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Abstract

Motivation: Modulation of regulatory circuits governing the metabolic processes is a crucial step

for developing microbial cell factories. Despite the prevalence of in silico strain design algorithms,

most of them are not capable of predicting required modifications in regulatory networks.

Although a few algorithms may predict relevant targets for transcriptional regulator (TR) manipula-

tions, they have limited reliability and applicability due to their high dependency on the availability

of integrated metabolic/regulatory models.

Results: We present BeReTa (Beneficial Regulator Targeting), a new algorithm for prioritization of

TR manipulation targets, which makes use of unintegrated network models. BeReTa identifies TR

manipulation targets by evaluating regulatory strengths of interactions and beneficial effects of re-

actions, and subsequently assigning beneficial scores for the TRs. We demonstrate that BeReTa

can predict both known and novel TR manipulation targets for enhanced production of various

chemicals in Escherichia coli. Furthermore, through a case study of antibiotics production in

Streptomyces coelicolor, we successfully demonstrate its wide applicability to even less-studied

organisms. To the best of our knowledge, BeReTa is the first strain design algorithm exclusively de-

signed for predicting TR manipulation targets.

Availability and Implementation: MATLAB code is available at https://github.com/kms1041/

BeReTa (github).

Contact: byungkim@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During the past decades, systems metabolic engineering has enabled

the enhanced microbial production of various chemicals for the devel-

opment of sustainable processes (Becker and Wittmann, 2015).

Various strategies have been suggested, and serially and/or iteratively

applied to improve production yields, titers, and productivities in

order to meet industrial constraints (Lee et al., 2012). A modification

of regulatory circuits (e.g. removal/suppression of negative feedback

regulations and upregulation of biosynthetic pathway activators) is

one of the important strategies for developing production strains (Lee

and Kim, 2015). Indeed, more than half of the genetic manipulations

in engineered strains of Escherichia coli and yeast belong to the
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modifications of regulatory networks, while most of them are em-

ployed by human intuitions (Winkler et al., 2015).

Interestingly, fueled by the development of constraint-based

models and phenotype prediction methods such as flux balance ana-

lysis, a number of in silico strain design algorithms have been de-

veloped to provide novel non-intuitive genetic designs (Maia et al.,

2016). Since the development of OptKnock (Burgard et al., 2003)

which is the first computational strain design algorithm for predict-

ing only gene deletion targets, recent methods have been evolved to

perform diverse designing tasks in more efficient manners. For ex-

ample, OptStrain (Pharkya et al., 2004) was developed to account

for heterologous gene insertions; OptForce (Ranganathan et al.,

2010) was introduced to consider modulations of gene expression

levels in addition to gene deletions. Most recently, such algorithms

were further improved to exploit transcriptomic data for identifying

genetic targets (Kim et al., 2016). Showing the validity and useful-

ness of the computational strain design algorithms, several patents

referring to the algorithms have now become available (Maia et al.,

2016).

However, despite increasing popularities of in silico strain design

methods, most of the genetic modification targets proposed are con-

fined to metabolic genes. Previously, two groups of researchers have

tackled this issue by developing algorithms which can predict tran-

scriptional regulator (TR) manipulation targets by using integrated

models of metabolism and regulation (Kim and Reed, 2010; Vilaca

et al., 2011). However, the use of integrated metabolic/regulatory

models has innate limitations. First, the integrated models are avail-

able only for few best-studied organisms, e.g. E.coli (Covert et al.,

2004) and Saccharomyces cerevisiae (Herrgard et al., 2006), so that

their applicability is greatly limited to those model microbes.

Second, they assume complete on/off behavior of target genes/reac-

tions according to Boolean logic representation of gene regulation in

the integrated models, regardless of differential control strengths of

TR-target interactions that exist in nature.

To overcome such limitations, in this study, we present an en-

tirely new approach for predicting TR manipulation targets without

requiring a well-defined integrated model of metabolism and regu-

lation. The Beneficial Regulator Targeting (BeReTa) algorithm

introduced herein differentiates the variable regulatory strengths of

TR-target interactions, and thus is able to rank the effects of TR ma-

nipulations on target chemical production. The algorithm was de-

veloped to answer the following questions in metabolic engineering:

(i) Which TR manipulation is the most effective when several TRs

are involved in regulations of product biosynthesis? (ii) Is it helpful

or not to manipulate a global/pleiotropic TR that has numerous tar-

get genes? Its wide applicability was successfully demonstrated via

two case studies for E.coli and Streptomyces coelicolor.

