux 2.2.12 TCP performance fix for short messages. www.icase.edu/
coral/LinuxTCP2.html.

[21] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. Interna-
tional Journal of Supercomputer Applications, 8(3/4):165–414, 1994.

[22] Message Passing Interface Forum. MPI2: A message passing interface standard. Interna-
tional Journal of High Performance Computing Applications, 12(1–2):1–299, 1998.

[23] P. Mucci, S. Brown, C. Deane, and G. Ho. Papi: A portable interface to hardware perfor-
mance counters. icl.cs.utk.edu/projects/papi/.

[24] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and Michael
Best. File-access characteristics of parallel scientific workloads. IEEE Transactions on
Parallel and Distributed Systems, 7(10):1075–1089, October 1996.

[25] Emil Ong, Ewing Lusk, and William Gropp. Scalable Unix commands for parallel proces-
sors: A high-performance implementation. In Jack Dongarra and Yiannis Cotronis, editors,
Proceedings of Euro PVM/MPI. Springer Verlag, 2001. To appear.

[26] OpenMP Web page. www.openmp.org.

[27] R. Reussner, P. Sanders, L. Prechelt, and M Müller. SKaMPI: A detailed, accurate MPI
benchmark. In Vassuk Alexandrov and Jack Dongarra, editors, Recent advances in Parallel
Virtual Machine and Message Passing Interface, volume 1497 of Lecture Notes in Computer
Science, pages 52–59. Springer, 1998. 5th European PVM/MPI Users’ Group Meeting.

[28] Kent E. Seamons and Marianne Winslett. Multidimensional array I/O in Panda 1.0. Journal
of Supercomputing, 10(2):191–211, 1996.

[29] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra.
MPI—The Complete Reference: Volume 1, The MPI Core, 2nd edition. MIT Press, Cam-
bridge, MA, 1998.

[30] Hal Stern. Managing NFS and NIS. O’Reilly & Associates, Inc., 1991.

[31] W. Richard Stevens. UNIX network programming: Networking APIs: Sockets and XTI,
volume 1. Prentice-Hall PTR, Upper Saddle River, NJ 07458, USA, second edition, 1998.

[32] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing Sec-
tions of Out-of-Core Arrays. Scientific Programming, 5(4):301–317, Winter 1996.

References 487

[33] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and Sivaramakrishna
Kuditipudi. Passion: Optimized I/O for parallel applications. IEEE Computer, 29(6):70–78,
June 1996.

[34] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably and
with high performance. In Proceedings of the 6th Workshop on I/O in Parallel and Dis-
tributed Systems, pages 23–32. ACM Press, May 1999.

[35] Rajeev Thakur, Ewing Lusk, and William Gropp. A case for using MPI’s derived datatypes
to improve I/O performance. In Proceedings of SC98: High Performance Networking and
Computing, November 1998.

[36] TotalView Multiprocess Debugger/Analyzer, 2000. www.etnus.com/Products/TotalView.

[37] J. L. Traeff, R. Hempel, H. Ritzdoff, and F. Zimmermann. Flattening on the fly: Efficient
handling of MPI derived datatypes. Number 1697 in Lecture Notes in Computer Science,
pages 109–116, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1999. Spring-
er-Verlag.

[38] Mitch Wagner. Google keeps pace with demand, May 2001. www.internetweek.com/
infrastructure01/infra050701.htm.

[39] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable performance
visualization with Jumpshot. High Performance Computing Applications, 13(2):277–288,
Fall 1999.

