
0733-8724 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2017.2747223, Journal of
Lightwave Technology

 1 

  

Abstract—Optical connections support virtual links in MPLS-
over-optical multilayer networks and therefore, errors in the 
optical layer impact on the quality of the services deployed on 
such networks. Monitoring the performance of the physical layer 
allows verifying the proper operation of optical connections, as 
well as to detect bit error rate (BER) degradations and anticipate 
connection disruption. In addition, failure identification 
facilitates localizing the cause of the failure by providing a short 
list of potential failed elements and enables self-decision making 
to keep committed service level. In this paper, we analyze several 
failure causes affecting the quality of optical connections and 
propose two different algorithms: one focused on detecting 
significant BER changes in optical connections, named as 
BANDO, and the other focused on identifying the most probable 
failure pattern, named as LUCIDA. BANDO runs inside the 
network nodes to accelerate degradation detection and sends a 
notification to the LUCIDA algorithm running on the centralized 
controller. Experimental measures were carried out on two 
different setups to obtain values for BER and received power and 
used to generate synthetic data used in subsequent simulations. 
Results show significant improvement anticipating maximum 
BER violation with small failure identification errors. 
 

Index Terms— BER Degradation Detection, Failure 
Identification, Elastic Optical Networks. 

I. INTRODUCTION 
ERVICE layer connections are usually set up on virtual 
network topologies, where virtual links are supported by 

lightpaths in the optical layer. Thus, errors in optical 
transmission translate into packet losses and retransmissions 
leading to unacceptable Quality of Service (QoS) and to 
Service Level Agreements (SLA) violations. Such violations 
represent money losses for the network operator. 

Although commercially available optical equipment is able 
to correct degraded optical signals by means of Forward Error 
Correction (FEC) algorithms, a value of pre-FEC Bit Error 
Rate (BER) over the pre-defined limit (max BER) would 
imply a non-error-free post-FEC transmission and, as a result, 
communication would be disrupted. Therefore, a prompt 
detection of optical connections with excessive pre-FEC BER 
can greatly reduce SLA violations. 

Monitoring the physical layer is essential to verify the 
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fulfillment of SLAs and, in the case of faults or degradations, 
e.g. transmitter laser drift or filters misconfiguration, to 
localize the failed elements, and to take actions for preserving 
the services. Information retrieved by commonly used power 
monitors measuring received power (PRx) can be combined 
with monitoring information accessible through emerging 
transponders based on coherent detection [2], [3]. In 
particular, such transponders offer the possibility to monitor 
several parameters associated with connections or to the 
traversed links, e.g., pre-FEC BER or linear dispersion. 

In fact, coherent detection has posed new possibilities for 
monitoring [4], [5]. Monitoring is attracting increasing interest 
for several reasons such as: i) the reduction of system margins 
(which derives in reducing capital expenditures) might induce 
more frequent degradations at the optical layer [6], [7]; ii) a 
more accurate estimation of the quality of transmission and an 
optimization of transmission parameters, routing, and 
spectrum assignment [8]. 

Besides optical power, thanks to the digital signal 
processing (DSP) module of coherent receivers, it is possible 
to monitor several end-to-end performance parameters. Above 
all, pre-FEC BER, Optical Signal to Noise Ratio (OSNR), Q-
factor, and also electrical SNR can be monitored by already 
available commercial transponders. Moreover, other 
parameters can be monitored: e.g. chromatic dispersion 
through equalizer taps [9], the central frequency of the signal 
thanks to an automatic frequency control [10], polarization 
channel characteristics and the state of polarization [11]. Such 
information can be collected by commercial cards with a time 
period of 10 ms and can also be used for failure prediction 
applications allowing operators to pre-empt outages [11]. 
However, we have to consider that since linear impairments 
(e.g., dispersion) can be compensated by the DSP itself, signal 
degradations in coherent systems are mainly dominated by 
amplified spontaneous emission, non-linear effects including 
also interference, and filters introducing signal distortion. 
Thus, the identification of such most relevant impairments is 
mandatory. A challenge is the analysis of monitoring data with 
the objective of identifying the nature of a problem (e.g., 
decide if a reduction of the OSNR is due to an amplifier 
malfunction or some other issue) and such topic still requires 
to be investigated to reach an adequate maturity. Besides the 
aforementioned parameters, studies are ongoing to determine 
the effects of non-linearities and filters. Non-linear effects can 
be compensated –thus estimated– through digital back 
propagation techniques [12] or maximum likelihood sequence 
estimator [13]. Regarding filtering effects, studies in [14], [15] 
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evaluated the related induced penalties. However, work is still 
needed to correlate information related to end-to-end 
parameters such as OSNR and non-linear or filtering effects to 
identify the type of failure. 

Finally, as stated in [6], failure localization or quality of 
transmission estimators [16] based on monitoring information 
typically require link-level characteristics while coherent 
receivers provide end-to-end information. However, link-level 
metrics may be obtained via correlation techniques such as 
network kriging when the characteristics are linearly additive 
(e.g., chromatic dispersion) [17], or via more advanced 
techniques e.g., based on machine learning algorithms, which 
perform better for non-linear impairments [18]. 

