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Abstract

Let (L,h) — (X,w) be a compact toric polarized Kéhler manifold of complex dimension n.
For each k € N, the fibre-wise Hermitian metric h* on L*¥ induces a natural inner product
on the vector space C(X, L¥) of smooth global sections of L* by integration with respect to
the volume form “;TT The orthogonal projection Py, : C=(X, L*) — H°(X, L¥) onto the space
HY(X, LF) of global holomorphic sections of L* is represented by an integral kernel B;, which
is called the Bergman kernel (with parameter k& € N). The restriction p; : X — R of the norm
of By to the diagonal in X x X is called the density function of Bj.

On a dense subset of X, we describe a method for computing the coefficients of the asymp-
totic expansion of py as k — oo in this toric setting. We also provide a direct proof of a result
which illuminates the off-diagonal decay behaviour of toric Bergman kernels.

We fix a parameter | € N and consider the projection P, j from C>(X, L¥) onto those global
holomorphic sections of L* that vanish to order at least [k along some toric submanifold of X.
There exists an associated toric partial Bergman kernel B, ;, giving rise to a toric partial density
function p; 1, : X — R. For such toric partial density functions, we determine new asymptotic
expansions over certain subsets of X as k — oo. Euler-Maclaurin sums and Laplace’s method
are utilized as important tools for this. We discuss the case of a polarization of CP" in detail
and also investigate the non-compact Bargmann-Fock model with imposed vanishing at the
origin.

We then discuss the relationship between the slope inequality and the asymptotics of
Bergman kernels with vanishing and study how a version of Song and Zelditch’s toric local-
ization of sums result generalizes to arbitrary polarized Kéhler manifolds.

Finally, we construct families of induced metrics on blow-ups of polarized Kahler manifolds.
We relate those metrics to partial density functions and study their properties for a specific

blow-up of C" and CP™ in more detail.
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Notation

Np
H°(X, E)

C>*(X,E)

(2)

a (a3
9z |
F
Int(P)

Rellnt(P)
O (k=)

The natural numbers with 0
Holomorphic global sections of a holomorphic vector bundle F — X, where X
is a complex manifold

Smooth global sections of a smooth vector bundle £ — X
def

For z = (z1,-+ ,2,) € C" and & = (a1, -+ ,a,) € R™, 2* = [, 2
whenever this is well-defined.

For o = (a1, -+ ,ap) € Nj, o! o [T, aql.

For a = (ay, - o) € NI, |o| & S .

For a = (a1, - ,an) €NJ, j =|al and n > 1, we define (7)) def (11']7‘01'

%af def (a%)al 0--+0 (%)a” f for a smooth function f : R® — R and
a € Nj.

Curvature of the Chern connection corresponding to a Hermitian metric A on
some holomorphic vector bundle £ — X over a complex manifold X

Interior of P

The relative interior of P

f(k) = O (k==°) if and only if, for any n > 0, there exists C,, > 0 such that
|f(k)| < Cpk™™ for all k> 0.

The zero set of some function f

The Lie algebra corresponding to a Lie group G

The vector space of n by n matrices with Z entries

For a square matrix A, A > 0 denotes that A is positive definite.
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Chapter 1

Introduction

1.1 Background and motivation

Let X be a compact Kahler manifold of complex dimension n with Kahler form w. Let L — X
be a holomorphic line bundle such that w € 2me(L). Up to a constant scale factor, there
exists a unique Hermitian metric A on L such that the curvature F}, of the corresponding Chern
connection Vj, satisfies

w = Z'Fh,.

We call such an arrangement (L,h) — (X,w) a polarized Kihler manifold. For each k € N, h¥

gives a Hermitian fibre-wise inner product
(s(x),8(x))pe € C for z € X and 5,5 € C*°(X, LF)

and a global inner product

(s, 8) e déf/ (s,g)hk“—' for 5,5 € C®(X, L*) and k € N.
X n.
We will omit the h* indices if it is clear from the context which power of the line bundle we are
considering. For k € N, let {s1 1, ..., S, r} denote an orthonormal basis of (H(X, L*), (,),+).

We define the Bergman kernel as
Ng
def _
By (z,y) = Z sik(7) ® 351 (y) for z,y € X.
i=1

By, is a smooth section of the line bundle 7} (L*) ® 3 (Zk) — X x X, where m; : X x X = X,
for i € {1,2}, denotes the projection onto the i" factor. We regard By(.,y) as a section of L*
with values in fz and have (s, By (.,y)) = s(y) for s € H°(X, L¥) and y € X (see [Ber03]). B,
can be considered as the integral kernel representing the orthogonal projection P, from smooth

to holomorphic global sections of LF.

P, :C>®(X,LF) — H°(X, L)
Ny,

Pu(s)(@) €3 (s, 5500 ne5500(x) = (5, Bi(. @)

j=1
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for v € X,k € Nand s € C®(X, L*).

Note that there exists a natural fibre-wise Hermitian norm on 7% (L*) ® 74 (L ) induced by
h¥, so that we can talk about |Bi|,r : X x X — R. The norm of the diagonal of the Bergman
kernel By, is called the density (of states) function, and we denote it by pi : X — R. We have

pr(x) = |By(z,2)|,0 = Z sik(z)]},  forz € X and k € N.
From a geometrical point of view, py is a very interesting function to study. Of particular

interest is the following asymptotic expansion:

Theorem 1.1.1 (Catlin [Cat99], Lu [Lu00], Tian [Tia90], Yau, Zelditch [Zel98]). There is a

complete asymptotic expansion

Za Ve forx € X and as k — oo,

for certain smooth functions {a;}32, on X, with ao(r) = ﬁ Qﬂ = Scal(x) for
x € X. More precisely, for any R,r € N, there exists a constant Cr, > 0, dependmg on R,r

and the manifold (X,w), such that

and aq(x) =

pr(x) — Z a;j(z)k" < Cr k"B for allk € Ny and z € X.

<R er(x)
Remark 1.1.2. Note that we assume w € 2wcy (L) and not w € ¢1(L). Also, we associate the
metric g = gag(dza ®dzg +dzZg ® dz,) tow = i9,5d%a N dZg in local holomorphic coordinates
which differs from the normalizations chosen by the authors above in the original version of
this theorem. The version of the theorem above is due to Zelditch and Lu, but this result is also
related to ideas by Tian [Tia90] and Yau. Note that Catlin [Cat99] proved a version of this
theorem independently, while Lu’s [Lu00] contribution to the above theorem was to determine
the first few terms explicitly. Yet another approach to the asymptotic expansion of py can be
found in [BBS08].

Let us now relate the above theorem to a well-known classical result. The celebrated

Hirzebruch-Riemann-Roch theorem yields the following asymptotic expansion:

dim HO(X, LF) = /X{(1+01(Lk)+01(Lk)2+,..+61(Lk)n>

2! n!
(1+;cl(X)+112( 2+ e(X)) + .. >}
~ [ Al e [ e,

Vol(X,w) ., 1Scal
2o Xt e

Vol(X,w)k" ™t + O(k"?)

as k — oo, where Scal denotes the average scalar curvature over X. Noting that

/ P = dim HO(X, L*),
b'e n:



1.1. Background and motivation

we realize that the coefficients a; in theorem 1.1.1 give back the topological coefficients of
the expansion obtained by the Hirzebruch-Riemann-Roch theorem when integrated over X. A
local understanding of the functions a;, such as knowing upper or lower bounds, can hence yield
not just geometric, but also topological information about L — X. This relationship between
the asymptotic expansion of the Bergman kernel and the geometry of X is one of the most

interesting aspects of Bergman kernels.

Partial density functions

Let Y € X be a complex submanifold and consider, for [ and & € N, an orthonormal basis
{814y ,8n, .k} of the space J*(Y) of global holomorphic sections of L¥ vanishing to order
at least [k along Y. We define the partial density function p;; : X — R with vanishing along
Y as

My,

o1k () def Z |slk(3c)|i,c for x € X.

i=1
Unlike pg, which we now understand relatively well due a sequence of works by Catlin, Lu,
Tian, Yau, Zelditch and others (see e.g. [Zel98, Lu00]), the asymptotics of p; - and in fact
also the mere existence of an asymptotic expansion similar to theorem 1.1.1 - are open problems.
Partial density functions where Y is a divisor have been studied by Keller, Panov, Thomas and
Székelyhidi [KPTS] (for Hermitian line bundles with positive curvature) and Berman [Ber07]
(in more generality) who discovered that p; ; exhibits a “0-1” law in sense that the first order

asymptotics of p; ; suddenly “switch on” over a certain subset of X.

Theorem 1.1.3 ([Ber07, Theorem 4.3]). Let L be an ample holomorphic line bundle over a
compact complex manifold X of dimension n. Fix a smooth volume form dVol on X and let
h = e=% be a smooth Hermitian metric on L, locally represented by |sU(z)|fL = e~ %) for
z € U and a local trivializing section sy of L over U C X. Let Y C X be a divisor. Assume
that the line bundle LR O(=Y) over X is ample and let py y denote the partial density function

corresponding to the Hilbert space of sections vanishing to order at least k along Y. Then
k™" pr,y = 1pynx (o) det(dd¢)

in L1(X,dVol), where X(0) = {x € X : dd°¢ > 0}, Dy = {z € X : v (z) = ¢(2)} and ¢y
is the equilibrium metric with poles along Y (see [Ber07]).

Remark 1.1.4. Note that in the case where (L,e~?) — (X,w) is a polarization and dVol = %,
the above result states that )
E~" - —1
PE,Y (271')” Dy
in L'(X, %1) and we have X(0) = X. The interested reader may consult [Ber09b, Ber09a,
BBNO7] and references therein for more details.

In this thesis, we will explore the asymptotics of partial density functions p; , with vanishing
to order at least [k along a submanifold Y. We will mainly focus on the case where X is a
toric Kahler manifold with a toric polarization and torus invariant Kahler form and where Y
is a toric submanifold of X. The torus symmetry of these manifolds simplifies the study of
pi, considerably since we are able to understand the space of holomorphic sections of toric line

bundles very well.



Chapter 1. Introduction

Let us now give a quick overview of the chapters of this thesis. Here, we also review some

of our main results.

1.2 Overview

Chapter 2 - The Bargmann-Fock Model

We start the discussion of the asymptotics of (partial) density functions in chapter 2 by first
considering the Bargmann-Fock model, which will serve as an initial example for some of the
features that come into play in the toric case. In the Bargmann-Fock model, we consider the

inner product

(f,9) = f<z>@e-%“z”2 dVol,

for k € Nand f,g € L3, where L3 denotes the space of smooth functions f : C* — C for which
1> = (f, f) < oo and where dVol = (z@@“z” ) " is the Buclidean volume form. We call
the space Fj, of holomorphic functions in £7 the Bargmann-Fock space with parameter k € N.

The Bergman kernel By : C™* x C* — C associated to the Bargmann-Fock model is defined
to be the integral kernel representing the orthogonal projection Py : £2 — Fi. The chapter
focusses on the density function pj associated to this Bergman kernel as well as on the corre-
sponding density function p; ;, coming from the projection P, j, onto the integrable holomorphic
functions that vanish to order at least [k at the origin. In lemma 2.1.6, we provide a compact

formula for this partial density function:

Lemma 2.1.6. The partial density function p;  : C* — R for [,k € N is given by

2
E\" T(kl, k120
= = 1" 2 77
pLk(2) <27T) ( T(kl,0)
Proposition 2.2.4 gives a detailed description of the asymptotics of p; , in the Bargman-Fock

case. From this, corollary 2.2.6 follows:

Corollary 2.2.6. Suppose z € C" is fixed. Then

(3)" + 0O (k™) it 2] > V2l
() = 3 (£)" + 02 g eotk" U8 £ O (k=) if |2 = V2
O (k=) if || 2] < V2L,

where cgj41, for j € Ny, are explicitly computable. In particular, we have

1 2
1= ——1\/=
YT 62m) VTl
1 2
C3 — ——————— — -
47 1080(2m)" V i
In the above corollary, the expansion for ||z|| = v/2[ is of particular interest. In chapter 7

we show that the asympotic expansion of the partial density function is of a similar form (see
theorem 7.4.2).
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Chapter 3 - Toric Geometry

Chapter 3 introduces some terminology and notation that we will need for our discussion of toric
Kahler manifolds. We focus on a particularly simple set of coordinate charts determined by the
vertices of an integral Delzant polytope P and follow Abreu’s [Abr98] discussion of Legendre

duality between a symplectic potential on P and a corresponding Kéahler potential.

Chapter 4 - Example: CP"

To familiarize ourselves with the notation introduced in the previous chapter and to explore
one of the simplest type of toric partial density function, we consider a polarization of CP"

with a multiple of the standard Fubini-Study metric.

Chapter 5 - Toric Localization

Chapter 5 introduces some new toric Bergman kernel estimates and a few tools that are helpful
for our discussion of the Bergman kernel on polarized toric Kahler manifolds. Theorem 5.1.9,
which is strongly inspired by Song and Zelditch’s results on the localization of sums [SZ10,
lemma 1.2, prop. 5.1], is then obtained by a rather straightforward application of the methods
developed in this chapter.

Chapter 6 - Euler-Maclaurin Sums

Another important tool in the discussion of toric density functions are the Fuler-Maclaurin sums
that we explore in chapter 6. Crucially, the Euler-Maclaurin summation result of proposition
6.2.3 allows us to compute the asymptotic expansions of the sums appearing in the definition
of toric partial density functions (at least for points lying in a dense subset of the toric variety

under consideration).

Chapter 7 - Asymptotics

Here we focus our attention on one of the main results of this thesis. Let P be an integral
Delzant polytope and consider a toric polarization (Lp,h) — (Xp,w). We now fix a nontrivial
face ' < P and, for s,k € N, consider the corresponding partial density functions pr i
associated to the projection onto those holomorphic of sections of L’I‘; vanishing to order at
least sk along the toric submanifold Yz C Xp corresponding to F. Let p; denote the standard
density function. By invariance under the real torus action, we can think of p; and pp s\ as
functions on P C t*, where t denotes the Lie algebra of the real torus acting on Xp. Suppose
that

def

P= { act :l(a) = p; — (a,n;) > 0 for some p; € R, primitive

n; € Ker(exp) Ctand i € {1,--- ,d}},

and assume without loss of generality that F' = NI_; Z(l;) for some r € {1,--- ,n}. For s € N,

we define

ProElacP: Y lj)>sy, FREJacP:Y lja)=s
j=1 j=1
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Theorem 7.4.2. Let (Lp,h) — (Xp,w) be a toric polarization. Fix a nontrivial face F' < P
and s € N. Let 8 € Int(P). Then

pe(B) + O (k=) if B € Int(Pr)
prsk(B) =4 506(8) + 272, c¢;(B)k"U3) 4 O (k=) if B € Rellnt(F})
O (k=) otherwise,

where ¢; € C* (Int(P)) are explicitly computable functions. Now let  C Int(P) be a compact
set. For p € Ny and 8 € K N Rellnt(Fs),
1 (@) )
prsk(B) = 5ok(B) + D _c;(BK" VTR + 5, 4(8)
§=0
for all k € N, and there exists D > 0 such that |.S,, ,(8)| < Dk (P+3) for all B € KNRellnt(Fs)
and k> 0.

Chapter 8 - The Slope Inequality

In chapter 8, we review the notion of slope stability of a polarization with respect to a sub-
manifold as discussed by Ross and Thomas [RT06]. We discuss this notion of slope stability
in the toric setting and reformulate the toric slope inequality slightly in lemma 8.2.4. We then
present an argument due to [KPTS] which shows that sufficient asymptotic information about
partial density functions could yield a proof of the fact that the existence of a constant scalar
curvature Kahler metric in the polarization class implies slope stability with respect to complex
submanifolds (Corollary 8.1.3, [Tho06, Corollary 7.4]).

Chapter 9 - General Polarized Kahler Manifolds

In chapter 9, we investigate some ideas related to partial density functions on general polarized
Kahler manifolds. This chapter relies heavily on the existence of Tian’s “peaked” holomorphic
sections, which we also review here. We dwell on Tian’s philosophy of using such peaked sections
and emphasise the link with the orthogonal complements of vector spaces of sections vanishing
to a certain order along a submanifold. The following proposition is a result following this

approach:

Proposition 9.1.8. Suppose that (L, h) — (X,w) is a polarized Kéhler manifold. Let [ € N,
zo € X and let {s;}3°, be a sequence such that s, € Ji(p)t C H(X,L*) and |[sg|[px = 1
for all £k € N. Then there exists a constant C' > 0 such that, in local K-coordinates of order 4

centred xg, we have

n

/ \Sk|ik wi' <Ck™! forall keN.
x—{lzll<s® | n!

In particular, {s;};, is peaked at z.

The ability to compute the asymptotics of toric (partial) density functions using only an

orthonormal basis of a small subspace of holomorphic sections is a useful tool in the toric
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setting. We explore a localization of sums result in this direction for general polarized Kahler

manifolds:

Corollary 9.2.3 (Localization of the density function on a tubular neighbourhod).

Let (L,h) — (X,w) be a polarization of a Kéhler manifold (X,w). Denote by px the density
function for this polarization and let Y C X be an embedded complex submanifold of X. There
exists r > 0 and, for any [ € N, a constant C; > 0 such that

pe(p) = Y lsis(P)] < Cok™!

for all p € T,(Y) and k € N. Here, {skﬁj};vz"'l denotes any orthonormal basis of the space
JE)L and |.| denotes the fibre-wise norm on L¥. In particular, the asymptotic expansion of

pr(p) is equal to the asymptotic expansion of E;V:’H \sk7j|2 (p) for p € T.(Y).

Chapter 10 - Induced Metrics on Blow-ups

We consider a polarization (L™, h) — (X,w) and discuss a sequence of pull-back Fubini-Study
metrics {wy}ro, C 2mer(L™) studied by Tian. For some distinct points py,--- ,ps € X and
l € N°, we then consider the blow-up 7 : Bl,, ... 5, (X) — X with the line bundle

L=Lp o potm C L™ @ O(-11E1) @ - - @ O(—1,Ey).

We assume that m is large enough so that Lis very ample. In this chapter, we describe how

the polarization induces a sequence of metrics {@y }r.; C 2mer (L) (see lemma 10.3.1). We then
observe that (see lemma 10.3.2) on X — [J;_,{p:},

Myl — W = %8510gpl,k,

where p; 1, is a corresponding partial density function on X. In the toric setting, it is relatively
easy to study these metrics in detail and we focus on two examples, namely a certain blow-up of
CP" and C" respectively. In these examples, the induced metrics {@y },-, exhibit an interesting
behaviour on the exceptional divisor (see lemma 10.5.3 and lemma 10.6.8) and far away from
the exceptional divisor (see lemma 10.5.2 and lemma 10.6.7). In addition, the induced metrics
on Blp(C"™) turn out to be Asymptotically Euclidean for each k € N (see lemma 10.6.6).

Appendices A and B

The two appendices A and B deal with some technical results that we require in this thesis.
In particular, we extend Laplace’s method to integrals over half-spaces in section B.3 which is

essential in chapter 7.
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Chapter 2

The Bargmann-Fock Model

In this chapter, we discuss the asymptotics of a partial density function p; 5, on C" equipped with
the standard flat metric. We will refer to the setup discussed in this chapter as the “Bargmann-
Fock model”. Since toric Kahler manifolds have a natural open cover by C" charts on which
there exist Kéahler potentials which share many of the properties of the standard potential
function ¢(z) = @ that appears in the Bargmann-Fock case, we will use the Bargmann-Fock
model as a guiding example for our discussion of partial density functions on polarized toric
Kahler manifolds in chapter 7. We now also introduce Laplace’s method as an important tool

for determining the asymptotics of p; .

2.1 Introduction

2.1.1 Definitions

Consider the inner product
(f,9) = [ f(z)g(z)e2I#I" avol,
Cn

for k € Nand f,g € £3, where £ denotes the space of smooth functions f : C* — C for which
|£II> = (f, f) < oo and where dVol = 2, (i(“)g@)n is the Euclidean volume form. We call
the space F of holomorphic functions in C% the Bargmann-Fock space with parameter k € N.
(Fk, (,)) is a Hilbert space [Bar61].

Lemma 2.1.1. The monomials {z% : « € N§} form an orthogonal basis of Fy, with norm

n x|
2T 2
oz — (20 Z |
def Lo

We denote the orthonormal basis elements by sq , where sq k(2) = T==]] forz e C", a e Ny
and k € N.

Proof. Tt is easy to see in polar coordinates that (2%, z°) = 0 for a # 3, 0, 8 € Np. We have

n o0 5
I2]|* = (2m)" H/ p2oitle="3
j=1"0

dr
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and it is obvious that {z® : @ € N} } is a complete orthogonal system for Fy. O

The Bergman kernel By, : C" x C" — C is defined to be the integral kernel representing the
orthogonal projection Py : Ei — F in the sense that

Pu(f)(2) = (£, Br(.,2)) = | f(w)Brw,z)e 2I*I"dvol for all z € C", f € £2.
(Cn

We recall the following classical result.

Lemma 2.1.2. The Bergman kernel for the Bargmann-Fock model is given by

Bi(z,w) = Z Sa,k(Z)Sa,k(w)

aeNy

() 26

aeNy

— <2k> e2(®W)  for 2w e C” and k € N.
T

Proof. The last simplification above follows from the multinomial theorem, while

(£.Bu2) = [ Fw)B(w, 2)e 51w avol = 37 (£, sa)sak(2)

aeNy

proves that P(f)(z) = (f, Bx(.,2)) for f € L3 and z € C". O
Let us note the following well-known result on the translations T} q.
Lemma 2.1.3. The translations Ty q : L3 — L%, for k € N and a € C", defined by
(Thaf) () & =95 (2 )
for f € L2 and z € C", are isometries of (Fy, ||.||).
Proof. Let f € Fi, a € C" and k € N. We have
IThafll? = / F(z — @) X (marr@n—lal) = 5121° qyo
cn
:/ f(z — a) e~ 41==4l 4vol
= [ 5@ e I avel 1
O

Remark 2.1.4. Note that, in the above proof, z e~ slz=al® s 4 Gaussian function which
has a peak at a € C". Functions of this type will play an important role in our discussion of

the density function on polarized toric Kdhler manifolds in chapter 7.

10



2.1. Introduction

Although Bergman kernels of the type discussed here are much simpler than the Bergman
kernels that we will study in chapter 7, they are nonetheless of independent interest. The
interested reader may refer to [Sei92, SW92, BS93] which discuss properties of the Bargmann-

Fock space in more detail and which include further background references.

2.1.2 Line bundle interpretation

Let X = C™ and consider the trivial line bundle L = C™ x C on X. We equip X with the flat
Kihler metric w = i09¢(z) with potential ¢(z) = 1||z||? and L* with the Hermitian metric A"
which is represented by the positive function e=¥?(#) in the standard holomorphic trivialization.
We observe that iF), = —iddlog(h) = w, i.e. we have a polarization (L,h) — (X,w). We can
think of the Bergman kernel Bj, as a section of the line bundle 7} (L*) ® 73 (fk) — X x X,
where 7; : X x X — X denotes the projection onto the i** factor. Then

By(z,w) = Z Se,k(2) ® S p(w) for all z,w e C".

aeNY

h* now induces a natural Hermitian inner product on this bundle which we also denote by h*.
If, for example, f,s € C® (X, Lk) and g,t € C™ (X, fk), this gives

(f(2) @ g(w), 5(2) @ t(w)) e = (f(2),5(2)) pr (9(w), t(w))

= f(2)s(z)e 1= g(w)t(w)e™

flw?
for all z,w € C". We then compute that

k" 2
|Bk(z,'w)|,2lk = (277) e~slz=wl®  for all z,w e C™.

The density (of states) function pr : X — Rxg is defined to be the restriction of the norm of
By, to the diagonal in X x X. We have

pk(z) = (;) for all z € C™.

2.1.3 Partial Bergman kernels

For I,k € N, we are now interested in studying the orthogonal projections P,y : L3 — Fy,
where F i, def Ei N Ji and
[e3

{f : C" — C: f is holomorphic and % f| =0 for & € Nj such that |o| < lkz} .
0

def

Tk =

We call the integral kernel associated to Py the partial Bergman kernel with parameters (1, k)
and denote it by By ;. We have

Bl’k(z,w)z Z Sa,k(z)sa,k(w)

|| >kl

E\" g\ ol zogge
() > (5) =
|| >kl

11



Chapter 2. The Bargmann-Fock Model

for all z, w € C", and || > kl in the sum denotes the index set {a eENG el =370 ga; > k:l}.
We compute that

> k" k' 20w 2 ~5 (=17 +llwll?)
|Bl,k(sz)‘hk: % ||z>:kl 5 T ’ |

Our partial density function p; is the restriction of the h*-norm of B, ;. to the diagonal in
Cr x C".

EN\" k |°‘|z°‘2"‘ E 2
— [ — _ —EHZH
- (L) 5 (5722,

o|>kl

k" AMEE —E||z|?
~() Z () G

Jj=kl

where we have applied the multinomial identity

. 9 2\ 7
122 = (I + -+ + J2al?)
.]' 20 2au,
= > =lal* .zl
a!
lox|=j
i
= Z 2% for z € C".
al
lex|=j
We now introduce the variable s = ”z2”2 and let p; (2) = .k (s), so that
k " (k‘S)] ks
m(s) = (27r> Z 5!
J=kl
EN" ks)?
_ <2> 1— Z ( Sl) o—ks
T o<j<kl 7
We observe that
0 E\". (ks)? = (ks)imt
il = =) ke ks —
9s | T* (27r> ‘ Z ;! Z G- 1)
s 0<j<lk j=1
e (B )R
27 kl —1)!

Integrating the derivative, we obtain an integral representation for p; j.

k" kM S ktki—1

pre(z) =mi(s) = (27T> (kl—l)!/o e~ ktkl=1qt
k" 1 e ki—1

:<27r> o,

() (- i)

12



2.2. Asymptotics of the partial density function

Here,
L(n,x) = / e 't"'dt forne€CandzcR

denotes the incomplete gamma function which has the special values T'(n,0) = (n — 1)! for
n € N.

Remark 2.1.5. There exists a rich literature concerned with the asymptotic properties of in-
complete gamma functions. The interested reader may consult [Gau98] for an extensive review.
The methods that we will employ to understand the asymptotics of T'(n,x) will only apply for

real valued n.
We have now proved the following lemma.

Lemma 2.1.6. The partial density function p;, : C* = R>q for [,k € N is given by

k" (ki k12
puk(2) = <27r) <1 - 7““702) :

0.8 1

0.6 1

0.4 1

0.2

(=}

T(kl, k)

Figure 2.1: Graphs of 1 — NGEN

for r €[0,4], 1 =2 and k = 1,2, 3,1000.

2.2 Asymptotics of the partial density function

2.2.1 Laplace’s method in one dimension

The traditional form of Laplace’s method Traditionally, Laplace’s method in one di-
mension (see [dB81, BHT75]) provides a means of determining the asymptotics of an integral of

the type
Iy = / fla)e ) de,
R

where k € Ry tends to infinity, f,h € C*°(R), h has an absolute minimum which it attains
only at 29 € R and where h”(xg) > 0. We assume that I, < oo for k € Ry and that there
exists a ¢ > 0 such that h(z) — h(zg) > ¢ outside a compact subset of R. Laplace’s method

13



Chapter 2. The Bargmann-Fock Model

then gives an asymptotic expansion in k,

M [ =3 k=05 L 0 (k)
=0

where the coefficients a; are determined by the derivatives of f and h at zo. In order to
understand the asymptotics of the partial density function in the Bargmann-Fock model, we
will now investigate a slightly more subtle version of Laplace’s method which depends also on

the domain of integration.

Generalized error functions For j € Ny, we define the functions e¢; : R — R,

A jo—x? A
ej(N) = fgoxj_e zdx = 2 / wle ™ dz  for A € R.
Jo aledx T (57) Jo

We observe that eg is the standard error function and call e; the generalized error function of

order j (see figure 2.2).

11

0.5

—
[N
w
e

-4
Figure 2.2: Graphs of ep; and eg;41 for j =0,...,5.
Remark 2.2.1. By the duplication formula for T,
NG (z + ;) = /m2'7%10(20)  fori € N,
we find that, _
(oeh)
We have

F(j+1> VEROL Gf =924, i € Ny,
il ifj=2i+1,i€N,.

A refinement of Laplace’s method The following proposition gives a refined version of

Laplace’s method in one dimension in the case where k € N.

14



2.2. Asymptotics of the partial density function

Proposition 2.2.2. Let f,h € C*® (R) and assume that h has an absolute minimum which it
attains only at xy € R and where h" (xq) > 0. Furthermore, assume that there exists ¢ > 0 such
that h(z) — h(zg) > ¢ outside a compact subset of R. Suppose that [, |f(z)| e *@dx < oo for
k € N and consider the integral

xo+r
Ii(r) o / f(@)e @ dy forr € R and k € N.