Index

Symbols

.iodtab, 424

.pvfsdir, 416

.rhosts, 129
/dev/pvfsd, 419
1U, 22

A

access control list, 359
accounting, 305
batch jobs, 387
PBS, 387
active target
RMA synchronization, 223
adaptability, 281, 289
adding cluster nodes, 289
address
host, 114
IP, 114
netmask, 114
network, 114
subnet, 115
AFS, 127
AMD, 39
ASCI Red, 155
ASIC, 97
ASRAM, 44
ATLAS, 228
ATM, 471
autofs, 128

B

backfill, 353, 361
bandwidth, 153
barnraising, 445
batch job, 302
batch scheduling, 369
BDA, 47
benchmark
High Performance LINPACK, 155
LINPACK, 154
mpptest, 227
NPB, 156
Ping-Pong, 154
SKaMPI, 228
BeoMPI Web site, 194
Beowulf node, 35, 50, 52
internal, 133
worldly, 133
Beowulf project, 97
Beowulf-class system, 471

Berkeley Unix, 61
big endian, 119
BIOS, 46
bit, 471
BLAS, 228
blue screen of death, 64
Boot
network, 76
BOOTP, 134, 138
bps, 471
broadcast, 180
BSP, 221, 222
byte, 471
byte order, 119

C

Caldera, 65
CAVE, 435
CD-ROM, 47
central manager, 332
CERT, 144
checkpoint
periodic, 309
restart, 284
children, 200
chkconfig, 84
cLAN, 98
ClassAd, 308, 310
attributes, 310
job, 310
machine, 310
ClassAd attribute
requirements, 322
cluster, 471
CMOS, 56
collective, 180
commodity cluster, 471
communicating sequential processes, 28
communication context, 292
communicator, 292
MPI, 167
compiling of MPI programs, 191
Condor, 307, 471
availability, 307
checkpoint, 308
ClassAd, 310
ClassAd example, 311
DAGMan, 330
host-based security, 337
installation of, 336
job ClassAd, 310
job submitting, 314

Index 489

list of features, 308
machine ClassAd, 310
matchmaking, 341
overview of, 307
periodic checkpoint, 309
policy customization, 340
pool, 332
sample submit description files, 314
submit description file, 314
Universe, 313, 323
Condor commands
condor prio, 320
condor q, 313, 317, 321
condor rm, 314, 320
condor status, 314, 316, 318
condor submit, 313, 314
Condor Universe
Globus, 325
MPI, 323
PVM, 324
Standard, 325
Vanilla, 323
condor collector, 334
textttcondor master, 333
condor negotiator, 334
condor schedd, 333
condor shadow, 333
condor startd, 333
condor starter, 333
configuration file and MPI compile scripts,
192

configuration files
bootptab, 138
group, 142
hosts.allow, 145
hosts.deny, 145
inetd.conf, 138
passwd, 142
sysconfig/network, 147
sysconfig/network-scripts/ifcfg-*, 137
configuration macro
CONTINUE, 342
DAEMON LIST, 343, 347, 349
DedicatedScheduler, 343
Department, 348
FULL HOSTNAME, 339
HOSTNAME, 339
KILL, 342
LOCAL CONFIG FILE, 339
OPSYS, 339
PREEMPTION RANK, 343
PREEMPTION REQUIREMENTS, 342, 343
PREEMPT, 342
RANK, 342, 348

RELEASE DIR, 339
Rank, 348
SHADOW LOG, 322
START, 342
SUSPEND, 342
TILDE, 339
WANT SUSPEND, 342
WANT VACATE, 342
configuration of Maui scheduler, 352
constellation, 3, 471
CONTINUE macro, 342
CORBA, 124
COW, 471
CPlant project, 439
CPU, 38
cracker, 144
CRC, 102
crossmounting, 142
Cumulvs, 296

D

daemon
condor collector, 334
condor master, 333
condor negotiator, 334
condor schedd, 333
condor shadow, 333
condor startd, 333
condor starter, 333
PBS, 386
pbs mom, 373, 384
pbs sched, 373, 385
pbs server, 372
DAEMON LIST macro, 343, 347, 349
DAGMan, 325
data representation, 219
datagram, 113
DCE, 128
DCOM, 124
DDR, 45
debugging
mpigdb, 191
TotalView, 191
DedicatedScheduler macro, 343
Department macro, 348
derived datatypes in MPI, 210
DFS, 128
DHCP, 109, 134
directed acyclic graph, 330
distributed job scheduler
Condor, 307
distributed objects
CORBA, 124
DCOM, 124