However, quality of transmission estimation, computed as a 
function of the links and nodes traversed by each optical 
connection, is a useful information since it can be used to 
configure a BER threshold at connection set-up, which would 
help to detect BER degradation by comparing the actual 
measured BER against it. However, if the threshold value is 
set to a value too close to the actual BER, many threshold-
crossing notifications would be raised because of small BER 
changes, which, in addition to add control overhead, do not 
give useful information. On the contrary, if the threshold value 
is relaxed, e.g., closed to the equipment max BER, 
degradation detection could not be anticipated early enough 
the transmission is totally disrupted. 

Regarding failure localization, several works in the 
literature have proposed methods for localization of hard link 
failures that affect a number of established connections, 
focused on reducing restoration times (see, e.g., [19]-[21]). All 
the proposed methods basically consist on computing and 
establishing a number of auxiliary connections (m-trails or m-
cycles). In the event of a link failure, one single connection 
would be affected, thus localizing the failed link. Few works 
in the literature, however, have been focused on soft-failure 
localization that might affect a single or a reduced set of 
optical connections. In our previous work in [22], we focused 
on identifying the most probable cause of failure after its 
detection; a probabilistic failure localization algorithm based 
on Bayesian Networks (BN) [23] was proposed. The proposed 
BN needed to be trained to locate different causes of failures, 
which entail having previous data available. Note that since 
failures occur very infrequently, previous data availability is 
frequently unavailable. 

In addition, it is hard to discern the real cause of soft 
failures, since, transmitter laser shift and filters 
misconfiguration could lead to similar evidence. However, 
discovering and identifying a failure pattern reduces 
remarkably the subsequent failure localization effort by 
providing a short list of potential failed elements (e.g. filters 
used by a certain connection). Moreover, failure identification 
enables self-decision making to keep committed service level, 
e.g., by triggering rerouting of that traffic using a connection 
where a gradual BER degradation has been identified. For this 
very reason, in this paper, we focus on BER degradation 

detection and failure identification. Specifically, the 
contribution is three-fold: 

• Section II analyzes four different failures affecting the 
signal quality of an optical connection and motivates the 
definition of two different algorithms: i) the BER Anomaly 
Detection (BANDO) algorithm focused on detecting 
significant BER changes in optical connections, and ii) the 
Failure Identification Algorithm (LUCIDA) algorithm that 
identifies the most probable failure pattern. 

• In Section III the proposed BANDO and LUCIDA 
algorithms are described in detail. BANDO algorithm is 
defined as a finite state machine (fsm) to follow the 
metered BER and to raise notifications in case of abrupt 
BER changes. LUCIDA is a probabilistic algorithm that 
analyzes time series from monitoring and notifications and 
returns the most probable failure class together with its 
probability. 

• Experimental measures for BER and PRx obtained from 
two different setups are reported in Section IV. Based on 
measured values, realistic scenarios are generated, and 
exhaustive simulations are run, where obtained results 
show the performance of the proposed algorithms. 

II. BER DEGRADATION DETECTION AND FAILURE 
IDENTIFICATION 

Fig. 1 illustrates four failures affecting the signal quality of 
an optical connection: a) signal overlap (Fig. 1a) happens 
when the spectrum allocation of an optical connection invades 
that of a neighboring one. This might be caused by the 
inaccuracy in the central frequency of the laser and/or the 
filters of one of the connections; b) tight filtering (Fig. 1b) 
appears when there exists a central frequency misalignment or 
a width inaccuracy in the filters along the route of an optical 
connection. Fig. 2 presents four different causes of tight 
filtering, where filter F2 is misaligned in Fig. 2a, filter F2 
width is narrower than the required frequency slot width in 
Fig. 2b, filters F2 and F3 are misaligned in Fig. 2c, and the 
central frequency of the signal is misaligned in Fig. 2d. Note 
that the consequence on the optical signal is similar for all four 
cases; c) gradual drift (Fig. 1c) appears when either the optical 
signal or the filter gradually deviate from the central frequency 
determined at set-up time; and d) cyclic drift (Fig. 1d) occurs 
when a gradual drift describes a cyclical movement with time. 

