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Abstract

Motivation: Modulation of regulatory circuits governing the metabolic processes is a crucial step
for developing microbial cell factories. Despite the prevalence of in silico strain design algorithms,
most of them are not capable of predicting required modifications in regulatory networks.
Although a few algorithms may predict relevant targets for transcriptional regulator (TR) manipula-
tions, they have limited reliability and applicability due to their high dependency on the availability
of integrated metabolic/regulatory models.

Results: We present BeReTa (Beneficial Regulator Targeting), a new algorithm for prioritization of
TR manipulation targets, which makes use of unintegrated network models. BeReTa identifies TR
manipulation targets by evaluating regulatory strengths of interactions and beneficial effects of re-
actions, and subsequently assigning beneficial scores for the TRs. We demonstrate that BeReTa
can predict both known and novel TR manipulation targets for enhanced production of various
chemicals in Escherichia coli. Furthermore, through a case study of antibiotics production in
Streptomyces coelicolor, we successfully demonstrate its wide applicability to even less-studied
organisms. To the best of our knowledge, BeReTa is the first strain design algorithm exclusively de-
signed for predicting TR manipulation targets.

Availability and Implementation: MATLAB code is available at https:/github.com/kms1041/
BeReTa (github).

Contact: byungkim@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During the past decades, systems metabolic engineering has enabled
the enhanced microbial production of various chemicals for the devel-
opment of sustainable processes (Becker and Wittmann, 2015).
Various strategies have been suggested, and serially and/or iteratively
applied to improve production yields, titers, and productivities in

order to meet industrial constraints (Lee et al., 2012). A modification
of regulatory circuits (e.g. removal/suppression of negative feedback
regulations and upregulation of biosynthetic pathway activators) is
one of the important strategies for developing production strains (Lee
and Kim, 2015). Indeed, more than half of the genetic manipulations
in engineered strains of Escherichia coli and yeast belong to the
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modifications of regulatory networks, while most of them are em-
ployed by human intuitions (Winkler ez al., 2015).

Interestingly, fueled by the development of constraint-based
models and phenotype prediction methods such as flux balance ana-
lysis, a number of in silico strain design algorithms have been de-
veloped to provide novel non-intuitive genetic designs (Maia et al.,
2016). Since the development of OptKnock (Burgard et al., 2003)
which is the first computational strain design algorithm for predict-
ing only gene deletion targets, recent methods have been evolved to
perform diverse designing tasks in more efficient manners. For ex-
ample, OptStrain (Pharkya er al., 2004) was developed to account
for heterologous gene insertions; OptForce (Ranganathan er al.,
2010) was introduced to consider modulations of gene expression
levels in addition to gene deletions. Most recently, such algorithms
were further improved to exploit transcriptomic data for identifying
genetic targets (Kim et al., 2016). Showing the validity and useful-
ness of the computational strain design algorithms, several patents
referring to the algorithms have now become available (Maia et al.,
2016).

However, despite increasing popularities of i7 silico strain design
methods, most of the genetic modification targets proposed are con-
fined to metabolic genes. Previously, two groups of researchers have
tackled this issue by developing algorithms which can predict tran-
scriptional regulator (TR) manipulation targets by using integrated
models of metabolism and regulation (Kim and Reed, 2010; Vilaca
et al., 2011). However, the use of integrated metabolic/regulatory
models has innate limitations. First, the integrated models are avail-
able only for few best-studied organisms, e.g. E.coli (Covert et al.,
2004) and Saccharomyces cerevisiae (Herrgard et al., 2006), so that
their applicability is greatly limited to those model microbes.
Second, they assume complete on/off behavior of target genes/reac-
tions according to Boolean logic representation of gene regulation in
the integrated models, regardless of differential control strengths of
TR-target interactions that exist in nature.

To overcome such limitations, in this study, we present an en-
tirely new approach for predicting TR manipulation targets without
requiring a well-defined integrated model of metabolism and regu-
lation. The Beneficial Regulator Targeting (BeReTa) algorithm
introduced herein differentiates the variable regulatory strengths of
TR-target interactions, and thus is able to rank the effects of TR ma-
nipulations on target chemical production. The algorithm was de-
veloped to answer the following questions in metabolic engineering:
(i) Which TR manipulation is the most effective when several TRs
are involved in regulations of product biosynthesis? (ii) Is it helpful
or not to manipulate a global/pleiotropic TR that has numerous tar-
get genes? Its wide applicability was successfully demonstrated via
two case studies for E.coli and Streptomyces coelicolor.