2 Methods

2.1 BeReTa algorithm
The BeReTa algorithm calculates beneficial scores of TRs and their

significance for the production of target chemicals as illustrated in

Figure 1. Beneficial scores are calculated from the regulatory

strength matrix and the flux slope vector defined below, using the

models for the transcriptional regulatory network (TRN) and the

genome-scale metabolic network (GSMN) (Fig. 1A).

2.1.1 Regulatory strength matrix

The regulatory strength matrix (RS) is a m�n matrix of regulatory

strength coefficients for a set of m TRs in the TRN and a set of n

reactions in the GSMN. To construct the regulatory strength matrix,

structures of both TRN and GSMN are required, together with gene

expression compendium data. Firstly, the regulatory strength of

each TR-gene interaction (RSij denotes the interaction between TR i

and gene j) in the TRN is defined as follows:

RSij ¼ bij � rij

�� �� (1)

where rij is Pearson’s correlation coefficient for the gene expression

profiles of TR i and gene j, and bij is a sign of regulation which is set

to þ1 and �1 for activating and repressing interactions, respect-

ively. Then, the TR-gene regulatory strength (RSij) is mapped to gen-

erate the TR-reaction regulatory strength (RSik for TR i and reaction

k) by using the gene–protein-reaction (GPR) association rules in the

GSMN. An example of the GPR mapping process involving an en-

zyme complex is illustrated in Figure 1B. For instance, if TR i con-

trols multiple genes (j and j’) that constitute an enzyme complex

which catalyzes reaction k, the TR-gene regulatory strengths (RSij

and RSij’) are averaged to yield the regulatory strength coefficient

for TR-reaction (RSik). Similarly, for a TR controlling multiple iso-

zymes for a reaction, TR-gene regulatory strengths for isozymes are

also averaged to yield a TR-reaction regulatory strength. It should

be noted that considering average operator rather than minimum

(for enzyme complexes) and maximum (for isozymes) operators,

which are often used for mapping transcriptomic or proteomic data,

is more appropriate for mapping regulatory strengths. First of all, a

gene with minimal or maximal regulatory strengths cannot be re-

garded as decisive gene for reaction activity. In addition, all the

regulatory effects of a TR on metabolic gene expression can be con-

sidered simultaneously by using average operator, still reserving any

non-minimal and non-maximal values.

Note that the regulatory strength defined herein is an overall

regulatory strength of a TR on a gene/reaction across various nutri-

tional and environmental conditions where gene expression profiling

experiments were conducted. The gene expression datasets for di-

verse conditions could provide more relevant estimates of regulatory

strengths than using the data only from specific conditions. For ex-

ample, consider an anaerobic TR and its target genes which are all

active under anaerobic conditions. When only examining gene ex-

pression data for anaerobic conditions, correlations between the TR

and target genes are not evident since they are always active and not

differentially expressed for the given datasets. However, the datasets

from both anaerobic and aerobic conditions make the correlations

evident as the expression patterns of the TR and target genes change

together. Therefore, various data in gene expression compendium

should be used to build the regulatory strength matrix which in re-

sult does not represent condition-specific regulatory strengths of the

TRs. It should also be noted that the interactions and hierarchies of

TRs have been neglected for simplification. However, the effects of

TR–TR interactions and hierarchies might be partially reflected in

the regulatory strength matrix through the use of gene expression

compendium.

