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BER Performance of Free-Space Optical Transmission with
Spatial Diversity

S. Mohammad Navidpour, Member, IEEE, Murat Uysal, Member, IEEE, and Mohsen Kavehrad, Fellow, IEEE

Abstract— Free space optical (FSO) communications is a
cost-effective and high bandwidth access technique, which has
been receiving growing attention with recent commercialization
successes. A major impairment in FSO links is the turbulence-
induced fading which severely degrades the link performance. To
mitigate turbulence-induced fading and, therefore, to improve the
error rate performance, spatial diversity can be used over FSO
links which involves the deployment of multiple laser transmit-
ters/receivers. In this paper, we investigate the bit error rate
(BER) performance of FSO links with spatial diversity over log-
normal atmospheric turbulence fading channels, assuming both
independent and correlated channels among transmitter/receiver
apertures. Our analytical derivations build upon an approxima-
tion to the sum of correlated log-normal random variables. The
derived BER expressions quantify the effect of spatial diversity
and possible spatial correlations in a log-normal channel.

Index Terms— Atmospheric turbulence, bit error rate, error
rate performance analysis, free space optical communication, log-
normal channel, MIMO.

I. INTRODUCTION

F
REE-SPACE optical (FSO) communications is a cost-

effective, license-free, and high bandwidth access tech-

nique, which has attracted significant attention recently for a

variety of applications [1]-[4]. Despite the major advantages

of FSO communications, its widespread use is hampered

by several challenges in practical deployment. For example,

aerosol scattering caused by rain, snow, and fog results in

performance degradations, leaving the FSO link vulnerable to

adverse weather conditions [5]. Another possible impairment

over FSO links is building-sway as a result of wind loads,

thermal expansion, and weak earthquakes [6], [7]. A major

impairment is the effect of atmospheric turbulence [8], which

will be the focus of this paper. Atmospheric turbulence occurs

as a result of the variations in the refractive index due to

inhomogeneties in temperature and pressure changes. This

results in rapid fluctuations at the received signal, i.e., signal

fading, impairing the link performance severely. Although
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FSO links are built taking into account a certain dynamic

margin, the practical limitations on link budgets do not allow

very high margins leaving the link vulnerable to deep fades.

Powerful fading-mitigation techniques need to be deployed

for FSO links particularly with transmission range of 1 km or

longer. Error control coding in conjunction with interleaving

can be employed in FSO communications to combat fading

[9], [10]. However, optical links with their transmission rates

of order of gigabits exhibit high temporal correlation. For

most scenarios, this requires large-size interleavers to achieve

the promised coding gains. Based on the statistical properties

of turbulence-induced fading, maximum likelihood sequence

detection (MLSD) is proposed in [11] as another solution

for fading mitigation. However, MLSD requires complicated

multidimensional integrations and suffers from excessive com-

putational complexity. Some sub-optimal temporal-domain

fading mitigation techniques are further explored in [11], [12].

Spatial diversity techniques1 [13], i.e., the employment

of multiple transmit/receive apertures, provide an attractive

alternative approach for fading compensation with their inher-

ent redundancy. Besides its role as a fading-mitigation tool,

multiple-aperture designs significantly reduce the potential for

temporary blockage of the laser beam by obstructions (e.g.,

birds). Further justification for the employment of multiple

apertures comes from limitations in transmit power density

(expressed in terms of milliwatts per square centimeter). The

allowable safe laser power depends on the wavelength and ob-

viously a higher power at the receiver side allows the system to

support longer distances and through heavier attenuation while

achieving higher data rates. Information theoretic bounds for

MIMO FSO links have been first studied in [14], where

ergodic capacity and outage capacity are derived for intensity-

modulation/direct-detection (IM/DD) FSO links operating in

log-normal modeled atmospheric turbulence. Under the as-

sumption of shot-noise-limited regime with Poisson statistics,

it is demonstrated that ergodic capacity scales as the number

of transmit apertures times the number of receive apertures

for high signal-to-background noise ratio. Outage probability

for MIMO FSO links are derived in [15] assuming Gaussian

noise statistics that can be considered as a limiting case of

Poisson statistics. We should also note an earlier experimental

study in [16] where Kim et.al. measure the performance of

a MIMO FSO link and discuss practical design issues such

as transmitter spacing and spacing patterns, e.g., circular vs.

rectangular.

