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BERGMAN NORM ESTIMATES OF

POISSON INTEGRALS

BOO RIM CHOE1, HYUNGWOON KOO and HEUNGSU YI2

Abstract. On the half space R
n
× R+ , it has been known that harmonic

Bergman space bp can contain a positive function only if p > 1 + 1
n
. Thus,

for 1 ≤ p ≤ 1 + 1
n
, Poisson integrals can be bp-functions only by means of

their boundary cancellation properties. In this paper, we describe what those
cancellation properties explicitly are. Also, given such cancellation properties,
we obtain weighted norm inequalities for Poisson integrals. As a consequence,
under weighted integrability condition given by our weighted norm inequalities,
we show that our cancellation properties are equivalent to the bp-containment
of Poisson integrals for p under consideration. Our results are sharp in the sense
that orders of our weights cannot be improved.

§1. Introduction

For a fixed positive integer n, let H = Rn × R+ ⊂ Rn+1 be the upper

half space where R+ denotes the set of all positive real numbers. As is well

known, the Poisson kernel Pt(x) for H is given by

Pt(x) =
t

(|x|2 + t2)m
(x ∈ Rn, t > 0)

where m = n+1
2 . For 1 ≤ p <∞, let Lp = Lp(Rn) be the Lebesgue space on

Rn. For f ∈ Lp, the Poisson integral P [f ] on H is defined as the convolution

Pt ∗ f of f and Pt. More explicitly,

P [f ](x, t) =

∫

Rn

Pt(x− y)f(y) dy

for (x, t) ∈ H. For a complex Borel measure µ on Rn, its Poisson integral

P [µ] is defined in a similar way.
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It is well known that the Poisson integral transform is a linear isometry

(modulo normalizing constant) of Lp into the harmonic Lp-Hardy space

(see, for example, [1]):

sup
t>0

∫

Rn

|Pt ∗ f(x)|p dx = cpn

∫

Rn

|f(x)|p dx.

It follows from this type of results on bounded domains (like balls) that the

Poisson integral transform takes Lp into the harmonic Lp-Bergman space.

The unboundedness of our domain H makes the situation quite different. In

this paper we investigate such phenomena related to harmonic Lp-Bergman

spaces caused by the unboundedness of H.

To be more precise, let bp (1 ≤ p < ∞) denote the harmonic Lp-

Bergman space consisting of all harmonic functions in Lp(H). It is known

that Poisson integrals of Lp- functions are not always bp-functions in general.

This follows from the fact [2] that bp contains a positive function if and only

if p > 1 + 1
n . This means that harmonic functions on H must have certain

types of cancellations to be members of bp for 1 ≤ p ≤ 1 + 1
n and the same

is expected on the boundary if they are represented by Poisson integrals.

Such an example is the so-called b1-cancellation property noticed in [2]: the

horizontal zero moments of any b1-function u are all 0, which means
∫

Rn

u(x, δ) dx = 0

for each δ > 0, and the same is necessarily true for its boundary function in

case u is represented by a Poisson integral of some L1-function. However,

this zero moment vanishing property is far from being sufficient, since one

may find many odd integrable functions whose Poisson integrals are not

contained in b1. Also, even for p > 1 + 1
n where cancellation does not have

any effect, it is not hard to find examples of Lp-functions whose Poisson in-

tegrals do not belong to bp. We are led to two questions by these simple ob-

servations. First, while it might not be possible to characterize bp-functions

in terms of cancellation properties in general, what types of cancellation

properties do they have (if they must)? Secondly, if they already have such

cancellation properties, what kinds of norm inequalities hold for Poisson

integrals? In this paper we settle these two questions. These problems were

originally suggested by Wade Ramey to the third author. We thank him for

his suggestion.

First, we have the following cancellation results.
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Theorem 1.1. Let µ be a complex Borel measure on Rn. If P [µ] ∈ bp
for some 1 ≤ p ≤ 1 + 1

n , then

∫

Rn

dµ = 0.(1.1)

If, in addition, |x| ∈ L1(|µ|) and if P [µ] ∈ b1, then the first moments of µ

are all 0, or more explicitly,

∫

Rn

xj dµ(x) = 0(1.2)

for all j.