2.1.2 Flux slope vector

The flux slope vector (qslope) is a vector of n flux slopes, which quan-

titatively describes the beneficial effects of the n reactions in the

GSMN for target chemical production. The concept of the flux slope

and its calculation procedure are adopted from F(V)SEOF which is

an algorithm for searching metabolic gene overexpression targets

(Choi et al., 2010; Park et al., 2012). Firstly, the following flux bal-

ance analysis (Orth et al., 2010) problems, formulated as linear

88 M.Kim et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/33/1/87/2525669 by guest on 16 August 2022

Deleted Text:  
Deleted Text:  
Deleted Text: Beneficial R
Deleted Text: r
Deleted Text: egulator T
Deleted Text: t
Deleted Text: argeting (
Deleted Text: )
Deleted Text: <italic>&hx2009;</italic>&hx00D7;<italic>&hx2009;</italic>
Deleted Text: &hx2009;&hx002B;
Deleted Text: &hxFF0D;
Deleted Text: -
Deleted Text: -


programming (LP) problems, are solved serially for different values

of integer l (l¼0, 1, 2, . . ., L):

max
v

l

subject to

N � v ¼ 0 (2)

a � v � b (3)

vproduct ¼ 1� l

L

� �
� vmin

product þ
l

L

� �
� vmax

product (4)

where N is the stoichiometric matrix derived from the GSMN, v is a

flux vector, a is a vector of lower flux bounds, and b is a vector of

upper flux bounds. In the standard flux balance analysis, an object-

ive function is maximized or minimized under the mass balance con-

straints given by Equation (2), together with thermodynamic and

mechanistic constraints in Equation (3). For calculating the flux

slope, the rate of biomass formation (l) is maximized as an objective

function with the additional constraint in Equation (4) which en-

forces a fixed flux through the product reaction (vproduct). The flux

through the product reaction is increased from its minimal (l ¼ 0) to

maximal (l ¼ L) values, so that L þ 1 LP problems should be solved

iteratively. For each LP problem, flux vectors, which satisfy the opti-

mality, are further selected for parsimonious enzyme usage (Lewis

et al., 2010). Then, flux slopes are obtained by linear regression be-

tween absolute reaction fluxes and product fluxes from the Lþ1

flux vectors with varying degrees of product fluxes (Fig. 1C).

Finally, the flux slope vector is constructed by replacing the negative

values of the flux slopes with zeros to only take into account of

beneficial effects of reactions on target chemical production, and

disregard negative effects of reactions on cell growth. This proced-

ure is required to avoid the prediction of biased targets toward

growth-associated TRs since most of the growth-associated reac-

tions have large negative flux slopes regardless of types of target

products. Therefore, the negative values of the flux slopes should be

substituted to predict relevant TR targets specific to the target

product.

By the definition of flux slope, increasing fluxes through the re-

actions with high flux slopes is necessary, although often not suffi-

cient, for increasing product flux. Note that the reactions with large

flux slopes can be more beneficial for increasing product flux, as

they are more sensitive to the enforced product flux than the reac-

tions with smaller flux slopes (Park et al., 2012). In addition, it is

important to note that the flux slope vector is condition-specific

since some of the nutritional and environmental conditions such as

substrate uptake rates and oxygen availability are included in the

Fig. 1. Schematic representation of BeReTa algorithm. (A) BeReTa uses models of TRN and GSMN together with expression compendium data to calculate bene-

ficial scores of TRs for the production of target compounds. Beneficial scores can be calculated from multiplication of the regulatory strength matrix and the flux

slope vector. (B) The regulatory strength matrix is calculated by the mapping of regulatory strength coefficients through the structures of TRN and GSMN (TR,

transcriptional regulator; G, gene; E, enzyme; R, reaction). (C) The flux slope vector is calculated by using flux balance analysis with constraints for different levels

of target chemical production. Linear regression is used to estimate flux slopes. (D) A permutation test was introduced to calculate the significance of the benefi-

cial scores
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lower and upper flux bounds, a and b, in Equation (3). Minimal and

maximal product fluxes were calculated by flux balance analysis

with objective functions that minimize and maximize product for-

mation, and L ¼ 20 was the value used for the study. Gurobi

(Gurobi Optimization, http://www.gurobi.com) was used as the op-

timization solver for LP problems.

2.1.3 Beneficial score

Beneficial score (S) is defined as follows:

Si ¼
X

k

RSik � qslope;k ¼ RS � qslope

� �
i

(5)

The beneficial score for TR i (Si) is the sum of the products of

regulatory strengths (RSik) and flux slopes (qslope,k) of its target reac-

tions. Simply, multiplication of the regulatory strength matrix (RS)

and the flux slope vector (qslope) yields beneficial scores for all TRs

in the TRN for target chemical production (Fig. 1A). Clearly, a TR

with high regulatory strengths for its target reactions with high flux

slopes will get high beneficial scores in Equation (5).