1This paper does not consider space-time coding or multiplexing tech-
niques. In the following, MIMO (multi-input multi-output) term is sometimes
used to refer to the deployment of multiple-transmit and multiple-receive
apertures.
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The standard performance metric adopted by most FSO

manufacturers is the bit error rate (BER) [1]. Analytical BER

performance for a single-receiver FSO link is derived in [17]

while simulated BER performance results are demonstrated

in [8] for a dual-receiver FSO link. Since the typical BER

target is set as 10−9 for most practical applications, this brings

a large computational time for Monte-Carlo type simulation

experiments. Therefore, development of analytical tools for

BER performance are helpful in providing extensive com-

parative analysis among different FSO configurations, which

will be the main focus of this paper. In this paper, we derive

BER expressions for FSO links with multiple transmit and/or

receive apertures with and without channel state information

(CSI) considering both spatially independent and correlated

channels. The derived expressions quantify the effect of spatial

diversity and spatial correlations in a log-normal channel.

The rest of the paper is organized as follows: In Sec-

tion II, we introduce the system model and describe log-

normal atmospheric turbulence channel under consideration.

In Section III, we present BER expressions for FSO links with

multiple transmitter and/or receiver apertures. In Section IV,

we provide extensive numerical examples to confirm the accu-

racy of the derived expressions for various FSO configurations

and discuss the effect of spatial diversity on the FSO link

performance. Finally, conclusions are presented in Section V.

II. SYSTEM MODEL

We consider a FSO link with M transmit and N receive

apertures. We assume high signal-to-noise ratio (SNR) regime

where we can use Gaussian noise model 2 [8]. Assuming

on-off keying (OOK), the received signal at the nth receive

aperture is then given as

rn = sη
M
∑

m=1

Imn + vn, n = 1, ..., N (1)

where s ∈ {0, 1} is the transmitted information bit, η
is the optical-to-electrical conversion coefficient, and νn is

additive white Gaussian noise with zero mean and variance

of σ2
v = N0/2. The fading channel coefficient which models

the channel from the mth transmit aperture to the nth receive

aperture is given by

Imn = I0 exp (2Xmn) (2)

where I0 is the signal light intensity without turbulence and

Xmn are identically (not necessarily independent) distributed

normal random variables with mean µx and variance σ2
x.

Therefore, Imn follows a lognormal distribution

f (Imn) =
1

2Imn

1
√

2πσ2
x

exp

(

− (ln (Imn/I0) − 2µx)
2

8σ2
x

)

(3)

To ensure that the fading does not attenuate or amplify the

average power, we normalize the fading coefficients such that

2Precise characterization of practical photo-detectors requires a complex
(and analytically intractable) statistical model including bandwidth limitations
and mixtures of noise processes. However, considering the first and second
moments of photo-detector outputs and employing central limit theorem, the
filtered Poisson process at the detector output can be approximated as a
Gaussian process with high accuracy.

E[|Imn/I0|] = 1. Doing so requires the choice of µx = −σ2
x

[18]. Assuming weak turbulence conditions, the variances of

log-amplitude fluctuation of plane and spherical waves are

respectively given by [19]

σ2
x

∣

∣

plane
= 0.307

(

2π

λ

)7/6

L11/6C2
n (4a)

σ2
x

∣

∣

spherical
= 0.124

(

2π

λ

)7/6

L11/6C2
n (4b)

where λ is the wavelength and L is the link distance in meters.

C2
n stands for the refractive index structure coefficient and is

altitude-dependent. Several C2
n profile models are available in

the literature, but the most commonly used is the Hufnagle-

Valley model described by [2]

C2
n (h) = 0.00594 (v/27)

2 (
10−5h

)10
exp (h/1000)+

2.7 × 10−6 exp (−h/1500) + A exp (−h/1000)
(5)

where h is the altitude in meters (m), ν is the rms wind speed

in meters per second (m/sec), and A is a nominal value of

C2
n(0) at the ground in m−2/3. For FSO links near the ground,

C2
n can be taken approximately 1.7 × 10−14m−2/3 during

daytime and 8.4×10−15m−2/3 at night. In general, C2
n varies

from 10−13m−2/3 for strong turbulence to 10−17m−2/3 for

weak turbulence with 10−15m−2/3 often defined as a typical

average value [20].