490 Index

RMI, 125
distributed programming, 121
double buffering, 173
DRAM, 44
DSM, 471
DVD, 47
dynamic process management, 199
dynamic parallel programs, 281

E

EDO, 43
EEPROM, 37
EIDE, 48
Emulex, 24, 471
EPIC, 40
epoch
MPI RMA, 222
Ethernet, 440, 471
10 Gb, 97
Fast, 96
Gigabit, 96, 441
MAC, 103
NIC, 102
switches, 105
etype, 218
execute machine, 384
EXT2, 79
EXT3, 80

F

failure monitoring, 283, 284
failure recovery, 283
fairness
in job scheduling, 356
in message passing, 173
fairshare in job scheduling, 357
Fast Ethernet, 471
fault tolerance, 202, 281
FDD, 60
FHS, 141
file system
MSDOS, 73
file for Condor’s submit description, 314
file partitioning, 397, 405
file system
AFS, 127
autofs, 128
EXT2, 79
EXT3, 80
JFS, 80
NFS, 126
PVFS, 393
ReiserFS, 80

XFS, 80
file view, 218, 219
filetype, 218
firewall, 132, 133, 148
IP masquerading, 133, 147
FSSTND, 141
FTP, 146
FULL HOSTNAME macro, 339

G

ghost cells, 177
Gigabit Ethernet, 471
Globus, 194, 325
Globus Toolkit, 371
GNU, 471
GPL, 65, 471
grain size, 183
green threads, 329

H

halo cells, 177
HDD, 60
HDF, 471
hello world
with MPI, 162
with PVM, 240
heterogeneous, 186
HOSTNAME macro, 339
‘hosts.equiv’, 129
HPF, 371
HPL, 155, 228

I

I/O, 34
I/O node, 392
IBM, 127
IBM SP, 439
IDE, 48
IDL, 124
immediate operations, 206
inetd, 82
Infiniband, 100
intercommunicator, 199
intracommunicator, 199
iod, 418, 421
iod-ping, 412
iod.conf, 418, 425
.iodtab, 416, 424
IP, 113
IP address, 119
IPv4, 113
IPv6, 113

Index 491

IRQ, 59

J

Jacobi method, 175
JFS, 80
JIT, 125
job
accounting, 387
analysis, 321
completion, 322
not running, 321, 376
priority, 320
job scheduler for Condor, 307
job scheduling, 369
Jumpshot, 193
JVM, 125

K

kernel, 71
KILL macro, 342

L

LAM Web site, 194
LAN, 471
languages
Java, 124
latency, 153
LED, 41
libpvfs, 420
LINPACK, 154
Linux, 471
Linux distributions, 67
little endian, 119
Loadleveler, 351
LOBOS, 51
local group, 199
LOCAL CONFIG FILE macro, 339
LPT, 53

M

MAC, 103
machine
central manager, 372
execute, 384
PBS server, 372
scheduler, 385
manager/worker, 258, 268, 285
manager/worker approach, 169
MAU, 104
Maui scheduler, 351
Mbps, 471
MDBI, 408

Mega, 471
memory, 43, 54
cache, 33, 35, 44
DRAM, 44
SRAM, 44
mesh
regular, 174
message box, 296
message latency, 207
message passing, 161, 237, 296
Message Passing Interface, 161
message tags, 253
message-passing model, 161
metadata, 471
mgr, 416, 421, 428
mgr-ping, 412
mkmgrconf, 416
module
kernel loadable, 73
MPI for Fortran 90, 225
monitoring, 304
PBS, 386
motherboard, 41, 140
mount, 428
mount.pvfs, 419, 421
MP-MPICH Web site, 194
MPD, 185, 450
MPE, 193
MPI, 161, 224, 471
implementations, 194
mixed-mode programming, 433
MPI Forum, 161
MPI jobs under Condor, 323
MPI-1, 161
MPI-2, 161
MPI-BIP Web site, 194
MPI-IO
with PVFS, 410
MPI-Madeleine Web site, 194
MPI/GAMMA Web site, 194
MPI/Pro Web Site, 194
MPI::Comm::Clone, 225
MPI::Comm::Get parent, 235
MPI::Comm::Get rank, 196
MPI::Comm::Get size, 196
MPI::Comm::Irecv, 234
MPI::Comm::Isend, 234
MPI::Comm::Probe, 197
MPI::Comm::Recv, 197
MPI::Comm::Send, 197
MPI::Comm::Sendrecv, 197
MPI::File::Close, 235
MPI::File::Get size, 235
MPI::File::Open, 235