A transcriptional activator (repressor) which regulates at least one

beneficial reaction, i.e. the reaction with positive flux slope, should

have positive (negative) beneficial score, since the sign of beneficial

score is only dependent on the signs of regulatory strengths which are

all positive (negative) for transcriptional activator (repressor). For a

dual regulator which has both activating and repressing interactions,

beneficial score will be positive (negative) if its activating (repressing)

effects are stronger than repressing (activating) effects. Therefore, a

TR with positive (negative) beneficial score can be considered as an

overexpression (knockout or downregulation) target.

Note that manipulating TRs with large absolute beneficial scores

would be more effective for increasing product flux than manipulat-

ing TRs with smaller scores for the same target product. However,

comparison of beneficial scores of TRs for different target products

is often meaningless since theoretical maximum beneficial scores for

each chemical, a case where regulatory strengths are equal to one

for all reactions meaning that a TR manipulation is maximally ef-

fective for increasing product flux, are largely different. It is also

noteworthy to mention that the beneficial score defined herein does

not have any further biologically meaningful interpretation as we

employed correlation coefficients to define the regulatory strengths.

2.1.4 Permutation test

The beneficial score defined in Equation (5) is not normalized by the

number of targets of the TR, and thus TRs with many targets, i.e. glo-

bal regulators, usually receive higher scores than the TRs with a small

number of targets. Consider two TRs, that one is a global TR control-

ling 100 target reactions among which only two reactions are benefi-

cial while the other is a local TR controlling only one reaction which

is beneficial. If the values of regulatory strengths and flux slopes are

identical for both cases, the beneficial score of the global TR will be

twice as large as that of the local TR. However, it is evident that the

local TR is more likely to be related to target chemical production

than the global TR. Furthermore, perturbations in the 98 non-

beneficial reactions by manipulating the global TR might induce great

detrimental effects on cell growth and target chemical production.

To deal with this problem, a permutation test was introduced to

calculate the significance of the beneficial scores (Fig. 1D). The flux

slope vector (qslope) was permuted 10 000 times to yield 10 000 per-

muted flux slope vectors (qpermuted
slope ), and the corresponding 10 000

permuted beneficial scores (Spermuted) were obtained. The P-value

was defined as the number of permuted beneficial scores greater

(smaller) than the non-permuted beneficial score divided by the

number of permutations for TRs with positive (negative) beneficial

scores. Note that only gene-associated reactions were considered for

permutation, i.e. exchange reactions and orphan reactions were

excluded from the permutation.

2.1.5 Target criteria

We set up the following criteria for the selection of TR manipulation

targets for target chemical production.

1. The TR should have a non-zero beneficial score.

2. The P-value of the beneficial score should be <0.05.

3. The TR should have two or more effective (beneficial) gene/reac-

tion targets.

4. At least 10% of the target metabolic genes of the TR should be

beneficial, i.e. have positive flux slopes.

The third criterion was introduced to select meaningful TR ma-

nipulations which can simultaneously change the expression of mul-

tiple genes and reactions, and thus could perform better than single

enzyme manipulations. The fourth criterion was applied to rule out

TRs which regulates mostly non-beneficial reactions to prevent un-

expected detrimental effects on cell growth and target chemical pro-

duction. Finally, TRs with positive (negative) beneficial scores were

designated as overexpression (knockout/downregulation) targets if

the TRs had passed all the criteria.

2.2 Network models and datasets
Using the BeReTa algorithm, we predicted TR manipulation targets

for the production of various chemicals in E.coli, and antibiotics in

S.coelicolor. The network models and datasets used for the predic-

tions are summarized in Table 1.