In this paper, we denote the correlation length and correla-

tion time of intensity fluctuations as d0 and τ0, respectively.

Assuming l0 <
√

λL < L0, where l0 and L0 are inner

and outer scales, d0 can be approximated by d0 ≈
√

λL
[8]. When the aperture size D0 is much larger than the

correlation length d0, i.e., D0 >> d0, the detrimental effect

of turbulence-induced fading is reduced due to the aperture

averaging [2]. However, it is not always possible to make

the aperture large enough, which justifies the deployment of

multiple photodetectors at the receiver side for scenarios with

D0 < d0. The spatial correlation matrix R to model the

correlations among receive apertures is given as

R =

⎡

⎢

⎢

⎣

1 b (d12) ... b (d1N )
b (d21) 1 ... b (d2N )

. . ... .
b (dN1) b (dN2) .... 1

⎤

⎥

⎥

⎦

N×N

(6)

where dij is the separation between the ith and jth receive

apertures. In (6), b(d) represents the normalized log-amplitude

covariance function between two points in a receiving plane

perpendicular to the direction of propagation and is defined

by

b (dP1,P2
) =

E[X(P1)X(P2)] − E[X(P1)]E[X(P2)]

σ2
x

(7)

where dP1,P2
is the distance between P1 and P2. Then the

spatial covariance matrix Γ is given by Γ = σ2
xR. Similarly,

a correlation matrix of size M × M in the form of (6) and

corresponding covariance matrix can be defined for modeling

the spatial correlation at the transmitter side.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17, 2009 at 20:53 from IEEE Xplore.  Restrictions apply.
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III. DERIVATION OF BER EXPRESSIONS

In this section, we present BER expressions for FSO links

with spatial diversity. First, we study the BER performance

of a SISO (single-input single-output) FSO link that will

be used as a benchmark for spatial diversity systems under

consideration.

A. SISO FSO Link

Assuming OOK modulation and perfect CSI available at the

receiver side, the bit error rate is calculated as

Pe = p(off)p(e|off) + p(on)p(e|on) (8)

where p(on) and p(off) are the probabilities of transmitting

"on" and "off" bits, respectively. p(e|off) and p(e|on) denote

the conditional bit error probabilities when the transmitted bit

is "off" or "on". Conditioned on the fading coefficient I3, we

have

p(e|off, I) = p(e|on, I) =

p
(

v > ηI
2

)

= p
(

v < − ηI
2

)

= Q
(

ηI√
2N0

)

(9)

Averaging over the fading coefficient, we obtain

p(e|off) = p(e|on) =

∞
∫

0

fI(I)Q

(

ηI√
2N0

)

dI (10)

where Q (.) is the Gaussian-Q function defined as Q (y) =
(

1
/√

2π
) ∫∞

y
exp
(

−t2
/

2
)

dt. Considering the symmetry of

the problem, i.e., p(on) = p(off) = 1/2 and p(e|on) =
p(e|off) and replacing I in terms of x, Pe can be obtained

as

Pe =
∞
∫

0

fI(I)Q
(

ηI√
2N0

)

dI

=
∞
∫

−∞
Ω(x,−σ2

x, σ2
x)Q

(

ηI0e2x

√
2N0

)

dx
(11)

where Ω(u, υ, w) is defined by Ω(u, υ, w) =
(

1
/√

2πw
)

exp
(

−(u − υ)
2
/

2w
)

. The integration in (11)

can be efficiently computed by Gauss-Hermite quadrature

formula [21]

Pe ≈ 1√
π

k
∑

i=1

wiQ

(

ηI0e
−2σ2

x
+zi

√
8σ2

x

√
2N0

)

(12)

where k is the order of approximation, zi, i = 1, ..., k are

the zeros of the kth-order Hermite polynomial, and wi, i =
1, ..., k are weight factors for the kth-order approximation.

So far, we have assumed the availability of perfect CSI.

