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Abstract

Let (L, h) → (X,ω) be a compact toric polarized Kähler manifold of complex dimension n.

For each k ∈ N, the fibre-wise Hermitian metric hk on Lk induces a natural inner product

on the vector space C∞(X,Lk) of smooth global sections of Lk by integration with respect to

the volume form ωn

n! . The orthogonal projection Pk : C∞(X,Lk) → H0(X,Lk) onto the space

H0(X,Lk) of global holomorphic sections of Lk is represented by an integral kernel Bk which

is called the Bergman kernel (with parameter k ∈ N). The restriction ρk : X → R of the norm

of Bk to the diagonal in X ×X is called the density function of Bk.

On a dense subset of X, we describe a method for computing the coefficients of the asymp-

totic expansion of ρk as k → ∞ in this toric setting. We also provide a direct proof of a result

which illuminates the off-diagonal decay behaviour of toric Bergman kernels.

We fix a parameter l ∈ N and consider the projection Pl,k from C∞(X,Lk) onto those global

holomorphic sections of Lk that vanish to order at least lk along some toric submanifold of X.

There exists an associated toric partial Bergman kernel Bl,k giving rise to a toric partial density

function ρl,k : X → R. For such toric partial density functions, we determine new asymptotic

expansions over certain subsets of X as k → ∞. Euler-Maclaurin sums and Laplace’s method

are utilized as important tools for this. We discuss the case of a polarization of CPn in detail

and also investigate the non-compact Bargmann-Fock model with imposed vanishing at the

origin.

We then discuss the relationship between the slope inequality and the asymptotics of

Bergman kernels with vanishing and study how a version of Song and Zelditch’s toric local-

ization of sums result generalizes to arbitrary polarized Kähler manifolds.

Finally, we construct families of induced metrics on blow-ups of polarized Kähler manifolds.

We relate those metrics to partial density functions and study their properties for a specific

blow-up of Cn and CPn in more detail.
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Notation

N0 The natural numbers with 0

H0(X,E) Holomorphic global sections of a holomorphic vector bundle E → X, where X

is a complex manifold

C∞(X,E) Smooth global sections of a smooth vector bundle E → X

zα For z = (z1, · · · , zn) ∈ Cn and α = (α1, · · · , αn) ∈ Rn, zα def
=
∏n
i=1 z

αi
i

whenever this is well-defined.

α! For α = (α1, · · · , αn) ∈ Nn0 , α!
def
=
∏n
i=1 αi!.

|α| For α = (α1, · · · , αn) ∈ Nn0 , |α| def=
∑n
i=1 αi.(

j
α

)
For α = (α1, · · · , αn) ∈ Nn0 , j = |α| and n > 1, we define

(
j
α

) def
= j!

α1!...αn!
.

∂
∂x

α
f ∂

∂x

α
f

def
=
(

∂
∂x1

)α1

◦ · · · ◦
(

∂
∂xn

)αn

f for a smooth function f : Rn → R and

α ∈ Nn0 .
Fh Curvature of the Chern connection corresponding to a Hermitian metric h on

some holomorphic vector bundle E → X over a complex manifold X

Int(P ) Interior of P

RelInt(P ) The relative interior of P

O (k−∞) f(k) = O (k−∞) if and only if, for any n > 0, there exists Cn ≥ 0 such that

|f(k)| ≤ Cnk
−n for all k � 0.

Z(f) The zero set of some function f

g The Lie algebra corresponding to a Lie group G

Mn×n(Z) The vector space of n by n matrices with Z entries

A > 0 For a square matrix A, A > 0 denotes that A is positive definite.
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Chapter 1

Introduction

1.1 Background and motivation

Let X be a compact Kähler manifold of complex dimension n with Kähler form ω. Let L→ X

be a holomorphic line bundle such that ω ∈ 2πc1(L). Up to a constant scale factor, there

exists a unique Hermitian metric h on L such that the curvature Fh of the corresponding Chern

connection ∇h satisfies

ω = iFh.

We call such an arrangement (L, h) → (X,ω) a polarized Kähler manifold. For each k ∈ N, hk

gives a Hermitian fibre-wise inner product

(s(x), ŝ(x))hk ∈ C for x ∈ X and s, ŝ ∈ C∞(X,Lk)

and a global inner product

〈s, ŝ〉hk
def
=

∫
X

(s, ŝ)hk

ωn

n!
for s, ŝ ∈ C∞(X,Lk) and k ∈ N.

We will omit the hk indices if it is clear from the context which power of the line bundle we are

considering. For k ∈ N, let {s1,k, . . . , sNk,k} denote an orthonormal basis of (H0(X,Lk), 〈, 〉hk).

We define the Bergman kernel as

Bk(x, y)
def
=

Nk∑
i=1

si,k(x)⊗ si,k(y) for x, y ∈ X.

Bk is a smooth section of the line bundle π∗
1(L

k)⊗ π∗
2(L

k
) → X ×X, where πi : X ×X → X,

for i ∈ {1, 2}, denotes the projection onto the ith factor. We regard Bk(., y) as a section of Lk

with values in L
k

y and have 〈s,Bk(., y)〉 = s(y) for s ∈ H0(X,Lk) and y ∈ X (see [Ber03]). Bk

can be considered as the integral kernel representing the orthogonal projection Pk from smooth

to holomorphic global sections of Lk.

Pk : C∞(X,Lk) → H0(X,Lk)

Pk(s)(x)
def
=

Nk∑
j=1

〈s, sj,k〉hksj,k(x) = 〈s,Bk(., x)〉

1



Chapter 1. Introduction

for x ∈ X, k ∈ N and s ∈ C∞(X,Lk).

Note that there exists a natural fibre-wise Hermitian norm on π∗
1(L

k)⊗ π∗
2(L

k
) induced by

hk, so that we can talk about |Bk|hk : X ×X → R. The norm of the diagonal of the Bergman

kernel Bk is called the density (of states) function, and we denote it by ρk : X → R. We have

ρk(x)
def
= |Bk(x, x)|hk =

Nk∑
i=1

|si,k(x)|2hk for x ∈ X and k ∈ N.

From a geometrical point of view, ρk is a very interesting function to study. Of particular

interest is the following asymptotic expansion:

Theorem 1.1.1 (Catlin [Cat99], Lu [Lu00], Tian [Tia90], Yau, Zelditch [Zel98]). There is a

complete asymptotic expansion

ρk(x) ∼
∞∑
j=0

aj(x)k
n−j for x ∈ X and as k → ∞,

for certain smooth functions {aj}∞j=0 on X, with a0(x) =
1

(2π)n and a1(x) =
1
2

1
(2π)n Scal(x) for

x ∈ X. More precisely, for any R, r ∈ N, there exists a constant CR,r ≥ 0, depending on R, r

and the manifold (X,ω), such that∣∣∣∣∣∣ρk(x)−
∑
j<R

aj(x)k
n−j

∣∣∣∣∣∣
Cr(X)

≤ CR,rk
n−R for all k ∈ N0 and x ∈ X.

Remark 1.1.2. Note that we assume ω ∈ 2πc1(L) and not ω ∈ c1(L). Also, we associate the

metric g = gαβ(dzα ⊗ dzβ + dzβ ⊗ dzα) to ω = igαβdzα ∧ dzβ in local holomorphic coordinates

which differs from the normalizations chosen by the authors above in the original version of

this theorem. The version of the theorem above is due to Zelditch and Lu, but this result is also

related to ideas by Tian [Tia90] and Yau. Note that Catlin [Cat99] proved a version of this

theorem independently, while Lu’s [Lu00] contribution to the above theorem was to determine

the first few terms explicitly. Yet another approach to the asymptotic expansion of ρk can be

found in [BBS08].

Let us now relate the above theorem to a well-known classical result. The celebrated

Hirzebruch-Riemann-Roch theorem yields the following asymptotic expansion:

dimH0(X,Lk) =

∫
X

{(
1 + c1(L

k) +
c1(L

k)2

2!
+ · · ·+ c1(L

k)n

n!

)
(
1 +

1

2
c1(X) +

1

12

(
c1(X)2 + c2(X)

)
+ . . .

)}
= kn

∫
X

c1(L)
n

n!
+ kn−1

∫
X

c1(L)
n−1c1(X)

2(n− 1)!
+ . . .

=
Vol(X,ω)

(2π)n
kn +

1
2 Ŝcal

(2π)n
Vol(X,ω)kn−1 +O(kn−2)

as k → ∞, where Ŝcal denotes the average scalar curvature over X. Noting that∫
X

ρk
ωn

n!
= dimH0(X,Lk),

2



1.1. Background and motivation

we realize that the coefficients aj in theorem 1.1.1 give back the topological coefficients of

the expansion obtained by the Hirzebruch-Riemann-Roch theorem when integrated over X. A

local understanding of the functions aj , such as knowing upper or lower bounds, can hence yield

not just geometric, but also topological information about L → X. This relationship between

the asymptotic expansion of the Bergman kernel and the geometry of X is one of the most

interesting aspects of Bergman kernels.

Partial density functions

Let Y ⊂ X be a complex submanifold and consider, for l and k ∈ N, an orthonormal basis

{s1,k, · · · , sMk,k} of the space J lk
k (Y ) of global holomorphic sections of Lk vanishing to order

at least lk along Y . We define the partial density function ρl,k : X → R with vanishing along

Y as

ρl,k(x)
def
=

Mk∑
i=1

|si,k(x)|2hk for x ∈ X.

Unlike ρk, which we now understand relatively well due a sequence of works by Catlin, Lu,

Tian, Yau, Zelditch and others (see e.g. [Zel98, Lu00]), the asymptotics of ρl,k - and in fact

also the mere existence of an asymptotic expansion similar to theorem 1.1.1 - are open problems.

Partial density functions where Y is a divisor have been studied by Keller, Panov, Thomas and

Székelyhidi [KPTS] (for Hermitian line bundles with positive curvature) and Berman [Ber07]

(in more generality) who discovered that ρl,k exhibits a “0-1” law in sense that the first order

asymptotics of ρl,k suddenly “switch on” over a certain subset of X.

Theorem 1.1.3 ([Ber07, Theorem 4.3]). Let L be an ample holomorphic line bundle over a

compact complex manifold X of dimension n. Fix a smooth volume form dVol on X and let

h = e−φ be a smooth Hermitian metric on L, locally represented by |sU (z)|2h = e−φU (z) for

z ∈ U and a local trivializing section sU of L over U ⊂ X. Let Y ⊂ X be a divisor. Assume

that the line bundle L⊗O(−Y ) over X is ample and let ρk,Y denote the partial density function

corresponding to the Hilbert space of sections vanishing to order at least k along Y . Then

k−nρk,Y → 1DY ∩X(0) det(dd
cφ)

in L1(X,dVol), where X(0) = {x ∈ X : ddcφ > 0}, DY = {x ∈ X : φe,Y (x) = φ(x)} and φe,Y

is the equilibrium metric with poles along Y (see [Ber07]).

Remark 1.1.4. Note that in the case where (L, e−φ) → (X,ω) is a polarization and dVol = ωn

n! ,

the above result states that

k−nρk,Y → 1

(2π)n
1DY

in L1(X, ω
n

n! ) and we have X(0) = X. The interested reader may consult [Ber09b, Ber09a,

BBN07] and references therein for more details.

In this thesis, we will explore the asymptotics of partial density functions ρl,k with vanishing

to order at least lk along a submanifold Y . We will mainly focus on the case where X is a

toric Kähler manifold with a toric polarization and torus invariant Kähler form and where Y

is a toric submanifold of X. The torus symmetry of these manifolds simplifies the study of

ρl,k considerably since we are able to understand the space of holomorphic sections of toric line

bundles very well.

3



Chapter 1. Introduction

Let us now give a quick overview of the chapters of this thesis. Here, we also review some

of our main results.

1.2 Overview

Chapter 2 - The Bargmann-Fock Model

We start the discussion of the asymptotics of (partial) density functions in chapter 2 by first

considering the Bargmann-Fock model, which will serve as an initial example for some of the

features that come into play in the toric case. In the Bargmann-Fock model, we consider the

inner product

〈f, g〉 =
∫
Cn

f(z)g(z)e−
k
2 ‖z‖

2

dVol,

for k ∈ N and f, g ∈ L2
k, where L2

k denotes the space of smooth functions f : Cn → C for which

‖f‖2 = 〈f, f〉 < ∞ and where dVol = 1
n!

(
i∂∂ ‖z‖2

2

)n
is the Euclidean volume form. We call

the space Fk of holomorphic functions in L2
k the Bargmann-Fock space with parameter k ∈ N.

The Bergman kernel Bk : Cn × Cn → C associated to the Bargmann-Fock model is defined

to be the integral kernel representing the orthogonal projection Pk : L2
k � Fk. The chapter

focusses on the density function ρk associated to this Bergman kernel as well as on the corre-

sponding density function ρl,k coming from the projection Pl,k onto the integrable holomorphic

functions that vanish to order at least lk at the origin. In lemma 2.1.6, we provide a compact

formula for this partial density function:

Lemma 2.1.6. The partial density function ρl,k : Cn → R≥0 for l, k ∈ N is given by

ρl,k(z) =

(
k

2π

)n(
1−

Γ(kl, k ‖z‖2

2 )

Γ(kl, 0)

)
.

Proposition 2.2.4 gives a detailed description of the asymptotics of ρl,k in the Bargman-Fock

case. From this, corollary 2.2.6 follows:

Corollary 2.2.6. Suppose z ∈ Cn is fixed. Then

ρl,k(z) =


(
k
2π

)n
+O (k−∞) if ‖z‖ >

√
2l

1
2

(
k
2π

)n
+
∑∞
j=0 c2j+1k

n−(j+ 1
2 ) +O (k−∞) if ‖z‖ =

√
2l

O (k−∞) if ‖z‖ <
√
2l,

where c2j+1, for j ∈ N0, are explicitly computable. In particular, we have

c1 =
1

6(2π)n

√
2

πl

c3 =
1

1080(2π)n

√
2

πl3
.

In the above corollary, the expansion for ‖z‖ =
√
2l is of particular interest. In chapter 7

we show that the asympotic expansion of the partial density function is of a similar form (see

theorem 7.4.2).

4



1.2. Overview

Chapter 3 - Toric Geometry

Chapter 3 introduces some terminology and notation that we will need for our discussion of toric

Kähler manifolds. We focus on a particularly simple set of coordinate charts determined by the

vertices of an integral Delzant polytope P and follow Abreu’s [Abr98] discussion of Legendre

duality between a symplectic potential on P and a corresponding Kähler potential.

Chapter 4 - Example: CPn

To familiarize ourselves with the notation introduced in the previous chapter and to explore

one of the simplest type of toric partial density function, we consider a polarization of CPn

with a multiple of the standard Fubini-Study metric.

Chapter 5 - Toric Localization

Chapter 5 introduces some new toric Bergman kernel estimates and a few tools that are helpful

for our discussion of the Bergman kernel on polarized toric Kähler manifolds. Theorem 5.1.9,

which is strongly inspired by Song and Zelditch’s results on the localization of sums [SZ10,

lemma 1.2, prop. 5.1], is then obtained by a rather straightforward application of the methods

developed in this chapter.

Chapter 6 - Euler-Maclaurin Sums

Another important tool in the discussion of toric density functions are the Euler-Maclaurin sums

that we explore in chapter 6. Crucially, the Euler-Maclaurin summation result of proposition

6.2.3 allows us to compute the asymptotic expansions of the sums appearing in the definition

of toric partial density functions (at least for points lying in a dense subset of the toric variety

under consideration).

Chapter 7 - Asymptotics

Here we focus our attention on one of the main results of this thesis. Let P be an integral

Delzant polytope and consider a toric polarization (LP , h) → (XP , ω). We now fix a nontrivial

face F < P and, for s, k ∈ N, consider the corresponding partial density functions ρF,s,k

associated to the projection onto those holomorphic of sections of LkP vanishing to order at

least sk along the toric submanifold YF ⊂ XP corresponding to F . Let ρk denote the standard

density function. By invariance under the real torus action, we can think of ρk and ρF,s,k as

functions on P ⊂ t∗, where t denotes the Lie algebra of the real torus acting on XP . Suppose

that

P
def
=
{
α ∈ t∗ : li(α)

def
= µi − 〈α,ni〉 ≥ 0 for some µi ∈ R, primitive

ni ∈ Ker(exp) ⊂ t and i ∈ {1, · · · , d}
}
,

and assume without loss of generality that F = ∩ri=1Z(li) for some r ∈ {1, · · · , n}. For s ∈ N,
we define

PF,s
def
=

α ∈ P :
r∑
j=1

lj(α) ≥ s

 , Fs
def
=

α ∈ P :
r∑
j=1

lj(α) = s

 .
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Theorem 7.4.2. Let (LP , h) → (XP , ω) be a toric polarization. Fix a nontrivial face F < P

and s ∈ N. Let β ∈ Int(P ). Then

ρF,s,k(β) =


ρk(β) +O (k−∞) if β ∈ Int(PF,s)

1
2ρk(β) +

∑∞
j=0 cj(β)k

n−(j+ 1
2 ) +O (k−∞) if β ∈ RelInt(Fs)

O (k−∞) otherwise,

where cj ∈ C∞ (Int(P )) are explicitly computable functions. Now let K ⊂ Int(P ) be a compact

set. For p ∈ N0 and β ∈ K ∩ RelInt(Fs),

ρF,s,k(β) =
1

2
ρk(β) +

p∑
j=0

cj(β)k
n−(j+ 1

2 ) + Sp,k(β)

for all k ∈ N, and there exists D ≥ 0 such that |Sp,k(β)| ≤ Dkn−(p+
3
2 ) for all β ∈ K∩RelInt(Fs)

and k � 0.

Chapter 8 - The Slope Inequality

In chapter 8, we review the notion of slope stability of a polarization with respect to a sub-

manifold as discussed by Ross and Thomas [RT06]. We discuss this notion of slope stability

in the toric setting and reformulate the toric slope inequality slightly in lemma 8.2.4. We then

present an argument due to [KPTS] which shows that sufficient asymptotic information about

partial density functions could yield a proof of the fact that the existence of a constant scalar

curvature Kähler metric in the polarization class implies slope stability with respect to complex

submanifolds (Corollary 8.1.3, [Tho06, Corollary 7.4]).

Chapter 9 - General Polarized Kähler Manifolds

In chapter 9, we investigate some ideas related to partial density functions on general polarized

Kähler manifolds. This chapter relies heavily on the existence of Tian’s “peaked” holomorphic

sections, which we also review here. We dwell on Tian’s philosophy of using such peaked sections

and emphasise the link with the orthogonal complements of vector spaces of sections vanishing

to a certain order along a submanifold. The following proposition is a result following this

approach:

Proposition 9.1.8. Suppose that (L, h) → (X,ω) is a polarized Kähler manifold. Let l ∈ N,
x0 ∈ X and let {sk}∞k=1 be a sequence such that sk ∈ J l

k(p)
⊥ ⊂ H0(X,Lk) and ‖sk‖hk = 1

for all k ∈ N. Then there exists a constant C ≥ 0 such that, in local K-coordinates of order 4

centred x0, we have ∣∣∣∣∣
∫
X−

{
‖z‖≤ log(k)√

k

} |sk|2hk

ωn

n!

∣∣∣∣∣ ≤ Ck−1 for all k ∈ N.

In particular, {sk}∞k=1 is peaked at x0.

The ability to compute the asymptotics of toric (partial) density functions using only an

orthonormal basis of a small subspace of holomorphic sections is a useful tool in the toric

6



1.2. Overview

setting. We explore a localization of sums result in this direction for general polarized Kähler

manifolds:

Corollary 9.2.3 (Localization of the density function on a tubular neighbourhod).

Let (L, h) → (X,ω) be a polarization of a Kähler manifold (X,ω). Denote by ρk the density

function for this polarization and let Y ⊂ X be an embedded complex submanifold of X. There

exists r > 0 and, for any l ∈ N, a constant Cl ≥ 0 such that∣∣∣∣∣∣ρk(p)−
Nk∑
j=1

|sk,j(p)|2
∣∣∣∣∣∣ ≤ Clk

−l

for all p ∈ Tr(Y ) and k ∈ N. Here, {sk,j}Nk
j=1 denotes any orthonormal basis of the space

J k
k (Y )⊥ and |.| denotes the fibre-wise norm on Lk. In particular, the asymptotic expansion of

ρk(p) is equal to the asymptotic expansion of
∑Nk

j=1 |sk,j |
2
(p) for p ∈ Tr(Y ).

Chapter 10 - Induced Metrics on Blow-ups

We consider a polarization (Lm, h) → (X,ω) and discuss a sequence of pull-back Fubini-Study

metrics {ωk}∞k=1 ⊂ 2πc1(L
m) studied by Tian. For some distinct points p1, · · · , ps ∈ X and

l ∈ Ns, we then consider the blow-up π : Blp1,··· ,ps(X) → X with the line bundle

L̂ = L̂p1,··· ,ps,l,m
def
= π∗Lm ⊗O(−l1E1)⊗ · · · ⊗ O(−lsEs).

We assume that m is large enough so that L̂ is very ample. In this chapter, we describe how

the polarization induces a sequence of metrics {ω̂k}∞k=1 ⊂ 2πc1(L̂) (see lemma 10.3.1). We then

observe that (see lemma 10.3.2) on X −
⋃s
i=1{pi},

π∗ω̂k − ω =
i

k
∂∂ log ρl,k,

where ρl,k is a corresponding partial density function on X. In the toric setting, it is relatively

easy to study these metrics in detail and we focus on two examples, namely a certain blow-up of

CPn and Cn respectively. In these examples, the induced metrics {ω̂k}∞k=1 exhibit an interesting

behaviour on the exceptional divisor (see lemma 10.5.3 and lemma 10.6.8) and far away from

the exceptional divisor (see lemma 10.5.2 and lemma 10.6.7). In addition, the induced metrics

on Bl0(Cn) turn out to be Asymptotically Euclidean for each k ∈ N (see lemma 10.6.6).

Appendices A and B

The two appendices A and B deal with some technical results that we require in this thesis.

In particular, we extend Laplace’s method to integrals over half-spaces in section B.3 which is

essential in chapter 7.
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Chapter 2

The Bargmann-Fock Model

In this chapter, we discuss the asymptotics of a partial density function ρl,k on Cn equipped with

the standard flat metric. We will refer to the setup discussed in this chapter as the “Bargmann-

Fock model”. Since toric Kähler manifolds have a natural open cover by Cn charts on which

there exist Kähler potentials which share many of the properties of the standard potential

function φ(z) = ‖z‖2

2 that appears in the Bargmann-Fock case, we will use the Bargmann-Fock

model as a guiding example for our discussion of partial density functions on polarized toric

Kähler manifolds in chapter 7. We now also introduce Laplace’s method as an important tool

for determining the asymptotics of ρl,k.

2.1 Introduction

2.1.1 Definitions

Consider the inner product

〈f, g〉 =
∫
Cn

f(z)g(z)e−
k
2 ‖z‖

2

dVol,

for k ∈ N and f, g ∈ L2
k, where L2

k denotes the space of smooth functions f : Cn → C for which

‖f‖2 = 〈f, f〉 < ∞ and where dVol = 1
n!

(
i∂∂ ‖z‖2

2

)n
is the Euclidean volume form. We call

the space Fk of holomorphic functions in L2
k the Bargmann-Fock space with parameter k ∈ N.

(Fk, 〈, 〉) is a Hilbert space [Bar61].

Lemma 2.1.1. The monomials {zα : α ∈ Nn0} form an orthogonal basis of Fk with norm

‖zα‖2 =

(
2π

k

)n(
2

k

)|α|

α!.

We denote the orthonormal basis elements by sα,k, where sα,k(z)
def
= zα

‖zα‖ for z ∈ Cn, α ∈ Nn0
and k ∈ N.

Proof. It is easy to see in polar coordinates that 〈zα,zβ〉 = 0 for α 6= β, α,β ∈ Nn0 . We have

‖zα‖2 = (2π)n
n∏
j=1

∫ ∞

0

r2αj+1e−
kr2

2 dr

9



Chapter 2. The Bargmann-Fock Model

= (2π)n
n∏
j=1

(
2

k

)αj+1
αj !

2
,

and it is obvious that {zα : α ∈ Nn0} is a complete orthogonal system for Fk.

The Bergman kernel Bk : Cn×Cn → C is defined to be the integral kernel representing the

orthogonal projection Pk : L2
k � Fk in the sense that

Pk(f)(z) = 〈f,Bk(.,z)〉 =
∫
Cn

f(w)Bk(w, z)e
− k

2 ‖w‖2

dVol for all z ∈ Cn, f ∈ L2
k.

We recall the following classical result.

Lemma 2.1.2. The Bergman kernel for the Bargmann-Fock model is given by

Bk(z,w) =
∑
α∈Nn

0

sα,k(z)sα,k(w)

=

(
k

2π

)n ∑
α∈Nn

0

(
k

2

)|α|
zαwα

α!

=

(
k

2π

)n
e

k
2 〈z,w〉 for z,w ∈ Cn and k ∈ N.

Proof. The last simplification above follows from the multinomial theorem, while

〈f,Bk(.,z)〉 =
∫
Cn

f(w)Bk(w, z)e
− k

2 ‖w‖2

dVol =
∑
α∈Nn

0

〈f, sα,k〉sα,k(z)

proves that P (f)(z) = 〈f,Bk(.,z)〉 for f ∈ L2
k and z ∈ Cn.

Let us note the following well-known result on the translations Tk,a.

Lemma 2.1.3. The translations Tk,a : L2
k → L2

k, for k ∈ N and a ∈ Cn, defined by

(Tk,af) (z)
def
= e

k
2

(
〈z,a〉− ‖a‖

2

2
)
f(z − a),

for f ∈ L2
k and z ∈ Cn, are isometries of (Fk, ‖.‖).

Proof. Let f ∈ Fk, a ∈ Cn and k ∈ N. We have

‖Tk,af‖2 =

∫
Cn

|f(z − a)|2 e
k
2 (〈z,a〉+〈a,z〉−‖a‖2)e−

k
2 ‖z‖

2

dVol

=

∫
Cn

|f(z − a)|2 e− k
2 ‖z−a‖2

dVol

=

∫
Cn

|f(z)|2 e− k
2 ‖z‖

2

dVol = ‖f‖2.

Remark 2.1.4. Note that, in the above proof, z 7→ e−
k
2 ‖z−a‖2

is a Gaussian function which

has a peak at a ∈ Cn. Functions of this type will play an important role in our discussion of

the density function on polarized toric Kähler manifolds in chapter 7.

10
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Although Bergman kernels of the type discussed here are much simpler than the Bergman

kernels that we will study in chapter 7, they are nonetheless of independent interest. The

interested reader may refer to [Sei92, SW92, BS93] which discuss properties of the Bargmann-

Fock space in more detail and which include further background references.

2.1.2 Line bundle interpretation

Let X = Cn and consider the trivial line bundle L = Cn × C on X. We equip X with the flat

Kähler metric ω = i∂∂φ(z) with potential φ(z) = 1
2‖z‖

2 and Lk with the Hermitian metric hk

which is represented by the positive function e−kφ(z) in the standard holomorphic trivialization.

We observe that iFh = −i∂∂ log(h) = ω, i.e. we have a polarization (L, h) → (X,ω). We can

think of the Bergman kernel Bk as a section of the line bundle π∗
1(L

k) ⊗ π∗
2(L

k
) → X × X,

where πi : X ×X → X denotes the projection onto the ith factor. Then

Bk(z,w) =
∑
α∈Nn

0

sα,k(z)⊗ sα,k(w) for all z,w ∈ Cn.

hk now induces a natural Hermitian inner product on this bundle which we also denote by hk.

If, for example, f, s ∈ C∞ (X,Lk) and g, t ∈ C∞
(
X,L

k
)
, this gives

(f(z)⊗ g(w), s(z)⊗ t(w))hk = (f(z), s(z))hk (g(w), t(w))hk

= f(z)s(z)e−
k
2 ‖z‖

2

g(w)t(w)e−
k
2 ‖w‖2

for all z,w ∈ Cn. We then compute that

|Bk(z,w)|2hk =

(
k

2π

)2n

e−
k
2 ‖z−w‖2

for all z,w ∈ Cn.

The density (of states) function ρk : X → R≥0 is defined to be the restriction of the norm of

Bk to the diagonal in X ×X. We have

ρk(z) =

(
k

2π

)n
for all z ∈ Cn.

2.1.3 Partial Bergman kernels

For l, k ∈ N, we are now interested in studying the orthogonal projections Pl,k : L2
k � Fl,k,

where Fl,k
def
= L2

k ∩ Jlk and

Jlk
def
=

{
f : Cn → C : f is holomorphic and

∂

∂z

α

f

∣∣∣∣
0

= 0 for α ∈ Nn0 such that |α| < lk

}
.

We call the integral kernel associated to Pl,k the partial Bergman kernel with parameters (l, k)

and denote it by Bl,k. We have

Bl,k(z,w) =
∑

|α|≥kl

sα,k(z)sα,k(w)

=

(
k

2π

)n ∑
|α|≥kl

(
k

2

)|α|
zαwα

α!
,

11



Chapter 2. The Bargmann-Fock Model

for all z,w ∈ Cn, and |α| ≥ kl in the sum denotes the index set
{
α ∈ Nn0 : |α| =

∑n
j=0 αj ≥ kl

}
.

We compute that

|Bl,k(z,w)|2hk =

(
k

2π

)2n
∣∣∣∣∣∣
∑

|α|≥kl

(
k

2

)|α|
zαwα

α!

∣∣∣∣∣∣
2

e−
k
2 (‖z‖

2+‖w‖2).

Our partial density function ρl,k is the restriction of the hk-norm of Bl,k to the diagonal in

Cn × Cn.

ρl,k(z) =

(
k

2π

)n ∑
|α|≥kl

(
k

2

)|α|
zαzα

α!
e−

k
2 ‖z‖

2

=

(
k

2π

)n ∑
j≥kl

(
k

2

)j ‖z‖2j
j!

e−
k
2 ‖z‖

2

,

where we have applied the multinomial identity

‖z‖2j =
(
|z1|2 + · · ·+ |zn|2

)j
=
∑
|α|=j

j!

α!
|z1|2α1 . . . |zn|2αn

=
∑
|α|=j

j!

α!
zαzα for z ∈ Cn.

We now introduce the variable s = ‖z‖2

2 and let ρl,k(z) = ηl,k(s), so that

ηl,k(s) =

(
k

2π

)n ∑
j≥kl

(ks)j

j!
e−ks

=

(
k

2π

)n1−
∑

0≤j<kl

(ks)j

j!
e−ks

 .

We observe that

∂

∂s

∣∣∣∣
s

ηl,k =

(
k

2π

)n
ke−ks

 ∑
0≤j<lk

(ks)j

j!
−
kl−1∑
j=1

(ks)j−1

(j − 1)!


= ke−ks

(
k

2π

)n
(ks)kl−1

(kl − 1)!
.

Integrating the derivative, we obtain an integral representation for ρl,k.

ρl,k(z) = ηl,k(s) =

(
k

2π

)n
kkl

(kl − 1)!

∫ s

0

e−kttkl−1dt

=

(
k

2π

)n
1

(kl − 1)!

∫ ks

0

e−yykl−1dy

=

(
k

2π

)n(
1− Γ(kl, ks)

Γ(kl, 0)

)
.
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2.2. Asymptotics of the partial density function

Here,

Γ(n, x)
def
=

∫ ∞

x

e−ttn−1dt for n ∈ C and x ∈ R

denotes the incomplete gamma function which has the special values Γ(n, 0) = (n − 1)! for

n ∈ N.

Remark 2.1.5. There exists a rich literature concerned with the asymptotic properties of in-

complete gamma functions. The interested reader may consult [Gau98] for an extensive review.

The methods that we will employ to understand the asymptotics of Γ(n, x) will only apply for

real valued n.

We have now proved the following lemma.

Lemma 2.1.6. The partial density function ρl,k : Cn → R≥0 for l, k ∈ N is given by

ρl,k(z) =

(
k

2π

)n(
1−

Γ(kl, k ‖z‖2

2 )

Γ(kl, 0)

)
.

Figure 2.1: Graphs of 1− Γ(kl,k r2

2 )

(kl−1)! for r ∈ [0, 4], l = 2 and k = 1, 2, 3, 1000.

2.2 Asymptotics of the partial density function

2.2.1 Laplace’s method in one dimension

The traditional form of Laplace’s method Traditionally, Laplace’s method in one di-

mension (see [dB81, BH75]) provides a means of determining the asymptotics of an integral of

the type

Ik =

∫
R
f(x)e−kh(x)dx,

where k ∈ R>0 tends to infinity, f, h ∈ C∞(R), h has an absolute minimum which it attains

only at x0 ∈ R and where h′′(x0) > 0. We assume that Ik < ∞ for k ∈ R>0 and that there

exists a c > 0 such that h(x) − h(x0) ≥ c outside a compact subset of R. Laplace’s method

13
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then gives an asymptotic expansion in k,

ekh(x0)Ik =
∞∑
j=0

ajk
−(j+ 1

2 ) +O
(
k−∞) ,

where the coefficients aj are determined by the derivatives of f and h at x0. In order to

understand the asymptotics of the partial density function in the Bargmann-Fock model, we

will now investigate a slightly more subtle version of Laplace’s method which depends also on

the domain of integration.

Generalized error functions For j ∈ N0, we define the functions ej : R → R,

ej(λ) =

∫ λ
0
xje−x

2

dx∫∞
0
xje−x2dx

=
2

Γ
(
j+1
2

) ∫ λ

0

xje−x
2

dx for λ ∈ R.

We observe that e0 is the standard error function and call ej the generalized error function of

order j (see figure 2.2).

Figure 2.2: Graphs of e2j and e2j+1 for j = 0, . . . , 5.

Remark 2.2.1. By the duplication formula for Γ,

Γ(i)Γ

(
i+

1

2

)
=

√
π21−2iΓ(2i) for i ∈ N0,

we find that,

Γ

(
i+

1

2

)
=

√
π21−2i(2i− 1)!

(i− 1)!
=

√
π(2i)!

22ii!
for i ∈ N0.

We have

Γ

(
j + 1

2

)
=


√
π(2i)!
22ii! if j = 2i, i ∈ N0,

i! if j = 2i+ 1, i ∈ N0.

A refinement of Laplace’s method The following proposition gives a refined version of

Laplace’s method in one dimension in the case where k ∈ N.
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2.2. Asymptotics of the partial density function

Proposition 2.2.2. Let f, h ∈ C∞ (R) and assume that h has an absolute minimum which it

attains only at x0 ∈ R and where h′′(x0) > 0. Furthermore, assume that there exists c > 0 such

that h(x)− h(x0) > c outside a compact subset of R. Suppose that
∫
R |f(x)| e−kh(x)dx <∞ for

k ∈ N and consider the integral

Ik(r)
def
=

∫ x0+r

x0

f(x)e−kh(x)dx for r ∈ R and k ∈ N.

a) Let {rk}∞k=1 ⊂ R, m ∈ N and M > 0 such that |rk| ≤ Mk−
1
3 for all k ∈ N. There exists

C = C(M,m) ≥ 0 such that∣∣∣∣∣∣ekh(x0)Ik(rk)−
m∑
j=0

aj

(
rk

√
kh′′(x0)

2

)
k−

j+1
2

∣∣∣∣∣∣ ≤ Ck−(
m
2 +1),

for all k ∈ N, and where, for s ∈ R and j ∈ N0, we define

aj(s)
def
=

1

2

j∑
i=0

(−1)i

i!(j + 2i)!
Γ

(
j + 1

2
+ i

)
(

2

h′′(x0)

) j+1
2 +i

d

dx

j+2i(
h(x)− h(x0)−

h′′(x0)

2
(x− x0)

2

)i
f(x)

∣∣∣∣∣
x0

ej+2i(s).

b) Let {rk}∞k=1 ⊂ R, m ∈ N and M, δ > 0 such that |rk| ≥ Mk−
1
2+δ for all k ∈ N. There

exists C = C(M,m, δ) ≥ 0 such that∣∣∣∣∣∣ekh(x0)Ik(rk)−
m∑
j=0

Sgn(rk)
j+1bjk

− j+1
2

∣∣∣∣∣∣ ≤ Ck−(
m
2 +1),

for all k ∈ N, and where the constants bj, for j ∈ N0, are given by

bj
def
=

1

2

j∑
i=0

(−1)i

i!(j + 2i)!
Γ

(
j + 1

2
+ i

)
(

2

h′′(x0)

) j+1
2 +i

d

dx

j+2i(
h(x)− h(x0)−

h′′(x0)

2
(x− x0)

2

)i
f(x)

∣∣∣∣∣
x0

.

Proof. Part a) By Taylor’s theorem, h(x) − h(x0) = h′′(x0)
2 (x− x0)

2
+ R(x). Let m, k ∈ N

and M > 0. There exists a constant C = C(M) ≥ 0 such that |R(x)| ≤ C |x− x0|3 for

|x− x0| ≤M . It then follows that,

|kR(x)| ≤ CM3 for |x− x0| ≤Mk−
1
3 and k ∈ N.

We have

e−kR(x) =
m∑
i=0

(−kR(x))i

i!
+ Sm+1 (−kR(x)) ,

and there exists a constant D = D(M,m) ≥ 0 such that

|Sm+1 (−kR(x))| ≤ Dkm+1 |x− x0|3(m+1)
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Chapter 2. The Bargmann-Fock Model

for k ∈ N and all x ∈ R such that |x− x0| ≤Mk−
1
3 .

