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Abstract. By using Hardy-Hilbert’s inequality, some power inequalities for the Berezin number of a self-
adjoint operators in Reproducing Kernel Hilbert Spaces (RKHSs) with applications for convex functions
are given.
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where the constant factor
π

sin
(
π/p

) is the best possible. The equivalent form of (1) is as follows:
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<
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) ]p ∞∑
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where the constant factor
[

π
sin(π/p)

]p
is the best possible. The equivalent integral analogues of (1) and (2) are

as follows:
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∞∫
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0
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Inequalities (1) and (3) are called the Hardy-Hilbert’s inequality and Hardy-Hilbert’s integral inequality,
respectively (see [12, 21]).

The Hardy-Hilbert inequalities and their applications have been studied by many authors in operator
theory. For more information about the Hardy-Hilbert inequalities and its consequences, see [5, 8, 10, 11,
16, 17] and references therein.

Recall that a reproducing kernel Hilbert space (shorty, RKHS) is the Hilbert spaceH = H(Ω) of complex-
valued functions on some set Ω such that:

(a) the evaluation functional f → f (λ) is continuos for each λ ∈ Ω;
(b) for any λ ∈ Ω there exists fλ ∈ H such that fλ(λ) , 0.
Then by the classical Riesz representation theorem for eachλ ∈ Ω there exists a unique function kH ,λ ∈ H

such that f (λ) =
〈

f , kH ,λ
〉

for all f ∈ H . The function kH ,λ is called the reproducing kernel of the space H .
It is well known that (see [3, 18])

kH ,λ (z) =

∞∑
n=0

en (λ)en (z)

for any orthonormal basis {en (z)}n≥0 of the spaceH (Ω) .Let k̂H ,λ =
kH ,λ
‖kH ,λ‖

denote the normalized reproducing

kernel of the space H (note that by (b), we surely have kλ , 0). For a bounded linear operator A on the
RKHSH , its Berezin symbol Ã is defined by the formula (see [4])

Ã(λ) :=
〈
ÂkH ,λ, k̂H ,λ

〉
H

(λ ∈ Ω).

The Berezin symbol is a function that is bounded by the numerical radius of the operator. On the most
familiar RKHS, the Berezin symbol uniquely determines, that is, Ã(λ) = B̃(λ) for all λ implies A = B. (For
applications in the various questions of analysis of Berezin symbols see, for instance, [14, 15]).

Berezin set and Berezin number of operator A are defined by (see Karaev [13])

Ber (A) := Ran1e
(
Ã
)

=
{
Ã (λ) : λ ∈ Ω

}
and

ber (A) := sup
{∣∣∣∣Ã (λ)

∣∣∣∣ : λ ∈ Ω
}
,

respectively.
Recall that W (A) :=

{〈
A f , f

〉
:
∥∥∥ f

∥∥∥
H

= 1
}

is the numerical range of the operator A and

w (A) := sup
{∣∣∣〈A f , f

〉∣∣∣ :
∥∥∥ f

∥∥∥
H

= 1
}

is the numerical radius of A. It is trivial that

Ber (A) ⊂W (A) and ber (A) ≤ w (A) ≤ ‖A‖

for any A ∈ B (H) . More information about the numerical radius and numerical range can be found, for
example, in [1, 2, 6, 7, 9, 19, 20].

It is open question in the literature whether the inequalities

ber (An) ≤ (ber (A))n , (n ≥ 2)
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and

(ber (A))n
≤ C (ber (An)) , (n < 1) (4)

are hold. The questions are partially solved by Garayev et al. [8]. However, this inequalities are not
known for convex functions. So, in this article, we partially solve (4) for convex functions and some special
operators in RKHS.

2. The Main Results

In the following result, we prove an inequality similar to (1) for convex functions and self-adjoint
operators acting on a RKHSH = H(Ω).