Note that (1.1) and (1.2) above are simply û(0) = 0 and ∇û(0) = 0,

respectively, where µ̂ denotes the Fourier transform of µ. While we do not

use any significant Fourier transform arguments in this paper, we remark

that there is a close relation between b2-norms of Poisson integrals and L2-

norms of Fourier transforms of their boundary functions. See Lemma 3.9.

This seems natural by the Plancherel identity, since Poisson integrals are

defined in terms of convolution.

Next, given all relevant moment vanishing properties, we consider the

question of when P [f ] ∈ bp holds. In considering such a problem, it might

be necessary to derive certain types of norm inequalities. What we have are

the following weighted norm inequalities. Here and elsewhere, we use the

notation

ωp(x) =

{
|x|(log+ |x|)p for p = 1 or p = 1 + 1

n

|x| otherwise
(1.3)

for simplicity.

Theorem 1.2. Let p ≥ 1 and f be a measurable function on Rn such

that P [f ] is well defined. For 1 ≤ p ≤ 1 + 1
n , assume f ∈ L1 and its zero

moment is 0. For p = 1, we also assume f ∈ L1(|x|dx) and its first moments

are all 0.

(1) For 1 < p < 1 + 1
n or p > 1 + 1

n , we have

∫ ∞

0

∫

Rn

|Pt ∗ f(x)|p dx dt ≤ Cp

∫

Rn

|f(x)|p|x| dx.
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(2) For p = 1 or p = 1 + 1
n , we have

∫ ∞

0

∫

Rn

|Pt ∗ f(x)|p dx dt ≤ Cp

∫

Rn

|f(x)|p [1 + ωp(x)] dx.

Having these weighted norm inequalities, one finds that our cancellation

results are sharp in the sense that any additional cancellation properties

cannot be expected in the conclusion of Theorem 1.1. In fact, given weighted

integrability conditions suggested by the above theorem, we have a complete

description of Poisson integrals in bp in terms of cancellation properties.

Theorem 1.3. Let p ≥ 1 and f ∈ Lp(ωp). Also assume f ∈ Lp for

1 ≤ p ≤ 1 + 1
n .

(1) P [f ] ∈ b1 if and only if the zero and first moments of f are all 0.

(2) For 1 < p ≤ 1 + 1
n , P [f ] ∈ bp if and only if the zero moment of f is 0.

(3) For p > 1 + 1
n , we always have P [f ] ∈ bp.

The above theorem recovers some results in [5] where Yi obtained the

same for continuous functions with compact support for 1 < p ≤ 1 + 1
n .

Our results Theorem 1.2 and Theorem 1.3 are also sharp in the sense that

orders of weights at infinity cannot be reduced.

We will first prove the weighted norm inequalities and then the can-

cellation properties. Also we will provide various examples related to our

results. We divide the proof of the weighted norm inequalities into two sec-

tions. In Section 2, all preliminary inequalities we need for the proof of

Theorem 1.2 are collected. In Section 3, we prove Theorem 1.2. As conse-

quences of our weighted norm inequalities, we show that functions without

necessary cancellation properties can be modified by continuous functions

with compact support so that the same type of weighted norm inequali-

ties hold. See Corollary 3.5 and Corollary 3.7. At the end of the section,

some observations related to Fourier transforms are included. In section

4, we prove Theorem 1.1 and, as a consequence, we derive Theorem 1.3.

In Section 5, we give various examples of functions related to our results.

We construct examples for the purpose of showing (i) the moment van-

ishing properties are not sufficient for the bp-containment in general, (ii)

our weighted integrability condition in Theorem 1.3 is sharp (hence so are

the weighted norm inequalities) in the sense that orders at infinity cannot
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be reduced, and nevertheless (iii) such a weighted integrability condition

is not necessary for the bp-containment in case relevant moment vanishing

conditions are already given.

§2. Auxiliary inequalities

In this section we collect inequalities which we need in the proof of

weighted norm inequalities in the next section. Our starting point is the

following well-known Hardy’s inequality. See, for example, [4].