2 Methods
2.1 BeReTa algorithm

The BeReTa algorithm calculates beneficial scores of TRs and their
significance for the production of target chemicals as illustrated in
Figure 1. Beneficial scores are calculated from the regulatory
strength matrix and the flux slope vector defined below, using the
models for the transcriptional regulatory network (TRN) and the
genome-scale metabolic network (GSMN) (Fig. 1A).

2.1.1 Regulatory strength matrix
The regulatory strength matrix (RS) is a 7 x 7 matrix of regulatory
strength coefficients for a set of 72 TRs in the TRN and a set of n

reactions in the GSMN. To construct the regulatory strength matrix,
structures of both TRN and GSMN are required, together with gene
expression compendium data. Firstly, the regulatory strength of
each TR-gene interaction (RS;; denotes the interaction between TR i
and gene j) in the TRN is defined as follows:

RS,‘,‘ = ﬁi/' |1’,‘,‘| (1)

where 7;; is Pearson’s correlation coefficient for the gene expression
profiles of TR i and gene j, and f;; is a sign of regulation which is set
to +1 and —1 for activating and repressing interactions, respect-
ively. Then, the TR-gene regulatory strength (RS;;) is mapped to gen-
erate the TR-reaction regulatory strength (RS;, for TR 7 and reaction
k) by using the gene—protein-reaction (GPR) association rules in the
GSMN. An example of the GPR mapping process involving an en-
zyme complex is illustrated in Figure 1B. For instance, if TR i con-
trols multiple genes (j and j’) that constitute an enzyme complex
which catalyzes reaction k, the TR-gene regulatory strengths (RS;;
and RS;;) are averaged to yield the regulatory strength coefficient
for TR-reaction (RS;z). Similarly, for a TR controlling multiple iso-
zymes for a reaction, TR-gene regulatory strengths for isozymes are
also averaged to yield a TR-reaction regulatory strength. It should
be noted that considering average operator rather than minimum
(for enzyme complexes) and maximum (for isozymes) operators,
which are often used for mapping transcriptomic or proteomic data,
is more appropriate for mapping regulatory strengths. First of all, a
gene with minimal or maximal regulatory strengths cannot be re-
garded as decisive gene for reaction activity. In addition, all the
regulatory effects of a TR on metabolic gene expression can be con-
sidered simultaneously by using average operator, still reserving any
non-minimal and non-maximal values.

Note that the regulatory strength defined herein is an overall
regulatory strength of a TR on a gene/reaction across various nutri-
tional and environmental conditions where gene expression profiling
experiments were conducted. The gene expression datasets for di-
verse conditions could provide more relevant estimates of regulatory
strengths than using the data only from specific conditions. For ex-
ample, consider an anaerobic TR and its target genes which are all
active under anaerobic conditions. When only examining gene ex-
pression data for anaerobic conditions, correlations between the TR
and target genes are not evident since they are always active and not
differentially expressed for the given datasets. However, the datasets
from both anaerobic and aerobic conditions make the correlations
evident as the expression patterns of the TR and target genes change
together. Therefore, various data in gene expression compendium
should be used to build the regulatory strength matrix which in re-
sult does not represent condition-specific regulatory strengths of the
TRs. It should also be noted that the interactions and hierarchies of
TRs have been neglected for simplification. However, the effects of
TR-TR interactions and hierarchies might be partially reflected in
the regulatory strength matrix through the use of gene expression
compendium.