(]

a) Let {ri}32, CR, m € N and M > 0 such that |r| < Mk~5 for all k € N. There exists
C =C(M,m) >0 such that

m I
ML () =Y 4 (rk il 2(%)) | < o (3 1),

Jj=0

for all k € N, and where, for s € R and j € Ny, we define

dof 1 & ) j+1
O3 et (5o )

>+ %Mi <h<x> — (o) — h”(;O) (= x°)2>i I

=0
2

ej12i(s)-

Zo

b) Let {ry};>, C R, m € N and M,8 > 0 such that |r| > Mk=2%9 for all k € N. There
exists C = C(M,m,0) > 0 such that

eFo) Iy (ry) ngn 76) b, 5 < o (3+1)
=0

for all k € N, and where the constants bj, for j € Ng, are given by
J ; .
def 1 (-1)* j+1
b; = = r
J Q;H(j+2z')! ( y

(h"?xw)%i %M (h@) — o) = w (x— mof)i f()

Proof. Part a) By Taylor’s theorem, h(z) — h(zg) = w (z — 20)° + R(x). Let m,k € N
and M > 0. There exists a constant ¢ = C(M) > 0 such that |R(z)| < C |z — ao|® for
| — 29| < M. It then follows that,

\kR(z)| < CM?® for |z —x¢| < Mk™3 and k € N.

We have

m

e k) 3 ““f‘(@) + Syt (~kR(z)),
i=0 '

and there exists a constant D = D(M,m) > 0 such that

[Susr (—kR(@))| < DK™ |2 — gD

15



Chapter 2. The Bargmann-Fock Model

for k € N and all z € R such that |z — 2| < Mk™3.
Remark 2.2.3. Observe that, for a >0 and k € N,
Ele) ) ) E=e) ) )
/ |$ _ -TO|J e*ka(xfxo) dr :/ |J3‘] e*kam dx
Zxo 0
J+1 +o0 : 2 j+1
= k(%) / o e do = 0 (k= (')

0

as k — oo.

For s € Ny such that s > 3i, we have:

CROD pay = 3 E L iy

il ijl dx (x — o)’ + Tsi(x), (2.2.1)

Jj=3i zo

and there exist constants E; = E;(M, s) > 0 such that |Ty ;(z)| < E; |& — 20|*™" for all 5,i € Ny
with s > 3¢ and all © € R such that |z — z¢| < M. Applying remark 2.2.3, we find that, for
r| < ME—3,

To+Tk
(o) [ (1) = / )o@ ~hE) gy
o
T (r (_kR(x)) R 0) (f 2 (m
—2/10 Tf(x)ek el O)dSE-I-O(k (2+1)>7

where the constant in O depends on M and m (and of course on h and f). Using equation
2.2.1, we find that

To+TK I8
i _h (o). 2
/ (x —x) e” 2 (@70 gy
x

0

m m+2i (_1)z d J )
e () = ( 2 K 1 F@i@)

i=0 \ j=3i

o
=+ Um+2i’i(x,k)> + 0O (kf(%Jrl)) ,
where
. To+Tk h”(zo) 2
Unm+2i,i(z, k)| <k Tpoii(z)| e =2 @=20) gy
| +21, ’ +21,
Zo
) To+7k . W (2g) 5
To
2 i+l Cm I
0 R
-0 (kf(%ﬂ)) .
Note that

To+TE " Tk ”
. kh'(=qg) _ 2 . kh"(zg) 2
/ (x —xo)le” 2 (@0 dy :/ e 2 Tdx
x0 0

ye ¥ dy

j+1 kh!/ (x
i+l < 2 )J2/\/ z(O)Tk

0

16



2.2. Asymptotics of the partial density function

(2 VPO ()
=k™z €; T |
h”(l‘o) 2 2

We conclude that

m m+2i 1 (— i . JT
M) I (ry) = %Z > R (' 1') r (J JZF 1) (h//(2330)>

Part b) Suppose now that |ry| > ME=21 for all k € N and let g 4 _ min (6—4,-3%)
and &' & 3 —p. Then p € [§,3) and |rg| > Mk™#, while & > 0. By the proof of lemma

B.2.3, there exists C' > 0 such that h(x) — h(zo) > Ck2¥ ~1 for all k € N and € R such that
|z — xo| > ME~2+9_ Tt follows that

To+Tk a:o-‘rSgn(Tk)Mk_%'M/
/ F(a)e k@ =h0) gy — / F(a)e MM gy 1 O (k).

0 Zo

The constant in @ depends on M and §’ since

xo+r ,
. F(@)] e H@ RN gy < O [ f(g)] =00 g
— Ll
zo+Sgn(ry) Mk~ 2 R

— 0 (k).

We can now expand
Mk—2+% < Mk=3 for k € N. We note that, for j € N,

1l
f‘;ﬁsgn(rk)Mk © O f(w)e R(h@)=h(z0)) 4z using part a) of the result, since

€; (Sgn(rk)Mk‘s’ hN(xO)) = lim  e;(2)+ O (k)

2 z—Sgn(rg)oo

= Sgn(ry)’ ™ + O (k=)

as k — oo, since for any a > 0,

Sgn(rg)oo ) 5 i [Sen(rr)oo ) 2
/ |z e " dx =k Lyl e dy
Sgn(ry)ak?®’ Sgn(rg)ak® ~2

_2k—1328  j+1 P2
geakkk2/|y|Je$d:ﬂ
R

17



Chapter 2. The Bargmann-Fock Model

=0 (k).

2.2.2 An application of Laplace’s method

Let us now discuss the asymptotics of the partial density function pj; in the Bargmann-Fock
model. As we can see from the next lemma, the asymptotics of py ;(zx) exhibit an interesting

transitioning behaviour for ||z near v/2I.

Proposition 2.2.4. Suppose that {zk}Zozl C C™ is a sequence of complex vectors and letl € N.

a) Suppose that M,6 > 0 and

@ *l' > Mk=2%9 for all k € N. Then

(£)"+0 (k=) if |z&]| > V21 for all k € N

Pk (k) =
O (k=) if |z&|| < V2l for all k € N,

b) Define h : (—1,00) — R by h(z) ¥ 2 — llog(z + 1) + llog(l), for z € (~1,00), and let

M > 0 and m € N. Suppose that Hz’““ l‘ < Mk~3 for all k € N. Then there exists
C =C(M,m) >0 such that

P (k) — <2€r)n W %ZZ ( ((szHz l> Z) + (—1)jbj> i

for all k € N, and where

ej+2i($).

J ; . 424 g\ %
def 1 (_1)1 ] +1 . il oy, d J T 1
i = — T 20072 T — h - | —
a;(5) 2;i!(j+2i)! ( SR A v @ -5 el

c) Suppose L = ﬁ +1 for all k € N and some constant s € R. Then part b) yields the

exrpansion

ok () = ;;r)n %e—klg (aj (\/827) + (—1)jbj> EE 40 (k)

where a; and b; are the same as in part b), and the coefficients c;(s) are obtained by expanding
(RO )kt Kl
d;k™ it = 1- —k
(= Z =V

18



2.2. Asymptotics of the partial density function

via Stirling’s series and by collecting powers of k in the resulting sum.

Proof. For r = @, we have
k" 1 b kl—1
pLk(Z) (%) (kl_l)!/o Yy ey
k n (kl)kl _ 7‘2—l 1 _
= (%> m@ kl/l me kh(y)dy, (222)

where h(y) e y — llog(y + 1) + llog(l) is a smooth strictly convex function on (—I, 00) with
unique minimum h(0) = 0. Observe that the singularity of ﬁ at y = —I is no cause for

concern, since [ > 1 and

1 1
B 7<k71)h(fl)/75 L —h) -
— dy < 3 — e "Wy = 0 (k).
/4 y+i° y=e L oy+i© y=0(")

Multiplying the integrand with a smooth cut-off function & such that £(x) =1 for x > —% and

&) =0forz < —% does not change the asymptotic expansion of the integral.

‘ 2

a) Let ry def @ forall ke N. If r > 1+ ME=2%9 for all k € N, we can use the proof of
corollary B.2.4 which shows that

oo 1 B -
/Mk’%JrS Y+ 1€ Wy =0 (k7).

Hence py (z1) — pr(zr) = O (k~°°) in that case. The proof in the case where r7 <[ — MFE~—z+9

uses similar reasoning.

b) We have

-1 21 —1
/Tk Le—kh(y)dy - /Tk — / Le—kh(y)dy.
—1 y + l 0 0 Yy + l

We apply proposition 2.2.2 b) to the integral

/ e kR () g
0 Y+ l

and obtain

—1 9]
Lk H1p - i
e Ydy ~ —1)7 k™2
/0 y+1 ;:O:( )b

where

19



Chapter 2. The Bargmann-Fock Model

We also have
/r;zc—l 1 e,kh(y)d ia_ (7,,2 - l) E ki%
o Y+l A 2l

by proposition 2.2.2 a), where, for s € R, we define

ej+2i(8)-
0

def 1o~ (1) Jj+1 . i, d I 22\" 1
(s)% 2 T op i L S R
a;(5) 2§i!(j+2i)! ( e (Mo -g) o

Combining these two expansions implies that, for m € N and M > 0, there exists a constant
C =C(M,m) > 0 such that

AN GOLYE B Bl k o\ i
=] ; -1 - —1)7b; | k
< ok (3+1)
(2.2.3)
for all k € N.
c) This follows directly from b). O

Remark 2.2.5. We compute that by = —3;, by = Vo — 5z and by = Vo

2412 57512
Corollary 2.2.6. Suppose z € C" is fized. Then
(3)" +O (k™) if |z| > V2l
pi(2) = 4 1 (£)" + T o Ok 0D 1 0 (=) if 2] = VL
O (k=) if lz]l < V2L,

where c;, for j € Ny, denote the same functions as in the previous lemma. In particular, we

have
1 2
0= 5o\ 7
1 2
0) = il
s(0) = {og0@my \ 705
Proof. Note that
(o] o0 1
kl—1 !:/ R=lo=Ydy = (ki kle_kl/ —— e khlug
(=0t = [T ey = et [ e tnng,

= (kl)FleH </O°O /Ol> (yigekh(y)) dy.

Let a; and b, for j € Ng, be defined as in the previous proposition. It follows from proposition
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2.2. Asymptotics of the partial density function

2.2.2 that
(kL — D)I(kD) HER o N7 (14 (—1))) bk~
=0
~ 23 by ().
1=0

Also noting that a;(0) = 0 for j € Ny, we find that
pir(z) ~ 1k ! _(k " (L)kle*kl ib 1)
b 2 \ 27 or ) (Rl-1)I° =

if ||z|| = v/2I. The other cases follow from proposition 2.2.4. By Stirling’s series we have

11 wik (4 1 -2
il (k) Mt (1 o PO,

so that

1/ kE\" EN" |1 1 1 3 s
m,k(z>~2(2w) +<27r> \/%{—blk +(12lb1—b3)k }+O(k )

for ||z|| = V2l
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Chapter 3

Toric (Geometry

In this chapter, we review some standard terminology and notation needed for our discussion of
toric varieties. We then specialize to the case of polarized toric Kéhler manifolds and explicitly
describe a natural open cover of such manifolds by C™ charts. We describe the torus action
as well as the Kéhler form in these coordinates. Since there are at least two ways of thinking
about toric Kéhler manifolds, one can approach the subject from several directions.

From the algebraic geometry point of view, one is interested in studying certain alge-
braic varieties of complex dimension n admitting an action of a complex n-dimensional torus
Ty = (C*)™ with an open dense orbit. Associated to this approach is the notion of a fan, a
combinatorial object describing the way in which such a variety is glued together from vari-
ous charts. We will recall a pedestrian approach to understanding the transition functions for
smooth complex toric varieties in detail in 3.1.

Alternatively, one can think of a toric Kéhler manifold (Xp,w) as a symplectic manifold
with additional structure. In this approach, such manifolds are classified by their image under
their moment map. These images turn out to be special kinds of polytopes which are called

Delzant polytopes. We describe how these approaches are related in 3.2.

3.1 Complex algebraic approach

3.1.1 Construction

From an algebraic geometry point of view, it is easiest to specify a toric variety by a fan. For
the algebraic approach, we follow the notation of [Oda88]. We start with a free module N = Z"
of rank r and let M = Homyz(N,Z). Let us review the basic objects required:

Definition 3.1.1 ([Oda88]). A subset o of Ng LN @z R is called a conver polyhedral cone if

there exists a finite number of elements ny,...,ns in Ng such that
o= Rzonl + ...+ Rzons.

A convex polyhedral cone o C Ny is called rational if we can choose the elements ny,--- ,ng

above to lie in N, and it is called strongly convez if o N (—o) = {0}.

We define the dual cone of a convex polyhedral cone ¢ in Nr by
oV ={x € Mg: (x,y)>0foralyec o}
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Chapter 3. Toric Geometry

A subset 7 of o is called a face of o, denoted 7 < o, if there exists mg € oY such that
def
r=0nN{me}*t = {y €0 : (mo,y) =0}.

Definition 3.1.2 ([Oda88, p.2]). A fan in N is a nonempty collection A of strongly convex
rational polyhedral cones in Ng = N ®z R satisfying the following conditions:

i) Every face of any o € A is contained in A.
ii) For any 0,0’ € A, the intersection o N ¢’ is a face of both o and o’.
The union |A| def U,ca o is called the support of A.

To each face o of a fan A, we associate an additive semigroup S, 4 A 1 ¢V which turns
out to be saturated (If em € S, for m € M and a positive integer ¢, then m € S,.), finitely
generated, and it satisfies S, + (—S,) = M. For each face 0 € A, we get a set

U, € {u: S, = Cu(0) = 1,u(m +m') = u(m)u(m’) for all m,m’ € S,},

and a choice of generators mq, ..., m, of the semigroup S, yields an injective map

(e(m1),...,e(my)) : U, — CP,

where e(m)(u) def u(m) for m € S, and U,. We identify U, with its image under the above
(C[S5 ),

where C[S,] denotes the group ring corresponding to the semigroup S,. C[S,] is a commutative

map. Equivalently, following Fulton [Ful93], we could have defined U, def Spec

max

C-algebra, and Spec,,,,..(C[S,]) denotes the set of maximal ideals in C[S,]. The faces of a cone

o in the fan now naturally correspond to subsets of U, :

Proposition 3.1.3 ([Oda88, p.7]). For a strongly convex rational polyhedral cone o in Ng,
its dual cone ¢ is a rational polyhedral cone in Mg. If T is a face of o, then there exists
mg € M NoV such that T = o N {mo}*. Hence T is also a strongly convex rational polyhedral

cone in Ng. In this case, we have S; = S5 + No(—myg) and
U = {u €U, : u(mg) # 0},

which is an open subset of U, .
We now obtain toric varieties by gluing these sets U, for o € A:

Theorem 3.1.4 ([0Oda88, p.7]). For a fan A in N, we can naturally glue {U, : 0 € A} together

to obtain a Hausdorff complex analytic space
def
Tnemb(A) = H Z/{g/ ~,
gEA

which is irreducible and normal with dimension equal to r = rank(N). We call Tyemb(A) the

toric variety associated to the fan A C Ng.

3.1.2 The torus action

We define the algebraic torus
Tn % Homg (M, C*)
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3.1. Complex algebraic approach

and, for m € M, a character e(m) : Ty — C* given by e(m)(t) = t(m) for t € Tn. Ty C
Tyemb(A), and the action of Ty on U, C Txemb(A), for o € A, is defined by

(t.u)(m) Lf t(m)u(m) fort e Ty,u €U, and m € M.

3.1.3 Integral Delzant polytopes
Introduction
Let us now discuss Delzant polytopes in some detail. We recall the following definitons.

Definition 3.1.5. A convex polytope in My is a convex hull of a finite set of points in Mr. A
subset F' of a convex polytope P C My is called a face of P, denoted F' < P, if there exists
u € My and b € R such that

PCH*bdéf{veMR:(v,wzb} and

F=PNoH! ={veP:(v,u)=0b}.
Definition 3.1.6. A convex polytope P C My is Delzant if
1. There are n edges meeting in each vertex v.

2. The edges meeting in the vertex v are rational; i.e., each edge is of the form v + te;, with
t>0,tcRande; € M.

3. The ey, ...,e, in (2) can be chosen to form a basis of M.
An integral Delzant polytope in My is a Delzant polytope whose vertices lie in M.

Now let P C My be an integral Delzant polytope. To P we can associate a set of cones as

follows: To any face F' of the polytope P we associate its tangent cone (see also [Aud04])

sp & U r(P—m),

r>0

where m is any point in the relative interior of F'. Recall that the relative interior of a subset
S C R™ is its interior considered as a subset of its affine hull Aff(S). The dual cones

op & sp.={n € Ng: (n,m) >0 for all m € sp},
for F < P, form a fan A(P) defining the toric variety Tyemb(A(P)) which we denote by Xp

(see also [Aud04]). The cones o, for v € vertices(P), are of particular importance because

U  t, =Xp

vEvertices(P)

In this way, a Delzant polytope defines a special type of toric variety Xp. It is well known that
Xp is smooth, compact, n-dimensional and projective.

Deviating from the standard textbooks on toric varieties, we will from now on only consider
integral Delzant polytopes and their corresponding fans. First, we check that the intersec-
tions of any two top dimensional cones of the fan A(P) corresponding to such a polytope are

particularily easy to describe:

25



Chapter 3. Toric Geometry

Lemma 3.1.7. Let P be an integral Delzant polytope and let v,v’ be vertices of P. Then
oy Now =0, N{v—v'}t.

Proof. Let © € o, Noy. Then, for m € s,, (x,m) > 0, but " —v € P—v C s,. Hence
(x,v" —v) > 0 and similarly, for m € s, (z,m) > 0, but v —v' € P —v' C s,. It follows
that (z,v —v’) > 0. We conclude that x € {v — v'}*+. Conversely, let z € o, N {v — v'}+.
Then, for m € s,,, m = >0, A\;m; for some \; > 0 and m; € P —v' = (P —v) + (v —v').
We have P —v C s, and @ € {v — v'}*. Therefore (x,m;) > 0 for all i € {1,---,p} and so
(x,m) > 0. O

This gives us an explicit description of Uy, , as follows:

Corollary 3.1.8. Let P be an integral Delzant polytope and let v,v' be vertices of P. Then
Sovno, = So, — No(v" = v).

In particular, Uy, no,, C Uy, is given by {u € Uy, : u(v' —v) # 0}.

Proof. This follows from [Ful93, proposition 2]. O

The line bundle Lp

Note that so far we have not used all the information contained in the polytope P. We will
now see that P also determines a very ample holomorphic line bundle Lp whose bases of global

sections give embeddings of Xp into projective space.

Definition 3.1.9 ([Oda88, p.66]). Let A C N be a fan. A function h : |A| — R on the support
|A def U,eca o of A is called a A-linear support function if it is Z-valued on N N |A] and is
linear on each o € A.

We can associate to P a A(P)-linear support function h : Ng — R by
h(n) e inf{(m,n) : m € P} forn € Ng,
as described in [Oda88, A.3]. Note that the tangent cone sy for a face F' of P satisfies

sp=JrP-m=Jre-F)= |J ro-0),

r>0 r>0 r>0,peP,feF

where m is any point in the relative interior of F'. The dual cone or to sg is hence given by
ocp={n€Ng:{p—f,n)>0, forall feF,pe P}.
Lemma 3.1.10. Let F be a face of P. Then
op ={w € Ny : (f,w) = h(w) for all f € F}.

Proof. Let n € {w € Ng : (f,w) = h(w) for all f € F}. Then (f,n) < (p,n) for all p € P and
f€F. Hence (p— f,n) >0forallpe Pand f € F. If n € op, then (f,n) < (p,n) for all
p€ Pand f € F. But f € P, sothat (f,n) = h(n) for all f € F. O
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We observe that A(P)-linear support functions take the following simple form: For n € o,

and v € vertices(P), we have h(n) = (n,v). Since U 0, = Ng, this gives an easy
vEvertices(P)
description of h. Following [Oda88, §2], we can now define a very ample line bundle

LPdéf H Z/IUUX(C/’\H

vEvertices(P)

where we glue U,, x C to U, , x C along Uy, via the isomorphism
Gov'v - ucrvﬁo',u/ X (C — ucrvﬁa,v/ X (C

given by guy(z,¢) = (z,e(v — v')(x)c) for € Uy, s, and ¢ € C. On the line bundle Lp, we
define an action of T on U,, x C by t.(u,c) Lf (tu,e(—v)(t)c) for v € vertices(P),t € T,
u € U,, and ¢ € C. It is a standard result in toric geometry that the global holomorphic
sections of Lp have a basis corresponding to the integral points of P. Let us elaborate this
point a little bit. The actions of Ty on Xp and Lp induce an action of T on HO(XP, Lp) as
follows:
(tos)(p) et t~ts(tp) forse€ H(Xp,Lp),p€ Xp and t € Ty.

The vector space H° (Xp,Lp) = ®acpnm Vo then decomposes as a direct sum of one-dimensional

weight-spaces V,, for a € PN M for this representation, where
v, {se H'(Xp,Lp):tos=e(a)(t)sfort € Ty} fora € PN M.

We define Sq : Uy, = Us, X C by Sq0(u) dof (u,e(a —v)(u)) for « € PN M, v € vertices(P)
and u € U,,. One can check that such a collection {sq, : v € vertices(P)}, for « € PN M,
descends to give a global non-trivial section s, € H°(Xp, Lp) and that s, € V,. It is also not

hard to see that the scaled polytope kP gives rise to the line bundle L’f; over Xp for k € N.

Coordinates

Let P be an integral Delzant polytope in Mg. Since we will later work in concrete local
coordinates on Xp and Lp, we will now give a very explicit description of toric coordinates,
transition functions and the torus action in terms of the polytope P. The description of these

coordinates on Xp is also sketched in less detail in [Don08].

A choice of an ordered reference basis (ey,...,e,) for M gives rise to an isomorphism of
groups f: Ty = (CH)", f:u— (u(e1),...,ule,)) for u € Ty. For any two vertices v,v’ € P,
we define A/, : Mr — Mg to be the linear map such that

Ay (m(v),) =m(v’), forallie{l, .-, n},

where (m(v)1,...,m(v),), for a vertex v of P, denotes an ordered basis for M given by primitive
integral vectors along the edges of P emanating from v. Let us assume that we have fixed an
ordering of these edge vectors for all vertices of P at the beginning.

Note that any such choice of ordered edge-vectors at a vertex v precisely corresponds to an

isomorphism U,, = C", given by u — (u(m(v)1),...,u(m(v)y)) for u € U, . We denote by
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(Ayry)i; the representation of A/, in the ordered basis (m(v)1,...,m(v),). We have

v

As a matrix, we then have

where [x], denotes the coordinates of @ € My in the basis (m(v)i,...,m(v),). We define, for
A € Myxn(Z), an open set

def

Us = {(z1,...,2n) 12, €Cif Ajp >0 forall ke {1,--- ,n}

and z; € C* if there exists k € {1,--- ,n} such that A;, <0}

and similarly for b € Z™:

Z/{bdéf (21,...,zn):sz(CifbjEOandzjG(C* lfbj<0}

For A € M, x,(Z), we define ¢4 : Uy — C™ by

n n

A; Ajn

Pa 2z Ilzj”,...,”zj]
=1 =1

We observe that, for A, B € My,x,(Z) and z € U N ¢ (Ug),

dpoda(z) =op H z;‘jl, ] z;‘f"

j=1 j=1
n n
B Aj; Bi Aji Bin
- H “j e ’H Zj
4,7=1 ,7=0
n n
AB); AB
ISR E
Jj=1 j=1
= ¢pan(2).

Similarly, for b € Z" and z € Uy, define ¢p(2) = 2 = H;Zl z?j. Then, for 2 € Ua N ¢ 1" Us),

we have .
tpopa(z)= [ %7 = dan(2).
ij=1
Lemma 3.1.11.
Ua, = {zeC": 2V vl # 0}

In particular, UAv,v s the image of Us,no,, C Uy, under the isomorphism Uy, = C™ obtained
by choosing a Z" basis of edge-vectors al v as described. ¢4 , is the local coordinate description
of the identity map id : Uy, D Uy,no,, — Usyno,, CUs,,, and, for m € Sy, P(my, 1S the local

coordinate version of e(m) : U,, — C.

Proof. Let i € {1,--- ,n}. We need to show that ([v" —v],); = 0 if and only if ([m(v’);]s): >0
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for all j € {1,--- ,n}. Note that

PCcuv+ Z R>om(v); for any vertex v of P.
j=1

In particular, in the basis (m(v)i, ..., m(v),), we have
P C [v]y +RY,
PC ]y, + ZRZO[m(v,)j]w
j=1
Suppose ([v/ — v]y); = 0. For any j € {1,--- ,n}, [v" + m(v’);ly € P, so ([m(v’);]s)i > 0
if ([v" —w]y); = 0. Now suppose ([m(v’);ly); > 0 for all j € {1,--- ,n}. We have ([v],); €
R

([v']0)i + 325—1 Roo([m(v");]w)i which implies ([v — v]y)i > 0, but ([v']s)i € ([v]w)i +
implies ([v/ — v]y); > 0.

0y

We can now reformulate our description of Xp and Lp as follows:
xp= ] C"x{v}/w :
vEvertices(P)

where
C" x{v} dUa, x{v}>(z,v)~ (qﬁAv,v(z),v') €Ua,, ¥ {v'} cC" x {v'}

for v, v’ € vertices(P). Similarly, we have

Lp = H (C”x(Cx{v}/w ,

vEvertices(P)

where

C" xCx{v}DUa, xCx{v}>(z,\v)~
(64,1, (2); oo, (2)A V) €U, x Cx {0} CC" x C x {v'}

for v, v’ € vertices(P). We call these coordinate charts U, = C" x {v} of Xp (and U, x C =
C" x C x {v} of Lp) for v € vertices(P) the toric defining charts (trivializations).

Holomorphic sections in coordinates We observe that, for « € P N M, the section

~

sa € H°(Xp, L) is determined in local coordinates by a collection of functions Sauv : Us, =

C" - C" x C = U,, x C for each v € vertices(P), where $q.(2) ef (2, Pla—], (2))-

Torus action in coordinates Recall that, at the beginning, we fixed a reference basis
(e1,...,ep) for M when we chose coordinates for the torus Ty. For t € Ty and v € U,,,
t.u € Uy, is identified with
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so that, in local coordinates, the action is given by
(b1, otn) (215, zn) = (#M@dezy o gIm@nle sy,

where [x]. denotes the coordinates of & € Mg in the basis (e, ..., e,) and where t; € C*, z; € C
for all j € {1,..,n}. If we denote Aye = ([M(V)1]e, ..., [Mm(V)n]e), s0 that Aye(e;) = m(v);,
then t.z = ¢a,.(t).diagz, Where .q;q4 denotes the standard diagonal action. Similarly, the torus
action on the line bundle is given by ¢.(z, A) = (¢4, (t)-diag2; P[—v). (E)A) for (2,A) = (2,\,v) €
C™ x C x {v}, v € vertices(P) and t € (C*)".

Convenient charts When we work in any of the charts U, , for v € vertices(P), note that we
can pick corresponding coordinates of the torus Ty such that the reference basis (eq, ..., e,) and
the basis of edge-vectors (m(v)y,- - ,m(v),) agree. The action of T on U,, then corresponds

to the standard diagonal action on C" = U, in these coordinates.

3.2 Symplectic approach

Having discussed the complex algebraic approach to toric Kéhler manifolds, let us now consider
the subject through the eyes of a symplectic geometer (see e.g. [CdS03]).

From the symplectic point of view, we define:

Definition 3.2.1 ([CdS03, definitions 1.6.1 and 1.6.2]). A symplectic toric manifold (X,w, T, u)
is a compact connected symplectic manifold (X,w) equipped with an effective Hamiltonian
action of a real torus T of dimension %dim(X ) and with a choice of moment map p: X — t¥,
where t denotes the Lie algebra of T.

We call two symplectic toric manifolds (X;,w;, Ty, i), ¢ = 1,2 equivalent if there exists an
isomorphism A : Ty — T and a A-equivariant symplectomorphism ¢ : X; — X5 such that

pa = pi2 © ¢
The central classification result is:

Theorem 3.2.2 ([CdS03, Theorem 2.1.2, Delzant’s theorem]). Symplectic toric manifolds are
classified by Delzant polytopes. The bijective correspondence is given by mapping the symplectic

toric manifold to its image under the moment map.

One direction of the theorem is proved by a procedure called “Delzant’s construction” which
associates to each Delzant polytope P a symplectic toric manifold which is constructed as a
symplectic reduction of the standard flat space (C% wssq), where d is equal to the number
of codimension 1 faces of P. Interestingly, one can also construct the complex manifold Xp
via a GIT quotient of C? and the complex and symplectic structures obtained from these
two quotients turn out to be compatible giving (Xp,w) the structure of a Kadhler manifold.
Symplectic toric manifolds with 27w € H?(Xp,Z) are smooth polarized toric varieties with
integral Delzant polytopes and 2m[w] = ¢1(Lp). The interested reader may consult [Gui94a,
Gui94b, CdS03] for more details on this story.

Note that, via the moment map p : Xp — t*, we think of the Delzant polytope as lying
inside t*. The group lattice L ef Ker(exp : t = T) C t is a natural lattice in t, and we can
consider its dual lattice L* = {¢ € t* : ¢(I) € Z for all [ € L}. L and L* are the lattices N and

M that we discussed previously as seen from the symplectic point of view.
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3.3. Toric K&hler geometry

3.3 Toric Kahler geometry

3.3.1 Abreu’s work

Let (Lp,h) — (Xp,w) be a polarized toric Kiahler manifold such that [w] = 27¢; (L), and let

w:Xp — t* = Mg = R" denote a choice of moment map that has P as its image.