Theorem 2.1. Let f , 1 : J→ [0,∞) be convex functions. If p, q > 1,
1
p

+
1
q

= 1, then

1
2

f (Ã(λ))1(Ã(λ)) +
1
3

f (Ã(λ))1
(
B̃
(
η
))

+
1
3

f
(
B̃
(
η
))
1(Ã(λ)) +

1
4
˜f (B) 1 (B)

(
η
)

<
π

sin
(
π/p

) (
1
p

(
f̃ p (A) (λ) + f̃ p (B)

(
η
))

+
1
q

(
1̃q (A) (λ) + 1̃q (B)

(
η
)))

for any self-adjoint operators A,B ∈ B (H) with spectrum contained in J and all λ, η ∈ Ω.

Proof. Let a1, a2, b1, b2 be positive scalars. Then using (1), we obtain

a1b1

2
+

a1b2

3
+

a2b1

3
+

a2b2

4
<

π

sin
(
π/p

) (
ap

1 + ap
2

)1/p (
bq

1 + bq
2

)1/q
. (5)

Let x, y ∈ J. By taking into consideration that f , 1 ≥ 0 and placing a1 = f (x), a2 = f
(
y
)
, b1 = 1 (x), b2 = 1

(
y
)

in (5), we have

1
2

f (x)1(x) +
1
3

f (x)1(y) +
1
3

f (y)1(x) +
1
4

f (y)1(y) (6)

<
π

sin
(
π/p

) (
f p (x) + f p (

y
))1/p (

1q (x) + 1q (x)
)1/q

for all x, y ∈ J. Putting x =
〈
ÂkH ,λ, k̂H ,λ

〉
in (6), we have

1
2

f (
〈
ÂkH ,λ, k̂H ,λ

〉
)1(

〈
ÂkH ,λ, k̂H ,λ

〉
) +

1
3

f (
〈
ÂkH ,λ, k̂H ,λ

〉
)1(y) +

1
3

f (y)1(
〈
ÂkH ,λ, k̂H ,λ

〉
) +

1
4

f (y)1(y)

<
π

sin
(
π/p

) (
f p

(〈
ÂkH ,λ, k̂H ,λ

〉)
+ f p (

y
))1/p (

1q
(〈

ÂkH ,λ, k̂H ,λ
〉)

+ 1q (y))1/q

for all λ ∈ Ω and any y ∈ J. Applying the functional calculus for B to the above inequality (since B is
self-adjoint operator), we have

1
2

f (Ã(λ))1(Ã(λ)) +
1
3

f (Ã(λ))
〈
1 (B) k̂H ,η, k̂H ,η

〉
+

1
3

〈
f (B) k̂H ,η, k̂H ,η

〉
1(Ã(λ)) +

1
4

〈
f (B) 1 (B) k̂H ,η, k̂H ,η

〉
<

π

sin
(
π/p

) 〈(
f p

(
Ã(λ)

)
+ f p (B)

)1/p (
1q

(
Ã(λ)

)
+ 1q (B)

)1/q
k̂H ,η, k̂H ,η

〉
for all λ, η ∈ Ω.
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This shows that

1
2

f (Ã(λ))1(Ã(λ)) +
1
3

f (Ã(λ))1̃ (B)
(
η
)

+
1
3

f̃ (B)
(
η
)
1(Ã(λ)) +

1
4
˜f (B) 1 (B)

(
η
)

(7)

<
π

sin
(
π/p

) [(
f p

(
Ã(λ)

)
+ f p (B)

)1/p (
1q

(
Ã(λ)

)
+ 1q (B)

)1/q
]̃ (
η
)

From the convexity of f and 1, we obtain that

f
(〈

B̂kH ,η, k̂H ,η
〉)
≤

〈
f (B) k̂H ,η, k̂H ,η

〉 (
or f

(
B̃
(
η
))
≤ f̃ (B)

(
η
))

and

1
(〈

B̂kH ,η, k̂H ,η
〉)
≤

〈
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〉 (
or 1

(
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(
η
))
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(
η
))
.