For illustrative purposes, Fig. 3 plots the evolution with 
time of pre-FEC BER and PRx monitoring data metered at the 
receiver side of a connection affected by each of the failures 
above-described. In the case of signal overlap (Fig. 3a), the 
allocation of a neighboring optical connection results in a 
sudden increment in both, BER and PRx, of the previously 
established connection. In the case of the new connection, 
high pre-FEC BER and within limits PRx values can be 
measured just after its set-up. As for tight filtering (Fig. 3b), 
similarly as for newly established connection in the previous 
case, high pre-FEC BER and PRx values within limits can be  
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a) Signal overlap b) Tight Filtering

c) Gradual drift d) Cyclic drift

 
Fig. 1. Four failures affecting the signal of an optical connection. 
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Fig. 2. Causes of tight filtering. 

measured in the receptor. In the case of gradual drift (Fig. 3c), 
pre-FEC BER shows a gradual deterioration with time, while 
measured PRx reduction is almost imperceptible. Finally, in the 
case of cyclic drift (Fig. 3d), high pre-FEC BER and slight PRx 
reduction periods when part of the signal is out filters’ 
bandwidth are followed by normal values when the signal is 
inside them. Note that any combination of the previous 
failures might happen, e.g., a gradual cyclic drift would 
produce increasingly higher pre-FEC BER periods. These 
cyclic failures are especially difficult to identify due to its 
periodic nature. 

It is hard to discern the real cause of the above failures since 
transmitter laser degradation, and filters misconfiguration 
could lead to similar evidence. In this paper, we concentrate in 
the prompt detection of pre-FEC BER degradation and in the 
identification of the failure pattern as presented in Fig. 3. 

For the BER degradation detection, we propose the 
BANDO algorithm that can be placed inside network nodes, 
closer to the monitoring points, to reduce the amount of 
monitoring data to be conveyed to the control/management 
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Fig. 3. Example of pre-FEC BER and PRx monitoring time series for 

the considered BER degradation failures. 

plane [24]. BANDO detects changes in the monitored BER 
measured in the receptor of an optical connection. 

As for the failure identification, we propose an algorithm 
named as LUCIDA that analyses monitoring time series and, 
based on the expected patterns of the considered failure causes 
obtained in our experiments, identifies the most probable 
cause of failure affecting a given set of optical connections. 
Because of its target, LUCIDA needs to be placed on the 
network manager, where monitoring data from different nodes, 
as well as operational data regarding the optical connections 
are available. 

Fig. 4 presents the suggested architecture and placement to 
run the proposed algorithms. The BANDO algorithm runs 
inside the optical nodes and has access and fine-granular 
monitoring data to accelerate BER degradation detection. 
Once BER variation is detected, a notification is sent towards 
the network controller for further analysis, which triggers 
LUCIDA for failure identification. Main features of the 
proposed algorithms are also summarized in Fig. 4. Depending 
on the particular case, different reconfiguration algorithms can 
be triggered after the failure has been identified. 

III. ALGORITHMS FOR BER DEGRADATION DETECTION AND 
FAILURE IDENTIFICATION 

In this section, we define BANDO and LUCIDA 
algorithms. 

A. BER Anomaly Detection (BANDO) Algorithm 

We assume that metered pre-FEC BER and PRx data for 
every connection is received at a given rate (e.g., every 
minute) and stored in a vector M of fixed capacity n in the 
node. BANDO algorithm analyzes pre- FEC BER data to 
detect gradual changes with time that might derive into BER 
degradation and intolerable BER values, as well as sudden 
anomalous BER values. 

Fig. 5 illustrates three cases of BER evolution with time, 
where the dark continuous line represents monitored BER. 
Besides, two different limits are presented: i) BER max is the 
maximum pre-FEC BER that equipment can correct; and ii) a 
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variations on individual optical 
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Fig. 4. Proposed architecture and algorithm features 
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Fig. 5. BER and boundaries evolution with time 

BER threshold for the current connection computed as a 
function of the estimated BER (e.g., 5*estimated BER) and 
represents the maximum tolerable BER for such connection. 

To follow BER evolution with time, an outer boundary is 
used to anticipate BER threshold violation and to detect 
sudden BER variations. In addition, two inner boundaries, 
named as a lower boundary (lBound) and upper boundary 
(uBound), are used to trigger boundary re-estimation when 
measured BER reaches, exceeds or falls below one of them. 
Inner and outer boundaries are estimated as bound = μ(M.ber) 
+/- k∙σ(M.ber), where μ(M.ber) and σ(M.ber) are the mean and 
the standard deviation computed on the last n BER measures 
and k is a multiplicative factor different per each boundary. 
Every time an event occurs, a notification is sent to the 
controller and analyzed by LUCIDA; defined events include: 
i) the boundary is re-estimated (bCh), ii) the boundary is 
exceeded (bExc), iii) BER exceeds the threshold (thExc) and 
iv) BER falls below the threshold (thDec). 

Fig. 5a presents an example of monitored BER evolution 
with time causing boundary changes. As soon as monitored 
BER crosses one of the inner bounds, a boundary re-
estimation is triggered, and a notification is sent toward the 
controller. Note that such boundary changes do not necessarily 
entail excessive BER, so the notification has an INFO severity 
level. Fig. 5b) and Fig. 5c) present two examples of sudden 
BER variation where the bound and the BER threshold is 
exceeded, respectively. In such cases, boundaries are reset, 
and notifications are sent to the controller with WARNING 
and MAJOR severity levels, respectively. Note that, in case 
pre-FEC BER exceeds maximum BER, a notification will be 
sent with a CRITICAL severity level. 
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Fig. 6. BANDO finite state machine 

The BANDO algorithm has been designed as an fsm with 
three main states and 11 transient states (Fig. 6); main states 
are used to store whether BER status is normal or has 
exceeded either the boundary or the threshold, whereas 
transient states are used to produce notifications and actions 
(i.e., boundaries re-estimation or reset). Every time a sample 
arrives, two fsm transitions are performed, one to obtain the 
output and action, and another to move to the new main state. 