2.1.2 Flux slope vector

The flux slope vector (gqiope) is a vector of # flux slopes, which quan-
titatively describes the beneficial effects of the 7 reactions in the
GSMN for target chemical production. The concept of the flux slope
and its calculation procedure are adopted from F(V)SEOF which is
an algorithm for searching metabolic gene overexpression targets
(Choi et al., 20105 Park et al., 2012). Firstly, the following flux bal-
ance analysis (Orth ez al,, 2010) problems, formulated as linear
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Fig. 1. Schematic representation of BeReTa algorithm. (A) BeReTa uses models of TRN and GSMN together with expression compendium data to calculate bene-
ficial scores of TRs for the production of target compounds. Beneficial scores can be calculated from multiplication of the regulatory strength matrix and the flux
slope vector. (B) The regulatory strength matrix is calculated by the mapping of regulatory strength coefficients through the structures of TRN and GSMN (TR,
transcriptional regulator; G, gene; E, enzyme; R, reaction). (C) The flux slope vector is calculated by using flux balance analysis with constraints for different levels
of target chemical production. Linear regression is used to estimate flux slopes. (D) A permutation test was introduced to calculate the significance of the benefi-

cial scores

programming (LP) problems, are solved serially for different values
of integer [ (I=0,1,2, ..., L):

max i
v
subject to
N-v=0 (2)
a<v<b (3)
! min ! max
Uproduct = 1- Z * Uproduct + Z * Uproduct 4)

where N is the stoichiometric matrix derived from the GSMN, v is a
flux vector, a is a vector of lower flux bounds, and b is a vector of
upper flux bounds. In the standard flux balance analysis, an object-
ive function is maximized or minimized under the mass balance con-
straints given by Equation (2), together with thermodynamic and
mechanistic constraints in Equation (3). For calculating the flux
slope, the rate of biomass formation (u) is maximized as an objective
function with the additional constraint in Equation (4) which en-
forces a fixed flux through the product reaction (vpoduce). The flux
through the product reaction is increased from its minimal (/ = 0) to
maximal (/ = L) values, so that L + 1 LP problems should be solved

iteratively. For each LP problem, flux vectors, which satisfy the opti-
mality, are further selected for parsimonious enzyme usage (Lewis
et al., 2010). Then, flux slopes are obtained by linear regression be-
tween absolute reaction fluxes and product fluxes from the L+1
flux vectors with varying degrees of product fluxes (Fig. 1C).
Finally, the flux slope vector is constructed by replacing the negative
values of the flux slopes with zeros to only take into account of
beneficial effects of reactions on target chemical production, and
disregard negative effects of reactions on cell growth. This proced-
ure is required to avoid the prediction of biased targets toward
growth-associated TRs since most of the growth-associated reac-
tions have large negative flux slopes regardless of types of target
products. Therefore, the negative values of the flux slopes should be
substituted to predict relevant TR targets specific to the target
product.

By the definition of flux slope, increasing fluxes through the re-
actions with high flux slopes is necessary, although often not suffi-
cient, for increasing product flux. Note that the reactions with large
flux slopes can be more beneficial for increasing product flux, as
they are more sensitive to the enforced product flux than the reac-
tions with smaller flux slopes (Park ez al., 2012). In addition, it is
important to note that the flux slope vector is condition-specific
since some of the nutritional and environmental conditions such as
substrate uptake rates and oxygen availability are included in the
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lower and upper flux bounds, a and b, in Equation (3). Minimal and
maximal product fluxes were calculated by flux balance analysis
with objective functions that minimize and maximize product for-
mation, and L = 20 was the value used for the study. Gurobi
(Gurobi Optimization, http://www.gurobi.com) was used as the op-
timization solver for LP problems.

2.1.3 Beneficial score
Beneficial score (S) is defined as follows:

Si = Z RS - Gslope.k = [RS : qslopc}i &)
k

The beneficial score for TR i (S;) is the sum of the products of
regulatory strengths (RS;;) and flux slopes (gsiope,z) of its target reac-
tions. Simply, multiplication of the regulatory strength matrix (RS)
and the flux slope vector (gsiope) yields beneficial scores for all TRs
in the TRN for target chemical production (Fig. 1A). Clearly, a TR
with high regulatory strengths for its target reactions with high flux
slopes will get high beneficial scores in Equation (5).

A transcriptional activator (repressor) which regulates at least one
beneficial reaction, i.e. the reaction with positive flux slope, should
have positive (negative) beneficial score, since the sign of beneficial
score is only dependent on the signs of regulatory strengths which are
all positive (negative) for transcriptional activator (repressor). For a
dual regulator which has both activating and repressing interactions,
beneficial score will be positive (negative) if its activating (repressing)
effects are stronger than repressing (activating) effects. Therefore, a
TR with positive (negative) beneficial score can be considered as an
overexpression (knockout or downregulation) target.