Hardy’s Inequality. Let p ≥ 1, r > 0. Then we have

(1)

∫ ∞

0

(∫ ∞

s
ϕ(t) dt

)p

sr−1 ds ≤
(p
r

)p
∫ ∞

0
[tϕ(t)]ptr−1 dt

(2)

∫ ∞

0

(∫ s

0
ϕ(t) dt

)p

s−r−1 ds ≤
(p
r

)p
∫ ∞

0
[tϕ(t)]pt−r−1 dt

for all measurable functions ϕ ≥ 0 on (0,∞).

Note. We use the notation A . B for positive quantities A and B if the

ratio A/B has a positive upper bound. Also, we write A ≈ B if A . B

and A & B. Constants involved there may often depend on the dimension

and some other parameters, but they will be always independent of par-

ticular functions, measures, or points, etc. Sometimes such constants will

be explicitly denoted by the same letter C often with subscripts indicating

dependency.

Consider operators T1 and T2 defined by

T1h(t) =

∫

|y|>t
h(y)|y|−n dy, T2h(t) =

∫

|y|<t
h(y)|y|−n dy

for measurable functions h ≥ 0 on Rn and t > 0. We need Lp boundedness

for these operators, which one may view as a higher dimensional version of

Hardy’s inequality.

Lemma 2.1. For p ≥ 1 and r > 0, we have

(1)

∫ ∞

0
|T1h(t)|ptr−1 dt ≤ Cp,r

∫

Rn

|h(y)|p|y|r−n dy,

(2)

∫ ∞

0
|T2h(t)|pt−r−1 dt ≤ Cp,r

∫

Rn

|h(y)|p|y|−r−n dy.
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In what follows Σ denotes the unit sphere in Rn centered at the origin.

Proof. Let σ be the surface area measure on Σ. Then it follows from

Hardy’s inequality and Jensen’s inequality that

∫ ∞

0
|T1h(t)|ptr−1 dt =

∫ ∞

0

(∫ ∞

t

∫

Σ
h(uζ) dσ(ζ)u−1 du

)p

tr−1 dt

≤ Cp,r

∫ ∞

0

(∫

Σ
h(tζ) dσ(ζ)

)p

tr−1 dt

≤ Cp,r

∫ ∞

0

∫

Σ
|h(tζ)|p dσ(ζ) tr−1 dt

= Cp,r

∫

Rn

|h(y)|p|y|r−n dy.

This proves (1). One can see (2) by exactly the same way. The proof is

complete.

We also need a logarithmic version of Lemma 2.1. So, consider an op-

erator T3 defined by

T3h(t) =

∫

|y|>t
h(y)|y|−n(log |y|)−1 dy

for measurable functions h ≥ 0 on Rn and t > 1. For this operator we have

the following Lp boundedness.

Lemma 2.2. For p ≥ 1 and r > 0, we have

∫ ∞

1
|T3h(t)|pt−1(log t)r−1 dt ≤ Cp,r

∫

|y|>1
|h(y)|p|y|−n(log |y|)r−1 dy.

Proof. By change of variables (after representing the integral in polar

coordinates), one can check T3h(t) = T1h̃(log t) where h̃(y) = h(e|y||y|−1y).

Thus, by Lemma 2.1, we have

∫ ∞

1
|T3h(t)|pt−1(log t)r−1 dt

=

∫ ∞

1
|T1h̃(log t)|pt−1(log t)r−1 dt

=

∫ ∞

0
|T1h̃(t)|ptr−1 dt
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≤ Cp,r

∫

Rn

|h̃(y)|p|y|r−n dy

= Cp,r

∫

|y|>1
|h(y)|p|y|−n(log |y|)r−1 dy.

The proof is complete.

Remark. While it is not needed for our purpose, we remark that the

complementary operator

T4h(t) =

∫

1<|y|<t
h(y)|y|−n(log |y|)−1 dy

has similar Lp boundedness:
∫ ∞

1
|T4h(t)|pt−1(log t)−r−1 dt ≤ Cp,r

∫

|y|>1
|h(y)|p|y|−n(log |y|)−r−1 dy

for p ≥ 1 and r > 0.

For t > 0, let νt be the volume measure, normalized to have total mass

1, on the ball in Rn of radius t centered at the origin. Also, let σt be the

surface area measure, normalized to have total mass 1, on the sphere in

Rn of radius t centered at the origin. The following Lp boundedness of

convolutions with these measures are useful for our purpose.