Now, we assume that the receiving part has knowledge of

the distribution of the channel fades, but has no knowledge

of the instantaneous fading state. In this case, the maximum

likelihood (ML) detection is implemented by thresholding

the received signal based on the likelihood function. The

conditional bit error probabilities are given by

p(e|on) =

∫

Λ(r)<1

Pr(r|on)dr (13)

3Since SISO link is considered, indexes m and n in (1) are dropped.

p(e|off) =

∫

Λ(r)>1

Pr(r|off)dr (14)

where the decision regions are determined based on the

likelihood function defined as [8]

Λ (r) = p(r|on)
p(r|off)

=
∞
∫

−∞
Ω(x,−σ2

x, σ2
x) exp

(

− (r−ηI0e2x)
2−r2

N0

)

dx

(15)

B. FSO Link With Spatial Diversity

Now, we focus our attention on FSO links with spatial

diversity. Assuming both transmit and receive diversity are

employed, the optimum decision metric for on-off keying is

given by

p(r|on, Imn)
on

≷
off

p(r|off, Imn) (16)

where r = (r1, r2, ..., rN ) is the received signal vector and

the conditional probabilities are

p(r|on, Imn) =

exp

(

− 1
2σ2

v

N
∑

n=1

r2
n

)

(2πσ2
v)

N

2

(17)

p(r|off, Imn) =

exp

(

− 1
2σ2

v

N
∑

n=1

(

rn − η
M
∑

m=1
Imn

)2
)

(2πσ2
v)

N

2

(18)

for "on" and "off" states, respectively. Replacing (17), (18) in

(16) and dropping out common terms which do not affect the

decision process, we have

−
N
∑

n=1

(

rn − η

M
∑

m=1

Imn

)2
on

≷
off

−
N
∑

n=1

r2
n (19)

which can be further simplified as

N
∑

n=1

M
∑

m=1

ηImnrn

on

≷
off

1

2

N
∑

n=1

(

η

M
∑

m=1

Imn

)2

. (20)

The conditional bit error probabilities are given as in (21)

and (22) at the top of the next page. Noting pe(off| Imn) =
pe(on| Imn) and averaging over the fading coefficients, we

obtain Pe as

Pe =

∫

x

fx (x)Q

⎛

⎜

⎝

ηI0

2MNσv

√

√

√

√

N
∑

n=1

(

M
∑

m=1

e2xmn

)2
⎞

⎟

⎠
dx

(23)

where fx (x) is the joint probability density function (pdf)

of Gaussian vector x = (x11, x12..., xNM ) of length MN .

One should note that the scaling factor MN appears in the

argument of Q(.) function in (23). The factor M is included

to ensure that the total power of diversity system is the same

as the power of the benchmark SISO link, i.e., no diversity

system, for the sake of fair comparison. The factor N , on

the other hand, ensures that the sum of the N receive aperture

areas is the same as the area of the receive aperture of the SISO

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17, 2009 at 20:53 from IEEE Xplore.  Restrictions apply.
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pe(off| Imn) = p

(

N
∑

n=1

M
∑

m=1
ηImnrn > 1

2

N
∑

n=1

(

η
M
∑

m=1
Imn

)2

|rn = vn

)

= p

(

N
∑

n=1

M
∑

m=1
ηImnvn > 1

2

N
∑

n=1

(

η
M
∑

m=1
Imn

)2
)

= Q

⎛

⎝

1
2σ

v

√

N
∑

n=1

(

η
M
∑

m=1
Imn

)2
⎞

⎠

(21)

pe(on| Imn) = p

(

2
N
∑

n=1

M
∑

m=1

ηImnrn <
N
∑

n=1

(

η
M
∑

m=1

Imn

)2

|rn = η
M
∑

m=1

Imn + vn

)

= p

(

2
N
∑

n=1

M
∑

m=1
ηImn

(

η
M
∑

m=1
Imn + vn

)

<
N
∑

n=1

(

η
M
∑

m=1
Imn

)2
)

= Q

⎛

⎝

1
2σ

v

√

N
∑

n=1

(

η
M
∑

m=1
Imn

)2
⎞

⎠

(22)

link4 [15]. Although (23) can be calculated through numerical

multi-dimensional integration, it does not yield a closed-form

solution. To have further insight into the performance, we

consider transmit diversity and receive diversity separately in

the following.
1) Transmit Diversity: Replacing N = 1 in (23), we have

Pe =

∫

x

fx (x) Q

(

ηI0

2Mσv

M
∑

m=1

e2xm

)

dx (24)

which requires the solution of an M -dimensional integration.