Legendre duality

We will now recall the notion of Legendre duality for strictly convex functions (see also [Gui94b,
Appendix 1]). Let ¢ : R — R be a strictly convex smooth function and suppose that ¢ has a
global minimum at zy € R™. We define the Legendre transform of ¢ to be the map p : R® — R”
given by pu(t) e V|, = (g% R % \ for t € R™. u is a diffeomorphism onto its image
which is an open convex subset of R™ and which we denote by U. There exists a function
u:U — R, dual to ¢, such that

o(t) + u(a) = (t, ) if and only if & = p(¢).

We define, for t € R™ and o € U,

ha,t) & o(t) + u(e) — (, ).

h:U x R™ — R, defined in this way, is a smooth function that has a nice geometric interpre-

tation. We consider the graph:

A
Y

Y

Figure 3.1: Legendre Duality

T, < {(t, o(t) eR™ : t € R}

Let us pick coordinates (£, ) € R"*! and let v : R™ — Ty, v(¢) et (t,¢(t)) for t € R™. At the
point (o, ¢(to)) € I'y, we have the tangent hyperplane
to)

0
ey Vx 815"

a
Tito,6(t0))'¢ = Span (v* 3

to
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whose orthogonal complement is given by

0

L0
to th

Nitg,o(to))T'o = Span | =Y ——
o j=1 ot; (to,9(t0)) OA

~ o 9¢
Span((atl to,l)).

PIIEIREY - atn
Concretely, we have T4, 4t,))l'¢ as a subset of R™*1 given by:

(to,#(to))

to

9¢

9
Tito,etonT'e = {(t s) €ER™: <(t, s) — (to, ¢(to)), (— e 9¢

yoeeey 8tn

t0,1>>:0}.

For each t, € R™, we hence have an affine hyperplane Hy, def Tito,4(t0))'¢> and the point in
Hy, with the first n coordinates given by ¢ € R™ is given by (£, ¢(to) + (£ — to, u(t0))) =
(¢, (¢, u(to)) — w(p(to))). In particular, for ¢ = 0, we get (0, —u(u(to))) which gives us a
geometric interpretation for the function u. Note that, as a byproduct, h (u(to),t) = ¢(t) —

to

((t, u(to)) — u(u(to))), so that we can recover an interpretation of Young’s inequality
o(t) +u(a) > (t,a) <= h(a,t) >0, fort e R" and o € U,

as simply stating that I'y lies above each tangent hyperplane (which follows by convexity). We
will see later that functions like h are related to the asymptotic expansion of the Bergman

kernel on polarized toric Kahler manifolds.

Coordinates on the open orbit

Following Abreu [Abr98] and using the notation developed in this chapter, we consider the open
dense Ty-orbit in Xp, where Xp is a complex n-dimensional toric manifold corresponding to
a Delzant polytope P C My = R"™. Pick v € vertices(P) and choose (m(v)1,...,m(v),) as a
reference basis for M giving an isomorphism U,, = C" and, due to the inclusion T C U,,,

also an isomorphism Ty 2 (C*)™ C C". We have a holomorphic surjection

. o def ; ;
w=t+i0 — O (hFilhptntifn)

Slightly abusing notation, we will denote local holomorphic coordinates on the quotient
(C*)" =C"/Kerm = R" +iR"/(20Z)" by t + i0 as well. On Ty = (C*)™ C Xp, there exists
a T"-invariant real Kéhler potential ¢ : (C*)™ — R which we think of as a function in the
variables t = (t1,- - ,t,) € R". We have

w = 2185(;5 = Hess(qﬁ)ijdti N d9]
Hess(qﬁ)ij (dtldt] + d07d9]) .

9

Note that ¢ : R® — R is unique only up to the addition of some affine function t — (¢, ¢) + A
for t € R™, some ¢ € R™ and A € R. If, however, we think of the polytope P as fixed, we can
require that g = V¢ in these coordinates with p(R™) = Int(P). This determines ¢ up to the
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3.3. Toric K&hler geometry

addition of a constant A € R. Suppose that we have normalized ¢ in this way and suppose
that we have fixed a Hermitian fibre-wise metric h on Lp such that iF;, = w (Recall that such
a fibre-wise metric is unique up to multiplication by a positive constant e™*, where A € R).
We can now fix the remaining ambiguity in ¢ by demanding that there exists a holomorphic
trivialization of Lp over Tl such that the canonical section s, € H(Xp, Lp) for a« € PN M
is represented by the function z — z%, for z € (C*)", and we have |sa(t)|i = e2(8(t)—(t. )
for z = (21, , 2,) = (elT ... elntin) ¢ (C*)n.

Since the Kéhler metric g(.,.) = w(.,J.) is non-degenerate, ¢ : R™ — R is strongly convex.
w is a diffeomorphism from R™ onto the interior of P. Furthermore, we call the strongly convex
function w : Int(P) — R which is Legendre dual to ¢ the symplectic potential corresponding to
¢. We have

u(@) + ¢(t) = (w, 1),

for t € R™ and « € Int(P), with equality if and only if x = u(t).
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Chapter 4

Example: CP"

We now familiarize ourselves with some of the toric geometry that we introduced in the previous
chapter by studying a partial density function with vanishing at a point in CP". Investigating
this example sheds some light on the more general asymptotics that we will study in chapter 7.
The results obtained here will also be helpful for our discussion of blow-ups of CP" in chapter
10.

4.1 A polarization of CP"

For a parameter m € N, we consider the polarization
(O(m), hps) = (CP", mwrs) .

We normalize the Fubini-Study Kéhler form wpg such that wps € 2mey (O(1)). On the co-

ordinate chart U; = {[to : --- : t,] € CP" : ¢; # 0}, for i € {0,--- ,n}, we pick coordinates
wi :C" — Z/[’La
Yitz=(21," ,zn) [tz Ltz zy).
ith

— , e pe -1 . .
On Uy, wrs def 159 log (1 +30, |zl|2) and hpg(2z) def (1 +30, |zi\2) in the standard triv-
ialization of O(1) over Uy. We define the £2 inner product induced by k& on H° (CP™, O(mk))
by

def (mwFS)n n
(5,8 ) pms = /mm (s, s’)h,;g —r for 5,5 € H°(CP", O(mk)).

Recall that, as a toric variety, the polarization above is determined by the simplex Simp,(m)
in R™ with vertices at (0,---,0),(m,0,---,0),---,(0,---,0,m). These vertices correspond to
the charts Uy, - - - , U, respectively. Similarly, O(mk) has a defining toric trivialization over each
U;.

Lemma 4.1.1. For m,k € N, an orthonormal basis of (HO (CP™,0(mk)), (., .)h%> is given

by
{saymx € H’ (CP", O(mk)) : e € N, || < mk},

where, on the toric defining trivialization (9(mk)|u0 > Uy x C, Sam.x takes the form
Semk : 2 (2,aampz™), for z € C",
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and

W det | (mE4m) (0 mk
a,m,k — (27r)n(mk)lmn mk*|a|,a .

Proof. As usual, the basis above is (up to scaling) the standard toric basis of sections corre-
sponding to integral points of a polytope P. In this case, P is the simplex Simp, (mk) with
vertices

0,---,0), (mk,0,---,0),---,(0,---,0,mk).

We remark that the resulting basis for m = 1 has also previously been discussed e.g. in [AL04].

For o € N} and j € N such that j > |a] +n + 1, we compute that
-\ def rpetl et al(j — (el +n+ 1))

In(avj) = n 5N 4 dr = . | .

ro, (L4222, 77) (j—1!

n
>0

For o € Nij and || < mk, consider the section s, ,, ;. € HO(CP", O(km)) given by z ~ (z,2%)
on Uy. We have

2
HS/ ||2 _ |za| (mwFS)n
a,m,k - f n 9 mk n!
(1 + 2 i il )

T%Otl-‘rl op2omtl
= (47rm)"/ n dr
ry, (14225, rf)mitntt

(2rm)"™ (mk)! ( mk >—1_

(mk+n)! \mk—|al,«

The sections s;_mk, for fixed m, k € N and for o € Njj such that |a| < mk, form an orthogonal

basis of H(CP", O(mk)). Normalizing by their £2? norms yields the result. O

4.2 Symplectic coordinates

Let us quickly discuss the toric and symplectic potentials for the polarization of CP" in ques-
tion. Observe that w % mwrs = 2i004(t) for the toric potential ¢ : R* — R, ¢ : t
Zlog (1+ X" €*i) for t = (t1,---,t,) € R™. We use the coordinates (z1,---,2,) =
(el ... etntifn) on (C*)" C CP". The moment map p : CP" — R™ = t* is invariant
under the real torus T" C (C*)" and takes the form

(62751 2tn).

u(t) = V¢|t =

m

e e

n 2t ) Y
L2 et

There exists a symplectic potential u : Simp,,(m) — R such that
u(@) + 6(t) = {t),  for a = u(t),

and where a € Int(Simp,(m)) and t € R™. It is not hard to compute explicitly that

1 n n n
—— o _ 15 _ | —ml
u(@) = 5 <; a;loga; + (m zZ:;m) og (m ;a,> m ogm> ,
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for a € Simpy,(m), and

1 " ~
Vu|, =p Ha) = 3 <loga1 —log <m— Zaz) .-+, log a, —log (m— ZO"))
i=1 i=1

for a € Int (Simp,(m)). As we can see in figure 4.1, the graph of «, for m = 10, n = 1 and

n = 2 respectively, is of the expected form.

-35

-5.5

Figure 4.1: Graphs of x — u(z) for m = 10, n = 1 and (z,y) — u(z,y) for m = 10, n = 2
respectively.

4.3 Density functions

For the polarization (O(m), hfg) — (CP", mwps), we are now investigating the partial density

function pmx corresponding to the subspace Jif%. o € H (CP",O(mk)) of sections vanish-

ing to order at least [k at [1 : 0:...:0] for I < m, [,m,k € N. For any orthonormal basis
{1k -+ 8, k} Of *7[11%0:...:0]7 Pimk : CP" — R is defined as
My,
def n
pLmk(p) = Z|Sj,k(l?)|i?§ for p € CP".
j=1

Similarly, we recall that, for any orthonormal basis {s1 k, ..., s, x} of H? (CP",O(mk)), the
density function py, r : CP™ — R is defined as

N
det
pmk(®) = D |3j,k(p)|;21?§ for p € CP".
j=1

Lemma 4.3.1. The density function for the polarization (O(m), higs) = (CP", mwrs) is con-
stant for fixred k,m € N and given by
1 (mk+n)!

Pk = 0m)n (mk)Imr

_ @ (k" + %7”(”7; Din1 40 (k"‘2)> .

Furthermore, the partial density function p; ) corresponding to the subspace \7[11’“0 0 C

HO (CP",0(mk)) of sections vanishing to order at least lk at [1 : 0 : ... : 0], for I < m
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Chapter 4. Example: CP"

and l,m,k € N, is given by

U b S () (S 1P
2m)n (mk)mn (1 4y |zi|2)mk

PLm.k(Z) = ( forz= (21, ,2,) €C"

in the coordinate vy : C* — Uy. In symplectic coordinates, we have

pl,m,k(a) - AT m

1 (mk+n)! Yo
2m)" (mk)lmn Juam.i (

) for a € Simp,,(m),

where fimk : [0,1] = R is defined as

mk
Frmi(s) =7 (”;k) s(1—s)™=1  forse[0,1].
j=lk

Proof. By definition, we have on U, that

2
pm,k(z): Z a2a,m,k'|za‘hg§
o <mk

~ (mk+n)! 3 ( mk ) |z
—(2m)(mk)Im™ k— n mk
(2m)"(mk)!m la|<mk m lof, (1+Zi:1|zi|2)

1 (mk+n)
—@2m)n (mk)!mn

Similarly, we have on U that

2
PLmk(Z) = Z a2a,m,k |Za|hg:§
Ik<|ae|<mk

1 (mk+n)! ’"Z’“ (mk)( (ZL |2i|2)j

(21 (mk)lmn j n mk
( ) ( ) J 1+Zi:1|2i|2)

j=lk

Computing this expression in symplectic coordinates yields the second part of the lemma. [

Remark 4.3.2. Figure 4.2 indicates that fi ., converges to a step function with the transi-

tioning behaviour occurring at # as k — oo.

0.8
0.6
0.4+

0.2+

Figure 4.2: Graphs of fj ,  for I =3, m =10 and k € {1,3,100}.
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4.3. Density functions

In chapter 7, we will investigate the decay behaviour of the analogues of pym. i for general
polarized toric manifolds. The asymptotic expansion of pym i on the transitioning region (e.g.

at s = # in this example) will turn out to be particularly interesting.
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Chapter 5

Toric Localization

We provide a proof of a toric localization of sums theorem that enables us to compute the
asymptotics of toric Bergman kernels using an orthonormal basis of sections of a small subspace
of H°(X,L*). Our approach also gives a simple proof of an off-diagonal exponential decay
estimate for toric Bergman kernels and extends a localization of sums result by Song and
Zelditch (see [SZ10, lemma 1.2]).

5.1 Some toric estimates
Lemma 5.1.1. Suppose that T" acts on C™ by the standard action
(eial, e 7ew”').(zl, ceeyZp) = (ei‘glzl, e 7ewnzn) for 05 €0,27),2; € C
and that w 1s a T™-invariant Kdhler form on C™.
a) There exists a T™-invariant smooth Kdhler potential ¢ : C* — R such that

w = 2i00.

b) Up to a constant, the restriction of the moment map p: C* — t* =2 R"™ to the open subset
CF x (C*)"%, for k < n, is given by

M(331>y17"' 7xkayk>tk+17"' 7tn)
N Y TR VR VR
= 18531 ylayla ) kalﬂk ykayk7atk+17 7atn )

for k < n, where we have used coordinates z = = + iy on the C factors and z = et

the C* factors of CF x (C*)"7*.

on

Proof. a) By the standard d9-lemma, there exists a smooth Kihler potential ¢ : C* — R such
that w = 200y on C". We define

def 1 2 27 0, ; n
¢(Z):W/O /o 1/)((69,-~-,69").z)d91-~-d9n for z € C™.
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Chapter 5. Toric Localization

It is now easy to check that
2i00¢ = w.

b) This is a straightforward calculation. We observe that the vector field %# generated by
J

o (.0 50
89j - J@zj jafj '

Let us use the shorthand notation ¢.,z, = 35_2;;_. We have
i0Zj

a%j € t is given by

90 ;

while

d (200, +yjdy;) = d (202, +Z0z,)
= 20z, 2,d2k + 2Pz, A2k + Pz d2i + 20z, 2, A2k + 2 Pz,7, A2k + ¢z, dZk.

(5.1.1)
By the T™-invariance of ¢,
2j¢.; —Zjpz; =0 for j € {l,--- n}.
Differentiating the above identity with respect to z; and z;, for j € {1,--- ,n}, and substituting
the resulting expressions into equation 5.1.1 gives the required equality
d<xj¢)1'j +y]¢yj) = _i%#w fOI‘j € {17 ,’I’L}-
J
A final change of coordinates z; = elit% for j € {k+1,--- ,n}, gives the last few components
of the moment map. O

Remark 5.1.2. The above lemma extends the expressions for the moment map and potential
defined on (C*)™ as used by Abreu [Abr9S, Abr03] to a Ck x (C*)"~* chart.

Let us denote by sq%, for a € PN %Z”, the holomorphic section in H%(Xp, LY,) corre-
sponding to the integral point ka € kP N Z™ that we discussed in chapter 3.

Lemma 5.1.3. Let (Lp,h) — (Xp,w) be a polarized toric Kahler manifold and let jn: Xp — t*
denote a choice of moment map that has P as its image. There exists a continuous function

n: P x P —[0,1] with the following properties:
a) We have n(a, B) = e "M*B) for all o, B € Int(P), where

def

he,B) ' 2 (ule) = u(B) + (Vuls, 8- a)) > 0,

and u : P — R denotes a symplectic potential. h(ca,3) = 0 if and only if o = B, and the
only critical points of h(ex,.) : Int(P) — R and h(., @) : Int(P) — R, for a € Int(P), occur
and Hess h(., )]

at . Furthermore, Hess h(a,.)| are positive definite for a € Int(P).

(o3 (3

b)
 [sak (1B

e (171 (@) e

(e, B)"
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5.1. Some toric estimates

forkeN, a € PNLZ" and B € P.
k

¢) n(a,B) =0 if and only if B € U{F:F<P’Q¢F} F.

Proof. For v € vertices(P), we define m,, : P x U,, — R>q by

mv(a7 Z) = |¢[a—v]u (z) ’2 hv(z)

for z € C* = U, , where h, is the local expression of the Hermitian metric with respect to the
standard trivialization of Lp over U,,, and we choose coordinates on U,, by mapping v € U,,,
to (w(m(v)1), -+ ,u(m(v)y) as described in chapter 3. Let us check that {m,, : v € vertices(P)}
glue to give a global function m : P x Xp — R. Let v, v’ be two vertices of P. We check that

My (@, 64, (2)) = |Slav,, ($a,,,(2) | ho ($4,,,(2))
= |$lavlu ()] |Sfor—ol (2)] o (2)
= |Pav)s (2)|* Bu(2)

= my(a, 2)

for z € Uy ,no,, and a € P.

Let us now show that m(a, z) # 0 for z € p~'(a). Let a € P. Pick a vertex v of P such
that p=!(a) C U,,. Our coordinates on U,, also induce coordinates on Ty C U,,, and the
action of Ty on U, is just the standard diagonal action of (C*)™ on C™ in these coordinates.
Note that our choice of coordinates also corresponds to a choice of basis (m(v)q,- -, m(v),) of
M = t* 2 R". Let 1) : C" — R denote a T"-invariant Kihler potential so that w = 2i00y. By

lemma 5.1.1, we have

_ o o oy oY
/«L(xlvylv 7mnvyn) = ( 8 +y1— 62./ yTn axn + Yn— (9yn + [U]va
for (x1 +iy1,- -+ ,2n + iy,) € C", in these coordinates on U, and t*.
If my(er,z) = 0, there exists a j € {1,---,n} such that |z]|([a vlo); = 0. Hence z; =
zj +1y; = 0 and ([a — v],); > 0. But (u(2) — [v]s); = z; aq«, +y; g;/; = ([a = v],); # 0. This

is a contradiction.
We recall that = () = Orb,(T") for any p € u~'(a). Note that m(e,.) is invariant
under the T™ action for a € P. Because m and p are continuous, P x P is Hausdorff and Xp

is compact, the function n: P x P — R given by

nlon def m(a,;fl(ﬁ))
O e (@)

for a, B € P, is continuous.

Note that u~(Int(P)) = (C*)™. Pick local coordinates on T = (C*)" and a trivialization
of Lp over Ty such that sq,1(2) = 2* for z € (C*)” and a € PNZ". Following Abreu, we pick
a T"-invariant Kihler potential ¢ : R™ — R (so that w = 2i0d) such that the Hermitian metric
is locally given by e~2¥ in our trivialization and the moment map is Vi). We let z; = e’

for j € {1,--- ,n} and have

m(a, z) = |2%]2 e~ 24 = =200~ (@),
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Chapter 5. Toric Localization

Finally, applying Legendre duality with ¢ = Vu|gz and 1 (Vu|ﬁ) = (B, Vulg) — u(B), we find
that
n(a, 3) = e MeB)  fora, B € Int(P),

as claimed. Smoothness on Int(P) x Int(P) now follows from the smoothness of u on Int(P).
Positivity and the claim about the zero set of h follows from Young’s inequality for Legendre
duality. Noting that Hess(u) is positive definite on Int(P) and a simple calculation verifies the
claim about the critical points of h(e,.) : Int(P) — R and h(., @) : Int(P) — R for o € Int(P).

We now prove ¢). We will work on the coordinate charts U,,, for v € vertices(P). We want
to show that

U rEme()))= U F
vEvertices(P) {F:F<P,a¢F}
Suppose that z € Z(my(a,.)) C Uy, for some v € vertices(P). We have my,(a,z) =
‘z[o‘_”]v|2 hy(z) =0 and

(0, O o O
/J’(mh Y1, » Ly yn) - (.’El al’l + U1 8y17 y Ln axn + Yn ayﬂ) + [’U]v

for (1 +iy1, -+ ,zn +iyn) = 2 € C". Hence there exists j € {1,--- ,n} such that z; = 0 and
([ = v]y); # 0. But then (u(2) — [v]y); = 0. Let F; = ([v], + Z(2;)) N P. Then u(z) € Fy,
F; < P and [a], ¢ Fj.

Now let F' < P and o € P such that a ¢ F. For any f € F, there exists v € vertices(P)
and z € Uy, such that p(z) = f. We now show that z € Z (my(e,.)). In our standard chart

U, and after a reordering of indices, we have
pUs,) NF =[]y = (1 Us,) = [0]o) N Z(21) (-1 Z(25)

for some k € N such that 1 <k < n. Then there exists j € {1,--- , k} such that ([a —v]y); # 0
and (p(2z) — [v]y); = 0. This implies that z; = 0 and hence m. (e, z) = 0.
O

Remark 5.1.4. Let us remark here that several authors have previously used and observed the
convezity properties of h over the interior of the polytope (see e.g. [SZ10, SD10, BGU10]).

We will make use of the following elementary lemma:

Lemma 5.1.5. Let f € C* (R"™) and suppose that f(a) =0 and Df|, = 0 for some a € R".
Then, for any x € R™,

r—a x-—a
Ma — =

)

f(z) > é inf  (Hess f|

y€line(a,x) Yz —al ||z-—al

Proof. We recall the following elementary result:

f@) =32 Lt i@ - a)

! dt

. ,
1-t)" d’
0+/0 1 f(a+t(xfa))tdt.

In particular, letting n = 2, we find

1 2 — —
9 (1 —t) r—a T —a
= ||z — H dt.
f(m) || aH »/0 2 < eSSf|a+t(m7a) ||m a” 7 ||m - a’H >
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5.1. Some toric estimates

The estimate now follows. O

The following lemma is a standard toric geometry result which comes from the fact that “a
symplectic potential restricted to a face F' of the polytope P yields a symplectic potential for
the corresponding toric subvariety Yx” (¢f. [SD10, Lemma 3.5]).

Lemma 5.1.6. Let (Xp,w) be a toric Kdhler manifold and let w : P — R be a symplectic

potential for w. P is given as an intersection of affine halfspaces P = ﬁ?le:{ A, With H;:)\ def

{a € R" : [;(a) > 0} and l;(cx) def (a, ;) — A; for some \; € R and primitive n; € Z™. Let
Z(1;) o {z € R" : l;(x) = 0} and o € P. Without loss of generality, let Z(l1),...,2Z(ls)
denote those affine hyperplanes among Z(l1), -+, Z(lg) containing . Let 0 # m € R™ such

that {m,n;) =0 fori e {1,--- ,s}. Then

(Hessu|, m,m) > 0.
Proof. Let F def Z(ly, -+ ,ls) denote the face containing e in its relative interior. Pick a C™
chart U, corresponding to a vertex v = (v1,--- ,vy,) € F' and coordinates U,, = C™ such that
pHF)NU,, = {0} x C"%. In these coordinates l;(at) = aj — ([v]y); for j € {1,---,s}.
By lemma 5.1.1, there exists a torus-invariant Kéhler potential qZAJ on that C" chart such that
w= 2i85$. We have

P, Y1, Ty Yn) = (xlgi +y1%7~-~ ,mn% +yn§i> + [vlo
for (x14iy1,- -+ ,xn+iy,) = z € C". In the standard holomorphic trivialization Ly, = C"xC,
we have sq.1(2) = zl*7?lv and |sa}1(z)|i = |z["‘_”}”‘26_2$(z) for z € C" and o € Z" N P.
Over Ty = (C*)", the retrivialization (z,)\) — (z,z[Y*)), for z € (C*)" and A € C, yields
the familiar standard setup where s4.1(2) = 2[®l» and |sa71(t)\fl = e 2w —(tlado) for 2 =
(el Fif ... etntifn) ¢ (C*)". We have w = 200y, pu = Vb and () = pleh, - eln) +
([v]w,t). We denote by u the symplectic potential dual to 1. We now have

o~

u(n(z)) =Y log(|zl,) (u(z) — [v]s); — &(2)
i=1
for all z € (C*)". In fact, we note that, for z € {0} x (C*)"~* C C", we have

log(|2l;) (1(2) = [v]s); =0, forie{l,--- s},

since then (u(z) — [v]y);, = 0 for i € {1,---,s}. It follows that the function ¢ : R*7* — R
given by ¢(tn_si1, - tn) = (E(O, <o+, 0,etn=s+1 .. eln) s (up to addition of an affine factor)
Legendre dual to the restriction of u to Rellnt(F). Since the restriction of w to {0} x (C*)"~*
is non-degenerate, it follows that ¢ is strictly convex. The nondegeneracy of Hess ( u/g, ellnt(F)

now follows by Legendre duality. O

Proposition 5.1.7. Let (L,h) — (Xp,w) be a toric polarization. There exists a constant ¢ > 0
such that

n(a, B) < e~clla=8I’
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Chapter 5. Toric Localization

foralla, B € P.

Proof. Recall that n(e,3) = e B for o, B € Int(P). We will prove that there exists a
constant ¢ > 0 such that h(a,B) > clla — 8| for a,3 € Int(P). Let u : P — R denote a
symplectic potential for (Xp,w). We recall that

he, B) =2 (u(@) = u(B) + (Vuls. 8- ).
3?u

and 2 h’ =2
ﬁ) Baiﬁaj (a,ﬁ) Baiaaj
Int(P). Define fg(ax) ef h(a, B) for a, B € Int(P). Then

ou

In particular, %h‘(a 5 =2 <3o¢i . du

60”

for o, 8 €
[e 2

h(e, B) = fa(a) > %Ha — B (Hessu|, v,v), for o, € Int(P),

in inf
y€line(a,B3) {veR™:||v||=1}

by lemma 5.1.5. We now have to prove that

inf inf (Hessul,, v,v) > 0.
y€Int(P) {veRn:|v|=1} v
By the continuity of n, this inequality then gives the required result on the whole of P. For
any compact subset C' C Int(P) the equality for h on C x C' is obvious since Hessu is positive

definite on Int(P). We just need to show that the above infimum is not equal to zero.

Suppose that there exists a sequence of vectors {a;}32,; C Int(P) and {vg}52; C R™ such
that ||vg|| =1 for all k € N, and

(Hessul,, vg,vr) =0 ask — oo.

A subsequence of ay, and vy now tends to some a € P and v € R” such that ||v]| = 1 respec-
tively. If o € Int(P) we have a contradiction, so we exclude that case from our consideration.
P is given as an intersection of affine halfspaces P = ﬂleHIi’Ai with HIA def {a € R :
l;(a) > 0} and /;(x) def (a,m;) — \;, where n; € Z™ is primitive and \; € R for ¢ € {1,--- ,d}.
Without loss of generality, let Z(11),. .., Z(l;) denote those hyperplanes among Z(l1), - -, Z(lq)
containing a. By a result of Abreu [Abr03], we have a smooth function v € C°>°(P) such that

d
1
u(a) = 5 ; li(o) log(l;(e)) + v(cv).
We compute that
0%u - 1 (nl)j (Tli)k 0%v
Oajoay |, T2 P li(a) dajoay |,

so that

N2
(Hessul, z,x) = %Z <7Z(’;)> + (Hessv|, x, z).

i=1

We observe that the Hessv term is bounded on P. As k — oo, l;(a,) — 0 for i € {1,---,5}.

Now % — 400 as k — oo, for some i € {1,...,5}, in which case we are done, or
(ni,vg) > 0as k — oo foralli e {1,...,5}. Then (n;,v) =0 foralli € {1,---,5}. But then
(Hessu|,, v,v) > 0 by lemma 5.1.6. O
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5.1. Some toric estimates

Example 5.1.8. Let us consider the toric polarization (O(1),hps) — (CP',wprg), where
wrpg = i001og (1 + ||z||?) denotes the Fubini-Study metric which has the symplectic poten-
tial w : [0,1] — R given by u(z) = 5 (zlog(z) + (1 — ) log(1 — z)). Figure 5.1 shows the decay
behaviour of the function e **(*%) for k = 1,3, 10 for this potential.

Figure 5.1: Graph of e *(®¥) for k =1,3,10 on (CP',wrs).

We are now ready to use our estimate to prove a localization theorem for the toric Bergman

kernel.

Theorem 5.1.9 (Generalized toric Bergman kernel localization). Let P be an integral Delzant
polytope in R™ with the standard lattice Z". Let fi, : P? x (Pﬁ %Z”) — C be a sequence
of functions such that there exists constants C, M > 0 such that |fi(c, 3,7)| < CkM for all
a,BePvyePn %Z” and all k € N. Consider

def _
Bi(e,B) = Y fulen B,7)ey k(@) @y 1(B),
~YEPNEZ™
where e 1, = Hsjvﬁ € H°(Xp, L¥) denotes the standard unit norm section corresponding to
By
yePNLZ".

a) Then, for any l > 0, there exist E,b > 0 such that

By(e, B) — > file, B, 7)eq (@) @ ey 1(B)
v€Ba (v/E5EE ) nBg (v 2EEE ) PNz

< Ek,

for all a, B € P and k € N, and where By (r) def {BeR": |la—0| <r}.

b) There exist constants D,c > 0 such that
Bi(ax, B)],x < DEMF2ne=cklla=BI

foralla,B € P and k € N.
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Chapter 5. Toric Localization

Proof. Let us prove b) here. a) is proved similarly.

