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BERGMAN MINIMAL DOMAINS IN SEVERAL

COMPLEX VARIABLES

BY

SHIGEO OZAKI AND SADAO KATÖ

Abstract. K. T. Hahn has obtained the inequality between the Jacobians of a

biholomorphic mapping and a holomorphic automorphism of a Bergman minimal

domain. This paper extends Hahn's result. Some inequalities concerning Jacobians

of the mappings of minimal domains onto another minimal domain are considered,

and an example is given.

1. Introduction. Let D be any bounded schlicht domain in Cn of n complex

variables z=(zly..., zn)', where symbol ' denotes the transpose. Let w=f(z)

= (fy(z),.. .,fn(z))' be a biholomorphic mapping of D onto a domain in C, that

is, f(z) are holomorphic functions on D with Jacobian J,(z) = det (df(z)/dz) + 0,

where df/dz = (8/8zy,..., 8/8zn)xf [10] and the sign x denotes the Kronecker

product. We consider the class <3a(/0) of biholomorphic mappings w=f(z), which

are restricted at t0 (e D) by the condition Jf(t0)=a for a constant a. A domain D

is called the Bergman minimal domain (hereafter merely called minimal domain)

with center at a point t0 (e D) if any w=f(z) in ©i(/0) maps D onto a domain B

such that v(D)fiv(B), where v(D) denotes the Euclidean volume of D [2], [9], [ll].

L2(D) denotes the class of square integrable holomorphic functions of D and

Ll(D) the class of functions w=f(z) in L2(D) satisfying/(/0) = a at fixed t0e D for a

given constant a. The Bergman kernel function kD(z, i) of D is a holomorphic

function of zand /, and belongs toL2(D). Moreover, kD(t, z)=kD(z, i)~,kD(z, z)>0

and the reproducing property

(1.1) f(t) = jD kD(t, z)f(z) dvD

holds for any/(z) in L2(D), where dvD denotes the Euclidean volume element on D

[1]. Let TD(z,t) = 82 log kD(z,t)/8t* 8z, where symbol * denotes the transposed

conjugate, then

TD(z, t) = (df(t)/dt)*TB(f(z),f(t)-)(df(z)/dz)

under any biholomorphic mapping w=f(z) of D onto 77 and TD(z, z) is positive

definite. Therefore the Bergman metric dsD = dz*TD(z, z) dz is absolutely invariant
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under any biholomorphic mapping [3]. The Bergman kernel kD(z, t) is a relative

invariant of D, that is,

(1.2) kD(z, t) = Jf(t)-kB(f(z),f(t)-)Jf(z),       z,teD,

and also det TD(z, t), so that ID(z, i)=kD(z, i)/det TD(z, i) is an absolute invariant

ID(z, t) = IB(f(z),f(t)~), under any biholomorphic mapping w=f(z) of D onto P

[7], [11].
The following theorem, which is the fundamental theorem relating to minimal

domains, is known as the Bergman minimal problem [3], [6]. We state it without

proof.

Theorem 1.1. Let w = M%(z,t0) be the function in L%(D) which minimizes

}d \w\2 dvD- Then the minimizing function exists uniquely and is expressed as follows:

M~è(z, t0) = akD(z, i0)/kD(t0, i0), and the corresponding minimum valuéis |a|2/A:D(/0, i0).

In §2 it is shown that a minimal domain D with center at t0 is equivalent to

t0 e c(D) (Theorem 2.2), where

(1.3) c(D) = {/; í e D, kD(t, t) = \/v(D)}       [5].

Moreover, the inequalities concerning Jacobians of the biholomorphic mapping

which maps a minimal domain onto another minimal domain are obtained

(Theorem 2.8). In §3 various applications are given from the properties of absolute

and relative invariants. Theorem 3.1 is the main result which implies Hahn's

theorem [5, Theorem 3.2], and we follow his procedure wherever possible.

2. Minimal domains and the mappings onto them. Throughout this paper we

shall deal with only bounded schlicht domains in Cn for which the kernel functions

become infinite everywhere on the boundary. First we consider the mapping

w=<p(z) in ©i(/0) which maps any domain D onto a minimal domain A. Theorem

1.1 shows that if such a mapping exists then Jv(z) = M\,(z, t0) = kD(z, t0)/kD(t0, i0)

and v(A.)=l/kD(t0, i0). Existence of such a mapping is given by the following

theorem.

Theorem 2.1. There exists a mapping w=<p(z) in ©i(r0)> 'o e A which maps any

bounded schlicht domain D in Cn onto a minimal domain [9].