Approximating the sum of log-normal random variables as

log-normal, i.e., e2x ≈ ∑M
m=1 e2xm (See Appendix), (24)

reduces to a one-dimensional integration given by

Pe ≈
∞
∫

−∞

Ω
(

x,−σ̂2
x, σ̂2

x

)

Q

(

ηI0e
2x

√
2N0

)

dx (25)

where we define the effective variance σ̂2
x = σ2

x/M . It is

interesting to note that this expression has the same form as

(11) which has been obtained for the SISO link with a scaled

variance. In other words, the underlying multi-input single-

output (MISO) channel can be represented by an equivalent

SISO channel with appropriate scaling in the channel variance.

It should be further emphasized that our result confirms the

earlier observations reported in [16] obtained through an

experimental study. It is argued in [16] that linear scaling

does not hold anymore for larger link distances and intuitively

discussed that correlation among transmitting paths reduces

the achievable maximum diversity order. This effect can be

readily observed from our expressions in a precise manner.

Specifically, we observe from the appendix that correlation

manifests itself in the form of an increase in the effective log-

normal variance σ̂2
x, i.e.,

σ̂2
x =

σ2
x

M
+

1

M2

M
∑

k=1
k �=l

Γkl (26)

4In radio frequency (RF) wireless communication links with omni-
directional antenna characteristics, deployment of multiple receive antennas
increases the overall average signal-to-noise ratio at the receiver side resulting
in so-called "array gain". However, in FSO communication, deployment of
multiple receive apertures does not necessarily guarantee increase in the
received power. Since FSO relies line-of-sight propagation, the transmitter
beam needs to be chosen more divergent to reach to the multiple receive
apertures. However, beam divergence effectively reduces the received power
over a fixed receive aperture area.

where Γkl, l �= k, l, k = 1, ..., M are the correlation coeffi-

cients.

Under the assumption that instantaneous CSI is not available

at the receiver side, the likelihood function is given by

Λ (r) =

∫

x

fx(x) exp

⎡

⎢

⎢

⎢

⎣

−

(

r − ηI0
M

M
∑

m=1
e2xm

)2

− r2

N0

⎤

⎥

⎥

⎥

⎦

dx

(27)

Since the computation of (27) is required to determine the

optimal decision regions for this case, the complexity of de-

tection process is higher due to the involved multidimensional

integrations. However, it is possible to simplify (27) by using

the log-normal approximation which yields the following one-

dimensional integration

Λ (r) =

∞
∫

−∞

Ω(x,
−σ2

x

M
,
σ2

x

M
) exp

(

−
(

r − ηI0e
2x
)2 − r2

N0

)

dx

(28)

Noting the similarity of (28) and (15), we conclude that

our observation of MISO channel representation in terms of

equivalent SISO channel with scaled variance remains valid

even in the lack of CSI at the receive side.

2) Receive Diversity: First we assume optimal combining

with perfect CSI. Replacing M = 1 in (23), we have5

Pe =

∫

x

fx (x)Q

⎛

⎝

ηI0

2Nσv

√

√

√

√

N
∑

n=1

e4xn

⎞

⎠ dx (29)

which requires the solution of a N -dimensional integration.

Applying log-normal approximation to ex ≈∑N
n=1 e4xn , (29)

reduces to a one-dimensional integral given by

Pe ≈
+∞
∫

−∞

Ω(x, µ̂, σ̂2
x)Q

(

ηI0

2Nσv
ex/2

)

dx (30)

where the effective variance and mean are defined by σ̂2
x =

(

1
/

N2
)
∑

l,k 16Γkl and µ̂ = log N + 4σ2
x − σ̂2

x

/

2.

5In this scheme, the sum of the N receive aperture areas is the same
as the area of the receive aperture of the SISO link. Therefore, considering
background noise limited receivers, the variance of the noise is given by
σ2

ν
= N0/2N [15].
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As earlier noted, a possible alternative in the implementa-

tion of receive diversity for FSO links is to exploit the inherent

aperture averaging; that can be readily obtained by deploying

single receive aperture with a large collecting area instead of

the deployment of several apertures with smaller collecting

areas. To let a performance comparison between aperture

averaging and receive diversity through multiple apertures, we

consider the following decision rule

r =

N
∑

n=1

rn ≷
η

2

N
∑

n=1

In. (31)

We call this receiver "equal gain combining" (EGC) with a

slight abuse of term6. Pe expression is obtained as

Pe =

∫

x

fx (x)Q

(

ηI0

2Nσv

N
∑

n=1

e2xn

)

dx. (32)

Based on our log-normal approximation, (32) simplifies to

(25) where the scaled variance is now given by σ̂2
x = σ2

x/N .