Be(e, B = D (fule, B:Y)eyw() @y k(B), file, B,8)es k(@) @ 25 k(B))

~v,6€PNEZ"
= Y el B fr(@, B, 8)(ex k() €5, k() (B 5(8), Bs 1 (B))
~,6€PNEZ"
< CRM YT ey k(@) es k() (Ey 1 (B), B k(8))]
~,6€PNEZ™
< CQkQM Z ‘eﬂ/,k(a”hk |€6,k(a)|hk |E'~/,k(/6)|hk |E5,k<16)|hk
~,6€PNEZ™
2
= C2k2M Z |e'7,k(a)|hk |€’Y,k(ﬁ)|hk
YEPNEZ™
)\ 2
k & |5y (V)]
= C*k*M Z ”(%a)m(%ﬂ)z"‘;i”ghk
yePnizn VRl
2
2
<o ¥ o= (Iv=al+lv=s112) 157 (V)i
- [

~YEPNEZ™

2
2
SCQkQMe—%‘"'Ha—BHZ Z |57,k(’7)2\hk
b Tonl

2
< C2D22M 20— Fllapl® 4 (P N ;Zn) :

where ¢ comes from proposition 5.1.7, and we have used the fact that there exists a constant
D > 0 such that
2
S «
| ’Y,k( )2|hk < ok (a) < Dk"
Hsmthk

foralla € P,v € PN %Z" and k € N. The result follows since there are only order k™ elements
in the set PN %Z”. In the final step we also use the inequality

loc =1 + 18 =717 = S lla = BI1%,

N~

for a, B, € R™, which can be proved by observing that, for fixed o, 3 € R™, the critical point
1(a+ B) of the functional £(v) = [la —||? + [|8 — || is the absolute minimum of &. O

Similarly, we get the following estimate:
Corollary 5.1.10. Let By be defined as in the previous theorem. For a,3 € P, we have:

a) For any 6 >0 and o, 3 € P,

Byi(e, B) — > file, B,7)eq (@) @ ey k(B)

1 1
v€Ba (k™ 2+7)nBg (k=20 )nPntzn .

— 0 (k).
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b) For any 6 > 0,C >0 and all {o}521, {8}, C P such that ||ax — Byl > Ck=2%9 for
all k > 0, we have
Bu(ow. Bl = O (k).

5.2 Comparison with previous results

If we apply part a) of the above corollary to By evaluated on the diagonal in P x P, we recover
a version of Song and Zelditch’s localization lemma [SZ10, lemma 1.2] and of [SZ10, Prop 5.1]
which were originally proved using a more complicated argument.

In the special case where fi =1 for all k € N, By, is the Bergman kernel, and we obtain the

new localization of sums formula:

Bk(aaﬁ) = Z e'y,k(a)®é»y,k(,3)+(’)(k‘_°°)
7€Ba (\/@) NBg (\/@) nPNLzn

for a,3 € P and all £k € N. Similarly, the density function, which is just the norm of the
diagonal of the Bergman kernel, can be localized in this sense. Additionally, we now have an

off-diagonal vanishing result in the sense that there exists ¢ > 0 and D > 0 such that
| Bi(ct, B)|,x < Dk*meFlla=pIl®

for all a, 8 € P and k£ € N. While this is not the sharpest possible estimate, it does illuminate
the exponential decay of the Bergman kernel away from the diagonal which is very explicit
in the toric case. For general polarized Kéhler manifolds (L,h) — (X,w), we know that
By(z,y) = O (k=) for d(z,y) > ¢ > 0 and z,y € X [DLMO06, proposition 4.1] and have
exponential decay and an asymptotic expansion of By in a neighbourhood of the diagonal of
X x X due to Dai et al. [DLM06, MMO07]. One advantage of the simple estimate that we obtain
here is that it gives a globaly valid exponential decay estimate for the Bergman kernel in the

toric case.
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Chapter 6

Euler-Maclaurin Sums

In order to develop a technique for computing the asymptotics of (partial) density functions on
a toric polarized manifold, we require an Euler-Maclaurin summation formula dependent on a
parameter k € N. For the convenience of the reader, we will recall some results in this direction.

After this, we adapt these results for our purposes.

6.1 The classical Euler-Maclaurin formula

The classical Euler-Maclaurin summation formula provides a comparison between the integral
of a function f € C*°(R) over an interval [a,b], a < b, a,b € Z and a sum of f and its derivatives
over [a,b] NZ. Let us set up our notation. We define (see [KSWO05])

:1+—xfix4+(9(z6), for x € R,

and, for p € N,

P
By .
sz(m)défl—ﬁ—z 202 for z € R,

where By, for j € N, denotes the 4" Bernoulli number. For any polytope P C R” and x € P,
let ¢(x) denote the largest codimension of any face containing x. We define the weighted

characteristic function 1% : R"™ — R by

0 fxe¢g P
() < o
2-¢®)  otherwise.

For f:R™ — R, we define

S i@ Y 1@ f(e),

xec PNZ™ xc PNZ™
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Chapter 6. Euler-Maclaurin Sums

the simplest example of which is P = [a, ], where a,b € Z and a < b. Then

S F@) = @+ e+ 1) 4k 1)+ S0,

z€[a,b)NZ

The following is a modern formulation of the classical Euler-Maclaurin summation formula for

intervals.

Theorem 6.1.1 ([KSWO03, Proposition 10]). Let f € C* (R), a,b € Z, a < b and let p € Ny.
Then

b o b+
> o= (o) (ow) [, 1o

z€[a,b]NZ

b
* / FEPE (@) Py (2)dr,

A1=X2=0

where ) ( L))
def r—|T
i R

and bay11(x) is the (2p + 1)™ Bernoulli polynomial for p € N.

Let us recall the proof of this result here since it provides us with some intuition for the

kind of results that we are interested in.

Proof. Recall that the Bernoulli polynomials b; : R — R are defined recursively by byo(z) = 1,

W, 1(x) = (n+ 1)by(z) and fo n(z)dz = 0. We have bi(z) = z — %, and the Bernoulli

polynomials satisfy b;(1) = (—=1)7b;(0) for all j € No. Furthermore, the Bernoulli numbers

B; def b;(0) satisfy Bsji1 = 0 for j € N. The proof is now a simple integration by parts

argument. We have

1
m /0 FEP @)y 1 () dar

__ b en, xl_L 1(2,))36 N
— (2p+1)!f (@)bapt1( )L (ZP)!/O FP) (2)bop(z)d
= o ) L e ey (e
— (2p) o (@)bop( )L—I— (2p—1)'/ f (2)bap_1(2)d
Z(L (2J 1) )ij(m):|o+f( x] / f
j=1
By o] SISO
L @y >L+ e L

If we replace f(x) by f(z + s), for some s € R, we obtain

Fls+1)+ )
2
s+1 p B s+1 s+1
AR 25 e >] w0 @) Py e ()
Summing over s € {a,--- ,b— 1} gives the result. O
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6.2. The Euler-Maclaurin formula for the standard half-space

Remark 6.1.2. Note that
a a b+ s
2p [ 7 2p [ 2
b <8/\1>L <5>\2> /Ml fle)ds

6.2 The Euler-Maclaurin formula for the standard half-

space

b P o b
- / @i+ )

We now use equation (1) to derive two results about Euler-Maclaurin sums over half-spaces.

Lemma 6.2.1. Let f € C§° (R™) and p € Ny. For k € N, we have

o (1 a)
Z f( ) B (ka)‘ /{mER"::mZ—A} f(a:)dw

ae (NoxZn—1)

n—(2p+1)
- +0O (k: P )

n—1
= k”/ f(w)dac+k / f0, 20, ,xp)dxs - - - dxy,
]R>0><R" 1 2 Jgn

B 921
_Z n 2] 2] / f(O,xz,"',$n)d$2"'d$n

=1
Rnlal‘j

+0 (knf(2p+1)) ,

where B (z) = o L?(z)+2=1+%+ Z‘;—’:l 22 x% | for p € N, and B°(x) 4y forz e R.

5 =

Proof. If n =1, we sum over (t) to obtain

> st = S5 (5) =350+ [ 1 () =30 R on @

(ME%NO aeNg J:1
_|_k—(2p+1)/ f(2p+1) (f) Poyi1(2)dx
k
p
_ )d sz (23-1) ()~ (25—
—k [ f)det f Z AR
j:].

+k_2p/ FEPH (@) Py (k) da,
0

so that the result holds. For n > 2, we have

NGRS f(,ia)

ac (NoxzZn—1) a€NgxZn—1

— Z (k/oof(ol‘;’...vo";—lvxadzn

(a1, ,an—1)ENg XZn—2

e [T o o
k ) )

. W T,l“n) P2p+1(kl"n)d33n> .

Now observe that there exists C > 0 such that

) 82p+1f (o1 Q1 .
Z W(?, ,Ty$n> P2p+1(kxn)dxngck 1
(a1, ,00p—1)ENgXZ=2 "~ n
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Chapter 6. Euler-Maclaurin Sums

since there are only O (k"‘l) terms in the sum which are nonzero (supp f is compact), and the

terms of the sum are bounded. Picking p € Ny large enough and iterating this procedure yields

SIENCESD W |

o
f(?laIQW" 717”) ded‘Tn+O(k700) .
o€ (NoxZn—1) a1€Ny

n—1

We can now apply the same arguments as in the n = 1 case to get

> f@=r [ fee

e l(NoxzZn-1)

P 2j—1
. Bo; 04
_E:kn—% 23/ 7f(0,x2,---7xn)dx2---d:cn
R

02 e 92

kn—l

M

/ JO,22, - wn)day - don + O (k”—<2p+1)) :
R7—
O

While the above lemma is entertaining in its own right, let us now focus on Euler-Maclaurin
sums over the types of functions that we require for our asymptotic analysis of partial density

functions.

Lemma 6.2.2. Let g € R”, f € C§°(R™), h € C*°(R") and U C R™. Suppose that h satisfies
h(x) > 0 for all x € R™ with h(x) = 0 if and only if x = xo. Suppose furthermore that there
exists a constant ¢ > 0 such that h(x) > ¢ > 0 for all x outside a compact subset of U and that
Hess |, is positive definite. Suppose that f(z) = O (|w - wg\l) as |x¢ — xo| — 0, for some
>0, and let o« € N§J. Then

[ 2 (@) aw = 0 (152,
u

Proof. If |a| = 0, this follows from the proof of Laplace’s method. Suppose that the result
holds for a € Njj such that || = s. Suppose |a| = s+ 1 and a = 3 + e; for some 8 € Nij and
some j € {1,--- ,n}. Then

« s
/ua(l (f(a:)e*kh(m)) dx = /u % ((aijf(m) —~ kf(m)a?cjh(w)> o kh(@) oy

|8|—max(1—1,0)—n 248 (+1)—n
10) (k ; 4 )
o

(k5.

The result follows by induction. O

Proposition 6.2.3. Let xy € R”, f € C§° (R™) and h € C™ (R™) such that h(x) > 0 for
all z € R and h(z) = 0 if and only if ¢ = xo. We assume that Hessh|, > 0. Suppose
furthermore that there exists a constant ¢ > 0 such that h(x) > ¢ > 0 for all T outside a
compact subset of R™. Then

190
a)e kM) — g2 <) / x)e F@dg| O (kT P).
oo fle Fx) Jiaennms 1@ ( )

OLE%(NO xZn—1)

A=0
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6.2. The Euler-Maclaurin formula for the standard half-space

Proof. The proof is very similar to the proof of lemma 6.2.1. If n = 1, we have

—kh(e) _ L eigyo k) 4 g > —kh(=) g
Z f(a)e 2f( Je + /0 f(x)e T

a€£Noy

PR/ 9N\P! Cine o
So(m) ()] e

+/€_2p/oo 9 21’“ (f(ac)e_kh(w))‘ Py (kx)dx
0 ox =0 ZpHl '

Lemma 6.2.2 now implies that the last term above is O (k™) as k — co. For n > 2,

S Slapee

a€f (NoxZn—1)

- Z <k»/oof (%7 ,%’In) eikh(ai’cl7‘..’ank_17mn)dxn

aENgXZ™—2
oo o (2p+1) o o . _—
- — o, Ynol —kh(SL,, 2L
+k /_OO <8xn> {f( k ’ 9 k ,xn> e k k }P2p+1<kxn)dxn .

Now observe that, by lemma 6.2.2, there exists C' > 0 such that

oo (2p+1) o
3 / <ai) - (5 (G, Bt g Yt 2t o) Py (ki o,

aENgxZn—2" "

< okptrt

By choosing p sufficiently large and iterating this procedure, we obtain

Z f(a)efkh(a) — g1 Z /R>O><Rn1 f (%,1‘2, L 7xn> e_kh(%’m’m’r")daz

ae%(Non"—l) a1 €Ng =

Finally, we have
S flaget
acl(NoxzZn—1)

= k"/ f(x)e ™M@ g
RZO xRn—1

knfl
2

L ) )

Jj=1

n—1—2p 9 el —kh(x)
Tk {f(m)e }PQP_H(kxl)da:
RZO xRn—1

+

/ f(O, T2, 7xn)eikh(0’m2’m ’I")dlﬁ e dxn
Rn—l

dzry---dx,

11:0

Oz,

+0 (k).

Since Popy1 is bounded, and due to lemma 6.2.2, the last integral above is O (kp’anl> and the
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Chapter 6. Euler-Maclaurin Sums

result follows. O

6.3 An Euler-Maclaurin formula for integral Delzant poly-

topes

In this section, we prove some Euler-Maclaurin summation formulas that we will not require in
the remainder of this thesis. These results are collected here since these ideas might be helpful
for further investigations into the asymptotics of toric partial density functions.

In [KSWO05], theorem 6.1.1 was generalized to the positive orthant O e (R>o)™ as follows:

Proposition 6.3.1 (Euler-Maclaurin formula for the standard orthant). Let f € C§°(R™) and
p € N. Then

+ R2P+1 (f)7
A=0

! _ . 2p 8)
Z f@) EL (3/\i /o(i)\lw,i/\n)f(w)dw

xcONZ"
where the right hand side is independent of the choice of £. For A € R™, we have

O()\)déf{wER”:xi—)\i20f0ralli€{1,...7n}}

and
dof . 8 \**
fara (1) 2 zc{; n}g]L ! (M) /o(ixl,.‘.,i/\n) EPQP‘H(xi) g (8331) fla)de ’
c{1,..., A=0
where

def bapt1(z — [x])
Popia1(w) = %a

and bap11(x) is the (2p + 1)™ Bernoulli polynomial.
A regular integral orthant C is the image of O under an affine transformation of the form
x— Ac(x) = Bx+v v eZ", B eSL(n,Z).

For such an orthant C (see [KSWO05]),

! _ : 2p 3)
Z ﬂm)iHL (6/\i /C(i/\hwﬂn)f(m)dw

xeCNZ» i=1

+ Rapr1(f o Ac),
A=0

where C(Aq, ..., Ay) is the image of O(Aq, ..., A,) under Ac. Let P C R™ be an integral Delzant

polytope. For each vertex v € P, we define the tangent cone at v by

Cvdéf{v—i—r(m—v):rzo,:ceP}.

We can pick n edge vectors ay(v),. .., an,(v) for v such that

Cy=v+ ZRZ()CV]'(’U).

Jj=1

56



6.4. A parameter dependent Euler-Maclaurin formula for integral Delzant polytopes

A polarizing vector is a vector n € (R™)* such that (1, a;(v)) # 0 for all vertices v € P and all
j€{1,...,n}. The polarized edge vectors are defined to be

byt [0 sl <0
—aj(v) if (n,a;(v)) > 0.

We define #v(n) = #v to be the number of edge vectors such af(’u) # aj(v). The polarized
tangent cone is defined by
C# =v+ Z RZ()O(;-#(’U).
j=1

For f:R™ — R, we have

)OS DRI C VL D

pPnz» vevertices(P) c#nzn

which enables us to write sums over integral points of an integral Delzant polytope as a sum over
cones. If the polytope is given by P = {x : [;(x) ef (w, )+ p; >0,i=1,...,d}, where u;, for
i€ {1,---,d}, are the primitive inwards pointing normal vectors to the n — 1-dimensional faces
of P then the modified polytope P(A) is defined by P(X) & {z:lLi(x)+ X >0,i=1,...,d},
where A = (A1,...,\s) € R% A version of the main result in [KSWO03], [KSWO05] is:

Theorem 6.3.2 ([KSW03, Theorem 1]). Let P C R™ be an integral Delzant polytope, and let
p € Ny and f € C°(R™). Choose a polarizing vector for P. Then

> f(w)f[lﬂf” (ai) / R

xEPNZ™

+ Sap+1(f)s
A=0

where

Sopi1(f) = Z (=1)# Ropy1 (f 0 Apg)-

vEvertices(P)
We now study a modification of the above result that might be of use for future research

investigating the asymptotics of partial toric density functions.

6.4 A parameter dependent Euler-Maclaurin formula for

integral Delzant polytopes

Theorem 6.4.1. Leta € R™, f € C§°(R™) and h € C(R™). Suppose that h satisfies h(x) > 0,
for all x € R™, and assume that h(x) = 0 if and only if x = a. Suppose furthermore that
Hess h|, is positive definite and that there exists a constant ¢ > 0 such that h(x) — h(a) > ¢
outside a compact subset of R™. Let P be an integral Delzant polytope in R™. Then, for p € N,

+ R2p+1 (k)7
A=0

d
1 / 10
P flm)e @ = TTL> ()/ f(@)e @) de

zePNLL"

and there exists C > 0 such that

|Ropsr (k)] < Ck~(PH55)  for all k € N.
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Chapter 6. Euler-Maclaurin Sums

Proof. We apply theorem 6.3.2 to the function x — f (%:c) e *h(i2) on kP. Now x € (EP)(N)
if and only if %.’L’ epP (%)\), so that, for p € N,

Z/ f (1113) e*kh(%w) — k" ﬁL2p ( 0 ) / f(m)e—kh(:c)dw
b o\ e

xzELPNZN
1
=k ] [L? ( ) f(w)e*kh(m)dw
H kOXi ) Jp

l

+ 52p+1(k)
A=0

+ Sopt1(k),

A=0

where

Spii) = 3 (C)* Ry <f <;Ak,,($)> ekh(iAkuw))) ,

vEvertices(P)

and Ag, : R® — R"™ is an affine map. Apg, def Byx + kv with B, € SL(n,Z) maps the

positive orthant onto the tangent cone of kP at kv. Let us define f,(x) det f(Byx 4+ v) and

ho(x) < h(Byz + v). We have

Rap+1 (f (;Akv(w)> e—kh(iAkm)))

= Rager (5o (£) (D)

S I (o) L el (57) " i

IC{1,....n} i€l O g1 il

Z /H]sz (‘) 11 Papsr () H(aiz)?pﬂ fv(%)efkh”(%) de,

I1C{1,.. i€l iZI i1

A=0

b2p+1(mr lz]) def

where Popiq(x) = is smooth on R — Z. In the integral, we ignore the grid G =

{x € R™ : thereexists i € {1,...,n} such that z; € Z}. On (R>¢)"™ — G all derivatives of
Popii(z5),7 € {1,...,n} up to order 2p are bounded by some constant C' > 0. Hence Rap1(k)

can be dominated by a linear combination of terms of the form

w [ 0%, (Y (s)
Qalk) = /Oam (4o () e 8)) da
8 (e
= g ladtn [ 2 —kha ()
e [ (fuw)e ) ay.
where 2p+ 1 < |a| < (2p + 1)n. We now use lemma 6.2.2 to conclude that
E"Qalk) = O <k_(7‘a‘2+n))

and the result follows. O
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Chapter 7
Asymptotics

In this chapter, we develop a method for determining the asymptotics of the toric density
function which we then adapt to find a new asymptotic expansion for density functions with

vanishing along a toric submanifold.

7.1 Introduction

Let (Lp,h) — (Xp,w) be a toric polarization. For ¢ € PN $Z" and k € N, let sqi €
HO(X, L’f,) denote the standard toric section corresponding to a and k. We have, for 3 €
Int(P),

sai(B)fF = (e kM0,

where h(a, 3) &f 2<u(a) —u(B) + (Vulg,B — a>>, and u : P — R denotes a function that

is Legendre dual to the toric potential ¢ : R® — R which satisfies w = 2i09¢ on the torus
(C*)" C Xp. Note that

def w"
el 22 /X 50 (B) 2
P

n!

_ (271_)7162ku(a)/ e—kh(a,ﬁ)d/@.
P
The density function pg : Xp — R is T™-invariant and, as a function on P, is given by

def [sak(B)]°
B = D for 3 € P and k € N.

2
aEPNEZ™ ”sa’k”
We now fix a face F' < P and, for s,k € N, consider the corresponding partial density functions
pr.sk of sections of L;‘; vanishing to order at least sk along the toric submanifold Y C Xp
corresponding to F'. By invariance under the real torus action, we can think of pp 1 as a

function on P C R™ = ¢*.

2
@ S kB e pandken,

2
wcrmgn I15ekl

where Pp s C P denotes the polytope corresponding to Lp ® Jy, — Xp. In this chapter, we
discuss a method which enables us to understand the asymptotics of pr s (8) for 8 € Int(P) as
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Chapter 7. Asymptotics

k — oo. We can also use a similar method to determine the asymptotics of pi(3) for B € Int(P).

7.2 Overview of our method

To determine the asymptotics of py and pp sk, we need three essential tools. The first is a
localization of sums formula, the second is a version of the Euler-Maclaurin summation formula
for integral polytopes which enables us to rewrite sums over integral points of a polytope as
sums of certain integrals, and the third is an application of Laplace’s method to expand these
resulting integrals. Let us first explain this by going through this method in the case of py

before concentrating on pr s .

7.3 The asymptotics of p;

Recall from chapter 1 that the asymptotics of py, for a polarized Kéhler manifold, have been
the focus of recent research efforts. Lu [Lu00] used Tian’s holomorphic peak sections to deter-
mine the first few coefficients of the asymptotic expansion. In the case of a toric polarization
(Lp,h) = (Xp,w), we now determine an explicit formula for all coefficients of the asymptotic
expansion of pj using our toric method at points p € Xp corresponding to interior points of
the polytope P under the moment map. Let us note here that Song and Zelditch have also
investigated several aspects of toric asymptotics in their work. In [SZ10] (see also references
therein), they makes use of the asymptotics of the toric Szegé kernel and the complex stationary
phase method in their considerations. Sena-Dias [SD10] has also developed an integration by
parts method to determine the asymptotics of toric density functions building on earlier con-
siderations by Burns, Guillemin and Uribe [BGU10]. The main point of this section is hence to
describe our method for expanding p; which will then be extended to partial density functions
in the next section. Some of our calculations here will be used for computing the asymptotics
of prsk later on.

Our first task is to determine the asymptotics of % for ke Ny ae PN %Z” and
B € Int(P) as k — co. We have

2
Lol _ gy etries) [ otriamay,
Sk (B)] P

where h(a, 3) =2 (u(a) —u(B) +(Vulg, B — a>) for o, 8 € Int(P). Furthermore, h(a, 8) >
0 with equality if and only if o = B for &, 8 € Int(P). Note that Hessh(., 3)| 5 and Hess h(c, .)|

are positive definite for e, 3 € Int(P). Due to the canonical singularities of u on 9P, some care

(o3

is required when considering the behaviour h near the boundary of P.

Lemma 7.3.1. Let K C Int(P) be a compact set. For j € Ny, there exist smooth functions
a; : Int(P) — R such that, for p € Ng, a, 8 € Int(P) and all k € N,

p
(QW)”/ e @M dy =3 a;(a)k~ ) 4 R, 4(a),
P

J=0

and there exists Cp, > 0 such that
IRp(c)] < Cok~("542)  for all o € K.
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7.3. The asymptotics of py,

Furthermore, for j € Ny, we have

27 ;
" (-1) 1 "
j =(2m)" E — (H Dg, Dg)"™7
() =0 THessul ] 2« (i + iz (e tla Do D)

(h(ev, B) — (Hessul, (B— o), — )’

[0 2

Proof. We can apply theorem B.2.2 to h restricted to U x U, where U is an open subset of R™
such that X C U C U C Int(P). h is then smooth on U x U and all derivatives of h are bounded
on Y. By B.2.2, we have that, for all j € Ny and p € Ny, there exists a; € C*°(U) and C), > 0
such that for all a € KC,

/e‘kh(o‘md’y Zkf(%ﬂ)a-(a) < Cpk (%“7)7
u =
where
LR S o
) _ — a1 i+j
%) =\ THossul ;mmngzw (Hessuly Dg, Dp)

(h(cx,B) = (Hessul, (B - @), B - a))’

(o3

In fact, a; € C*° (Int(P)) for all j € Ny. Finally, observe that there exists d > 0 such that
h(a, B) > d for all o € L and v € P —U. Hence

/ e‘kh(o‘”)d'y‘ < e *Vol(P) =0 (k=) foralla € K.

P—u

The lemma now follows. O
Remark 7.3.2. Define, for a, 3 € Int(P),

R(a, B) = h(e, 8) — (Hessul, (B — ), — a).

The first two terms in the expansion of lemma 7.3.1 are:

n 7Tn
ao(ex) =(2m) |Hess ul_, |
[e3
" ik 1 _
@) =Cm" [ e (—25<Hessu|a1Dg,Dﬁ>2 R(a, B)|4
«

1 -
+555 (Hessul,' Dg, Dp)’? R(a,ﬁ)2|a>

(2m)"™ T i ; " .
T |Hess ul_| (_guij Ta) + 12u4," (@) u”" (o) + Suji (o) u™ (a)) ,

where we use the Einstein summation convention. Lower indices indicate partial derivatives and
.. . . . def

indices are raised by the inverse-matriz of Hessu|,. For ezample, u;;*(a) = wujr(e)u™ ()
for ac € Int(P).

We can now invert the asymptotic expansion above.

61



Chapter 7. Asymptotics

Lemma 7.3.3. Let K C Int(P) be a compact set. For j € Ny, there exists smooth functions
b; : Int(P) — R such that, forp € No, a € KNZ", B € K and all k € N,

—1 P
<(2w>" /P ekh(“’”dV) = bi(@kF T+ S, k(a),

and there exists Cp, > 0 such that
[Spa(e)] < Cpr¥~(+3)
for all a € K and k > 0. Furthermore, for j € Ny, b; is determined by the following formal

differentiation:

1 d
bj(a) Zﬁ ds

1

s=0 Z?io aj(a)s!

Proof. Let Ap(a) Lof k% (2m)" [, e *M@Ydy. 1t then follows from lemma 7.3.1 that, for o €

Int(P),
Ar(@) =Y aj(@)k ™ +0 (k*(“%)) :

=0

Note also that ag(a) # 0 for all o € Int(P). We have

1 1
Ap(e) g aj(@)k

-0 (k_(’“’%)) as k — oo,

while
;bev(a)sf :o(|s|P+1) as |s| = 0
f:o aj(a)s? = ’ .
Replacing s by % gives the result. O

Remark 7.3.4. In particular, we have

1
Pl@) = o)
_ 1 |Hess ul, |

(271')” el
bi(a) = — LZ:((aa))Q

a1(a)? — ap(a)as(a
ba(ar) = 2 ao(zgg) ()
bs(c) = 2ap(a)a; (a)az(a) — ag(a)ao(a)z _ 04(01)3

ap(a)? ’

and a computation shows that e.g.

1 |Hess ul |
48(2m)" wn

h(a) = (9uijij(a) — 12uiki(a)ujjk(a) — 8uijk(a)uijk(a)) .
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7.3. The asymptotics of py,

We can now fully determine the asymptotics of pg on Int(P):

Theorem 7.3.5. Let (Lp,h) — (Xp,w) be a toric polarization, and let I C Int(P) be compact.
For j € Ny, there exists smooth functions d; : Int(P) — R such that, for 8 € K and p € Ny,

=Y d;(Bk" + T, (B),

=0

and there exists Cp, > 0 such that

T, 1(B)] < Cpkf(”%) for all B € K and k> 0.

We have .
J
=> cij-i(B)
=0
and
2
™ (-1)! -1 I+
< (Hessu|g” Do, Do) +
‘Hess U|B‘ (I + i)122049) p

l
b;(8) (e, B) — (Hessuly (a - B),a - ) L

Proof. Pick open subsets U,V of R" such that X C U/ C U C V C V C Int(P) and a smooth
bump function ¢ : R™ — [0,1] such that ¢¥(a) = 1, for all & € U, and ¢ () = 0 for all
a € R" —V. We have

2
aePNEL” ok aePNEL” Sak

where, for any j € Ny, there exists C; > 0 such that
|AL(B)| < Cjk™7 for all B € K and k € Ny.
This is easily seen since, by proposition 5.1.7, there exists ¢ > 0 such that

|sak(B)]° sk (@ _ hjes?
Tsarlz n(a,ﬁ)kli < e FlemBlnp ().