Remark 2.2.3. Observe that, for a > 0 and k ∈ N,∫ ±∞

x0

|x− x0|j e−ka(x−x0)
2

dx =

∫ ±∞

0

|x|j e−kax
2

dx

= k−(
j+1
2 )
∫ ±∞

0

|x|j e−ax
2

dx = O
(
k−(

j+1
2 )
)

as k → ∞.

For s ∈ N0 such that s ≥ 3i, we have:

(−R(x))i

i!
f(x) =

s∑
j=3i

(−1)i

i!j!

d

dx

j

Ri(x)f(x)

∣∣∣∣∣
x0

(x− x0)
j
+ Ts,i(x), (2.2.1)

and there exist constants Ei = Ei(M, s) ≥ 0 such that |Ts,i(x)| ≤ Ei |x− x0|s+1
for all s, i ∈ N0

with s ≥ 3i and all x ∈ R such that |x− x0| ≤ M . Applying remark 2.2.3, we find that, for

|rk| ≤Mk−
1
3 ,

ekh(x0)Ik(rk) =

∫ x0+rk

x0

f(x)e−k(h(x)−h(x0))dx

=
m∑
i=0

∫ x0+rk

x0

(−kR(x))i

i!
f(x)e−k

h′′(x0)
2 (x−x0)

2

dx+O
(
k−(

m
2 +1)

)
,

where the constant in O depends on M and m (and of course on h and f). Using equation

2.2.1, we find that

ekh(x0)Ik(rk) =
m∑
i=0

(
m+2i∑
j=3i

ki
(−1)i

i!j!

d

dx

j (
Ri(x)f(x)

)∣∣∣∣∣
x0

∫ x0+rk

x0

(x− x0)
j
e−

h′′(x0)
2 (x−x0)

2

dx

+ Um+2i,i(x, k)

)
+O

(
k−(

m
2 +1)

)
,

where

|Um+2i,i(x, k)| ≤ ki
∫ x0+rk

x0

|Tm+2i,i(x)| e−k
h′′(x0)

2 (x−x0)
2

dx

≤ kiEi

∫ x0+rk

x0

|x− x0|m+2i+1
e−k

h′′(x0)
2 (x−x0)

2

dx

≤ Ei

(
2

h′′(x0)

)m
2 +i+1

k−(
m
2 +1)

∫
R
|x|m+2i+1

e−x
2

dx

= O
(
k−(

m
2 +1)

)
.

Note that∫ x0+rk

x0

(x− x0)
je−

kh′′(x0)
2 (x−x0)

2

dx =

∫ rk

0

xje−
kh′′(x0)

2 x2

dx

= k−
j+1
2

(
2

h′′(x0)

) j+1
2
∫ √

kh′′(x0)
2 rk

0

yje−y
2

dy
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2.2. Asymptotics of the partial density function

= k−
j+1
2

(
2

h′′(x0)

) j+1
2 Γ

(
j+1
2

)
2

ej

(√
kh′′(x0)

2
rk

)
.

We conclude that

ekh(x0)Ik(rk) =
1

2

m∑
i=0

m+2i∑
j=3i

ki−
j+1
2

(−1)i

i!j!
Γ

(
j + 1

2

)(
2

h′′(x0)

) j+1
2

d

dx

j (
Ri(x)f(x)

)∣∣∣∣∣
x0

ej

(
rk

√
kh′′(x0)

2

)
+O

(
k−(

m
2 +1)

)

=
1

2

m∑
i=0

m−i∑
p=0

k−
p+i+1

2
(−1)i

i!(p+ 3i)!
Γ

(
p+ 3i+ 1

2

)(
2

h′′(x0)

) p+3i+1
2

d

dx

p+3i (
Ri(x)f(x)

)∣∣∣∣∣
x0

ep+3i

(
rk

√
kh′′(x0)

2

)
+O

(
k−(

m
2 +1)

)

=
1

2

m∑
l=0

k−
l+1
2

l∑
i=0

(−1)i

i!(l + 2i)!
Γ

(
l + 1

2
+ i

)(
2

h′′(x0)

) l+1
2 +i

d

dx

l+2i (
Ri(x)f(x)

)∣∣∣∣∣
x0

el+2i

(
rk

√
kh′′(x0)

2

)
+O

(
k−(

m
2 +1)

)
.

Part b) Suppose now that |rk| ≥ Mk−
1
2+δ for all k ∈ N and let µ

def
= −min

(
δ − 1

2 ,−
1
3

)
and δ′

def
= 1

2 − µ. Then µ ∈ [13 ,
1
2 ) and |rk| ≥ Mk−µ, while δ′ > 0. By the proof of lemma

B.2.3, there exists C ≥ 0 such that h(x)− h(x0) ≥ Ck2δ
′−1 for all k ∈ N and x ∈ R such that

|x− x0| ≥Mk−
1
2+δ

′
. It follows that

∫ x0+rk

x0

f(x)e−k(h(x)−h(x0))dx =

∫ x0+Sgn(rk)Mk−
1
2
+δ′

x0

f(x)e−k(h(x)−h(x0))dx+O
(
k−∞) .

The constant in O depends on M and δ′ since∫ x0+rk

x0+Sgn(rk)Mk−
1
2
+δ′

|f(x)| e−k(h(x)−h(x0))dx ≤ e−
k−1
k Ck2δ

′
∫
R
|f(x)| e−(h(x)−h(x0))dx

= O
(
k−∞) .

We can now expand
∫ x0+Sgn(rk)Mk−

1
2
+δ′

x0
f(x)e−k(h(x)−h(x0))dx using part a) of the result, since

Mk−
1
2+δ

′ ≤Mk−
1
3 for k ∈ N. We note that, for j ∈ N,

ej

(
Sgn(rk)Mkδ

′

√
h′′(x0)

2

)
= lim
x→Sgn(rk)∞

ej(x) +O
(
k−∞)

= Sgn(rk)
j+1 +O

(
k−∞)

as k → ∞, since for any a > 0,∫ Sgn(rk)∞

Sgn(rk)akδ
′
|x|j e−x

2

dx = k
j+1
2

∫ Sgn(rk)∞

Sgn(rk)ak
δ′− 1

2

|y|j e−ky
2

dy

≤ e−a
2 k−1

k k2δ
′

k
j+1
2

∫
R
|y|j e−x

2

dx
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Chapter 2. The Bargmann-Fock Model

= O
(
k−∞) .

2.2.2 An application of Laplace’s method

Let us now discuss the asymptotics of the partial density function ρk,l in the Bargmann-Fock

model. As we can see from the next lemma, the asymptotics of ρk,l(zk) exhibit an interesting

transitioning behaviour for ‖zk‖ near
√
2l.

Proposition 2.2.4. Suppose that {zk}∞k=1 ⊂ Cn is a sequence of complex vectors and let l ∈ N.

a) Suppose that M, δ > 0 and
∣∣∣‖zk‖2

2 − l
∣∣∣ ≥Mk−

1
2+δ for all k ∈ N. Then

ρl,k (zk) =


(
k
2π

)n
+O (k−∞) if ‖zk‖ >

√
2l for all k ∈ N

O (k−∞) if ‖zk‖ <
√
2l for all k ∈ N.

b) Define h : (−l,∞) → R by h(x)
def
= x − l log(x + l) + l log(l), for x ∈ (−l,∞), and let

M ≥ 0 and m ∈ N. Suppose that
∣∣∣‖zk‖2

2 − l
∣∣∣ ≤ Mk−

1
3 for all k ∈ N. Then there exists

C = C(M,m) ≥ 0 such that∣∣∣∣∣∣ρl,k (zk)−
(
k

2π

)n
(kl)kl

(kl − 1)!
e−kl

m∑
j=0

(
aj

((
‖zk‖2

2
− l

)√
k

2l

)
+ (−1)jbj

)
k−

j+1
2

∣∣∣∣∣∣
≤ Ck−(

m
2 +1),

for all k ∈ N, and where

bj
def
=

1

2

j∑
i=0

(−1)i

i!(j + 2i)!
Γ

(
j + 1

2
+ i

)
(2l)

j+1
2 +i d

dx

j+2i(
h(x)− x2

2l

)i
1

x+ l

∣∣∣∣∣
0

and

aj(s)
def
=

1

2

j∑
i=0

(−1)i

i!(j + 2i)!
Γ

(
j + 1

2
+ i

)
(2l)

j+1
2 +i d

dx

j+2i(
h(x)− x2

2l

)i
1

x+ l

∣∣∣∣∣
0

ej+2i(s).

c) Suppose ‖zk‖2

2 = s√
k
+ l for all k ∈ N and some constant s ∈ R. Then part b) yields the

expansion

ρl,k (zk) =

(
k

2π

)n
(kl)kl

(kl − 1)!
e−kl

m∑
j=0

(
aj

(
s√
2l

)
+ (−1)jbj

)
k−

j+1
2 +O

(
k−∞)

=

∞∑
j=0

cj(s)k
n− j

2 +O
(
k−∞) ,

where aj and bj are the same as in part b), and the coefficients cj(s) are obtained by expanding

(kl)kl

(kl − 1)!
e−kl ∼

∞∑
j=0

djk
−j+ 1

2 =

√
kl

2π

(
1− 1

12l
k−1 + · · ·

)
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2.2. Asymptotics of the partial density function

via Stirling’s series and by collecting powers of k in the resulting sum.

Proof. For r =
√

‖z‖2

2 , we have

ρl,k(z) =

(
k

2π

)n
1

(kl − 1)!

∫ kr2

0

ykl−1e−ydy

=

(
k

2π

)n
(kl)

kl

(kl − 1)!
e−kl

∫ r2−l

−l

1

y + l
e−kh(y)dy, (2.2.2)

where h(y)
def
= y − l log(y + l) + l log(l) is a smooth strictly convex function on (−l,∞) with

unique minimum h(0) = 0. Observe that the singularity of 1
y+l at y = −l is no cause for

concern, since l ≥ 1 and

∫ − 1
2

−l

1

y + l
e−kh(y)dy ≤ e−(k−1)h(− 1

2 )
∫ − 1

2

−l

1

y + l
e−h(y)dy = O

(
k−∞) .

Multiplying the integrand with a smooth cut-off function ξ such that ξ(x) = 1 for x ≥ − 1
2 and

ξ(x) = 0 for x ≤ − 2
3 does not change the asymptotic expansion of the integral.

a) Let rk
def
=
√

‖zk‖2

2 for all k ∈ N. If r2k ≥ l+Mk−
1
2+δ for all k ∈ N, we can use the proof of

corollary B.2.4 which shows that∫ ∞

Mk−
1
2
+δ

1

y + l
e−kh(y)dy = O

(
k−∞) .

Hence ρl,k(zk)−ρk(zk) = O (k−∞) in that case. The proof in the case where r2k ≤ l−Mk−
1
2+δ

uses similar reasoning.

b) We have

∫ r2k−l

−l

1

y + l
e−kh(y)dy =

(∫ r2k−l

0

−
∫ −l

0

)
1

y + l
e−kh(y)dy.

We apply proposition 2.2.2 b) to the integral∫ −l

0

1

y + l
e−kh(y)dy

and obtain ∫ −l

0

1

y + l
e−kh(y)dy ∼

∞∑
j=0

(−1)j+1bjk
− j+1

2 ,

where

bj =
1

2

j∑
i=0

(−1)i

i!(j + 2i)!
Γ

(
j + 1

2
+ i

)
(2l)

j+1
2 +i d

dx

j+2i(
h(x)− x2

2l

)i
1

x+ l

∣∣∣∣∣
0

.
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Chapter 2. The Bargmann-Fock Model

We also have ∫ r2k−l

0

1

y + l
e−kh(y)dy ∼

∞∑
j=0

aj

((
r2k − l

)√ k

2l

)
k−

j+1
2

by proposition 2.2.2 a), where, for s ∈ R, we define

aj(s)
def
=

1

2

j∑
i=0

(−1)i

i!(j + 2i)!
Γ

(
j + 1

2
+ i

)
(2l)

j+1
2 +i d

dx

j+2i(
h(x)− x2

2l

)i
1

x+ l

∣∣∣∣∣
0

ej+2i(s).

Combining these two expansions implies that, for m ∈ N and M ≥ 0, there exists a constant

C = C(M,m) ≥ 0 such that∣∣∣∣∣∣ρl,k (zk)−
(
k

2π

)n
(kl)kl

(kl − 1)!
e−kl

 m∑
j=0

(
aj

((
‖zk‖2

2
− l

)√
k

2l

)
+ (−1)jbj

)
k−

j+1
2

∣∣∣∣∣∣
≤ Ck−(

m
2 +1)

(2.2.3)

for all k ∈ N.

c) This follows directly from b).

Remark 2.2.5. We compute that b1 = − 1
3l , b2 =

√
2π

24l
3
2
, b3 = − 4

135l2 and b4 =
√
2π

575l
5
2
.

Corollary 2.2.6. Suppose z ∈ Cn is fixed. Then

ρl,k(z) =


(
k
2π

)n
+O (k−∞) if ‖z‖ >

√
2l

1
2

(
k
2π

)n
+
∑∞
j=0 c2j+1(0)k

n−(j+ 1
2 ) +O (k−∞) if ‖z‖ =

√
2l

O (k−∞) if ‖z‖ <
√
2l,

where cj, for j ∈ N0, denote the same functions as in the previous lemma. In particular, we

have

c1(0) =
1

6(2π)n

√
2

πl

c3(0) =
1

1080(2π)n

√
2

πl3
.

Proof. Note that

(kl − 1)! =

∫ ∞

0

ykl−1e−ydy = (kl)kle−kl
∫ ∞

−l

1

y + l
e−kh(y)dy

= (kl)kle−kl

(∫ ∞

0

−
∫ −l

0

)(
1

y + l
e−kh(y)

)
dy.

Let aj and bj , for j ∈ N0, be defined as in the previous proposition. It follows from proposition
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2.2. Asymptotics of the partial density function

2.2.2 that

(kl − 1)!(kl)−klekl ∼
∞∑
i=0

(
1 + (−1)i

)
bik

− i+1
2

∼ 2
∞∑
i=0

b2ik
−(i+ 1

2 ).

Also noting that aj(0) = 0 for j ∈ N0, we find that

ρl,k(z) ∼
1

2

(
k

2π

)n
−
(
k

2π

)n
(kl)kl

(kl − 1)!
e−kl

∞∑
i=0

b2i+1k
−(i+1)

if ‖z‖ =
√
2l. The other cases follow from proposition 2.2.4. By Stirling’s series we have

1

(kl)!
=

1√
2πkl

(kl)−klekl
(
1− 1

12kl
+O

(
k−2

))
,

so that

ρl,k(z) ∼
1

2

(
k

2π

)n
+

(
k

2π

)n√
l

2π

{
−b1k−

1
2 +

(
1

12l
b1 − b3

)
k−

3
2

}
+O

(
k−

5
2

)
for ‖z‖ =

√
2l.
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Chapter 3

Toric Geometry

In this chapter, we review some standard terminology and notation needed for our discussion of

toric varieties. We then specialize to the case of polarized toric Kähler manifolds and explicitly

describe a natural open cover of such manifolds by Cn charts. We describe the torus action

as well as the Kähler form in these coordinates. Since there are at least two ways of thinking

about toric Kähler manifolds, one can approach the subject from several directions.

From the algebraic geometry point of view, one is interested in studying certain alge-

braic varieties of complex dimension n admitting an action of a complex n-dimensional torus

TN ∼= (C∗)
n
with an open dense orbit. Associated to this approach is the notion of a fan, a

combinatorial object describing the way in which such a variety is glued together from vari-

ous charts. We will recall a pedestrian approach to understanding the transition functions for

smooth complex toric varieties in detail in 3.1.

Alternatively, one can think of a toric Kähler manifold (XP , ω) as a symplectic manifold

with additional structure. In this approach, such manifolds are classified by their image under

their moment map. These images turn out to be special kinds of polytopes which are called

Delzant polytopes. We describe how these approaches are related in 3.2.

3.1 Complex algebraic approach

3.1.1 Construction

From an algebraic geometry point of view, it is easiest to specify a toric variety by a fan. For

the algebraic approach, we follow the notation of [Oda88]. We start with a free module N ∼= Zr

of rank r and let M = HomZ(N,Z). Let us review the basic objects required:

Definition 3.1.1 ([Oda88]). A subset σ of NR
def
= N ⊗Z R is called a convex polyhedral cone if

there exists a finite number of elements n1, . . . , ns in NR such that

σ = R≥0n1 + . . .+ R≥0ns.

A convex polyhedral cone σ ⊂ NR is called rational if we can choose the elements n1, · · · , ns
above to lie in N , and it is called strongly convex if σ ∩ (−σ) = {0}.

We define the dual cone of a convex polyhedral cone σ in NR by

σ∨ = {x ∈MR : 〈x, y〉 ≥ 0 for all y ∈ σ}.
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Chapter 3. Toric Geometry

A subset τ of σ is called a face of σ, denoted τ < σ, if there exists m0 ∈ σ∨ such that

τ = σ ∩ {m0}⊥
def
= {y ∈ σ : 〈m0, y〉 = 0}.

Definition 3.1.2 ([Oda88, p.2]). A fan in N is a nonempty collection ∆ of strongly convex

rational polyhedral cones in NR = N ⊗Z R satisfying the following conditions:

i) Every face of any σ ∈ ∆ is contained in ∆.

ii) For any σ, σ′ ∈ ∆, the intersection σ ∩ σ′ is a face of both σ and σ′.

The union |∆| def=
⋃
σ∈∆ σ is called the support of ∆.

To each face σ of a fan ∆, we associate an additive semigroup Sσ
def
= M ∩ σ∨ which turns

out to be saturated (If cm ∈ Sσ for m ∈ M and a positive integer c, then m ∈ Sσ.), finitely
generated, and it satisfies Sσ + (−Sσ) =M . For each face σ ∈ ∆, we get a set

Uσ
def
= {u : Sσ → C : u(0) = 1, u(m+m′) = u(m)u(m′) for all m,m′ ∈ Sσ},

and a choice of generators m1, . . . ,mp of the semigroup Sσ yields an injective map

(e(m1), . . . , e(mp)) : Uσ → Cp,

where e(m)(u)
def
= u(m) for m ∈ Sσ and Uσ. We identify Uσ with its image under the above

map. Equivalently, following Fulton [Ful93], we could have defined Uσ
def
= Specmax (C[Sσ]),

where C[Sσ] denotes the group ring corresponding to the semigroup Sσ. C[Sσ] is a commutative

C-algebra, and Specmax(C[Sσ]) denotes the set of maximal ideals in C[Sσ]. The faces of a cone

σ in the fan now naturally correspond to subsets of Uσ:

Proposition 3.1.3 ([Oda88, p.7]). For a strongly convex rational polyhedral cone σ in NR,

its dual cone σ∨ is a rational polyhedral cone in MR. If τ is a face of σ, then there exists

m0 ∈ M ∩ σ∨ such that τ = σ ∩ {m0}⊥. Hence τ is also a strongly convex rational polyhedral

cone in NR. In this case, we have Sτ = Sσ + N0(−m0) and

Uτ = {u ∈ Uσ : u(m0) 6= 0},

which is an open subset of Uσ.

We now obtain toric varieties by gluing these sets Uσ for σ ∈ ∆:

Theorem 3.1.4 ([Oda88, p.7]). For a fan ∆ in N , we can naturally glue {Uσ : σ ∈ ∆} together

to obtain a Hausdorff complex analytic space

TNemb(∆)
def
=
∐
σ∈∆

Uσ

/
∼,

which is irreducible and normal with dimension equal to r = rank(N). We call TNemb(∆) the

toric variety associated to the fan ∆ ⊂ NR.

3.1.2 The torus action

We define the algebraic torus

TN
def
= HomZ(M,C∗)
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3.1. Complex algebraic approach

and, for m ∈ M , a character e(m) : TN → C∗ given by e(m)(t) = t(m) for t ∈ TN . TN ⊂
TNemb(∆), and the action of TN on Uσ ⊂ TNemb(∆), for σ ∈ ∆, is defined by

(t.u)(m)
def
= t(m)u(m) for t ∈ TN , u ∈ Uσ and m ∈M.

3.1.3 Integral Delzant polytopes

Introduction

Let us now discuss Delzant polytopes in some detail. We recall the following definitons.

Definition 3.1.5. A convex polytope in MR is a convex hull of a finite set of points in MR. A

subset F of a convex polytope P ⊂ MR is called a face of P , denoted F < P , if there exists

u ∈M∗
R and b ∈ R such that

P ⊂ H+
u,b

def
= {v ∈MR : 〈v,u〉 ≥ b} and

F = P ∩ ∂H+
u,b = {v ∈ P : 〈v,u〉 = b} .

Definition 3.1.6. A convex polytope P ⊂MR is Delzant if

1. There are n edges meeting in each vertex v.

2. The edges meeting in the vertex v are rational; i.e., each edge is of the form v+ tei, with

t ≥ 0, t ∈ R and ei ∈M .

3. The e1, . . . , en in (2) can be chosen to form a basis of M .

An integral Delzant polytope in MR is a Delzant polytope whose vertices lie in M .

Now let P ⊂ MR be an integral Delzant polytope. To P we can associate a set of cones as

follows: To any face F of the polytope P we associate its tangent cone (see also [Aud04])

sF
def
=
⋃
r≥0

r(P −m),

where m is any point in the relative interior of F . Recall that the relative interior of a subset

S ⊂ Rn is its interior considered as a subset of its affine hull Aff(S). The dual cones

σF
def
= s∨F = {n ∈ NR : 〈n,m〉 ≥ 0 for all m ∈ sF },

for F < P , form a fan ∆(P ) defining the toric variety TNemb(∆(P )) which we denote by XP

(see also [Aud04]). The cones σv, for v ∈ vertices(P ), are of particular importance because⋃
v∈vertices(P )

Uσv
= XP .

In this way, a Delzant polytope defines a special type of toric variety XP . It is well known that

XP is smooth, compact, n-dimensional and projective.

Deviating from the standard textbooks on toric varieties, we will from now on only consider

integral Delzant polytopes and their corresponding fans. First, we check that the intersec-

tions of any two top dimensional cones of the fan ∆(P ) corresponding to such a polytope are

particularily easy to describe:
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Lemma 3.1.7. Let P be an integral Delzant polytope and let v, v′ be vertices of P . Then

σv ∩ σv′ = σv ∩ {v − v′}⊥.

Proof. Let x ∈ σv ∩ σv′ . Then, for m ∈ sv, 〈x,m〉 ≥ 0, but v′ − v ∈ P − v ⊂ sv. Hence

〈x, v′ − v〉 ≥ 0 and similarly, for m ∈ sv′ , 〈x,m〉 ≥ 0, but v − v′ ∈ P − v′ ⊂ sv′ . It follows

that 〈x, v − v′〉 ≥ 0. We conclude that x ∈ {v − v′}⊥. Conversely, let x ∈ σv ∩ {v − v′}⊥.
Then, for m ∈ sv′ , m =

∑p
i=1 λimi for some λi ≥ 0 and mi ∈ P − v′ = (P − v) + (v − v′).

We have P − v ⊂ sv and x ∈ {v − v′}⊥. Therefore 〈x,mi〉 ≥ 0 for all i ∈ {1, · · · , p} and so

〈x,m〉 ≥ 0.

This gives us an explicit description of Uσv∩σv′ as follows:

Corollary 3.1.8. Let P be an integral Delzant polytope and let v, v′ be vertices of P . Then

Sσv∩σv′ = Sσv − N0(v
′ − v).

In particular, Uσv∩σv′ ⊂ Uσv is given by {u ∈ Uσv : u(v′ − v) 6= 0}.

Proof. This follows from [Ful93, proposition 2].

The line bundle LP

Note that so far we have not used all the information contained in the polytope P . We will

now see that P also determines a very ample holomorphic line bundle LP whose bases of global

sections give embeddings of XP into projective space.

Definition 3.1.9 ([Oda88, p.66]). Let ∆ ⊂ N be a fan. A function h : |∆| → R on the support

|∆| def
=
⋃
σ∈∆ σ of ∆ is called a ∆-linear support function if it is Z-valued on N ∩ |∆| and is

linear on each σ ∈ ∆.

We can associate to P a ∆(P )-linear support function h : NR → R by

h(n)
def
= inf{〈m,n〉 : m ∈ P} for n ∈ NR,

as described in [Oda88, A.3]. Note that the tangent cone sF for a face F of P satisfies

sF =
⋃
r≥0

r(P −m) =
⋃
r≥0

r(P − F ) =
⋃

r≥0,p∈P,f∈F

r(p− f),

where m is any point in the relative interior of F . The dual cone σF to sF is hence given by

σF = {n ∈ NR : 〈p− f, n〉 ≥ 0, for all f ∈ F, p ∈ P}.

Lemma 3.1.10. Let F be a face of P . Then

σF = {w ∈ NR : 〈f, w〉 = h(w) for all f ∈ F}.

Proof. Let n ∈ {w ∈ NR : 〈f, w〉 = h(w) for all f ∈ F}. Then 〈f, n〉 ≤ 〈p, n〉 for all p ∈ P and

f ∈ F . Hence 〈p − f, n〉 ≥ 0 for all p ∈ P and f ∈ F . If n ∈ σF , then 〈f, n〉 ≤ 〈p, n〉 for all

p ∈ P and f ∈ F . But f ∈ P , so that 〈f, n〉 = h(n) for all f ∈ F .
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We observe that ∆(P )-linear support functions take the following simple form: For n ∈ σv

and v ∈ vertices(P ), we have h(n) = 〈n, v〉. Since
⋃

v∈vertices(P )

σv = NR, this gives an easy

description of h. Following [Oda88, §2], we can now define a very ample line bundle

LP
def
=

∐
v∈vertices(P )

Uσv × C

/
∼,

where we glue Uσv × C to Uσv′ × C along Uσv∩σv′ via the isomorphism

gv′v : Uσv∩σv′ × C → Uσv∩σv′ × C

given by gv′v(x, c) = (x, e(v − v′)(x)c) for x ∈ Uσv∩σv′ and c ∈ C. On the line bundle LP , we

define an action of TN on Uσv × C by t.(u, c)
def
= (t.u, e(−v)(t)c) for v ∈ vertices(P ), t ∈ TN ,

u ∈ Uσv and c ∈ C. It is a standard result in toric geometry that the global holomorphic

sections of LP have a basis corresponding to the integral points of P . Let us elaborate this

point a little bit. The actions of TN on XP and LP induce an action of TN on H0(XP , LP ) as

follows:

(t ◦ s)(p) def
= t−1.s(t.p) for s ∈ H0(XP , LP ), p ∈ XP and t ∈ TN .

The vector spaceH0(XP , LP ) = ⊕α∈P∩MVα then decomposes as a direct sum of one-dimensional

weight-spaces Vα for α ∈ P ∩M for this representation, where

Vα
def
=
{
s ∈ H0(XP , LP ) : t ◦ s = e(α)(t)s for t ∈ TN

}
for α ∈ P ∩M.

We define sα,v : Uσv → Uσv × C by sα,v(u)
def
= (u, e(α− v)(u)) for α ∈ P ∩M , v ∈ vertices(P )

and u ∈ Uσv . One can check that such a collection {sα,v : v ∈ vertices(P )}, for α ∈ P ∩M ,

descends to give a global non-trivial section sα ∈ H0(XP , LP ) and that sα ∈ Vα. It is also not

hard to see that the scaled polytope kP gives rise to the line bundle LkP over XP for k ∈ N.

Coordinates

Let P be an integral Delzant polytope in MR. Since we will later work in concrete local

coordinates on XP and LP , we will now give a very explicit description of toric coordinates,

transition functions and the torus action in terms of the polytope P . The description of these

coordinates on XP is also sketched in less detail in [Don08].

A choice of an ordered reference basis (e1, . . . , en) for M gives rise to an isomorphism of

groups f : TN ∼= (C∗)n, f : u 7→ (u(e1), . . . , u(en)) for u ∈ TN . For any two vertices v,v′ ∈ P ,

we define Av′v :MR →MR to be the linear map such that

Av′v (m(v)i) = m (v′)i for all i ∈ {1, · · · , n},

where (m(v)1, . . . ,m(v)n), for a vertex v of P , denotes an ordered basis forM given by primitive

integral vectors along the edges of P emanating from v. Let us assume that we have fixed an

ordering of these edge vectors for all vertices of P at the beginning.

Note that any such choice of ordered edge-vectors at a vertex v precisely corresponds to an

isomorphism Uσv
∼= Cn, given by u 7→ (u(m(v)1), . . . , u(m(v)n)) for u ∈ Uσv . We denote by
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(Av′v)ij the representation of Av′v in the ordered basis (m(v)1, . . . ,m(v)n). We have

Av′v(m(v)l) =
∑
j

(Av′v)jlm(v)j .

As a matrix, we then have

Av′v = ([m(v′)1]v, . . . , [m(v′)n]v) ,

where [x]v denotes the coordinates of x ∈MR in the basis (m(v)1, . . . ,m(v)n). We define, for

A ∈Mn×n(Z), an open set

UA
def
=
{
(z1, . . . , zn) : zj ∈ C if Ajk ≥ 0 for all k ∈ {1, · · · , n}

and zj ∈ C∗ if there exists k ∈ {1, · · · , n} such that Ajk < 0
}

and similarly for b ∈ Zn:

Ub
def
=
{
(z1, . . . , zn) : zj ∈ C if bj ≥ 0 and zj ∈ C∗ if bj < 0

}
.

For A ∈Mn×n(Z), we define φA : UA → Cn by

φA : z 7→

 n∏
j=1

z
Aj1

j , . . . ,
n∏
j=1

z
Ajn

j

 .

We observe that, for A,B ∈Mn×n(Z) and z ∈ UA ∩ φ−1
A (UB),

φB ◦ φA(z) = φB

 n∏
j=1

z
Aj1

j , . . . ,

n∏
j=1

z
Ajn

j


=

 n∏
i,j=1

(
z
Aji

j

)Bi1

, . . . ,
n∏

i,j=0

(
z
Aji

j

)Bin


=

 n∏
j=1

z
(AB)j1
j , . . . ,

n∏
j=1

z
(AB)jn
j


= φAB(z).

Similarly, for b ∈ Zn and z ∈ Ub, define φb(z) = zb =
∏n
j=1 z

bj
j . Then, for z ∈ UA ∩ φ−1

A (Ub),

we have

φb ◦ φA(z) =
n∏

i,j=1

z
Ajibi
j = φAb(z).

Lemma 3.1.11.

UAv′v
= {z ∈ Cn : z[v′−v]v 6= 0}

In particular, UAv′v
is the image of Uσv∩σv′ ⊂ Uσv under the isomorphism Uσv

∼= Cn obtained

by choosing a Zn basis of edge-vectors at v as described. φAv′v
is the local coordinate description

of the identity map id : Uσv ⊃ Uσv∩σv′ → Uσv∩σv′ ⊂ Uσv′ , and, for m ∈ Sσv , φ[m]v is the local

coordinate version of e(m) : Uσv → C.

Proof. Let i ∈ {1, · · · , n}. We need to show that ([v′−v]v)i = 0 if and only if ([m(v′)j ]v)i ≥ 0
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for all j ∈ {1, · · · , n}. Note that

P ⊂ v +

n∑
j=1

R≥0m(v)j for any vertex v of P.

In particular, in the basis (m(v)1, . . . ,m(v)n), we have

P ⊂ [v]v + Rn≥0

P ⊂ [v′]v +
n∑
j=1

R≥0[m(v′)j ]v.

Suppose ([v′ − v]v)i = 0. For any j ∈ {1, · · · , n}, [v′ + m(v′)j ]v ∈ P , so ([m(v′)j ]v)i ≥ 0

if ([v′ − v]v)i = 0. Now suppose ([m(v′)j ]v)i ≥ 0 for all j ∈ {1, · · · , n}. We have ([v]v)i ∈
([v′]v)i +

∑n
j=1 R≥0([m(v′)j ]v)i which implies ([v − v′]v)i ≥ 0, but ([v′]v)i ∈ ([v]v)i + R≥0

implies ([v′ − v]v)i ≥ 0.

We can now reformulate our description of XP and LP as follows:

XP =
∐

v∈vertices(P )

Cn × {v}

/
∼ ,

where

Cn × {v} ⊃ UAv′v
× {v} 3 (z,v) ∼ (φAv′v

(z),v′) ∈ UAvv′ × {v′} ⊂ Cn × {v′}

for v,v′ ∈ vertices(P ). Similarly, we have

LP =
∐

v∈vertices(P )

Cn × C× {v}

/
∼ ,

where

Cn × C× {v} ⊃ UAv′v
× C× {v} 3 (z, λ,v) ∼

(φAv′v
(z), φ[v−v′]v (z)λ,v

′) ∈ UAvv′ × C× {v′} ⊂ Cn × C× {v′}

for v,v′ ∈ vertices(P ). We call these coordinate charts Uv
∼= Cn × {v} of XP (and Uv × C ∼=

Cn × C× {v} of LP ) for v ∈ vertices(P ) the toric defining charts (trivializations).

Holomorphic sections in coordinates We observe that, for α ∈ P ∩ M , the section

sα ∈ H0(XP , L) is determined in local coordinates by a collection of functions sα,v : Uσv
∼=

Cn → Cn × C ∼= Uσv × C for each v ∈ vertices(P ), where sα,v(z)
def
= (z, φ[α−v]v (z)).

Torus action in coordinates Recall that, at the beginning, we fixed a reference basis

(e1, . . . , en) for M when we chose coordinates for the torus TN . For t ∈ TN and u ∈ Uσv ,

t.u ∈ Uσv is identified with

(t(m(v)1)u(m(v)1), . . . , t(m(v)n)u(m(v)n)),
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so that, in local coordinates, the action is given by

(t1, . . . , tn).(z1, . . . , zn) = (t[m(v)1]ez1, . . . , t
[m(v)n]ezn),

where [x]e denotes the coordinates of x ∈MR in the basis (e1, . . . , en) and where tj ∈ C∗, zj ∈ C
for all j ∈ {1, .., n}. If we denote Ave = ([m(v)1]e, . . . , [m(v)n]e), so that Ave(ei) = m(v)i,

then t.z = φAve(t).diagz, where .diag denotes the standard diagonal action. Similarly, the torus

action on the line bundle is given by t.(z, λ) = (φAve(t).diagz, φ[−v]e(t)λ) for (z, λ) = (z, λ,v) ∈
Cn × C× {v}, v ∈ vertices(P ) and t ∈ (C∗)n.

Convenient charts When we work in any of the charts Uσv , for v ∈ vertices(P ), note that we

can pick corresponding coordinates of the torus TN such that the reference basis (e1, . . . , en) and

the basis of edge-vectors (m(v)1, · · · ,m(v)n) agree. The action of TN on Uσv then corresponds

to the standard diagonal action on Cn ∼= Uσv in these coordinates.

3.2 Symplectic approach

Having discussed the complex algebraic approach to toric Kähler manifolds, let us now consider

the subject through the eyes of a symplectic geometer (see e.g. [CdS03]).

From the symplectic point of view, we define:

Definition 3.2.1 ([CdS03, definitions 1.6.1 and 1.6.2]). A symplectic toric manifold (X,ω,T, µ)
is a compact connected symplectic manifold (X,ω) equipped with an effective Hamiltonian

action of a real torus T of dimension 1
2 dim(X) and with a choice of moment map µ : X → t∗,

where t denotes the Lie algebra of T.
We call two symplectic toric manifolds (Xi, ωi,Ti, µi), i = 1, 2 equivalent if there exists an

isomorphism λ : T1 → T2 and a λ-equivariant symplectomorphism φ : X1 → X2 such that

µ1 = µ2 ◦ φ.

The central classification result is:

Theorem 3.2.2 ([CdS03, Theorem 2.1.2, Delzant’s theorem]). Symplectic toric manifolds are

classified by Delzant polytopes. The bijective correspondence is given by mapping the symplectic

toric manifold to its image under the moment map.

One direction of the theorem is proved by a procedure called “Delzant’s construction” which

associates to each Delzant polytope P a symplectic toric manifold which is constructed as a

symplectic reduction of the standard flat space (Cd, ωstd), where d is equal to the number

of codimension 1 faces of P . Interestingly, one can also construct the complex manifold XP

via a GIT quotient of Cd and the complex and symplectic structures obtained from these

two quotients turn out to be compatible giving (XP , ω) the structure of a Kähler manifold.

Symplectic toric manifolds with 2πω ∈ H2(XP ,Z) are smooth polarized toric varieties with

integral Delzant polytopes and 2π[ω] = c1(LP ). The interested reader may consult [Gui94a,

Gui94b, CdS03] for more details on this story.

Note that, via the moment map µ : XP → t∗, we think of the Delzant polytope as lying

inside t∗. The group lattice L
def
= Ker(exp : t → T) ⊂ t is a natural lattice in t, and we can

consider its dual lattice L∗ = {φ ∈ t∗ : φ(l) ∈ Z for all l ∈ L}. L and L∗ are the lattices N and

M that we discussed previously as seen from the symplectic point of view.
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3.3 Toric Kähler geometry

3.3.1 Abreu’s work

Let (LP , h) → (XP , ω) be a polarized toric Kähler manifold such that [ω] = 2πc1(L), and let

µ : XP → t∗ =MR ∼= Rn denote a choice of moment map that has P as its image.

Legendre duality

We will now recall the notion of Legendre duality for strictly convex functions (see also [Gui94b,

Appendix 1]). Let φ : Rn → R be a strictly convex smooth function and suppose that φ has a

global minimum at x0 ∈ Rn. We define the Legendre transform of φ to be the map µ : Rn → Rn

given by µ(t)
def
= ∇φ|t =

(
∂φ
∂x1

∣∣∣
t
, · · · , ∂φ

∂xn

∣∣∣
t

)
for t ∈ Rn. µ is a diffeomorphism onto its image

which is an open convex subset of Rn and which we denote by U . There exists a function

u : U → R, dual to φ, such that

φ(t) + u(α) = 〈t,α〉 if and only if α = µ(t).