Assuming the further deployment of transmit diversity, it can

be easily shown that the effective log-normal variance will be

reduced to σ2
x

/

MN .

IV. NUMERICAL RESULTS

In this section, we present numerical results for the BER

performance of FSO links for various numbers of trans-

mit/receive apertures and correlation values. We consider a

FSO system with a receive aperture of size D0 = 5cm and

the wavelength of λ = 1.55µm. The link distance is assumed

to be L = 2km. The correlation length can be therefore

approximated as d0 ≈
√

λL = 5.5cm.
Fig. 1 illustrates the BER performance of a FSO link with

M = 2 and 3 transmit apertures over a turbulence channel

with standard deviation of σx = 0.1 and σx = 0.3. We

present both the exact expressions and their approximations

obtained through (24) and (25), respectively. It is observed

that our approximate expressions which are formulated in

terms of a single integral give excellent matches to the exact

expressions which require multidimensional integrations. The

difference is negligible for the considered values of log-normal

variance. The performance of SISO FSO link is also included

in Fig. 1 as a benchmark. As the figure clearly illustrates,

the performance improves significantly with the increasing

number of transmit apertures which, in effect, reduces the

effective log-normal variance of the diversity channel. Specif-

ically, the transmit diversity reduces log-normal variance by

a factor of M . For example, the performance of 2-TX and

3-TX systems operating over a log-normal channel with a

variance of σ2
x = (0.3)

2
= 0.09 can be well-approximated

through (25) by equivalent 1-TX systems over a log-normal

channel with variances of σ2
x/2 = (0.3)

2
/2 = 0.045 and

σ2
x/3 = (0.3)

2
/3 = 0.03 (c.f. lines labeled as "2-TX approx"

and "3-TX approx.")
In Fig. 2, we demonstrate the effect of spatial correlation

on the FSO link performance. We consider a FSO link with

6A similar scheme in [8] is called EGC where the receiver outputs are
directly combined. The receiver in [8] does not require instantaneous CSI.
In our decision rule, we still assume the availability of CSI for threshold
calculation.
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Fig. 1. Comparison of exact and approximate BER expressions for FSO
links with two and three transmit apertures assuming perfect CSI.
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Fig. 2. Effect of spatial correlation on the performance of a FSO link with
three transmit apertures over a log-normal channel with σx = 0.3. Perfor-
mance curves for one and two transmit apertures over spatially independent
channels (ρ = 0) are included as benchmarks.

M = 3 transmit apertures which are equidistant from each

other and assume correlation values of b(d) = ρ = 0.25, 0.6,

and 0.9 where d is the distance between the apertures. From

comparison to the case of spatially independent channels, it

can be clearly observed that even a correlation value of ρ =
0.25 among 3 transmit apertures degrades the performance

significantly, decreasing the diversity order by one, i.e., it

achieves a similar performance expected for spatially inde-

pendent dual transmit apertures. As the correlation increases,

the performance loss is observed to be much more severe.

For example, the performance for the correlation value of

ρ = 0.9 comes very close to that for the single transmit

aperture. These observations are also in contrast to what we

typically see in RF wireless communications, where only the

full spatial correlation results in the loss of diversity order

[23]. Our observations demonstrate that efficient separation

between apertures is crucial to achieve the promised diversity

gains from multiple transmitters. It should be further noted

that our approximation approach works fine for the correlated

case as well and comparison with exact results are omitted

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17, 2009 at 20:53 from IEEE Xplore.  Restrictions apply.



2818 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 8, AUGUST 2007

5 10 15 20 25 30 35 40
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Avg. SNR [dB]

B
E

R

1 TX

2 TX exact

2 TX approx

3 TX exact

3 TX approx

σ
x
=0.1

σ
x
=0.3

Fig. 3. Comparison of exact and approximate BER expressions for FSO
links with two and three transmit apertures assuming no instantaneous CSI.
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Fig. 4. Comparison of OC and EGC receivers for a FSO link with two and
three receive apertures.

here for the sake of brevity.