492 Index

MPI::File::Read, 235
MPI::File::Read all, 235
MPI::File::Set view, 235
MPI::File::Write, 235
MPI::File::Write all, 235
MPI::Finalize, 196
MPI::Init, 196
MPI::Intracomm::Allreduce, 197
MPI::Intracomm::Bcast, 196
MPI::Intracomm::Reduce, 196
MPI::Intracomm::Spawn, 235
MPI::Request::Test, 234
MPI::Request::Wait, 234
MPI::Request::Waitall, 234
MPI::Status::Get source, 197
MPI::Status::Get tag, 197
MPI::Win::Create, 234
MPI::Win::Fence, 234
MPI::Win::Free, 234
MPI::Win::Get, 234
MPI::Win::Put, 234
MPI::Wtime, 197
MPI Accumulate, 222
MPI Allgather, 214
MPI Allgatherv, 215
MPI Allreduce, 195, 196
MPI ANY SOURCE, 167
MPI ANY TAG, 167
MPI ARGV NULL, 201
MPI Bcast, 180, 183, 195
MPI Cart coords, 219
MPI Cart create, 219
MPI Comm accept, 202
MPI Comm connect, 202
MPI Comm dup, 213
MPI Comm free, 202
MPI Comm get parent, 200, 232, 234
MPI Comm rank, 163, 194, 195
MPI COMM SELF, 202, 217
MPI Comm size, 163, 194, 195
MPI Comm spawn, 200, 232, 234
MPI Comm split, 211
MPI COMM WORLD, 167
MPI ERRCODES IGNORE, 202
MPI File close, 219, 231, 233
MPI File open, 217, 231, 233
MPI File read, 231, 233
MPI File read all, 231, 233
MPI File set view, 218, 231, 233
MPI File write, 219, 231, 233
MPI File write all, 221, 231, 233
MPI Finalize, 162, 195, 196
MPI Get, 222, 231, 233
MPI Get count, 168

MPI Get processor name, 165
MPI INFO NULL, 202
MPI Init, 162, 194, 195
MPI Intercomm merge, 200
MPI Irecv, 206, 230, 232
MPI Isend, 232
MPI MODE WRONLY, 221
MPI ORDER C, 219
MPI ORDER FORTRAN, 219
MPI Pack, 210
MPI PACKED, 210
MPI Probe, 168, 168, 195, 196
MPI PROC NULL, 177
MPI Put, 222, 231, 232
MPI Recv, 165, 195, 196
MPI Reduce, 182, 183, 195
MPI Request, 206
MPI Send, 165, 195, 196
MPI Sendrecv, 178, 195, 196
MPI STATUS IGNORE, 219
MPI STATUS SIZE, 225
MPI Test, 231, 232
MPI THREAD FUNNELED, 226
MPI THREAD MULTIPLE, 226
MPI THREAD SERIALIZED, 226
MPI THREAD SINGLE, 226
MPI Type commit, 210
MPI Type create struct, 211
MPI Type create subarray, 219
MPI Type free, 211
MPI Type indexed, 211
MPI Type vector, 210
MPI Unpack, 210
MPI Wait, 206, 231, 232
MPI Waitall, 207, 231, 232
MPI Win create, 222, 231, 232
MPI Win fence, 222, 231, 233
MPI Win free, 222, 231, 232
MPI Win lock, 223
MPI Win unlock, 223
MPI Wtime, 182, 195, 196
MPI WTIME IS GLOBAL, 182
MPICH
license, 66
MPICH Web site, 194
MPICH-G2 Web site, 194
MPICH-GM Web site, 194
mpiexec, 164
mpigdb, 191
mpirun, 164
MPP, 471
mpptest, 227
MTBF, 282
multithreaded, 161