State E1 (normal BER) is reached when the last BER value 
falls below the boundary and the threshold. Transitions to 
transient state T1 follow BER within boundaries, while 
transitions from transient states T2 and T3 re-estimate the 
boundaries (as in Fig. 5a). State E2 (boundary exceeded) is 
reached when the last BER value has exceeded the boundary, 
but it is still below the threshold (as in Fig. 5b). Transitions 
from transient states T4 and T5 reset boundaries, so n-1 new 
samples are needed to arrive to re-compute new boundaries. 
Finally, state E3 (threshold exceeded) is reached when the last 
monitored BER is above the threshold (as in Fig. 5c). 
Transitions from transient states T7 and T8 reset boundaries, 
whereas from transient states T9 and T11 re-estimate them. 

B. Failure Identification (LUCIDA) Algorithm 

Regarding failure identification, we propose LUCIDA as a 
probabilistic algorithm that returns the most likely failure 
among a set Q of failure classes. Firstly, LUCIDA computes 
the probability of a set of relevant features H that can be 
observed on collected monitoring time series. In view of the 
failures described in Section II, three relevant features that can 
be identified and quantified in time series are: 1) PRx above the 
reference level (PRXhigh); 2) BER positive trend (BERTrend); 
and 3) BER periodicity (BERPeriod). Secondly, LUCIDA 
maps feature probabilities to failure probabilities by means of 
predefined combination functions. 

Upon the reception of a BANDO notification with a 
relevant BER change, i.e., either bExc or thExc, the algorithm 
in Table I is triggered. After retrieving useful data from the 
received notification, it is stored in a notification database 
(DB) for further analysis (lines 1-4 in Table I). Then, the ratio 
between the last monitored BER value and the connection 
BER threshold is computed and compared to parameter δ. 
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TABLE I LUCIDA ALGORITHM 

INPUT: notif, α, β, δ 
OUTPUT: <class, prob, timeToMaxBER> 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 

connId ← notif.conn_id 
lastBer ← notif.getLast().ber 
threshold ← notif.threshold 
storeNotif(connId, notif) 
if (lastBer / threshold) < δ then return <’no’,-,-> 
M.D={<t,ber,PRx>} ← getData(connId) 
M.N={<t,type,data>} ← getNotif(connId) 
PH ← computeFeatureProbs(M, α) (Table II) 
PQ ← computeFailureProbs(PH, β) 
failureClass ← arg max(q ∈ Q)(PQ) 
tmax ← - 
if PH(BERTrend) > 0 then 

tmax ← computeTMax (M) 
return <failureClass, PQ(failureClass), tmax> 

 

In case the ratio does not exceed δ, we assume that no failure 
is evinced (line 5); otherwise, failure detection is positive, and 
the identification procedure is started (lines 6-14). 

Failure identification is based on processing historical BER 
and PRx time series obtained from a monitoring DB, as well as 
historical notifications stored in the notification DB. The first 
step consists in retrieving PRx and notification time series that 
are stored in the local structure M and computing feature 
probabilities from data (lines 6-8). Once all feature 
probabilities have been computed, failure probabilities are 
evaluated (line 9). For each of the failures q, a score is 
computed by means of the product of feature probabilities (eq. 
(1)), where βqh coefficients are defined in the interval [0,1]. 

( ) ( ) ( ) ( )( )[ ]∏
∈

−⋅−+⋅=
Hh

HqhHqh hPhPqS 11 ββ  
(1) 

For example, if βqh=1 the partial score of feature h equals 
PH(h); if PH(h)=0, the partial score will be 0, thus discarding 
the evidence of failure q. Finally, to obtain a failure 
probability in the range [0,1], the score of every failure is 
normalized (eq. (2)).  

( ) ( ) ( )∑
∈

=
Qq

Q qSqSqP  (2) 

The failure class with the maximum probability is retrieved 
(line 10). Additionally, if the probability of feature BERTrend 
is non-zero, the time when maximum BER would be reached 
is estimated by means of linear extrapolation computed from 
monitoring data (lines 11-13). 

Table II details the algorithm to compute feature 
probabilities. Input time series are firstly split into two 
segments: i) the stationary segment (DS) containing the oldest 
samples which average and standard deviation remain near to 
a constant value, and ii) the non-stationary segment (DNS) that 
contains the most recent samples where meaningful changes 
of mean and/or standard deviation with respect to the 
stationary segment are observed (line 1 in Table II). The 
rationale behind this division is based on the assumption that 
monitored signals behave stationary in time under normal 
conditions and that stationary behavior is severely altered in 
the event of a failure. 