2.2.1 Genome-scale metabolic network

The most recent version of the E.coli GSMN, iJO1366 (Orth et al.,

2011), was used for making BeReTa predictions. To simulate the

production of non-native chemicals in E.coli, experimentally vali-

dated heterologous pathway reactions were obtained from litera-

ture, and implemented into iJO1366 (Supplementary Table S1). For

simulating antibiotics production in S.coelicolor, a recently pub-

lished high-quality GSMN for S.coelicolor, iMK1208 (Kim et al.,

2014), was employed. The glucose uptake rate was constrained to

Table 1. A summary of network models and expression datasets

used for this study

E.coli S.coelicolor

GSMN iJO1366 iMK1208

Included genes (ORF coverage) 1366 (32%) 1208 (15%)

Reactions 2251 1643

Metabolic/transport 1473/778 1443/200

Gene associated/no gene

associated/spontaneous

2088/128/35 1376/238/29

Exchange reactions 332 216

Metabolites 1136 1246

TRN RegulonDB Correlation

network

Included TRs 180 389

Regulatory interactions 3672 10 000

Expression compendium COLOMBOS COLOMBOS

Genes 4294 7767

Conditions 2470 371
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10 mmol gDCW�1 h�1 to simulate chemical production from glu-

cose. Additional details on the model simulations are available in

Supplementary Table S1.

2.2.2 Transcriptional regulatory network

The E.coli TRN was obtained from RegulonDB (Gama-Castro

et al., 2016), version 9.0 in October 2015 (http://regulondb.ccg.

unam.mx). A total of 3672 interactions with both strong and weak

confidence levels involving 180 single TRs were used for the predic-

tions. RegulonDB also provides information on the regulatory

modes of the interactions, such as activator, repressor, dual or un-

known. For dual and unknown modes of interactions, regulatory

modes were reassigned as activator or repressor according to the

sign of Pearson’s correlation coefficients between the gene expres-

sion profiles of the TR and the target gene.

Although RegulonDB is a curated primary reference database for

the regulatory network of the best-studied organism, such a data-

base does not exist for S.coelicolor. Therefore, we generated a rele-

vance network for S.coelicolor using the expression compendium.

The inferred TRN consists of 10 000 edges that are ranked based on

the absolute values of Pearson’s correlation coefficients, which is a

method shown to perform fairly well (Marbach et al., 2012). 389

TRs in total are included in the inferred S.coelicolor TRN.

2.2.3 Expression dataset

The gene expression compendia for E.coli and S.coelicolor were ob-

tained from the COLOMBOS database (Meysman et al., 2014), ver-

sion 2.0 in October 2015 (http://www.colombos.net). The

COLOMBOS database provides re-normalized cross-platform gene

expression compendia which are derived from public resources

including Gene Expression Omnibus and ArrayExpress. The sizes of

the expression compendia are summarized in Table 1.

3 Results

3.1 Production of chemicals in E.coli
E.coli is one of the most frequently employed organisms for the

industrial production of various chemicals owing to its well-

characterized metabolism and regulation, and ease of genetic modi-

fication and maintenance. Accordingly, E.coli is the best option for

demonstrating and validating the predictive power of the BeReTa al-

gorithm, as there exist high-quality models of metabolism and regu-

lation which enable the reliable prediction of TR targets, and

substantial literature describing the metabolic engineering strategies

for the validation. Using the network models and datasets for E.coli

listed in Table 1, TR manipulation targets for 22 native and 16 non-

native compounds were identified by BeReTa. Four top-scoring TR

manipulation targets for each chemical ranked by the absolute val-

ues of beneficial scores are shown in Figure 2. Detailed results

including the values of beneficial scores and P-values are available

in Supplementary Table S2.

Validating the predictions of the BeReTa algorithm, metabolic

engineering strategies, which include the predicted TR manipula-

tions, could be found for 12 of 38 simulated chemicals covering

both native (7 of 22) and non-native (5 of 16) compounds. Although

the majority of validated TR targets are involved in the biosynthesis

Fig. 2. BeReTa predictions for the production of various chemicals in E.coli. Four top-scoring TR manipulation targets for each chemical ranked by absolute values

of beneficial scores are shown. TRs in green boxes are overexpression targets, whereas TRs in red boxes are knockout or downregulation targets. Manipulations

validated with literature data are indicated with check marks
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of amino acids and their simple derivatives, previous studies sup-

porting the predictions for other classes of chemicals are also avail-

able. For example, fadR overexpression was correctly predicted as

the top-scoring strategy for fatty acid overproduction (Zhang et al.,

2012). Furthermore, fnr deletion and arcA deletion were also prop-

erly suggested for the overproduction of two non-native compounds

from acetyl-CoA, 1-butanol and 1,4-butanediol, respectively

(Atsumi et al., 2008; Yim et al., 2011). These examples also clearly

demonstrated that BeReTa algorithm can appropriately evaluate the

effects of manipulating global/pleiotropic TRs.