Note that manipulating TRs with large absolute beneficial scores
would be more effective for increasing product flux than manipulat-
ing TRs with smaller scores for the same target product. However,
comparison of beneficial scores of TRs for different target products
is often meaningless since theoretical maximum beneficial scores for
each chemical, a case where regulatory strengths are equal to one
for all reactions meaning that a TR manipulation is maximally ef-
fective for increasing product flux, are largely different. It is also
noteworthy to mention that the beneficial score defined herein does
not have any further biologically meaningful interpretation as we
employed correlation coefficients to define the regulatory strengths.

2.1.4 Permutation test
The beneficial score defined in Equation (5) is not normalized by the
number of targets of the TR, and thus TRs with many targets, i.e. glo-
bal regulators, usually receive higher scores than the TRs with a small
number of targets. Consider two TRs, that one is a global TR control-
ling 100 target reactions among which only two reactions are benefi-
cial while the other is a local TR controlling only one reaction which
is beneficial. If the values of regulatory strengths and flux slopes are
identical for both cases, the beneficial score of the global TR will be
twice as large as that of the local TR. However, it is evident that the
local TR is more likely to be related to target chemical production
than the global TR. Furthermore, perturbations in the 98 non-
beneficial reactions by manipulating the global TR might induce great
detrimental effects on cell growth and target chemical production.

To deal with this problem, a permutation test was introduced to
calculate the significance of the beneficial scores (Fig. 1D). The flux
slope vector (gsiope) Was permuted 10 000 times to yield 10 000 per-
flir;;md), and the corresponding 10 000
permuted beneficial scores (SPermuted)

muted flux slope vectors (¢
were obtained. The P-value
was defined as the number of permuted beneficial scores greater

(smaller) than the non-permuted beneficial score divided by the
number of permutations for TRs with positive (negative) beneficial
scores. Note that only gene-associated reactions were considered for
permutation, i.e. exchange reactions and orphan reactions were
excluded from the permutation.

2.1.5 Target criteria
We set up the following criteria for the selection of TR manipulation
targets for target chemical production.

1. The TR should have a non-zero beneficial score.
The P-value of the beneficial score should be <0.05.

3. The TR should have two or more effective (beneficial) gene/reac-
tion targets.

4. At least 10% of the target metabolic genes of the TR should be
beneficial, i.e. have positive flux slopes.

The third criterion was introduced to select meaningful TR ma-
nipulations which can simultaneously change the expression of mul-
tiple genes and reactions, and thus could perform better than single
enzyme manipulations. The fourth criterion was applied to rule out
TRs which regulates mostly non-beneficial reactions to prevent un-
expected detrimental effects on cell growth and target chemical pro-
duction. Finally, TRs with positive (negative) beneficial scores were
designated as overexpression (knockout/downregulation) targets if
the TRs had passed all the criteria.

2.2 Network models and datasets

Using the BeReTa algorithm, we predicted TR manipulation targets
for the production of various chemicals in E.coli, and antibiotics in
S.coelicolor. The network models and datasets used for the predic-
tions are summarized in Table 1.

2.2.1 Genome-scale metabolic network

The most recent version of the E.coli GSMN, iJO1366 (Orth et al.,
2011), was used for making BeReTa predictions. To simulate the
production of non-native chemicals in E.coli, experimentally vali-
dated heterologous pathway reactions were obtained from litera-
ture, and implemented into {JO1366 (Supplementary Table S1). For
simulating antibiotics production in S.coelicolor, a recently pub-
lished high-quality GSMN for S.coelicolor, iMK1208 (Kim et al.,
2014), was employed. The glucose uptake rate was constrained to

Table 1. A summary of network models and expression datasets
used for this study

E.coli S.coelicolor
GSMN 1JO1366 iMK1208
Included genes (ORF coverage) 1366 (32%) 1208 (15%)
Reactions 2251 1643
Metabolic/transport 1473/778 1443/200
Gene associated/no gene 2088/128/35 1376/238/29
associated/spontaneous
Exchange reactions 332 216
Metabolites 1136 1246
TRN RegulonDB Correlation
network
Included TRs 180 389
Regulatory interactions 3672 10 000
Expression compendium COLOMBOS COLOMBOS
Genes 4294 7767
Conditions 2470 371
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10mmol gDCW ™! h™! to simulate chemical production from glu-
cose. Additional details on the model simulations are available in
Supplementary Table S1.