We define, for t ∈ Rn and α ∈ U ,

h(α, t)
def
= φ(t) + u(α)− 〈t,α〉.

h : U × Rn → R, defined in this way, is a smooth function that has a nice geometric interpre-

tation. We consider the graph:

Figure 3.1: Legendre Duality

Γφ
def
= {(t, φ(t)) ∈ Rn+1 : t ∈ Rn}.

Let us pick coordinates (t, λ) ∈ Rn+1 and let γ : Rn → Γφ, γ(t)
def
= (t, φ(t)) for t ∈ Rn. At the

point (t0, φ(t0)) ∈ Γφ, we have the tangent hyperplane

T(t0,φ(t0))Γφ =Span

(
γ∗

∂

∂t1

∣∣∣∣
t0

, . . . , γ∗
∂

∂tn

∣∣∣∣
t0

)
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whose orthogonal complement is given by

N(t0,φ(t0))Γφ = Span

−
n∑
j=1

∂φ

∂tj

∣∣∣∣
t0

∂

∂tj

∣∣∣∣
(t0,φ(t0))

+
∂

∂λ

∣∣∣∣
(t0,φ(t0))


∼= Span

((
− ∂φ

∂t1

∣∣∣∣
t0

, . . . ,− ∂φ

∂tn

∣∣∣∣
t0

, 1

))
.

Concretely, we have T(t0,φ(t0))Γφ as a subset of Rn+1 given by:

T(t0,φ(t0))Γφ =

{
(t, s) ∈ Rn+1 :

〈
(t, s)− (t0, φ(t0)),

(
− ∂φ

∂t1

∣∣∣∣
t0

, . . . ,− ∂φ

∂tn

∣∣∣∣
t0

, 1

)〉
= 0

}
.

For each t0 ∈ Rn, we hence have an affine hyperplane Ht0
def
= T(t0,φ(t0))Γφ, and the point in

Ht0 with the first n coordinates given by t ∈ Rn is given by
(
t, φ(t0) + 〈t − t0, µ(t0)〉

)
=(

t, 〈t, µ(t0)〉 − u(µ(t0))
)
. In particular, for t = 0, we get

(
0,−u(µ(t0))

)
which gives us a

geometric interpretation for the function u. Note that, as a byproduct, h (µ(t0), t) = φ(t) −
(〈t, µ(t0)〉 − u(µ(t0))), so that we can recover an interpretation of Young’s inequality

φ(t) + u(α) ≥ 〈t,α〉 ⇐⇒ h(α, t) ≥ 0, for t ∈ Rn and α ∈ U ,

as simply stating that Γφ lies above each tangent hyperplane (which follows by convexity). We

will see later that functions like h are related to the asymptotic expansion of the Bergman

kernel on polarized toric Kähler manifolds.

Coordinates on the open orbit

Following Abreu [Abr98] and using the notation developed in this chapter, we consider the open

dense TN -orbit in XP , where XP is a complex n-dimensional toric manifold corresponding to

a Delzant polytope P ⊂ MR ∼= Rn. Pick v ∈ vertices(P ) and choose (m(v)1, . . . ,m(v)n) as a

reference basis for M giving an isomorphism Uσv
∼= Cn and, due to the inclusion TN ⊂ Uσv ,

also an isomorphism TN ∼= (C∗)n ⊂ Cn. We have a holomorphic surjection

Cn = Rn + iRn π� (C∗)n

w = t+ iθ 7→ et+iθ
def
= (et1+iθ1 , . . . , etn+iθn).

Slightly abusing notation, we will denote local holomorphic coordinates on the quotient

(C∗)n = Cn/Kerπ = Rn + iRn/(2πZ)n by t + iθ as well. On TN ∼= (C∗)n ⊂ XP , there exists

a Tn-invariant real Kähler potential φ : (C∗)n → R which we think of as a function in the

variables t = (t1, · · · , tn) ∈ Rn. We have

ω = 2i∂∂φ = Hess(φ)ijdti ∧ dθj
g = Hess(φ)ij (dtidtj + dθidθj) .

Note that φ : Rn → R is unique only up to the addition of some affine function t 7→ 〈t, c〉+ λ

for t ∈ Rn, some c ∈ Rn and λ ∈ R. If, however, we think of the polytope P as fixed, we can

require that µ = ∇φ in these coordinates with µ(Rn) = Int(P ). This determines φ up to the
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addition of a constant λ ∈ R. Suppose that we have normalized φ in this way and suppose

that we have fixed a Hermitian fibre-wise metric h on LP such that iFh = ω (Recall that such

a fibre-wise metric is unique up to multiplication by a positive constant e−λ, where λ ∈ R).
We can now fix the remaining ambiguity in φ by demanding that there exists a holomorphic

trivialization of LP over TN such that the canonical section sα ∈ H0(XP , LP ) for α ∈ P ∩M
is represented by the function z 7→ zα, for z ∈ (C∗)n, and we have |sα(t)|2h = e−2(φ(t)−〈t,α〉)

for z = (z1, · · · , zn) =
(
et1+iθ1 , · · · , etn+iθn

)
∈ (C∗)n.

Since the Kähler metric g(., .) = ω(., J.) is non-degenerate, φ : Rn → R is strongly convex.

µ is a diffeomorphism from Rn onto the interior of P . Furthermore, we call the strongly convex

function u : Int(P ) → R which is Legendre dual to φ the symplectic potential corresponding to

φ. We have

u(x) + φ(t) ≥ 〈x, t〉,

for t ∈ Rn and x ∈ Int(P ), with equality if and only if x = µ(t).
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Chapter 4

Example: CPn

We now familiarize ourselves with some of the toric geometry that we introduced in the previous

chapter by studying a partial density function with vanishing at a point in CPn. Investigating
this example sheds some light on the more general asymptotics that we will study in chapter 7.

The results obtained here will also be helpful for our discussion of blow-ups of CPn in chapter

10.

4.1 A polarization of CPn

For a parameter m ∈ N, we consider the polarization

(O(m), hmFS) → (CPn,mωFS) .

We normalize the Fubini-Study Kähler form ωFS such that ωFS ∈ 2πc1 (O(1)). On the co-

ordinate chart Ui = {[t0 : · · · : tn] ∈ CPn : ti 6= 0}, for i ∈ {0, · · · , n}, we pick coordinates

ψi : Cn → Ui,
ψi : z = (z1, · · · , zn) 7→ [z1 : · · · : zi−1 : 1︸︷︷︸

ith

: zi : · · · : zn].

On U0, ωFS
def
= i∂∂ log

(
1 +

∑n
i=1 |zi|

2
)
and hFS(z)

def
=
(
1 +

∑n
i=1 |zi|

2
)−1

in the standard triv-

ialization of O(1) over U0. We define the L2 inner product induced by hmkFS on H0 (CPn,O(mk))

by

〈s, s′〉hmk
FS

def
=

∫
CPn

(s, s′)hmk
FS

(mωFS)
n

n!
for s, s′ ∈ H0(CPn,O(mk)).

Recall that, as a toric variety, the polarization above is determined by the simplex Simpn(m)

in Rn with vertices at (0, · · · , 0), (m, 0, · · · , 0), · · · , (0, · · · , 0,m). These vertices correspond to

the charts U0, · · · ,Un respectively. Similarly, O(mk) has a defining toric trivialization over each

Ui.

Lemma 4.1.1. For m, k ∈ N, an orthonormal basis of
(
H0 (CPn,O(mk)) , 〈., .〉hmk

FS

)
is given

by

{sα,m,k ∈ H0 (CPn,O(mk)) : α ∈ Nn0 , |α| ≤ mk},

where, on the toric defining trivialization O(mk)|U0

∼= U0 × C, sα,m,k takes the form

sα,m,k : z 7→ (z, aα,m,kz
α) , for z ∈ Cn,
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and

aα,m,k
def
=

√
(mk + n)!

(2π)n(mk)!mn

(
mk

mk − |α| ,α

)
.

Proof. As usual, the basis above is (up to scaling) the standard toric basis of sections corre-

sponding to integral points of a polytope P . In this case, P is the simplex Simpn(mk) with

vertices

(0, · · · , 0), (mk, 0, · · · , 0), · · · , (0, · · · , 0,mk).

We remark that the resulting basis for m = 1 has also previously been discussed e.g. in [AL04].

For α ∈ Nn0 and j ∈ N such that j ≥ |α|+ n+ 1, we compute that

In(α, j)
def
=

∫
Rn

≥0

r2α1+1
1 · · · r2αn+1

n

(1 +
∑n
i=1 r

2
i )
j
dr =

α!(j − (|α|+ n+ 1))!

(j − 1)!
.

For α ∈ Nn0 and |α| ≤ mk, consider the section s′α,m,k ∈ H0(CPn,O(km)) given by z 7→ (z, zα)

on U0. We have

‖s′α,m,k‖2 =

∫
CPn

|zα|2(
1 +

∑n
i=1 |zi|

2
)mk (mωFS)nn!

= (4πm)n
∫
Rn

≥0

r2α1+1
1 · · · r2αn+1

n

(1 +
∑n
i=1 r

2
i )
mk+n+1

dr

=
(2πm)n(mk)!

(mk + n)!

(
mk

mk − |α| ,α

)−1

.

The sections s′α,m,k, for fixed m, k ∈ N and for α ∈ Nn0 such that |α| ≤ mk, form an orthogonal

basis of H0(CPn,O(mk)). Normalizing by their L2 norms yields the result.

4.2 Symplectic coordinates

Let us quickly discuss the toric and symplectic potentials for the polarization of CPn in ques-

tion. Observe that ω
def
= mωFS = 2i∂∂φ(t) for the toric potential φ : Rn → R, φ : t 7→

m
2 log

(
1 +

∑n
i=1 e

2ti
)
for t = (t1, · · · , tn) ∈ Rn. We use the coordinates (z1, · · · , zn) =(

et1+iθ1 , · · · , etn+iθn
)
on (C∗)

n ⊂ CPn. The moment map µ : CPn 7→ Rn ∼= t∗ is invariant

under the real torus Tn ⊂ (C∗)
n
and takes the form

µ(t) = ∇φ|t =
m

1 +
∑n
i=1 e

2ti
(e2t1 , · · · , e2tn).

There exists a symplectic potential u : Simpn(m) → R such that

u(α) + φ(t) = 〈α, t〉, for α = µ(t),

and where α ∈ Int(Simpn(m)) and t ∈ Rn. It is not hard to compute explicitly that

u(α) =
1

2

(
n∑
i=1

αi logαi +

(
m−

n∑
i=1

αi

)
log

(
m−

n∑
i=1

αi

)
−m logm

)
,
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for α ∈ Simpn(m), and

∇u|α = µ−1(α) =
1

2

(
logα1 − log

(
m−

n∑
i=1

αi

)
, · · · , logαn − log

(
m−

n∑
i=1

αi

))

for α ∈ Int (Simpn(m)). As we can see in figure 4.1, the graph of u, for m = 10, n = 1 and

n = 2 respectively, is of the expected form.

642

x

0 8
0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

10

Figure 4.1: Graphs of x 7→ u(x) for m = 10, n = 1 and (x, y) 7→ u(x, y) for m = 10, n = 2
respectively.

4.3 Density functions

For the polarization (O(m), hmFS) → (CPn,mωFS), we are now investigating the partial density

function ρl,m,k corresponding to the subspace J lk
[1:0:...:0] ⊂ H0 (CPn,O(mk)) of sections vanish-

ing to order at least lk at [1 : 0 : . . . : 0] for l < m, l,m, k ∈ N. For any orthonormal basis

{s1,k, . . . , sMk,k} of J lk
[1:0:...:0], ρl,m,k : CPn → R is defined as

ρl,m,k(p)
def
=

Mk∑
j=1

|sj,k(p)|2hmk
FS

for p ∈ CPn.

Similarly, we recall that, for any orthonormal basis {s1,k, . . . , sNk,k} of H0 (CPn,O(mk)), the

density function ρm,k : CPn → R is defined as

ρm,k(p)
def
=

Nk∑
j=1

|sj,k(p)|2hmk
FS

for p ∈ CPn.

Lemma 4.3.1. The density function for the polarization (O(m), hmFS) → (CPn,mωFS) is con-
stant for fixed k,m ∈ N and given by

ρm,k =
1

(2π)n
(mk + n)!

(mk)!mn

=
1

(2π)n

(
kn +

1

2

n(n+ 1)

m
kn−1 +O

(
kn−2

))
.

Furthermore, the partial density function ρl,m,k corresponding to the subspace J lk
[1:0:...:0] ⊂

H0 (CPn,O(mk)) of sections vanishing to order at least lk at [1 : 0 : . . . : 0], for l < m
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and l,m, k ∈ N, is given by

ρl,m,k(z) =
1

(2π)n
(mk + n)!

(mk)!mn

∑mk
j=lk

(
mk
j

) (∑n
i=1 |zi|

2
)j

(
1 +

∑n
i=1 |zi|

2
)mk for z = (z1, · · · , zn) ∈ Cn

in the coordinate ψ0 : Cn → U0. In symplectic coordinates, we have

ρl,m,k(α) =
1

(2π)n
(mk + n)!

(mk)!mn
fl,m,k

(∑n
i=1 αi
m

)
for α ∈ Simpn(m),

where fl,m,k : [0, 1] → R is defined as

fl,m,k(s)
def
=

mk∑
j=lk

(
mk

j

)
sj(1− s)mk−j for s ∈ [0, 1].

Proof. By definition, we have on U0 that

ρm,k(z) =
∑

|α|≤mk

a2α,m,k |zα|2hmk
FS

=
(mk + n)!

(2π)n(mk)!mn

∑
|α|≤mk

(
mk

mk − |α| ,α

)
|zα|2(

1 +
∑n
i=1 |zi|

2
)mk

=
1

(2π)n
(mk + n)!

(mk)!mn
.

Similarly, we have on U0 that

ρl,m,k(z) =
∑

lk≤|α|≤mk

a2α,m,k |zα|2hmk
FS

=
1

(2π)n
(mk + n)!

(mk)!mn

mk∑
j=lk

(
mk

j

) (∑n
i=1 |zi|

2
)j

(
1 +

∑n
i=1 |zi|

2
)mk .

Computing this expression in symplectic coordinates yields the second part of the lemma.

Remark 4.3.2. Figure 4.2 indicates that fl,m,k converges to a step function with the transi-

tioning behaviour occurring at l
m as k → ∞.

0.60 0.4 0.80.2

1

1

0.4

0.2

s

0

0.8

0.6

Figure 4.2: Graphs of fl,m,k for l = 3, m = 10 and k ∈ {1, 3, 100}.
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4.3. Density functions

In chapter 7, we will investigate the decay behaviour of the analogues of ρl,m,k for general

polarized toric manifolds. The asymptotic expansion of ρl,m,k on the transitioning region (e.g.

at s = l
m in this example) will turn out to be particularly interesting.
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Chapter 5

Toric Localization

We provide a proof of a toric localization of sums theorem that enables us to compute the

asymptotics of toric Bergman kernels using an orthonormal basis of sections of a small subspace

of H0(X,Lk). Our approach also gives a simple proof of an off-diagonal exponential decay

estimate for toric Bergman kernels and extends a localization of sums result by Song and

Zelditch (see [SZ10, lemma 1.2]).

5.1 Some toric estimates

Lemma 5.1.1. Suppose that Tn acts on Cn by the standard action

(eiθ1 , · · · , eiθn).(z1, · · · , zn) = (eiθ1z1, · · · , eiθnzn) for θj ∈ [0, 2π), zj ∈ C

and that ω is a Tn-invariant Kähler form on Cn.

a) There exists a Tn-invariant smooth Kähler potential φ : Cn → R such that

ω = 2i∂∂φ.

b) Up to a constant, the restriction of the moment map µ : Cn → t∗ ∼= Rn to the open subset

Ck × (C∗)
n−k

, for k ≤ n, is given by

µ(x1, y1, · · · , xk, yk, tk+1, · · · , tn)

=

(
x1

∂φ

∂x1
+ y1

∂φ

∂y1
, · · · , xk

∂φ

∂xk
+ yk

∂φ

∂yk
,
∂φ

∂tk+1
, · · · , ∂φ

∂tn

)
,

for k ≤ n, where we have used coordinates z = x+ iy on the C factors and z = et+iθ on

the C∗ factors of Ck × (C∗)
n−k

.

Proof. a) By the standard ∂∂-lemma, there exists a smooth Kähler potential ψ : Cn → R such

that ω = 2i∂∂ψ on Cn. We define

φ(z)
def
=

1

(2π)n

∫ 2π

0

· · ·
∫ 2π

0

ψ
((
eiθ1 , · · · , eiθn

)
.z
)
dθ1 · · · dθn for z ∈ Cn.
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Chapter 5. Toric Localization

It is now easy to check that

2i∂∂φ = ω.

b) This is a straightforward calculation. We observe that the vector field ∂
∂θj

#
generated by

∂
∂θj

∈ t is given by

∂

∂θj

#

= i

(
zj

∂

∂zj
− zj

∂

∂zj

)
.

Let us use the shorthand notation φzizj = ∂2φ
∂zi∂zj

. We have

i ∂
∂θj

#ω = −2
(
zjφzjzkdzk + zjφzkzjdzk

)
,

while

d
(
xjφxj + yjφyj

)
= d

(
zjφzj + zjφzj

)
= zjφzjzkdzk + zjφzjzkdzk + φzkdzk + zjφzjzkdzk + zjφzjzkdzk + φzkdzk.

(5.1.1)

By the Tn-invariance of φ,

zjφzj − zjφzj = 0 for j ∈ {1, · · · , n}.

Differentiating the above identity with respect to zj and zj , for j ∈ {1, · · · , n}, and substituting

the resulting expressions into equation 5.1.1 gives the required equality

d
(
xjφxj + yjφyj

)
= −i ∂

∂θj

#ω for j ∈ {1, · · · , n}.

A final change of coordinates zj = etj+iθj , for j ∈ {k+1, · · · , n}, gives the last few components

of the moment map.

Remark 5.1.2. The above lemma extends the expressions for the moment map and potential

defined on (C∗)n as used by Abreu [Abr98, Abr03] to a Ck × (C∗)n−k chart.

Let us denote by sα,k, for α ∈ P ∩ 1
kZ

n, the holomorphic section in H0(XP , L
k
P ) corre-

sponding to the integral point kα ∈ kP ∩ Zn that we discussed in chapter 3.

Lemma 5.1.3. Let (LP , h) → (XP , ω) be a polarized toric Kähler manifold and let µ : XP → t∗

denote a choice of moment map that has P as its image. There exists a continuous function

n : P × P � [0, 1] with the following properties:

a) We have n(α,β) = e−h(α,β), for all α,β ∈ Int(P ), where

h(α,β)
def
= 2

(
u(α)− u(β) + 〈∇u|β ,β −α〉

)
≥ 0,

and u : P → R denotes a symplectic potential. h(α,β) = 0 if and only if α = β, and the

only critical points of h(α, .) : Int(P ) → R and h(.,α) : Int(P ) → R, for α ∈ Int(P ), occur

at α. Furthermore, Hessh(α, .)|α and Hessh(.,α)|α are positive definite for α ∈ Int(P ).

b)

n(α,β)k =

∣∣sα,k (µ−1(β)
)∣∣2
hk

|sα,k (µ−1(α))|2hk
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5.1. Some toric estimates

for k ∈ N, α ∈ P ∩ 1
kZ

n and β ∈ P .

c) n(α,β) = 0 if and only if β ∈
⋃

{F :F<P,α/∈F} F .

Proof. For v ∈ vertices(P ), we define mv : P × Uσv → R≥0 by

mv(α,z) =
∣∣φ[α−v]v (z)

∣∣2 hv(z),
for z ∈ Cn ∼= Uσv , where hv is the local expression of the Hermitian metric with respect to the

standard trivialization of LP over Uσv , and we choose coordinates on Uσv by mapping u ∈ Uσv

to (u(m(v)1), · · · , u(m(v)n) as described in chapter 3. Let us check that {mv : v ∈ vertices(P )}
glue to give a global function m : P ×XP → R. Let v,v′ be two vertices of P . We check that

mv′(α, φAv′v (z)) =
∣∣φ[α−v′]v′

(
φAv′v (z)

)∣∣2 hv′
(
φAv′v (z)

)
=
∣∣φ[α−v′]v (z)

∣∣2 ∣∣φ[v′−v]v (z)
∣∣2 hv(z)

=
∣∣φ[α−v]v (z)

∣∣2 hv(z)
= mv(α, z)

for z ∈ Uσv∩σv′ and α ∈ P .

Let us now show that m(α, z) 6= 0 for z ∈ µ−1(α). Let α ∈ P . Pick a vertex v of P such

that µ−1(α) ⊂ Uσv
. Our coordinates on Uσv

also induce coordinates on TN ⊂ Uσv
, and the

action of TN on Uσv is just the standard diagonal action of (C∗)n on Cn in these coordinates.

Note that our choice of coordinates also corresponds to a choice of basis (m(v)1, · · · ,m(v)n) of

M = t∗ ∼= Rn. Let ψ : Cn → R denote a Tn-invariant Kähler potential so that ω = 2i∂∂ψ. By

lemma 5.1.1, we have

µ(x1, y1, · · · , xn, yn) =
(
x1

∂ψ

∂x1
+ y1

∂ψ

∂y1
, · · · , xn

∂ψ

∂xn
+ yn

∂ψ

∂yn

)
+ [v]v,

for (x1 + iy1, · · · , xn + iyn) ∈ Cn, in these coordinates on Uσv and t∗.

If mv(α,z) = 0, there exists a j ∈ {1, · · · , n} such that |zj |(
[α−v]v)j = 0. Hence zj =

xj + iyj = 0 and ([α− v]v)j > 0. But (µ(z)− [v]v)j = xj
∂ψ
∂xj

+ yj
∂ψ
∂yj

= ([α− v]v)j 6= 0. This

is a contradiction.

We recall that µ−1(α) = Orbp(Tn) for any p ∈ µ−1(α). Note that m(α, .) is invariant

under the Tn action for α ∈ P . Because m and µ are continuous, P × P is Hausdorff and XP

is compact, the function n : P × P → R given by

n(α,β)
def
=

m
(
α, µ−1(β)

)
m (α, µ−1(α))

,

for α,β ∈ P , is continuous.

Note that µ−1(Int(P )) = (C∗)n. Pick local coordinates on TN ∼= (C∗)n and a trivialization

of LP over TN such that sα,1(z) = zα for z ∈ (C∗)n and α ∈ P ∩Zn. Following Abreu, we pick

a Tn-invariant Kähler potential ψ : Rn → R (so that ω = 2i∂∂ψ) such that the Hermitian metric

is locally given by e−2ψ in our trivialization and the moment map is ∇ψ. We let zj = etj+iθj

for j ∈ {1, · · · , n} and have

m(α,z) = |zα|2 e−2ψ(z) = e−2(ψ(t)−〈α,t〉).
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Finally, applying Legendre duality with t = ∇u|β and ψ
(
∇u|β

)
= 〈β, ∇u|β〉 − u(β), we find

that

n(α,β) = e−h(α,β), for α,β ∈ Int(P ),

as claimed. Smoothness on Int(P ) × Int(P ) now follows from the smoothness of u on Int(P ).

Positivity and the claim about the zero set of h follows from Young’s inequality for Legendre

duality. Noting that Hess(u) is positive definite on Int(P ) and a simple calculation verifies the

claim about the critical points of h(α, .) : Int(P ) → R and h(.,α) : Int(P ) → R for α ∈ Int(P ).

We now prove c). We will work on the coordinate charts Uσv for v ∈ vertices(P ). We want

to show that ⋃
v∈vertices(P )

µ (Z (mv (α, .))) =
⋃

{F :F<P,α/∈F}

F.

Suppose that z ∈ Z (mv(α, .)) ⊂ Uσv for some v ∈ vertices(P ). We have mv(α,z) =∣∣z[α−v]v
∣∣2 hv(z) = 0 and

µ(x1, y1, · · · , xn, yn) =
(
x1

∂ψ

∂x1
+ y1

∂ψ

∂y1
, · · · , xn

∂ψ

∂xn
+ yn

∂ψ

∂yn

)
+ [v]v

for (x1 + iy1, · · · , xn + iyn) = z ∈ Cn. Hence there exists j ∈ {1, · · · , n} such that zj = 0 and

([α− v]v)j 6= 0. But then (µ(z)− [v]v)j = 0. Let Fj = ([v]v + Z(zj)) ∩ P . Then µ(z) ∈ Fj ,

Fj < P and [α]v /∈ Fj .

Now let F < P and α ∈ P such that α /∈ F . For any f ∈ F , there exists v ∈ vertices(P )

and z ∈ Uσv such that µ(z) = f . We now show that z ∈ Z (mv(α, .)). In our standard chart

Uσv and after a reordering of indices, we have

µ (Uσv ) ∩ F − [v]v = (µ (Uσv )− [v]v) ∩ Z(z1) ∩ · · · ∩ Z(zk)

for some k ∈ N such that 1 ≤ k ≤ n. Then there exists j ∈ {1, · · · , k} such that ([α− v]v)j 6= 0

and (µ(z)− [v]v)j = 0. This implies that zj = 0 and hence mv(α, z) = 0.

Remark 5.1.4. Let us remark here that several authors have previously used and observed the

convexity properties of h over the interior of the polytope (see e.g. [SZ10, SD10, BGU10]).

We will make use of the following elementary lemma:

Lemma 5.1.5. Let f ∈ C∞ (Rn) and suppose that f(a) = 0 and Df |a = 0 for some a ∈ Rn.
Then, for any x ∈ Rn,

f(x) ≥ 1

6
inf

y∈line(a,x)
〈Hess f |y

x− a

‖x− a‖
,

x− a

‖x− a‖
〉‖a− x‖2.

Proof. We recall the following elementary result:

f(x) =

n∑
j=0

1

j!

d

d t

j

f (a+ t(x− a))

∣∣∣∣∣
0

+

∫ 1

0

(1− t)n

n!

d

d t

j

f(a+ t(x− a))

∣∣∣∣∣
t

dt.

In particular, letting n = 2, we find

f(x) = ‖x− a‖2
∫ 1

0

(1− t)2

2
〈Hess f |a+t(x−a)

x− a

‖x− a‖
,

x− a

‖x− a‖
〉dt.
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The estimate now follows.

The following lemma is a standard toric geometry result which comes from the fact that “a

symplectic potential restricted to a face F of the polytope P yields a symplectic potential for

the corresponding toric subvariety YF ” (cf. [SD10, Lemma 3.5]).

Lemma 5.1.6. Let (XP , ω) be a toric Kähler manifold and let u : P → R be a symplectic

potential for ω. P is given as an intersection of affine halfspaces P = ∩di=1H
+
ni,λi

with H+
ni,λi

def
=

{α ∈ Rn : li(α) ≥ 0} and li(α)
def
= 〈α,ni〉 − λi for some λi ∈ R and primitive ni ∈ Zn. Let

Z(li)
def
= {x ∈ Rn : li(x) = 0} and α ∈ P . Without loss of generality, let Z(l1), . . . ,Z(ls)

denote those affine hyperplanes among Z(l1), · · · ,Z(ld) containing α. Let 0 6= m ∈ Rn such

that 〈m,ni〉 = 0 for i ∈ {1, · · · , s}. Then

〈Hessu|α m,m〉 > 0.

Proof. Let F
def
= Z(l1, · · · , ls) denote the face containing α in its relative interior. Pick a Cn

chart Uσv corresponding to a vertex v = (v1, · · · , vn) ∈ F and coordinates Uσv
∼= Cn such that

µ−1(F ) ∩ Uσv
∼= {0} × Cn−s. In these coordinates lj(α) = αj − ([v]v)j for j ∈ {1, · · · , s}.

By lemma 5.1.1, there exists a torus-invariant Kähler potential φ̂ on that Cn chart such that

ω = 2i∂∂φ̂. We have

µ(x1, y1, · · · , xn, yn) =

(
x1

∂φ̂

∂x1
+ y1

∂φ̂

∂y1
, · · · , xn

∂φ̂

∂xn
+ yn

∂φ̂

∂yn

)
+ [v]v

for (x1+iy1, · · · , xn+iyn) = z ∈ Cn. In the standard holomorphic trivialization LUσv
∼= Cn×C,

we have sα,1(z) = z[α−v]v and |sα,1(z)|2h =
∣∣z[α−v]v

∣∣2 e−2φ̂(z) for z ∈ Cn and α ∈ Zn ∩ P .
Over TN ∼= (C∗)n, the retrivialization (z, λ) 7→ (z, z[v]vλ), for z ∈ (C∗)n and λ ∈ C, yields
the familiar standard setup where sα,1(z) = z[α]v and |sα,1(t)|2h = e−2(ψ(t)−〈t,[α]v〉) for z =

(et1+iθ1 , · · · , etn+iθn) ∈ (C∗)n. We have ω = 2i∂∂ψ, µ = ∇ψ and ψ(t) = φ̂(et1 , · · · , etn) +
〈[v]v, t〉. We denote by u the symplectic potential dual to ψ. We now have

u (µ(z)) =
n∑
i=1

log(|z|i) (µ(z)− [v]v)i − φ̂(z)

for all z ∈ (C∗)n. In fact, we note that, for z ∈ {0} × (C∗)n−s ⊂ Cn, we have

log(|z|i) (µ(z)− [v]v)i = 0, for i ∈ {1, · · · , s},

since then (µ(z)− [v]v)i = 0 for i ∈ {1, · · · , s}. It follows that the function φ : Rn−s → R
given by φ(tn−s+1, · · · , tn) = φ̂(0, · · · , 0, etn−s+1 , · · · , etn) is (up to addition of an affine factor)

Legendre dual to the restriction of u to RelInt(F ). Since the restriction of ω to {0} × (C∗)n−s

is non-degenerate, it follows that φ is strictly convex. The nondegeneracy of Hess
(
u|RelInt(F )

)
now follows by Legendre duality.

Proposition 5.1.7. Let (L, h) → (XP , ω) be a toric polarization. There exists a constant c > 0

such that

n(α,β) ≤ e−c‖α−β‖2
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for all α,β ∈ P .

Proof. Recall that n(α,β) = e−h(α,β) for α,β ∈ Int(P ). We will prove that there exists a

constant c > 0 such that h(α,β) ≥ c‖α − β‖2 for α,β ∈ Int(P ). Let u : P → R denote a

symplectic potential for (XP , ω). We recall that

h(α,β) = 2
(
u(α)− u(β) + 〈∇u|β ,β −α〉

)
.

In particular, ∂
∂αi

h
∣∣∣
(α,β)

= 2

(
∂u
∂αi

∣∣∣
α
− ∂u

∂αi

∣∣∣
β

)
and ∂2

∂αi∂αj
h
∣∣∣
(α,β)

= 2 ∂2u
∂αi∂αj

∣∣∣
α

for α,β ∈

Int(P ). Define fβ(α)
def
= h(α,β) for α,β ∈ Int(P ). Then

h(α,β) = fβ(α) ≥ 1

3
‖α− β‖2 inf

y∈line(α,β)
inf

{v∈Rn:‖v‖=1}
〈Hessu|y v,v〉, for α,β ∈ Int(P ),

by lemma 5.1.5. We now have to prove that

inf
y∈Int(P )

inf
{v∈Rn:‖v‖=1}

〈Hessu|y v,v〉 > 0.

By the continuity of n, this inequality then gives the required result on the whole of P . For

any compact subset C ⊂ Int(P ) the equality for h on C × C is obvious since Hessu is positive

definite on Int(P ). We just need to show that the above infimum is not equal to zero.

Suppose that there exists a sequence of vectors {αk}∞k=1 ⊂ Int(P ) and {vk}∞k=1 ⊂ Rn such

that ‖vk‖ = 1 for all k ∈ N, and

〈Hessu|αk
vk,vk〉 → 0 as k → ∞.

A subsequence of αk and vk now tends to some α ∈ P and v ∈ Rn such that ‖v‖ = 1 respec-

tively. If α ∈ Int(P ) we have a contradiction, so we exclude that case from our consideration.

P is given as an intersection of affine halfspaces P = ∩di=1H
+
ni,λi

with H+
ni,λi

def
= {α ∈ Rn :

li(α) ≥ 0} and li(α)
def
= 〈α,ni〉 − λi, where ni ∈ Zn is primitive and λi ∈ R for i ∈ {1, · · · , d}.

Without loss of generality, let Z(l1), . . . ,Z(lj) denote those hyperplanes among Z(l1), · · · ,Z(ld)

containing α. By a result of Abreu [Abr03], we have a smooth function v ∈ C∞(P ) such that

u(α) =
1

2

d∑
i=1

li(α) log(li(α)) + v(α).

We compute that

∂2u

∂αj∂αk

∣∣∣∣
α

=
1

2

d∑
i=1

(ni)j(ni)k
li(α)

+
∂2v

∂αj∂αk

∣∣∣∣
α

,

so that

〈Hessu|y x,x〉 = 1

2

d∑
i=1

〈ni,x〉2

li(y)
+ 〈Hess v|y x,x〉.

We observe that the Hess v term is bounded on P . As k → ∞, li(αk) → 0 for i ∈ {1, · · · , j}.
Now 〈ni,vk〉2

li(αk)
→ +∞ as k → ∞, for some i ∈ {1, . . . , j}, in which case we are done, or

〈ni,vk〉 → 0 as k → ∞ for all i ∈ {1, . . . , j}. Then 〈ni,v〉 = 0 for all i ∈ {1, · · · , j}. But then
〈Hessu|α v,v〉 > 0 by lemma 5.1.6.
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Example 5.1.8. Let us consider the toric polarization (O(1), hFS) → (CP1, ωFS), where

ωFS = i∂∂ log
(
1 + ‖z‖2

)
denotes the Fubini-Study metric which has the symplectic poten-

tial u : [0, 1] → R given by u(x) = 1
2 (x log(x) + (1− x) log(1− x)). Figure 5.1 shows the decay

behaviour of the function e−kh(x,y) for k = 1, 3, 10 for this potential.
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Figure 5.1: Graph of e−kh(x,y) for k = 1, 3, 10 on (CP1, ωFS).

We are now ready to use our estimate to prove a localization theorem for the toric Bergman

kernel.

Theorem 5.1.9 (Generalized toric Bergman kernel localization). Let P be an integral Delzant

polytope in Rn with the standard lattice Zn. Let fk : P 2 ×
(
P ∩ 1

kZ
n
)
→ C be a sequence

of functions such that there exists constants C,M > 0 such that |fk(α,β,γ)| ≤ CkM for all

α,β ∈ P,γ ∈ P ∩ 1
kZ

n and all k ∈ N. Consider

Bk(α,β)
def
=

∑
γ∈P∩ 1

kZn

fk(α,β,γ)eγ,k(α)⊗ eγ,k(β),

where eγ,k =
sγ,k

‖sγ,k‖hk
∈ H0(XP , L

k) denotes the standard unit norm section corresponding to

γ ∈ P ∩ 1
kZ

n.

a) Then, for any l > 0, there exist E, b > 0 such that

∣∣∣∣∣∣∣Bk(α,β)−
∑

γ∈Bα

(√
b log k

k

)
∩Bβ

(√
b log k

k

)
∩P∩ 1

kZn

fk(α,β,γ)eγ,k(α)⊗ eγ,k(β)

∣∣∣∣∣∣∣
hk

≤ Ek−l,

for all α,β ∈ P and k ∈ N, and where Bα(r)
def
= {β ∈ Rn : ‖α− β‖ ≤ r}.

b) There exist constants D, c > 0 such that

|Bk(α,β)|hk ≤ DkM+2ne−ck‖α−β‖2

for all α,β ∈ P and k ∈ N.
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Proof. Let us prove b) here. a) is proved similarly.

|Bk(α,β)|2hk =
∑

γ,δ∈P∩ 1
kZn

(fk(α,β,γ)eγ,k(α)⊗ eγ,k(β), fk(α,β, δ)eδ,k(α)⊗ eδ,k(β))

=
∑

γ,δ∈P∩ 1
kZn

fk(α,β,γ)fk(α,β, δ)(eγ,k(α), eδ,k(α))(eγ,k(β), eδ,k(β))

≤ C2k2M
∑

γ,δ∈P∩ 1
kZn

|(eγ,k(α), eδ,k(α))(eγ,k(β), eδ,k(β))|

≤ C2k2M
∑

γ,δ∈P∩ 1
kZn

|eγ,k(α)|hk |eδ,k(α)|hk |eγ,k(β)|hk |eδ,k(β)|hk

= C2k2M

 ∑
γ∈P∩ 1

kZn

|eγ,k(α)|hk |eγ,k(β)|hk

2

= C2k2M

 ∑
γ∈P∩ 1

kZn

n(γ,α)
k
2 n(γ,β)

k
2
|sγ,k (γ)|2hk

‖sγ,k‖2hk

2

≤ C2k2M

 ∑
γ∈P∩ 1

kZn

e−
ck
2 (‖γ−α‖2+‖γ−β‖2) |sγ,k (γ)|

2
hk

‖sγ,k‖2hk

2

≤ C2k2Me−
ck
2 ‖α−β‖2

 ∑
γ∈P∩ 1

kZn

|sγ,k (γ)|2hk

‖sγ,k‖2hk

2

≤ C2D2k2M+2ne−
ck
2 ‖α−β‖2

#

(
P ∩ 1

k
Zn
)2

,

where c comes from proposition 5.1.7, and we have used the fact that there exists a constant

D ≥ 0 such that
|sγ,k (α)|2hk

‖sγ,k‖2hk

≤ ρk (α) ≤ Dkn

for all α ∈ P , γ ∈ P ∩ 1
kZ

n and k ∈ N. The result follows since there are only order kn elements

in the set P ∩ 1
kZ

n. In the final step we also use the inequality

‖α− γ‖2 + ‖β − γ‖2 ≥ 1

2
‖α− β‖2,

for α,β,γ ∈ Rn, which can be proved by observing that, for fixed α,β ∈ Rn, the critical point
1
2 (α+ β) of the functional ξ(γ) = ‖α− γ‖2 + ‖β − γ‖2 is the absolute minimum of ξ.