Thus,

1
2

f (Ã(λ))1(Ã(λ)) +
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f (Ã(λ))1̃ (B)
(
η
)

+
1
3

f̃ (B)
(
η
)
1(Ã(λ)) +

1
4
˜f (B) 1 (B)

(
η
)

(8)

≥
1
2

f (Ã(λ))1(Ã(λ)) +
1
3

f (Ã(λ))1
(
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(
η
))

+
1
3

f
(
B̃
(
η
))
1(Ã(λ)) +

1
4
˜f (B) 1 (B)

(
η
)
.

The convexity of f and 1 and the power functions xr (r ≥ 1) follow that

f p
(
Ã(λ)

)
≤ f̃ p (A) (λ) ,

1q
(
Ã(λ)

)
≤ 1̃q (A) (λ) .

Hence(
f p

(
Ã(λ)

)
+ f p (B)

)1/p (
1q

(
Ã(λ)

)
+ 1q (B)

)1/q
(9)

≤

(
f̃ p (A) (λ) + f p (B)

)1/p (
1̃q (A) (λ) + 1q (B)

)1/q
.

Since the operators f̃ p (A) (λ) + f p (B) and 1̃q (A) (λ) + 1q (B) commute, we get from the arithmetic-geometric
mean inequality that(

f̃ p (A) (λ) + f p (B)
)1/p (
1̃q (A) (λ) + 1q (B)

)1/q
(10)

≤
1
p

(
f̃ p (A) (λ) + f p (B)

)
+

1
q

(
1̃q (A) (λ) + 1q (B)

)
.

Combining the above (9) and (10) we have[(
f p

(
Ã(λ)

)
+ f p (B)

)1/p (
1q

(
Ã(λ)

)
+ 1q (B)

)1/q
]̃ (
η
)

≤
1
p

(
f̃ p (A) (λ) + f̃ p (B)

(
η
))

+
1
q

(
1̃q (A) (λ) + 1̃q (B)

(
η
))
.

So, we have desired result from (7) , (8) and (10).

Corollary 2.2. Let f : J→ [0,∞) be a convex function. Then we have[
f (ber (A))

]2 <
[12

7
π −

3
14

]
ber

(
f 2 (A)

)
for any self-adjoint operators A ∈ B (H) with spectrum contained in J.
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Proof. In particular, for B = A, 1 = f , µ = η and p = q in Theorem 2.1, we obtain

7
6

[
f (Ã(λ))

]2
<

[
2π −

1
4

]
f̃ 2 (A) (λ)

and hence[
f (Ã(λ))

]2
<

[12
7
π −

3
14

]
f̃ 2 (A) (λ)

for all λ ∈ Ω. Since
[

f (Ã (λ))
]2
≥ 0 and f̃ 2 (A) (λ) ≥ 0, we get

[
f (Ã(λ))

]2
<

[12
7
π −

3
14

]
sup
λ∈Ω

f̃ 2 (A) (λ) =
[12

7
π −

3
14

]
ber

(
f 2 (A)

)
for all λ ∈ Ω. This implies that

[
f (ber (A))

]2 <
[12

7
π −

3
14

]
ber

(
f 2 (A)

)
for any self-adjoint operators A ∈ B (H) with spectrum contained in J.

Theorem 2.3. Let f : J → [0,∞) be a convex function and A : H(Ω)→H(Ω) be self-adjoint operator on a RKHS
H(Ω) with spectrum contained in J. Then we have[

f (ber (A))
]p < Cber

(
f p (A)

)
.