Index 493

MVICH Web site, 194
Myricom, 97, 471
Myrinet, 440

N

Nagel algorithm, 114
namespace in MPI, 224
NAT, 147
Netlib, 274
netperf, 154
netpipe, 154
network, 471
Network Address Translaton (NAT), 147
Network Booting, 76
Network Queueing System, 369
network types
cLAN, 98
Fast Ethernet, 96
Gigabit Ethernet, 96
Infiniband, 100
Myrinet, 97
SCI, 99
networking utilities
ifconfig, 134
iptables, 148
route, 147
rsh, 129
socket, 116
ssh, 130
TCP wrappers, 145
NFS, 81, 126
cache incoherence, 127
caching, 127
NFS root, 77
NFSROOT kernel, 139
NIC, 471
NIH, 51
NIS, 143
nodes, 381
nonblocking communication, 206
notification, 283
NOW, 471
NPB, 156
NQS, 369

O

offset, 218
OMG, 124
ONC, 122
one-sided communication, 221
OOC, 400
open source, 66
OpenMP, 226

OpenPBS, 351, 370
OPSYS macro, 339
ORB, 124
origin of MPI RMA, 223
out-of-core computation, 400

P

Parallel I/O
with MPI, 215
parallel efficiency, 153
Parallel I/O
with PVFS, 403
parallel I/O with NFS, 127
parents, 200
partitions
/usr, 127
passive target and RMA synchronization, 223
PBS, 369
accounting, 387
API, 377
architecture, 372
benefits, 370
commands, 376
configuration, 379
creating a job, 374
GUI, 376
history, 369
installing, 378
managing, 386
MOM daemon, 373
overview, 370
querying status, 375
scheduler daemon, 373
server daemon, 372
starting, 386
stopping, 386
submitting a job, 374
tracking jobs, 387
trackjob, 387
troubleshooting, 388
using, 373
PBS Pro, 370
PBSPro, 351
PC, 471
PC100, 45
PC133, 45
PC1600, 45
PC2100, 45
PCI, 471
PCI bus, 49
PDE solving, 174
peak performance, 151
percentage of peak, 153
performance tests

494 Index

HPL, 228
mpptest, 227
SKaMPI, 228
persistent messages, 296
Personal Computer or PC, 471
Ping-Pong, 154
PLS, 104
PnP, 56
Poisson equation, 174
policy enforcement, 303
pool of machines, 332
port number, 119
POSIX 1003.2d, 370, 372
POST, 47
PowerPC, 119
Powerwall, 435
PREEMPT macro, 342
preemption in job scheduling, 362
PREEMPTION RANK macro, 343
PREEMPTION REQUIREMENTS macro, 342, 343
priority of a job, 320
processors, 38
21264B, 40
Alpha, 40
Athlon, 39
Itanium, 40
Pentium 4, 39
Pentium II, 39
Pentium III, 39
Pentium Pro, 39
Xeon, 39
procgroup file, 186
profiling library, 192
programming model
one-sided, 221
PROM, 37
protocols
FTP, 146
IP, 113
NIS, 143
RPC, 121
rsh, 146
TCP, 113
telnet, 146
UDP, 113
PVFS, 471
compiling, 414
defaults, 427
description, 393
installation, 415
mounting, 421
pvfs.o, 419
pvfs ioctl, 405
pvfs open, 404

pvfsd, 419, 421
.pvfsdir, 416, 423
pvfstab, 419, 426
PVM, 237, 281, 471
computing model, 238
console, 269
group functions, 252, 253
grouping tasks, 239
hostfile, 267
language support, 238
message handler functions, 293
message handlers, 293
multicast, 252
setup, 265
shutdown, 267
starting programs, 267
startup, 266
PVM hostfile, 272
pvm barrier, 252
pvm initsend, 243
pvm parent, 242
pvm spawn, 288
pvstat, 412