We remark that such mappings need not be unique.

It is well known that a necessary and sufficient condition for a bounded schlicht

domain D in C to be a minimal domain with center at t0 is

(2.1) kD(z,t0) = \/v(D)

for all z e D [9, Theorems 3.1, 3.2]. Thus, for the set c(D) defined by (1.3), we have

Theorem 2.2. A bounded schlicht domain D in Cn is a minimal domain with

center at t0 if and only ift0 e c(D).
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Thus "minimal domain D with center at /0" may be replaced by "t0e c(D)".

Corollary 2.1. Suppose that D is a bounded schlicht domain in Cn. Ift0e c(D),

then the volume of the image domain A of D under fin Si(/0) is not smaller than the

volume of the original domain D, and conversely [5, Theorem 2.2].

Theorem 2.3. A bounded schlicht minimal domain D in Cn cannot have more than

one center [9, Theorem 4.2].

Proof. Let i0, t0 be two distinct centers of D. Then, since (2.1) holds and

kD(s0, t0)( = kD(t0, i0)) is real, kD(z, s0) = kD(t0, s0) = kD(s0, f0)~=kD(s0, t0) = kD(z, t0)

for all z e D. If we consider f(z) = z-s0 in L2(D), then it follows from (1.1) that

0 =f(s0) = f kD(s0,z)f(z)dvD = f kD(t0, z)f(z) dvD =f(t0) £ 0,
JD JD

which is a contradiction.

Theorem 2.4. A product domain D in Cn is a minimal domain if and only if its

components are minimal domains [9, Theorem 4.3].

Since the ring domain 7):0<r<|z|<l in a complex plane is not a minimal

domain, we have

Example 1. The domain R = RyX ■ ■ ■ xRn cannot become a minimal domain,

where 7?¡ = {zi; 0<r¡< \z¡\ < 1}, j'=l,..., n (see [5, Theorem 2.4]).

Corollary 2.2. The set c(D) consists of at most one point of D [5, Theorem 2.3].

Now, we consider the mappings of a minimal domain onto a minimal domain.

Lemma 2.1. Let D be a bounded schlicht minimal domain in Cn with center at t0

and B the image domain of D under a mapping w=f(z) in @i(i0), then v(D)fiv(B).

The equality occurs if and only if J,(z)= 1 on D (see also [8, Theorem 1.2]).

Proof. The first part of this theorem is obvious from the definition of minimal

domain. To prove the last part we use the following relation:

v(B)= \ dvB= [   \J,(z)\2dvD^ f   \Mb(z, t0)\2 dvD,
JB JD JD

where Jf(z) is holomorphic on D, so that Jf(z) e L\(D). Theorem 1.1 asserts in this

inequality that the equality occurs if and only if Jf(z) = My\(z, t0). On the other hand,

since D is a minimal domain having t0 as center, M}¡(z, t0)=kD(z, t0)/kD(t0, i0) = l

on D, which implies JD \Mb(z, t0)\2 dvD = v(D). Thus the conclusion follows.

Theorem 2.5. Let D be a bounded schlicht minimal domain in Cn with center at t0

and A the image domain of D under a mapping w=f(z) in ©1(?0)- Then A is a minimal

domain with center at t0 (=f(t0)) if and only ifJf(z)=\ on D.

Proof. Let A be a minimal domain with center at t0 then A is one of the equiva-

lent class of D, and hence v(A) = v(D). Therefore J,(z) = 1. The converse is trivial.
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Theorem 2.6. Let A, A1 be the images of a bounded schlicht domain D in Cn

under the mappings f, f in Ba(t0), and the domains B, Bx the images of D under

f/alln,f1/alln, respectively. Ifv(/s)^v(A1) then v(B)èv(B±), and conversely.

Proof. Suppose that v(B)>v(B1). Since v(A) = JA dvA = ¡B \J,/Jg\2 dvB=\a\2v(B),

where g=f/alln, similarly t)(A1)=|a|2f(P1), we have v(A)>v(A1). This contradicts

the hypothesis.   Q.E.D.

Let w—f(z) be a biholomorphic mapping and/(/0) = t0. Noting that the mapping

F(z) = (f(z) — T0)/Jf(t0)lln + T0 normalized at t0 e D, belongs to S^/o), we have

Corollary 2.3. Let D be a bounded schlicht minimal domain in Cn with center

at tQ and A the image domain of D under a biholomorphic mapping w =f(z). Then A

is a minimal domain with center at t0 (=f(t0)) if and only if J{(z)=J,(tQ) on D [9,

Theorem 5.1].