2.2.2 Transcriptional regulatory network

The E.coli TRN was obtained from RegulonDB (Gama-Castro
et al., 2016), version 9.0 in October 2015 (http://regulondb.ccg.
unam.mx). A total of 3672 interactions with both strong and weak
confidence levels involving 180 single TRs were used for the predic-
tions. RegulonDB also provides information on the regulatory
modes of the interactions, such as activator, repressor, dual or un-
known. For dual and unknown modes of interactions, regulatory
modes were reassigned as activator or repressor according to the
sign of Pearson’s correlation coefficients between the gene expres-
sion profiles of the TR and the target gene.

Although RegulonDB is a curated primary reference database for
the regulatory network of the best-studied organism, such a data-
base does not exist for S.coelicolor. Therefore, we generated a rele-
vance network for S.coelicolor using the expression compendium.
The inferred TRN consists of 10 000 edges that are ranked based on
the absolute values of Pearson’s correlation coefficients, which is a
method shown to perform fairly well (Marbach et al., 2012). 389
TRs in total are included in the inferred S.coelicolor TRN.

2.2.3 Expression dataset

The gene expression compendia for E.coli and S.coelicolor were ob-
tained from the COLOMBOS database (Meysman et al., 2014), ver-
sion 2.0 in October 2015 (http://www.colombos.net). The

Dihydroxyacetone P TR1 TR2 TR3 TR4

lucose
(R)-1,2-Propanediol cra 9

COLOMBOS database provides re-normalized cross-platform gene
expression compendia which are derived from public resources
including Gene Expression Omnibus and ArrayExpress. The sizes of
the expression compendia are summarized in Table 1.

3 Results

3.1 Production of chemicals in E.coli

E.coli is one of the most frequently employed organisms for the
industrial production of various chemicals owing to its well-
characterized metabolism and regulation, and ease of genetic modi-
fication and maintenance. Accordingly, E.coli is the best option for
demonstrating and validating the predictive power of the BeReTa al-
gorithm, as there exist high-quality models of metabolism and regu-
lation which enable the reliable prediction of TR targets, and
substantial literature describing the metabolic engineering strategies
for the validation. Using the network models and datasets for E.coli
listed in Table 1, TR manipulation targets for 22 native and 16 non-
native compounds were identified by BeReTa. Four top-scoring TR
manipulation targets for each chemical ranked by the absolute val-
ues of beneficial scores are shown in Figure 2. Detailed results
including the values of beneficial scores and P-values are available
in Supplementary Table S2.

Validating the predictions of the BeReTa algorithm, metabolic
engineering strategies, which include the predicted TR manipula-
tions, could be found for 12 of 38 simulated chemicals covering
both native (7 of 22) and non-native (5 of 16) compounds. Although
the majority of validated TR targets are involved in the biosynthesis
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Fig. 2. BeReTa predictions for the production of various chemicals in E.coli. Four top-scoring TR manipulation targets for each chemical ranked by absolute values
of beneficial scores are shown. TRs in green boxes are overexpression targets, whereas TRs in red boxes are knockout or downregulation targets. Manipulations
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of amino acids and their simple derivatives, previous studies sup-
porting the predictions for other classes of chemicals are also avail-
able. For example, fadR overexpression was correctly predicted as
the top-scoring strategy for fatty acid overproduction (Zhang et al.,
2012). Furthermore, fnr deletion and arcA deletion were also prop-
erly suggested for the overproduction of two non-native compounds
from acetyl-CoA, 1-butanol and 1,4-butanediol, respectively
(Atsumi et al., 2008; Yim et al., 2011). These examples also clearly
demonstrated that BeReTa algorithm can appropriately evaluate the
effects of manipulating global/pleiotropic TRs.