The most promising example that shows the predictive power

and utility of BeReTa is the case study of L-arginine production. As

shown in Figure 2, BeReTa identified ArgR, TdcA, ArgP, and Rob

as TR manipulation targets for increasing arginine production. The

compositions of beneficial scores for the regulators, i.e. associated

flux slopes and regulatory strengths, along with arginine pathway

structure are given in Supplementary Figure S1. ArgR and ArgP are

directly related to the arginine biosynthesis as ArgR controls entire

arginine biosynthetic pathway while ArgP controls arginine secre-

tion and glutamate formation. Meanwhile, TdcA and Rob are

involved in precursor supply as TdcA controls generation of acetyl-

CoA, and Rob controls TCA cycle for providing glutamate and pen-

tose phosphate pathway for NADPH supply. Interestingly, among

these manipulations, argR deletion and argP upregulation can be

found in an arginine-producing E.coli strain which was recently de-

veloped by Ginesy and coworkers (Ginesy et al., 2015). As wild-type

E.coli strains do not excrete any arginine, they first constructed a

base strain for arginine production by deleting argR and three other

genes (adiA, speC and speF) which are responsible for degrading ar-

ginine and ornithine. To further increase arginine production, they

overexpressed feedback-resistant, thus constitutively active, argP

and argA (N-acetylglutamate synthase) alleles, thereby engineering

the final arginine-overproducing strain with high productivity. The

comparison of these experimental results and our predictions shows

that the BeReTa algorithm could not only identify multiple valid TR

manipulation targets, but also assign higher scores (ranks) to more

significant TR manipulations. Moreover, BeReTa provides an easier

way to discover novel metabolic engineering strategies such as argP

overexpression, which was originally identified through expensive

and labor-intensive classical random mutagenesis study.

Finally, it is noteworthy to mention that the predicted TR ma-

nipulations for the products synthesized from the same precursors

are similar. For example, TyrR deletion was consistently predicted

for the production of shikimate-derived chemicals except trypto-

phan. Accordingly, actual metabolic designs including TyrR deletion

or inactivation can be found for four of the chemicals, tyrosine, phe-

nol, styrene, and p-hydroxystyrene (Supplementary Table S1).

Likewise, ArgP upregulation for oxaloacetate-based chemicals and

PurR deletion/inactivation for ribulose 5-phosphate-based chemicals

were predicted. Interestingly, no TR manipulation targets were iden-

tified for dihydroxyacetone phosphate-derived chemicals, except

Cra downregulation for 1,2-propanediol production.

3.2 Production of antibiotics in S.coelicolor
Streptomyces are biotechnologically important bacteria, as they pro-

duce various secondary metabolites including many of the currently

used antibiotic drugs (Bentley et al., 2002). To examine whether

BeReTa can be applied for the identification of TR manipulation tar-

gets in such less-studied organisms, we applied BeReTa for the pro-

duction of antibiotics in S.coelicolor, a model species of Streptomyces.

Here, it should be noted that the correlation network derived from

the expression compendium data was used for making the predic-

tions, since a high-quality TRN model does not exist for this organism

(Table 1). The predicted TR targets for three antibiotics produced by

S.coelicolor, actinorhodin (ACT), undecylprodiginine (RED), and

calcium-dependent antibiotic (CDA), are shown in Figure 3. Details

of the predictions, including beneficial scores, P-values and lists of tar-

get reactions are available in Supplementary Table S3.