By a standard estimate, there exists D > 0 such that pi(a) < DEk™ for all a € P. Since there
are only O(k™) elements in (P —U) N +Z", we have that

Z ‘Sa,k(/@)|2 (1 N w(a)) < Z |5a,k(16)|2 -0 (kfoo)

2 2
aePNEL” Isecell ac(P—U)NLzn (e

for B8 € K. Note that supp+ C Int(P) is compact. We apply lemma 7.3.3 to get
P

DRI TS | 3 et as

acPNLZ” =0 \aePnizn
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+ Y b)) @),

aePNLZ™

where S}, ; is the remainder term occurring in lemma 7.3.3. There exists C, > 0 such that

Z w(a)Sp,k(a)e_kh(a’B) Sopk%—(p-ké) Z o~ kh(eB)

aePNEZ™ aePNEZ”

Scpk%—(P-F%) Z o—cklla—p]?

aePNEL”

—0 (kn—(p+%)) for all B € K.

Note that a — h(a, 8), for B € K, is smooth on Int(P) and in particular on supp . We can
now apply theorem 6.4.1 and, observing that the constants in O in theorem 6.4.1 can be chosen

to vary continuously with the parameter 8 € K, we conclude that, for j € Ny,

1 (a)eth(@s) T 1205 (1 9 / ()= kh(eB)

aePNE ™ A=0

(7.3.1)
+ Rj,p,k(ﬂ)a

where there exists D; > 0 such that
|Rjpk(B)] < Djkf(pﬁ*%) for all B € K.

Since d(/C, 0P) > 0, equation 7.3.1 simplifies to

3wl (@)e B = g / ¢(a)bj(a)e*kh<aﬁ>da+o(k%*(p*ﬂ%)) (7.3.2)
P

aePnizn
since all other terms involve integrals and their derivatives over the faces of P. We have

peB) =15 3k [ bt @)e @R 0 (1-(r+) (7.3.3)

=0 P

for B8 € K. We can now expand these integrals using theorem B.2.2. We have

/ (a)b;(e)e™ P do = Zcu k() Lo (k*(";lﬁpﬂ‘)))

=0

for B € K, where

21

(1)
l_|_ Z)|22(l+z)

ﬂ—n

cii(B) = (Hessu|g" Dq, Da)'™

‘Hebsu|ﬁ‘

b;(B) <h(a,ﬂ) — Hessulg (o — ), — ,@))l

B
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7.3. The asymptotics of py,

is independent of ¥. We conclude that

_ izj Bk~ 4+ 0 <kn—(p+%))
=0 i=0

S

Y . n(p+3)
ZO Civs (ﬂ)+0(k + )

for all B € K. O

Remark 7.3.6. In particular, we have

do(B) = co,0(B) = ﬁ

d1(B) = c0,1(B) + c1,0(8).

Let
R(a,B) = h(co, B) — (Hessu|g (o — B),a — B).

We can compute that

_ 1 a8
1= = i ao(d)
- ﬁ (9u57 (B) — 12uir (B)u,*" (B) — Buir, ™" (B) )
= a(B) (1 essu !
crol®) = 50 (22 (Fessl3' Do De) s
1 o ,R(a, B) 1 R(a, B)?
- 5% (Hessu|ﬁ De, Dq) a0(@) ’ + 283(Hessu|[3 Dq, Da >3Ta) ﬁ)
- 48(;7r)n (3ui; 7 (B) — dusjr (B)u"(B)) -

It is now clear that

1

12m)n (uijij (8) — ui;* (B)ur” (B) — umk(ﬁ)u”k(ﬂ)) .

d1(B) = co1(B) + c1,0(8) =
Using Abreu’s formula [Abr03, formula 3.3] for the scalar curvature of the metric corresponding

to u, we can easily check that

Scal(3)

202m) for B € Int(P)

dy (/6) =

as expected.

Remark 7.3.7. Note that the formulas involved in determining the functions {d; } _o are
getting complicated very quickly for large j € Ng. We know from Tian and Lu’s work that these
functions should depend only on the geometry of Xp, but matching the explicit formula for d;

in symplectic coordinates to the corresponding geometric quantity becomes non-trivial for large

J-

65



Chapter 7. Asymptotics

7.4 The asymptotics of pp

7.4.1 Introduction

Fix a face F < P and s € N such that s < S(Yr), where S(Yr) denotes the Seshadri con-
stant with respect to Yr (see 8.1.2 for a definition). For k € N, consider the corresponding
partial density functions pp s of sections of L;% vanishing to order at least sk along the toric

submanifold Y» C Xp corresponding to F. We have

2
pr,sk(B) o Z |sak(ﬁ|)2 for B € P,

aEPr.nizn ||3a,k

where Pp s C P denotes the polytope corresponding to Lp ® Jy, — Xp. Let K C Int(P) be
compact and let U,V be open subsets of R such that X CU CU C V C V C Int(P). Let
¥ : R™ — [0,1] be a smooth bump function such that ¥(a) = 1, for all @ € U, and ¥(a) =0
for all & € R™ — V. Suppose that

def

P:{aeR":li(a)dEf

= u; — (e, n;) > 0 for some p; € R, primitive
n; €Z"” and i€ {1,--- ,d}},
and assume that F' = NJ_; Z(l;) for some r € {1,--- ,n}. We define

Pr s “laep: le(a) >s
j=1

rY aGP:le(a):s
j=1

for s € N.

Figure 7.1: Example configuration.

7.4.2 The expansion

In order to simplify our computations, we will from now on assume that we have fixed coor-
dinates such that Prs = PN {a € R" : a3 > v} and F; def {a € P: a3 = v} for some fixed

v € Z and that the lattice is just Z™ C R™ = t*.
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7.4. The asymptotics of pr,s,k

Proposition 7.4.1. Let (Lp,h) — (Xp,w) be a toric polarization and let K, F < P, Fs, Pp s,
be chosen and normalized as described above. We have, for 3 € Int(P) and p, k € Ny:

P /10
pren(B) = 3 K% IB0- (M) [ vleblae @ Pda] b Ryu(B)
=0 a1 >rv—A A=0

where there exists C' > 0 such that |R, ;(3)] < ckn=(r+3) forall B € K and k> 0.
The following two claims will be useful for our proof of the above proposition.

Claim 1. )
prak(B) = > ¢(a)|sa’k('8)2 + Rp(B) forall e P,

acPr.nizn IS,k

and for all j € Ny, there exists C; > 0 such that |Ry(8)| < C;k~ for all B8 € K and all k> 0.

Proof. By proposition 5.1.7, there exists ¢ > 0 such that e *(@8) < e~clle=BI” for all a,B € P.
Furthermore, it is a standard result, which is independent of the proof of the asymptotic
expansion of pg, that there exists D > 0 such that px(8) < DEk™ for all 3 € P (see e.g.
[Bou96, lemma 3.1]). Combining this gives:

DR B Lcuitc)| NP o S ()

2 2
aePr iz lsal® = o Tpnpan I5esl

2
< Y ety

a€(Pps—U)NEL"

=0 (k_oo) for all 3 € K and k> 0.

Furthermore, we have:

Claim 2. For p € Ny, 8 € Int(P) and k € Ny, we have

> w(@mzz > pla)bi(a)e MR ) k304 Q, 1 (B),

2
acPr.nizn I5eu i i=0 \aePr.nizr

where b;, for j € Ny, are the functions appearing in lemma 7.3.3 and where there exists Cp, > 0
such that
1Qui(B)] < Cok"~(PT3) for all B € K and all k> 0.

Proof. There exists ¢ > 0 and, by lemma 7.3.3, there exists D,, > 0 such that

QB =] D (@)S,r(a)e A

a€Pp ,nizr
< Dpk%*(;!ﬂr%) Z e—CkHa—ﬁl\z
a€Pp Nizr
—0 (k"—(l’+%))
for all B € K. O
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Proof of the proposition. By claim 1 and claim 2, we have

p
prsi(B) = > d(ab(e)e M) k3T 4 Q,(8),

J=0 \{a€$Z":a1>v}

where there exists C' > 0 such that |Q, x(8)] < Ck"=(P3) for all B € K and k£ > 0. We note
that the constants in O in proposition 6.2.3 depend continuously on our parameter 3 € IC, so
that we find

z V(10
— np2(p—j) | = ] —kh(a,B)
PF,s.(B) E <k B <k 8)\> /a1>y)\ Pla)bj(a)e do

Jj=0

) kgi] + Rp,k(ﬁ)a

A=0
where there exists C' > 0 such that |R, 1(8)| < Ck"=(P3) for all B €K and k> 0. O

Theorem 7.4.2. Let (Lp,h) — (Xp,w) be a toric polarization. Fiz a nontrivial face F < P
and s € N. Let B3 € Int(P). Then

pr(B) + O (k=) if B € Int(Pp,s)
prsk(B) = Lor(B) + 520 ¢ (B)K"UH2) £ O (k=) if B € Rellnt(F,)
O (k=) otherwise,

where ¢; € C*™ (Int(P)) are explicitly computable functions. Now let IC C Int(P) be a compact
set. For p € Ny and B € K N Rellnt(F}),
1 b 1
pros(B) = 5oe(B) + D (@KU +.5,4(8)
j=0
for allk € N, and there exists D > 0 such that | S, ,(8)| < Dk (pt3) for all B € KNRellnt(Fs)
and k> 0.

Proof. Assume that we have normalized coordinates as described. In particular, we have Pp ; =
Pn{a € R": a; > v} for some fixed v € Z and the lattice M is just Z™ C R™. For the first
part, choose a compact set K C Int(P) such that 3 € K. We note that by proposition 7.4.1,

prsk(B) =

das - - - day,
((v,az,,a),8)

e B [l (vt faye o)

where R, 1(8) = O <k"_(p+%)) for B8 € K. If 81 < v, it is clear that all terms above are

O (k~°°) since the point where h achieves its minimum is not in the domains of integration of
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7.4. The asymptotics of pr,s,k

the summands above. If 5; > v, we have, for all j € Ny,

Y(a)bj(a)e FM@B) da = V()b (a)e @B da 4 O (k=),
RTL

a1 >v

while the other terms are O (k~°), and we get back the expansion of py(3) (see equation 7.3.3).
Suppose now that 8 € KN {x € R" : z; = v}. We have

2(p—J)
ap>v e

using lemma B.3.6 and theorem B.3.4, where

l ; .

(_1)1 ntl 1 07 ~1 ¢
2y 2 Y Jige R(HH®a+s.8)
1=0 |v|=1+2:¢

b; (H_%(ﬁ)a—f—ﬁ)’ e(*y,H_%(ﬁ)el,O),

Aju(B) =|H(B)|?

a=0

for j,1 € No, H(B) = Hessh(., B)|5 = 2 Hessulg, h(ax, B) = 2 (u(a) —u(B) +(Vulg,B - a))
and

R(e8) = hlev. ) ~ S {H(B)(@~ B). ~ ).

so that %Wh(.”ﬁ)’ =2 %'yu‘ﬁ for |y| > 2. By lemma B.3.6, we have, for 8 € KN {f = v}
and j,l € Ny,

n 2l Ve ' '
Asan(B) = 5 I(I-.2r7(rﬁ)¥)l 2 i!(i(Jr zl>)!2i+z (H™(B)Da, Dar) s () Rlex, Bl
=0

where D, = (6%1,--~ , 82n)' We also have, for p —j > 1,
1
5 ¢(V> Q, - 7an)bj(y7 Qg, - ’an)e—kh((v,az,--- 7an)yﬁ)doQ o dan
Rn—1

B p—z:leJ(ﬁ)kf(nT—lH) L0 (kf("T—lerfj)) ,

j—
=0

where, by theorem B.2.2,

1 7.‘-n—l

~ 2\ |G

D;.(B)
21 (_1)1 ) 3
; Ty s (G BD DY b (vaz - an)S((ay+an) B, )

where now

6o 3 (

2 2,)
90i daj ) oc; j<n

= (Uij (;8))2§i,j§"

B
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of , O 0
Dd:f(aa2 ’8%)
and
S((v, a2, an), B) E h((va2, v an),B) — O uiy(B) (e — B:)(ay — B))

4,j=2

for 8 € KNn{x € R" : 1 = v}. Finally, there are explicitly computable functions C; ;; €
C>(Int(P)) such that

B i 0 2i—1 )
(2?); /Rn . Doy (w(a)bj(a)e kh(aﬁ))

((v,a2, a0 ),B)
p—(i+j)—1

> CiuBRTF T w0 (BT
=0

To see that the integral above is of order k= "2, we employ reasoning just like in lemma 6.2.2.
The full asymptotics can be computed by first expanding the a1-derivatives and then applying
Laplace’s expansion for each of the resulting terms. We recall from equation 7.3.3 that, for
pE N07

Zp: K% ()bj(a)e @B o + O (k”*(“%)) (7.4.1)

j=0

<.

for 3 € K. An application of lemma B.3.6 now yields that

fE ( Z Ay (B~ ()

Mw

pr.sk(B) — 1Pk(ﬁ)

2
7=0
L p—j —(i+5)—-1 ' -
h Z D;.(B)k(" )+Zk‘27 Z Cia Bk
i=1
+o(kn— =)
p Jj—1 .
Z Ajo141(8) + Dya(8)) k= (H7+4)
j=0 1=0
p Jjp—i—j—1 )
+ Cija(B)k~(H9H143) +O(k”*(”+§))

for B e KN {x € R": x; = v}. Here, we use the convention that Zs:a f(@) =0if a > b. Note

that, in particular,

proxlB) = 3o1(B) = (Ao.1(8) + Doo(B)) k"4 + 0 (k%)

forBe KN{x e R": 27 = v}. O

Remark 7.4.3. Recall that e.g. prsk(B) = pp(B) + O(k=>°) if B € Int(Pp) in the above
theorem means that, for fized B € Int(Pp ) and for any n > 0, there exists Cp, > 0 such that
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7.4. The asymptotics of pr,s,k

lor,s.k(B) — pr(B)] < Ck™™ for all k > 0. But it is clear from the proof that for any compact
subset K C Int(Pp ) and n > 0, we can in fact take a fized Cy, > 0 for all B € K and k> 0 in

the estimate. A similar statement holds over Int(P — Pp ).

7.4.3 The k"2 term

We will now investigate the k"% term of the asymptotic expansion of pr ) in more detail.
Using the basic integrals that we compute in A.2.1 and A.2.3, we find that, for 3 € £nN
{x e R" : 21 = v},

n
n+1 8

Ao (B) = |H(ﬁ)|7% (2 ’ Jas

1

bo (H™# (B)a+B)e (e HH(B)er,0)

s=1 0

n+3 1 63
_ 93" - v
Z 3! o, 0as 0y

r,s,l=1

R (H(ﬂ)_%a —l—ﬁ) bo (H_%(ﬂ)a +ﬁ)

0

e (er +es + el,H*%(,B)el,O> )

- 1 ul11(3)
12(2m)"/7 (y11(g)) 2
while
Doo(B) = : .

22m)" /7 Jall(B)

for B e KN {x € R": z; = v}. We conclude that

1 _ 1 2 1 Ulu(ﬁ)
prsk(B) = 5pk(B) = 12w ( ) 3 (ul1(3))

. g) k=t +O(k *5) (7.4.2)
fore KN{x eR": 2y =v}.

Proposition 7.4.4. Let (Lp,h) — (Xp,w) be a toric polarization, let F < P be a non-
trivial face and let s € N. Let t denote the Lie algebra of the real torus acting on Xp, and
let p : Xp — t* denote a choice of moment map that has P as its image. Suppose that
Prs=PnNH,, where H, » = {a € t* : (a,n) — X > v}, and n € t N Ker(exp) is primitive.
Let K = S denote the circle subgroup generated by m, and let N denote the vector field generated
by the K-action on Xp, so that N, def % exp(tn).p}tzo forp e Xp. Then, for B € Int(P)NFy,
we have

1 1 1 (div(JN) . ([ JN 1 "
prokB) =5 B) = smvm (3 ( A <||JN||>p> ! ||JNp||> *

+0 (k”*%)

for any p € p=1(B).

Proof. With our choice of coordinates, we have N = %. We compute that
0 - .0
e =— uld —
001 32::1 oY)
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11

while ||J55-[|? = u!'. Computing the divergence is now very simple, since the metric has

determinant one in symplectic coordinates. We have

ulll

Uljj
d”<|JN||> ZW( )‘ o

div (JN) Z—uljfu]j

The result now follows from equation 7.4.2.

1
2

(utt)

3
2

O

Remark 7.4.5. The higher order asymptotics could be computed explicitly in a similar manner
using a computer. Unfortunately, our method of expanding the partial density function is not

intrinsically geometric and we only recover the geometric meaning of the k"_%-coeﬁcicient as a

last step in the above. We conjecture however that all coefficients in the expansion in theorem

7.4.2 should be geometric.

Conjecture 7.4.6. All the functions c; : Int(P) = R, for j € No, appearing in the asymptotic

expansion in theorem 7.4.2 are geometric. More precisely, they are determined by the vector

field N discussed above and the geometry of (Xp,w).
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Chapter 8

The Slope Inequality

In this chapter, we discuss the slope inequality with respect to a complex submanifold which
has important implications for the study of constant scalar curvature Kéhler (cscK) metrics
within a fixed Kéhler class. We then describe an interesting connection between partial density

functions and the slope inequality.

8.1 Background

Let (L,h) — (X,w) be a polarized Kéhler manifold and let Y C X be a complex submanifold
of X. Let us now discuss the slope inequality for (X,L,Y). For k € N and | € Q such that

lk € Ny, there exists an asymptotic expansion of the Hilbert-Samuel polynomial hy;:

hy (k) 00 (LF @ J¥) = ao(DE™ + ay(DE" " + O (k"2 for k> 0,1k € Nq.

We define ag def ap(0), a; def a1(0) and recall the Hirzebruch-Riemann-Roch theorem:

Theorem 8.1.1 (Hirzebruch-Riemann-Roch Theorem [Huy05, theorem 5.1.1, p.232]). Let E
be a holomorphic vector bundle on a compact complex manifold X. Then its Euler-Poincaré

characteristic is given by
(X.E) = [ ch(E)ax)
X

where
dim(X)

XX, BE) = ST (1)'h(X, B),
=0

and td(X) denotes the Todd class of X.

In the case of an ample holomorphic line bundle L, (X, L¥) = h?(X, L*) for all sufficiently
large k. We hence obtain, for k > 0,

hO(X,L*) = / e (EN1q(X)
X

:/X {<1+61(Lk)+ al®” Cl(L_k)n)

<1+ %Cl(X)Jr % (c1(X)? + e2(X)) +>}
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Chapter 8. The Slope Inequality

In particular,

S / Scal w
2n—1)!  2(27)" Jx n!’
Let us recall the following from [RT06, Tho06]:

Definition 8.1.2. The slope of a polarized manifold (X, L) is given by

def @1
w(X, L) = —.
ag

For a submanifold Y C X, the Seshadri constant S(Y') is defined as

S(V) Y sup {7*L ® O(~1E) is ample} ,
l

where 7 : Bly(X) — X denotes the blow-up of X along Y and E = 7! (Y) the exceptional

divisor. The slope of Y with respect to ¢ € R is

c ay(l)
def fO al(l) + 702 dl
c 7L = 3 ’
pelJv, L) I ao(t)di

and we say that (X, L) is slope semi-stable with respect to Y if

pe(Jy, L) < uw(X,L) forall c € (0,S(Y)].

(8.1.1)

We refer to equation 8.1.1 as the slope inequality for (X, L,Y). We say that Y strictly destabi-

lizes (X, L) if (X, L) is not slope semi-stable with respect to Y.

The following corollary gives us a geometric motivation for studying slope semi-stability:

Corollary 8.1.3 (Ross, Thomas c¢f. [Tho06, Cor 7.4] and [RT06]). Suppose thatY C X is a
complex submanifold of a polarized Kahler manifold (X,L). If Y strictly destabilizes (X, L),

then X does not admit a cscK metric in the class c¢1(L).

Remark 8.1.4. We only consider slope semi-stability with respect to complex submanifolds,

but the notion is well-defined for subschemes [Tho06, RT06].

8.2 Toric slope stability

We now investigate slope semi-stability for toric submanifolds of a toric polarized manifold

Lp — Xp corresponding to a polytope P C R™. Guillemin and Sternberg’s Euler-Maclaurin

summation formula for integral Delzant polytopes will be of use to us.

Theorem 8.2.1 (Guillemin-Sternberg, [GS07, theorem 4.1]). For f € C5° (R™) and an integral
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8.2. Toric slope stability

Delzant polytope P given by

p { z eR": [;(x) def wi — (x,m;) > 0 for some p; € R, primitive

n; €Z" andi € {1, -- ,d}},

we have .,
1 1 1 0
— Z f (:c) ~ HT () / f(x)dx ,
K™ werprzn \F i1 \FOAJ ey A=0
where
S S > Bsy;
- 142 1)1 22 25
7(s) T —|—2+Z( ) (2j)!$
Jj=1
s s2 st
=14+ + -2 6
ot T O

Here, B; denotes the j*" Bernoulli number and

P(X) - {zx eR" : lj(x)+ X\ >0,i€{l,--,d}}

for A= (A1, -+ ,\q) € R,

Remark 8.2.2. Note that we are now using the outwards pointing primitive normal vectors in
the definition of P(X) as opposed to 6.3.

Example 8.2.3. Consider the Delzant polytope given by (z,y) € R? such that

li(z,y) =4 y>0

a(z,y) 10—z —y >0
ls(z,y) £ 6 —y >0
la(z,y) ey >0

P(A1, A2, A3, A\g) ) {(z,y) € R? : li(z,y) + A; > 0 for i € {1,2,3,4}}.

P(0,0,0,0) and P(0,1,2,3) are displayed in figure 8.1. These polytopes correspond to the

blow-up of CP? in a point together with two different polarizations.

o o s 0000 o oo 6169 0 0 06 06 00 0 0 00 00 0 0 o
o o o 0000 oo oo o P oo 00000 6 0000 00 0
o o o0 000 oo 0 o b o 6 0 0600000000000 o
o o o 06000 o000 o0booRoooooo0 60000 0 0 0
oo m\
o o o0 0 00
o o o 0000 o000 doob oo s 0 0 o
s 00 0 p 60D o o o0 0 o
o o o o 6 0 o o o o o o oS4 o o ° o o o o
o0 o ° s 06000 o600 0 o oD o o ° s 0 0 o
o0 o ° s 06000 o600 0 o oD o o ° s 0 0 o
o0 o ° s 06000 o600 0 o oD o o ° s 0 0 o
o0 o ° s 0000 00060 oo b o o ° s 0 0 o
s 05000 008 66003 0000 S o o W o o000 6 60603 000 ol S
o 06000000000 00 000 o o000 o boo Do o oo oo o0 00 o0 o
o 06000000000 00 000 o o 00 o bo oD oo oo oo 0 0 00 0 0 0N o
o 0600000 0000 00 0 00 o o000 o b oo b oo oo oo 00 00 0 0 00
o 0000 05 0000 00 0 0 0 6 00 0 b oG o0 000000 000 0 0 0 o
o 06000000000 00 000 o 000 b oo oo oo o000 000 0 0 0 o
o 06000000000 00000 o 00 0boobdoooooooooooo oo o

Figure 8.1: P(0,0,0,0) and P(0,1,2,3) from example 8.2.3.
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Chapter 8. The Slope Inequality

We can expand h°(L%) in powers of k as follows:

kM40 (K2
A=0

1 )
RO(LY) = # (kPNZ") = 1 = Vol(P)k"™ + = / da
() = #HPAZ) = 3 DI N

xckPNZ™ i=1

Following an idea of Donaldson [Don02], we introduce a constant (n — 1)-form do;, for i €
{1,---,d}, such that
dVolgy = do; Adl;,

where dVolg,, denotes the Euclidean volume form on R™. Suppose that the polytope P is

given by
def n def e s
P = { xz eR" : lij(x) = p; — (x,n;) > 0 for some p; € R, primitive
n; € Z" and i € {1, -- ,d}}.
Now
9 9 const(P,i)
dVOlEucl = / / a; dlz
P(0, 707;\%70, 0) Ai=0 b= J(w)>0 for JF#i ;=0
- L@ 90
1 (@)>0 for j#i

= VOLU (Fz),

where F; % {z € P :li(x) = 0} is a (n — 1)-dimensional face of P for i € {1,---,d}. We
recover the well known fact that
130, Voly, (F) 1 Vol(dP)

n(Xp Lp) =5 Vol(P) 2 Vol(P)’

where Vol(P) denotes the Euclidean volume of P and Vol(9P) the volume of 9P taken with
respect to the measures do; for ¢ € {1,---,d}. Let us now apply these ideas to the slope
inequality. Let Yz be a toric submanifold of Xp of complex codimension r corresponding to a

face F' < P of real codimension r. Without loss of generality, we assume that F' = {& € P :
li(x)=---=1(xr) =0}. We have

1 T
HO(LK, @ 7 ) = Span | sa: € PN 22" and > lia) =1
j=1

for k,1 € N. We define P, < {z € P > j—1 lj(x) > 1} and have
1
W (LF o ) = # (Pl N kzn)

= Vol (P) k"™ + %Vol (OP) k"' + 0O (k" 7?)
=ao(Dk" +ar (D" + O (k"72),
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so that the slope inequality for F' takes the form

¢ 1( P
/Vol(@Pl)dl—i—Vol(P) Vol (P) —\2(/)018 /v1 P)dl for ¢ € (0, S(Yp)].
0

Let us now rewrite this inequality in a more geometric form. If the codimension r of F' is larger
than 1, then, for 0 <! < S(YF), P, has the following (n — 1)-dimensional faces:

Fo(l):{zceP lo( desz }
Fj(l):{aceP:lj( ) =0, lp( desz } fori e {1,---,d}.
If r =1, the n — 1 dimensional faces are given by the above, except that we discard the empty

set F1(l). We note that

9 9
%l =g

B const(Py)
= a/l_ / lg(m):lo dO'() dlo

o=l 1 (2)>0 for j#0

dVOlEucl

= —Vol,, (Fo(l)),

where dVolg,¢ = dog A dly. The slope inequality now becomes

“Vol (0B — Fy(1)) , _ [ Vol(R)
/0 Vol@p) s /0 Vol(P) !

We have proved:

Lemma 8.2.4. Let (Xp,Lp) be a toric polarization and let Yrp be a toric submanifold of
Xp corresponding to a face F C P of the polytope P = {x € R™ : [;(x) def wi — (n;,xy >
0 fori€{1,---,d}}. Suppose that F =NI_Z(l;)N P and let P;F ={x € P: 3, li(x) > 1}.

Then (Xp, Lp) is slope semi-stable with respect to Y if and only if

“Vol (o) . _ [ Vol(P)
o Vol(dP) © = J, Vol(P)

for all c € (0,S(Yr)).

Proof. The proof is given in the above argument. Note that the slope inequality is continuous

in ¢ in the toric case. We can hence discard the case ¢ = S(YF). O

8.3 Partial density functions and slope stability

Let (L,h) = (X,w) be a polarized Kéhler manifold. We now discuss an idea communicated to
us by R. Thomas [KPTS] which shows that sufficient asymptotic information about the partial
density function p; j, with respect to a complex submanifold ¥ C X might provide a geometric
proof of the fact that the existence of a constant scalar curvature metric in the polarization
class of (X, L) forces (X, L) to be slope semi-stable with respect to ¥ (corollary 8.1.3). Fix a
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Chapter 8. The Slope Inequality

complex submanifold ¥ C X. We define ¢; 1, : X — R by

0k (p) = pur(p) % (pz,k(p) - p%,k(p)) :

forpe X, ke N, 1€ (0,S(Y)]N +Z and where p;j, : X — R denotes the partial density
function with vanishing along Y to order at least k. Now

/X Y awnr= X {Rresd (1)

=Y e g -5 (00 (1Y) -1 (R e 5)

-5 (00 (1) 10 (2 )

I
g
=
=
=
e
=

=3 > (ak" +ar (k™)
- % ((ao + aog(c) k™ + (a1 + as(c)) k") } +O (k"

(& C
— gt / ao(z)dz+k"W+k” / ay (1)dl
0 0

ap(c) + ag
2

:an/ ao(l)dl+k"/ ar()dl + O (k™) .
0 0

_kn +O(l€n71)

Let us now assume that, as distributions over X, we have the following asymptotic expansion

Scal
(2m)™

for some function f; : X — R depending on the geometry of X and Y, a subset N; C X and
0 <1< S(Yr), and where the constant in O is independent of [ € (0, S(Yr)]. In particular, we
then have

/XQJ,k%T = k”/x (;\Ijn% + k" 1/ (11\/1 Sial()) +fl(p)> %T L0 (k)
)

. Vol(IVy) ne1 Scal(p w" neo
=k 2y +k /X(lNLQ(Q) + filp )) n!+0(k‘ )

Qi =k" (21) 1y, + k" 1<1Nz B + fl) +0 (k7?) (1)

where the constant in O is again independent of [ and Vol(N;) def / 1IN 2y - for our (possibly
singular) subset N; C X. Then

D I e = S W3 PRcCau

1=0,4+,... k=1
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8.3. Partial density functions and slope stability

Comparing the first term of the asymptotic expansions for [ ¥ Qz,k% yields \7(0217(:)\2) = ap(l). Let

Scal(p) __ a
2 - agp :

us assume now that the scalar curvature is constant. In this case we have

ag
0 l

c _ (& w'n/
(= k" [ ao(at 4k 2e=gel 20(0) | 2t [o@aret Y [ e
0 2 —0. 1. ck=1’X n:
=HET TR
+0 (k")

Subtracting the right hand side above from (1) and dividing by k™ gives

ao Jo l n!