TABLE II COMPUTEFEATUREPROBS ALGORITHM 

INPUT: M, α 
OUTPUT: PH 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

<Ds, Dns> ← splitSegments(M.D) 
F ← 𝒩𝒩(μ(Ds.PRx), σ(Ds.PRx)) 
x ← M.N.PRx.getLast() 
PH[PRXhigh] = p(x) ← computeTruncatedProb(F, x, α) 
PH[BERTrend]←0; PH[BERPeriod] ← 0 
Dnotif ← extractDataSeries(M.N) 
for D in {Dns.BER, Dnotif.BER} do 

max_model ← linearRegression(D,’max’) 
x ← max_model.slope.mean 
F ← 𝒩𝒩(0, max_model.slope.std) 
p(x) ← computeTruncatedProb(F,x,α) 
PH[BERTrend] ← max(PH[BERTrend], p(x)) 
min_model ← linearRegression(D,’min’) 
D’ ← normalize(D, min_model, max_model) 
SP={<period, density>} ← spectrogram(D’) 
SPhigh← {sp∈SP | sp.density≥ mean(SP.density)} 
x ← 1-(|SPhigh|/|SP|)/0.5 
F ← 𝒩𝒩(0, (|SPhigh|)-1/2) 
p(x) ← computeTruncatedProb(F,x,α) 
PH[BERPeriod] ← max(PH[BERPeriod], p(x)) 

return PH 
 

To compute feature probabilities, we obtain the probability 
distribution function F that returns high probabilities when the 
evidence of the desired feature is significant. To give 
emphasis to significantly high feature values (x), we use the 
truncated probability distribution defined in eq. (3), where 
F(x) is the cumulated probability when the feature takes the 
value x, α∊[0,1) is the minimum allowed probability in F, and 
F-1(α) is the inverse of the distribution function and returns the 
value with a cumulative probability equal to α. 

( )
( )

( ) ( )





≥
−

−
<

= −

−

α
α

α
α

1

1

,
1

,0

FxxF
Fx

xp  (3) 

The probability of feature PRXhigh is computed by 
characterizing the probability distribution of PRx in the 
stationary segment, i.e., the PRx reference level (lines 2-4). 
Without loss of generality, we assume a Gaussian distribution 
function defined by the mean and standard deviation of the 
samples in that stationary segment (𝒩𝒩(μ,σ)). 

In the case of features related to BER, the non-stationary 
time series segment Dns is used. Since Dns time series could be 
noisy, we consider another time series Dnotif, created from the 
notifications M.N time series that could reflect more clearly 
the desired features of trend and periodicity; Dnotif data is 
completed with intermediate data points computed by linear 
interpolation (line 6). In the algorithm, we compute BER-
related feature probabilities in both time series and return the 
highest probability for each feature (lines 7-21). 

For the BERTrend feature, the linear model that represents 
the evolution of the maximum BER with time is found; time 
series are split into several chunks, and the model is obtained 
by applying linear regression to the pairs <time, maximum 
value>. Note that this model collects trend independently of 
whether the time series has a meaningful period or not (line 8). 
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The mean and the standard deviation of the slope of the model 
allow evaluating whether that mean slope is significantly 
higher than 0 (lines 9-10). Finally, the feature probability is 
computed eq. (3) and PH is updated (lines 11-12). 

As for the BERPeriod feature, we compute a linear model 
for the evolution of the minimum BER that it is used, together 
with that for the maximum, to normalize the selected time 
series D as specified in eq. (4) (lines 13-14). 

 
el(t)t)-min_modmax_model(

odel(t)D(t)-min_mD'(t) =  (4) 

Next, the spectrogram of D’ is computed to obtain the 
density value for every possible period interval (line 15) [25]. 
To detect periodicity, we look for periods with densities 
clearly higher than the majority of the densities; hence, we 
find the set of periods with a density over the mean and its 
proportion over the total of periods is compared to the 
expected proportion in case of no periodicity, i.e., 0.5 (lines 
16-17). Since x tends to be 0 when no meaningful period is 
observed, we use a Gaussian distribution centered in 0 and 
with a standard deviation inversely proportional to the number 
of periods over the mean (line 18). Feature probability is 
eventually computed and PH updated (lines 19-20). 

As a final remark, it is worth noting that the accuracy to 
detect and identify failures is subject to various factors, 
including the configuration of BANDO and LUCIDA 
parameters. The next section presents illustrative results to 
find the best configuration leading to fast and accurate 
detection and identification of failures. 

IV. RESULTS 
In this section, we first present the experimental setup 

needed to evaluate the performance of the proposed 
algorithms for early pre-FEC BER degradation detection and 
failure identification and then, illustrative simulation results 
are presented. 

A. Experimental Measurements for BER and PRX.  

In this subsection, we experimentally reproduce the BER 
degradation failures presented in Section II aiming at 
retrieving data that will be used to generate synthetic data for 
the simulations in the next subsection. A comprehensive set of 
measurements is carried out in a network testbed employing 
two types of 100Gb/s transmission systems and different 
configurations of traversed filters, channels spacing, and 
optical spans. 