In Fig. 3, we assume no instantaneous CSI is available and

present the BER performance of a FSO link with M = 1,

2 and 3 transmit apertures. The exact expressions in this

figure are obtained through the exact threshold of (27) which

require multi-dimensional integrals. The approximations are

given by (28) and require only single-dimension integrals and

demonstrate a perfect match to the exact ones. Similar to

Fig. 1, we observe performance improvement with increasing

number of transmit apertures. Although the general behavior

of plots is similar to those of Fig. 1, a performance loss is

observed in comparison to perfect CSI case for various values

of σx ranging from 1.5 dB to 4.5 dB at BER = 10−5.

Fig. 4 compares the performance of EGC and OC receivers

for FSO links with N = 2 and 3 receive apertures. It is

observed that the performance of EGC receiver is very close to

that of the optimal receiver. Specifically, we observe that there

is only a 0.3 dB difference at BER = 10−5 for σx = 0.3. This

difference further decreases for lower values of log-normal

variance. The observation that performances of OC and EGC

receivers are similar also demonstrates that the receive diver-

sity can be obtained in practice through aperture averaging
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Fig. 5. BER performance of a FSO link with two transmit and two receive
apertures over spatially correlated channels.

effect, i.e., the deployment of a large receive aperture will

provide a similar performance to that can be obtained by

several separate smaller receive apertures.

Fig. 5 illustrates the BER performance of a MIMO FSO link

with 2 transmit and 2 receive apertures. We assume identical

correlation values for both the transmitter and receiver sides,

i.e., ρR = ρT = ρ. The spatial correlation matrix of the

MIMO FSO channel is modeled by the Kronecker product

of the spatial correlation matrices of the transmitter and the

receiver, i.e. RMIMO = RT ⊗ RR. We present exact BER

performance curves of OC and EGC implementations for

various log-normal variance and correlation values. OC and

EGC present very similar performances demonstrating that

EGC can be used as a reliable and simpler alternative to OC

for most practical purposes in a MIMO setting. Fig. 5 further

illustrates the accuracy of our log-normal approximation. It is

observed that the approximation, c.f., (32), provides an excel-

lent match to the exact performance for channel conditions

with weak turbulence and low correlation. Although there is

some discrepancy observed for higher log-normal variance,

the approximation still captures the characteristic behaviour

of the exact performance curves.

V. CONCLUSION

In this paper, we have investigated the BER performance

of FSO links over log-normal atmospheric turbulence chan-

nels with spatial diversity. Our results demonstrate that FSO

links with transmit and receive diversity can be efficiently

represented by equivalent SISO systems with appropriate

scaling in the channel variance. In other words, the effect of

spatial diversity manifests itself as a decrease of the channel

variance. We also observe that the performance loss due

to spatial correlation might be severe, demonstrating that

efficient separation between apertures and strict co-alignment

is crucial to achieve the promised diversity gains from multiple

transmitters/receivers.

APPENDIX

This appendix provides an approximation for the summa-

tion of correlated log-normal random variables. Specifically,
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we want to approximate
∑K

k=1 exp (uk) with a single log-

normal random variable ez where z is a Gaussian random

variable with a mean of µz and a variance of σ2
z . Defining

cov (uk, ul) = νkl, E (uk) = µk and using the results reported

in [15] and [24], we have

µz = log

(

α

/

√

1 + β2
/

α2

)

, (33)

σ2
z = log

(

1 + β2
/

α2
)

. (34)

Here, α and β are defined as

α =
K
∑

k=1

eµk+νkk/2, (35)

β2 =

K
∑

k=1

K
∑

l=1

eµk+µl+
(ν

kk
+ν

ll)
2 (evkl − 1) (36)

respectively. Note that, due to power normalization (i.e.,

E[I/I0] = E[exp (2xk)] = E [exp (uk)] = 1), we have

E (xk) = −σ2
x and µk = −νkk/2. Further, under the

assumption of weak turbulence (i.e,. vkk << 1), and small

correlation values ( i.e., vkl << 1), (33) and (34) reduce to

µz = log K − σ2
z

2
, (37)

σ2
z ≈ 1

K2

∑

k,l

evkl − 1 ≈ 1

K
v11 +

1

K2

∑

k �=l

vkl (38)

where we assume that log-normal parameters are equal for all

channels, i.e., vkk = v11 = 4σ2
x.

ACKNOWLEDGMENT

The authors would like to thanks the anonymous reviewers

whose comments significantly improved the presentation of

the paper. The second author thanks Dr. Jing Li for helpful

discussions on an earlier draft version of this paper and Mr.