The most promising example that shows the predictive power
and utility of BeReTa is the case study of L-arginine production. As
shown in Figure 2, BeReTa identified ArgR, TdcA, ArgP, and Rob
as TR manipulation targets for increasing arginine production. The
compositions of beneficial scores for the regulators, i.e. associated
flux slopes and regulatory strengths, along with arginine pathway
structure are given in Supplementary Figure S1. ArgR and ArgP are
directly related to the arginine biosynthesis as ArgR controls entire
arginine biosynthetic pathway while ArgP controls arginine secre-
tion and glutamate formation. Meanwhile, TdcA and Rob are
involved in precursor supply as TdcA controls generation of acetyl-
CoA, and Rob controls TCA cycle for providing glutamate and pen-
tose phosphate pathway for NADPH supply. Interestingly, among
these manipulations, argR deletion and argP upregulation can be
found in an arginine-producing E.coli strain which was recently de-
veloped by Ginesy and coworkers (Ginesy ez al., 2015). As wild-type
E.coli strains do not excrete any arginine, they first constructed a
base strain for arginine production by deleting argR and three other
genes (adiA, speC and speF) which are responsible for degrading ar-
ginine and ornithine. To further increase arginine production, they
overexpressed feedback-resistant, thus constitutively active, argP
and argA (N-acetylglutamate synthase) alleles, thereby engineering
the final arginine-overproducing strain with high productivity. The
comparison of these experimental results and our predictions shows
that the BeReTa algorithm could not only identify multiple valid TR
manipulation targets, but also assign higher scores (ranks) to more
significant TR manipulations. Moreover, BeReTa provides an easier
way to discover novel metabolic engineering strategies such as argP
overexpression, which was originally identified through expensive
and labor-intensive classical random mutagenesis study.

Finally, it is noteworthy to mention that the predicted TR ma-
nipulations for the products synthesized from the same precursors
are similar. For example, TyrR deletion was consistently predicted
for the production of shikimate-derived chemicals except trypto-
phan. Accordingly, actual metabolic designs including TyrR deletion
or inactivation can be found for four of the chemicals, tyrosine, phe-
nol, styrene, and p-hydroxystyrene (Supplementary Table S1).
Likewise, ArgP upregulation for oxaloacetate-based chemicals and
PurR deletion/inactivation for ribulose 5-phosphate-based chemicals
were predicted. Interestingly, no TR manipulation targets were iden-
tified for dihydroxyacetone phosphate-derived chemicals, except
Cra downregulation for 1,2-propanediol production.

3.2 Production of antibiotics in S.coelicolor

Streptomyces are biotechnologically important bacteria, as they pro-
duce various secondary metabolites including many of the currently
used antibiotic drugs (Bentley et al., 2002). To examine whether
BeReTa can be applied for the identification of TR manipulation tar-
gets in such less-studied organisms, we applied BeReTa for the pro-
duction of antibiotics in S.coelicolor, a model species of Streptomyces.
Here, it should be noted that the correlation network derived from

the expression compendium data was used for making the predic-
tions, since a high-quality TRN model does not exist for this organism
(Table 1). The predicted TR targets for three antibiotics produced by
S.coelicolor, actinorhodin (ACT), undecylprodiginine (RED), and
calcium-dependent antibiotic (CDA), are shown in Figure 3. Details
of the predictions, including beneficial scores, P-values and lists of tar-
get reactions are available in Supplementary Table S3.

BeReTa identified both known and novel TR manipulation targets
for increasing the production of antibiotics in S.coelicolor. First,
cluster-situated regulators (CSRs) were correctly suggested as top-
scoring overexpression targets. Overexpression of ActIl-ORF
(SCO5085) for ACT production and RedD (SCO5877), RedZ
(SCO5881) for RED production were predicted. However, CdaR, a
CSR for the CDA biosynthetic gene cluster, was not identified as a
TR manipulation target for CDA production. Interestingly, RedD was
also predicted as an overexpression target for increasing ACT produc-
tion, which might indicate cross-regulation of CSRs across different
secondary metabolite biosynthetic gene clusters (Huang ez al., 2005).

AbsR1 (SC0O6992) is a novel overexpression target predicted by
BeReTa for increasing both ACT and RED productions. AbsR1 is a
fascinating target since it can control both primary and secondary me-
tabolisms (Supplementary Table S3). Furthermore, there is also a report
describing the effects of AbsR1 deficiency on the reduced production of
ACT and RED (Park er al., 2000). Therefore, it will be interesting to
experimentally investigate the effects of AbsR1 overexpression as well.