Lemma 2.3. For p ≥ 1, we have

(1)

∫ ∞

0

∫

|x|>2t
|h ∗ νt(x)|p dx dt ≤

∫

Rn

|h(x)|p|x| dx

(2)

∫ ∞

0

∫

|x|>2t
|h ∗ σt(x)|p dx dt ≤

∫

Rn

|h(x)|p|x| dx

for measurable functions h ≥ 0 on Rn.

Proof. Since

h ∗ νt(x) = ω−1
n t−n

∫

|x−y|<t
h(y) dy

where ωn denotes the volume of the unit ball in Rn, we have by Jensen’s

inequality

|h ∗ νt(x)|p ≤ ω−1
n t−n

∫

|x−y|<t
|h(y)|p dy.
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Note that if |x| > 2t and |x− y| < t, then t < |y|. Thus, it follows from the

above that
∫ ∞

0

∫

|x|>2t
|h ∗ νt(x)|p dx dt

≤ ω−1
n

∫

Rn

∫ |x|/2

0

∫

|x−y|<t
|h(y)|p dy t−n dt dx

= ω−1
n

∫

Rn

∫ ∞

0

∫

|x−y|<t<|x|/2
|h(y)|pt−n dx dt dy

≤ ω−1
n

∫

Rn

∫ |y|

0

∫

|x−y|<t
|h(y)|p dx t−n dt dy

=

∫

Rn

∫ |y|

0
|h(y)|p dt dy

=

∫

Rn

|h(y)|p|y| dy,

which shows (1).

Next, note that

h ∗ σt(x) =

∫

Σ
h(x− tζ) dσ1(ζ)

and thus Jensen’s inequality yields

|h ∗ σt(x)|p ≤
∫

Σ
|h(x− tζ)|p dσ1(ζ).

Letting λn denote the surface area of Σ, we obtain from the above
∫ ∞

0

∫

|x|>2t
|h ∗ σt(x)|p dx dt

≤
∫

Rn

∫ |x|/2

0

∫

Σ
|h(x− tζ)|p dσ1(ζ) dt dx

= λ−1
n

∫

Rn

∫

2|y|<|x|
|h(x− y)|p|y|1−n dy dx

= λ−1
n

∫

Rn

∫

2|x−z|<|x|
|h(z)|p|x− z|1−n dz dx

= λ−1
n

∫

Rn

∫

2|y|<|y+z|
|y|1−n dy |h(z)|p dz
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≤ λ−1
n

∫

Rn

∫

|y|<|z|
|y|1−n dy |h(z)|p dz

=

∫

Rn

|h(z)|p|z| dz,

so that (2) holds. The proof is complete.

As mentioned in the introduction, the following is well known.

Lemma 2.4. For p ≥ 1, we have

sup
t>0

∫

Rn

|Pt ∗ f(x)|p dx ≤ cpn

∫

Rn

|f(x)|p dx

for measurable functions f ≥ 0 on Rn.

When we derive weighted norm inequalities in the next section, we will

decompose Rn into three pieces. We collect here some basic information on

those pieces. Here and elsewhere, we let

η = η(x, y, t) =
|y|2 − 2x · y
|x|2 + t2

(x, y ∈ Rn, t > 0)

for simplicity.

Lemma 2.5. If η > 4
5 , then the following hold :

|x|2 + t2 < 2|x− y|2, |x| + t < 6|y|,
|Pt(x− y) − Pt(x)| ≤ Pt(x),

|Pt(x− y) − Pt(x) + ∇Pt(x) · y| ≤ Pt(x) + |y||∇Pt(x)|.

Proof. Note that our assumption is 5(|x− y|2 + t2) > 9(|x|2 + t2). The

proof is therefore straightforward.