BeReTa identified both known and novel TR manipulation targets

for increasing the production of antibiotics in S.coelicolor. First,

cluster-situated regulators (CSRs) were correctly suggested as top-

scoring overexpression targets. Overexpression of ActII-ORF

(SCO5085) for ACT production and RedD (SCO5877), RedZ

(SCO5881) for RED production were predicted. However, CdaR, a

CSR for the CDA biosynthetic gene cluster, was not identified as a

TR manipulation target for CDA production. Interestingly, RedD was

also predicted as an overexpression target for increasing ACT produc-

tion, which might indicate cross-regulation of CSRs across different

secondary metabolite biosynthetic gene clusters (Huang et al., 2005).

AbsR1 (SCO6992) is a novel overexpression target predicted by

BeReTa for increasing both ACT and RED productions. AbsR1 is a

fascinating target since it can control both primary and secondary me-

tabolisms (Supplementary Table S3). Furthermore, there is also a report

describing the effects of AbsR1 deficiency on the reduced production of

ACT and RED (Park et al., 2000). Therefore, it will be interesting to

experimentally investigate the effects of AbsR1 overexpression as well.

3.3 Comparison of BeReTa with OptORF
We compared BeReTa with OptORF (Kim and Reed, 2010), an

existing method which can predict TR manipulation targets using

integrated metabolic/regulatory models. A key difference between

BeReTa and OptORF is that OptORF relies on actual flux predic-

tion for TR mutants by using the integrated models to find target

genes, whereas BeReTa focuses on using statistical correlations and

flux slopes as proxy for effects of TR manipulations instead of pre-

dicting flux distribution in TR mutants. As a result, BeReTa has

Fig. 3. BeReTa predictions for the production of antibiotics in S.coelicolor.

S.coelicolor produces actinorhodin (polyketide, ACT), undecylprodiginine

(prodiginine, RED), and calcium-dependent antibiotic (nonribosomal peptide,

CDA). Predicted TR targets were sorted by absolute values of beneficial

scores. TRs in green boxes are overexpression targets, whereas TRs in red

boxes are knockout or downregulation targets
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several advantages over OptORF (Table 2). First, BeReTa has wider

applicability than OptORF as it can use unintegrated models of me-

tabolism and regulation while OptORF requires the integrated one.

Reconstruction of integrated metabolic/regulatory model demands

extensive manual work and additional information for generating a

well-defined set of Boolean logical rules for genes in TRN (Vivek-

Ananth and Samal, 2016). Defining the Boolean logical rules is ex-

tremely difficult and time-consuming process which requires bio-

chemical and genetic knowledge such as TR hierarchies, effector

molecules for TRs, and phenotype of TR mutants. Thus, integrated

models are only available for very few best-studied model organ-

isms. Obviously, thus, OptORF is not applicable for S.coelicolor at

this moment. Second, BeReTa has unique ability to predict TR tar-

gets for upregulation. Meanwhile, OptORF is not able to predict TR

overexpression targets since it uses Boolean approximation which

assumes only two states of the genes, presence and absence. Lastly,

BeReTa needs far less computational power than OptORF as

BeReTa only solves LP problems while OptORF solves mixed-

integer linear programming (MILP) problems.

However, BeReTa also has some drawbacks compared with

OptORF. First, BeReTa requires multiple gene expression data as an

additional input. Therefore, the applicability of BeReTa relies on

sufficient amount and good quality of data for inferring regulatory

strengths. In addition, BeReTa is not able to provide product flux or

yield expected for the mutant, as opposed to OptORF. Finally,

BeReTa cannot predict combined effects of manipulating multiple

TRs and metabolic genes, while OptORF can as shown in the ex-

amples of the predictions in Table 2. Nevertheless, BeReTa provides

more options for TR manipulations including TR targets for upregu-

lation, whereas OptORF predicts TR targets among the set of fre-

quently found TR deletion strategies (Kim and Reed, 2010).

The other method (Vilaca et al., 2011), which is also able to pre-

dict TR manipulation targets using integrated models, is similar to

OptORF while it uses meta-heuristics to perform the task, and has

similar features to OptORF.

4 Discussion

To shift the microbial metabolism towards productions of a desired

chemicals, a system-wide engineering of regulatory and metabolic net-

works is required. Advances in modern systems biology tools, e.g.

high-throughput sequencing techniques and automated genome anno-

tation tools, have enabled the comprehensive reconstruction of biolo-

gical networks for diverse microbes. Computational strain design

algorithms were then developed to make use of such reconstructed

networks for the system-wide identification of engineering targets.