3.3 Comparison of BeReTa with OptORF

We compared BeReTa with OptORF (Kim and Reed, 2010), an
existing method which can predict TR manipulation targets using
integrated metabolic/regulatory models. A key difference between
BeReTa and OptOREF is that OptOREF relies on actual flux predic-
tion for TR mutants by using the integrated models to find target
genes, whereas BeReTa focuses on using statistical correlations and
flux slopes as proxy for effects of TR manipulations instead of pre-
dicting flux distribution in TR mutants. As a result, BeReTa has
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L-Proline
L-Serine

Glycine

(}gﬁ}'
= 2

220z 1snBny 9| U0 19nB Aq 6I9GZSZ//8/1L/EE/RIOILE/SONBULIOJUIOIG/WOD dNO"DlWSPEDE.//:SANY WOI) PIPEO|UMOQ

Acetyl-CoA Acetyl-CoA CnH
Amino acids
(L-tryptophan, ACT
Lyl ) SCO5877
CDA

SCO5881

SCO5085 SC06992

& Y"\w\
03
' &
i
LI 'S_x',,{i* .

I overexpression [l Knockout/downregulation

SCO06992

SCO5877 SCO7817

21008 [E101J3UB] BINIOSAY

$CO5082 SC03907 A 4

Fig. 3. BeReTa predictions for the production of antibiotics in S.coelicolor.
S.coelicolor produces actinorhodin (polyketide, ACT), undecylprodiginine
(prodiginine, RED), and calcium-dependent antibiotic (nonribosomal peptide,
CDA). Predicted TR targets were sorted by absolute values of beneficial
scores. TRs in green boxes are overexpression targets, whereas TRs in red
boxes are knockout or downregulation targets
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Table 2. A comparison of BeReTa with OptORF

OptORF (Kim and Reed, 2010)

BeReTa (This study)

Requirements Integrated metabolic and regulatory model

Unintegrated metabolic and regulatory model
Multiple gene expression data

Type of prediction Knockout of TRs together with knockout and Knockout/downregulation and upregulation of TRs
upregulation of metabolic genes
Type of optimization MILP Lp
problem
Example of prediction Strategy Yield Strategy Beneficial score
Anaerobic ethanol AarcA Apgi 83.5% ApdhR —0.668
production in Afur AgntR ApfiB AtdcE AtpiA 86.2% (1)fur 0.355
E.coli Afnr ApfIB AtdcE Apgi (1)edd 86.2% Acra —0.186
Afnr ApflB AtdcE Apgi AptsH (1)edd (1)fbp 90.4% AgntR -0.114
AarcA Apta AeutD AtpiA AptsH (1)edd 91.6% AkdgR ~0.111
Anaerobic isobutanol AadhE AgniR Apgi 93.8% AgntR —0.054
production in AadbE ApntA AgdhA (1)edd (1)fbp 95.5% AkdgR ~0.052

E.coli

The advantageous features and predicted TR targets are highlighted in bold

several advantages over OptORF (Table 2). First, BeReTa has wider
applicability than OptOREF as it can use unintegrated models of me-
tabolism and regulation while OptORF requires the integrated one.
Reconstruction of integrated metabolic/regulatory model demands
extensive manual work and additional information for generating a
well-defined set of Boolean logical rules for genes in TRN (Vivek-
Ananth and Samal, 2016). Defining the Boolean logical rules is ex-
tremely difficult and time-consuming process which requires bio-
chemical and genetic knowledge such as TR hierarchies, effector
molecules for TRs, and phenotype of TR mutants. Thus, integrated
models are only available for very few best-studied model organ-
isms. Obviously, thus, OptORF is not applicable for S.coelicolor at
this moment. Second, BeReTa has unique ability to predict TR tar-
gets for upregulation. Meanwhile, OptORF is not able to predict TR
overexpression targets since it uses Boolean approximation which
assumes only two states of the genes, presence and absence. Lastly,
BeReTa needs far less computational power than OptORF as
BeReTa only solves LP problems while OptORF solves mixed-
integer linear programming (MILP) problems.