Lemma 2.6. If |η| ≤ 4
5 , then the following hold :

|y| < 3(|x| + t),

|Pt(x− y) − Pt(x)| . |y|(1 + t|x|−1)|∇Pt(x)|,
|Pt(x− y) − Pt(x) + ∇Pt(x) · y| . |y|2|x|−1|∇Pt(x)|.
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Proof. We have |x|2 +t2 ≤ 5(|x−y|2 +t2) ≤ 9(|x|2 +t2). The inequality

|y| < 3(|x| + t) is therefore straightforward. Note

|Pt(x− y) − Pt(x)| = Pt(x)|(1 + η)−m − 1|
. Pt(x)|η|
. |y|(1 + |y||x|−1)|∇Pt(x)|
. |y|(1 + t|x|−1)|∇Pt(x)|.

Also we have

|Pt(x− y) − Pt(x) + ∇Pt(x) · y|

= Pt(x)

∣∣∣∣(1 + η)−m − 1 − 2mx · y
|x|2 + t2

∣∣∣∣

= mPt(x)

∣∣∣∣η +O(η2) +
2x · y

|x|2 + t2

∣∣∣∣

. Pt(x)

{
|η|2 +

|y|2
|x|2 + t2

}

. |y|2|x|−1|∇Pt(x)|
{

1 +
|η|2(|x|2 + t2)

|y|2
}

. |y|2|x|−1|∇Pt(x)|
{

1 +
(|y| + |x|)2
|x|2 + t2

}

. |y|2|x|−1|∇Pt(x)|

where the last inequality follows from the fact that |y| < 3(|x| + t). The

proof is complete.

Lemma 2.7. If η < −4
5 , then the following hold :

2|x− y| < |x|, 2t < |x|, |y| < 2|x|,
|Pt(x− y) − Pt(x)| . Pt(x− y),

|Pt(x− y) − Pt(x) + ∇Pt(x) · y| . Pt(x− y).

Proof. Our assumption is now 5(|x− y|2 + t2) < |x|2 + t2. The proof is

therefore straightforward.

§3. Weighted norm inequalities

In this section we obtain weighted norm inequalities for Poisson in-

tegrals. Since estimates necessarily depend on good control (by means of
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cancellation) of dominating terms, it is natural to decompose Rn into pieces.

Here, we consider three pieces. For fixed x ∈ Rn and t > 0, we let

K1 = {y ∈ Rn : η(x, y, t) > 4/5},
K2 = {y ∈ Rn : |η(x, y, t)| ≤ 4/5},
K3 = {y ∈ Rn : η(x, y, t) < −4/5}.

Now, we estimate various types of operators corresponding to these

pieces. Why we consider those operators must be clear from Lemma 2.5,

Lemma 2.6 and Lemma 2.7. First, for the estimation on K1, we consider a

couple of operators defined by

Λ1f(x, t) = Pt(x)

∫

K1

f(y) dy,

Λ̃1f(x, t) = |∇Pt(x)|
∫

K1

f(y)|y| dy.

for measurable functions f ≥ 0 on Rn, x ∈ Rn and t > 0. For these

operators, we have the following Lp boundedness.

Lemma 3.1. For measurable functions f ≥ 0 on Rn, the following

hold.

(1) For 1 ≤ p < 1 + 1
n , we have

∫ ∞

0

∫

Rn

|Λ1f(x, t)|p dx dt ≤ Cp

∫

Rn

|f(x)|p|x| dx.

(2) For p = 1 + 1
n , we have

∫ ∞

6

∫

Rn

|Λ1f(x, t)|p dx dt ≤ Cp

∫

Rn

|f(x)|p|x|(log+ |x|)p dx.

(3) For p = 1, we have

∫ ∞

6

∫

Rn

Λ̃1f(x, t) dx dt ≤ C

∫

Rn

f(x)|x| log+ |x| dx.

Proof. First consider the case 1 ≤ p < 1 + 1
n . By Lemma 2.5, we have

Λ1f(x, t) ≤
∫

6|y|>|x|+t
Pt(x)f(y) dy ≤ Pt(x)

∫

6|y|>t
f(y) dy.
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Note ∫

Rn

|Pt(x)|p dx = tn−np

∫

Rn

|P1(x)|p dx ≈ tn−np.

It follows that
∫ ∞

0

∫

Rn

|Λ1f(x, t)|p dx dt .

∫ ∞

0

(∫

6|y|>t
f(y) dy

)p

tn−np dt

.

∫ ∞

0

(∫

|y|>t
f(y) dy

)p

tn−np dt.