Q

QSW, 471
Quadrics, 471
queue, 302
queuing, 302

R

RAM, 43
Rambus, 42
random number generator, 183
rank in MPI, 163
RANK macro, 342, 348
Rank macro, 348
rcp, 129
RDRAM, 42
rebooting of motherboard, 140
Red Hat, 65
Red Hat Package Manager, 378
ReiserFS, 80
RELEASE DIR macro, 339
reliability, 281, 282
remote group, 199
remote memory access, 221
remote system call, 309
reporting, 305
reservations
in Maui scheduler, 358
resource management, 305, 369
resource monitoring, 304

Index 495

RFC, 138
RISC, 40
rlogin, 129
RMA, 221
window object, 222
RMI, 125
ROM, 37
ROMIO, 230, 471
configuring for PVFS, 420
with PVFS, 410
RPC, 121
RPM format, 378
RSH, 129, 146
RTC, 56
running multiple programs
under Condor, 315
RWCP, 471

S

Samba, 392
SAN, 471
SBSRAM, 44
scalability analysis, 170
scalability analysis, 207
Scalable Unix Tools, 143, 450
ScaMPI Web site, 194
Scheduler, 471
scheduler in Condor, 307
scheduling, 303, 369
SCI, 99
SCSI, 48, 58
Scyld, 467
SDRAM, 43
secure server, 186
self-scheduling, 170
SHADOW LOG macro, 322
shared file pointer, 398
shared memory, 186
SHMEM, 221, 222
single threaded, 161
SKaMPI, 228
SMP, 471
Sojourner, 63
spanning tree, 180
spawning tasks, 242, 288
speedup analysis, 170
SPRNG, 183
SQL, 123
SRAM, 44
SSE, 39
SSH, 146
ssh, 130
standard height in U, 22
START macro, 342

start iodevice, 411
status of queued jobs, 318
stride
in memory, 210
striping factor, 411
striping unit, 411
SuSE, 65
SUSPEND, 342
SUSPEND macro, 342
synchronization
active target, 223
passive target, 223
RMA, 223
system monitoring, 304
system utilization, 153

T

tag in MPI, 167
target
MPI RMA, 223
task parallelism, 169
TCP, 113
tuning for Linux, 88
TFTP, 76, 139
thread, 161
thread-safety
MPI, 226
throttling in job scheduling, 356
TILDE macro, 339
TLA, 31
TotalView, 191
tracking PBS jobs, 387
troubleshooting in PBS, 388
Turbolinux, 65

U

u2p, 411
UDP, 113
Unix
Berkeley, 61
usage policy, 303

V

VGA, 55
VIA, 98, 116
virtual memory, 400
visualization
performance, 193
VM, 400

496 Index

W

wall-clock time, 182
WAN, 471
WANT SUSPEND macro, 342
WANT VACATE macro, 342
wild card
MPI, 167
PVM, 247
window object
MPI, 222
workload management, 369, 370
worldly node, 34

X

XDR, 122
XENIX, 61
XFS, 80
xpbs, 376
xpbsmon, 386
XPVM, 267, 274
XPVM views, 275, 276
XTI, 116

	Contents
	Series Foreword
	Foreword
	Preface
	1 Introduction
	1.1 Definitions and Taxonomy
	1.2 Opportunities and Advantages
	1.3 A Short History
	1.4 Elements of a Cluster
	1.5 Description of the Book

	I: Enabling Technologies
	2 An Overview of Cluster Computing
	2.1 A Taxonomy of Parallel Computing
	2.2 Hardware System Structure
	2.3 Node Software
	2.4 Resource Management
	2.5 Distributed Programming
	2.6 Conclusions

	3 Node Hardware
	3.1 Overview of a Beowulf Node
	3.2 Processors
	3.3 Motherboard
	3.4 Memory
	3.5 BIOS
	3.6 Secondary Storage
	3.7 PCI Bus
	3.8 Example of a Beowulf Node
	3.9 Boxes, Shelves, Piles, and Racks
	3.10 Node Assembly

	4 Linux
	4.1 What Is Linux?
	4.2 The Linux Kernel
	4.3 Pruning Your Beowulf Node
	4.4 Other Considerations
	4.5 Final Tuning with /proc
	4.6 Conclusions