Similarly, we get the following estimate:

Corollary 5.1.10. Let Bk be defined as in the previous theorem. For α,β ∈ P , we have:

a) For any δ > 0 and α,β ∈ P ,

∣∣∣∣∣∣∣∣Bk(α,β)−
∑

γ∈Bα

(
k−

1
2
+δ
)
∩Bβ

(
k−

1
2
+δ
)
∩P∩ 1

kZn

fk(α,β,γ)eγ,k(α)⊗ eγ,k(β)

∣∣∣∣∣∣∣∣
hk

= O
(
k−∞) .
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b) For any δ > 0, C > 0 and all {αk}∞k=1, {βk}∞k=1 ⊂ P such that ‖αk − βk‖ ≥ Ck−
1
2+δ for

all k ≥ 0, we have

|Bk(αk,βk)|hk = O
(
k−∞) .

5.2 Comparison with previous results

If we apply part a) of the above corollary to Bk evaluated on the diagonal in P ×P , we recover
a version of Song and Zelditch’s localization lemma [SZ10, lemma 1.2] and of [SZ10, Prop 5.1]

which were originally proved using a more complicated argument.

In the special case where fk ≡ 1 for all k ∈ N, Bk is the Bergman kernel, and we obtain the

new localization of sums formula:

Bk(α,β) =
∑

γ∈Bα

(√
b log k

k

)
∩Bβ

(√
b log k

k

)
∩P∩ 1

kZn

eγ,k(α)⊗ eγ,k(β) +O
(
k−∞)

for α,β ∈ P and all k ∈ N. Similarly, the density function, which is just the norm of the

diagonal of the Bergman kernel, can be localized in this sense. Additionally, we now have an

off-diagonal vanishing result in the sense that there exists c > 0 and D ≥ 0 such that

|Bk(α,β)|hk ≤ Dk2ne−ck‖α−β‖2

for all α,β ∈ P and k ∈ N. While this is not the sharpest possible estimate, it does illuminate

the exponential decay of the Bergman kernel away from the diagonal which is very explicit

in the toric case. For general polarized Kähler manifolds (L, h) → (X,ω), we know that

Bk(x, y) = O (k−∞) for d(x, y) > ε > 0 and x, y ∈ X [DLM06, proposition 4.1] and have

exponential decay and an asymptotic expansion of Bk in a neighbourhood of the diagonal of

X×X due to Dai et al. [DLM06, MM07]. One advantage of the simple estimate that we obtain

here is that it gives a globaly valid exponential decay estimate for the Bergman kernel in the

toric case.
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Chapter 6

Euler-Maclaurin Sums

In order to develop a technique for computing the asymptotics of (partial) density functions on

a toric polarized manifold, we require an Euler-Maclaurin summation formula dependent on a

parameter k ∈ N. For the convenience of the reader, we will recall some results in this direction.

After this, we adapt these results for our purposes.

6.1 The classical Euler-Maclaurin formula

The classical Euler-Maclaurin summation formula provides a comparison between the integral

of a function f ∈ C∞(R) over an interval [a, b], a < b, a, b ∈ Z and a sum of f and its derivatives

over [a, b] ∩ Z. Let us set up our notation. We define (see [KSW05])

L(x) def
=

x
2

tanh
(
x
2

)
=

∞∑
j=0

B2j

(2j)!
x2j

= 1 +
1

12
x2 − 1

720
x4 +O

(
x6
)
, for x ∈ R,

and, for p ∈ N,

L2p(x)
def
= 1 +

p∑
j=1

B2j

(2j)!
x2j , for x ∈ R,

where Bj , for j ∈ N, denotes the jth Bernoulli number. For any polytope P ⊂ Rn and x ∈ P ,

let c(x) denote the largest codimension of any face containing x. We define the weighted

characteristic function 1wP : Rn → R by

1wP (x)
def
=

0 if x /∈ P

2−c(x) otherwise.

For f : Rn → R, we define ∑′

x∈P∩Zn

f(x)
def
=

∑
x∈P∩Zn

1wP (x)f(x),
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Chapter 6. Euler-Maclaurin Sums

the simplest example of which is P = [a, b], where a, b ∈ Z and a < b. Then

∑′

x∈[a,b]∩Z

f(x) =
1

2
f(a) + f(a+ 1) + · · ·+ f(b− 1) +

1

2
f(b).

The following is a modern formulation of the classical Euler-Maclaurin summation formula for

intervals.

Theorem 6.1.1 ([KSW03, Proposition 10]). Let f ∈ C∞ (R), a, b ∈ Z, a < b and let p ∈ N0.

Then

∑′

x∈[a,b]∩Z

f(x) = L2p

(
∂

∂λ1

)
L2p

(
∂

∂λ2

) ∫ b+λ2

a−λ1

f(x)dx

∣∣∣∣∣
λ1=λ2=0

+

∫ b

a

f (2p+1)(x)P2p+1(x)dx,

where

P2p+1(x)
def
=

b2p+1(x− bxc)
(2p+ 1)!

,

and b2p+1(x) is the (2p+ 1)th Bernoulli polynomial for p ∈ N.

Let us recall the proof of this result here since it provides us with some intuition for the

kind of results that we are interested in.

Proof. Recall that the Bernoulli polynomials bj : R → R are defined recursively by b0(x) = 1,

b′n+1(x) = (n + 1)bn(x) and
∫ 1

0
bn(x)dx = 0. We have b1(x) = x − 1

2 , and the Bernoulli

polynomials satisfy bj(1) = (−1)jbj(0) for all j ∈ N0. Furthermore, the Bernoulli numbers

Bj
def
= bj(0) satisfy B2j+1 = 0 for j ∈ N. The proof is now a simple integration by parts

argument. We have

1

(2p+ 1)!

∫ 1

0

f (2p+1)(x)b2p+1(x)dx

=
1

(2p+ 1)!
f (2p)(x)b2p+1(x)

]1
0

− 1

(2p)!

∫ 1

0

f (2p)(x)b2p(x)dx

= − 1

(2p)!
f (2p−1)(x)b2p(x)

]1
0

+
1

(2p− 1)!

∫ 1

0

f (2p−1)(x)b2p−1(x)dx

=−
p∑
j=1

1

(2j)!
f (2j−1)(x)b2j(x)

]1
0

+ f(x)(x− 1

2
)

]1
0

−
∫ 1

0

f(x)dx

=−
p∑
j=1

B2j

(2j)!
f (2j−1)(x)

]1
0

+
f(1) + f(0)

2
−
∫ 1

0

f(x)dx.

If we replace f(x) by f(x+ s), for some s ∈ R, we obtain

f(s+ 1) + f(s)

2
=∫ s+1

s

f(x)dx+

p∑
j=1

B2j

(2j)!
f (2j−1)(x)

]s+1

s

+

∫ s+1

s

f (2p+1)(x)P2p+1(x)dx. (†)

Summing over s ∈ {a, · · · , b− 1} gives the result.
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Remark 6.1.2. Note that

L2p

(
∂

∂λ1

)
L2p

(
∂

∂λ2

) ∫ b+λ2

a−λ1

f(x)dx

∣∣∣∣∣
λ1=λ2=0

=

∫ b

a

f(x)dx+

p∑
j=1

B2j

(2j)!
f (2j−1)(x)

]b
a

.

6.2 The Euler-Maclaurin formula for the standard half-

space

We now use equation (†) to derive two results about Euler-Maclaurin sums over half-spaces.

Lemma 6.2.1. Let f ∈ C∞
0 (Rn) and p ∈ N0. For k ∈ N, we have

∑
α∈ 1

k (N0×Zn−1)

f(α) = knB2p

(
1

k

∂

∂λ

) ∫
{x∈Rn:x1≥−λ}

f(x)dx

∣∣∣∣∣
λ=0

+O
(
kn−(2p+1)

)
= kn

∫
R≥0×Rn−1

f(x)dx+
kn−1

2

∫
Rn−1

f(0, x2, · · · , xn)dx2 · · · dxn

−
p∑
j=1

kn−2j B2j

(2j)!

∫
Rn−1

∂2j−1f

∂x2j−1
1

(0, x2, · · · , xn)dx2 · · · dxn

+O
(
kn−(2p+1)

)
,

where B2p(x)
def
= L2p(x) + x

2 = 1 + x
2 +

∑p
j=1

B2j

(2j)!x
2j, for p ∈ N, and B0(x)

def
= 1 for x ∈ R.

Proof. If n = 1, we sum over (†) to obtain

∑
α∈ 1

kN0

f(α) =
∑
α∈N0

f
(α
k

)
=

1

2
f(0) +

∫ ∞

0

f
(x
k

)
dx−

p∑
j=1

B2j

(2j)!
f (2j−1)(0)k−(2j−1)

+ k−(2p+1)

∫ ∞

0

f (2p+1)
(x
k

)
P2p+1(x)dx

= k

∫ ∞

0

f (x) dx+
1

2
f(0)−

p∑
j=1

B2j

(2j)!
f (2j−1)(0)k−(2j−1)

+ k−2p

∫ ∞

0

f (2p+1)(x)P2p+1(kx)dx,

so that the result holds. For n ≥ 2, we have

∑
α∈ 1

k (N0×Zn−1)

f(α) =
∑

α∈N0×Zn−1

f

(
1

k
α

)

=
∑

(α1,··· ,αn−1)∈N0×Zn−2

(
k

∫ ∞

−∞
f
(α1

k
, · · · , αn−1

k
, xn

)
dxn

+k−2p

∫ ∞

−∞

∂2p+1f

∂x2p+1
n

(α1

k
, · · · , αn−1

k
, xn

)
P2p+1(kxn)dxn

)
.

Now observe that there exists C ≥ 0 such that

∑
(α1,··· ,αn−1)∈N0×Zn−2

∫ ∞

−∞

∂2p+1f

∂x2p+1
n

(α1

k
, · · · , αn−1

k
, xn

)
P2p+1(kxn)dxn ≤ Ckn−1
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since there are only O
(
kn−1

)
terms in the sum which are nonzero (supp f is compact), and the

terms of the sum are bounded. Picking p ∈ N0 large enough and iterating this procedure yields

∑
α∈ 1

k (N0×Zn−1)

f(α) = kn−1
∑
α1∈N0

∫
Rn−1

f
(α1

k
, x2, · · · , xn

)
dx2 · · · dxn +O

(
k−∞) .

We can now apply the same arguments as in the n = 1 case to get

∑
α∈ 1

k (N0×Zn−1)

f(α) = kn
∫
R≥0×Rn−1

f(x)dx

−
p∑
j=1

kn−2j B2j

(2j)!

∫
Rn−1

∂2j−1f

∂x2j−1
1

(0, x2, · · · , xn)dx2 · · · dxn

+
kn−1

2

∫
Rn−1

f(0, x2, · · · , xn)dx2 · · · dxn +O
(
kn−(2p+1)

)
.

While the above lemma is entertaining in its own right, let us now focus on Euler-Maclaurin

sums over the types of functions that we require for our asymptotic analysis of partial density

functions.

Lemma 6.2.2. Let x0 ∈ Rn, f ∈ C∞
0 (Rn), h ∈ C∞(Rn) and U ⊂ Rn. Suppose that h satisfies

h(x) ≥ 0 for all x ∈ Rn with h(x) = 0 if and only if x = x0. Suppose furthermore that there

exists a constant c > 0 such that h(x) > c > 0 for all x outside a compact subset of U and that

Hessh|x0
is positive definite. Suppose that f(x) = O

(
|x− x0|l

)
as |x− x0| → 0, for some

l ≥ 0, and let α ∈ Nn0 . Then∫
U

∂

∂x

α (
f(x)e−kh(x)

)
dx = O

(
k

|α|−l−n
2

)
.

Proof. If |α| = 0, this follows from the proof of Laplace’s method. Suppose that the result

holds for α ∈ Nn0 such that |α| = s. Suppose |α| = s+ 1 and α = β+ ej for some β ∈ Nn0 and

some j ∈ {1, · · · , n}. Then∫
U

∂

∂x

α (
f(x)e−kh(x)

)
dx =

∫
U

∂

∂x

β ( ∂

∂xj
f(x)− kf(x)

∂

∂xj
h(x)

)
e−kh(x)dx

= O
(
k

|β|−max(l−1,0)−n
2 + k

2+|β|−(l+1)−n
2

)
= O

(
k

|α|−l−n
2

)
.

The result follows by induction.

Proposition 6.2.3. Let x0 ∈ Rn, f ∈ C∞
0 (Rn) and h ∈ C∞ (Rn) such that h(x) ≥ 0 for

all x ∈ Rn and h(x) = 0 if and only if x = x0. We assume that Hessh|x0
> 0. Suppose

furthermore that there exists a constant c > 0 such that h(x) > c > 0 for all x outside a

compact subset of Rn. Then

∑
α∈ 1

k (N0×Zn−1)

f(α)e−kh(α) = knB2p

(
1

k

∂

∂λ

) ∫
{x∈Rn:x1≥−λ}

f(x)e−kh(x)dx

∣∣∣∣∣
λ=0

+O
(
k

n−1
2 −p

)
.
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Proof. The proof is very similar to the proof of lemma 6.2.1. If n = 1, we have

∑
α∈ 1

kN0

f(α)e−kh(α) =
1

2
f(0)e−kh(0) + k

∫ ∞

0

f(x)e−kh(x)dx

−
p∑
j=1

B2j

(2j)!

(
∂

∂x

)2j−1 (
f(x)e−kh(x)

)∣∣∣
x=0

k−(2j−1)

+ k−2p

∫ ∞

0

(
∂

∂x

)2p+1 (
f(x)e−kh(x)

)∣∣∣
x=0

P2p+1(kx)dx.

Lemma 6.2.2 now implies that the last term above is O (k−p) as k → ∞. For n ≥ 2,

∑
α∈ 1

k (N0×Zn−1)

f(α)e−kh(α)

=
∑

α∈N0×Zn−2

(
k

∫ ∞

−∞
f
(α1

k
, · · · , αn−1

k
, xn

)
e−kh(

α1
k ,··· ,αn−1

k ,xn)dxn

+k−2p

∫ ∞

−∞

(
∂

∂xn

)(2p+1) {
f
(α1

k
, · · · , αn−1

k
, xn

)
e−kh(

α1
k ,··· ,αn−1

k ,xn)
}
P2p+1(kxn)dxn

)
.

Now observe that, by lemma 6.2.2, there exists C ≥ 0 such that

∑
α∈N0×Zn−2

∫ ∞

−∞

(
∂

∂xn

)(2p+1) {
f
(α1

k
, · · · , αn−1

k
, xn

)
e−kh(

α1
k ,··· ,αn−1

k ,xn)
}
P2p+1(kxn)dxn

≤ Ckp+n−1.

By choosing p sufficiently large and iterating this procedure, we obtain

∑
α∈ 1

k (N0×Zn−1)

f(α)e−kh(α) = kn−1
∑
α1∈N0

∫
R≥0×Rn−1

f
(α1

k
, x2, · · · , xn

)
e−kh(

α1
k ,x2,··· ,xn)dx

+O
(
k−∞) .

Finally, we have

∑
α∈ 1

k (N0×Zn−1)

f(α)e−kh(α)

= kn
∫
R≥0×Rn−1

f(x)e−kh(x)dx

+
kn−1

2

∫
Rn−1

f(0, x2, · · · , xn)e−kh(0,x2,··· ,xn)dx2 · · · dxn

−
p∑
j=1

B2j

(2j)!
kn−2j

∫
Rn−1

(
∂

∂x1

)2j−1 (
f(x)e−kh(x)

)∣∣∣∣∣
x1=0

dx2 · · · dxn

+ kn−1−2p

∫
R≥0×Rn−1

(
∂

∂x1

)2p+1 {
f(x)e−kh(x)

}
P2p+1(kx1)dx

+O
(
k−∞) .

Since P2p+1 is bounded, and due to lemma 6.2.2, the last integral above is O
(
kp−

n−1
2

)
and the
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Chapter 6. Euler-Maclaurin Sums

result follows.

6.3 An Euler-Maclaurin formula for integral Delzant poly-

topes

In this section, we prove some Euler-Maclaurin summation formulas that we will not require in

the remainder of this thesis. These results are collected here since these ideas might be helpful

for further investigations into the asymptotics of toric partial density functions.

In [KSW05], theorem 6.1.1 was generalized to the positive orthant O def
= (R≥0)

n as follows:

Proposition 6.3.1 (Euler-Maclaurin formula for the standard orthant). Let f ∈ C∞
0 (Rn) and

p ∈ N. Then

∑′

x∈O∩Zn

f(x) =
n∏
i=1

L2p

(
∂

∂λi

) ∫
O(±λ1,...,±λn)

f(x)dx

∣∣∣∣∣
λ=0

+R2p+1(f),

where the right hand side is independent of the choice of ±. For λ ∈ Rn, we have

O(λ)
def
= {x ∈ Rn : xi − λi ≥ 0 for all i ∈ {1, . . . , n}}

and

R2p+1(f)
def
=

∑
I({1,...,n}

∏
i∈I

L2p

(
∂

∂λi

) ∫
O(±λ1,...,±λn)

∏
i 6∈I

P2p+1(xi)
∏
i 6∈I

(
∂

∂xi

)2p+1

f(x)dx

∣∣∣∣∣∣
λ=0

,

where

P2p+1(x)
def
=

b2p+1(x− bxc)
(2p+ 1)!

,

and b2p+1(x) is the (2p+ 1)th Bernoulli polynomial.

A regular integral orthant C is the image of O under an affine transformation of the form

x 7→ AC(x) = Bx+ v v ∈ Zn, B ∈ SL(n,Z).

For such an orthant C (see [KSW05]),

∑′

x∈C∩Zn

f(x) =

n∏
i=1

L2p

(
∂

∂λi

) ∫
C(±λ1,...,±λn)

f(x)dx

∣∣∣∣∣
λ=0

+R2p+1(f ◦AC),

where C(λ1, . . . , λn) is the image of O(λ1, . . . , λn) under AC . Let P ⊂ Rn be an integral Delzant

polytope. For each vertex v ∈ P , we define the tangent cone at v by

Cv
def
= {v + r(x− v) : r ≥ 0,x ∈ P}.

We can pick n edge vectors α1(v), . . . , αn(v) for v such that

Cv = v +

n∑
j=1

R≥0αj(v).
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6.4. A parameter dependent Euler-Maclaurin formula for integral Delzant polytopes

A polarizing vector is a vector η ∈ (Rn)∗ such that 〈η, αj(v)〉 6= 0 for all vertices v ∈ P and all

j ∈ {1, . . . , n}. The polarized edge vectors are defined to be

α#
j (v)

def
=

αj(v) if 〈η, αj(v)〉 < 0

−αj(v) if 〈η, αj(v)〉 > 0.

We define #v(η) = #v to be the number of edge vectors such α#
j (v) 6= αj(v). The polarized

tangent cone is defined by

C#
v = v +

n∑
j=1

R≥0α
#
j (v).

For f : Rn → R, we have ∑′

P∩Zn

f =
∑

v∈vertices(P )

(−1)#v
∑′

C#
v ∩Zn

f,

which enables us to write sums over integral points of an integral Delzant polytope as a sum over

cones. If the polytope is given by P = {x : li(x)
def
= 〈ui,x〉+µi ≥ 0, i = 1, . . . , d}, where ui, for

i ∈ {1, · · · , d}, are the primitive inwards pointing normal vectors to the n−1-dimensional faces

of P then the modified polytope P (λ) is defined by P (λ)
def
= {x : li(x) + λi ≥ 0, i = 1, . . . , d},

where λ = (λ1, . . . , λd) ∈ Rd. A version of the main result in [KSW03], [KSW05] is:

Theorem 6.3.2 ([KSW03, Theorem 1]). Let P ⊂ Rn be an integral Delzant polytope, and let

p ∈ N0 and f ∈ C∞
0 (Rn). Choose a polarizing vector for P . Then

∑′

x∈P∩Zn

f(x) =
d∏
i=1

L2p

(
∂

∂λi

) ∫
P (λ1,...,λd)

f(x)dx

∣∣∣∣∣
λ=0

+ S2p+1(f),

where

S2p+1(f) =
∑

v∈vertices(P )

(−1)#vR2p+1(f ◦AC#
v
).

We now study a modification of the above result that might be of use for future research

investigating the asymptotics of partial toric density functions.

6.4 A parameter dependent Euler-Maclaurin formula for

integral Delzant polytopes

Theorem 6.4.1. Let a ∈ Rn, f ∈ C∞
0 (Rn) and h ∈ C∞(Rn). Suppose that h satisfies h(x) ≥ 0,

for all x ∈ Rn, and assume that h(x) = 0 if and only if x = a. Suppose furthermore that

Hessh|a is positive definite and that there exists a constant c > 0 such that h(x) − h(a) ≥ c

outside a compact subset of Rn. Let P be an integral Delzant polytope in Rn. Then, for p ∈ N,

1

kn

∑′

x∈P∩ 1
kZn

f (x) e−kh(x) =
d∏
i=1

L2p

(
1

k

∂

∂λi

)∫
P (λ)

f(x)e−kh(x)dx

∣∣∣∣∣
λ=0

+R2p+1(k),

and there exists C ≥ 0 such that

|R2p+1(k)| ≤ Ck−(p+
n+1
2 ) for all k ∈ N.
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Chapter 6. Euler-Maclaurin Sums

Proof. We apply theorem 6.3.2 to the function x 7→ f
(
1
kx
)
e−kh(

1
kx) on kP . Now x ∈ (kP )(λ)

if and only if 1
kx ∈ P

(
1
kλ
)
, so that, for p ∈ N,

∑′

x∈kP∩Zn

f

(
1

k
x

)
e−kh(

1
kx) = kn

d∏
i=1

L2p

(
∂

∂λi

) ∫
P ( 1

kλ)

f(x)e−kh(x)dx

∣∣∣∣∣
λ=0

+ S2p+1(k)

= kn
d∏
i=1

L2p

(
1

k

∂

∂λi

) ∫
P (λ)

f(x)e−kh(x)dx

∣∣∣∣∣
λ=0

+ S2p+1(k),

where

S2p+1(k) =
∑

v∈vertices(P )

(−1)#vR2p+1

(
f

(
1

k
Akv(x)

)
e−kh(

1
kAkv(x))

)
,

and Akv : Rn → Rn is an affine map. Akv
def
= Bvx + kv with Bv ∈ SL(n,Z) maps the

positive orthant onto the tangent cone of kP at kv. Let us define fv(x)
def
= f(Bvx + v) and

hv(x)
def
= h(Bvx+ v). We have

R2p+1

(
f

(
1

k
Akv(x)

)
e−kh(

1
kAkv(x))

)
= R2p+1

(
fv

(x
k

)
e−khv(x

k )
)

=
∑

I({1,...,n}

∏
i∈I

L2p

(
∂

∂λi

) ∫
O(λ)

∏
i 6∈I

P2p+1(xi)
∏
i 6∈I

(
∂

∂xi

)2p+1

fv(
x

k
)e−khv(x

k )dx

∣∣∣∣∣∣
λ=0

=
∑

I({1,...,n}

∫
O

∏
i∈I

L2p

(
− ∂

∂xi

)∏
i 6∈I

P2p+1(xi)
∏
i 6∈I

(
∂

∂xi

)2p+1

fv(
x

k
)e−khv(x

k )

 dx,

where P2p+1(x) =
b2p+1(x−bxc)

m! is smooth on R − Z. In the integral, we ignore the grid G
def
=

{x ∈ Rn : there exists i ∈ {1, . . . , n} such that xi ∈ Z}. On (R≥0)
n − G all derivatives of

P2p+1(xj), j ∈ {1, . . . , n} up to order 2p are bounded by some constant C ≥ 0. Hence R2p+1(k)

can be dominated by a linear combination of terms of the form

Qα(k)
def
=

∫
O

∂

∂x

α (
fv

(x
k

)
e−khv(x

k )
)
dx

= k−|α|+n
∫
O

∂

∂y

α (
fv(y)e

−khv(y)
)
dy,

where 2p+ 1 ≤ |α| ≤ (2p+ 1)n. We now use lemma 6.2.2 to conclude that

k−nQα(k) = O
(
k−(

|α|+n
2 )

)
and the result follows.
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Chapter 7

Asymptotics

In this chapter, we develop a method for determining the asymptotics of the toric density

function which we then adapt to find a new asymptotic expansion for density functions with

vanishing along a toric submanifold.

7.1 Introduction

Let (LP , h) → (XP , ω) be a toric polarization. For α ∈ P ∩ 1
kZ

n and k ∈ N, let sα,k ∈
H0(X,LkP ) denote the standard toric section corresponding to α and k. We have, for β ∈
Int(P ),

|sα,k(β)|2 = e2ku(α)e−kh(α,β),

where h(α,β)
def
= 2

(
u(α) − u(β) + 〈∇u|β ,β − α〉

)
, and u : P → R denotes a function that

is Legendre dual to the toric potential φ : Rn → R which satisfies ω = 2i∂∂φ on the torus

(C∗)
n ⊂ XP . Note that

‖sα,k‖2
def
=

∫
XP

|sα,k(β)|2
ωn

n!

= (2π)ne2ku(α)

∫
P

e−kh(α,β)dβ.

The density function ρk : XP → R is Tn-invariant and, as a function on P , is given by

ρk(β)
def
=

∑
α∈P∩ 1

kZn

|sα,k(β)|2

‖sα,k‖2
for β ∈ P and k ∈ N.

We now fix a face F < P and, for s, k ∈ N, consider the corresponding partial density functions

ρF,s,k of sections of LkP vanishing to order at least sk along the toric submanifold YF ⊂ XP

corresponding to F . By invariance under the real torus action, we can think of ρF,s,k as a

function on P ⊂ Rn ∼= t∗.

ρF,s,k(β)
def
=

∑
α∈PF,s∩ 1

kZn

|sα,k(β)|2

‖sα,k‖2
for β ∈ P and k ∈ N,

where PF,s ⊂ P denotes the polytope corresponding to LP ⊗ J s
YF

→ XP . In this chapter, we

discuss a method which enables us to understand the asymptotics of ρF,s,k(β) for β ∈ Int(P ) as
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Chapter 7. Asymptotics

k → ∞. We can also use a similar method to determine the asymptotics of ρk(β) for β ∈ Int(P ).

7.2 Overview of our method

To determine the asymptotics of ρk and ρF,s,k, we need three essential tools. The first is a

localization of sums formula, the second is a version of the Euler-Maclaurin summation formula

for integral polytopes which enables us to rewrite sums over integral points of a polytope as

sums of certain integrals, and the third is an application of Laplace’s method to expand these

resulting integrals. Let us first explain this by going through this method in the case of ρk

before concentrating on ρF,s,k.

7.3 The asymptotics of ρk

Recall from chapter 1 that the asymptotics of ρk, for a polarized Kähler manifold, have been

the focus of recent research efforts. Lu [Lu00] used Tian’s holomorphic peak sections to deter-

mine the first few coefficients of the asymptotic expansion. In the case of a toric polarization

(LP , h) → (XP , ω), we now determine an explicit formula for all coefficients of the asymptotic

expansion of ρk using our toric method at points p ∈ XP corresponding to interior points of

the polytope P under the moment map. Let us note here that Song and Zelditch have also

investigated several aspects of toric asymptotics in their work. In [SZ10] (see also references

therein), they makes use of the asymptotics of the toric Szegö kernel and the complex stationary

phase method in their considerations. Sena-Dias [SD10] has also developed an integration by

parts method to determine the asymptotics of toric density functions building on earlier con-

siderations by Burns, Guillemin and Uribe [BGU10]. The main point of this section is hence to

describe our method for expanding ρk which will then be extended to partial density functions

in the next section. Some of our calculations here will be used for computing the asymptotics

of ρF,s,k later on.

Our first task is to determine the asymptotics of
|sα,k(β)|2
‖sα,k‖2 for k ∈ N, α ∈ P ∩ 1

kZ
n and

β ∈ Int(P ) as k → ∞. We have

‖sα,k‖2

|sα,k(β)|2
= (2π)

n
ekh(α,β)

∫
P

e−kh(α,γ)dγ,

where h(α,β) = 2
(
u(α)− u(β) + 〈∇u|β ,β −α〉

)
for α,β ∈ Int(P ). Furthermore, h(α,β) ≥

0 with equality if and only ifα = β forα,β ∈ Int(P ). Note that Hessh(.,β)|β and Hessh(α, .)|α
are positive definite for α,β ∈ Int(P ). Due to the canonical singularities of u on ∂P , some care

is required when considering the behaviour h near the boundary of P .

Lemma 7.3.1. Let K ⊂ Int(P ) be a compact set. For j ∈ N0, there exist smooth functions

aj : Int(P ) → R such that, for p ∈ N0, α,β ∈ Int(P ) and all k ∈ N,

(2π)n
∫
P

e−kh(α,γ)dγ =

p∑
j=0

aj(α)k−(j+
n
2 ) +Rp,k(α),

and there exists Cp ≥ 0 such that

|Rp,k(α)| ≤ Cpk
−(n+1

2 +p) for all α ∈ K.
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Furthermore, for j ∈ N0, we have

aj(α) =(2π)n

√
πn

|Hessu|α|

2j∑
i=0

(−1)i

i!(i+ j)!22(i+j)
〈Hessu|−1

α Dβ, Dβ〉i+j

(h(α,β)− 〈Hessu|α (β −α),β −α〉)i
∣∣∣
α
.

Proof. We can apply theorem B.2.2 to h restricted to U × U , where U is an open subset of Rn

such that K ⊂ U ⊂ U ⊂ Int(P ). h is then smooth on U ×U and all derivatives of h are bounded

on U . By B.2.2, we have that, for all j ∈ N0 and p ∈ N0, there exists aj ∈ C∞(U) and Cp ≥ 0

such that for all α ∈ K,∣∣∣∣∣∣
∫
U
e−kh(α,γ)dγ −

p∑
j=0

k−(
n
2 +j)aj(α)

∣∣∣∣∣∣ ≤ Cpk
−(n+1

2 +p),

where

aj(α) =

√
πn

|Hessu|α|

2j∑
i=0

(−1)i

i!(i+ j)!22(i+j)
〈Hessu|−1

α Dβ, Dβ〉i+j

(h(α,β)− 〈Hessu|α (β −α),β −α〉)i
∣∣∣
α
.

In fact, aj ∈ C∞ (Int(P )) for all j ∈ N0. Finally, observe that there exists d > 0 such that

h(α,β) > d for all α ∈ K and γ ∈ P − U . Hence∣∣∣∣∫
P−U

e−kh(α,γ)dγ

∣∣∣∣ ≤ e−dk Vol(P ) = O
(
k−∞) for all α ∈ K.

The lemma now follows.

Remark 7.3.2. Define, for α,β ∈ Int(P ),

R(α,β)
def
= h(α,β)− 〈Hessu|α (β −α),β −α〉.

The first two terms in the expansion of lemma 7.3.1 are:

a0(α) =(2π)n

√
πn

|Hessu|α|

a1(α) =(2π)n

√
πn

|Hessu|α|

(
− 1

25
〈Hessu|−1

α Dβ, Dβ〉2 R(α,β)|α

+
1

283
〈Hessu|−1

α Dβ, Dβ〉3 R(α,β)2
∣∣
α

)
=

(2π)n

48

√
πn

|Hessu|α|
(
−9uij

ij(α) + 12uik
i(α)uj

jk(α) + 8uijk(α)uijk(α)
)
,

where we use the Einstein summation convention. Lower indices indicate partial derivatives and

indices are raised by the inverse-matrix of Hessu|α. For example, uij
k(α)

def
= uijr(α)urk(α)

for α ∈ Int(P ).

We can now invert the asymptotic expansion above.
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Lemma 7.3.3. Let K ⊂ Int(P ) be a compact set. For j ∈ N0, there exists smooth functions

bj : Int(P ) → R such that, for p ∈ N0, α ∈ K ∩ Zn, β ∈ K and all k ∈ N,

(
(2π)n

∫
P

e−kh(α,γ)dγ

)−1

=

p∑
j=0

bj(α)k
n
2 −j + Sp,k(α),

and there exists Cp ≥ 0 such that

|Sp,k(α)| ≤ Cpk
n
2 −(p+ 1

2 )

for all α ∈ K and k � 0. Furthermore, for j ∈ N0, bj is determined by the following formal

differentiation:

bj(α) =
1

j!

d

d s

∣∣∣∣
s=0

1∑∞
l=0 aj(α)sl

.

Proof. Let Ak(α)
def
= k

n
2 (2π)n

∫
P
e−kh(α,γ)dγ. It then follows from lemma 7.3.1 that, for α ∈

Int(P ),

Ak(α) =

p∑
j=0

aj(α)k−j +O
(
k−(p+

1
2 )
)
.

Note also that a0(α) 6= 0 for all α ∈ Int(P ). We have∣∣∣∣∣ 1

Ak(α)
− 1∑p

j=0 aj(α)k−j

∣∣∣∣∣ = O
(
k−(p+

1
2 )
)

as k → ∞,

while ∣∣∣∣∣∣ 1∑p
j=0 aj(α)sj

−
p∑
j=1

bj(α)sj

∣∣∣∣∣∣ = O
(
|s|p+1

)
as |s| → 0.

Replacing s by 1
k gives the result.

Remark 7.3.4. In particular, we have

b0(α) =
1

a0(α)

=
1

(2π)n

√
|Hessu|α|

πn

b1(α) = − a1(α)

a0(α)2

b2(α) =
a1(α)2 − a0(α)a2(α)

a0(α)3

b3(α) =
2a0(α)a1(α)a2(α)− a3(α)a0(α)2 − a1(α)3

a0(α)4
,

and a computation shows that e.g.

b1(α) =
1

48(2π)n

√
|Hessu|α|

πn
(
9uij

ij(α)− 12uik
i(α)uj

jk(α)− 8uijk(α)uijk(α)
)
.
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We can now fully determine the asymptotics of ρk on Int(P ):

Theorem 7.3.5. Let (LP , h) → (XP , ω) be a toric polarization, and let K ⊂ Int(P ) be compact.

For j ∈ N0, there exists smooth functions dj : Int(P ) → R such that, for β ∈ K and p ∈ N0,

ρk(β) =

p∑
j=0

dj(β)k
n−j + Tp,k(β),

and there exists Cp ≥ 0 such that

|Tp,k(β)| ≤ Cpk
−(p+ 1

2 ) for all β ∈ K and k � 0.

We have

dj(β) =

j∑
i=0

ci,j−i(β),

and

ci,j(β) =

√√√√ πn∣∣∣Hessu|β∣∣∣
2i∑
l=0

(−1)l

l!(l + i)!22(l+i)
〈Hessu|−1

β Dα, Dα〉l+i

bj(β)
(
h(α,β)− 〈Hessu|β (α− β),α− β〉

)l∣∣∣∣
β

.

Proof. Pick open subsets U ,V of Rn such that K ⊂ U ⊂ U ⊂ V ⊂ V ⊂ Int(P ) and a smooth

bump function ψ : Rn → [0, 1] such that ψ(α) = 1, for all α ∈ U , and ψ(α) = 0 for all

α ∈ Rn − V. We have

∑
α∈P∩ 1

kZn

|sα,k(β)|2

‖sα,k‖2
=

∑
α∈P∩ 1

kZn

ψ(α)
|sα,k(β)|2

‖sα,k‖2
+Ak(β),

where, for any j ∈ N0, there exists Cj ≥ 0 such that

|Ak(β)| ≤ Cjk
−j for all β ∈ K and k ∈ N0.

This is easily seen since, by proposition 5.1.7, there exists c > 0 such that

|sα,k(β)|2

‖sα,k‖2
= n(α,β)k

|sα,k(α)|2

‖sα,k‖2
≤ e−ck‖α−β‖2

ρk(α).

By a standard estimate, there exists D ≥ 0 such that ρk(α) ≤ Dkn for all α ∈ P . Since there

are only O(kn) elements in (P − U) ∩ 1
kZ

n, we have that

∑
α∈P∩ 1

kZn

|sα,k(β)|2

‖sα,k‖2
(1− ψ(α)) ≤

∑
α∈(P−U)∩ 1

kZn

|sα,k(β)|2

‖sα,k‖2
= O

(
k−∞)

for β ∈ K. Note that suppψ ⊂ Int(P ) is compact. We apply lemma 7.3.3 to get

∑
α∈P∩ 1

kZn

ψ(α)
|sα,k(β)|2

‖sα,k‖2
=

p∑
j=0

 ∑
α∈P∩ 1

kZn

ψ(α)bj(α)e−kh(α,β)

 k
n
2 −j
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+
∑

α∈P∩ 1
kZn

ψ(α)Sp,k(α)e−kh(α,β),

where Sp,k is the remainder term occurring in lemma 7.3.3. There exists Cp ≥ 0 such that∣∣∣∣∣∣
∑

α∈P∩ 1
kZn

ψ(α)Sp,k(α)e−kh(α,β)

∣∣∣∣∣∣ ≤ Cpk
n
2 −(p+ 1

2 )
∑

α∈P∩ 1
kZn

e−kh(α,β)

≤ Cpk
n
2 −(p+ 1

2 )
∑

α∈P∩ 1
kZn

e−ck‖α−β‖2

= O
(
kn−(p+

1
2 )
)

for all β ∈ K.