© o a) a0 _ wp_ o
/Oa1<z)+7dzf— ao(l)dl — k 1_0;%_1/)(ﬁ<p>”0(k ).

k

Note that the first part above is the slope inequality which does not depend on k. It follows

that e.g.
wn
k1 2 <
Zw_lfxfxp) v <o,
Tk

=0, .

for k > 0, would imply the slope inequality with respect to Y.

Remark 8.3.1. The above calculation reveals some aspects of the deep relationship between the
asymptotic expansion of the partial density function p;j and the notion of slope stability with
respect to a complex submanifold discussed in this chapter. In particular, we see how sufficient
information about the asymptotics of p; 1 could lead to an alternative proof of corollary 8.1.3.
While we have concentrated on the pointwise asymptotics of pi r in the toric case in this thesis,
it seems that a future investigation into asymptotic expansions in the sense of equation (1) might

be worthwhile as well.
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Chapter 9

General Polarized Kahler
Manifolds

In this chapter, we concentrate on some of the problems that appear when one is trying to
understand the asymptotics of the (partial) density function in the case of a general compact
polarized Kéhler manifold (L, h) — (X, w).

9.1 Special sections

Let (L,h) — (X,w) be a polarization of a compact Kéhler manifold (X,w), so that 7: L — X
is a holomorphic line bundle with Hermitian metric h such that iFj, = w € 2mci(L). Let us
denote the Hermitian fibre-wise inner product and norm given by h*¥ on L’; by (s(q),5'(q)) px
and |s(q)|,«, respectively, for all s,s’ € H°(X, L¥) and ¢ € X. We denote the £L2-inner product
and norm by (s, s')px def Jx (5,8 )i @7 and ||, respectively, for all s, s’ € HO(X,LF). We
will omit the h* index if it is clear from the context which power of the line bundle we are

considering.

9.1.1 Tian’s peak sections

The fact that we have a very explicit basis of H%(X,LF) is one of the main advantages of
the toric case. Recall that each of these basis elements sq j corresponded to an integral point
acPn %Z” of a polytope P and sq 1 had the nice property of having “peaked” pointwise
norm on the torus = () which enabled us to apply Laplace’s method and the Euler-Maclaurin
summation formulas to extract asymptotic information in chapter 7. In general, there is no
such “preferred” basis of H°(X, L*), but there are interesting types of sections which we will
refer to as Tian’s peak sections and which do have similar properties. Let us first discuss a type
of holomorphic normal coordinate system that is important in this context (see [Boc47, Rua98]

for more details).

Proposition 9.1.1 (Bochner). Let X be a compact Kihler manifold and M > 0. For any
x € X, there exists a holomorphic coordinate map z = ¢, centred at x for which there exist a
real-valued Kdihler potential K around x such that all the (0,1),(1,1),(l,1),(1,0) terms in the
Taylor expansion of K vanish at x for | < M, except for the (1,1) term which is equal to ||z|?.

These coordinates are called K-coordinates of order M centred at x.
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Chapter 9. General Polarized K&hler Manifolds

Note that, in K-coordinates of order M > 4 centred at x, we have
2 = = 5
K(z) = |21 + Rjq2:zj2671 + O (|1 2]°) ,
where Rim denote the components of the curvature tensor at x.

Definition 9.1.2. Let (L, h) — (X,w) be a polarized compact Kéhler manifold and let zy € X.
Choose local K-coordinates of order M centred at xy. Pick a local holomorphic frame ey, of L
at zo such that the local function a : i/ — R representing h satisfies a(z) = exp(—K(z)) for all
z € U. We call such a local frame adapted to the K-coordinates.

Theorem 9.1.3 (Tian [Tia90], see also [Rua98, Lemma 3.1]). Let (L, h) — (X,w) be a polarized
compact Kdahler manifold and let o € X. Choose local K -coordinates of order 4 centred at xg
and an adapted frame of L.

For any n-tuple of integers p = (p1,--- ,pn) € N and an integer p’ > |p| e p1+ -+ Dy,
there ewists ko > 0 such that, for k > ko, there exists a holomorphic global section sp v €
HO(X,L*), satisfying ||spp k|2, =1 and

2 o (k-
x-{l H<1ogk}|Sp’p/’k|h’c n! ’
—1z]£=5= :
= Vk

and, locally at xg,

spar(2) = Ap (2 +0 (217) ) e (14 0 (k%)) |

where the constant in O depends only on p’ and the geometry of X. Moreover,

n
_ 2 w
)\p2 = |2P|? ok —
=l logk nt
= Vk

where a is the function representing the Hermitian metric h* in the local K -coordinates.

We refer to the sections in theorem 9.1.3 as “peak sections” since their norm is concentrated
near a point. Such sections have been utilised to prove several interesting results. Tian originally
used them in his paper [Tia90] to prove a version of theorem 10.1.1 which we discuss in chapter
10.

Recall that, on a polarized Kéahler manifold (L, h) — (X,w), the density function p;, : X — R
is defined to be the norm of the diagonal of the Bergman kernel By, on L. Let S1ks " » SNk
be a orthonormal basis of H°(X, L¥) for k € N. Then

Ny
pr(@) = |sik(@)lpn  forz € X and k € N.
1=1

Theorem 9.1.4 (Catlin [Cat99], Tian [Tia90], Yau, Zelditch [Zel98]). Let (L,h) — (X,w) be

a polarized Kdihler manifold. There is a complete asymptotic expansion
o0
pr(x) ~ Zaj(x)k”_J forxz € X and as k — oo,
7=0

for certain smooth functions {aj}jio on X. More precisely, for any R,r € N, there exists a
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9.1. Special sections

constant Cr, > 0, depending on R,r and the manifold (X,w), such that

pr(x) — Z aj(z)k™I < COp k"8 for allk € Ng and z € X.

I<f er(x)

Peaked sections were subsequently used by Lu to explicitly determine ag up to as. In

particular:

Theorem 9.1.5 (Lu [Lu00]). We have ag(z) = e and ay(z) =

@ L Scal(z) in the expan-

sion above.

9.1.2 Subspaces of H(X, L¥)

Let (L,h) — (X,w) denote a polarized compact Kéhler manifold as before. Tian proved the
existence of “peak sections” of L*, for k > 0, using Hormander’s O-estimates. We will now
discuss how to think of these sections as elements of a natural subspace of H°(X, L¥).

Let us denote the space of global holomorphic sections of L¥ vanishing to order at least I
at p € X by J}(p). Similarly, for a complex submanifold Y C X, we denote by J}(Y) the
global sections of L* that vanish to order at least I along Y. Given a polarization, we have
a decomposition of the vector space H°(X, L*), for any | € N and p € X, as a direct sum of

mutually orthogonal subspaces.

HY(X,L*) = Jl(p) ® Ti(p)*
=Jip) e (T )N Tkt e T (o)t
l
ARSI CAORKADR

1

J

Note that, for [ large enough, J}(p) = {0} and that J2(p) def HO(X,LF).
Definition 9.1.6. Let (L,h) — (X,w) be a polarized compact Kéhler manifold. We call a
sequence of unit norm sections {s;}32 ,, where s, € H(X, LF) for k € N, peaked at p € X if,

in local K-coordinates of order 4 centred at p, we have

wn
li 2 X l=o.
i [sklhe

/X—{|z|sk’j;}

We would like to argue - and this is already hinted at in Tian’s lemma 9.1.7 below - that
sequences of unit norm elements s € J,g_l(p) N jkj (p)* as k — oo, for some fixed j € N, are a
natural setting for discussing a version of Tian’s peak sections at p. The fact that sequences of
unit norm generators of the one-dimensional vector spaces Ji(p)*, for k >> 0, are peaked in the
above sense follows e.g. from [MMO07, 5.1.25, p.217]. We will now prove a little generalization

of this result which follows this intuition. First, let us recall:

Lemma 9.1.7 (see [Tia90, lemma 3.1]). Let (L,h) — (X,w) be a polarized Kdihler manifold
and let sp .1 be one of Tian’s peak sections, which is peaked at zo € X for p € Ny, p',k € N
and p' > |p|. Let s € H°(X,LF) with ||s|| = 1 such that s does not contain zP in its Taylor
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expansion in adapted coordinates at xo. Then
(Spp ks 8) = O (k_l) J

where the constant in O depends only on p,p’ and the geometry of (X, w).

The next result illustrates how the space J,i(p)J- can be considered as a vector space of

peaked sections following Tian’s ideas [Tia90].

Proposition 9.1.8. Suppose that (L,h) — (X,w) is a polarized Kdhler manifold. Let l € N,
zo € X and let {sx}32, be a sequence such that s, € Jl(p)* C HY(X,LF) and ||sgllpx = 1
for all k € N. Then there exists a constant C > 0 such that, in local K-coordinates of order 4

centred xqy, we have

wn

|splox —| < Ck™*  for all k € N.
/X{|z|<1°§<g>} n’

In particular, {s},—, is peaked at x.

Proof. Let p’ > I. Choose ko > 0 such that, for all k > ko and p € Njj such that |p| < I, Tian’s
section sp v x € HO(X,L*) with parameters p,p’ and k and peaked norm at zo, exists. We

define the following vector spaces for k > ko:

H ¥ HO(X, LY

def n
Ty, = Span (spy ki p € NG, |p| <, sp i € H(X,LF))
def
T = j/i(fﬂo)~
Furthermore, let ny 4f Jim HO(X,LF) and m 4f Jim Ty, for k > ky. We observe that

Hk:Tk@Jk:JkLEBJk.

We let

def

We (T 00T 0= (Th + ) 0 i

and note that vy, 4 dim Wi < 2m for all £ € N. We have an orthogonal decomposition

Hy, = Jif & Wi e (T 0 Jk)
and an alternative decomposition

Hy =Ty ® Wi, & (T N Jy)
and observe that T}, C J,j‘ e Wy = (T,ﬁ- N Jk)J'. We pick, for each k, an orthonormal ordered
basis (wl,kv' o ;ka,k) of Wka (tl,kv' o 7tm,k) of Tka (jl,kv' o ;jnk—m—vk,k) of 71]@L N Jg and
(fik, s fmk) of Jkl. Observe that

def . .
(el,ka e 7enk,k) é (fl,k7 e vfm,kuwl,ku ey W ks J1,ksy 7Jnk7m7vk,k)
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forms an ordered orthonormal basis of H. We have a second basis of Hy:

def . .
(ell,k;a"' 7eizk7k) (tl ks atm,k7w1,k7"' s Wy ky J1,ky """ 7jnk—vk—m,k:)~
Now .
m k
tig = Z<ti,k> fik) ik + Z(ti,k,wj,k>wj,k~
j=1 Jj=1

Collecting the change of basis coefficients €] , = ¢;j xe;jx in a matrix @5, we have

A, By
¢k = 0 Hvk
0 |Ln-m

0

where (Ag)i; < (tig, fix) and (By)i; < (tip,w; ) with
Al —A'By

¢l = 0 L,
0 | L —m

0

Claim. Aj is an asymptotically unitary matrix in the sense that
AAy =T, +0 (k7Y),

where O (k’l) denotes a matrix all of whose entries are O (k’l).

Proof of the claim.

m m Vi
(i tjok) <Z (Ar)ifir + Z Br)awik, Y (Ar)jrfrk + Z(Bk:)jrwr,k>
r=1

=1 =1 r=1

(Ar)i(Ax) i + Zk:(Bk)il(Ek)jh

1 =1

NE

but (Bg)i; = O (%) and (t;x,tj k) = 05 + O (%) by lemma 9.1.7. Noting also that v, < 2m,
for all k£ € N, gives the result. O

The above claim and the fact that (By);; = O (1) now give that

m
fzk—z n ZA Bi)ij wj k-
- "ol
Let us rewrite this as .
fik = Z(A;Zl)ijtj,k + Nk,
j=1

where ||, x| = O (1). Let B, ¥ {z eX:|z| < %} in local K-coordinates of order 4
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centred at xg. Point-wise, we have, for ¢ € X,
2
|fik(D)|” =(fir(q), fir(q))
Z k z]]k +771k 72 k 1ltlk +7hk()
=1

=1

m m

= Z (Alzl)ij(zlzl)il (tjn(a), tue(a)) + (mi,k(a), mis () + Z ((A,Zl)w (tjx(a),mik(q))

=1 j=1

+mwwmm>mm)

and
w™ w™
LmemsAﬂmwmm
/mmm|
2 W"
\// |tj,k| |7737k n
=0
(&)
Finally,
/|f P ro(Y) ferieq }
ikl — = - or i RN (S
5 Ol k
Without loss of generality, we can assume that s, = fi , and the result follows. O

We expect this kind of “peaked” behaviour to extend in the obvious way to sequences
{s£}22,, where s € JL(Y),l € Nand Y C X is a complex submanifold. Also, we conjecture

that we have the following:

Conjecture 9.1.9. Let (L,h) — (X,w) be a polarized Kdhler manifold. Let Y C X be a
complex submanifold. Let {rp}3Z, C Rxo be a sequence such that 7= — 0 as k — oco. Then,
for any sequence {s,}32,, where s, € J*(Y)* and ||s|| =1 for all k € N, we have

n
/ Bk w*,
X—N(Y) n:

lim =
k—o00

for any neighbourhood N(Y') of Y.

In future, it might be interesting to explore in detail how such sections are “peaked” asymp-

totically. Considering what we have found so far, we make the following definition:

Definition 9.1.10. Let (L,h) — (X,w) be a polarization of the compact Kéhler manifold
(X,w). We call a set Sy, = {p; : i € I}, where p; are points (submanifolds) of X a sampling set
of points (submanifolds) of L* if

Span (UZGIJk(pZ)J_) = Ho(Xv Lk)v
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where L is taken with respect to the £2 inner product on HY(X,LF) given by integrating
the fibre-wise inner product given by h* with respect to the volume form “‘T’L—T We call a
sampling set of points (submanifolds) minimal, if #I is minimal among all sampling sets of

points (submanifolds) of L*.

In the following, let (L,h) — (X,w) be as in the above definition. We make two simple

observations.

Lemma 9.1.11.
Span (Upex Ji(p) ") = HO(X, L*).

Proof. Suppose s € Span (UpEXjk: (p)i)l = Npex Ji(p). Then clearly s = 0. O

Lemma 9.1.12. Let Nj, = dim(H°(X, L¥), then there exists ko > 0 such that for all k > kg
and any p € X, there exists a minimal sampling set of points Ij, of L* with precisely Ny, distinct

points. Furthermore, we can assume without loss of generality that p € Ij.

Proof. Choose ko € N such that L* is very ample for k > ko. Each J,(p) has dimension Ny — 1
and J(p)* has dimension 1. Let p; = p and define V; = Ji(p)*. Using 9.1.11, we observe
that either Ny = 1 or there exists another point p; € X such that

Vo = Span (Vi, Ji(p2) ")

has dimension dim(V;) + 1. Continuing by induction and defining

Vn+1 = Span (Vn7\7k(pn+1)l) )

we arrive at the result. O

Proposition 9.1.13. Let {p,...,pn,} C X be a minimal sampling set of points for L* and
let L,, for p € X, denote the fibre of L over p. There exists a (non-canonical) vector space
isomorphism

Ny,

O HO(X, LF) - @ L,, = Ce.

i=1
defined by evaluation. P(s) ef (s(p1),-..,s(pn,)) for s € HO(X, L).
Proof. Clearly ®y is linear and s(p;) = 0 for all ¢ € {1,---, Ni} implies s = 0. By dimension

counting, ®; is an isomorphism. O

Remark 9.1.14. Suppose that, for Y C X a complex submanifold of X, we are interested in
studying the space j,i(Y) for some I,k € N. Then the simple identities

Te(Y) = Npey Ti(p)
Ji(Y)*t = Span (Upey T (p)")
give us an intuitive understanding in terms of “peaked sections” and suggest that one could
consider studying these spaces using JL(p) for a large enough finite set of points points p € Y.

This idea is reminiscent of the method used by Donaldson in [Don96], where a large collection

of peaked sections with an evenly distributed “net” of peak points is being utilized.
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9.2 Localization of the density function
We now prove a “localization of sums” result for the density function of the Bergman kernel.
First, we need a little lemma to simplify the proof.

Lemma 9.2.1. Let (L,h) — (X,w) be a polarization of a Kdihler manifold X of complex

dimension n. For each p € X, there exists a holomorphic coordinate chart which is centred at

b
Yp Uy =V, CC" forpel, C X,

such that the following holds:

o There exists a real valued Kdhler potential ¢, : V, = R for w such that w = i@gq&p and a
constant C, > 0 such that
|6p(2) = 12]1%] < CyllzII*,

forall z € V.

o Geodesic distance on X and vector space norm on V, are related by

1
sllz—wl<d (¥ ' (2), 4 (w)) < 2]z - w

for all z,w € V).

o Ly, = U, x C is trivialized in such a way that the Hermitian norm of the trivializing

section ey, : U, — C is given by

def —
ap(2) = |lep(2)|IP = e~ =),

and we have the estimate
<ap(z) <1

N | =

forall z € V.

Proof. For every p € X, we can use holomorphic K-coordinates of order 4 at p on a small open

set containing p. In particular, we then have
¢p(2) = |12|° + Rizia(p)2izjzezm + O(||2[°),

for all z € V,,, which gives us the first estimate on a sufficiently small neighbourhood of p. We
note that, at p, the metric is just the identity matrix. Since the metric varies smoothly, geodesic
distance near p is then also approximately equal to the vector space distance. We restrict to a

small enough coordinate neighbourhood to obtain the required estimate

1
sllz—wl<d (¥ ' (2), 4 (w)) < 2]z — w]

for all z € V,. We can choose a trivialization of L over a neighbourhood of p such that
a, = e~ . The final estimate
<ap(z) <1

N | =

just follows from the corresponding estimate for ¢, on a small enough neighbourhood of p.
O
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Proposition 9.2.2. Let (L,h) — (X,w) be a polarization of a Kdhler manifold (X,w) of
complexr dimension n. Let Y C X be an embedded complex submanifold of X of complex

dimension j. For any M > 1, there exists r > 0 and a tubular netghbourhood
T(Y) ={pe X :d(p,Y) <1},
where d(p,Y) denotes the geodesic distance between p and Y such that
|s(@)* < M~*|s>

for all s € JE(Y) and all g € T.(Y).

Proof. We work in local coordinates. There exists 7,7’ such that r > 7’ > 0, and there exists a
finite collection of coordinate neighbourhoods ¥, : U, — V, C C™ centred at points p, € Y,
such that P (0) C V, (see appendix A for notation) for all , and T} (V) C U, vt (P%‘(O))
Let us assume furthermore that these coordinate patches are chosen as in lemma 9.2.1 and that

{w_l(z):zeva andsz:u-:zn:O}:Z/{aﬂY for all o

(03

Note that, for 0 # s € HO(X, L¥), ﬁ can be extended to an orthonormal basis of HO(X, L*),
and by the Catlin-Tian-Yau-Zelditch expansion, there exists a constant C' > 0 such that the
density function pj, satisfies pr(p) < Ck™, for all p € X and all k € N. Including the case s = 0,

we hence obtain the estimate
ls(p)|® < Ck"||s||> for all p € X and all k € N.

Let a® denote the local expression of the Hermitian metric A* on U,. Suppose that on U,

s = foeZk for some holomorphic function f,, on U,. We have
|fa(2)]? < CE™|s|?a" (z) < CE™2F||s||> for all z € U, and all «.
Now let s € JF¥(p). For all a, f, satisfies

aﬁ

0z fa =0

(21,..+,25,0,...,0)

for all 8 € Ny with |3| < k and all (z1,...,2;,0,...,0) € V,. We can apply corollary A.1.4 to

obtain

2
fa(2)] <N (zjas -z 5 sup [ fa(w)]
we P (0)

2
<Nz za) [ VCRR2Rs (t)
for all (z1,...,2n) € PE(O) and all a. Now pick M’ > 0 large enough so that, for z € W et
{z:2 € PE0) and [|(241,- -, 20)l| < M~M'}, (1) is bounded by M=% |s| for all k € N and
all a. We then have
|s(@)* < M~*||s|%ak(q) < M~*|s||?,
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Chapter 9. General Polarized K&hler Manifolds

for ¢ € ;1 (W), all @ and all k € N. There exists a small tubular neighbourhood N,.»(Y) of Y
such that " <’ and

N (V) vt ).

The required inequality now holds on this tubular neighbourhood of Y.
O

We can now use the preceding proposition to prove a “localization of sums” result for the
full density function. Recall that, for any fixed p € X, we can choose an orthonormal basis of
sections s1 g, -+, sn, k of HO(X, L*) such that s1x € Jx(p)* and s2 g, -+, sn, 6 € Ti(p) for
all k € N (Note that Jx(p)* is one-dimensional).

It follows that, for such a choice of orthonormal basis, pr(p) = |s1,1(p) |i,€, and we understand
the asymptotics of pj, at p once we understand the peaked sections s; j at p for all k € N. Let us
now focus on the asymptotics of pi in a neighbourhood of some point p. In this case, it might
still be useful to compute the asymptotics of p; by an orthonormal basis of a small subspace
of HY(X, LF). The following corollary confirms that this is possible in the case where p is not

just a point but any embedded complex submanifold of X.

Corollary 9.2.3 (Localization of the density function on a tubular neighbourhod).

Let (L,h) — (X,w) be a polarization of a Kdhler manifold (X,w). Denote by py the density
function for this polarization and let Y C X be an embedded complex submanifold of X. There
exists r > 0 and, for anyl € N, a constant C; > 0 such that

Ny,
pe(p) = > Iski(p)|*] < Cik™
j=1

for all p € T,(Y) and k € N. Here, {skj}jvz’“l denotes any orthonormal basis of the space
j,f(Y)l and |.| denotes the fibre-wise norm on L¥. In particular, the asymptotic expansion of

pr(p) is equal to the asymptotic expansion of Z;\;’“l \sk,j|2 (p) forpe T, (Y).

Proof. Suppose that X is of complex dimension n. We use the estimate from the previous

proposition together with the fact that
dim (H°(X,L*)) = O (k™).

O

Remark 9.2.4. It is conceivable that the above idea could be explored to understand the partial
density functions with imposed vanishing along submanifolds in this general setting. If one
could manage to localize the sum appearing in the definition of the partial density function to
a subspace J*(Y)t C HO(X,L*) for a suitably chosen sequence {ry}3>, C N and to then
understand these subspaces in terms of Tian’s peak sections, then one might hope to apply

methods similar to the toric case in this setting.
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Chapter 10

Induced Metrics on Blow-ups

In this chapter, we study how partial density functions with vanishing along a finite set of points
on a polarized Kéhler manifold (L,h) — (X,w) are related to certain metrics on blow-ups of
(X,w). We then study a polarization and blow-up of CP™ and C"™ in detail.

10.1 Pull-back metrics

Let (L,h) — (X,w) be a polarization, so that w € 2wy (L) is a Kahler form on X. We recall
that the evaluation map ev(p)(s) def s(p) for p € X and s € H(X, L*) induces an embedding
i+ X = P(HY(X,L*)"), ir(p) = [evk(p)] for p € X and for all large enough k € N. We call
such embeddings Kodaira embeddings. Any ordered basis by def (81,ks°+ , 8N, k) of HO(X, LF)
determines an isomorphism H°(X, L*¥) = HY(X, L*¥)* under which this embedding takes the
form iy, : X = P (H(X, L")

ib, P> [fre®) s I k(D))

where we let {f; . }N*, denote the local holomorphic functions representing the sections {s;  } %,
in a fixed trivializing chart & x C of L* such that p € Y. In future, we will abuse notation
and will not distinguish between f;; and s;; when this does not cause confusion. Let us
denote by wpg € 2mc1(O(1)) the Fubini-Study metric on CP™. It is locally given by wps =
100 log (1 + 30 |zj\2) on the coordinate patch Uy = {[1 : 21 : --- : z,] : z; € C} C CP".
Suppose that, for each & € N, we have picked an ordered basis by = (s14, - SN, k) Of
HO(X, L*). We define

def 1 .,
Wh,, = E’LkaFS
. N
PN 2
= -00log [ > sl
k ;
Jj=1

Since L* = iy, O(k) for k> 0, it is clear that wp, € 2me1(L) for all k> 0, and wy, is invariant
under the action of U(Nj) on the ordered bases of H°(X, L¥). Using the Hermitian metric
h on L, we can in fact define a canonical sequence of such metrics wy, def wp, by choosing an
orthonormal basis by, of H°(X, L*) with respect to the £2 inner product induced by h* on

HO(X, L*) for each k € N. The sequence {wy},-, then converges to w in the following sense:
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Chapter 10. Induced Metrics on Blow-ups

Theorem 10.1.1 (Ruan [Rua98], Tian [Tia90]). Let (L,h) — (X,w) be a polarization of a
Kahler manifold. Denote by g and gy the Riemannian metrics corresponding to w and wy

respectively. Then, for any | € N, we have

1
lo = axllecr =0 ()-

Remark 10.1.2. Tian originally proved a weaker version of this result. The version of the

theorem above is due to Ruan.

One of the aims of this chapter is to illustrate why an extension of these ideas to certain
metrics on the blow-up of X at finitely many points might be of interest. After introducing

their construction, we will study the examples of blow-ups of CP" and C" in some detail.

10.2 Some facts about blow-ups

Let us now review the standard notion of blowing up a complex manifold X of dimension n
in a finite set of points p1,--- ,ps. We will take an elementary differential-geometric approach
to this, and we describe the coordinate charts of the resulting manifold Bl,, ... ,, X explicitly.
The main purpose of this section is to fix our notation and to recall some standard facts about
blow-ups.

Recall that, for finitely many distinct points py,- -+ ,ps € X, the blow-up of X at p1,--- , ps,
denoted by Bl ... p,(X), is a complex manifold which can be defined by the following gluing
construction: Suppose that, for ¢ € {1,---,s}, ¥; : Uy — V; C C" are disjoint holomorphic
coordinate charts centred at p; € U; C X respectively. We define

Wi ={(a,[t]) € Vi x CP" ' : a € [t]}

and consider the holomorphic maps 7; : W; — V; given by 7; : (a, [t]) — afori € {1,--- ,s} and
(a,[t]) € W;. We define Bl,,, ... ,.(X) by holomorphically gluing Wy, -+ , W to X — J;_,{pi}

via my, -, Wt

def °
Blpl;"')Ps (X) = (X - U{p1}> UTl'l Wl U‘n'z e UTA’S Ws-
i=1

(X) — X which is
called the blow-down map of Bl,, .., (X). The complex hypersurface E; ef 7 H(pi), for

The maps m; descend to a well defined holomorphic map 7 : Bl ... ,

s

i € {1,---,s}, is called the exceptional divisor over p; and 7 is a biholomorphism between
Bl . p.(X) —U;_; B and X — J;_,{pi}. We call the data 7 : B, ... ,.(X) = X the blow

up OfX atplf © 5 Ps-
Suppose that (L™, h) — (X,w) is a polarization of a compact Kéhler manifold. Fix some
distinct points p1,--- ,ps € X and I = (I1,--- ,15) € N*. On the blow up 7 : Bl,, ... ,.(X) = X,

we consider the holomorphic line bundle

L=Tp o poim L™ @ O(-11Ey) @ - @ O(—1,Ey).

The following lemma is a standard result on blow-ups.

Lemma 10.2.1. Let X be a complex manifold and L a positive line bundle on X . Fiz distinct

points p1,--+,ps € X. For anyl = (l,---,ls) € N°, there exist mg > 0 such that, for all
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10.3. Induced metrics on Bly, ... ,.(X)

m>mg andm €N, L =L, ... , 1.m is positive. Furthermore, there exists an isomorphism of

vector spaces
op: HO(X, T @ @ JlF @ L) — HO(Bl, ... . X, L"), for each k € N,

where Jé;’k denotes the ideal sheaf of holomorphic functions on X wvanishing to order at least

lik at p; € X. ¢r is unique up to multiplication by a nonzero complex number.

Proof. The positivity claim is a standard result. A proof can be found e.g. in [Huy05, lemma
5.3.2]. Let us sketch the proof of the second part of the lemma. We decompose ¢ = by oap o™,

where

B (X @ G S L) B (Bl (X, 6 T o n 1)

*

denotes the pull-back of sections. 7* is injective since 7 is surjective and for dim(X) > 2
surjective by Hartog’s theorem. Also, for dim(X) = 1, = is a biholomorphism, so 7* is an

isomorphism. We have
ar s HO (Bl . (X), TRF @+ @ TEF @ 7" L) 5 Vi © HO (Bly, ..y (X), 7 L)

denoting the natural isomorphism to the space V}, of holomorphic sections of 7* L™* vanishing

to order at least [;k along F; for all ¢« € {1,--- ,s}. Finally, there is an isomorphism
by : Vi — H° (Blpy e o (X), 0 (=l1kE1) @ -+ ® O (—lkEs) @ W*L"Lk) ,

where by, : s = d® s, for s € Vi, k € N, and d is a meromorphic section of O (—=l1kE;) ® -+ ®
O (—lskE,) obtained by locally dividing by the defining functions of the divisor > ;_, [;kE;.
Given two such sections d, d’, we note that % € H°(X,0) — {0} = C*, which implies that ¢,

is unique up to multiplication by a nonzero complex number. O

10.3 Induced metrics on Bl, .., (X)

10.3.1 Construction

Consider a polarization (L™, h) — (X,w) and the sequence of pull back metrics wy, € 2mweq (L™)
studied by Tian and Ruan. For some distinct points p;1,--- ,ps € X and I € N°, we consider
Bl,, ... p,(X) with the line bundle L= Eph... ps.l,m over it. We assume that m is large enough
so that ig : Bly, ... p.(X) = P(H(BL,, ... ,.(X),L*)*) is an embedding for all k € N.