Fig. 7 presents the first experimental setup used for the 
measurements. In this setup, the considered 100Gb/s 
transmission system is based on Nyquist wavelength division 
multiplexing (NWDM) technology, derived from the lab 
implementation utilized in [10]. A digital-to-analog converter 
(DAC) is used to periodically output pulse-shaped electrical 
signals which drove the Mach-Zehnder based IQ-modulators. 
A root raised cosine (RRC) with a roll-off of 0.2, and a 
bandwidth of 15 GHz is used to confine signal bandwidth. 
 

 
Fig. 7 Data plane experimental testbed (first setup) 

a) Normal Signal c) Signal Overlapb) Drift

Constellations after equalization

YX YX YX

 
Fig. 8. Experimental results for the normal conditions and considered failures 

 
Fig. 9. Data plane experimental testbed (second setup) 

Two single polarization IQ-modulators are used to modulate 
two external cavity lasers (ECL) and generate two quadrature 
phase-shift keying (QPSK) at a gross baud rate of 30 Gbaud 
(i.e., 60 Gb/s gross bit rate). Next, the bit rate is doubled by a 
polarization multiplex emulation stage thus, obtaining two 120 
Gb/s polarization multiplexed (PM)-QPSK signals. The two 
modulated lasers are then multiplexed by means of a 
bandwidth variable wavelength selective switch (BV-WSS) 
configured to reserve a 37.5 GHz frequency slot for each 
channel. Measurements are reported for signal 1. 

In a first experiment, drift effects are applied by inducing 
frequency drift to signal 1. In a second experiment, signal 
overlap is introduced by applying laser drift to signal 2. In this 
second case, the channel spacing among the signals decreases, 
inducing an increase of interference. The spectrum related to 
signal 1 is reported in Fig. 8 for both experiments. Fig. 8a 
shows signal 1 spectrum under normal conditions. Fig. 8b 
reports on the first experiment, showing the slight shift in 
frequency due to the laser drift. Fig. 8c reports on the second 
experiment, showing that part of signal 2 falls within the 
bandwidth of signal 1. 

Additional experiments have been performed on a second 
setup (Fig. 9) exploiting, as signal 1, a commercial 100Gb/s 
transmission system based on polarization multiplexing 
quadrature phase shift keying (PM-QPSK) and coherent 
detection. In this second setup, four 80km-spans are also 
introduced to assess the system performance under different 
conditions of OSNR. 



0733-8724 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2017.2747223, Journal of
Lightwave Technology

 7 

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

Pr
e-

Fe
c

B
ER

Filter Detuning (GHz)Filter Bandwidth (GHz)Overlap (GHz)

-4.0

-3.0

-2.0

-1.0

0.0

0 5 10 15 20 253035404550
-4.0

-3.0

-2.0

-1.0

0.0

0 5 10 15

R
ec

ei
ve

d 
Po

w
er

 ( d
B

m
)

Pr
e-

Fe
c

B
ER

R
ec

ei
ve

d 
Po

w
er

 (d
B

m
)

a) Signal overlap b) Tight Filtering c) Drift

Back-to-back

4 spans4 spans 4 spans

10 32

38

10

Reference Reference Reference

 
Fig. 10. Experimental BER and PRx 

Fig. 10 reports pre-FEC BER and PRx provided by the 
commercial 100Gb/s system. It is worth noting the differences 
between these plots and those in Fig. 3, where historical time 
series are plotted. Plots in Fig. 10a show the measured values 
in the case of signal overlap. In particular, the 100Gb/s signal 
used in the first setup is now utilized to induce overlap the 
commercial 100Gb/s signal (x-axis in Fig. 10a reports such 
overlap). Results show that the pre-FEC BER starts to increase 
when channel overlapping goes above 10GHz, while received 
power starts increasing for small channel overlapping values 
since part of signal 2 enters in signal 1 bandwidth. 

In the case of tight filtering (Fig. 10b) x-axis reports the 
actual bandwidth configured on the traversed BV-WSS. The 
central frequency of the signal has been aligned with the 
center of the filter, i.e., both sides of the signal are equally 
affected when tight filtering is applied. For comparison, Fig. 
10b also reports the measurements for the first experimental 
setup (back-to-back configuration). Results show that up to 
32GHz can be configured without significant penalties, whilst 
further reduction of the actual frequency slot drives signal 
degradations. Note that post-FEC performance is error free in 
all the reported plots. The minimum supported filter 
configuration is 26GHz (lower values would tear down the 
connection since post-FEC error free condition can be no 
longer guaranteed). Regarding received power, results show a 
clear deviation from the reference value, starting from a 
frequency slot of 38GHz. 