Note that α 7→ h(α,β), for β ∈ K, is smooth on Int(P ) and in particular on suppψ. We can

now apply theorem 6.4.1 and, observing that the constants in O in theorem 6.4.1 can be chosen

to vary continuously with the parameter β ∈ K, we conclude that, for j ∈ N0,

1

kn

∑
α∈P∩ 1

kZn

ψ(α)bj(α)e−kh(α,β) =
d∏
i=1

L2(p−j)
(
1

k

∂

∂λi

)∫
P (λ)

ψ(α)bj(α)e−kh(α,β)dα

∣∣∣∣∣
λ=0

(7.3.1)

+Rj,p,k(β),

where there exists Dj ≥ 0 such that

|Rj,p,k(β)| ≤ Djk
−(p−j+n+1

2 ) for all β ∈ K.

Since d(K, ∂P ) > 0, equation 7.3.1 simplifies to

∑
α∈P∩ 1

kZn

ψ(α)bj(α)e−kh(α,β) = kn
∫
P

ψ(α)bj(α)e−kh(α,β)dα+O
(
k

n
2 −(p−j+ 1

2 )
)

(7.3.2)

since all other terms involve integrals and their derivatives over the faces of P . We have

ρk(β) = k
3n
2

p∑
j=0

k−j
∫
P

ψ(α)bj(α)e−kh(α,β)dα+O
(
kn−(p+

1
2 )
)

(7.3.3)

for β ∈ K. We can now expand these integrals using theorem B.2.2. We have

∫
P

ψ(α)bj(α)e−kh(α,β)dα =

p−j∑
i=0

ci,j(β)k
−(n

2 +i) +O
(
k−(

n+1
2 +(p−j))

)
for β ∈ K, where

ci,j(β) =

√√√√ πn∣∣∣Hessu|β
∣∣∣

2i∑
l=0

(−1)l

l!(l + i)!22(l+i)
〈Hessu|−1

β Dα, Dα〉l+i

bj(β)
(
h(α,β)− Hessu|β (α− β),α− β〉

)l∣∣∣∣
β
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is independent of ψ. We conclude that

ρk(β) = kn
p∑
j=0

p−j∑
i=0

ci,j(β)k
−(i+j) +O

(
kn−(p+

1
2 )
)

=

p∑
s=0

kn−s
s∑
i=0

ci,s−i(β) +O
(
kn−(p+

1
2 )
)

for all β ∈ K.

Remark 7.3.6. In particular, we have

d0(β) = c0,0(β) =
1

(2π)n

d1(β) = c0,1(β) + c1,0(β).

Let

R(α,β)
def
= h(α,β)− 〈Hessu|β (α− β),α− β〉.

We can compute that

c0,1(β) = − 1

(2π)n
a1(β)

a0(β)

=
1

48(2π)n
(
9uij

ij(β)− 12uik
i(β)ur

kr(β)− 8uikr
ikr(β)

)
c1,0(β) =

a0(β)

(2π)n

(
1

22
〈Hessu|−1

β Dα, Dα〉
1

a0(α)

∣∣∣∣
β

− 1

25
〈Hessu|−1

β Dα, Dα〉2
R(α,β)

a0(α)

∣∣∣∣
β

+
1

283
〈Hessu|−1

β Dα, Dα〉3
R(α,β)2

a0(α)

∣∣∣∣
β

)

=
1

48(2π)n
(
3uij

ij(β)− 4uijk(β)u
ijk(β)

)
.

It is now clear that

d1(β) = c0,1(β) + c1,0(β) =
1

4(2π)n
(
uij

ij(β)− uij
k(β)uk

ij(β)− uijk(β)u
ijk(β)

)
.

Using Abreu’s formula [Abr03, formula 3.3] for the scalar curvature of the metric corresponding

to u, we can easily check that

d1(β) =
Scal(β)

2(2π)n
for β ∈ Int(P )

as expected.

Remark 7.3.7. Note that the formulas involved in determining the functions {dj}∞j=0 are

getting complicated very quickly for large j ∈ N0. We know from Tian and Lu’s work that these

functions should depend only on the geometry of XP , but matching the explicit formula for dj

in symplectic coordinates to the corresponding geometric quantity becomes non-trivial for large

j.
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7.4 The asymptotics of ρF,s,k

7.4.1 Introduction

Fix a face F < P and s ∈ N such that s ≤ S(YF ), where S(YF ) denotes the Seshadri con-

stant with respect to YF (see 8.1.2 for a definition). For k ∈ N, consider the corresponding

partial density functions ρF,s,k of sections of LkP vanishing to order at least sk along the toric

submanifold YF ⊂ XP corresponding to F . We have

ρF,s,k(β)
def
=

∑
α∈PF,s∩ 1

kZn

|sα,k(β)|2

‖sα,k‖2
for β ∈ P,

where PF,s ⊂ P denotes the polytope corresponding to LP ⊗ J s
YF

→ XP . Let K ⊂ Int(P ) be

compact and let U ,V be open subsets of Rn such that K ⊂ U ⊂ U ⊂ V ⊂ V ⊂ Int(P ). Let

ψ : Rn → [0, 1] be a smooth bump function such that ψ(α) = 1, for all α ∈ U , and ψ(α) = 0

for all α ∈ Rn − V. Suppose that

P
def
=
{
α ∈ Rn : li(α)

def
= µi − 〈α,ni〉 ≥ 0 for some µi ∈ R, primitive

ni ∈ Zn and i ∈ {1, · · · , d}
}
,

and assume that F = ∩ri=1Z(li) for some r ∈ {1, · · · , n}. We define

PF,s
def
=

α ∈ P :

r∑
j=1

lj(α) ≥ s


Fs

def
=

α ∈ P :
r∑
j=1

lj(α) = s


for s ∈ N.

K

U

V

P

FsF

P
F,s

Figure 7.1: Example configuration.

7.4.2 The expansion

In order to simplify our computations, we will from now on assume that we have fixed coor-

dinates such that PF,s = P ∩ {α ∈ Rn : α1 ≥ ν} and Fs
def
= {α ∈ P : α1 = ν} for some fixed

ν ∈ Z and that the lattice is just Zn ⊂ Rn ∼= t∗.
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Proposition 7.4.1. Let (LP , h) → (XP , ω) be a toric polarization and let K, F < P, Fs, PF,s, ψ

be chosen and normalized as described above. We have, for β ∈ Int(P ) and p, k ∈ N0:

ρF,s,k(β) =

p∑
j=0

k
3n
2 −jB2(p−j)

(
1

k

∂

∂λ

)∫
α1≥ν−λ

ψ(α)bj(α)e−kh(α,β)dα

∣∣∣∣
λ=0

+Rp,k(β),

where there exists C ≥ 0 such that |Rp,k(β)| ≤ Ckn−(p+
1
2 ) for all β ∈ K and k � 0.

The following two claims will be useful for our proof of the above proposition.

Claim 1.

ρF,s,k(β) =
∑

α∈PF,s∩ 1
kZn

ψ(α)
|sα,k(β)|2

‖sα,k‖2
+Rk(β) for all β ∈ P,

and for all j ∈ N0, there exists Cj ≥ 0 such that |Rk(β)| ≤ Cjk
−j for all β ∈ K and all k � 0.

Proof. By proposition 5.1.7, there exists c > 0 such that e−h(α,β) ≤ e−c‖α−β‖2

for all α,β ∈ P .

Furthermore, it is a standard result, which is independent of the proof of the asymptotic

expansion of ρk, that there exists D ≥ 0 such that ρk(β) ≤ Dkn for all β ∈ P (see e.g.

[Bou96, lemma 3.1]). Combining this gives:

∑
α∈PF,s∩ 1

kZn

(1− ψ(α))
|sα,k(β)|2

‖sα,k‖2
≤

∑
α∈(PF,s−U)∩ 1

kZn

|sα,k(β)|2

‖sα,k‖2

≤
∑

α∈(PF,s−U)∩ 1
kZn

e−ck‖α−β‖2

ρk(α)

= O
(
k−∞) for all β ∈ K and k � 0.

Furthermore, we have:

Claim 2. For p ∈ N0, β ∈ Int(P ) and k ∈ N0, we have

∑
α∈PF,s∩ 1

kZn

ψ(α)
|sα,k(β)|2

‖sα,k‖2
=

p∑
j=0

 ∑
α∈PF,s∩ 1

kZn

ψ(α)bj(α)e−kh(α,β)

 k
n
2 −j +Qp,k(β),

where bj , for j ∈ N0, are the functions appearing in lemma 7.3.3 and where there exists Cp ≥ 0

such that

|Qp,k(β)| ≤ Cpk
n−(p+ 1

2 ) for all β ∈ K and all k � 0.

Proof. There exists c > 0 and, by lemma 7.3.3, there exists Dp ≥ 0 such that

|Qp,k(β)| =

∣∣∣∣∣∣
∑

α∈PF,s∩ 1
kZn

ψ(α)Sp,k(α)e−kh(α,β)

∣∣∣∣∣∣
≤ Dpk

n
2 −(p+ 1

2 )
∑

α∈PF,s∩ 1
kZn

e−ck‖α−β‖2

= O
(
kn−(p+

1
2 )
)

for all β ∈ K.
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Proof of the proposition. By claim 1 and claim 2, we have

ρF,s,k(β) =

p∑
j=0

 ∑
{α∈ 1

kZn:α1≥ν}

ψ(α)bj(α)e−kh(α,β)

 k
n
2 −j +Qp,k(β),

where there exists C ≥ 0 such that |Qp,k(β)| ≤ Ckn−(p+
1
2 ) for all β ∈ K and k � 0. We note

that the constants in O in proposition 6.2.3 depend continuously on our parameter β ∈ K, so

that we find

ρF,s,k(β) =

p∑
j=0

(
knB2(p−j)

(
1

k

∂

∂λ

)∫
α1≥ν−λ

ψ(α)bj(α)e−kh(α,β)dα

∣∣∣∣
λ=0

)
k

n
2 −j +Rp,k(β),

where there exists C ≥ 0 such that |Rp,k(β)| ≤ Ckn−(p+
1
2 ) for all β ∈ K and k � 0.

Theorem 7.4.2. Let (LP , h) → (XP , ω) be a toric polarization. Fix a nontrivial face F < P

and s ∈ N. Let β ∈ Int(P ). Then

ρF,s,k(β) =


ρk(β) +O (k−∞) if β ∈ Int(PF,s)

1
2ρk(β) +

∑∞
j=0 cj(β)k

n−(j+ 1
2 ) +O (k−∞) if β ∈ RelInt(Fs)

O (k−∞) otherwise,

where cj ∈ C∞ (Int(P )) are explicitly computable functions. Now let K ⊂ Int(P ) be a compact

set. For p ∈ N0 and β ∈ K ∩ RelInt(Fs),

ρF,s,k(β) =
1

2
ρk(β) +

p∑
j=0

cj(β)k
n−(j+ 1

2 ) + Sp,k(β)

for all k ∈ N, and there exists D ≥ 0 such that |Sp,k(β)| ≤ Dkn−(p+
3
2 ) for all β ∈ K∩RelInt(Fs)

and k � 0.

Proof. Assume that we have normalized coordinates as described. In particular, we have PF,s =

P ∩ {α ∈ Rn : α1 ≥ ν} for some fixed ν ∈ Z and the lattice M is just Zn ⊂ Rn. For the first

part, choose a compact set K ⊂ Int(P ) such that β ∈ K. We note that by proposition 7.4.1,

ρF,s,k(β) =

p∑
j=0

k
3n
2 −j

(∫
α1≥ν

ψ(α)bj(α)e−kh(α,β)dα

+ δp−j≥1

{
1

2k

∫
Rn−1

ψ(ν, α2, · · · , αn)bj(ν, α2, · · · , αn)e−kh((ν,α2,··· ,αn),β)dα2 · · · dαn

−
p−j∑
i=1

k−2i B2i

(2i)!

∫
Rn−1

∂

∂α1

2i−1 (
ψ(α)bj(α)e−kh(α,β)

)∣∣∣∣∣
((ν,α2,··· ,αn),β)

dα2 · · · dαn




+Rp,k(β),

where Rp,k(β) = O
(
kn−(p+

1
2 )
)

for β ∈ K. If β1 < ν, it is clear that all terms above are

O (k−∞) since the point where h achieves its minimum is not in the domains of integration of
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the summands above. If β1 > ν, we have, for all j ∈ N0,∫
α1≥ν

ψ(α)bj(α)e−kh(α,β)dα =

∫
Rn

ψ(α)bj(α)e−kh(α,β)dα+O
(
k−∞) ,

while the other terms are O (k−∞), and we get back the expansion of ρk(β) (see equation 7.3.3).

Suppose now that β ∈ K ∩ {x ∈ Rn : x1 = ν}. We have

∫
α1≥ν

ψ(α)bj(α)e−kh(α,β)dα =

2(p−j)∑
l=0

Aj,l(β)k
−n+l

2 +O
(
k−(

n+1
2 +p−j)

)
,

using lemma B.3.6 and theorem B.3.4, where

Aj,l(β) = |H(β)|−
1
2

l∑
i=0

(−1)i

i!
2

n+l
2 +i

∑
|γ|=l+2i

1

γ!

∂

∂α

γ

R
(
H− 1

2 (β)α+ β,β
)i

bj

(
H− 1

2 (β)α+ β
)∣∣∣

α=0
e
(
γ,H− 1

2 (β)e1, 0
)
,

for j, l ∈ N0, H(β) = Hessh(.,β)|β = 2 Hessu|β, h(α,β) = 2
(
u(α)− u(β) + 〈∇u|β ,β −α〉

)
and

R(α,β) = h(α,β)− 1

2
〈H(β)(α− β),α− β〉,

so that ∂
∂α

γ
h(.,β)

∣∣∣
β
= 2 ∂

∂α

γ
u
∣∣∣
β
for |γ| ≥ 2. By lemma B.3.6, we have, for β ∈ K ∩ {β1 = ν}

and j, l ∈ N0,

Aj,2l(β) =
1

2

√
(2π)n

|H(β)|

2l∑
i=0

(−1)i

i!(i+ l)!2i+l
〈H−1(β)Dα, Dα〉i+lbj(α)R(α,β)i|β,

where Dα =
(

∂
∂α1

, · · · , ∂
∂αn

)
. We also have, for p− j ≥ 1,

1

2

∫
Rn−1

ψ(ν, α2, · · · , αn)bj(ν, α2, · · · , αn)e−kh((ν,α2,··· ,αn),β)dα2 · · · dαn

=

p−j−1∑
l=0

Dj,l(β)k
−(n−1

2 +l) +O
(
k−(

n−1
2 +p−j)

)
,

where, by theorem B.2.2,

Dj,l(β) =
1

2

√
πn−1

|G(β)|
2l∑
i=0

(−1)i

i!(i+ l)!22(i+l)
〈G−1(β)D,D〉i+lbj(ν, α2, · · · , αn)S((ν, α2, · · · , αn),β)i

∣∣
(β2,··· ,βn)

,

where now

G(β)
def
=

1

2

(
∂

∂αi

∂

∂αj
h

)
2≤i,j≤n

∣∣∣∣∣
β

= (uij(β))2≤i,j≤n
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D
def
= (

∂

∂α2
, · · · , ∂

∂αn
),

and

S((ν, α2, · · · , αn),β)
def
= h ((ν, α2, · · · , αn) ,β)−

n∑
i,j=2

uij(β)(αi − βi)(αj − βj)

for β ∈ K ∩ {x ∈ Rn : x1 = ν}. Finally, there are explicitly computable functions Ci,j,l ∈
C∞(Int(P )) such that

− B2i

(2i)!

∫
Rn−1

∂

∂α1

2i−1 (
ψ(α)bj(α)e−kh(α,β)

)∣∣∣∣∣
((ν,α2,··· ,αn),β)

dα2 · · · dαn =

p−(i+j)−1∑
l=0

Ci,j,l(β)k
i−n+1

2 −l +O
(
k2i+j−p−

n+1
2

)
.

To see that the integral above is of order ki−
n+1
2 , we employ reasoning just like in lemma 6.2.2.

The full asymptotics can be computed by first expanding the α1-derivatives and then applying

Laplace’s expansion for each of the resulting terms. We recall from equation 7.3.3 that, for

p ∈ N0,

ρk(β) =

p∑
j=0

k
3n
2 −j

∫
Rn

ψ(α)bj(α)e−kh(α,β)dα+O
(
kn−(p+

1
2 )
)

(7.4.1)

for β ∈ K. An application of lemma B.3.6 now yields that

ρF,s,k(β)−
1

2
ρk(β) =

p∑
j=0

k
3n
2 −j

(
p−j−1∑
l=0

Aj,2l+1(β)k
−(n+1

2 +l)

+k−1

p−j−1∑
l=0

Dj,l(β)k
(n−1

2 −l) +

p−j∑
i=1

k−2i

p−(i+j)−1∑
l=0

Ci,j,l(β)k
i−l−n+1

2


+O

(
kn−(p+

1
2 )
)

= kn

 p∑
j=0

p−j−1∑
l=0

(Aj,2l+1(β) +Dj,l(β)) k
−(l+j+ 1

2 )

+

p∑
j=0

p−j∑
i=1

p−i−j−1∑
l=0

Ci,j,l(β)k
−(i+j+l+ 1

2 )

+O
(
kn−(p+

1
2 )
)

for β ∈ K ∩ {x ∈ Rn : x1 = ν}. Here, we use the convention that
∑b
i=a f(i) = 0 if a > b. Note

that, in particular,

ρF,s,k(β)−
1

2
ρk(β) = (A0,1(β) +D0,0(β)) k

n− 1
2 +O

(
kn−

3
2

)
for β ∈ K ∩ {x ∈ Rn : x1 = ν}.

Remark 7.4.3. Recall that e.g. ρF,s,k(β) = ρk(β) + O(k−∞) if β ∈ Int(PF,s) in the above

theorem means that, for fixed β ∈ Int(PF,s) and for any n > 0, there exists Cn ≥ 0 such that
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|ρF,s,k(β)− ρk(β)| ≤ Ck−n for all k � 0. But it is clear from the proof that for any compact

subset K ⊂ Int(PF,s) and n > 0, we can in fact take a fixed Cn ≥ 0 for all β ∈ K and k � 0 in

the estimate. A similar statement holds over Int(P − PF,s).

7.4.3 The kn− 1
2 term

We will now investigate the kn−
1
2 term of the asymptotic expansion of ρF,s,k in more detail.

Using the basic integrals that we compute in A.2.1 and A.2.3, we find that, for β ∈ K ∩
{x ∈ Rn : x1 = ν},

A0,1(β) = |H(β)|−
1
2

(
2

n+1
2

n∑
s=1

∂

∂αs

∣∣∣∣
0

b0

(
H− 1

2 (β)α+ β
)
e
(
es,H

− 1
2 (β)e1, 0

)
− 2

n+3
2

n∑
r,s,l=1

1

3!

∂3

∂αr∂αs∂αl

∣∣∣∣
0

R
(
H(β)−

1
2α+ β

)
b0

(
H− 1

2 (β)α+ β
)

e
(
er + es + el,H

− 1
2 (β)e1, 0

))
=

1

12(2π)n
√
π

u111(β)

(u11(β))
3
2

,

while

D0,0(β) =
1

2(2π)n
√
π

1√
u11(β)

for β ∈ K ∩ {x ∈ Rn : x1 = ν}. We conclude that

ρF,s,k(β)−
1

2
ρk(β) =

1

4(2π)n
√
π

(
2√

u11(β)
+

1

3

u111(β)

(u11(β))
3
2

)
kn−

1
2 +O

(
kn−

3
2

)
(7.4.2)

for β ∈ K ∩ {x ∈ Rn : x1 = ν}.

Proposition 7.4.4. Let (LP , h) → (XP , ω) be a toric polarization, let F < P be a non-

trivial face and let s ∈ N. Let t denote the Lie algebra of the real torus acting on XP , and

let µ : XP → t∗ denote a choice of moment map that has P as its image. Suppose that

PF,s = P ∩Hn,λ, where Hn,λ = {α ∈ t∗ : 〈α,n〉 − λ ≥ ν}, and n ∈ t ∩ Ker(exp) is primitive.

Let K ∼= S1 denote the circle subgroup generated by n, and let N denote the vector field generated

by the K-action on XP , so that Np
def
= ∂

∂t exp(tn).p
∣∣
t=0

for p ∈ XP . Then, for β ∈ Int(P )∩Fs,
we have

ρF,s,k(β)−
1

2
ρk(β) =

1

2(2π)n
√
π

(
1

3

(
div (JN)p
‖JNp‖

− div

(
JN

‖JN‖

)
p

)
+

1

‖JNp‖

)
kn−

1
2

+O
(
kn−

3
2

)
for any p ∈ µ−1(β).

Proof. With our choice of coordinates, we have N = ∂
∂θ1 . We compute that

J
∂

∂θ1
= −

n∑
j=1

u1j
∂

∂αj
,
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while ‖J ∂
∂θ1 ‖

2 = u11. Computing the divergence is now very simple, since the metric has

determinant one in symplectic coordinates. We have

div

(
JN

‖JN‖

)
= −

n∑
j=1

∂

∂αj

(
u1j√
u11

)
=

u1jj√
u11

− 1

2

u111

(u11)
3
2

div (JN) = −
n∑
j=1

∂

∂αj
u1j = u1jj .

The result now follows from equation 7.4.2.

Remark 7.4.5. The higher order asymptotics could be computed explicitly in a similar manner

using a computer. Unfortunately, our method of expanding the partial density function is not

intrinsically geometric and we only recover the geometric meaning of the kn−
1
2 -coefficient as a

last step in the above. We conjecture however that all coefficients in the expansion in theorem

7.4.2 should be geometric.

Conjecture 7.4.6. All the functions cj : Int(P ) → R, for j ∈ N0, appearing in the asymptotic

expansion in theorem 7.4.2 are geometric. More precisely, they are determined by the vector

field N discussed above and the geometry of (XP , ω).
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Chapter 8

The Slope Inequality

In this chapter, we discuss the slope inequality with respect to a complex submanifold which

has important implications for the study of constant scalar curvature Kähler (cscK) metrics

within a fixed Kähler class. We then describe an interesting connection between partial density

functions and the slope inequality.

8.1 Background

Let (L, h) → (X,ω) be a polarized Kähler manifold and let Y ⊂ X be a complex submanifold

of X. Let us now discuss the slope inequality for (X,L, Y ). For k ∈ N and l ∈ Q such that

lk ∈ N0, there exists an asymptotic expansion of the Hilbert-Samuel polynomial hY,l:

hY,l(k)
def
= h0

(
Lk ⊗ J lk

Y

)
= a0(l)k

n + a1(l)k
n−1 +O

(
kn−2

)
for k � 0, lk ∈ N0.

We define a0
def
= a0(0), a1

def
= a1(0) and recall the Hirzebruch-Riemann-Roch theorem:

Theorem 8.1.1 (Hirzebruch-Riemann-Roch Theorem [Huy05, theorem 5.1.1, p.232]). Let E

be a holomorphic vector bundle on a compact complex manifold X. Then its Euler-Poincaré

characteristic is given by

χ(X,E) =

∫
X

ch(E)td(X),

where

χ(X,E)
def
=

dim(X)∑
i=0

(−1)ihi(X,E),

and td(X) denotes the Todd class of X.

In the case of an ample holomorphic line bundle L, χ(X,Lk) = h0(X,Lk) for all sufficiently

large k. We hence obtain, for k � 0,

h0(X,Lk) =

∫
X

ec1(L
k)td(X)

=

∫
X

{(
1 + c1(L

k) +
c1(L

k)2

2!
+ · · ·+ c1(L

k)n

n!

)
(
1 +

1

2
c1(X) +

1

12

(
c1(X)2 + c2(X)

)
+ . . .

)}
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Chapter 8. The Slope Inequality

=kn
∫
X

c1(L)
n

n!
+ kn−1

∫
X

c1(L)
n−1c1(X)

2(n− 1)!
+ . . . .

In particular,

a0 =

∫
X

c1(L)
n

n!
=

1

(2π)n

∫
X

ωn

n!

a1 =

∫
X

c1(L)
n−1c1(X)

2(n− 1)!
=

1

2

1

(2π)n

∫
X

Scal
ωn

n!
.

Let us recall the following from [RT06, Tho06]:

Definition 8.1.2. The slope of a polarized manifold (X,L) is given by

µ(X,L)
def
=

a1
a0
.

For a submanifold Y ⊂ X, the Seshadri constant S(Y ) is defined as

S(Y )
def
= sup

l
{π∗L⊗O(−lE) is ample} ,

where π : BlY (X) → X denotes the blow-up of X along Y and E = π−1 (Y ) the exceptional

divisor. The slope of Y with respect to c ∈ R is

µc(JY , L)
def
=

∫ c
0
a1(l) +

a′0(l)
2 dl∫ c

0
a0(l)dl

,

and we say that (X,L) is slope semi-stable with respect to Y if

µc(JY , L) ≤ µ(X,L) for all c ∈ (0, S(Y )]. (8.1.1)

We refer to equation 8.1.1 as the slope inequality for (X,L, Y ). We say that Y strictly destabi-

lizes (X,L) if (X,L) is not slope semi-stable with respect to Y .

The following corollary gives us a geometric motivation for studying slope semi-stability:

Corollary 8.1.3 (Ross, Thomas cf. [Tho06, Cor 7.4] and [RT06]). Suppose that Y ⊂ X is a

complex submanifold of a polarized Kähler manifold (X,L). If Y strictly destabilizes (X,L),

then X does not admit a cscK metric in the class c1(L).

Remark 8.1.4. We only consider slope semi-stability with respect to complex submanifolds,

but the notion is well-defined for subschemes [Tho06, RT06].

8.2 Toric slope stability

We now investigate slope semi-stability for toric submanifolds of a toric polarized manifold

LP → XP corresponding to a polytope P ⊂ Rn. Guillemin and Sternberg’s Euler-Maclaurin

summation formula for integral Delzant polytopes will be of use to us.

Theorem 8.2.1 (Guillemin-Sternberg, [GS07, theorem 4.1]). For f ∈ C∞
0 (Rn) and an integral
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8.2. Toric slope stability

Delzant polytope P given by

P
def
=
{

x ∈ Rn : li(x)
def
= µi − 〈x,ni〉 ≥ 0 for some µi ∈ R, primitive

ni ∈ Zn and i ∈ {1, · · · , d}
}
,

we have

1

kn

∑
x∈kP∩Zn

f

(
1

k
x

)
∼

d∏
i=1

τ

(
1

k

∂

∂λi

) ∫
P (λ)

f(x)dx

∣∣∣∣∣
λ=0

,

where

τ(s) =
s

1− e−s
= 1 +

s

2
+

∞∑
j=1

(−1)j−1 B2j

(2j)!
s2j

= 1 +
s

2
+
s2

12
− s4

720
+O

(
s6
)
.

Here, Bj denotes the jth Bernoulli number and

P (λ)
def
= {x ∈ Rn : li(x) + λi ≥ 0, i ∈ {1, · · · , d}}

for λ = (λ1, · · · , λd) ∈ Rd.

Remark 8.2.2. Note that we are now using the outwards pointing primitive normal vectors in

the definition of P (λ) as opposed to 6.3.

Example 8.2.3. Consider the Delzant polytope given by (x, y) ∈ R2 such that

l1(x, y)
def
= y ≥ 0

l2(x, y)
def
= 10− x− y ≥ 0

l3(x, y)
def
= 6− y ≥ 0

l4(x, y)
def
= x ≥ 0.

P (λ1, λ2, λ3, λ4)
def
=
{
(x, y) ∈ R2 : li(x, y) + λi ≥ 0 for i ∈ {1, 2, 3, 4}

}
.

P (0, 0, 0, 0) and P (0, 1, 2, 3) are displayed in figure 8.1. These polytopes correspond to the

blow-up of CP2 in a point together with two different polarizations.

Figure 8.1: P (0, 0, 0, 0) and P (0, 1, 2, 3) from example 8.2.3.
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Chapter 8. The Slope Inequality

We can expand h0(LkP ) in powers of k as follows:

h0(LkP ) = # (kP ∩ Zn) =
∑

x∈kP∩Zn

1 = Vol(P )kn +
1

2

d∑
i=1

∂

∂λi

∫
P (λ)

dx

∣∣∣∣∣
λ=0

kn−1 +O
(
kn−2

)
.

Following an idea of Donaldson [Don02], we introduce a constant (n − 1)-form dσi, for i ∈
{1, · · · , d}, such that

dVolEucl = dσi ∧ dli,

where dVolEucl denotes the Euclidean volume form on Rn. Suppose that the polytope P is

given by

P
def
=
{

x ∈ Rn : li(x)
def
= µi − 〈x,ni〉 ≥ 0 for some µi ∈ R, primitive

ni ∈ Zn and i ∈ {1, · · · , d}
}
.

Now

∂

∂λi

∫
P (0,··· ,0, λi

ith
,0,··· ,0)

dVolEucl

∣∣∣∣∣∣
λi=0

=
∂

∂λi

∫ const(P,i)

li=−λi

∫
li(x)=li

lj(x)≥0 for j 6=i

dσi

 dli

∣∣∣∣∣∣
λi=0

=

∫
li(x)=0

lj(x)≥0 for j 6=i

dσi

= Volσi(Fi),

where Fi
def
= {x ∈ P : li(x) = 0} is a (n − 1)-dimensional face of P for i ∈ {1, · · · , d}. We

recover the well known fact that

µ (XP , LP ) =
1

2

∑d
i=1 Volσi(Fi)

Vol(P )
=

1

2

Vol(∂P )

Vol(P )
,

where Vol(P ) denotes the Euclidean volume of P and Vol(∂P ) the volume of ∂P taken with

respect to the measures dσi for i ∈ {1, · · · , d}. Let us now apply these ideas to the slope

inequality. Let YF be a toric submanifold of XP of complex codimension r corresponding to a

face F < P of real codimension r. Without loss of generality, we assume that F = {x ∈ P :

l1(x) = · · · = lr(x) = 0}. We have

H0(LkP ⊗ J lk
YF

) = Span

sα,k : α ∈ P ∩ 1

k
Zn and

r∑
j=1

lj(α) ≥ l


for k, l ∈ N. We define Pl

def
= {x ∈ P :

∑r
j=1 lj(x) ≥ l} and have

h0
(
Lk ⊗ J lk

YF

)
= #

(
Pl ∩

1

k
Zn
)

= Vol (Pl) k
n +

1

2
Vol (∂Pl) k

n−1 +O
(
kn−2

)
= a0(l)k

n + a1(l)k
n−1 +O

(
kn−2

)
,
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8.3. Partial density functions and slope stability

so that the slope inequality for F takes the form∫ c

0

Vol (∂Pl) dl +Vol (Pc)−Vol (P ) ≤ Vol (∂P )

Vol(P )

∫ c

0

Vol (Pl) dl for c ∈ (0, S(YF )].

Let us now rewrite this inequality in a more geometric form. If the codimension r of F is larger

than 1, then, for 0 < l < S(YF ), Pl has the following (n− 1)-dimensional faces:

F0(l) =
{
x ∈ P : l0(x)

def
=

r∑
j=1

lj(x) = l
}

Fj(l) =
{
x ∈ P : lj(x) = 0, l0(x)

def
=

r∑
j=1

lj(x) ≥ l
}

for i ∈ {1, · · · , d}.

If r = 1, the n− 1 dimensional faces are given by the above, except that we discard the empty

set F1(l). We note that

∂

∂l
a0(l) =

∂

∂l

∫
Pl

dVolEucl

=
∂

∂l

∫ const(Pl)

l0=l

∫
l0(x)=l0

lj(x)≥0 for j 6=0

dσ0

 dl0

= −Volσ0 (F0(l)) ,

where dVolEucl = dσ0 ∧ dl0. The slope inequality now becomes∫ c

0

Vol (∂Pl − F0(l))

Vol (∂P )
dl ≤

∫ c

0

Vol (Pl)

Vol(P )
dl.

We have proved:

Lemma 8.2.4. Let (XP , LP ) be a toric polarization and let YF be a toric submanifold of

XP corresponding to a face F ⊂ P of the polytope P = {x ∈ Rn : li(x)
def
= µi − 〈ni,x〉 ≥

0 for i ∈ {1, · · · , d}}. Suppose that F = ∩ri=1Z(li) ∩ P and let P+
l = {x ∈ P :

∑r
i=1 li(x) > l}.

Then (XP , LP ) is slope semi-stable with respect to YF if and only if∫ c

0

Vol
(
∂P+

l

)
Vol (∂P )

dl ≤
∫ c

0

Vol
(
P+
l

)
Vol(P )

dl

for all c ∈ (0, S(YF )).

Proof. The proof is given in the above argument. Note that the slope inequality is continuous

in c in the toric case. We can hence discard the case c = S(YF ).

8.3 Partial density functions and slope stability

Let (L, h) → (X,ω) be a polarized Kähler manifold. We now discuss an idea communicated to

us by R. Thomas [KPTS] which shows that sufficient asymptotic information about the partial

density function ρl,k with respect to a complex submanifold Y ⊂ X might provide a geometric

proof of the fact that the existence of a constant scalar curvature metric in the polarization

class of (X,L) forces (X,L) to be slope semi-stable with respect to Y (corollary 8.1.3). Fix a
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Chapter 8. The Slope Inequality

complex submanifold Y ⊂ X. We define ql,k : X → R by

ql,k(p)
def
= ρl,k(p)−

1

2

(
ρl,k(p)− ρl+ 1

k ,k
(p)
)
,

for p ∈ X, k ∈ N , l ∈ (0, S(Y )] ∩ 1
kZ and where ρl,k : X → R denotes the partial density

function with vanishing along Y to order at least lk. Now∫
X

∑
l=0, 1k ,··· ,

ck−1
k

ql,k
ωn

n!
=

∑
l=0, 1k ,··· ,

ck−1
k

{
h0
(
Lk ⊗ J lk

Y

)
(†)

− 1

2

(
h0
(
Lk ⊗ J lk

Y

)
− h0

(
Lk ⊗ J lk+1

Y

))}
=

∑
l=0, 1k ,··· ,

ck−1
k

h0
(
Lk ⊗ J lk

Y

)
− 1

2

(
h0
(
Lk
)
− h0

(
Lk ⊗ J ck

Y

))
=

∑
l=0, 1k ,··· ,c

h0
(
Lk ⊗ J lk

Y

)
− 1

2

(
h0
(
Lk
)
+ h0

(
Lk ⊗ J ck

Y

))
=

{ ∑
l=0, 1k ,··· ,c

(
a0(l)k

n + a1(l)k
n−1
)

− 1

2

(
(a0 + a0(c)) k

n + (a1 + a1(c)) k
n−1
)}

+O
(
kn−1

)
= kn+1

∫ c

0

a0(l)dl + kn
a0(c) + a0

2
+ kn

∫ c

0

a1(l)dl

− kn
a0(c) + a0

2
+O

(
kn−1

)
= kn+1

∫ c

0

a0(l)dl + kn
∫ c

0

a1(l)dl +O
(
kn−1

)
.

Let us now assume that, as distributions over X, we have the following asymptotic expansion

ql,k = kn
1

(2π)n
1Nl

+ kn−1
(
1Nl

Scal

2(2π)n
+ fl

)
+O

(
kn−2

)
(‡)

for some function fl : X → R depending on the geometry of X and Y , a subset Nl ⊂ X and

0 < l ≤ S(YF ), and where the constant in O is independent of l ∈ (0, S(YF )]. In particular, we

then have∫
X

ql,k
ωn

n!
= kn

∫
X

1Nl

(2π)n
ωn

n!
+ kn−1

∫
X

(
1Nl

Scal(p)

2(2π)n
+ fl(p)

)
ωn

n!
+O

(
kn−2

)
= kn

Vol(Nl)

(2π)n
+ kn−1

∫
X

(
1Nl

Scal(p)

2(2π)n
+ fl(p)

)
ωn

n!
+O

(
kn−2

)
,

where the constant in O is again independent of l and Vol(Nl)
def
=
∫
X
1Nl

ωn

n! for our (possibly

singular) subset Nl ⊂ X. Then

(†) =
∑

l=0, 1k ,··· ,
ck−1

k

(
kn

Vol(Nl)

(2π)n
+ kn−1

∫
Nl

Scal

2(2π)n
ωn

n!
+ kn−1

∫
X

fl(p)
ωnp
n!

)
+O

(
kn−1

)
.
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8.3. Partial density functions and slope stability

Comparing the first term of the asymptotic expansions for
∫
X
ql,k

ωn

n! yields Vol(Nl)
(2π)n = a0(l). Let

us assume now that the scalar curvature is constant. In this case we have Scal(p)
2 = a1

a0
.

(†) = kn+1

∫ c

0

a0(l)dl + kn
a0 − a0(c)

2
+ kn

a1
a0

∫ c

0

a0(l)dl + kn−1
∑

l=0, 1k ,··· ,
ck−1

k

∫
X

fl(p)
ωnp
n!

+O
(
kn−1

)
.

Subtracting the right hand side above from (†) and dividing by kn gives∫ c

0

a1(l) +
a′0(l)

2
dl − a1

a0

∫ c

0

a0(l)dl − k−1
∑

l=0, 1k ,··· ,
ck−1

k

∫
X

fl(p)
ωnp
n!

= O
(
k−1

)
.

Note that the first part above is the slope inequality which does not depend on k. It follows

that e.g.

k−1
∑

l=0, 1k ,··· ,
ck−1

k

∫
X

fl(p)
ωnp
n!

≤ 0,

for k � 0, would imply the slope inequality with respect to Y .