Now, apply Lemma 2.1 with r = n− np+ 1 > 0 to conclude (1).

For the case p = 1 + 1
n , exactly the same argument yields

∫ ∞

6

∫

Rn

|Λ1f(x, t)|p dx dt .

∫ ∞

6

(∫

6|y|>t
f(y) dy

)p

t−1 dt

=

∫ ∞

1

(∫

|y|>t
f(y) dy

)p

t−1 dt,

and therefore (2) follows from Lemma 2.2 with r = 1.

For Λ̃1, note
∫

Rn

|∇Pt(x)| dx = t−1

∫

Rn

|∇P1(x)| dx ≈ t−1

and thus a similar argument yields
∫ ∞

6

∫

Rn

Λ̃1f(x, t) dxdt .

∫ ∞

6
t−1

∫

6|y|>t
f(y)|y| dy dt

=

∫ ∞

1
t−1

∫

|y|>t
f(y)|y| dy dt

=

∫

Rn

f(y)|y| log+ |y| dy

so that (3) holds. This completes the proof.

Next, for the estimation on K2, we also consider a couple of operators

defined by

Λ2f(x, t) = (1 + t|x|−1)|∇Pt(x)|
∫

K2

f(y)|y| dy,

Λ̃2f(x, t) = |x|−1|∇Pt(x)|
∫

K2

f(y)|y|2 dy
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for measurable functions f ≥ 0 on Rn, x ∈ Rn and t > 0. For these

operators, we have the following Lp boundedness.

Lemma 3.2. For measurable functions f ≥ 0 on Rn, the following

hold.

(1) For p > 1, we have
∫ ∞

0

∫

Rn

|Λ2f(x, t)|p dx dt ≤ Cp

∫

Rn

|f(x)|p|x| dx.

(2) For p = 1, we have
∫ ∞

0

∫

Rn

Λ̃2f(x, t) dx dt ≤ C

∫

Rn

f(x)|x| dx.

Proof. First consider the case p > 1. By Lemma 2.6, we have

Λ2f(x, t) ≤
∫

|y|<3(|x|+t)
(1 + t|x|−1)f(y)|y||∇Pt(x)| dy

and thus, by integrating in polar coordinates,

∫

Rn

|Λ2f(x, t)|p dx .

∫ ∞

0

(∫

|y|<3(u+t)

t(u+ t)f(y)|y|
(u2 + t2)m+1

dy

)p

un−1 du

.

∫ t

0

(∫

|y|<6t
f(y)|y|t−n−1 dy

)p

un−1 du

+

∫ ∞

t

(∫

|y|<6u
f(y)|y|u−n−1 dy

)p

un−1 du

. tn−np−p

(∫

|y|<6t
f(y)|y| dy

)p

+

∫ ∞

t

(∫

|y|<6u
f(y)|y| dy

)p

un−np−p−1 du.

Note, by interchanging the order of integration,

∫ ∞

0

∫ ∞

t

(∫

|y|<6u
f(y)|y| dy

)p

un−np−p−1 du dt

=

∫ ∞

0

(∫

|y|<6u
f(y)|y| dy

)p

un−np−p du.
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Consequently,

∫ ∞

0

∫

Rn

|Λ2f(x, t)|p dx dt .

∫ ∞

0

(∫

|y|<6u
f(y)|y| dy

)p

un−np−p du.

Now, apply Lemma 2.1 with r = np+ p− n− 1 > 0 to conclude (1).

Similarly, for p = 1, we have the following estimate for Λ̃2.
∫

Rn

Λ̃2f(x, t) dx ≤
∫

Rn

∫

|y|<3(|x|+t)
|x|−1f(y)|y|2|∇Pt(x)| dy dx

.

∫ ∞

0

∫

|y|<3(u+t)

tf (y)|y|2
(u2 + t2)m+1

dy un−1 du

≤ t−n−2

∫ t

0

∫

|y|<6t
f(y)|y|2 dy un−1 du

+

∫ ∞

t

∫

|y|<6u
f(y)|y|2 dy u−3 du

= n−1t−2

∫

|y|<6t
f(y)|y|2 dy

+

∫ ∞

t

∫

|y|<6u
f(y)|y|2 dy u−3 du.