~

Lemma 10.3.1. There exists a natural sequence of Kdihler metrics {&y},., C 2mci(L) on

Bly, ... p,(X) which is induced by the polarization.

Proof. For k € N, we pick an orthonormal basis {sj}jlvi’“l of HY(X,Jh* @ - @ Jkk @ L™k)
thought of as a subspace of H°(X, L*). Define

i al
Or = 20010 | YIS |

j=1
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Chapter 10. Induced Metrics on Blow-ups

where § = ¢(s), and ¢y, denotes a choice of isomorphism
o HOX, T @ @ Tk @ L™) — HO(Bly, ... . X, L*) for cach k € N.

Since the choice of isomorphism is unique up to multiplication by a nonzero complex number,
Wy does not depend on it. Due to the obvious U (M) invariance of the defining equation, @y, is
independent of our choice of orthonormal basis as well. Thinking of k@ as the pull-back of the
Fubini-Study metric under the Kodaira embedding given by an ordering of our choice of basis,
we see that @y, € 2mcy(L) and that it is a Kéhler metric on Bl,, ... p.(X). O

10.3.2 Relationship with p;

For (L™, h) = (X,w), p1, -+ ,ps € X, L= (I1,---,1l5) and L — Bl,,.... p,(X) as in the pre-
vious section, we consider the partial density function p;, @ X — R, defined by pir(p) o
ZjM:’“l |83k(p)|ik for p € X, where {Sj,k}j]\ik1 denotes any orthonormal basis of H°(X, szik ®
e gl o L),

Lemma 10.3.2. On X —J;_,{p;}, we have
- i =
T — W = E@f)‘logpl,k.

Proof. This just follows from the definitions. On Bl ... , (X)—U;_,{E:}, O (=L;kE;) is trivial
for each i € {1,---,s}. In each trivializing chart of the form ¢ : 7= () x C — L S such

that U € X — [J;_;{p:} is an open set, the lift of a section s € Ji, where

def

Jp = {s € H°(X,L¥) : s vanishes to order at least I;k along p; for all i € {1,---,s}},

takes the form

w)

:u — (u, s(n(w))), foru e n~ 1 (U),

where s denotes the local holomorphic function representing s now. For any basis by =

(S1.k,° " » SMy.k) Of Ji, we hence have that
N 1= L 2
Tl = E(“)@log Z EEE
Jj=1
while

—w = %65 log(h*),

where h* denotes a local function representing the fibre-wise Hermitian metric on L*. O

It would be interesting to completely understand the decay properties of the derivatives of
pLk, and we conjecture that, away from the exceptional divisors, &y, — m*w rapidly decays as

k — oo.

Conjecture 10.3.3. There exists a neighbourhood N of p1,--- ,ps such that, for anyl € N,

we have

7k = wllerx—ny = O (K71) .
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10.4 cscK metrics and some open questions

In this section we will discuss some open questions as well as some background material related
to induced Kéahler metrics on blow-ups. We will not aim to answer the questions that we pose
here, but hope that the reader might appreciate some additional motivation for studying such
metrics. In the following sections, we will then investigate the cases of Bljy.q....o (CP") and
Blp (C™) in more detail.

10.4.1 Balanced metrics

Balanced metrics have been discussed by Donaldson [Don01] in the context of finding constant
scalar curvature Kéahler (cscK) metrics in a given Kéhler class. These efforts are part of a
bigger program of trying to identify “best” K&ahler representatives within a given Kahler class.
Extremal Kahler (eK) and in particular cscK metrics are natural such representatives and are
of particular importance within this approach.

Let us first review the necessary terminology (see [Don01, AL04]). A complex manifold
X C CP" is called balanced if there exists a A > 0 such that

— 22 qVol = Ady,
X 2 |l
where dVol is the volume form on X induced from the Fubini-Study metric on CP". For a
complex manifold X endowed with a positive line bundle L — X such that X can be embedded
into P (H°(X, L)*) by a Kodaira embedding, a basis b of H°(X, L) is called balanced if ip(X)
is balanced. Finally, the pair (X, L), where X is a complex manifold and L a holomorphic
line bundle over X, is called balanced if there exists a basis of H°(X, L) that is balanced. The

following lemma gives another characterization of balanced metrics.

Lemma 10.4.1 (see [AL04] for a similar version). Let X be a compact complex manifold and
let L — X be a positive holomorphic line bundle. (X, L) is balanced if and only if there exists

a Kdahler form w € 2mer (L) such that the density function py, associated to w is constant on X.

Let us denote by Aut(X, L) the group of biholomorphisms of X that lift to bundle isomor-
phisms of L. Aut(X,L)/C* denotes the same group modulo the trivial automorphism group
C*.

Theorem 10.4.2 (Donaldson, (see [Don01, ALO4])). Suppose that Aut(X,L)/C* is discrete.
Let b, b’ denote two balanced bases of H°(X, L) with ny, 4f Jim (HO(X7 Lk)). Then there exists
U e U(ng) and A > 0 such that

b=\UD.

In particular, we can unambiguously define wy, def %i,’iw rs € 2meq (L) for any balanced basis
b of H(X, LF) if Aut(X, L)/C* is discrete. We call such a metric wy, a balanced metric. The

following theorem demonstrates the importance of these balanced metrics.
Theorem 10.4.3 (Donaldson, [Don01]). Let (L,h) — (X,w) be a polarization.

a) Suppose that Aut(X,L)/C* is discrete and (X, L*) is balanced for all sufficiently large k.
Suppose that the balanced metrics wy converge in C*° to some limit we, as k — co. Then

Weo has constant scalar curvature.
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Chapter 10. Induced Metrics on Blow-ups

b) Suppose that Aut(X, L)/C* is discrete and that wee is a Kdahler metric in the class 2mwey (L)
with constant scalar curvature. Then (X, L¥) is balanced for large enough k and the

sequence of balanced metrics wy converges in C*° to ws, as k — oco.

It might be interesting to study the relationship between these results and our induced

metrics on the blow-up of X.

Question 10.4.4. Suppose that Aut(X, L)/C* is discrete and that w € 2mwc; (L) is a cscK metric
on X. Part b) of the above theorem gives us a sequence of balanced metrics wy converging to
w. For finitely many distinct points p1,--- ,ps € X, 1 € N* and m, k € N, one could study the
blow-up Bly, ... »,(X) and the metrics Wy ; € 2mer (Lpy .. p,.1,m), induced by the polarization
(L, hy,) = (X, wyg) for large enough m € N and for k,j € N. Some questions that one might

want to attack in this context are:
a) Does there exists a sequence {&y, ;, }52, such that Wy, j, — @ for some cscK (or at least

geometrically interesting) Kéahler form @ as | — co?

b) For small parameters I = ({1,---,l,,) € N® and large m € N, does there exists a balanced
basis of L];I

identified to ensure the existence of a balanced basis on the blow-up?

e palim for large k7 Which necessary and/or sufficient conditions can be

10.4.2 cscK metrics on blow-ups

Let us now review a positive result which confirms the existence of cscK metrics on the blow-up
of a cscK manifold with a small parameter. We refer the interested reader to [Tho06, §5] for a

related discussion.

Theorem 10.4.5 (Arezzo, Packard [AP06, AP0T7]). Assume that (X,w) is a compact cscK
manifold without nontrivial vanishing holomorphic wvector field. Consider the blow-up 7 :
Bl ... p,(X) — X at finitely many distinct distinct p1,--- ,ps € X. Then, forallly,---,ls >0,
there exists Ao > 0 such that for all A € (0, o), Bly, ... p.(X) has a constant scalar curvature
Kdhler form @y such that

Oy € w] — A2 (ILPD[Ey] + - -- + ,PD[E,]),

where PD[E;] denotes the Poincaré dual of F;. In addition, if the scalar curvature of w is not

zero, then the scalar curvatures of w and of Wy have the same signs.

Remark 10.4.6. The theorem above has been extended to the case where nontrivial vanishing
holomorphic vector fields on X do occur. See [AL04, AP07, AP09] for details. The reader
interested in the related story of extremal Kdihler metrics on blow-ups may consult [APS06,
Sz€11].

Question 10.4.7. In the case where we have a polarization, does there exist a natural sequence
of balanced metrics on the blow-up tending to a cscK metric such as the ones identified in the
above theorem (Note that Aut(X,L)/C* might not be discrete)? Can we understand the
relationship between such a sequence of balanced metrics on the blow-up and a corresponding

sequence of balanced metrics on the base-manifold?

Remark 10.4.8. The existence of the cscK metric &y in the above theorem is proved using a
gluing argument and uses analytical methods. A (possibly misguided) hope might be to try to

find a more “algebraic” proof of this theorem involving e.g. balanced metrics.
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10.5 Example: Balanced blow-up of CP"

10.5.1 Introduction

Let us now discuss the induced metrics @y, in the case of CP" blown up at the point p =[1:0:
:0].

A polarization of Blj......q (CP")

Let us pick m € N and revisit the polarization
(O(m), hpg) = (CP",w = mwrs)

which we discussed previously. We consider the blow-up 7 : Bljy....o) (CP") — CP" with

exceptional divisor F and, for [ < m and [ € N, the line bundle

Lim & 7 0(m) @ O(~IE) = Blp.....) (CP).

As usual, Bljyg.....o) (CP") is obtained by gluing
W= {(z,[t]) €Uy x CP"": z € [t]}

and CP" —{[1 : 0 : --- : 0]} via the projection map 7 : W — Uy onto the first factor. As
a toric variety, Blji.q.....) (CP") and El_’m are determined by the polytope P, ,, obtained by
intersecting the standard simplex in R™ of side length m, denoted by Simp,,(m), with the half-
space {z € R™ : > | x; > l}. Each vertex of P, gives a chart and a trivialization of Zl,m

over it.

Observe that W = U, W;, where W; = {(a,[t1 : -+ : t,]) € W : t; # 0}. We have the
coordinate maps §; : C™* — W, given by

&i(w) = (wi(wy, ..., wi—1, Lwig1, - ywp), [wy -t wimy t 1wy 0 wy)).

It is then clear that, for ¢ € {1,--- ,n}, ENW; = Z(w;), and one can check that W; is the
toric chart corresponding to the vertex (0,---,0,1,0,---,0) of P, ,, with the non-zero entry

appearing in the i*” position.

Any section s of O(mk) vanishing to order at least [k at p=[1:0:---: 0] lifts to a section
S of Efm In particular, a holomorphic global section given by s(w) = (w,p(w)) in the toric
trivialization O(mk)| v, = C" x C, where p is a polynomial of degree at most mk vanishing to
order at least [k at 0, can be lifted to

3(w) = (w, w; *p(r(w)))

= (w7w;lkp(wj(wl7"'7wjfl717wj+17"‘7wn))> , W € cr

in the toric trivialization of Eﬁm over W; = C" for j € {1,--- ,n}.
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A balanced basis and the induced metrics &,

Let us return to the orthonormal basis of (H® (CP", O(mk)), (.,.)) which we discussed in chap-
ter 4 and which is given by

{Sa,m € H* (CP",0(mk)) : @ € Ny, || < mk}.
On the toric defining trivialization O(mk)|,, = Uy x C, 5a,m k takes the form
Se,mik t 2 (2, G0,m 1k 2S) for z € C",

and

“ def (mk +n)! mk
comk =A@ (mk)imm \mk — |a|, o)

Since we have seen that p,,  is constant, an application of 10.4.1 yields the following:

Corollary 10.5.1. The orthonormal basis of (H® (CP",O(mk)),(.,.)) given by
{5amr € H° (CP",0(mk)) : € N§, || < mk}
s a balanced basis.

Let us think of m,l € N as fixed now. We now consider the induced metrics

dof 1 mk
A %Balog Z [Sem.k|’
|a|=1k

10.5.2 Asymptotic behaviour of &, away from E

Let us investigate the behaviour of Wy at points whose image under the moment map lie far
enough away from the vertex 0 € Simp,(m) that we are blowing up. Recall also that @y,

depends on two parameters [, m € N, where [ < m. We have the following result:

Lemma 10.5.2. Let i : CP" — t* = R"™ denote the choice of moment map discussed in chapter
4 andletp e CP" —{[1:0:---:0]}. Suppose that Y . | u(p); > 1. Then, for any j € Ny, we
have

|97 (e — )], | = O (k).

where V denotes the connection corresponding to w and ||.|| the norm induced by w.

Proof. We have w0, —w = %65 log pi m, %, and we recall from chapter 4 that the partial density

function p; 1 is given by

__1 (mk+n)! D oim
pons ) = G g o (25

for a € Simp,,(m), and

mk
k . .
Frmi(s) = (m_ )s](l — )™ for s € [0,1].
j=Ik J
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We are done if we can show that fl(%’k(s) = O (k=) for s > % and j € N and f;,, x(s) =
14+ O (k=) for s > L. For I =0, we have fomi(s) = (s+1—s)™" =1, and it is clear that
0< fimpr <1lfork,leNy0<I]<mandse|0,1]. We have

sj(l — s)mk_j = e_’”’“(s),

where 7;(s) def —% (J lpgs + (mk — j)log(1l — s)). We note tha’g 7. (8) = ,::gf:sj) and ) (s) =
T (s — 255+ -L.), so that 7, (s) = 0 if and only if s = -L- and 7}/(s) > 0 for s € (0,1).

mk
‘We have

as k — oo.

MK\ (o) _ 8 (mk) (mk — )T mk
( ) 1 (mk)™ (mk — j)! 2mj(mk — j) o)

J

We now define hg(j,m, s) def Yi(8) — Y& (ﬁ) > 0. hy is strictly convex and has minimum
hk (.77 m, ﬁ) =0.

mk
mk
fl,m,k(S) _ Z ( ‘ )ek%(s)

=tk N\
mk

— E bj " ke—khk(j,m,s)’
j=lk

where bj 1 = O(1) as k — oco. If s > #, it is not hard to see that there exists ¢ > 0 such that
hi(j,m,s) > c for all j < lk and all k € N. For s > % we have

lk—1

> bjmpe KO = O (k7).

j=0
Hence, for j > 0 and s > %,
Jimp(s)=1+0 (k™)  and

z(f}i,k(S) =0 (kfoc) :

The last statement above follows since the derivatives of fj ,, ; are sums of terms which are
products of two factors. The first is of polynomial order in k and the second factor is e ~#/(7:m:5)
which is O (k=) as k — oo for s > L. The result follows. O

10.5.3 Behaviour of &, on F

Let us work in the chart W; now. We have

. mk
~ 1 = ~
T = Eaa log | |Zlk |sa,m’k(w)|2

7 — mk i1k 5 an 2

IE<j<mk |a|=j

1 ,= mk LI o o _
= %aa]og Z ( ] ) % ‘wll(wl’wz) 2 ...(wl’wn) n|2 |w1| 21k

lk<j<mk |a|=j
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—faamg Z ( +lk) U (T (1+|w2|2+-~-+|wn\2))'j+lk

= il00log (1 +lw ) 4+ |wn|2>

(m—=0Dk

+ 8810g Z (;?ik) (\w1|2 <1+|w2\2+...+\w7l\2>>j.

We define

nkdifiaalog Z (—Hk) (|w1\2(1+|w2|2+...+|wn|2)>j.

Observe now that on E N W;.
(m—=0k

— 1)k)!(1k A
- poPloe Z - )jglggiu@)! new)l”

— ~0Dlog (1 + % r(w)* (1+0 (lw(w)z)))

— 2
RS

l
lnler 1(1 + |w2| +- 4 |wn|2)dw1 A dwy.

The calculation can similarly be carried out on the remaining charts. If we denote by o : W —

CP" ! the projection onto CP" !, we have:
Lemma 10.5.3. On the exceptional divisor E C Blj......o) (CP"), we have

O = lo*wps + O (k1) .

10.6 Example: Balanced blow-up of C"

10.6.1 Introduction

Let us now consider induced metrics on Blg (C™) in detail. This is the simplest example of a

blow-up of a non-compact manifold and therefore of special interest to us.

A balanced basis of sections of C" x C

In analogy with the compact case, we consider the polarization

(L* € cn x €, hF) - (€, w),

z|? .am 1212 . . .
K15 and w = 288@. We work with the basis of sections

EN" (kN1 .
st = () (5) L ey

where h* = e~
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of L¥ discussed previously (see chapter 2). Despite the fact that the notion of balanced bases
was only defined for polarizations of a compact manifold, we have seen that the corresponding
k

density function pi(z) = (ﬁ)n on C™ is constant in the example above. Following [ALO04,

Section 5], we will therefore regard the basis of sections given above as balanced.

The induced metrics

We now consider the blowup 7 : Blg(C") — C". For any I,k € N, the line bundle 7*L*F @
O(—IEkFE) has a basis of holomorphic sections given by the lift of the basis {sq i : || > Ik, €
No} of

Tk e {s € H°(C",L*) : s vanishes to order at least [k at 0} .

We pick charts Wi, --- , W, of Blg(C") = {(z,[l]) € C" x CP""' : z € [l]} defined by W; =
{(2,[1]) € Blo(C™) : l; # 0} for j € {1,--- ,n}.

Let us work in the chart W; = C" and a corresponding trivialization on W; x C of 7*L* ®
O(—lk) now. On Wi, we have m(w) = wi(l,ws, - ,wy,) for w = (wy, -+ ,wy) € C". A
global holomorphic section s : z + (z,2%) of L* vanishing to order at least [k at 0 can
be lifted to a section 8 € H?(Blo(C"), 7*LF @ O(—Ik)) which is given locally on W x C as

—lk . . . . .
w — (w, wllal wi? ... wi"). We are now interested in the properties of the induced metrics

Wy, on Blg(C™). We have

~ [N —~
G = 2.00log [ > [Fail’

|| >1k

Let us now check that @y, really defines a K&hler form for all £ € N in this non-compact setting.

Proposition 10.6.1. Let P C R™ be an integral Delzant polytope with finitely many vertices.
Consider the associated toric basis {so € H° (Xp,Lp) : a € PNZ"} of H* (Xp,Lp). Fiz
constants aq > 0, for a« € PNZ", and, for any vertex v of P, denote by m(v),--- ,m(v), the

primitive edge vectors emanating from v. The 2-form

w:iﬁglog Z aa|5a|2

acPNZ™

defines a non-degenerate Kahler form on Xp if, for all v € vertices(P),
Ay Gy4m(v)1r """ s Gvtm(v), > 0.

Proof. We just need to check that in each chart U, , for v € vertices(P), g(.,.) = w(.,J.) is
positive definite. Pick v € wvertices(P) and assume without loss of generality that we have
normalized coordinates on U, such that P C R%,, v =0 and, for i € {1,--- ,n}, m(v); = e,
where e; denotes the i" standard basis element of R". On U,,, = C" with complex coordinates

z=1(z1,"+*,2n), we have
w = 09 log Z g |22
aePNZn
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where

013(0) = e () ) = Fiw) () 7oz + 6 i) )
and we define u w(z) = (|2, ,|z]?) and f : RYy = R, fru= 3 cprgn GaU®, s0
that

> aalsa@) =1 (Ial' ol = fa).

acPNzZnr

The matrix representation of the metric in (x,y)-coordinates, where z; = z; + iy; for j €

{1,---,n},is
g:2< Rlg5)  Slo;) )
_%(gij) 8?(91‘3)

We just have to show that this matrix is positive definite for all u € R%,. Let b,c € R™ and
u = (|Zl|2 R \zn|2) € R%,. Define R;; def R(9:7) Lij def %(gﬁ) fori,5 € {1,--- ,n}.

S(u) & En: b'R(uw)b + 2b'I(u)c + ¢’ R(u)c

ij=1
_ 1! atB N~ (0605 =B (L
e 5 e 5 (S (s
a,BePNz ij=1 L
+ 20 (wiy; — 25i) ¢ + ¢ (Tixj + yiy;) Cj)
1 — (i — @iy — By + Bif;
= ) Z aaagua+ﬁ Z ( J J J J (bi (xizj + yiy;) b;

Uil
a,BePNZ" i,j=1 v

+2bi (zay; — x5u3) ¢ + ¢ (T + yiy;) Cj)
n

1 Q; — Py 2
W Z aaaﬁua+ﬁ { (Z(xsz + yzcz)TlB)

o,BeEPNZ™ i=1 ?

n a; — Bi2
+(Z(yibi—$i0i) zu‘ z) }

i=1 v

a0 - 2 2
= b
f(u)? j;aej ( fi +CJ)
1 - o — Bi)?
+ W Z aaaﬁua-&ﬂ {(Z(%bz + yici) " )
a,Be PNZ™ i=1 v
let+-8[>1

n

+ (;(yzbv - xicv;)aiuz 61)2} .

We now see that S(u) > 0 with equality occurring if and only if b = ¢ = 0. Hence, the

tensor g = w(., J.) associated to w is positive definite on the chart U, and g is indeed a Kéhler

metric. O

Corollary 10.6.2. The 2-form

~ _dgam ~
G = 500log [ > [Fal”

|| > 1k
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on Blg(C™), which we discussed above, is a Kihler form.

Proof. Consider the non-compact polytope P Lef {z € RY, : 3" @ > lk}. Noting that
each vertex of P satisfies the conditions listed in the deﬁnit_ion of a Delzant polytope, we can
associate a non-compact manifold Xp and a line bundle Lp — Xp to P by gluing C™-charts
corresponding to the vertices of P in the same way as in the compact case (see chapter 3).
Comparing this with the charts of Blg(C™) introduced above, we realise that the W;-chart
is exactly the chart corresponding to the vertex (0,---,0,1lk,0,--- ,0), where the nonzero entry
occurs in the 7" position. We have Xp = Blg(C") and Lp = 7*LF @ O(—IkE). Similarly,
a basis of holomorphic sections of Lp corresponds to integral points of P. We note that the
proof of proposition 10.6.1 still applies in this non-compact setting. Also note that we are now

working with a converging sum of infinitely many terms here. O

10.6.2 Asymptotic behaviour of &, away from E
Let us recall the notion of an Asymptotically Euclidean metric.

Definition 10.6.3 ([Joy01]). Let X be a non-compact manifold of dimension n, and let g be
a Riemannian metric on X. We say that (X, g) is an Asymptotically Fuclidean manifold of
order j or an AE manifold of order j for short, and we say that ¢ is an AE metric of order
j, if the following conditions hold. There should exist a compact subset S C X and a map
m: X — S — R"™ that is a diffeomorphism between X — S and the subset {z € R" : ||z|| > R}
for some fixed R > 0. Under this diffeomorphism, the push-forward metric 7. (g) should satisfy

A (71'*9 - gEucl) =0 (7‘7]'73)

on {z € R™ : ||z|]| > R} for all s € Ny, where r(z) et ||z]|, for z € R™, denotes the radius
function. Here, V denotes the Levi-Civita connection of the Euclidean metric ggye. We shall

call the map 7 : X — S — R”™ an asymptotic coordinate system for X.

Lemma 10.6.4. Suppose that < i00f(||z]|) on C* — {0} for some smooth function f :

Ry — R. Then the tensor v =n(.,J.) satisfies
V5| = O (r77%) asr— oo
for some j € Ny and all s € Ny if
fA+) )y =0 (rl_(j+s)> for all s € Ny as r — oo.

Here, V denotes the Euclidean connection on C* = R?"  and ||.|| is taken with respect to the

Fuclidean metric.

Proof. Take coordinates (21, ,2n) = (1 + Y1, -+ , Tn + iy,) on C*. We compute that the

representation of v in (x,y) coordinates as a 2n x 2n-matrix is:

U= f// T) < (Twirwj + Ty Ty; )ij (rmjryz‘ — Ty, rIi)ij )

7(7’1_7‘ Ty, — Ty; rii)ij (rfﬂq‘,rm_j + Ty Ty; )ij

4
+ f/(T) ( (TIin +Tyiyj)ij (ijyi - Tyjfﬂi)ij )

4

7(7’377'3/1' - Tyjﬂ%)ij (rmq,mj + Tyz:yj)ij
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where 1 < 4,5 < n, and we use the notation (a;;);; to denote the matrix with entries a;;. We

2 . .
also use the shorthand ry, ., = 7830?% -1 etc., where r denotes the radius function on C". Observe
10T

that, for o, 8 € Ny, %aiﬁr =0 (7“1_(|°‘|+‘ﬁ|)) as r — oo. Investigating the asymptotics of

oy
%a%ﬁ applied to each of the entries of the above matrices yields the result. O

def n(., J.) satisfies

Example 10.6.5. We have in particular that, for n = i99||z||>*~7, v
Vv = O (r777%) as r — occ.

Lemma 10.6.6. For each fized k € N, the Riemannian metric corresponding to &y, on Blg(C™)
that we discussed above is Asymptotically Fuclidean on Blg(C™) — E for arbitrarily high order
j € Np.

Proof. We recall that on X — {0}
~ U =
TxWk — WEucl = Eaa log(phk)'

Let us denote by gpu« the Euclidean metric corresponding to wgye def %[“)5||z||2 and by 7, gk

the Riemannian metric corresponding to .. We have, for vg(.,.) ef %85 log pr.i(., J.),

IV7 (mGr = gBua) | = V7 v]l.

We have seen in chapter 2 that

27 (Kl —=1)!
def def F(”C%)
Let f(r) = logg(r) and ¢g(r) = 1 — RGE for r € R>g. We apply lemma 10.6.4 to f.
Observe that the r-derivatives of f are finite sums of fractions %, where q(r) = g(r)! for some
k-1
! > 0 and p is a polynomial in derivatives of %I‘ (lk7 ﬂ;) = —e’% %2 kr. We also

have g(r) — 1 as r — oo. It is hence clear that all derivatives of f are O (r~°°) as r — co. The

result now follows from lemma 10.6.4. O

Finally, we have the following lemma describing the asymptotics in k:
Lemma 10.6.7. For z € C" such that ||z|| > V21 > 0 and for j € Ny, we have
| V7], (7 — wruer) || = O (k7))
where V is the Euclidean connection, and ||.|| is taken with respect to gpuci-

Proof. Following similar reasoning as in lemma 10.5.2, we observe that, for z € C* — {0},

~ 1=
Tl — WEuel|, = Eaa log p1,1(2)

_ %(ﬁlog (fur(llz[1))
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where we use equation 2.2.2, recall the strictly convex function h(y) = y — llog(y + 1) + [ log(l),
for y € (=1, 00), from chapter 2 and define

.2

[y

1

fre(r) ef / ’ y+l e khly )dy for r € Rx>o.
-1

In chapter 2, we noted that h achieves its absolute minimum at 0 and h(0) = 0. It is not hard
to see that, for 7 > /21, fix(r) = ak™z 40 (k=1) for some a # 0 and that f(j)( ) =0 (k=)
for all j € N. The lemma now follows by expanding V7 (Eaa log f1,k(||2]])) in terms of f; and

its derivatives. O

10.6.3 Behaviour of &, on E

Let us now analyse the behaviour of & near the exceptional divisor E. We work again in the

coordinate patch W;.

~ - -
D = %8810g Z |3a,k|2

|| >k

i k" e\ 1 ol o o
= E&?log <271’) Z <2> a |w1|2(| |—1k) |’LU2‘2 2 |wn‘2 n
\a\>uc '
- > k J! o o an
=k6‘f)log2() FRC IR DD Sl U P T

j=lk lo|= J
J— J
Jj=lk

Let us denote

21 = anf? (L4 ol -+ )

lull® = Jwz|* + - 4 Jwn?,

where || z|| = ||7(w)|. We have

- k JHik 1 25 2\lk
e = +0D og;_oj(Q) P )

e o s o (R (K=Y
= 1i9dlog (1 + [[ul?) + kaalog; G+ik)y\ 2

_ 199 2 1= k 2 2
= 1100 log (1 + |l )+ kaﬁlog (1 + 72(%_'_ 0 IE1| (1 + O (||z|| ))) )

We note that i9dlog(1 + ||u?) is the Fubini-Study Kahler form on E = CP"!. Let us
denote the projection Blg (C") — CP" ! by o. It is given by the restriction of the projection
o :C" x CP" ! — CP"! to Blp (C*). We have on Wy N E = Z(w;) that

O = lo*wrs + (1 Flwal 4+ |w2|2> dw; A d,.

(3
2(lk + 1)

More invariantly, we have:
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Lemma 10.6.8. On the exceptional divisor E C Blg (C™),

DO .
=lo —_—
b ES Tk + 1)
Proof. The above calculation on W, equally carries through on Ws, -+, W,. O

Remark 10.6.9. Note the similarities between lemma 10.6.8 and lemma 10.5.3 and also be-
tween lemma 10.6.7 and lemma 10.5.2. The Fubini-Study metric on the exceptional divisor E

s in a sense “glued” to a metric which converges to the original metric away from E.