Remark 8.3.1. The above calculation reveals some aspects of the deep relationship between the

asymptotic expansion of the partial density function ρl,k and the notion of slope stability with

respect to a complex submanifold discussed in this chapter. In particular, we see how sufficient

information about the asymptotics of ρl,k could lead to an alternative proof of corollary 8.1.3.

While we have concentrated on the pointwise asymptotics of ρl,k in the toric case in this thesis,

it seems that a future investigation into asymptotic expansions in the sense of equation (‡) might

be worthwhile as well.

79



Chapter 8. The Slope Inequality

80



Chapter 9

General Polarized Kähler

Manifolds

In this chapter, we concentrate on some of the problems that appear when one is trying to

understand the asymptotics of the (partial) density function in the case of a general compact

polarized Kähler manifold (L, h) → (X,ω).

9.1 Special sections

Let (L, h) → (X,ω) be a polarization of a compact Kähler manifold (X,ω), so that π : L→ X

is a holomorphic line bundle with Hermitian metric h such that iFh = ω ∈ 2πc1(L). Let us

denote the Hermitian fibre-wise inner product and norm given by hk on Lkq by (s(q), s′(q))hk

and |s(q)|hk , respectively, for all s, s′ ∈ H0(X,Lk) and q ∈ X. We denote the L2-inner product

and norm by 〈s, s′〉hk
def
=
∫
X
(s, s′)hk

ωn

n! and ‖s‖hk , respectively, for all s, s′ ∈ H0(X,Lk). We

will omit the hk index if it is clear from the context which power of the line bundle we are

considering.

9.1.1 Tian’s peak sections

The fact that we have a very explicit basis of H0(X,Lk) is one of the main advantages of

the toric case. Recall that each of these basis elements sα,k corresponded to an integral point

α ∈ P ∩ 1
kZ

n of a polytope P and sα,k had the nice property of having “peaked” pointwise

norm on the torus µ−1(α) which enabled us to apply Laplace’s method and the Euler-Maclaurin

summation formulas to extract asymptotic information in chapter 7. In general, there is no

such “preferred” basis of H0(X,Lk), but there are interesting types of sections which we will

refer to as Tian’s peak sections and which do have similar properties. Let us first discuss a type

of holomorphic normal coordinate system that is important in this context (see [Boc47, Rua98]

for more details).

Proposition 9.1.1 (Bochner). Let X be a compact Kähler manifold and M ≥ 0. For any

x ∈ X, there exists a holomorphic coordinate map z = φx centred at x for which there exist a

real-valued Kähler potential K around x such that all the (0, l), (1, l), (l, 1), (l, 0) terms in the

Taylor expansion of K vanish at x for l ≤M , except for the (1, 1) term which is equal to ‖z‖2.
These coordinates are called K-coordinates of order M centred at x.
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Chapter 9. General Polarized Kähler Manifolds

Note that, in K-coordinates of order M ≥ 4 centred at x, we have

K(z) = ‖z‖2 +Rijklzizjzkzl +O
(
‖z‖5

)
,

where Rijkl denote the components of the curvature tensor at x.

Definition 9.1.2. Let (L, h) → (X,ω) be a polarized compact Kähler manifold and let x0 ∈ X.

Choose local K-coordinates of order M centred at x0. Pick a local holomorphic frame eL of L

at x0 such that the local function a : U → R representing h satisfies a(z) = exp(−K(z)) for all

z ∈ U . We call such a local frame adapted to the K-coordinates.

Theorem 9.1.3 (Tian [Tia90], see also [Rua98, Lemma 3.1]). Let (L, h) → (X,ω) be a polarized

compact Kähler manifold and let x0 ∈ X. Choose local K-coordinates of order 4 centred at x0

and an adapted frame of L.

For any n-tuple of integers p = (p1, · · · , pn) ∈ Nn0 and an integer p′ > |p| def
= p1 + · · ·+ pn,

there exists k0 > 0 such that, for k > k0, there exists a holomorphic global section sp,p′,k ∈
H0(X,Lk), satisfying ‖sp,p′,k‖2hk = 1 and∫

X−
{
‖z‖≤ log k√

k

} |sp,p′,k|2hk

ωn

n!
= O

(
k−2p′

)
,

and, locally at x0,

sp,p′,k(z) = λp

(
zp +O

(
‖z‖2p

′
))

e⊗kL

(
1 +O

(
k−2p′

))
,

where the constant in O depends only on p′ and the geometry of X. Moreover,

λ−2
p =

∫
‖z‖≤ log k√

k

|zp|2 ak ω
n

n!
,

where ak is the function representing the Hermitian metric hk in the local K-coordinates.

We refer to the sections in theorem 9.1.3 as “peak sections” since their norm is concentrated

near a point. Such sections have been utilised to prove several interesting results. Tian originally

used them in his paper [Tia90] to prove a version of theorem 10.1.1 which we discuss in chapter

10.

Recall that, on a polarized Kähler manifold (L, h) → (X,ω), the density function ρk : X → R
is defined to be the norm of the diagonal of the Bergman kernel Bk on Lk. Let s1,k, · · · , sNk,k

be a orthonormal basis of H0(X,Lk) for k ∈ N. Then

ρk(x) =

Nk∑
i=1

|si,k(x)|2hk for x ∈ X and k ∈ N.

Theorem 9.1.4 (Catlin [Cat99], Tian [Tia90], Yau, Zelditch [Zel98]). Let (L, h) → (X,ω) be

a polarized Kähler manifold. There is a complete asymptotic expansion

ρk(x) ∼
∞∑
j=0

aj(x)k
n−j for x ∈ X and as k → ∞,

for certain smooth functions {aj}∞j=0 on X. More precisely, for any R, r ∈ N, there exists a
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9.1. Special sections

constant CR,r ≥ 0, depending on R, r and the manifold (X,ω), such that∣∣∣∣∣∣ρk(x)−
∑
j<R

aj(x)k
n−j

∣∣∣∣∣∣
Cr(X)

≤ CR,rk
n−R for all k ∈ N0 and x ∈ X.

Peaked sections were subsequently used by Lu to explicitly determine a0 up to a3. In

particular:

Theorem 9.1.5 (Lu [Lu00]). We have a0(x) =
1

(2π)n and a1(x) =
1
2

1
(2π)n Scal(x) in the expan-

sion above.

9.1.2 Subspaces of H0(X,Lk)

Let (L, h) → (X,ω) denote a polarized compact Kähler manifold as before. Tian proved the

existence of “peak sections” of Lk, for k � 0, using Hörmander’s ∂-estimates. We will now

discuss how to think of these sections as elements of a natural subspace of H0(X,Lk).

Let us denote the space of global holomorphic sections of Lk vanishing to order at least l

at p ∈ X by J l
k(p). Similarly, for a complex submanifold Y ⊂ X, we denote by J l

k(Y ) the

global sections of Lk that vanish to order at least l along Y . Given a polarization, we have

a decomposition of the vector space H0(X,Lk), for any l ∈ N and p ∈ X, as a direct sum of

mutually orthogonal subspaces.

H0(X,Lk) = J l
k(p)⊕ J l

k(p)
⊥

= J l
k(p)⊕

(
J l−1
k (p) ∩ J l

k(p)
⊥)⊕ J l−1

k (p)⊥

= J l
k(p)⊕


l⊕

j=1

(
J j−1
k (p) ∩ J j

k (p)
⊥
) .

Note that, for l large enough, J l
k(p) = {0} and that J 0

k (p)
def
= H0(X,Lk).

Definition 9.1.6. Let (L, h) → (X,ω) be a polarized compact Kähler manifold. We call a

sequence of unit norm sections {sk}∞k=1, where sk ∈ H0(X,Lk) for k ∈ N, peaked at p ∈ X if,

in local K-coordinates of order 4 centred at p, we have

lim
k→∞

∣∣∣∣∣
∫
X−{‖z‖≤ log k√

k
}
|sk|2hk

ωn

n!

∣∣∣∣∣ = 0.

We would like to argue - and this is already hinted at in Tian’s lemma 9.1.7 below - that

sequences of unit norm elements sk ∈ J j−1
k (p)∩J j

k (p)
⊥ as k → ∞, for some fixed j ∈ N, are a

natural setting for discussing a version of Tian’s peak sections at p. The fact that sequences of

unit norm generators of the one-dimensional vector spaces Jk(p)⊥, for k � 0, are peaked in the

above sense follows e.g. from [MM07, 5.1.25, p.217]. We will now prove a little generalization

of this result which follows this intuition. First, let us recall:

Lemma 9.1.7 (see [Tia90, lemma 3.1]). Let (L, h) → (X,ω) be a polarized Kähler manifold

and let sp,p′,k be one of Tian’s peak sections, which is peaked at x0 ∈ X for p ∈ Nn0 , p′, k ∈ N
and p′ > |p|. Let s ∈ H0(X,Lk) with ‖s‖ = 1 such that s does not contain zp in its Taylor
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expansion in adapted coordinates at x0. Then

〈sp,p′,k, s〉 = O
(
k−1

)
,

where the constant in O depends only on p, p′ and the geometry of (X,ω).

The next result illustrates how the space J l
k(p)

⊥ can be considered as a vector space of

peaked sections following Tian’s ideas [Tia90].

Proposition 9.1.8. Suppose that (L, h) → (X,ω) is a polarized Kähler manifold. Let l ∈ N,
x0 ∈ X and let {sk}∞k=1 be a sequence such that sk ∈ J l

k(p)
⊥ ⊂ H0(X,Lk) and ‖sk‖hk = 1

for all k ∈ N. Then there exists a constant C ≥ 0 such that, in local K-coordinates of order 4

centred x0, we have ∣∣∣∣∣
∫
X−

{
‖z‖≤ log(k)√

k

} |sk|2hk

ωn

n!

∣∣∣∣∣ ≤ Ck−1 for all k ∈ N.

In particular, {sk}∞k=1 is peaked at x0.

Proof. Let p′ > l. Choose k0 > 0 such that, for all k > k0 and p ∈ Nn0 such that |p| < l, Tian’s

section sp,p′,k ∈ H0(X,Lk) with parameters p, p′ and k and peaked norm at x0, exists. We

define the following vector spaces for k ≥ k0:

Hk
def
= H0(X,Lk)

Tk
def
= Span

(
sp,p′,k : p ∈ Nn0 , |p| < l, sp,p′,k ∈ H0(X,Lk)

)
Jk

def
= J l

k(x0).

Furthermore, let nk
def
= dimH0(X,Lk) and m

def
= dimTk for k > k0. We observe that

Hk = Tk ⊕ Jk = J⊥
k ⊕ Jk.

We let

Wk
def
=
(
T⊥
k ∩ Jk

)⊥ ∩ Jk =
(
Tk + J⊥

k

)
∩ Jk

and note that vk
def
= dimWk ≤ 2m for all k ∈ N. We have an orthogonal decomposition

Hk = J⊥
k ⊕Wk ⊕

(
T⊥
k ∩ Jk

)
and an alternative decomposition

Hk = Tk ⊕Wk ⊕
(
T⊥
k ∩ Jk

)
and observe that Tk ⊂ J⊥

k ⊕Wk =
(
T⊥
k ∩ Jk

)⊥
. We pick, for each k, an orthonormal ordered

basis (w1,k, · · · , wvk,k) of Wk, (t1,k, · · · , tm,k) of Tk, (j1,k, · · · , jnk−m−vk,k) of T⊥
k ∩ Jk and

(f1,k, · · · , fm,k) of J⊥
k . Observe that

(e1,k, · · · , enk,k)
def
= (f1,k, · · · , fm,k, w1,k, · · · , wvk,k, j1,k, · · · , jnk−m−vk,k)
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forms an ordered orthonormal basis of Hk. We have a second basis of Hk:

(e′1,k, · · · , e′nk,k
)
def
= (t1,k, · · · , tm,k, w1,k, · · · , wvk,k, j1,k, · · · , jnk−vk−m,k).

Now

ti,k =

m∑
j=1

〈ti,k, fj,k〉fj,k +
vk∑
j=1

〈ti,k, wj,k〉wj,k.

Collecting the change of basis coefficients e′i,k = φij,kej,k in a matrix φk, we have

φk =

 Ak Bk

0 Ivk
0

0 Ink−m

 ,

where (Ak)ij
def
= 〈ti,k, fj,k〉 and (Bk)ij

def
= 〈ti,k, wj,k〉 with

φ−1
k =

 A−1
k −A−1

k Bk

0 Ivk
0

0 Ink−m

 .

Claim. Ak is an asymptotically unitary matrix in the sense that

AkA
t

k = Im +O
(
k−1

)
,

where O
(
k−1

)
denotes a matrix all of whose entries are O

(
k−1

)
.

Proof of the claim.

〈ti,k, tj,k〉 =
〈 m∑
l=1

(Ak)ilfl,k +

vk∑
l=1

(Bk)ilwl,k,

m∑
r=1

(Ak)jrfr,k +

vk∑
r=1

(Bk)jrwr,k

〉

=
m∑
l=1

(Ak)il(Ak)jl +

vk∑
l=1

(Bk)il(Bk)jl,

but (Bk)ij = O
(
1
k

)
and 〈ti,k, tj,k〉 = δij + O

(
1
k

)
by lemma 9.1.7. Noting also that vk ≤ 2m,

for all k ∈ N, gives the result.

The above claim and the fact that (Bk)ij = O
(
1
k

)
now give that

fi,k =

m∑
j=1

(A−1
k )ijtj,k −

vk∑
j=1

(A−1
k Bk)ij︸ ︷︷ ︸
O( 1

k )

wj,k.

Let us rewrite this as

fi,k =
m∑
j=1

(A−1
k )ijtj,k + ηi,k,

where ‖ηi,k‖ = O
(
1
k

)
. Let Bk

def
= {z ∈ X : ‖z‖ ≤ log(k)√

k
} in local K-coordinates of order 4
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centred at x0. Point-wise, we have, for q ∈ X,

|fi,k(q)|2 =(fi,k(q), fi,k(q))

=

 m∑
j=1

(A−1
k )ijtj,k(q) + ηi,k(q),

m∑
l=1

(A−1
k )iltl,k(q) + ηi,k(q)


=

m∑
j,l=1

(A−1
k )ij(A

−1

k )il (tj,k(q), tl,k(q)) + (ηi,k(q), ηi,k(q)) +
m∑
j=1

(
(A−1

k )ij (tj,k(q), ηi,k(q))

+ ((Ak)
−1)ij (ηi,k(q), tj,k(q))

)
,

and ∫
Bk

(tj,k, ηi,k)
ωn

n!
≤
∫
Bk

|(tj,k, ηi,k)|
ωn

n!

≤
∫
Bk

|tj,k| |ηi,k|
ωn

n!

≤

√∫
Bk

|tj,k|2
ωn

n!

∫
Bk

|ηj,k|2
ωn

n!

= O
(
1

k

)
.

Finally, ∫
Bk

|fi,k|2
ωn

n!
= 1 +O

(
1

k

)
for i ∈ {1, · · · ,m}.

Without loss of generality, we can assume that sk = f1,k and the result follows.

We expect this kind of “peaked” behaviour to extend in the obvious way to sequences

{sk}∞k=1, where sk ∈ J l
k(Y ), l ∈ N and Y ⊂ X is a complex submanifold. Also, we conjecture

that we have the following:

Conjecture 9.1.9. Let (L, h) → (X,ω) be a polarized Kähler manifold. Let Y ⊂ X be a

complex submanifold. Let {rk}∞k=1 ⊂ R≥0 be a sequence such that rk
k → 0 as k → ∞. Then,

for any sequence {sk}∞k=1, where sk ∈ J rk
k (Y )⊥ and ‖sk‖ = 1 for all k ∈ N, we have

lim
k→∞

∣∣∣∣∣
∫
X−N(Y )

|sk|2
ωn

n!

∣∣∣∣∣ = 0

for any neighbourhood N(Y ) of Y .

In future, it might be interesting to explore in detail how such sections are “peaked” asymp-

totically. Considering what we have found so far, we make the following definition:

Definition 9.1.10. Let (L, h) → (X,ω) be a polarization of the compact Kähler manifold

(X,ω). We call a set Sk = {pi : i ∈ I}, where pi are points (submanifolds) of X a sampling set

of points (submanifolds) of Lk if

Span
(
∪i∈IJk(pi)⊥

)
= H0(X,Lk),
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where ⊥ is taken with respect to the L2 inner product on H0(X,Lk) given by integrating

the fibre-wise inner product given by hk with respect to the volume form ωn

n! . We call a

sampling set of points (submanifolds) minimal, if #I is minimal among all sampling sets of

points (submanifolds) of Lk.

In the following, let (L, h) → (X,ω) be as in the above definition. We make two simple

observations.

Lemma 9.1.11.

Span
(
∪p∈XJk(p)⊥

)
= H0(X,Lk).

Proof. Suppose s ∈ Span
(
∪p∈XJk(p)⊥

)⊥
= ∩p∈XJk(p). Then clearly s = 0.

Lemma 9.1.12. Let Nk = dim(H0(X,Lk), then there exists k0 > 0 such that for all k > k0

and any p ∈ X, there exists a minimal sampling set of points Ik of Lk with precisely Nk distinct

points. Furthermore, we can assume without loss of generality that p ∈ Ik.

Proof. Choose k0 ∈ N such that Lk is very ample for k > k0. Each Jk(p) has dimension Nk− 1

and Jk(p)⊥ has dimension 1. Let p1 = p and define V1 = Jk(p)⊥. Using 9.1.11, we observe

that either Nk = 1 or there exists another point p2 ∈ X such that

V2 = Span
(
V1,Jk(p2)⊥

)
has dimension dim(V1) + 1. Continuing by induction and defining

Vn+1 = Span
(
Vn,Jk(pn+1)

⊥) ,
we arrive at the result.

Proposition 9.1.13. Let {p1, . . . , pNk
} ⊂ X be a minimal sampling set of points for Lk and

let Lp, for p ∈ X, denote the fibre of L over p. There exists a (non-canonical) vector space

isomorphism

Φk : H0(X,Lk) →
Nk⊕
i=1

Lpi
∼= CNk .

defined by evaluation. Φk(s)
def
= (s(p1), . . . , s(pNk

)) for s ∈ H0(X,Lk).

Proof. Clearly Φk is linear and s(pi) = 0 for all i ∈ {1, · · · , Nk} implies s = 0. By dimension

counting, Φk is an isomorphism.

Remark 9.1.14. Suppose that, for Y ⊂ X a complex submanifold of X, we are interested in

studying the space J l
k(Y ) for some l, k ∈ N. Then the simple identities

J l
k(Y ) = ∩p∈Y J l

k(p)

J l
k(Y )⊥ = Span

(
∪p∈Y J l

k(p)
⊥)

give us an intuitive understanding in terms of “peaked sections” and suggest that one could

consider studying these spaces using J l
k(p) for a large enough finite set of points points p ∈ Y .

This idea is reminiscent of the method used by Donaldson in [Don96], where a large collection

of peaked sections with an evenly distributed “net” of peak points is being utilized.
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9.2 Localization of the density function

We now prove a “localization of sums” result for the density function of the Bergman kernel.

First, we need a little lemma to simplify the proof.

Lemma 9.2.1. Let (L, h) → (X,ω) be a polarization of a Kähler manifold X of complex

dimension n. For each p ∈ X, there exists a holomorphic coordinate chart which is centred at

p:

ψp : Up → Vp ⊂ Cn for p ∈ Up ⊂ X,

such that the following holds:

• There exists a real valued Kähler potential φp : Vp → R for ω such that ω = i∂∂φp and a

constant Cp ≥ 0 such that ∣∣φp(z)− ‖z‖2
∣∣ ≤ Cp‖z‖4,

for all z ∈ Vp.

• Geodesic distance on X and vector space norm on Vp are related by

1

2
‖z −w‖ ≤ d

(
ψ−1
p (z), ψ−1

p (w)
)
≤ 2‖z −w‖

for all z,w ∈ Vp.

• LUp
∼= Up × C is trivialized in such a way that the Hermitian norm of the trivializing

section ep : Up → C is given by

ap(z)
def
= ‖ep(z)‖2 = e−φp(z),

and we have the estimate
1

2
≤ ap(z) ≤ 1

for all z ∈ Vp.

Proof. For every p ∈ X, we can use holomorphic K-coordinates of order 4 at p on a small open

set containing p. In particular, we then have

φp(z) = ‖z‖2 +Rijkl(p)zizjzkzl +O(‖z‖5),

for all z ∈ Vp, which gives us the first estimate on a sufficiently small neighbourhood of p. We

note that, at p, the metric is just the identity matrix. Since the metric varies smoothly, geodesic

distance near p is then also approximately equal to the vector space distance. We restrict to a

small enough coordinate neighbourhood to obtain the required estimate

1

2
‖z −w‖ ≤ d

(
ψ−1
p (z), ψ−1

p (w)
)
≤ 2‖z −w‖

for all z ∈ Vp. We can choose a trivialization of L over a neighbourhood of p such that

ap = e−φp . The final estimate
1

2
≤ ap(z) ≤ 1

just follows from the corresponding estimate for φp on a small enough neighbourhood of p.
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Proposition 9.2.2. Let (L, h) → (X,ω) be a polarization of a Kähler manifold (X,ω) of

complex dimension n. Let Y ⊂ X be an embedded complex submanifold of X of complex

dimension j. For any M > 1, there exists r > 0 and a tubular neighbourhood

Tr(Y ) = {p ∈ X : d(p, Y ) ≤ r},

where d(p, Y ) denotes the geodesic distance between p and Y such that

|s(q)|2 ≤M−k‖s‖2

for all s ∈ J k
k (Y ) and all q ∈ Tr(Y ).

Proof. We work in local coordinates. There exists r, r′ such that r > r′ > 0, and there exists a

finite collection of coordinate neighbourhoods ψα : Uα → Vα ⊂ Cn centred at points pα ∈ Y ,

such that Pnr (0) ⊂ Vα (see appendix A for notation) for all α, and Tr′(Y ) ⊂
⋃
α ψ

−1
α

(
Pnr

2
(0)
)
.

Let us assume furthermore that these coordinate patches are chosen as in lemma 9.2.1 and that

{
ψ−1
α (z) : z ∈ Vα and zj+1 = · · · = zn = 0

}
= Uα ∩ Y for all α.

Note that, for 0 6= s ∈ H0(X,Lk), s
‖s‖ can be extended to an orthonormal basis of H0(X,Lk),

and by the Catlin-Tian-Yau-Zelditch expansion, there exists a constant C > 0 such that the

density function ρk satisfies ρk(p) ≤ Ckn, for all p ∈ X and all k ∈ N. Including the case s = 0,

we hence obtain the estimate

|s(p)|2 ≤ Ckn‖s‖2 for all p ∈ X and all k ∈ N.

Let akα denote the local expression of the Hermitian metric hk on Uα. Suppose that on Uα
s = fαe

⊗k
α for some holomorphic function fα on Uα. We have

|fα(z)|2 ≤ Ckn‖s‖2a−kα (z) ≤ Ckn2k‖s‖2 for all z ∈ Uα and all α.

Now let s ∈ J k
k (p). For all α, fα satisfies

∂

∂z

β

fα

∣∣∣∣∣
(z1,...,zj ,0,...,0)

= 0

for all β ∈ Nn0 with |β| < k and all (z1, . . . , zj , 0, . . . , 0) ∈ Vα. We can apply corollary A.1.4 to

obtain

|fα(z)| ≤ ‖(zj+1, . . . , zn)‖k
2

rk
sup

w∈Pn
r (0)

|fα(w)|

≤ ‖(zj+1, . . . , zn)‖k
2

rk

√
Ckn2k‖s‖ (†)

for all (z1, . . . , zn) ∈ Pnr
2
(0) and all α. Now pick M ′ > 0 large enough so that, for z ∈ W def

=

{z : z ∈ Pnr
2
(0) and ‖(zj+1, . . . , zn)‖ ≤ M−M ′}, (†) is bounded by M− k

2 ‖s‖ for all k ∈ N and

all α. We then have

|s(q)|2 ≤M−k‖s‖2akα(q) ≤M−k‖s‖2,
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for q ∈ ψ−1
α (W), all α and all k ∈ N. There exists a small tubular neighbourhood Nr′′(Y ) of Y

such that r′′ ≤ r′ and

Nr′′(Y ) ⊂
⋃
α

ψ−1
α (W) .

The required inequality now holds on this tubular neighbourhood of Y .

We can now use the preceding proposition to prove a “localization of sums” result for the

full density function. Recall that, for any fixed p ∈ X, we can choose an orthonormal basis of

sections s1,k, · · · , sNk,k of H0(X,Lk) such that s1,k ∈ Jk(p)⊥ and s2,k, · · · , sNk,k ∈ Jk(p) for

all k ∈ N (Note that Jk(p)⊥ is one-dimensional).

It follows that, for such a choice of orthonormal basis, ρk(p) = |s1,k(p)|2hk , and we understand

the asymptotics of ρk at p once we understand the peaked sections s1,k at p for all k ∈ N. Let us
now focus on the asymptotics of ρk in a neighbourhood of some point p. In this case, it might

still be useful to compute the asymptotics of ρk by an orthonormal basis of a small subspace

of H0(X,Lk). The following corollary confirms that this is possible in the case where p is not

just a point but any embedded complex submanifold of X.

Corollary 9.2.3 (Localization of the density function on a tubular neighbourhod).

Let (L, h) → (X,ω) be a polarization of a Kähler manifold (X,ω). Denote by ρk the density

function for this polarization and let Y ⊂ X be an embedded complex submanifold of X. There

exists r > 0 and, for any l ∈ N, a constant Cl ≥ 0 such that∣∣∣∣∣∣ρk(p)−
Nk∑
j=1

|sk,j(p)|2
∣∣∣∣∣∣ ≤ Clk

−l

for all p ∈ Tr(Y ) and k ∈ N. Here, {sk,j}Nk
j=1 denotes any orthonormal basis of the space

J k
k (Y )⊥ and |.| denotes the fibre-wise norm on Lk. In particular, the asymptotic expansion of

ρk(p) is equal to the asymptotic expansion of
∑Nk

j=1 |sk,j |
2
(p) for p ∈ Tr(Y ).

Proof. Suppose that X is of complex dimension n. We use the estimate from the previous

proposition together with the fact that

dim
(
H0(X,Lk)

)
= O (kn) .

Remark 9.2.4. It is conceivable that the above idea could be explored to understand the partial

density functions with imposed vanishing along submanifolds in this general setting. If one

could manage to localize the sum appearing in the definition of the partial density function to

a subspace J rk
k (Y )⊥ ⊂ H0(X,Lk) for a suitably chosen sequence {rk}∞k=1 ⊂ N and to then

understand these subspaces in terms of Tian’s peak sections, then one might hope to apply

methods similar to the toric case in this setting.

90



Chapter 10

Induced Metrics on Blow-ups

In this chapter, we study how partial density functions with vanishing along a finite set of points

on a polarized Kähler manifold (L, h) → (X,ω) are related to certain metrics on blow-ups of

(X,ω). We then study a polarization and blow-up of CPn and Cn in detail.

10.1 Pull-back metrics

Let (L, h) → (X,ω) be a polarization, so that ω ∈ 2πc1(L) is a Kähler form on X. We recall

that the evaluation map evk(p)(s)
def
= s(p) for p ∈ X and s ∈ H0(X,Lk) induces an embedding

ik : X ↪→ P
(
H0(X,Lk)∗

)
, ik(p) = [evk(p)] for p ∈ X and for all large enough k ∈ N. We call

such embeddings Kodaira embeddings. Any ordered basis bk
def
= (s1,k, · · · , sNk,k) of H

0(X,Lk)

determines an isomorphism H0(X,Lk) ∼= H0(X,Lk)∗ under which this embedding takes the

form ibk
: X ↪→ P

(
H0(X,Lk)

)
ibk

: p 7→ [f1,k(p) : · · · : fNk,k(p)],

where we let {fi,k}Nk
i=1 denote the local holomorphic functions representing the sections {si,k}Nk

i=1

in a fixed trivializing chart U × C of Lk such that p ∈ U . In future, we will abuse notation

and will not distinguish between fi,k and si,k when this does not cause confusion. Let us

denote by ωFS ∈ 2πc1(O(1)) the Fubini-Study metric on CPn. It is locally given by ωFS =

i∂∂ log
(
1 +

∑n
j=1 |zj |

2
)

on the coordinate patch U0 = {[1 : z1 : · · · : zn] : zj ∈ C} ⊂ CPn.
Suppose that, for each k ∈ N, we have picked an ordered basis bk = (s1,k, · · · , sNk,k) of

H0(X,Lk). We define

ωbk

def
=

1

k
i∗bk
ωFS

=
i

k
∂∂ log

Nk∑
j=1

|sj,k|2
 .

Since Lk = i∗bk
O(k) for k � 0, it is clear that ωbk

∈ 2πc1(L) for all k � 0, and ωk is invariant

under the action of U(Nk) on the ordered bases of H0(X,Lk). Using the Hermitian metric

h on L, we can in fact define a canonical sequence of such metrics ωk
def
= ωbk

by choosing an

orthonormal basis bk of H0(X,Lk) with respect to the L2 inner product induced by hk on

H0(X,Lk) for each k ∈ N. The sequence {ωk}∞k=1 then converges to ω in the following sense:
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Theorem 10.1.1 (Ruan [Rua98], Tian [Tia90]). Let (L, h) → (X,ω) be a polarization of a

Kähler manifold. Denote by g and gk the Riemannian metrics corresponding to ω and ωk

respectively. Then, for any l ∈ N, we have

‖g − gk‖Cl(X) = O
(
1

k

)
.

Remark 10.1.2. Tian originally proved a weaker version of this result. The version of the

theorem above is due to Ruan.

One of the aims of this chapter is to illustrate why an extension of these ideas to certain

metrics on the blow-up of X at finitely many points might be of interest. After introducing

their construction, we will study the examples of blow-ups of CPn and Cn in some detail.

10.2 Some facts about blow-ups

Let us now review the standard notion of blowing up a complex manifold X of dimension n

in a finite set of points p1, · · · , ps. We will take an elementary differential-geometric approach

to this, and we describe the coordinate charts of the resulting manifold Blp1,··· ,ps X explicitly.

The main purpose of this section is to fix our notation and to recall some standard facts about

blow-ups.

Recall that, for finitely many distinct points p1, · · · , ps ∈ X, the blow-up of X at p1, · · · , ps,
denoted by Blp1,··· ,ps(X), is a complex manifold which can be defined by the following gluing

construction: Suppose that, for i ∈ {1, · · · , s}, ψi : Ui → Vi ⊂ Cn are disjoint holomorphic

coordinate charts centred at pi ∈ Ui ⊂ X respectively. We define

Wi =
{
(a, [t]) ∈ Vi × CPn−1 : a ∈ [t]

}
and consider the holomorphic maps πi : Wi → Vi given by πi : (a, [t]) 7→ a for i ∈ {1, · · · , s} and
(a, [t]) ∈ Wi. We define Blp1,··· ,ps(X) by holomorphically gluing W1, · · · ,Ws to X −

⋃s
i=1{pi}

via π1, · · · , πs:

Blp1,··· ,ps(X)
def
=

(
X −

s⋃
i=1

{pi}

)
∪π1 W1 ∪π2 · · · ∪πs Ws.

The maps πi descend to a well defined holomorphic map π : Blp1,··· ,ps(X) → X which is

called the blow-down map of Blp1,··· ,ps(X). The complex hypersurface Ei
def
= π−1

i (pi), for

i ∈ {1, · · · , s}, is called the exceptional divisor over pi and π is a biholomorphism between

Blp1,··· ,ps(X) −
⋃s
i=1Ei and X −

⋃s
i=1{pi}. We call the data π : Blp1,··· ,ps(X) → X the blow

up of X at p1, · · · , ps.
Suppose that (Lm, h) → (X,ω) is a polarization of a compact Kähler manifold. Fix some

distinct points p1, · · · , ps ∈ X and l = (l1, · · · , ls) ∈ Ns. On the blow up π : Blp1,··· ,ps(X) → X,

we consider the holomorphic line bundle

L̂ = L̂p1,··· ,ps,l,m
def
= π∗Lm ⊗O(−l1E1)⊗ · · · ⊗ O(−lsEs).

The following lemma is a standard result on blow-ups.

Lemma 10.2.1. Let X be a complex manifold and L a positive line bundle on X. Fix distinct

points p1, · · · , ps ∈ X. For any l = (l1, · · · , ls) ∈ Ns, there exist m0 > 0 such that, for all
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m ≥ m0 and m ∈ N, L̂ = L̂p1,··· ,ps,l,m is positive. Furthermore, there exists an isomorphism of

vector spaces

φk : H0(X,J l1k
p1 ⊗ · · · ⊗ J lsk

ps ⊗ Lmk) → H0(Blp1,··· ,ps X, L̂
k), for each k ∈ N,

where J lik
pi denotes the ideal sheaf of holomorphic functions on X vanishing to order at least

lik at pi ∈ X. φk is unique up to multiplication by a nonzero complex number.

Proof. The positivity claim is a standard result. A proof can be found e.g. in [Huy05, lemma

5.3.2]. Let us sketch the proof of the second part of the lemma. We decompose φk = bk ◦ak ◦π∗,

where

π∗ : H0
(
X,J l1k

p1 ⊗ · · · J lsk
ps ⊗ Lmk

)
→ H0

(
Blp1,··· ,ps(X),J l1k

E1
⊗ · · · ⊗ J lsk

Es
⊗ π∗Lmk

)
denotes the pull-back of sections. π∗ is injective since π is surjective and for dim(X) ≥ 2

surjective by Hartog’s theorem. Also, for dim(X) = 1, π is a biholomorphism, so π∗ is an

isomorphism. We have

ak : H0
(
Blp1,··· ,ps(X),J l1k

E1
⊗ · · · ⊗ J lsk

Es
⊗ π∗Lmk

)
→ Vk ⊂ H0

(
Blp1,··· ,ps(X), π∗Lmk

)
denoting the natural isomorphism to the space Vk of holomorphic sections of π∗Lmk vanishing

to order at least lik along Ei for all i ∈ {1, · · · , s}. Finally, there is an isomorphism

bk : Vk → H0
(
Blp1,··· ,ps(X),O (−l1kE1)⊗ · · · ⊗ O (−lskEs)⊗ π∗Lmk

)
,

where bk : s 7→ d⊗ s, for s ∈ Vk, k ∈ N, and d is a meromorphic section of O (−l1kE1)⊗ · · · ⊗
O (−lskEs) obtained by locally dividing by the defining functions of the divisor

∑s
i=1 likEi.

Given two such sections d, d′, we note that d
d′ ∈ H0(X,O) − {0} = C∗, which implies that φk

is unique up to multiplication by a nonzero complex number.

10.3 Induced metrics on Blp1,··· ,ps(X)

10.3.1 Construction

Consider a polarization (Lm, h) → (X,ω) and the sequence of pull back metrics ωk ∈ 2πc1(L
m)

studied by Tian and Ruan. For some distinct points p1, · · · , ps ∈ X and l ∈ Ns, we consider

Blp1,··· ,ps(X) with the line bundle L̂ = L̂p1,··· ,ps,l,m over it. We assume that m is large enough

so that ik : Blp1,··· ,ps(X) → P(H0(Blp1,··· ,ps(X), L̂k)∗) is an embedding for all k ∈ N.

Lemma 10.3.1. There exists a natural sequence of Kähler metrics {ω̂k}∞k=1 ⊂ 2πc1(L̂) on

Blp1,··· ,ps(X) which is induced by the polarization.

Proof. For k ∈ N, we pick an orthonormal basis {sj}Mk

j=1 of H0(X,J l1k
p1 ⊗ · · · ⊗ J lsk

ps ⊗ Lmk)

thought of as a subspace of H0(X,Lk). Define

ω̂k
def
=

i

k
∂∂ log

Mk∑
j=1

|ŝj |2
 ,
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where ŝ = φk(s), and φk denotes a choice of isomorphism

φk : H0(X,J l1k
p1 ⊗ · · · ⊗ J lsk

ps ⊗ Lmk) → H0(Blp1,··· ,ps X, L̂
k) for each k ∈ N.

Since the choice of isomorphism is unique up to multiplication by a nonzero complex number,

ω̂k does not depend on it. Due to the obvious U(Mk) invariance of the defining equation, ω̂k is

independent of our choice of orthonormal basis as well. Thinking of kω̂k as the pull-back of the

Fubini-Study metric under the Kodaira embedding given by an ordering of our choice of basis,

we see that ω̂k ∈ 2πc1(L̂) and that it is a Kähler metric on Blp1,··· ,ps(X).

10.3.2 Relationship with ρl,k

For (Lm, h) → (X,ω), p1, · · · , ps ∈ X, l = (l1, · · · , ls) and L̂ → Blp1,··· ,ps(X) as in the pre-

vious section, we consider the partial density function ρl,k : X → R, defined by ρl,k(p)
def
=∑Mk

j=1 |sj,k(p)|
2
hk for p ∈ X, where {sj,k}Mk

j=1 denotes any orthonormal basis of H0(X,J l1k
p1 ⊗

· · · ⊗ J lsk
ps ⊗ Lmk).

Lemma 10.3.2. On X −
⋃s
i=1{pi}, we have

π∗ω̂k − ω =
i

k
∂∂ log ρl,k.

Proof. This just follows from the definitions. On Blp1,··· ,ps(X)−
⋃s
i=1{Ei}, O (−likEi) is trivial

for each i ∈ {1, · · · , s}. In each trivializing chart of the form ψ : π−1 (U)× C → L̂
∣∣∣
π−1(U)

such

that U ⊂ X −
⋃s
i=1{pi} is an open set, the lift of a section s ∈ Jk, where

Jk
def
= {s ∈ H0(X,Lk) : s vanishes to order at least lik along pi for all i ∈ {1, · · · , s}},

takes the form

ŝ : û→ (û, s(π(û))), for û ∈ π−1(U),

where s denotes the local holomorphic function representing s now. For any basis bk =

(s1,k, · · · , sMk,k) of Jk, we hence have that

π∗ω̂k =
i

k
∂∂ log

Mk∑
j=1

|sj,k|2
 ,

while

−ω =
i

k
∂∂ log(hk),

where hk denotes a local function representing the fibre-wise Hermitian metric on Lk.