Proof. By using (3), we obtain for p = 2 that(a1

2
+

a2

3

)p
+

(a1

3
+

a2

4

)p
<

(
π

sin
(
π/p

) )p (
ap

1 + ap
2

)
. (11)

Let x, y ∈ J. Since f (x) ≥ 0 for all x ∈ J, by placing a1 = f (x), a2 = f (y) in (11), we obtain(
f (x)
2

+
f (y)
3

)p

+

(
f (x)
3

+
f (y)
4

)p

<

(
π

sin
(
π/p

) )p (
f p(x) + f p(y)

)
. (12)

By putting x =
〈
ÂkH ,λ, k̂H ,λ

〉
in (12), we get f (

〈
ÂkH ,λ, k̂H ,λ

〉
)

2
+

f (y)
3


p

+

 f (
〈
ÂkH ,λ, k̂H ,λ

〉
)

3
+

f (y)
4


p

<

(
π

sin
(
π/p

) )p (
f p(

〈
ÂkH ,λ, k̂H ,λ

〉
) + f p(y)

)
for all λ ∈ Ω and any y ∈ J.

Applying the functional calculus to the self-adjoint operator B, we get f (
〈
ÂkH ,λ, k̂H ,λ

〉
)

2
+

〈
f (B)̂kH ,µ, k̂H ,µ

〉
3


p

+

 f (
〈
ÂkH ,λ, k̂H ,λ

〉
)

3
+

〈
f (B)̂kH ,µ, k̂H ,µ

〉
4


p

<

(
π

sin
(
π/p

) )p (
f p(

〈
ÂkH ,λ, k̂H ,λ

〉
) +

〈
f p(B)̂kH ,µ, k̂H ,µ

〉)
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and hence f (Ã (λ))
2

+
f̃ (B)

(
µ
)

3

p

+

 f (Ã (λ))
3

+
f̃ (B)

(
µ
)

4

p

(13)

<

(
π

sin
(
π/p

) )p (
f p(Ã (λ)) + f̃ p (B)

(
µ
))

for all self-adjoint operator B and λ, µ ∈ Ω. Since f is convex function, f (B̃
(
µ
)
) ≤ f̃ (B)

(
µ
)(

or f
(〈

B̂kH ,µ, k̂H ,µ
〉)
≤

〈
f (B) k̂H ,µ, k̂H ,µ

〉)
. So, f (Ã (λ))

2
+

f (B̃
(
µ
)
)

3

p

+

 f (Ã (λ))
3

+
f (B̃

(
µ
)
)

4

p

(14)

≤

 f (Ã (λ))
2

+
f̃ (B)

(
µ
)

3

p

+

 f (Ã (λ))
3

+
f̃ (B)

(
µ
)

4

p

.

From the properties of convex function f and power function xr (r ≥ 1), we obtain(
π

sin
(
π/p

) ) ( f p(Ã (λ)) + f̃ p (B)
(
µ
))

(15)

≤

(
π

sin
(
π/p

) )p (
f̃ p (A) (λ) + f̃ p (B)

(
µ
))
.

Together with (13), (14) and (15) , we have f (Ã (λ))
2

+
f (B̃

(
µ
)
)

3

p

+

 f (Ã (λ))
3

+
f (B̃

(
µ
)
)

4

p

<

(
π

sin
(
π/p

) )p (
f̃ p (A) (λ) + f̃ p (B)

(
µ
))
.

Now by replacing A = B, λ = µ above the inequality[(5
6

)p

+
( 7

12

)p] [
f (Ã (λ))

]p
≤ 2

(
π

sin
(
π/p

) )p

f̃ p (A) (λ)

and therefore[
f (Ã (λ))

]p
≤ 2

(
π

sin
(
π/p

) )p [(5
6

)p

+
( 7

12

)p]−1

f̃ p (A) (λ)

for all λ ∈ Ω. Since
[

f (Ã (λ))
]p
≥ 0 and f̃ p (A) (λ) ≥ 0, this inequality implies that

[
f (ber (A))

]p
≤ 2

(
π

sin
(
π/p

) )p [(5
6

)p

+
( 7

12

)p]−1

ber
(

f p (A)
)

for all self-adjoint operator A and λ ∈ Ω. This proves the theorem.
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