Corollary 2.4. Let D be a bounded schlicht domain in Cn with c(D)={t0} and

A the image domain of D under the biholomorphic mapping w=f(z). Then c(A) = {t0}

for t0 =f(t0) if and only if the Jacobian Jf(z) of the mapping is identically constant

on D [5, Theorem 3.1(a)].

The following lemma is useful to study the properties relating to minimal

domains.

Lemma 2.2. If a domain D in C is a bounded schlicht minimal domain with

center at t0, then

(2.2) kD(t0, i0) < kD(l, 0

for any £ (^tQ) e D [9, Lemma].

Proof. Consider a minimal domain A with respect to t, e D under the mapping

w = <p(z) in ©i(0- Then, since a minimal domain D has only one center by Theorem

2.3, we have l/kD(t0, i0) = v(D)>v(A)= \/kD(i, £), which implies kD(t0, h)<kD(i, £).

Q.E.D.

Theorem 2.7. Let D be a bounded schlicht minimal domain in Cn with center at

t0 and A the image domain of D under a biholomorphic mapping w =f(z) such that

f(0 = T0for C^to- If A is a minimal domain having t0 as center, then

(2.3) \J,(t0)\2 = kD(t0, t0)/kA(s, s) < kD(t0, t0)/k&(r0, f0) = \Jf(t0)\ 17,(01,

where s=f(tQ). In particular, |//(r0)| < |^/(£)|-

Proof. It is trivial from (1.2) for the left side of (2.3). Also from (2.2) the central

inequality follows. Since

kD(t0, h) = kD(t„ t0) = Jf(toykA(r0, s)Jf(9 = Jf(t0)-kA(T0, f0)Jf(0,

we have the right side.    Q.E.D.
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Corollary 2.5. Let Dbe a bounded schlicht domain in Cn with c(D)={t0} and A

the image domain of D under the biholomorphic mapping w=f(z). Ifc(A) = {T0}for

ro^f(t0), then \Jf(t0)\ < 1.7,(01, wheref(Ç) = r0 [5, Theorem 3.1(b)].

Theorem 2.8. Let Dbe a bounded schlicht minimal domain in C with center at t0

and A the image domain of D under a biholomorphic mapping w=f(z) such that

f(í) = T0for i^t0. If Ais a minimal domain having t0 as center and v(A) = v(D), then

(2.4) |/,(f0)| < 1 < 1.7,(01.

Proof. In (2.3), if v(A) = v(D) then |/,(io)|a<l = Wo)| l/XOI, since kA(r0, f0)

= l/v(A)=\/v(D)=kD(t0,i0). Therefore,  it follows that  |/,(/0)|<l  and hence

|4(0| = l/|4('o)l>l.   Q-E.D.
Remark 1. The right half of (2.4) has been obtained by M. Maschler [9,

Theorem 5.2].

Theorem 2.9. Let D be a bounded schlicht minimal domain in Cn with center at

t0. If there exists a holomorphic automorphism w = h(z) which maps i(¥^t0) into t0,

f/H?/i|4(f0)|<l<|4(£)|.

Considering a case of A = D in Theorem 2.8, the above theorem is obtained and

also the following corollary.

Corollary 2.6. Let D be a bounded schlicht minimal domain in Cn with center

at t0 and w—h(z) any holomorphic automorphism of D which maps £ into t0. If

ID(z, z)fil on D, then

(2.5) 7D(z,z)^ |4(0|

for all ze D.

Remark 2. Since 1<|4(0I> (2.5) implies ID(z,z)fi\Jh(Q\2. Therefore, this

corollary contains [5, Theorem 3.3] and its corollary.

Example 2. Let D: |z|<l be a unit-hypersphere in C\ Then there exists a

holomorphic automorphism w = h(z)=UT(l)(z— £/l— £*z) which maps £ (t^O)

into 0, where U is any unitary matrix and r(ös(l-|C|a)1/a(£»-K*)~1'a [6]. A

formal calculation shows that

dh(z)/dz = c/r(0{(l - l*z)En + (z- i)l*}/(\ - i*z)2.