It would be interesting to completely understand the decay properties of the derivatives of

ρl,k, and we conjecture that, away from the exceptional divisors, ω̂k − π∗ω rapidly decays as

k → ∞.

Conjecture 10.3.3. There exists a neighbourhood N of p1, · · · , ps such that, for any l ∈ N,
we have

‖π∗ω̂k − ω‖Cl(X−N) = O
(
k−1

)
.
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10.4 cscK metrics and some open questions

In this section we will discuss some open questions as well as some background material related

to induced Kähler metrics on blow-ups. We will not aim to answer the questions that we pose

here, but hope that the reader might appreciate some additional motivation for studying such

metrics. In the following sections, we will then investigate the cases of Bl[1:0···:0] (CPn) and

Bl0 (Cn) in more detail.

10.4.1 Balanced metrics

Balanced metrics have been discussed by Donaldson [Don01] in the context of finding constant

scalar curvature Kähler (cscK) metrics in a given Kähler class. These efforts are part of a

bigger program of trying to identify “best” Kähler representatives within a given Kähler class.

Extremal Kähler (eK) and in particular cscK metrics are natural such representatives and are

of particular importance within this approach.

Let us first review the necessary terminology (see [Don01, AL04]). A complex manifold

X ⊂ CPn is called balanced if there exists a λ > 0 such that∫
X

zizj∑n
l=1 |zl|

2 dVol = λδij ,

where dVol is the volume form on X induced from the Fubini-Study metric on CPn. For a

complex manifold X endowed with a positive line bundle L→ X such that X can be embedded

into P
(
H0(X,L)∗

)
by a Kodaira embedding, a basis b of H0(X,L) is called balanced if ib(X)

is balanced. Finally, the pair (X,L), where X is a complex manifold and L a holomorphic

line bundle over X, is called balanced if there exists a basis of H0(X,L) that is balanced. The

following lemma gives another characterization of balanced metrics.

Lemma 10.4.1 (see [AL04] for a similar version). Let X be a compact complex manifold and

let L → X be a positive holomorphic line bundle. (X,L) is balanced if and only if there exists

a Kähler form ω ∈ 2πc1(L) such that the density function ρk associated to ω is constant on X.

Let us denote by Aut(X,L) the group of biholomorphisms of X that lift to bundle isomor-

phisms of L. Aut(X,L)/C∗ denotes the same group modulo the trivial automorphism group

C∗.

Theorem 10.4.2 (Donaldson, (see [Don01, AL04])). Suppose that Aut(X,L)/C∗ is discrete.

Let b, b′ denote two balanced bases of H0(X,L) with nk
def
= dim

(
H0(X,Lk)

)
. Then there exists

U ∈ U(nk) and λ > 0 such that

b = λU.b′.

In particular, we can unambiguously define ωk
def
= 1

k i
∗
bωFS ∈ 2πc1(L) for any balanced basis

b of H0(X,Lk) if Aut(X,L)/C∗ is discrete. We call such a metric ωk a balanced metric. The

following theorem demonstrates the importance of these balanced metrics.

Theorem 10.4.3 (Donaldson, [Don01]). Let (L, h) → (X,ω) be a polarization.

a) Suppose that Aut(X,L)/C∗ is discrete and (X,Lk) is balanced for all sufficiently large k.

Suppose that the balanced metrics ωk converge in C∞ to some limit ω∞ as k → ∞. Then

ω∞ has constant scalar curvature.
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b) Suppose that Aut(X,L)/C∗ is discrete and that ω∞ is a Kähler metric in the class 2πc1(L)

with constant scalar curvature. Then (X,Lk) is balanced for large enough k and the

sequence of balanced metrics ωk converges in C∞ to ω∞ as k → ∞.

It might be interesting to study the relationship between these results and our induced

metrics on the blow-up of X.

Question 10.4.4. Suppose that Aut(X,L)/C∗ is discrete and that ω ∈ 2πc1(L) is a cscK metric

on X. Part b) of the above theorem gives us a sequence of balanced metrics ωk converging to

ω. For finitely many distinct points p1, · · · , ps ∈ X, l ∈ Ns and m, k ∈ N, one could study the

blow-up Blp1,··· ,ps(X) and the metrics ω̂k,j ∈ 2πc1 (Lp1,··· ,ps,l,m), induced by the polarization

(L, hωk
) → (X,ωk) for large enough m ∈ N and for k, j ∈ N. Some questions that one might

want to attack in this context are:

a) Does there exists a sequence {ω̂kl,jl}∞l=1 such that ω̂kl,jl → ω̂ for some cscK (or at least

geometrically interesting) Kähler form ω̂ as l → ∞?

b) For small parameters l = (l1, · · · , ln) ∈ Nn and large m ∈ N, does there exists a balanced

basis of Lkp1,··· ,ps,l,m for large k? Which necessary and/or sufficient conditions can be

identified to ensure the existence of a balanced basis on the blow-up?

10.4.2 cscK metrics on blow-ups

Let us now review a positive result which confirms the existence of cscK metrics on the blow-up

of a cscK manifold with a small parameter. We refer the interested reader to [Tho06, §5] for a
related discussion.

Theorem 10.4.5 (Arezzo, Packard [AP06, AP07]). Assume that (X,ω) is a compact cscK

manifold without nontrivial vanishing holomorphic vector field. Consider the blow-up π :

Blp1,··· ,ps(X) → X at finitely many distinct distinct p1, · · · , ps ∈ X. Then, for all l1, · · · , ls > 0,

there exists λ0 > 0 such that for all λ ∈ (0, λ0), Blp1,··· ,ps(X) has a constant scalar curvature

Kähler form ω̂λ such that

ω̂λ ∈ π∗[ω]− λ2 (l1PD[E1] + · · ·+ lsPD[Es]) ,

where PD[Ei] denotes the Poincaré dual of Ei. In addition, if the scalar curvature of ω is not

zero, then the scalar curvatures of ω and of ω̂λ have the same signs.

Remark 10.4.6. The theorem above has been extended to the case where nontrivial vanishing

holomorphic vector fields on X do occur. See [AL04, AP07, AP09] for details. The reader

interested in the related story of extremal Kähler metrics on blow-ups may consult [APS06,

Szé11].

Question 10.4.7. In the case where we have a polarization, does there exist a natural sequence

of balanced metrics on the blow-up tending to a cscK metric such as the ones identified in the

above theorem (Note that Aut(X,L)/C∗ might not be discrete)? Can we understand the

relationship between such a sequence of balanced metrics on the blow-up and a corresponding

sequence of balanced metrics on the base-manifold?

Remark 10.4.8. The existence of the cscK metric ω̂λ in the above theorem is proved using a

gluing argument and uses analytical methods. A (possibly misguided) hope might be to try to

find a more “algebraic” proof of this theorem involving e.g. balanced metrics.
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10.5 Example: Balanced blow-up of CPn

10.5.1 Introduction

Let us now discuss the induced metrics ω̂k in the case of CPn blown up at the point p = [1 : 0 :

· · · : 0].

A polarization of Bl[1:0:···:0] (CPn)

Let us pick m ∈ N and revisit the polarization

(O(m), hmFS) → (CPn, ω = mωFS)

which we discussed previously. We consider the blow-up π : Bl[1:0···:0] (CPn) → CPn with

exceptional divisor E and, for l < m and l ∈ N, the line bundle

L̂l,m
def
= π∗O(m)⊗O(−lE) → Bl[1:0:···:0] (CPn) .

As usual, Bl[1:0:···:0] (CPn) is obtained by gluing

W =
{
(z, [t]) ∈ U0 × CPn−1 : z ∈ [t]

}
and CPn − {[1 : 0 : · · · : 0]} via the projection map π : W → U0 onto the first factor. As

a toric variety, Bl[1:0:···:0] (CPn) and L̂l,m are determined by the polytope Pl,m obtained by

intersecting the standard simplex in Rn of side length m, denoted by Simpn(m), with the half-

space {x ∈ Rn :
∑n
i=1 xi ≥ l}. Each vertex of Pl,m gives a chart and a trivialization of L̂l,m

over it.

Observe that W = ∪ni=1Wi, where Wi = {(a, [t1 : · · · : tn]) ∈ W : tj 6= 0}. We have the

coordinate maps ξi : Cn → Wi given by

ξi(w) = (wi(w1, . . . , wi−1, 1, wi+1, · · · , wn), [w1 : · · · : wi−1 : 1 : wi+1 : · · · : wn]).

It is then clear that, for i ∈ {1, · · · , n}, E ∩ Wi = Z(wi), and one can check that Wi is the

toric chart corresponding to the vertex (0, · · · , 0, l, 0, · · · , 0) of Pl,m with the non-zero entry

appearing in the ith position.

Any section s of O(mk) vanishing to order at least lk at p = [1 : 0 : · · · : 0] lifts to a section

ŝ of L̂kl,m. In particular, a holomorphic global section given by s(w) = (w, p(w)) in the toric

trivialization O(mk)|U0

∼= Cn × C, where p is a polynomial of degree at most mk vanishing to

order at least lk at 0, can be lifted to

ŝ(w) =
(
w, w−lk

j p(π(w))
)

=
(
w, w−lk

j p(wj(w1, . . . , wj−1, 1, wj+1, . . . , wn))
)
,w ∈ Cn

in the toric trivialization of L̂kl,m over Wj
∼= Cn for j ∈ {1, · · · , n}.
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A balanced basis and the induced metrics ω̂k

Let us return to the orthonormal basis of
(
H0 (CPn,O(mk)) , 〈., .〉

)
which we discussed in chap-

ter 4 and which is given by

{sα,m,k ∈ H0 (CPn,O(mk)) : α ∈ Nn0 , |α| ≤ mk}.

On the toric defining trivialization O(mk)|U0

∼= U0 × C, sα,m,k takes the form

sα,m,k : z 7→ (z, aα,m,kz
α) for z ∈ Cn,

and

aα,m,k
def
=

√
(mk + n)!

(2π)n(mk)!mn

(
mk

mk − |α| ,α

)
.

Since we have seen that ρm,k is constant, an application of 10.4.1 yields the following:

Corollary 10.5.1. The orthonormal basis of
(
H0 (CPn,O(mk)) , 〈., .〉

)
given by

{sα,m,k ∈ H0 (CPn,O(mk)) : α ∈ Nn0 , |α| ≤ mk}

is a balanced basis.

Let us think of m, l ∈ N as fixed now. We now consider the induced metrics

ω̂k
def
=

1

k
∂∂ log

 mk∑
|α|=lk

|ŝα,m,k|2
 .

10.5.2 Asymptotic behaviour of ω̂k away from E

Let us investigate the behaviour of ω̂k at points whose image under the moment map lie far

enough away from the vertex 0 ∈ Simpn(m) that we are blowing up. Recall also that ω̂k

depends on two parameters l,m ∈ N, where l < m. We have the following result:

Lemma 10.5.2. Let µ : CPn → t∗ ∼= Rn denote the choice of moment map discussed in chapter

4 and let p ∈ CPn − {[1 : 0 : · · · : 0]}. Suppose that
∑n
i=1 µ(p)i > l. Then, for any j ∈ N0, we

have

‖∇j (π∗ω̂k − ω)
∣∣
p
‖ = O

(
k−∞) ,

where ∇ denotes the connection corresponding to ω and ‖.‖ the norm induced by ω.

Proof. We have π∗ω̂k−ω = i
k∂∂ log ρl,m,k, and we recall from chapter 4 that the partial density

function ρl,m,k is given by

ρl,m,k(α) =
1

(2π)n
(mk + n)!

(mk)!mn
fl,m,k

(∑n
i=1 αi
m

)
,

for α ∈ Simpn(m), and

fl,m,k(s)
def
=

mk∑
j=lk

(
mk

j

)
sj(1− s)mk−j for s ∈ [0, 1].
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We are done if we can show that f
(j)
l,m,k(s) = O (k−∞) for s > l

m and j ∈ N and fl,m,k(s) =

1 +O (k−∞) for s > l
m . For l = 0, we have f0,m,k(s) = (s+ 1− s)mk = 1, and it is clear that

0 ≤ fl,m,k ≤ 1 for k, l ∈ N0, 0 ≤ l ≤ m and s ∈ [0, 1]. We have

sj(1− s)mk−j = e−kγk(s),

where γk(s)
def
= − 1

k (j log s+ (mk − j) log(1− s)). We note that γ′k(s) =
smk−j
ks(1−s) and γ′′k (s) =

m
s2(1−s)2

(
s2 − 2j

mks+
j
mk

)
, so that γ′k(s) = 0 if and only if s = j

mk and γ′′k (s) > 0 for s ∈ (0, 1).

We have(
mk

j

)
e−kγk(

j
mk ) =

jj(mk)!(mk − j)mk−j

j!(mk)mk(mk − j)!
∼

√
mk

2πj(mk − j)
= O(1) as k → ∞.

We now define hk(j,m, s)
def
= γk(s) − γk

(
j
mk

)
≥ 0. hk is strictly convex and has minimum

hk
(
j,m, j

mk

)
= 0.

fl,m,k(s) =
mk∑
j=lk

(
mk

j

)
e−kγk(s)

=

mk∑
j=lk

bj,m,ke
−khk(j,m,s),

where bj,m,k = O(1) as k → ∞. If s > l
m , it is not hard to see that there exists c > 0 such that

hk(j,m, s) > c for all j < lk and all k ∈ N. For s > l
m we have

lk−1∑
j=0

bj,m,ke
−khk(j,m,s) = O

(
k−∞) .

Hence, for j > 0 and s > l
m ,

fl,m,k(s) = 1 +O
(
k−∞) and

f
(j)
l,m,k(s) = O

(
k−∞) .

The last statement above follows since the derivatives of fl,m,k are sums of terms which are

products of two factors. The first is of polynomial order in k and the second factor is e−khk(j,m,s),

which is O (k−∞) as k → ∞ for s > l
m . The result follows.

10.5.3 Behaviour of ω̂k on E

Let us work in the chart W1 now. We have

ω̂k =
i

k
∂∂ log

 mk∑
|α|=lk

|ŝα,m,k(w)|2


=
i

k
∂∂ log

∑
lk≤j≤mk

∑
|α|=j

(
mk

mk − j,α

) ∣∣∣wj−lk1 wα2
2 · · ·wαn

n

∣∣∣2
=

i

k
∂∂ log

∑
lk≤j≤mk

(
mk

j

) ∑
|α|=j

j!

α!
|wα1

1 (w1w2)
α2 · · · (w1wn)

αn |2 |w1|−2lk
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=
i

k
∂∂ log

(m−l)k∑
j=0

(
mk

j + lk

)
|w1|−2lk

(
|w1|2

(
1 + |w2|2 + · · ·+ |wn|2

))j+lk
= il∂∂ log

(
1 + |w1|2 + · · ·+ |wn|2

)
+
i

k
∂∂ log

(m−l)k∑
j=0

(
mk

j + lk

)(
|w1|2

(
1 + |w2|2 + · · ·+ |wn|2

))j
.

We define

ηk
def
=

i

k
∂∂ log

(m−l)k∑
j=0

(
mk

j + lk

)(
|w1|2

(
1 + |w2|2 + · · ·+ |wn|2

))j
.

Observe now that on E ∩W1.

ηk =
i

k
∂∂ log

(m−l)k∑
j=0

((m− l)k)!(lk)!

((m− l)k − j)!(j + lk)!
|π(w)|2j

=
i

k
∂∂ log

(
1 +

(m− l)k

lk + 1
|π(w)|2

(
1 +O

(
|π(w)|2

)))
= i

m− l

lk + 1
∂∂ |π(w)|2

= i
m− l

lk + 1
(1 + |w2|2 + · · ·+ |wn|2)dw1 ∧ dw1.

The calculation can similarly be carried out on the remaining charts. If we denote by σ : W →
CPn−1 the projection onto CPn−1, we have:

Lemma 10.5.3. On the exceptional divisor E ⊂ Bl[1:0:···:0] (CPn), we have

ω̂k = lσ∗ωFS +O
(
k−1

)
.

10.6 Example: Balanced blow-up of Cn

10.6.1 Introduction

Let us now consider induced metrics on Bl0 (Cn) in detail. This is the simplest example of a

blow-up of a non-compact manifold and therefore of special interest to us.

A balanced basis of sections of Cn × C

In analogy with the compact case, we consider the polarization

(Lk
def
= Cn × C, hk) → (Cn, ω),

where hk = e−k
‖z‖2

2 and ω = i∂∂ ‖z‖2

2 . We work with the basis of sectionssα,k(z) =
√(

k

2π

)n(
k

2

)|α|
1

α!
zα : α ∈ Nn0


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of Lk discussed previously (see chapter 2). Despite the fact that the notion of balanced bases

was only defined for polarizations of a compact manifold, we have seen that the corresponding

density function ρk(z) =
(
k
2π

)n
on Cn is constant in the example above. Following [AL04,

Section 5], we will therefore regard the basis of sections given above as balanced.

The induced metrics

We now consider the blowup π : Bl0(Cn) → Cn. For any l, k ∈ N, the line bundle π∗Lk ⊗
O(−lkE) has a basis of holomorphic sections given by the lift of the basis {sα,k : |α| ≥ lk,α ∈
N0} of

Jl,k
def
=
{
s ∈ H0(Cn, Lk) : s vanishes to order at least lk at 0

}
.

We pick charts W1, · · · ,Wn of Bl0(Cn) = {(z, [l]) ∈ Cn × CPn−1 : z ∈ [l]} defined by Wj =

{(z, [l]) ∈ Bl0(Cn) : lj 6= 0} for j ∈ {1, · · · , n}.

Let us work in the chart W1
∼= Cn and a corresponding trivialization on W1 ×C of π∗Lk ⊗

O(−lk) now. On W1, we have π(w) = w1(1, w2, · · · , wn) for w = (w1, · · · , wn) ∈ Cn. A

global holomorphic section s : z 7→ (z, zα) of Lk vanishing to order at least lk at 0 can

be lifted to a section ŝ ∈ H0(Bl0(Cn), π∗Lk ⊗ O(−lk)) which is given locally on W1 × C as

w 7→ (w, w
|α|−lk
1 wα2

1 . . . wαn
n ). We are now interested in the properties of the induced metrics

ω̂k on Bl0(Cn). We have

ω̂k =
i

k
∂∂ log

 ∑
|α|≥lk

|ŝα,k|2
 .

Let us now check that ω̂k really defines a Kähler form for all k ∈ N in this non-compact setting.

Proposition 10.6.1. Let P ⊂ Rn be an integral Delzant polytope with finitely many vertices.

Consider the associated toric basis {sα ∈ H0 (XP , LP ) : α ∈ P ∩ Zn} of H0 (XP , LP ). Fix

constants aα ≥ 0, for α ∈ P ∩Zn, and, for any vertex v of P , denote by m(v)1, · · · ,m(v)n the

primitive edge vectors emanating from v. The 2-form

ω = i∂∂ log
∑

α∈P∩Zn

aα |sα|2

defines a non-degenerate Kähler form on XP if, for all v ∈ vertices(P ),

av, av+m(v)1 , · · · , av+m(v)n > 0.

Proof. We just need to check that in each chart Uσv , for v ∈ vertices(P ), g(., .) = ω(., J.) is

positive definite. Pick v ∈ vertices(P ) and assume without loss of generality that we have

normalized coordinates on Uσv such that P ⊂ Rn≥0, v = 0 and, for i ∈ {1, · · · , n}, m(v)i = ei,

where ei denotes the i
th standard basis element of Rn. On Uσv

∼= Cn with complex coordinates

z = (z1, · · · , zn), we have

ω = i∂∂ log
∑

α∈P∩Zn

aα |zα|2

= igijdzi ∧ dzj ,
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where

gij(u) =
1

f(u)2

(
(fij(u)f(u)− fi(u)fj(u)) zizj + δijfi(u)f(u)

)
,

and we define u
def
= u(z) = (|z1|2 , · · · , |zn|2) and f : Rn≥0 → R, f : u 7→

∑
α∈P∩Zn aαu

α, so

that ∑
α∈P∩Zn

aα |sα(z)|2 = f
(
|z1|1 , · · · , |zn|2

)
= f(u).

The matrix representation of the metric in (x,y)-coordinates, where zj = xj + iyj for j ∈
{1, · · · , n}, is

g = 2

(
<(gij) =(gij)
−=(gij) <(gij)

)
.

We just have to show that this matrix is positive definite for all u ∈ Rn≥0. Let b, c ∈ Rn and

u = (|z1|2 , · · · , |zn|2) ∈ Rn≥0. Define Rij
def
= <(gij), Iij

def
= =(gij) for i, j ∈ {1, · · · , n}.

S(u)
def
=

n∑
i,j=1

btR(u)b+ 2btI(u)c+ ctR(u)c

=
1

f(u)2

∑
α,β∈P∩Zn

aαaβu
α+β

n∑
i,j=1

(
αiαj − αiβj

uiuj

)(
bi (xixj + yiyj) bj

+ 2bi (xiyj − xjyi) cj + ci (xixj + yiyj) cj

)
=

1

2f(u)2

∑
α,β∈P∩Zn

aαaβu
α+β

n∑
i,j=1

(
αiαj − αiβj − βiαj + βiβj

uiuj

)(
bi (xixj + yiyj) bj

+ 2bi (xiyj − xjyi) cj + ci (xixj + yiyj) cj

)
=

1

2f(u)2

∑
α,β∈P∩Zn

aαaβu
α+β

{( n∑
i=1

(xibi + yici)
αi − βi
ui

)2
+
( n∑
i=1

(yibi − xici)
αi − βi
ui

)2}

=
a0

f(u)2

n∑
j=1

aej

(
b2j + c2j

)
+

1

2f(u)2

∑
α,β∈P∩Zn

|α+β|>1

aαaβu
α+β

{( n∑
i=1

(xibi + yici)
αi − βi
ui

)2

+
( n∑
i=1

(yibi − xici)
αi − βi
ui

)2}
.

We now see that S(u) ≥ 0 with equality occurring if and only if b = c = 0. Hence, the

tensor g = ω(., J.) associated to ω is positive definite on the chart Uσv and g is indeed a Kähler

metric.

Corollary 10.6.2. The 2-form

ω̂k =
i

k
∂∂ log

 ∑
|α|≥lk

|ŝα,k|2
 .
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on Bl0(Cn), which we discussed above, is a Kähler form.

Proof. Consider the non-compact polytope P
def
= {x ∈ Rn≥0 :

∑n
i=1 xi ≥ lk}. Noting that

each vertex of P satisfies the conditions listed in the definition of a Delzant polytope, we can

associate a non-compact manifold XP and a line bundle LP → XP to P by gluing Cn-charts
corresponding to the vertices of P in the same way as in the compact case (see chapter 3).

Comparing this with the charts of Bl0(Cn) introduced above, we realise that the Wi-chart

is exactly the chart corresponding to the vertex (0, · · · , 0, lk, 0, · · · , 0), where the nonzero entry

occurs in the ith position. We have XP = Bl0(Cn) and LP = π∗Lk ⊗ O(−lkE). Similarly,

a basis of holomorphic sections of LP corresponds to integral points of P . We note that the

proof of proposition 10.6.1 still applies in this non-compact setting. Also note that we are now

working with a converging sum of infinitely many terms here.

10.6.2 Asymptotic behaviour of ω̂k away from E

Let us recall the notion of an Asymptotically Euclidean metric.

Definition 10.6.3 ([Joy01]). Let X be a non-compact manifold of dimension n, and let g be

a Riemannian metric on X. We say that (X, g) is an Asymptotically Euclidean manifold of

order j or an AE manifold of order j for short, and we say that g is an AE metric of order

j, if the following conditions hold. There should exist a compact subset S ⊂ X and a map

π : X − S → Rn that is a diffeomorphism between X − S and the subset {z ∈ Rn : ‖z‖ > R}
for some fixed R > 0. Under this diffeomorphism, the push-forward metric π∗(g) should satisfy

∇s (π∗g − gEucl) = O
(
r−j−s

)
on {z ∈ Rn : ‖z‖ > R} for all s ∈ N0, where r(z)

def
= ‖z‖, for z ∈ Rn, denotes the radius

function. Here, ∇ denotes the Levi-Civita connection of the Euclidean metric gEucl. We shall

call the map π : X − S → Rn an asymptotic coordinate system for X.

Lemma 10.6.4. Suppose that η
def
= i∂∂f(‖z‖) on Cn − {0} for some smooth function f :

R>0 → R. Then the tensor ν = η(., J.) satisfies

‖∇sν‖ = O
(
r−j−s

)
as r → ∞

for some j ∈ N0 and all s ∈ N0 if

f (1+s)(r) = O
(
r1−(j+s)

)
for all s ∈ N0 as r → ∞.

Here, ∇ denotes the Euclidean connection on Cn ∼= R2n, and ‖.‖ is taken with respect to the

Euclidean metric.

Proof. Take coordinates (z1, · · · , zn) = (x1 + iy1, · · · , xn + iyn) on Cn. We compute that the

representation of ν in (x,y) coordinates as a 2n× 2n-matrix is:

ν =
f ′′(r)

4

(
(rxirxj + ryiryj )ij (rxjryi − ryjrxi)ij

−(rxjryi − ryjrxi)ij (rxirxj + ryiryj )ij

)

+
f ′(r)

4

(
(rxixj + ryiyj )ij (rxjyi − ryjxi)ij

−(rxjyi − ryjxi)ij (rxixj + ryiyj )ij

)
,
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where 1 ≤ i, j ≤ n, and we use the notation (aij)ij to denote the matrix with entries aij . We

also use the shorthand rxixj = ∂2

∂xi∂xj
r etc., where r denotes the radius function on Cn. Observe

that, for α,β ∈ Nn0 , ∂
∂x

α ∂
∂y

β
r = O

(
r1−(|α|+|β|)) as r → ∞. Investigating the asymptotics of

∂
∂x

α ∂
∂y

β
applied to each of the entries of the above matrices yields the result.

Example 10.6.5. We have in particular that, for η = i∂∂‖z‖2−j , ν def
= η(., J.) satisfies

‖∇sν‖ = O
(
r−j−s

)
as r → ∞.

Lemma 10.6.6. For each fixed k ∈ N, the Riemannian metric corresponding to ω̂k on Bl0(Cn)
that we discussed above is Asymptotically Euclidean on Bl0(Cn)− E for arbitrarily high order

j ∈ N0.

Proof. We recall that on X − {0}

π∗ω̂k − ωEucl =
i

k
∂∂ log(ρl,k).

Let us denote by gEucl the Euclidean metric corresponding to ωEucl
def
= i

2∂∂‖z‖
2 and by π∗ĝk

the Riemannian metric corresponding to π∗ω̂k. We have, for νk(., .)
def
= i

k∂∂ log ρl,k(., J.),

‖∇j (π∗ĝk − gEucl)‖ = ‖∇jνk‖.

We have seen in chapter 2 that

ρl,k(z) =

(
k

2π

)n1−
Γ
(
lk, k‖z‖

2

2

)
(kl − 1)!

 .

Let f(r)
def
= log g(r) and g(r)

def
= 1 −

Γ
(
lk, kr2

2

)
(kl−1)! for r ∈ R≥0. We apply lemma 10.6.4 to f .

Observe that the r-derivatives of f are finite sums of fractions p(r)
q(r) , where q(r) = g(r)l for some

l > 0 and p is a polynomial in derivatives of ∂
∂rΓ

(
lk, kr

2

2

)
= −e− kr2

2

(
kr2

2

)lk−1

kr. We also

have g(r) → 1 as r → ∞. It is hence clear that all derivatives of f are O (r−∞) as r → ∞. The

result now follows from lemma 10.6.4.

Finally, we have the following lemma describing the asymptotics in k:

Lemma 10.6.7. For z ∈ Cn such that ‖z‖ >
√
2l > 0 and for j ∈ N0, we have

‖∇j
∣∣
z
(π∗ω̂k − ωEucl)‖ = O

(
k−∞) ,

where ∇ is the Euclidean connection, and ‖.‖ is taken with respect to gEucl.

Proof. Following similar reasoning as in lemma 10.5.2, we observe that, for z ∈ Cn − {0},

π∗ω̂k − ωEucl|z =
i

k
∂∂ log ρl,k(z)

=
i

k
∂∂ log (fl,k(‖z‖)) ,
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where we use equation 2.2.2, recall the strictly convex function h(y) = y− l log(y+ l)+ l log(l),

for y ∈ (−l,∞), from chapter 2 and define

fl,k(r)
def
=

∫ r2

2 −l

−l

1

y + l
e−kh(y)dy for r ∈ R≥0.

In chapter 2, we noted that h achieves its absolute minimum at 0 and h(0) = 0. It is not hard

to see that, for r >
√
2l, fl,k(r) = ak−

1
2 +O

(
k−1

)
for some a 6= 0 and that f

(j)
l,k (r) = O (k−∞)

for all j ∈ N. The lemma now follows by expanding ∇j
(
i
k∂∂ log fl,k(‖z‖)

)
in terms of fl,k and

its derivatives.

10.6.3 Behaviour of ω̂k on E

Let us now analyse the behaviour of ω̂k near the exceptional divisor E. We work again in the

coordinate patch W1.

ω̂k =
i

k
∂∂ log

∑
|α|≥lk

|ŝα,k|2

=
i

k
∂∂ log

(
k

2π

)n ∑
|α|≥lk

(
k

2

)|α|
1

α!
|w1|2(|α|−lk) |w2|2α2 . . . |wn|2αn

=
i

k
∂∂ log

∞∑
j=lk

(
k

2

)j
1

j!
|w1|2(j−lk)

∑
|α|=j

j!

α!
12α1 |w2|2α2 . . . |wn|2αn

=
i

k
∂∂ log

∞∑
j=lk

(
k

2

)j
1

j!
|w1|2(j−lk)

(
1 + |w2|2 + · · ·+ |wn|2

)j
.

Let us denote

‖z‖2 = |w1|2
(
1 + |w2|2 + · · ·+ |wn|2

)
‖u‖2 = |w2|2 + · · ·+ |wn|2 ,

where ‖z‖ = ‖π(w)‖. We have

ŵk =
i

k
∂∂ log

∞∑
j=0

(
k

2

)j+lk
1

(j + lk)!
‖z‖2j(1 + ‖u‖2)lk

= li∂∂ log
(
1 + ‖u‖2

)
+
i

k
∂∂ log

∞∑
j=0

(lk)!

(j + lk)!

(
k‖z‖2

2

)j
= li∂∂ log

(
1 + ‖u‖2

)
+
i

k
∂∂ log

(
1 +

k

2(lk + 1)
‖z‖2

(
1 +O

(
‖z‖2

)))
.

We note that i∂∂ log(1 + ‖u‖2) is the Fubini-Study Kähler form on E ∼= CPn−1. Let us

denote the projection Bl0 (Cn) → CPn−1 by σ. It is given by the restriction of the projection

σ : Cn × CPn−1 → CPn−1 to Bl0 (Cn). We have on W1 ∩ E = Z(w1) that

ω̂k = lσ∗ωFS +
i

2(lk + 1)

(
1 + |w2|2 + · · ·+ |w2|2

)
dw1 ∧ dw1.

More invariantly, we have:
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Lemma 10.6.8. On the exceptional divisor E ⊂ Bl0 (Cn),

ω̂k = lσ∗ωFS + i
∂∂‖π‖2

2(lk + 1)
.

Proof. The above calculation on W1 equally carries through on W2, · · · ,Wn.

Remark 10.6.9. Note the similarities between lemma 10.6.8 and lemma 10.5.3 and also be-

tween lemma 10.6.7 and lemma 10.5.2. The Fubini-Study metric on the exceptional divisor E

is in a sense “glued” to a metric which converges to the original metric away from E.

10.6.4 Discussion of Scal(ĝk)

Since ω̂k = i∂∂f(‖z‖2), where

f(u) =
1

k

(
ku

2
− log

(
1−

Γ
(
lk, ku2

)
(kl − 1)!

))
for u ∈ R≥0,

the metric π∗ĝk on Cn−{0} is U(n) invariant, and the formula for the scalar curvature simplifies.

We find that Scal (π∗ĝ) is given by

Scal (π∗ĝ) (u) =
f ′(u) (g′(u) + ug′′(u)) + (n− 1)g′(u) (f ′(u) + uf ′′(u))

nf ′(u) (f ′(u) + uf ′′(u))
,

where g(u) = log
(
n! (f ′(u))

n−1
(f ′(u) + uf ′′(u))

)
for u ∈ R≥0. This formula and its derivation

can be found in Simanca’s paper [Sim91]. It is also worth mentioning that, in this paper,

Simanca proves the existence of a cscK metric on Bl0(Cn) thought of as the total space of the

line bundle O(−1) → CPn−1. More precisely,

Theorem 10.6.10 (Simanca [Sim91]). Let δ be a real constant. Then, blowing up a sufficiently

small symmetric neighborhood of the origin in Cn, we obtain a disk bundle π : D → CPn−1

whose total space carries a complete Kähler metric of constant scalar curvature δ with radially

symmetric Kähler potential. If δ ≤ 0 the bundle D can be taken to be the universal line bundle

O(−1) → CPn−1 of Chern class −1, while in the case where δ > 0, the bundle D is properly

contained in L.

Remark 10.6.11. Simanca’s theorem generalizes the well known Burns metric on Bl0(C2)

obtained by restricting the product of the Fubini-Study and Euclidean metric on C2 × CP1 to

Bl0(C2) ⊂ C2 × CP1.

Figure 10.1 illustrates how Scal (π∗ĝ), thought of as a function of u = ‖z‖2 changes with

k ∈ {1, 2, 3, 4} for fixed l = 10. Here, n = 2 and the graph for k = 1 is the one having the lowest

limiting value near 0. These values then increase with k. We can clearly spot the transitioning

behaviour at u = 2l = 20 and the rapid decay of Scal(u) as u→ ∞.
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Figure 10.1: Scal (π∗ĝ) for l = 10 and k ∈ {1, 2, 3, 4} in the variable u = ‖z‖2
in dimension n = 2.
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Appendix A

Technical Results

After reviewing some specific error term estimates in the smooth and holomorphic versions of

Taylor’s theorem, we prove an estimate for holomorphic functions with vanishing in A.1.4. In

A.2, we then discuss a type of integral that will play a role similar to the generalized error

functions which we defined in chapter 2.

A.1 Taylor’s error term estimates

Let us first recall an estimate for the remainder in Taylor’s theorem. We define Br(a)
def
= {x ∈

Rm : ‖x− a‖ ≤ r} for a ∈ Rm and r ≥ 0.

Theorem A.1.1 (Taylor’s theorem in several variables). Let f : U → Rm be a smooth function,

where U ⊂ Rm is an open set and assume that Br(a) ⊂ U , for some r > 0 and a ∈ Rm. Then,

for any n ∈ N0 and x ∈ Br(a) , we have

f(x) =
n∑

|α|=0

1

α!

∂

∂x

α

f

∣∣∣∣
a

(x− a)α +
∑

|α|=n+1

Rα(x)(x− a)α,

for some functions Rα : U → R satisfying

|Rα(x)| ≤
1

α!
sup

s∈Br(a)

∂

∂x

α

f

∣∣∣∣
s

,

for x ∈ Br(a) , and where we use multi-index notation for α ∈ Nm0 .

We now review the analogue of Taylor’s theorem for a holomorphic function. Let a ∈ Cm.

For r > 0, we define the polydisc

Pmr (a) = {z ∈ Cm : |zi − ai| < r for all i ∈ {1, · · · ,m}}

and denote by Pmr (a) its closure. Recall that

1

1− z
=

n∑
j=0

zj + zn+1 1

1− z
,

for z ∈ C − {1}. Similarly, for s, z ∈ C with s 6= z and s 6= 0, we can deduce from the above
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that

1

s− z
=

n∑
j=0

zj

sj+1
+ zn+1 1

(s− z)sn+1
.

Now suppose that f : U → C is holomorphic on U , where U is an open subset of C. Suppose

that P1

r(0) ⊂ U for some r > 0. Then, by Cauchy’s integral formula, we have

f(z) =
1

2πi

∫
|s|=r

f(s)

s− z
ds

=
1

2πi

 n∑
j=1

zj
∫
|s|=r

f(s)

sj+1
ds+ zn+1

∫
|s|=r

f(s)

(s− z)sn+1
ds


=

n∑
j=0

1

j!

∂

∂z

j

f

∣∣∣∣∣
0

zj +Rn+1(z)z
n+1,

for |z| < r, and where we define

Rn+1(z)
def
=

1

2πi

∫
|s|=r

f(s)

(s− z)sn+1
ds.

If |z| ≤ r
2 , we have

|Rn+1(z)| ≤
2

rn+1
sup

s∈P1
r (0)

|f(s)| .

From this, the holomorphic Taylor theorem in one variable follows.

Theorem A.1.2 (A version of the holomorphic Taylor theorem in one variable). Let f : U → C
be a holomorphic function on U , where U is an open subset of C, and assume that P1

r (a) ⊂ U
for some r > 0 and a ∈ U . Then, for any n ∈ N0 and z ∈ P1

r
2
(a) , we have

f(z) =

n∑
j=0

1

j!

∂

∂z

j

f

∣∣∣∣∣
a

(z − a)j +Rn+1(z)(z − a)n+1,

where Rn+1 : P1
r
2
(a) → C is a function satisfying

|Rn+1(z)| ≤
2

rn+1
sup

s∈P1
r(a)

|f(s)| .