	5 Network Hardware
	5.1 Interconnect Technologies
	5.2 A Detailed Look at Ethernet
	5.3 Network Practicalities: Interconnect Choice

	6 Network Software
	6.1 TCP/IP
	6.2 Sockets
	6.3 Higher-Level Protocols
	6.4 Distributed File Systems
	6.5 Remote Command Execution

	7 Setting Up Clusters: Installation and Configuration
	7.1 System Access Models
	7.2 Assigning Names
	7.3 Installing Node Software
	7.4 Basic System Administration
	7.5 Avoiding Security Compromises
	7.6 Job Scheduling
	7.7 Some Advice on Upgrading Your Software

	8 How Fast Is My Beowulf?
	8.1 Metrics
	8.2 Ping-Pong Test
	8.3 The LINPACK Benchmark
	8.4 The NAS Parallel Benchmark Suite

	II: Parallel Programming
	9 Parallel Programming with MPI
	9.1 Hello World in MPI
	9.2 Manager/Worker Example
	9.3 Two-Dimensional Jacobi Example with One-Dimensional Decomposition
	9.4 Collective Operations
	9.5 Parallel Monte Carlo Computation
	9.6 Installing MPICH under Linux
	9.7 Tools
	9.8 MPI Implementations for Clusters
	9.9 MPI Routine Summary

	10 Advanced Topics in MPI Programming
	10.1 Dynamic Process Management in MPI
	10.2 Fault Tolerance
	10.3 Revisiting Mesh Exchanges
	10.4 Motivation for Communicators
	10.5 More on Collective Operations
	10.6 Parallel I/O
	10.7 Remote Memory Access
	10.8 Using C++ and Fortran 90
	10.9 MPI, OpenMP, and Threads
	10.10 Measuring MPI Performance
	10.11 MPI-2 Status
	10.12 MPI Routine Summary

	11 Parallel Programming with PVM
	11.1 Overview
	11.2 Program Examples
	11.3 Fork/Join
	11.4 Dot Product
	11.5 Matrix Multiply
	11.6 One-Dimensional Heat Equation
	11.7 Using PVM
	11.8 PVM Console Details
	11.9 Host File Options
	11.10 XPVM

	12 Fault-Tolerant and Adaptive Programs with PVM
	12.1 Considerations for Fault Tolerance
	12.2 Building Fault-Tolerant Parallel Applications
	12.3 Adaptive Programs

	III: Managing Clusters
	13 Cluster Workload Management
	13.1 Goal of Workload Management Software
	13.2 Workload Management Activities

	14 Condor: A Distributed Job Scheduler
	14.1 Introduction to Condor
	14.2 Using Condor
	14.3 Condor Architecture
	14.4 Installing Condor under Linux
	14.5 Configuring Condor
	14.6 Administration Tools
	14.7 Cluster Setup Scenarios
	14.8 Conclusion

	15 Maui Scheduler: A Multifunction Cluster Scheduler
	15.1 Overview
	15.2 Installation and Initial Configuration
	15.3 Advanced Configuration
	15.4 Steering Workload and Improving Quality of Information
	15.5 Troubleshooting
	15.6 Conclusions

	16 PBS: Portable Batch System
	16.1 History of PBS
	16.2 Using PBS
	16.3 Installing PBS
	16.4 Configuring PBS
	16.5 Managing PBS
	16.6 Troubleshooting

	17 PVFS: Parallel Virtual File System
	17.1 Introduction
	17.2 Using PVFS
	17.3 Administering PVFS
	17.4 Final Words

	18 Chiba City: The Argonne Scalable Cluster
	18.1 Chiba City Configuration
	18.2 Chiba City Timeline
	18.3 Chiba City Software Environment
	18.4 Chiba City Use
	18.5 Final Thoughts

	19 Conclusions
	19.1 Future Directions for Hardware Components
	19.2 Future Directions for Software Components
	19.3 Final Thoughts

	A: Glossary of Terms
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	B: Annotated Reading List
	C: Annotated URLs
	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