Using |detc/| = l and |det r(0| = (l-|S|2)<?,~1>'2 which is obtained by a simple

computation, we have

14(01 = |det(¿n(0/¿z)| = |det U\ |det T(0| |det (£n/(l -\t\2))\

= l/(l-|£|2)(n+1>/2 > 1,

(ii)        |4(0)| = |dct U\ |det T(0| |det (£,-«•)! = (l-|a2)(n+1)'2 < 1,

and thus |4(0)| 14(01 = 1-
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3. Applications. In this section we study the properties concerning the mappings

of minimal domains into themselves.

Lemma 3.1. Let D be any bounded domain in Cn and w=g(z) any biholomorphic

mapping of D into itself. Then

(3.1) kD(w, w)\Jg(z)\2 Ú kD(z, z)

for all z e D.

Proof. Let G (c D) be the image of D under w=g(z), then kD(w, w)^k0(w, w)

[2]. Since the Bergman kernel is a relative invariant, that is, kD(z, z)=ka(w, w)\Jg(z)\2,

the desired conclusion is obtained.

Corollary 3.1. Let D be any bounded domain in Cn and w=g(z) any biholo-

morphic mapping of D into itself. Then the invariant

ID(z, z) (= kD(z, z)/det TD(z, z)) Í 1

on D if and only if kD(w, R>)|/g(z)|2^det TD(z, z) for ze D ([5, Lemma] and [4,

Theorem A]).

In fact, it is obvious from Lemma 3.1 for necessary condition. The converse is

immediate if w=g(z) is the identity mapping.

Theorem 3.1. Let D be any bounded schlicht minimal domain in Cn with center

at t0 and w=g(z) any biholomorphic mapping of D into itself. If there exists a holo-

morphic automorphism w — h(z) of D which maps £ into t0, then

(3.2) \Jg(0\ â \M0\-

Proof. From Lemma 3.1, \Jg(0\2 = kD(í, t)/kD(g(0, g(0~) follows replacing z

by £ in (3.1). Since t0 is the center of minimal domain D, it follows from (2.2) that

kD(g(i), g(Í)-)^kD(t0, i0). Therefore kD({, &/kD(g(t), g(£)-)^D(£, 0/kD(t0, i0).

On the other hand, from (1.2), kD(t, í)/kD(tQ, i0) = \ Jh(Q\2 follows. Thus our con-

clusion is obtained.

Remark 3. If ID(z, z)^\ is added to Theorem 3.1, then it is trivial from (3.2)

that \Jg(Q\2e\Jh(0\2/ID(z,z) for all zeD. In particular, if ID(t0, ?0)gl then

\Jg(0\2S\Jh(0\2/ID(to, h) (see [5, Theorem 3.2]).

Corollary 3.2. Let D be any bounded schlicht homogeneous minimal domain in

Cn with center at t0 and w=g(z) any biholomorphic mapping of D into itself. Then,

for all z e D we have \Jg(z)\ ^ |/ft(z)|, where w = h(z) is a holomorphic automorphism

of D which maps z into t0.

Theorem 3.2. Let D be a bounded schlicht minimal domain in Cn with center at

t0 and w=g(z) a biholomorphic mapping of D into itself. Then

(3.3) \Jg(z)\2 úv(D)kD(z,z).
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Also

(3.4) v(g(B)) S v(D)UD(B)

for any measurable P<= D, where UD(B) = ^B kD(z, z) dvB.

Proof. Since Z) is a bounded schlicht minimal domain, kD(z, z) attains its mini-

mum at z = t0 by (2.2) and the minimum value is l/v(D). Then the conclusions of this

theorem follow from Lemma 3.1.

Since UD(B)= Ugm(g(B)), we have

Corollary 3.3. Under the hypothesis of Theorem 3.2, v(g(B))/Ug{D)(g(B)) ^ v(D)

for any measurable set B^D with nonzero measure. In particular if w=g(z) is the

identity mapping, then v(B)jUD(B)^v(D).

Remark 4. Let kD(z, z) ^ det TD(z, z) on D then UD(B) ¿ VD(B), where VD(B)

= JB det TD(z, z) dvB. Thus, if ID(z, z)g 1 is added to Theorem 3.2, then it follows

from (3.3), (3.4) that \Jg(z)\2^ v(D) det TD(z, z); also v(g(B)) á v(D) VD(B). Similarly,

if ID(z, z)^l is added to Corollary 3.3, then it follows from v(g(B))/Ug(D)(g(B))

á v(D) and v(B)/UD(B) ̂  v(D) that v(g(B))¡ VgiD)(g(B)) á v(D) and v(B)/ VD(B) S v(D),

respectively (see [4, Theorem 5 and its corollary]).
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