However, until now, only metabolic networks are commonly used by

the algorithms except for a few cases (King et al., 2015). In this study,

we devised the BeReTa algorithm to fully exploit both metabolic and

regulatory networks for identifying important TR manipulation tar-

gets. Through the E.coli and S.coelicolor case studies, we demon-

strated that BeReTa can identify both known and novel TR

manipulation targets for the production of various chemicals. It can

not only predict and rank plausible TR manipulation targets but also

properly evaluate the effect of global/pleiotropic TR manipulations

on the production of desired chemical. To the best of our knowledge,

BeReTa is the first strain design algorithm exclusively designed for

predicting TR manipulation targets. As we have identified various TR

manipulation targets for a variety of chemicals, it will be interesting

to experimentally investigate the effects of such manipulations.

Integrated metabolic/regulatory models together with appropriate

simulation methods can be used for predicting beneficial genetic modi-

fications at the regulatory level for metabolic engineering (Imam et al.,

2015). However, integrated metabolic/regulatory models are only

available for very few organisms owing to the extensive manual work

and information required to define Boolean regulatory logic for each

regulatory interaction. Although probabilistic regulation of metabol-

ism (PROM) (Chandrasekaran and Price, 2010) had been developed

for the automatic generation of integrated metabolic/regulatory mod-

els, PROM models are still not appropriate for simulating TR overex-

pression and cannot handle activating and repressing interactions

simultaneously. Considering these limitations, BeReTa was designed

to avoid the use of integrated metabolic/regulatory models. As a result,

BeReTa can be widely applicable for not only the best-studied but also

less-studied organisms as long as enough transcriptomic data do exist,

and it accounts for both activating and repressing interactions for pre-

dicting overexpression and knockout/downregulation targets.

Despite the success of our new algorithm, performance of BeReTa

can be further improved in some aspects. Firstly, regulatory strength

can be defined in different ways rather than using Pearson’s correl-

ation coefficients. For example, the connectivity strength calculated

from network component analysis (Liao et al., 2003) can be an

Table 2. A comparison of BeReTa with OptORF

OptORF (Kim and Reed, 2010) BeReTa (This study)

Requirements Integrated metabolic and regulatory model Unintegrated metabolic and regulatory model

Multiple gene expression data

Type of prediction Knockout of TRs together with knockout and

upregulation of metabolic genes

Knockout/downregulation and upregulation of TRs

Type of optimization

problem

MILP LP

Example of prediction Strategy Yield Strategy Beneficial score

Anaerobic ethanol

production in

E.coli

DarcA Dpgi 83.5% DpdhR �0.668

Dfnr DgntR DpflB DtdcE DtpiA 86.2% (")fur 0.355

Dfnr DpflB DtdcE Dpgi (")edd 86.2% Dcra �0.186

Dfnr DpflB DtdcE Dpgi DptsH (")edd (")fbp 90.4% DgntR �0.114

DarcA Dpta DeutD DtpiA DptsH (")edd 91.6% DkdgR �0.111

Anaerobic isobutanol

production in

E.coli

DadhE DgntR Dpgi 93.8% DgntR �0.054

DadhE DpntA DgdhA (")edd (")fbp 95.5% DkdgR �0.052

The advantageous features and predicted TR targets are highlighted in bold. The gene targets for upregulation are denoted with (") symbol.
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alternative option to test. Secondly, the coupling of BeReTa and the

state-of-the-art methods for inferring TRNs (Marbach et al., 2012)

would provide somewhat different, but improved predictions. For the

best-studied organisms, use of the inferred TRN might provide differ-

ent hypotheses that are based on novel inferred interactions which are

not documented in primary reference databases of regulatory net-

works. On the other hand, for the less-studied organisms, using TRNs

inferred by better inference methods would result in better predictions

than the simple and well-performing correlation-based method used

in this study. Finally, the current version of BeReTa is not able to pre-

dict combinatorial effects of simultaneous manipulations of TR and

metabolic genes, or multiple TR targets. Future work may enable the

prediction of a set of TR and metabolic gene targets with a maximal

combinatorial effect on target chemical production.
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