10.6.4 Discussion of Scal(gy)

Since @y, = i00f(||z]|?), where

ku
flu) = % (k; —log <1 - W)) for u € Ry,

the metric m, g, on C"—{0} is U(n) invariant, and the formula for the scalar curvature simplifies.
We find that Scal (7,.g) is given by

f'(u) (¢'(w) + ug”(u)) + (n = D)g'(w) (f'(w) + uf"(u))

Scal (7.g) (u) = nf!(w) (f'(w) + uf” (u) )

where g(u) = log (n! (F ()™ (f (u) + uf"(u))) for u € R>o. This formula and its derivation
can be found in Simanca’s paper [Sim91]. It is also worth mentioning that, in this paper,

Simanca proves the existence of a cscK metric on Blg(C™) thought of as the total space of the
line bundle O(—1) — CP™~*. More precisely,

Theorem 10.6.10 (Simanca [Sim91]). Let ¢ be a real constant. Then, blowing up a sufficiently
small symmetric neighborhood of the origin in C™, we obtain a disk bundle = : D — CP"*
whose total space carries a complete Kihler metric of constant scalar curvature § with radially
symmetric Kdahler potential. If § < 0 the bundle D can be taken to be the universal line bundle
O(—1) — CP" ! of Chern class —1, while in the case where § > 0, the bundle D is properly

contained in L.

Remark 10.6.11. Simanca’s theorem generalizes the well known Burns metric on Blg(C?)
obtained by restricting the product of the Fubini-Study and Euclidean metric on C2 x CP' to
Blo(C?) c C? x CP".

Figure 10.1 illustrates how Scal (7.g), thought of as a function of u = ||z||? changes with
k€ {1,2,3,4} for fixed | = 10. Here, n = 2 and the graph for k = 1 is the one having the lowest
limiting value near 0. These values then increase with k. We can clearly spot the transitioning

behaviour at v = 2] = 20 and the rapid decay of Scal(u) as v — co.
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Figure 10.1: Scal (7.g) for [ = 10 and k € {1,2,3,4} in the variable u = || z||?
in dimension n = 2.
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Appendix A

Technical Results

After reviewing some specific error term estimates in the smooth and holomorphic versions of
Taylor’s theorem, we prove an estimate for holomorphic functions with vanishing in A.1.4. In
A.2, we then discuss a type of integral that will play a role similar to the gemeralized error

functions which we defined in chapter 2.

A.1 Taylor’s error term estimates

def

Let us first recall an estimate for the remainder in Taylor’s theorem. We define B,.(a) = {x €

R™: ||z —al <r} for a € R™ and r > 0.

Theorem A.1.1 (Taylor’s theorem in several variables). Let f : U — R™ be a smooth function,
where U C R™ is an open set and assume that B,.(a) CU, for somer >0 and a € R™. Then,
for any n € Ny and = € B,.(a), we have

a! Jx
|ax|=0 |a|=n+1
for some functions Rq : U — R satisfying
1 0~
Ra(@) <~ s = f|
& 5B .(a) 9T s

for z € B,(a), and where we use multi-index notation for o € Ni*.

We now review the analogue of Taylor’s theorem for a holomorphic function. Let a € C™.

For r > 0, we define the polydisc
Plta) ={ze€C™:|z;—a;j| <rforalie{l, --- ,m}}

and denote by P, (a) its closure. Recall that

1 = 1
— J n+1
1—2z Z S 1-2’
7=0
for z € C — {1}. Similarly, for s,z € C with s # z and s # 0, we can deduce from the above
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that

_ § n+1 1
s—z 53+1 (s — 2z)sntl

Now suppose that f : Y/ — C is holomorphic on U/, where U is an open subset of C. Suppose
that fi (0) C U for some r > 0. Then, by Cauchy’s integral formula, we have

1 e,

211 |s|=r S—Z

o f(s)
i Z / S]+1 " /sl—r (s —z)smt! o
—~1 0’
$i8

J:

l\D

20+ Ryy1(2)2™ 1,
0

for |z| < r, and where we define

def 1 f(s)
Rn-‘rl(z) ~ o sl =r (S _ Z)S”Jrl

If |z| < %, we have
2
Tn-i—l

[Rnia(2) < sup [f(s)]-

sePL(0)

From this, the holomorphic Taylor theorem in one variable follows.

Theorem A.1.2 (A version of the holomorphic Taylor theorem in one variable). Let f : U — C
be a holomorphic function on U, where U is an open subset of C, and assume that Pl(a) C U

for somer >0 and a € U. Then, for any n € Ny and z € flg (a), we have

1) =2 o I = () -0

a
where Ry 41 : P%(a) — C is a function satisfying

2
[Rns1(2)| < —=7 sup [f(s)].
r séfi(a)

We can now generalize this to m complex dimensions. Suppose f : Y — C is holomor-
phic on an open set 4 C C™, and suppose that P, (0) C U. Let z € f?(O). et
max {|z;| : j € {1,...,m}}. We assume that 7" > 0 since the result is trivial otherwise. Let

u(s) = sz for s € C. We have

£(2) = Fu(1) = — /| » J(uls) 4

211 s—1

Z/ ., sJ+1 ) 4 +A§T/mds
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We note that

o7 i\ o~ N
% fou = Z <a) @ fo ’
0 lal=j
so that
"1 9«
flz) = Zoal P2 f Oz + Rpi1(2),
where

For ||z]| < § we then have »" < Z, so that

Raal2) = 5 (2) s (o)
2

71 |s|=2
< |z sup  [f(w)].
e 0)

We have proved the holomorphic version of Taylor’s theorem in several variables.

Theorem A.1.3 (A version of the holomorphic Taylor theorem in several variables). Let f :
U — C be a holomorphic function on U, where U is an open subset of C™, and assume that
P (a) CU for somer >0 and a € U. Then, for any n € Ny and z € f?(a) , we have

n 9«
=3 L 20 c-af s Rune)
|| =0

a

where

2
|Rny1(2)| < [lz — a||"+1rnﬁ sup | f(w)].

wefr (a)

Let us now derive a little corollary from this.

Corollary A.1.4 (Holomorphic Taylor theorem with vanishing). Suppose that f : U — C is
holomorphic on U, where U is an open subset of C™. Suppose that 5:1(0) C U for somer > 0.

Assume that, for fized j < m, f vanishes to order at least n along {zj11 =--- =z, =0} NU,
1.€. 5 @

= -0

0z /

(21,--4,24,0,...,0)

for all av € NJ* such that o] < n and all (z1,...,%;,0,...,0) €. Then

n 2
lfR) < Mz, -z sup [f(u)]
™" weP(0)

for all z % (21,...,2m) € 51(0) X fm_j(ﬂ).

(M5}

Proof. Fix z = (21,...,%;) € 51(0) and consider the holomorphic restriction w — f(z, w)

for w € ﬁ;n_j (0). Applying the holomorphic Taylor theorem to the restriction yields, for
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we Py (0),
n 2
[f(z w)] < lwl|* = sup | f(2,w)]
wEf;n_'7(O)
n 2
<l sup | f(v, w)].
(v,w)e P (0)
Since the second estimate holds for all z € 51];(0), the result follows. O

A.2 Basic integrals

Lemma A.2.1. Let k € N, 8 € Njj and assume that |B| = j for some j € Ng. Then

n J 28
/wwe—%(w,mdx: (2) (2> (D,D)Jm—

ko \k [T
_[emn (21 @28)!
NV ok (k) B8l

def ( 9 )
where D = (8717 ’E)‘

28

Proof. We note that <D,D>‘ﬁ|%‘,
10

j=1
=TIt +5)
j=1
T —y1-25, 1(25))
Ve,
= /727 % (25!)'
_9 x?8
= /"2 7(D, DY —|
J o

and

Recall the definition of the error function: erf(c) of % foc e~ dx for ¢ € R.

Lemma A.2.2. Let B € Myx,(R) be symmetric and positive definite, A € R, n € R™ — {0}
and B € Ng.
If 18| = 2r, for some r € Ny, pick iy, jr € {1,...,n} such that iy, < ji, for k € {1,...,r},
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and 22:1(‘%@ +e;.)=p0B. Then

r _ A
/ 2P @B g = [ [[ e O ) [ Lot ()
(,m) 27 i Oige — 2 0a4,5, |A] 2

1

A=B
If |B| = 2r + 1, for some r € Ny, pick ik, ji,s € {1,...,n} such that iy, < ji for ke {1,...,r}
and es + Y ., (ei, +€j,) = 3. Then

r

_ 2
/ wﬁe—@c,Bw)dw _ H 1 0 an—1 (A ln)sei(”"”)ifl>
(z,m)>A k 5im -2 aaikjk |A| 2Hn||A*1 ’

=1 A=B

where ||n||%_, = Y0 ._ i niA;'n;. e; denotes the it" standard basis vector of R", and we

i,j
think of the symmetric matrix A = (aij)1<ij<n as a function in the % variables a;; for

1<i<j<n.

Proof. For A € M, «, (R) positive definite and symmetric, we have

/ e—(w,Am>dw — / e—(a:,:c)
(@mn)>) (¥.(A7F)tm)>A
S I (e (y = 52),
(@.51(A”3)tn) >\

where we pick S € SO(n) such that S*(A~2)in = pe; with > 0. In fact, u = |n)4-: since
IS(A=3)ml? = [(A=)in|2 = nt A=} (A=} )'m = ntAIn

/ 6—(:c,Am>dw _ / o e—{w,w} ‘Ar% dx
(@)= SLETRT

Ta,..., zn, €R

=it (GvE (1ot (s )))
el

where we have used [, e dr = Vv, fm>ce*$2dx = g(l —erf(c)). We now differentiate for
1<i<j<n.

-1

A3

dy (x=A"2y)

0 —(x,Azx —(x, Az
@e (.4 >:(51j—2)1‘i$j6 (.4 >7

where we think of A as a function in the matrix entries a;; for 1 < ¢ < j < n. With

11,41, - -1, jr chosen as described, we get the first part of the result. Similarly, we have
/ @ e~ @A) g — / Lo (A*%y) e~y |A\_% dy (x=A7y)
(z,n)>A <m,(A*§) ny>A s

A"3 | da (y = Sz),

[ (4hse) e
(x,St (A’§> ny>A s
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¢
with S € SO(n) chosen such that S* (A*%) n = ||n|4-1e5. We have

n

s @A) qg — A‘%/ (A,%S) —(@) o
/(:I:,n)>)\x(6 | | Ts2 W Z 3l17l€

=1
ZT1yes®syee,Tn €ER

2 Al (Aiés) ss zee” e (/}R e = 0>

Lgyeeiygyeen,n €ER

= |A|7% (vt (A’%S> / A ze " dx
ss Jz>

= |A]"2 (o) ! (A’%S> ;e<"21>2,

SS

= ‘Aié

But S*(A"2)in = ||n|[4-1es, so that |n|4-1(A"2)'Se, = ||n|4-1A"2Se, = A~ n. Hence
’ESes = Hfl“ - and we have
2
-1 (A~1n) &P (_(lmA ) )
/ 7(w,Am)d _ " ( n)s At
Tge T = .
(x,m)>\ |A| ||n||A*1 2

The general result follows by differentiation. O

Let us now look at the integrals

e(v,m,\) dEf/ xYe (@) g
(x,n)>A
for v € N§j, n € R” — {0} and A € R. We are interested in the case where A = 0. We note that

e(y,n,0) = / Ve @) g = (,1)|7|/ xYe™ @) g, (A.2.1)
(z,n)>0 (z,n)<0

If || = 2r, for some r € Ny,

1
e(v,m,0) = f/ Ve (@) dg
2 Jrn
1 n
=511 Je
Vam2—(+D EBL 5 o — 923 for some B € NI
_ g lty=28 PNy (A.2.2)
0 otherwise.
If |v] = 1, so that v = e, for some s € {1,--- ,n}, we apply the previous lemma to find
(es,m,0) vty
€(€s, N, = TSNS
2 |n|
If |[y] = 3, so that v = e, + e; + e;, for some r,l,s € {1,--- ,n} with r <[, we have
1vrn=1 9 A~ ln
e(v,n,0) = 5+ 47),

5 5rl -2 aarl ||n||A*1 v |A| AT
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A.2. Basic integrals

We compute that

83 l (1471,”7 es) _ (aslalk(glr _ aslarj _ asralj) n;
0 0 "l
78& . |A| = 7(9)\ |A + A (Erl + El'r - 51TE”)| = (2 - 5l7‘) |A‘ a -,
T A=0

where E,; denotes the n x n matrix with zeroes everywhere except in the (r,l)-entry. Finally,

[nfla-2 = # (azlaljélr —dligmi — al]am) .
nijla-1

3a,nl

A short computation then shows that

e(e, +es+e;,n,0)= (A.2.3)

1 —

-t <5slnr + gm0y + O nrnsnl)
[ [n[|?

Remark A.2.3. These functions X\ — e(y,n,\), for A\ € R, serve a role similar to the gen-
eralized error functions that we defined in chapter 2 with the difference being that we have not

normalized them in the same way here.
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Appendix B

Laplace’s Method

After proving a version of Laplace’s theorem in n dimensions, we investigate how Laplace’s
method can be applied to certain integrals over half-spaces. These integrals are of importance
in chapter 7 where we use them to investigate the asymptotic expansion of partial density

functions on toric polarized K&hler manifolds.

B.1 Background

Laplace’s method (see [dB81, BH75]) provides a means of determining the asymptotics of an
integral of the type
I, ¢ f(x)e (@) dg
Rn
as k € N tends to infinity, where f, h € C*°(R™) and h has an absolute minimum which it attains
only at &y € R". Suppose that Hess(h)|,, is positive definite, that Ij, is finite for & € N and
that there exists ¢ > 0 such that h(x) — h(xp) > ¢ outside a compact subset of R™. Laplace’s

method then gives an asymptotic expansion in k,
e .
ekh@o) 1, — Zajk_(%ﬂ) + O (k=) as k — oo,
j=0

where the coefficients a; are determined by various derivatives of f and h at £o. We will derive a
special version of Laplace’s method in this chapter, and we apply this method to study integrals
similar to the one above. For a treatment of the related method of stationary phase, the reader

may consult Hérmander’s book [Hoér90].

B.2 A version of Laplace’s method

Let us now provide a proof of a parameter dependent version of Laplace’s method which will

be useful to us.

Definition B.2.1. Let & C R™ be an open bounded set and let f,h € C*° (U x U) such that,
for € U, Hess h(zx,.)|, > 0. Suppose that h(x,y) > 0 for all x,y € U and that h(zx,y) = 0 if
and only if & = y. Suppose furthermore that f,h and their derivatives are bounded in U x U
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and that, for any = € U and y, € OU, we have lim,_,,, h(z,y) > 0. We define

I (x) def / f(x,y)e *@¥dy for ke Nand x € U.
u

Let H(x) 2 Hess (h(x,.))|,.- We use the notation H(x) > 0 to denote that H(x) is positive

definite, and we define

R(z,y) % hiz,y) - = (H(z)(y — 2),y - )

2
def
Dy = (8917 T ,ayn)

for x,y e U.

We would now like to determine the asymptotics of I, as k tends to infinity. The following
theorem is closely related to the method of stationary phase [H6r90, p.220, theorem 7.7.5 and
lemma 7.7.3]. For our case, we will provide a basic proof rather than following Hérmander’s

Fourier transform approach.

Theorem B.2.2. Forj € N, there ezists a; € C*°(U), and, for p € Ny, there exists a continuous
function Cp : U — R such that

p
n+1

Ip(x) — Zk_(%ﬂ)aj(w) < Cp(m)k_(7+p), forxel,
=0

and where

n

_jemrsh D)t i+ ;
@) =\ it 2 5 g (@) DDyl e ) R,

In order to prove this result, we first need a few lemmas that will simplify the argument.

Lemma B.2.3. Let h,U be as before and let A >0, § € (O, %), x elU and {yj };il C U such
that
ly, — x| > Akt for all k € N.

Then there exists a continuous function C : U X Rsg — Rsg such that
kh(x,y,) > C(x, A)k*  for all k € N.

In particular, for | € N, there exists a continuous function Dy : U X Rsg — R>q such that
e F@yk) < Dy(x, A)k™! for all k € N.

Proof. For x € U fixed, there exists an open convex neighbourhood V, C U of & on which

h(x,.) is strictly convex. We have
h(z,(1-s)x+sy) <(l—s)h(z,z)+sh(x,y) <h(e,y) forse(0,1),x e,y € V.
If y, € U — V,, there exists A(x) > 0, depending continuously on & € U, such that h(x,y) >
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B.2. A version of Laplace’s method

A(zx). In this case, we have the obvious estimate
kh(z,yy) > k()

which is even stronger than what we want to prove. We now assume without loss of generality
1.5
that y,, € V. Let s = AkZZT0 ppey

ly,—=l

B+ s (y—a) = h (%- T Ak%”ykm)
lyy, — |
< h(mayk) .
We have
1
h(:ﬂ,y) = §<H(CL')(y - w)vy - $> + R(CB7y),
and

Rx.y)= >,  Ry(zy)(y—a),
{reng:lv|=3}

where by Taylor’s standard estimate (theorem A.1.1),

8’7

1
By y) < Dyla) = swp |y o h(ey)

YEBL(A)

Y

for y € Bx(4) ef {y el : ||y — || < A}. Defining E(x) ef > iy|=3 D~ (), we have

[R(z,y)| < E(z)|ly —«|®  for y € By(A).

For k € N and y,, € V, such that ||y, — x|| > Ak~279, we have

kh(z,y,) > kh <a:a: + Ak5+5w>
ly, — |
1 Yp— T Y, —
()T Bt
lyr — |y — |l
B R<w,m+Ak—%+5W>
lyy — |
1 Yp —T Y — T
5 (H(z) ) )
2 lyr — =l lyp — =

_pr-2p <“ +Ak;+aW) H .
ly), — ||

> k A2k71+26

_ ]{326 ‘AQ

Note that

R (a0 A ) < Bt
-

tends to 0 as k — oo, while

A2

o (z)

_ _ A2
Y —% Y~ % >‘_ () % 2 inf (H(z)u,u) > 0.
lye — | [y, — |l 2 Jluf=1

119



Appendix B. Laplace’s Method

We have
kh(z,y,) > k2 (F(w) - E(;.:)A3k—%+5) >0

1

if k> K(2) 2 (ZEL0) 17 41, and if k < K (), we have

kh(z,y,) > I(x) = inf h(z,u) > 0.
{wettlu-all=aK () ++)

Finally,
kh(w7 yk) 2 C(w>k267

where C'(x) = min (%, F(x) — E(x)ASK(m)*%H). Tracing through the proof, it is obvi-
ous that C' is continuous with respect to both @ € U and the parameter A > 0.

For the last part of the result, we observe that, for | € R>o and @ € U, there exists K(z) > 1
such that

e C@R — k=l for all k > K (),

and K : U — R-q is continuous. If 1 < k < K(x),
o Clx)k* <1< K(:c)lk:_ﬂ

so that
e Fh(@yi) < e~ C@k < Dl(m)k*l for all k£ € N,

where D;(x) 4 hax (1, K(x)"). Furthermore, D; depends continuously on the parameter
A>0. O

Corollary B.2.4. Let §, f,h and U be defined as before. Then, for | € Ny, there exists a
continuous function Dy : U x Rso — R>o such that

(m,y)e’kh(‘”’y)dy < Dy(z, A)k™! forx el and A > 0.

|/{yeu:|yw|>Ak%“} /

Proof. We have seen that there exists a continuous function C' : U x Ryg — R such that
kh(z,y) > C(z, A)k? if |y — x| > Ak~2+°. We have

fz,y)e M=) dy

<o) [ (g, y) e Moy,
u

‘/{yeu:mwbm@%“}
For fixed I € Ny, there exists a continuous function K : U x R-o — R+ such that
e~ (kDRI O0(@.A4) < ol for k > K(z, A).

If1<k<K(z A,
e~ k=DRTIC@A) < 1 < K (2, A) K,

so that, for k € N, we have
e—(k—l)kZ‘;’lC(a:,A) < Dl(:c,A)k_l,
where D;(x, A) of max(1, K (x, A)!). The result follows. O
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Lemma B.2.5. Let h, f,U and R be defined as before. For p € Ny, there exists a continuous
function Cp : U — Rx>q such that

Z / fla kRL Y)' bt -e) =) gy < O (@) E

forxel.

. ,ou . . .
Proof. Forx € U, let r(x) = min (1, d(m2 ) ) There exists a continuous function C' : U — R

(see the proof of lemma B.2.3) such that

|R(z,y)| < C(z)lly —2|®  fory € By (r(x)),

where, for r € R>g, Bg(r) o {y el : ||y —z| <r}. Suppose that ||y — x| < k~3r(x). Then
|kR(x,y)| < C(x). There exists a continuous function D : U — R such that

v
Z < D(x) [t|"T! for t € R such that |¢| < C(x).
=0

Hence

L (<kR(@.y)) ;
e~ N P < D(@) [kR(2,y)" < O@) D)k ly — 20

|
=0 45

for all @,y € U such that ||y — z| < k~3r(x). We have

Ap(@) < 1) - / f(a;7y)Z%T’y))ie—%(ff(w)(y—w%y—w)dy

B _1 () i=0

flx y)e F =¥ dy

IN
—
e
8
|
T
|
&

) _
—k i ,
R 3 M o~ S @) w-2)y—2) gy,

1 —
k3 r(x) i=0

We have | f(x,y)| < E for all ¢,y € U and some constant E > 0. Corollary B.2.4 gives, for any
[ >0, a continuous function Cj : Y — R>¢ such that

I(x) - /B F(y)e @0 dy| < Oy,

_1 o (o)
k 3 r(x)

We find that, for [ > %’

Ap(z) < G

()
+ /7EC(:B)”+1D(:B)I§?+1 ly — z|PPHDe s H@) (-2 y—2) 4,
Bk’%r( )(m)

< Ci(@)k™" + BC ()" D()k?*! / y|]PPD e (H@ww) gy
u
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< Fla)k™ "5,
where F': U{ — R is a continuous function. O
Consider Dy, et (Oyys- -, 0y,). We have, using multi-index notation,
(Dy,Dy) = (92 +---+ 02
- ¥ (;,)<a;>"<-.<a;>ﬁ".
BENG:B|=j

Suppose that 8 € N and |3] = j. Then
040,15, = () 29
o 3 I
Lemma B.2.6. Let f € C*°(R"™), and let H be a positive definite symmetric matriz. Then

> (5) s o(uee)

= (H ' Dy,Dy) f|

x

1Bl=J 0
Proof. For x € R", we have
<H_1 Dvay>jf|m = <H_§ Dva_§ Dy>jf ®

|
M=
AR
NE

=

= |

<§Qv
S~——
™)

~

Il
Yy
@D =~
N~
—
-~
(]

=

ol

SQ.D
~—

[V
@
KH

1Bl=3 =1 \k=1 .
while e.g.
0 1 L 1
8—f<H 2y+a;> - H.?0, | f
0 j=1 o
Iteration yields the lemma. O

Lemma B.2.7. LetU,H and f be defined as before. For everyp € Ny, there exists a continuous
function Cp, : U = R>q such that

P

/ f(,y)e~ FH@ -2 y—2) gy Zaj(:c)k_(%“) <Cy(x)k™" " foralax el
u s
where
1 2m)n _ .
a‘](w> 2]], (Pf(i) <H l(x)Dy,Dy>]f(w7y)’m
Proof. We Taylor-expand
fzH 2 (2)y + 2 fz @) Fy+a)| y7 + Roppa(a,y),
( ) Z Z ~! ay ( ) o P

5=0 |y|=s
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where
|Ropi1(z, )| < C(a)|yl***"  for y € Bz)(0),

and where we let r(z) “ min (1, (z.%)

2
/Brm)(w)
= [H(z)| " * / f (a: H™ 2 (x)y + x) e 2V dy 4 O (k)
V(x)

P 28
1 0 / yPBe 5wV gy + O (k—i’l“f“) ,
o JR"

) and note that C' : «f — R>¢ is continuous. Hence

fz,y)e 2 M@ y=—2)y=2) gy,

— f (:uH‘é(w)y + :c)

where V(x) def {y ER":H i(x)y+xec Br(m)(a:)}. If we now apply lemma A.2.1 and the

localization result of corollary B.2.4 together with lemma B.2.6, we arrive at the result. O

Now we can provide a proof of theorem B.2.2.

Proof. Combining B.2.5 and B.2.7 gives

lPJrz
i) =2 S E et L

2€>31

(H (@) Dy, Dy)*f (2, y) R, y)'|, + O (k=55

and the constant in O depends continuously on € /. Changing the summation variables
yields the theorem. O

B.3 Laplace’s method over halfspaces
Definition B.3.1. Let f and h be defined as before. We define
@)= [ fage ey,
UNH ¢ (n,\)
where n € R", A € R and Hy(n,\) = {x € R": (n,x) — A > 0}.

Lemma B.3.2. Let h, f,U and R be defined as before. For p € Ny, there exists a continuous
function Cp : U — R>q such that

Z/ fla 7’“3("’ Y)' bt -e)u—a) gy < O () S

forxel.

Proof. The same arguments as in B.2.5 apply. O
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Lemma B.3.3. Let f and h be defined as before. For p € N, there exists a continuous function
Cp : U — R such that

P
n k
/ f@ y)e H@w-Dv-e)gy S 5o (o, 1 @)n, /S (A - (2,n))
UNH 4 (n,)\) s 2
< Cp(z)h~ "5,
where
def ntd _1 1 07 _1
a(@n ) 2T @)Y o o (e @y +a)| ()
—.7 oy 0
lv|=J
and
(v, 1, A\) / @) qo
Hy(n,))

Proof.

/ (o, y)e— s H@@-2)u-2) gy,
(

— [H(z)| 2 fla, H 3 (2)y + @)e s WY dy,

/v(x)nH+(H‘5 (z)n,A—(z,n))

where V() e {y eR™: H*%(m)y +xe Z/l}. We Taylor-expand

Y7+ Rya(z,y),
0

g (a:,H(a:)_%’y—&-m)

f(a:,H y+w) ZZ

5=0 |y|=s

1
~!

where
|Rpi1(z,y)| < C(a)|y|PT  for y € By)(0),

. d(z,0U . .
and where we define r(x) ' min (1, (wQ u)) and note that C' : Y — R>( is continuous. Hence

/ . y)e— 5 @ =) y—2) gy
r(z) (®)NH (10,)
_1 _1 _k — 0o
=|H(z)| Q/W( )f(ac,H é(m)y+m)e 2 gy + O (k)
xT

L& s 1
=[H(z)| * Z Z i' % f (:B,H_E(:c)y—ka:) yPe 5 WY gy

0 /H+ (H-Y(z)n, \—(xz,n))
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B.3. Laplace’s method over halfspaces

where W(x) e {y ER":H 2(x)y+x € By (z)(x) N Hy(n, )\)} If we now apply lemma

A.2.1 and the localization result of corollary B.2.4 together with lemma B.2.6, we arrive at the

result. O

Theorem B.3.4. Let f,h, R,H and U be defined before. For j € N, there exists b; € C*(U)
and, for p € Ny, there exists a continuous function Cp : U — Rxq such that

Ji(x) — Zp: k(b (2, k)| < O (@) (5,
j=0

J

for x € U, and where

and
e(y,\n) def / Ve @) dg
H+(n)>‘)
can be explicitly evaluated using lemma A.2.2.

Proof. The proof is a simple Taylor expansion analogous to some of the preceding results. We

observe that, for p € Ny, there exists a continuous function C, : Y — R>( such that

n+p+1
2 .

p i )
Jla) -3 E R(x,y) f(z,y)e” s M@@-2)v=2)gy| < O (2)k~
i=0 i! Hy(m,)) :

If we now expand R'f in the above integral up to order p + 2i according to lemma B.3.3, we

arrive at the result. O

Corollary B.3.5. Let f,h,R,H and U be defined as before, and let {x,}72, be a sequence in
u, s e (O,%), A €R and M > 0. Suppose that (xy,n) — A > MkE—32+o for all k € Ng. Then
Je(@) = Ti(x) + O (k7). If (g, n) — A < —Mk~279 for all k € Ny, then Ji(z) = O (k~).

Proof. If (z,n) — A > Mk=2%9 for all k € Ny, then
e <’7,n7\/§(A— <wk,n>)> —/ yTe WYl dy = /\F yre WV dy
EO—(@rm))>(y.m)
=0 (k~>),

which can be easily seen by changing coordinates in the integral to @ such that x; = (y,n)
and by observing that \/g()\ — (@, m)) < —MFE. Similarly, if (zy,n) — A < —Mk~29 for all
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k € Ny,

k
e <’7,n, \g(A - <wk,n>)> :/ yTe WY dy,
VEO—(zr.n)<(yn)

and the result follows since \/g (X = (xk,n)) > ME°.

Lemma B.3.6. Consider a setup as in theorem B.3.4 and suppose that x € H(n,\). Then
bj(x, k) is independent of k, for j € No, and we have byj(x, k) = Sa;(z) for all j € Ny and

2

k € N, where a;, for j € Ny, are the functions appearing in theorem B.2.2.

Proof. We have (x,n) — A = 0, so that it is obvious that b;(x, k) is independent of k. Recall

from equation A.2.2 that

We hence have

126

e(y,m,0) =

\/W"Q_(‘VH‘U% if v = 283 for some 3 € NI!

otherwise.

(1) 107 , .
= [H@)[72 ) 2528 ) o Rle H 3@y + o)
i=0 [v1=2(i+5)
fl@ H @)y +2)|_e(v.H(@)n,0)

_L e s (Y ) 2 e Bt @y - a)
T2 \H(m)\;i!(i+j)[2i+j > (ﬂ )3y R(z, H™> (z)y + z)

IB|=i+j
f@ H @)y +o)|
1

= §aj(:c).
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