A similar behavior was observed in the case of drift (Fig. 
10c), where x-axis reports filter detuning. Pre-FEC BER 
increases when filtering effects become more relevant because 
of filter detuning. Results show that the pre-FEC BER starts to 
increase when filter detuning goes above 10GHz. Obviously, 
received power decreases when part of the power is cut by the 
filter; a clear deviation from the reference value is shown for 
the received power when filter detuning goes above 10GHz. 

Another case of drift is that of the laser. 48-hours monitoring 
was performed with the bandwidth set to 30GHz and, because 
laser drift of the commercial card, pre-FEC BER was observed 
as if the bandwidth was 28GHz. 

As a conclusion, although the behavior of the pre-FEC BER 
looks similar for all three failure cases, that of the received 
power is different. Indeed, the proposed LUCIDA algorithm is 
based on the identification of such different behaviors to 
discern between failures. 

B. Degradation Detection and Failure Identification 

According to the experimental measurements in the 
previous section, we generated synthetic monitoring time 
series at a rate of one sample per minute by means of a 
generator implemented in R v3.2.5. Each monitoring sample 
includes a synthetic measure of pre-FEC BER and PRx. The 
generator allows reproducing realistic monitoring activity of a 
set of optical connections with different characteristics, such 
as route, spectrum allocation, and slot width. Based on such 
characteristics and those of the underlying optical network 
topology, signal behavior in the absence of failures is 
generated. Besides, a per-connection BER threshold is 
computed based on an estimated BER value computed as a 
function of the links’ OSNR in its route [16]. 

The generator allows reproducing any of the failures 
described in Section II. According to the selected failure, one 
or more connections become affected at a given time, when 
some of their relevant physical properties are altered, e.g., 
filter bandwidth is narrowed; in the case of gradual changes, 
the magnitude of the alteration increases linearly with time 
following a predefined rate. Varying optical connection 
properties, failure class, failure magnitude, and gradual 
variation rate, we generated more than 100 distinct 
configurations. For each configuration, five 60-day instances 
(each generating 86,400 monitoring samples per optical  
 



0733-8724 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2017.2747223, Journal of
Lightwave Technology

 8 

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0 1 2 3 4

No
Failures

k (inner boundaries)

bC
h

no
tif

ic
at

io
ns

a)

0.0

0.2

0.4

0.6

0.8

1.0

3.5 4 4.5 5 5.5 6 6.5 7

bE
x

no
tif

ic
at

io
ns

b)

k (outer boundary)

Normal

 

0%

20%

40%

60%

80%

100%

Fa
ilu

re
 d

et
ec

tio
n 

er
ro

r 

False positive
region
δ<0.3

False negative
region
δ>0.8

No failure 
detection error

0.3≤δ≤ 0.8

δ  
Fig. 11. Tuning of BANDO parameters. Fig. 12. Failure detection errors 

connection) were randomly generated. Some of these 
configurations produced instances where BER never exceeded 
connection’s BER threshold (we call this as the lowBER set), 
whereas the rest contain at least one monitoring sample 
exceeding the connection’s BER threshold (we call this as the 
highBER set).  

Both BANDO and LUCIDA algorithms were implemented 
in R and integrated into a simulator following the architecture 
presented in Fig. 4. Aiming at finding the best configuration 
for BANDO parameters (to avoid an excessive number of 
notifications being sent to the controller while keeping it 
informed of meaningful BER changes), we set n=15 and 
perform several tests with a wide range of k values for inner 
and outer boundaries; results are reported in Fig. 11 were 
values are normalized to those for the minimum k. 

Starting with inner boundaries, Fig. 11a shows a number of 
bCh notifications for different values of k for connections 
affected by a failure and for those normal. Hence, configuring 
k equal to 3 allows keeping boundaries constant when normal 
BER behavior is monitored. In the event of connections with 
failure, less than 1% of all monitoring samples generate a bCh 
notification, which is enough to keep track of BER evolution 
with time as it will be shown in the following results. 

Regarding the outer boundary, Fig. 11b shows the amount 
of bExc notifications as a function of k. Fixing k equal to 6 
eliminates those notifications caused by atypical BER 
measures that do not entail failures, as well as keeps more than 
90% of those notifications raised in the event of a failure. It is 
worth noting that bExc notifications are much less frequent 
than bCh ones and consequently, its impact on total 
notification overhead is negligible. 

Once BANDO has been properly configured, simulations 
including failure detection and identification were run. We 
configured LUCIDA parameters α=0.7 and βqh = 1 if failure q 
must present evidence of feature h (βqh = 0, otherwise). 

In the simulations, LUCIDA was triggered in two distinct 
modes: only upon the reception of a thExc notification (Major 
mode) and upon the reception of any notification (Info mode). 
It is worth noting that only the Info mode allows detecting 
failures in the lowBER set, which confirms the need of 
BANDO and LUCIDA collaboration. 