Majid Safari for his diligent work in the revision process.

REFERENCES

[1] H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical

Connectivity in Today’s Networks. Indianapolis, IN: Sams Publishing,
2002.

[2] L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation

with Applications. Bellingham, WA: SPIE Press, 2001.
[3] D. Kedar and S. Arnon, “Urban optical wireless communication net-

works: The main challenges and possible solutions,” IEEE Commun.

Mag., vol. 42, no. 5, pp. 2-7, May 2004.

[4] Wireless Communications Association International [Online]. Available:
http://www.wcai.com/

[5] B. R. Strickland, M. J. Lavan, E. Woodbridge, and V. Chan “Effects of
fog on the bit-error rate of a free space laser communication system,”
Applied Optics, vol. 38, no. 3, pp. 424-431, Jan. 1999.

[6] S. Arnon, “Optimization of urban optical wireless communication
systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 626-629,
July 2003.

[7] S. Arnon, “Effects of atmospheric turbulence and building sway on
optical wireless communication systems,” Optics Lett., vol. 28, no. 2,
pp. 129-131, Jan. 2003.

[8] X. Zhu and J. M. Kahn, “Free-space optical communication through
atmospheric turbulence channels,” IEEE Trans. Commun., vol. 50, no.
8, pp. 1293-1300, Aug. 2002.

[9] X. Zhu and J. M. Kahn, “Performance bounds for coded free-space op-
tical communications through atmospheric turbulence channels,” IEEE

Trans. Commun., vol. 51, no. 8, pp. 1233-1239, Aug. 2003.

[10] M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of
coded free-space optical links over strong turbulence channels,” IEEE

Commun. Lett., vol. 8, no. 10, pp. 635-637, Oct. 2004.
[11] X. Zhu and J. M. Kahn, “Markov chain model in maximum-likelihood

sequence detection for free-space optical communication through at-
mospheric turbulence channels,” IEEE Trans. Commun., vol. 51, no. 3,
pp. 509-516, Mar. 2003.

[12] X. Zhu, J. M. Kahn, and W. Jin, “Mitigation of turbulence-induced
scintillation noise in free-space optical links using temporal-domain
detection techniques,” IEEE Photon. Technol. Lett., vol. 15, no. 4, pp.
623-625, Apr. 2003.

[13] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless

Communications. Cambridge, UK: Cambridge University Press, 2003.
[14] S. M. Haas and J. H. Shapiro, “Capacity of wireless optical communi-

cations,” IEEE J. Select. Areas Commun., vol. 21, no. 8, pp. 1346-1357,
Oct. 2003.

[15] E. J. Shin and V. W. S. Chan, “Optical communication over the turbulent
atmospheric channel using spatial diversity,” IEEE GLOBECOM, Nov.
2002, pp. 2055-2060.

[16] I. Kim, H. Hakakha, P. Adhikari, and E. J. Korevaar, “Scintillation
reduction using multiple transmitters,” in Proc. SPIE, Feb. 1997, vol.
2990.

[17] C. C. Davis and I. Smolyaninov, “The effect of atmospheric turbulence
on bit-error-rate in an on-off keyed optical wireless system,” in Proc.

SPIE Free-Space Laser Communication Laser Imaging, Mar. 1997, vol.
4489, pp. 126-137.

[18] S. M. Haas, Capacity of and coding for multiple-aperture wireless

optical communications, Ph.D. dissertation, Massachusetts Institute of
Technology, 2003.

[19] S. Karp, R. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels.
New York: Plenum, 1988.

[20] J. W. Goodman, Statistical Optics. New York: John Wiley & Sons, 1985.
[21] M. K. Simon and M.-S. Alouini, Digital Communication over Fading

Channels. New York: John Wiley & Sons, 2000.
[22] J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-

Hill, 1995.
[23] M. Uysal and C. N. Georgiades, “On the error performance analysis of

space-time trellis codes,” IEEE Trans. Wireless Commun., vol. 3, no. 4,
pp. 1128-1133, July 2004.

[24] S. C. Schwartz and Y. S. Yeh, “On the distribution function and moments
of power sums with log-normal components,” Bell Syst. Tech. J., vol.
61, no. 7, pp. 1441-1462, Sep. 1982.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17, 2009 at 20:53 from IEEE Xplore.  Restrictions apply.