We can now generalize this to m complex dimensions. Suppose f : U → C is holomor-

phic on an open set U ⊂ Cm, and suppose that Pmr (0) ⊂ U . Let z ∈ Pmr
2
(0) . r′

def
=

max {|zj | : j ∈ {1, . . . ,m}}. We assume that r′ > 0 since the result is trivial otherwise. Let

u(s) = sz for s ∈ C. We have

f(z) = f(u(1)) =
1

2πi

∫
|s|= r

r′

f(u(s))

s− 1
ds

=
1

2πi

 n∑
j=0

∫
|s|= r

r′

f(u(s))

sj+1
ds+

∫
|s|= r

r′

f(u(s))

(s− 1)sn+1
ds

 .
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We note that
∂

∂s

j

f ◦ u

∣∣∣∣∣
0

=
∑
|α|=j

(
j

α

)
∂

∂z

α

f

∣∣∣∣
0

zα,

so that

f(z) =
n∑

|α|=0

1

α!

∂

∂z

α

f

∣∣∣∣
0

zα +Rn+1(z),

where

Rn+1(z) =
1

2πi

∫
|s|= r

r′

f(u(s))

(s− 1)sn+1
ds.

For ‖z‖ ≤ r
2 we then have r′ ≤ r

2 , so that

|Rn+1(z)| ≤
1

r
r′ − 1

(
r′

r

)n
sup

|s|= r
r′

|f(u(s))|

≤ ‖z‖n+1 2

rn+1
sup

w∈Pm
r (0)

|f(w)| .

We have proved the holomorphic version of Taylor’s theorem in several variables.

Theorem A.1.3 (A version of the holomorphic Taylor theorem in several variables). Let f :

U → C be a holomorphic function on U , where U is an open subset of Cm, and assume that

Pmr (a) ⊂ U for some r > 0 and a ∈ U . Then, for any n ∈ N0 and z ∈ Pmr
2
(a) , we have

f(z) =
n∑

|α|=0

1

α!

∂

∂z

α

f

∣∣∣∣
a

(z − a)α +Rn+1(z),

where

|Rn+1(z)| ≤ ‖z − a‖n+1 2

rn+1
sup

w∈Pm
r (a)

|f(w)| .

Let us now derive a little corollary from this.

Corollary A.1.4 (Holomorphic Taylor theorem with vanishing). Suppose that f : U → C is

holomorphic on U , where U is an open subset of Cm. Suppose that Pmr (0) ⊂ U for some r > 0.

Assume that, for fixed j ≤ m, f vanishes to order at least n along {zj+1 = · · · = zm = 0} ∩ U ,
i.e.

∂

∂z

α

f

∣∣∣∣
(z1,...,zj ,0,...,0)

= 0

for all α ∈ Nm0 such that |α| < n and all (z1, . . . , zj , 0, . . . , 0) ∈ U . Then

|f(z)| ≤ ‖(zj+1, . . . , zm)‖n 2

rn
sup

u∈Pm
r (0)

|f(u)|

for all z
def
= (z1, . . . , zm) ∈ Pjr(0) × Pm−j

r
2

(0) .

Proof. Fix z = (z1, . . . , zj) ∈ Pjr(0) and consider the holomorphic restriction w 7→ f(z,w)

for w ∈ Pm−j
r (0) . Applying the holomorphic Taylor theorem to the restriction yields, for
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w ∈ Pm−j
r
2

(0) ,

|f(z,w)| ≤ ‖w‖n 2

rn
sup

w∈Pm−j
r (0)

|f(z,w)|

≤ ‖w‖n 2

rn
sup

(v,w)∈Pm
r (0)

|f(v,w)| .

Since the second estimate holds for all z ∈ Pjr(0) , the result follows.

A.2 Basic integrals

Lemma A.2.1. Let k ∈ N, β ∈ Nn0 and assume that |β| = j for some j ∈ N0. Then

∫
Rn

x2βe−
k
2 〈x,x〉dx =

√
(2π)n

kn

(
2

k

)j
〈D,D〉j x

2β

j!

∣∣∣∣
0

=

√
(2π)n

kn

(
2

k

)j
(2β)!

β!
,

where D
def
=
(

∂
∂x1

, · · · , ∂
∂xn

)
.

Proof. We note that 〈D,D〉|β| x2β

|β|!

∣∣∣
0
= (2β)!

β! , so that

∫
Rn

x2βe−〈x,x〉dx =
n∏
j=1

∫
R
x2βje−x

2

dx

=

n∏
j=1

Γ(βj +
1

2
)

=
n∏
j=1

√
π21−2βj

Γ(2βj)

Γ(βj)

=
√
πn2−2j (2β)!

β!

=
√
πn2−2j 〈D,D〉j x

2β

j!

∣∣∣∣
0

,

and ∫
Rn

x2βe−
k
2 〈x,x〉dx =

(
k

2

)−n
2 −j ∫

Rn

y2βe〈y,y〉dy

=

√
(2π)n

kn

(
2

k

)j
(2β)!

β!
.

Recall the definition of the error function: erf(c)
def
= 2√

π

∫ c
0
e−x

2

dx for c ∈ R.

Lemma A.2.2. Let B ∈ Mn×n(R) be symmetric and positive definite, λ ∈ R, n ∈ Rn − {0}
and β ∈ Nn0 .

If |β| = 2r, for some r ∈ N0, pick ik, jk ∈ {1, . . . , n} such that ik ≤ jk, for k ∈ {1, . . . , r},
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and
∑r
k=1(eik + ejk) = β. Then

∫
〈x,n〉≥λ

xβe−〈x,Bx〉dx =

(
r∏

k=1

1

δikjk − 2

∂

∂aikjk

)√
πn

|A|

1− erf
(

λ
‖n‖A−1

)
2

∣∣∣∣∣∣
A=B

.

If |β| = 2r + 1, for some r ∈ N0, pick ik, jk, s ∈ {1, . . . , n} such that ik ≤ jk for k ∈ {1, . . . , r}
and es +

∑r
k=1 (eik + ejk) = β. Then

∫
〈x,n〉≥λ

xβe−〈x,Bx〉dx =

(
r∏

k=1

1

δikjk − 2

∂

∂aikjk

)√πn−1

|A|

(
A−1n

)
s

2‖n‖A−1

e
−
(

λ2

‖n‖2
A−1

)∣∣∣∣∣∣
A=B

,

where ‖n‖2A−1 =
∑n
i,j=1 niA

−1
ij nj. ei denotes the ith standard basis vector of Rn, and we

think of the symmetric matrix A = (aij)1≤i,j≤n as a function in the n(n+1)
2 variables aij for

1 ≤ i ≤ j ≤ n.

Proof. For A ∈Mn×n (R) positive definite and symmetric, we have∫
〈x,n〉≥λ

e−〈x,Ax〉dx =

∫
〈y,(A− 1

2 )tn〉≥λ
e−〈x,x〉

∣∣∣A 1
2

∣∣∣−1

dy (x = A− 1
2y)

=

∫
〈x,St(A− 1

2 )tn〉≥λ
e−〈x,x〉 |A|−

1
2 dx (y = Sx),

where we pick S ∈ SO(n) such that St(A− 1
2 )tn = µe1 with µ ≥ 0. In fact, µ = ‖n‖A−1 since

‖St(A− 1
2 )tn‖2 = ‖(A− 1

2 )tn‖2 = ntA− 1
2 (A− 1

2 )tn = ntA−1n.∫
〈x,n〉≥λ

e−〈x,Ax〉dx =

∫
x1≥ λ

‖n‖
A−1

x2,...,xn∈R

e−〈x,x〉 |A|−
1
2 dx

= |A|−
1
2 π

n−1
2

(
1

2

√
π

(
1− erf

(
λ

‖n‖A−1

)))

=

√
πn

|A|

1− erf
(

λ
‖nA−1‖

)
2

,

where we have used
∫
R e

−x2

dx =
√
π,
∫
x≥c e

−x2

dx =
√
π
2 (1 − erf(c)). We now differentiate for

1 ≤ i ≤ j ≤ n.

∂

∂aij
e−〈x,Ax〉 = (δij − 2)xixje

−〈x,Ax〉,

where we think of A as a function in the matrix entries aij for 1 ≤ i ≤ j ≤ n. With

i1, j1, . . . , ir, jr chosen as described, we get the first part of the result. Similarly, we have∫
〈x,n〉≥λ

xse
−〈x,Ax〉dx =

∫
〈x,
(
A− 1

2

)t
n〉≥λ

(
A− 1

2y
)
s
e−〈y,y〉 |A|−

1
2 dy (x = A− 1

2y)

=

∫
〈x,St

(
A− 1

2

)t
n〉≥λ

(
A− 1

2Sx
)
s
e−〈x,x〉

∣∣∣A− 1
2

∣∣∣ dx (y = Sx),
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with S ∈ SO(n) chosen such that St
(
A− 1

2

)t
n = ‖n‖A−1es. We have

∫
〈x,n〉≥λ

xse
−〈x,Ax〉dx = |A|−

1
2

∫
xs≥ λ

‖n‖
A−1

x1,...,x̂s,...,xn∈R

n∑
l=1

(
A− 1

2S
)
sl
xle

−〈x,x〉dx

=
∣∣∣A− 1

2

∣∣∣ ∫
xs≥ λ

‖n‖
A−1

xs,...,x̂s,...,xn∈R

(
A− 1

2S
)
ss
xse

−〈x,x〉dx

(∫
R
xe−x

2

= 0

)

= |A|−
1
2 (

√
π)n−1

(
A− 1

2S
)
ss

∫
x≥ λ

‖n‖
A−1

xe−x
2

dx

= |A|−
1
2 (

√
π)n−1

(
A− 1

2S
)
ss

1

2
e
−
(

λ
‖n‖

A−1

)2

.

But St(A− 1
2 )tn = ‖n‖A−1es, so that ‖n‖A−1(A− 1

2 )tSes = ‖n‖A−1A− 1
2Ses = A−1n. Hence

A− 1
2Ses =

A−1n
‖n‖A−1

and we have

∫
〈x,n〉≥λ

xse
−〈x,Ax〉dx =

√
πn−1

|A|

(
A−1n

)
s

‖n‖A−1

exp

(
−
(

λ
‖n‖A−1

)2)
2

.

The general result follows by differentiation.

Let us now look at the integrals

e(γ,n, λ)
def
=

∫
〈x,n〉≥λ

xγe−〈x,x〉dx

for γ ∈ Nn0 , n ∈ Rn−{0} and λ ∈ R. We are interested in the case where λ = 0. We note that

e(γ,n, 0) =

∫
〈x,n〉≥0

xγe−〈x,x〉dx = (−1)|γ|
∫
〈x,n〉≤0

xγe−〈x,x〉dx. (A.2.1)

If |γ| = 2r, for some r ∈ N0,

e(γ,n, 0) =
1

2

∫
Rn

xγe−〈x,x,〉dx

=
1

2

n∏
j=1

∫
R
xγie−x

2

dx

=


√
πn2−(|γ|+1) (2β)!

β! it γ = 2β for some β ∈ Nn0
0 otherwise.

(A.2.2)

If |γ| = 1, so that γ = es, for some s ∈ {1, · · · , n}, we apply the previous lemma to find

e(es,n, 0) =

√
πn−1

2

ns
‖n‖

.

If |γ| = 3, so that γ = er + el + es, for some r, l, s ∈ {1, · · · , n} with r ≤ l, we have

e(γ,n, 0) =
1

2

√
πn−1

δrl − 2

∂

∂arl

(
A−1n

)
s

‖n‖A−1

√
|A|

∣∣∣∣∣
A=In

.
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We compute that

∂

∂arl

(
A−1n, es

)
=
(
aslalkδlr − aslarj − asralj

)
nj

∂

∂arl
|A| = ∂

∂λ

∣∣∣∣
λ=0

|A+ λ (Erl + Elr − δlrEll)| = (2− δlr) |A| arl,

where Erl denotes the n× n matrix with zeroes everywhere except in the (r, l)-entry. Finally,

∂

∂arl
‖n‖A−1 =

ninj
2‖n‖A−1

(
ailaljδlr − aliarj − aljari

)
.

A short computation then shows that

e(er + es + el,n, 0) =

√
πn−1

4

(
δslnr + δrsnl + δrlns

‖n‖
− nrnsnl

‖n‖3

)
. (A.2.3)

Remark A.2.3. These functions λ 7→ e(γ,n, λ), for λ ∈ R, serve a role similar to the gen-

eralized error functions that we defined in chapter 2 with the difference being that we have not

normalized them in the same way here.
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Appendix B

Laplace’s Method

After proving a version of Laplace’s theorem in n dimensions, we investigate how Laplace’s

method can be applied to certain integrals over half-spaces. These integrals are of importance

in chapter 7 where we use them to investigate the asymptotic expansion of partial density

functions on toric polarized Kähler manifolds.

B.1 Background

Laplace’s method (see [dB81, BH75]) provides a means of determining the asymptotics of an

integral of the type

Ik
def
=

∫
Rn

f(x)e−kh(x)dx

as k ∈ N tends to infinity, where f, h ∈ C∞(Rn) and h has an absolute minimum which it attains

only at x0 ∈ Rn. Suppose that Hess(h)|x0
is positive definite, that Ik is finite for k ∈ N and

that there exists c > 0 such that h(x) − h(x0) ≥ c outside a compact subset of Rn. Laplace’s

method then gives an asymptotic expansion in k,

ekh(x0) Ik =
∞∑
j=0

ajk
−(n

2 +j) +O
(
k−∞) as k → ∞,

where the coefficients aj are determined by various derivatives of f and h at x0. We will derive a

special version of Laplace’s method in this chapter, and we apply this method to study integrals

similar to the one above. For a treatment of the related method of stationary phase, the reader

may consult Hörmander’s book [Hör90].

B.2 A version of Laplace’s method

Let us now provide a proof of a parameter dependent version of Laplace’s method which will

be useful to us.

Definition B.2.1. Let U ⊂ Rn be an open bounded set and let f, h ∈ C∞ (U × U) such that,

for x ∈ U , Hess h(x, .)|x > 0. Suppose that h(x,y) ≥ 0 for all x,y ∈ U and that h(x,y) = 0 if

and only if x = y. Suppose furthermore that f, h and their derivatives are bounded in U × U
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and that, for any x ∈ U and y0 ∈ ∂U , we have limy→y0 h(x,y) > 0. We define

Ik(x)
def
=

∫
U
f(x,y)e−kh(x,y)dy for k ∈ N and x ∈ U .

Let H(x)
def
= Hess (h (x, .))|x. We use the notation H(x) > 0 to denote that H(x) is positive

definite, and we define

R(x,y)
def
= h(x,y)− 1

2
〈H(x)(y − x),y − x〉

Dy
def
= (∂y1 , · · · , ∂yn)

for x,y ∈ U .

We would now like to determine the asymptotics of Ik as k tends to infinity. The following

theorem is closely related to the method of stationary phase [Hör90, p.220, theorem 7.7.5 and

lemma 7.7.3]. For our case, we will provide a basic proof rather than following Hörmander’s

Fourier transform approach.

Theorem B.2.2. For j ∈ N, there exists aj ∈ C∞(U), and, for p ∈ N0, there exists a continuous

function Cp : U → R≥0 such that∣∣∣∣∣∣Ik(x)−
p∑
j=0

k−(n
2 +j)aj(x)

∣∣∣∣∣∣ ≤ Cp(x)k
−(n+1

2 +p), for x ∈ U ,

and where

aj(x) =

√
(2π)n

|H(x)|

2j∑
i=0

(−1)i

i!(i+ j)!2i+j
〈H−1(x)Dy,Dy〉i+jf(x,y)R(x,y)i

∣∣
x
.

In order to prove this result, we first need a few lemmas that will simplify the argument.

Lemma B.2.3. Let h,U be as before and let A > 0, δ ∈
(
0, 12
)
, x ∈ U and

{
yj
}∞
j=1

⊂ U such

that

‖yk − x‖ > Ak−
1
2+δ for all k ∈ N.

Then there exists a continuous function C : U × R>0 → R>0 such that

kh(x,yk) ≥ C(x, A)k2δ for all k ∈ N.

In particular, for l ∈ N, there exists a continuous function Dl : U × R>0 → R≥0 such that

e−kh(x,yk) ≤ Dl(x, A)k
−l for all k ∈ N.

Proof. For x ∈ U fixed, there exists an open convex neighbourhood Vx ⊂ U of x on which

h(x, .) is strictly convex. We have

h (x, (1− s)x+ sy) < (1− s)h (x,x) + sh (x,y) ≤ h(x,y) for s ∈ (0, 1),x ∈ U ,y ∈ Vx.

If yk ∈ U − Vx, there exists λ(x) > 0, depending continuously on x ∈ U , such that h(x,y) ≥
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λ(x). In this case, we have the obvious estimate

kh(x,yk) ≥ kλ(x),

which is even stronger than what we want to prove. We now assume without loss of generality

that yk ∈ Vx. Let sk = Ak−
1
2
+δ

‖yk−x‖ . Then

h (x,x+ sk (yk − x)) = h

(
x,x+Ak−

1
2+δ

yk − x

‖yk − x‖

)
< h (x,yk) .

We have

h(x,y) =
1

2
〈H(x)(y − x),y − x〉+R(x,y),

and

R(x,y) =
∑

{γ∈Nn
0 :|γ|=3}

Rγ(x,y)(y − x)γ ,

where by Taylor’s standard estimate (theorem A.1.1),

|Rγ(x,y)| ≤ Dγ(x) = sup
y∈Bx(A)

∣∣∣∣∣ 1γ! ∂

∂y

γ

h(x,y)

∣∣∣∣
y

∣∣∣∣∣
for y ∈ Bx(A)

def
= {y ∈ U : ‖y − x‖ ≤ A}. Defining E(x)

def
=
∑

|γ|=3Dγ(x), we have

|R(x,y)| ≤ E(x)‖y − x‖3 for y ∈ Bx(A).

For k ∈ N and yk ∈ Vx such that ‖yk − x‖ > Ak−
1
2+δ, we have

kh(x,yk) > kh

(
x,x+Ak−

1
2+δ

yk − x

‖yk − x‖

)
≥ k

∣∣∣∣A2k−1+2δ

∣∣∣∣12 〈H(x)
yk − x

‖yk − x‖
,

yk − x

‖yk − x‖
〉
∣∣∣∣

−
∣∣∣∣R(x,x+Ak−

1
2+δ

yk − x

‖yk − x‖

)∣∣∣∣∣∣∣∣
= k2δ

∣∣∣∣A2

∣∣∣∣12 〈H(x) yk − x

‖yk − x‖
,

yk − x

‖yk − x‖
〉
∣∣∣∣

−
∣∣∣∣k1−2δR

(
x,x+Ak−

1
2+δ

yk − x

‖yk − x‖

)∣∣∣∣∣∣∣∣ .
Note that ∣∣∣∣k1−2δR

(
x,x+Ak−

1
2+δ

yk − x

‖yk − x‖

)∣∣∣∣ ≤ E(x)A3k−
1
2+δ

tends to 0 as k → ∞, while

A2

2

∣∣∣∣〈H(x)
yk − x

‖yk − x‖
,

yk − x

‖yk − x‖
〉
∣∣∣∣ ≥ F (x)

def
=

A2

2
inf

‖u‖=1
〈H(x)u,u〉 > 0.
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Appendix B. Laplace’s Method

We have

kh(x,yk) ≥ k2δ
(
F (x)− E(x)A3k−

1
2+δ
)
> 0

if k ≥ K(x)
def
=
(
E(x)A3

F (x)

) 1
1
2
−δ

+ 1, and if k ≤ K(x), we have

kh(x,yk) ≥ I(x) = inf{
u∈U :‖u−x‖=AK(x)−

1
2
+δ
}h(x,u) > 0.

Finally,

kh(x,yk) ≥ C(x)k2δ,

where C(x) = min
(

I(x)
K(x)2δ

, F (x)− E(x)A3K(x)−
1
2+δ
)
. Tracing through the proof, it is obvi-

ous that C is continuous with respect to both x ∈ U and the parameter A > 0.

For the last part of the result, we observe that, for l ∈ R≥0 and x ∈ U , there exists K(x) ≥ 1

such that

e−C(x)k2δ < k−l for all k > K(x),

and K : U → R>0 is continuous. If 1 ≤ k ≤ K(x),

e−C(x)k2δ ≤ 1 ≤ K(x)lk−l,

so that

e−kh(x,yk) ≤ e−C(x)k2δ ≤ Dl(x)k
−l for all k ∈ N,

where Dl(x)
def
= max

(
1,K(x)l

)
. Furthermore, Dl depends continuously on the parameter

A > 0.

Corollary B.2.4. Let δ, f, h and U be defined as before. Then, for l ∈ N0, there exists a

continuous function Dl : U × R>0 → R≥0 such that∣∣∣∣∣
∫
{
y∈U :‖y−x‖≥Ak−

1
2
+δ
} f(x,y)e−kh(x,y)dy

∣∣∣∣∣ ≤ Dl(x, A)k
−l for x ∈ U and A > 0.

Proof. We have seen that there exists a continuous function C : U × R>0 → R>0 such that

kh(x,y) ≥ C(x, A)k2δ if ‖y − x‖ ≥ Ak−
1
2+δ. We have∣∣∣∣∣

∫
{
y∈U :‖y−x‖≥Ak−

1
2
+δ
} f(x,y)e−kh(x,y)dy

∣∣∣∣∣ ≤ e−(k−1)k2δ−1C(x,A)

∫
U
|f(x,y)| e−h(x,y)dy.

For fixed l ∈ N0, there exists a continuous function K : U × R>0 → R>0 such that

e−(k−1)k2δ−1C(x,A) ≤ k−l for k > K(x, A).

If 1 ≤ k ≤ K(x, A),

e−(k−1)k2δ−1C(x,A) ≤ 1 ≤ K(x, A)lk−l,

so that, for k ∈ N, we have

e−(k−1)k2δ−1C(x,A) ≤ Dl(x, A)k
−l,

where Dl(x, A)
def
= max(1,K(x, A)l). The result follows.
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B.2. A version of Laplace’s method

Lemma B.2.5. Let h, f,U and R be defined as before. For p ∈ N0, there exists a continuous

function Cp : U → R≥0 such that∣∣∣∣∣Ik(x)−
p∑
i=0

∫
U
f(x,y)

(−kR(x,y))i

i!
e−

k
2 〈H(x)(y−x),y−x〉dy

∣∣∣∣∣ ≤ Cp(x)k
−n+p+1

2

for x ∈ U .

Proof. For x ∈ U , let r(x) = min

(
1,

d(x,∂U)
2

)
. There exists a continuous function C : U → R≥0

(see the proof of lemma B.2.3) such that

|R(x,y)| ≤ C(x)‖y − x‖3 for y ∈ Bx (r(x)),

where, for r ∈ R≥0, Bx(r)
def
= {y ∈ U : ‖y − x‖ ≤ r}. Suppose that ‖y − x‖ ≤ k−

1
3 r(x). Then

|kR(x,y)| ≤ C(x). There exists a continuous function D : U → R≥0 such that∣∣∣∣∣∣et −
p∑
j=0

tj

j!

∣∣∣∣∣∣ ≤ D(x) |t|p+1
for t ∈ R such that |t| ≤ C(x).

Hence∣∣∣∣∣∣e−kR(x,y) −
p∑
j=0

(−kR(x,y))j

j!

∣∣∣∣∣∣ ≤ D(x) |kR(x,y)|p+1 ≤ C(x)p+1D(x)kp+1‖y − x‖3(p+1)

for all x,y ∈ U such that ‖y − x‖ ≤ k−
1
3 r(x). We have

Ak(x)
def
=

∣∣∣∣∣∣Ik(x)−
∫
B

k
− 1

3 r(x)
(x)

f(x,y)

p∑
i=0

(−kR(x,y))i

i!
e−

k
2 〈H(x)(y−x),y−x〉dy

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Ik(x)−
∫
B

k
− 1

3 r(x)
(x)

f(x,y)e−kh(x,y)dy

∣∣∣∣∣∣
+

∫
B

k
− 1

3 r(x)
(x)

|f(x,y)|

∣∣∣∣∣e−kR(x,y) −
p∑
i=0

(−kR(x,y))i

i!

∣∣∣∣∣ e− k
2 〈H(x)(y−x),y−x〉dy.

We have |f(x,y)| ≤ E for all x,y ∈ U and some constant E > 0. Corollary B.2.4 gives, for any

l ≥ 0, a continuous function Cl : U → R≥0 such that∣∣∣∣∣∣Ik(x)−
∫
B

k
− 1

3 r(x)
(x)

f(y)e−kh(x,y)dy

∣∣∣∣∣∣ ≤ Cl(x)k
−l.

We find that, for l ≥ n+p+1
2 ,

Ak(x) ≤ Cl(x)k
−l

+

∫
B

k
− 1

3 r(x)
(x)

EC(x)p+1D(x)kp+1‖y − x‖3(p+1)e−
k
2 〈H(x)(y−x,y−x〉dy

≤ Cl(x)k
−l + EC(x)p+1D(x)kp+1

∫
U
‖y‖3(p+1)e−

k
2 〈H(x)y,y〉dy

121



Appendix B. Laplace’s Method

≤ F (x)k−
n+p+1

2 ,

where F : U → R≥0 is a continuous function.

Consider Dy
def
= (∂y1 , . . . , ∂yn). We have, using multi-index notation,

〈Dy,Dy〉j =
(
∂2y1 + · · ·+ ∂2yn

)j
=

∑
β∈Nn

0 :|β|=j

(
j

β

)(
∂2y1
)β1

. . .
(
∂2yn
)βn

.

Suppose that β ∈ Nn0 and |β| = j. Then

〈Dy,Dy〉jy2β
∣∣
0
=

(
j

β

)
(2β)! .

Lemma B.2.6. Let f ∈ C∞(Rn), and let H be a positive definite symmetric matrix. Then

∑
|β|=j

(
j

β

)
∂

∂y

2β

f
(
H− 1

2y + x
)∣∣∣∣∣

0

= 〈H−1 Dy,Dy〉jf
∣∣
x
.

Proof. For x ∈ Rn, we have

〈H−1 Dy,Dy〉jf
∣∣
x
= 〈H− 1

2 Dy,H
− 1

2 Dy〉jf
∣∣∣
x

=

 n∑
j=1

(
n∑
k=1

H
− 1

2

jk ∂yk

)2
j

f

∣∣∣∣∣∣∣
x

=
∑
|β|=j

(
j

β

) n∏
l=1

(
n∑
k=1

H
− 1

2

lk ∂yl

)2βl

f

∣∣∣∣∣∣
x

,

while e.g.

∂

∂yk
f
(
H− 1

2y + x
)∣∣∣∣

0

=

 n∑
j=1

H
− 1

2

kj ∂yj

 f

∣∣∣∣∣∣
0

.

Iteration yields the lemma.

Lemma B.2.7. Let U ,H and f be defined as before. For every p ∈ N0, there exists a continuous

function Cp : U → R≥0 such that∣∣∣∣∣∣
∫
U
f(x,y)e−

k
2 〈H(x)(y−x),y−x〉dy −

p∑
j=0

aj(x)k
−(n

2 +j)

∣∣∣∣∣∣ ≤ Cp(x)k
−n+2p+1

2 for all x ∈ U ,

where

aj(x) =
1

2jj!

√
(2π)n

|H(x)|
〈H−1(x)Dy,Dy〉jf(x,y)

∣∣
x
.

Proof. We Taylor-expand

f
(
x,H− 1

2 (x)y + x
)
=

2p∑
s=0

∑
|γ|=s

1

γ!

∂

∂y

γ

f
(
x,H(x)−

1
2y + x

)∣∣∣∣
0

yγ +R2p+1(x,y),
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B.3. Laplace’s method over halfspaces

where

|R2p+1(x,y)| ≤ C(x)‖y‖2p+1 for y ∈ Br(x)(0),

and where we let r(x)
def
= min

(
1,

d(x,∂U)
2

)
and note that C : U → R≥0 is continuous. Hence

∫
Br(x)(x)

f(x,y)e−
k
2 〈H(x)(y−x),y−x〉dy

= |H(x)|−
1
2

∫
V(x)

f
(
x,H− 1

2 (x)y + x
)
e−

k
2 〈y,y〉dy +O

(
k−∞)

= |H(x)|−
1
2

p∑
s=0

∑
|β|=s

1

(2β)!

∂

∂y

2β

f
(
x,H− 1

2 (x)y + x
)∣∣∣∣∣

0

∫
Rn

y2βe−
k
2 〈y,y〉dy +O

(
k−

n+2p+1
2

)
,

where V(x) def
=
{
y ∈ Rn : H− 1

2 (x)y + x ∈ Br(x)(x)
}
. If we now apply lemma A.2.1 and the

localization result of corollary B.2.4 together with lemma B.2.6, we arrive at the result.

Now we can provide a proof of theorem B.2.2.

Proof. Combining B.2.5 and B.2.7 gives

Ik(x) =

√
(2π)n

|H(x)|

2p∑
i=0

ki
(−1)i

i!

p+i∑
s=0
2s≥3i

k−(n
2 +s) 1

2ss!

〈H−1(x)Dy,Dy〉sf(x,y)R(x,y)i
∣∣
x
+O

(
k−

n+2p+1
2

)
,

and the constant in O depends continuously on x ∈ U . Changing the summation variables

yields the theorem.

B.3 Laplace’s method over halfspaces

Definition B.3.1. Let f and h be defined as before. We define

Jk(x) =

∫
U∩H+(n,λ)

f(x,y)e−kh(x,y)dy,

where n ∈ Rn, λ ∈ R and H+(n, λ) = {x ∈ Rn : 〈n,x〉 − λ ≥ 0}.

Lemma B.3.2. Let h, f,U and R be defined as before. For p ∈ N0, there exists a continuous

function Cp : U → R≥0 such that∣∣∣∣∣Jk(x)−
p∑
i=0

∫
U
f(x,y)

(−kR(x,y))i

i!
e−

k
2 〈H(x)(y−x),y−x〉dy

∣∣∣∣∣ ≤ Cp(x)k
−n+p+1

2

for x ∈ U .

Proof. The same arguments as in B.2.5 apply.
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Lemma B.3.3. Let f and h be defined as before. For p ∈ N, there exists a continuous function

Cp : U → R≥0 such that

∣∣∣∣∣∣
∫
U∩H+(n,λ)

f(x,y)e−
k
2 〈H(x)(y−x),y−x〉dy −

p∑
j=0

k−
n+j
2 aj

(
x,H− 1

2 (x)n,

√
k

2
(λ− 〈x,n〉)

)∣∣∣∣∣∣
≤ Cp(x)k

−n+p+1
2 ,

where

aj(x,n, λ)
def
= 2

n+j
2 |H(x)|−

1
2

∑
|γ|=j

1

γ!

∂

∂y

γ

f
(
x,H− 1

2 (x)y + x
)∣∣∣∣

0

e(γ,n, λ)

and

e(γ,n, λ)
def
=

∫
H+(n,λ)

xγe−〈x,x〉dx.

Proof.∫
U∩H+(n,λ)

f(x,y)e−
k
2 〈H(x)(y−x),y−x〉dy

= |H(x)|−
1
2

∫
V(x)∩H+(H− 1

2 (x)n,λ−〈x,n〉)
f(x,H− 1

2 (x)y + x)e−
k
2 〈y,y〉dy,

where V(x) def
=
{
y ∈ Rn : H− 1

2 (x)y + x ∈ U
}
. We Taylor-expand

f
(
x,H− 1

2 (x)y + x
)
=

p∑
s=0

∑
|γ|=s

1

γ!

∂

∂y

γ

f
(
x,H(x)−

1
2y + x

)∣∣∣∣
0

yγ +Rp+1(x,y),

where

|Rp+1(x,y)| ≤ C(x)‖y‖p+1 for y ∈ Br(x)(0),

and where we define r(x)
def
= min

(
1,

d(x,∂U)
2

)
and note that C : U → R≥0 is continuous. Hence

∫
Br(x)(x)∩H+(n,λ)

f(x,y)e−
k
2 〈H(x)(y−x),y−x〉dy

= |H(x)|−
1
2

∫
W(x)

f
(
x,H− 1

2 (x)y + x
)
e−

k
2 〈y,y〉dy +O

(
k−∞)

= |H(x)|−
1
2

p∑
s=0

∑
|β|=s

1

β!

∂

∂y

β

f
(
x,H− 1

2 (x)y + x
)∣∣∣∣∣

0

∫
H+(H−1(x)n,λ−〈x,n〉)

yβe−
k
2 〈y,y〉dy

+O
(
k−

n+p+1
2

)
= |H(x)|−

1
2

p∑
s=0

k−
n+s
2

2
n+s
2

∑
|β|=s

1

β!

∂

∂y

β

f
(
x,H− 1

2 (x)y + x
)∣∣∣∣∣

0

e

(
β,H−1(x)n,

√
k

2
(λ− 〈x,n〉)

))
+O

(
k−

n+p+1
2

)
,
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B.3. Laplace’s method over halfspaces

where W(x)
def
=
{
y ∈ Rn : H− 1

2 (x)y + x ∈ Br(x)(x) ∩H+(n, λ)
}
. If we now apply lemma

A.2.1 and the localization result of corollary B.2.4 together with lemma B.2.6, we arrive at the

result.

Theorem B.3.4. Let f, h,R,H and U be defined before. For j ∈ N, there exists bj ∈ C∞(U)
and, for p ∈ N0, there exists a continuous function Cp : U → R≥0 such that∣∣∣∣∣∣Jk(x)−

p∑
j=0

k−(
n+j
2 )bj(x, k)

∣∣∣∣∣∣ ≤ Cp(x)k
−(n+p+1

2 ),

for x ∈ U , and where

bj(x, k)
def
= |H(x)|−

1
2

j∑
i=0

(−1)i

i!
2

n+j+2i
2

∑
|γ|=j+2i

1

γ!

∂

∂y

γ

R
(
x,H− 1

2 (x)y + x
)i
f
(
x,H− 1

2 (x)y + x
)∣∣∣∣

0

e

(
γ,H− 1

2 (x)n,

√
k

2
(λ− 〈x,n〉)

)
,

and

e (γ, λ,n)
def
=

∫
H+(n,λ)

xγe−〈x,x〉dx

can be explicitly evaluated using lemma A.2.2.

Proof. The proof is a simple Taylor expansion analogous to some of the preceding results. We

observe that, for p ∈ N0, there exists a continuous function Cp : U → R≥0 such that∣∣∣∣∣Jk(x)−
p∑
i=0

(−1)i

i!
ki
∫
H+(n,λ)

R(x,y)if(x,y)e−
k
2 〈H(x)(y−x),y−x〉dy

∣∣∣∣∣ ≤ Cp(x)k
−n+p+1

2 .

If we now expand Rif in the above integral up to order p + 2i according to lemma B.3.3, we

arrive at the result.

Corollary B.3.5. Let f, h,R,H and U be defined as before, and let {xk}∞k=0 be a sequence in

U , δ ∈ (0, 12 ), λ ∈ R and M ≥ 0. Suppose that 〈xk,n〉 − λ ≥ Mk−
1
2+δ for all k ∈ N0. Then

Jk(x) = Ik(xk) +O (k−∞). If 〈xk,n〉 − λ ≤ −Mk−
1
2+δ for all k ∈ N0, then Jk(x) = O (k−∞).

Proof. If 〈xk,n〉 − λ ≥Mk−
1
2+δ for all k ∈ N0, then

e

(
γ,n,

√
k

2
(λ− 〈xk,n〉)

)
−
∫
Rn

yγe−〈y,y〉dy =

∫
√

k
2 (λ−〈xk,n〉)>〈y,n〉

yγe−〈y,y〉dy

= O
(
k−∞) ,

which can be easily seen by changing coordinates in the integral to x such that x1 = 〈y,n〉
and by observing that

√
k
2 (λ− 〈xk,n〉) ≤ −Mkδ. Similarly, if 〈xk,n〉−λ ≤ −Mk−

1
2+δ for all
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k ∈ N0,

e

(
γ,n,

√
k

2
(λ− 〈xk,n〉)

)
=

∫
√

k
2 (λ−〈xk,n〉)≤〈y,n〉

yγe−〈y,y〉dy,

and the result follows since
√

k
2 (λ− 〈xk,n〉) ≥Mkδ.

Lemma B.3.6. Consider a setup as in theorem B.3.4 and suppose that x ∈ H(n, λ). Then

bj(x, k) is independent of k, for j ∈ N0, and we have b2j(x, k) = 1
2aj(x) for all j ∈ N0 and

k ∈ N, where aj, for j ∈ N0, are the functions appearing in theorem B.2.2.

Proof. We have 〈x,n〉 − λ = 0, so that it is obvious that bj(x, k) is independent of k. Recall

from equation A.2.2 that

e(γ,n, 0) =


√
πn2−(|γ|+1) (2β)!

β! if γ = 2β for some β ∈ Nn0
0 otherwise.

We hence have

b2j(x, k) = |H(x)|−
1
2

2j∑
i=0

(−1)i

i!
2

n
2 +i+j

∑
|γ|=2(i+j)

1

γ!

∂

∂y

γ

R(x,H− 1
2 (x)y + x)i

f(x,H− 1
2 (x)y + x)

∣∣∣
0
e(γ,H− 1

2 (x)n, 0)

=
1

2

√
(2π)n

|H(x)|

2j∑
i=0

(−1)i

i!(i+ j)!2i+j

∑
|β|=i+j

(
i+ j

β

)
∂

∂y

2β

R(x,H− 1
2 (x)y + x)i

f(x,H− 1
2 (x)y + x)

∣∣∣
0

=
1

2
aj(x).
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