For the lowBER instance set and the Info triggering mode, 
Fig. 12 analyses δ parameter tuning, where the percentage of 
decision errors is plot as a function of its value. Since BER 
threshold is set as 5 * estimated BER, we assume δ=0.2 as 
starting point. When δ<0.3, some normal optical connections 
cross the failure detection condition and are classified as one 
of the failure classes thus, producing a false positive detection. 
On the other end, δ>0.8 produces that some actual failures 
never reach the detection limit and hence, they are wrongly 
classified as normal (false negatives). In the middle, failure 
detection has no error and hence, we assume δ=0.5 for the 
ongoing results. 

Let us now focus on the identification of the detected 
failures. Table III details the identification error upon the 
reception of the first triggering notification. Note that no 
identification error is observed for signal overlap and tight 
filtering failures, which is a good result since these failures 
generate very few notifications and need to be identified as 
soon as they are detected. 

As anticipated above, the Info mode allows LUCIDA to 
detect all signal overlap and tight filtering failures, even when 
they do not produce BER samples over the threshold, which 
enables detecting soft failures hidden below a too high 
threshold. 

In the case of gradual and cyclic drift failures, the first 
identification is not correct in most of the cases since they are 
related to BER trend and periodicity features, and time is 
needed to ensure their presence or absence. However, both 
failures produce many and various notifications compared to 
signal overlap and tight filtering ones, and therefore, the 
opportunity of identifying the failure extends beyond time. 

In view of the above, we study the time needed for a right 
failure classification of gradual and cyclic drift failures. Plots 
in Fig. 13a for the Info mode and Fig. 13b for the Major mode 
represent the evolution of the computed failure probability of a 
cyclic drift failure as a function of the number of periods since 
the first bCh event. Note that markers represent only those 
notifications that actually triggered failure identification 
phase, that is when the ratio between the last monitored BER 
and the threshold exceeds δ. In both modes, the most probable 
failure identified when a triggering notification is received  
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TABLE III FAILURE IDENTIFICATION ERRORS (FIRST NOTIFICATION) 

Failure highBER lowBER 
Major Info Major Info 

Signal overlap 0% 0% - 0% 
Tight filtering 0% 0% - 0% 
Gradual drift  33% 37% - 30% 
Cyclic drift 70% 48% - 54% 
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before the first periodical peak is gradual drift since during the 
raising front LUCIDA detected a meaningful trend. In 
contrast, the probability of the cyclic drift failure class is 
negligible since no periodicity was found. However, when a 
complete period is observable, BER periodicity feature starts 
being significant and cyclic drift becomes the most probable 
failure class from that point on. The difference between both 
modes is the time for a right failure classification; because 
under the Info mode LUCIDA receives several notifications as 
a result of different events detected by BANDO, it allows a 
clearer identification of the non-stationary time series 
segment, and therefore, it is able to produce right 
classifications after one single period, i.e., less than half of 
time compared to the Major mode. Although illustrated in Fig. 
13 for just an instance, this gain keeps constant for all other 
cyclic drift instances. 

Finally, Fig. 14 illustrates the accuracy of the estimation for 
the time when max BER (1E-6) will be reached in case of a 
gradual drift failure. Prediction based on linear extrapolation is 
shown at three different time instants. Although the failure is 
perfectly identified as gradual drift upon the reception of a 
bExc at day 30 (Fig. 14a), due to the lack of evidence of the 
actual future BER trend evolution, no max BER violation in 
the following 30 days is predicted. Later, upon the reception 
of a thExc at day 36 (Fig. 14b), max BER violation is 
predicted to happen in the near future. It is not until day 42, 
i.e., five days before the connection is disrupted, that 
prediction becomes steady to a constant value, which happens 
in Fig. 14c; hence, this method provides enough anticipation 
for an optimal reaction against the failure. Comparable results 
were obtained for the rest of gradual drift instances. 

V. CONCLUDING REMARKS 
SLA violations entail money losses for the network 

operators and hence, minimizing such violations is of 
paramount importance to them. This paper focused on 
anticipating BER degradation detection at the optical layer, 
which typically supports many of the offered services. In 
addition to a prompt BER degradation detection, the paper 
targeted at failure identification to help to localize the cause of 
the failure. 

In this regard, two cooperating algorithms have been 
proposed: i) the BER Anomaly Detection (BANDO) algorithm 
which works inside the optical nodes to take advantage of a 
fine monitoring granularity, and ii) the Failure identification 
algorithm (LUCIDA) algorithm, working in the centralized 
network controller. BANDO detects changes in the BER of 
optical connections and sends notifications to LUCIDA.  

To evaluate the performance of the algorithms, different 
BER degradation failures were considered, including gradual 
and periodical degradation. Aiming at studying realistic 
scenarios, experimental measures were carried out on two 
different setups involving commercial equipment. The results 
of the experiments were used to generate synthetic data used 
to simulate the considered BER degradation failures. 

Simulation results show that maximum BER violation was 
anticipated several days before the connection was disrupted, 
which allows planning a network reconfiguration to be 
performed on low activity hours. Interestingly, the cooperation 
of BANDO and LUCIDA algorithms demonstrated its 
advantage for failure identification compared to a centralized 
algorithm receiving notifications only after BER threshold 
violations. 
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