However, BeReTa also has some drawbacks compared with
OptOREF. First, BeReTa requires multiple gene expression data as an
additional input. Therefore, the applicability of BeReTa relies on
sufficient amount and good quality of data for inferring regulatory
strengths. In addition, BeReTa is not able to provide product flux or
yield expected for the mutant, as opposed to OptORF. Finally,
BeReTa cannot predict combined effects of manipulating multiple
TRs and metabolic genes, while OptORF can as shown in the ex-
amples of the predictions in Table 2. Nevertheless, BeReTa provides
more options for TR manipulations including TR targets for upregu-
lation, whereas OptORF predicts TR targets among the set of fre-
quently found TR deletion strategies (Kim and Reed, 2010).

The other method (Vilaca ez al., 2011), which is also able to pre-
dict TR manipulation targets using integrated models, is similar to
OptORF while it uses meta-heuristics to perform the task, and has
similar features to OptORF.

4 Discussion

To shift the microbial metabolism towards productions of a desired
chemicals, a system-wide engineering of regulatory and metabolic net-
works is required. Advances in modern systems biology tools, e.g.

. The gene targets for upregulation are denoted with (1) symbol.

high-throughput sequencing techniques and automated genome anno-
tation tools, have enabled the comprehensive reconstruction of biolo-
gical networks for diverse microbes. Computational strain design
algorithms were then developed to make use of such reconstructed
networks for the system-wide identification of engineering targets.
However, until now, only metabolic networks are commonly used by
the algorithms except for a few cases (King et al., 2015). In this study,
we devised the BeReTa algorithm to fully exploit both metabolic and
regulatory networks for identifying important TR manipulation tar-
gets. Through the E.coli and S.coelicolor case studies, we demon-
strated that BeReTa can identify both known and novel TR
manipulation targets for the production of various chemicals. It can
not only predict and rank plausible TR manipulation targets but also
properly evaluate the effect of global/pleiotropic TR manipulations
on the production of desired chemical. To the best of our knowledge,
BeReTa is the first strain design algorithm exclusively designed for
predicting TR manipulation targets. As we have identified various TR
manipulation targets for a variety of chemicals, it will be interesting
to experimentally investigate the effects of such manipulations.

Integrated metabolic/regulatory models together with appropriate
simulation methods can be used for predicting beneficial genetic modi-
fications at the regulatory level for metabolic engineering (Imam et al.,
2015). However, integrated metabolic/regulatory models are only
available for very few organisms owing to the extensive manual work
and information required to define Boolean regulatory logic for each
regulatory interaction. Although probabilistic regulation of metabol-
ism (PROM) (Chandrasekaran and Price, 2010) had been developed
for the automatic generation of integrated metabolic/regulatory mod-
els, PROM models are still not appropriate for simulating TR overex-
pression and cannot handle activating and repressing interactions
simultaneously. Considering these limitations, BeReTa was designed
to avoid the use of integrated metabolic/regulatory models. As a result,
BeReTa can be widely applicable for not only the best-studied but also
less-studied organisms as long as enough transcriptomic data do exist,
and it accounts for both activating and repressing interactions for pre-
dicting overexpression and knockout/downregulation targets.

Despite the success of our new algorithm, performance of BeReTa
can be further improved in some aspects. Firstly, regulatory strength
can be defined in different ways rather than using Pearson’s correl-
ation coefficients. For example, the connectivity strength calculated
from network component analysis (Liao et al., 2003) can be an
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alternative option to test. Secondly, the coupling of BeReTa and the
state-of-the-art methods for inferring TRNs (Marbach et al., 2012)
would provide somewhat different, but improved predictions. For the
best-studied organisms, use of the inferred TRN might provide differ-
ent hypotheses that are based on novel inferred interactions which are
not documented in primary reference databases of regulatory net-
works. On the other hand, for the less-studied organisms, using TRNs
inferred by better inference methods would result in better predictions
than the simple and well-performing correlation-based method used
in this study. Finally, the current version of BeReTa is not able to pre-
dict combinatorial effects of simultaneous manipulations of TR and
metabolic genes, or multiple TR targets. Future work may enable the
prediction of a set of TR and metabolic gene targets with a maximal
combinatorial effect on target chemical production.
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