It follows that
∫ ∞

0

∫

Rn

Λ̃2f(x, t) dx dt .

∫ ∞

0

∫

|y|<6t
f(y)|y|2 dy t−2 dt

+

∫ ∞

0

∫ ∞

t

∫

|y|<6u
f(y)|y|2 dy u−3 du dt

.

∫ ∞

0

∫

|y|<6t
f(y)|y|2 dy t−2 dt

= 6

∫

Rn

f(y)|y| dy,

so that (2) holds. The proof is complete.

Finally, for the estimation on K3, we consider an operator defined by

Λ3f(x, t) =

∫

K3

f(y)Pt(x− y) dy

for measurable functions f ≥ 0 on Rn, x ∈ Rn and t > 0. For this operator,

we have the following Lp boundedness.
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Lemma 3.3. For p ≥ 1 and measurable functions f ≥ 0 on Rn, we

have ∫ ∞

0

∫

Rn

|Λ3f(x, t)|p dx dt ≤ Cp

∫

Rn

|f(x)|p|x| dx.

Proof. By Lemma 2.7, 2t < |x| and 2|x− y| < |x| on K3. Thus

Λ3f(x, t) ≤
∫

2|x−y|<|x|
f(y)Pt(x− y) dy

. t−n

∫

|x−y|<t
f(y) dy +

∫

t<|x−y|<|x|/2
tf (y)|x− y|−n−1 dy

. f ∗ νt(x) +

∫

t<|x−y|<|x|/2
f(y)|x− y|−n dy

= f ∗ νt(x) +

∫

t<|z|<|x|/2
f(x− z)|z|−n dz

= f ∗ νt(x) +

∫ |x|/2

t
f ∗ σs(x) s

−1 ds

Now estimate for the first term of the above follows from Lemma 2.3. For

the second term, note that Hardy’s inequality with r = 1 gives

∫ |x|/2

0

(∫ |x|/2

t
f ∗ σs(x) s

−1 ds

)p

dt ≤ pp

∫ |x|/2

0
|f ∗ σt(x)|p dt

and therefore desired estimate also follows from Lemma 2.3. The proof is

complete.

We are now ready to prove our weighted norm inequalities. Actually,

all the necessary estimates are contained in Lemma 3.1, Lemma 3.2 and

Lemma 3.3. What remains is just to combining them together. We begin

with the case p = 1.

Theorem 3.4. Let f ∈ L1∩L1(|x|dx). If f satisfies the zero and first

moment vanishing conditions
∫

Rn

f(x) dx =

∫

Rn

xjf(x) dx = 0 (1 ≤ j ≤ n),

then we have
∫ ∞

0

∫

Rn

|Pt ∗ f(x)| dx dt ≤ C

∫

Rn

|f(x)|(1 + |x| log+ |x|) dx.
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Proof. Since the zero and first moments are 0 by assumption, we have

Pt ∗ f(x) =

∫

Rn

f(y) [Pt(x− y) − Pt(x) + ∇Pt(x) · y] dy

and therefore, by Lemma 2.5, Lemma 2.6 and Lemma 2.7,

|Pt ∗ f(x)| ≤
∫

Rn

|f(y)| |Pt(x− y) − Pt(x) + ∇Pt(x) · y| dy

.

∫

K1

|f(y)| [Pt(x) + |y||∇Pt(x)|] dy

+

∫

K2

|f(y)||y|2|x|−1|∇Pt(x)| dy +

∫

K3

|f(y)|Pt(x− y) dy

= Λ1|f |(x, t) + Λ̃1|f |(x, t) + Λ̃2|f |(x, t) + Λ3|f |(x, t).

Now, the theorem follows from Lemma 3.1, Lemma 3.2, Lemma 3.3 and

Lemma 2.4. The proof is complete.

As a consequence, we have the following modified weighted norm in-

equalities which might be of some independent interest.

Corollary 3.5. To each f ∈ L1 ∩ L1(|x|dx) there corresponds f̃ ∈
Cc(R

n) such that

∫ ∞

0

∫

Rn

|Pt ∗ (f − f̃)(x)|dx dt ≤ C

∫

Rn

|f(x)|(1 + |x| log+ |x|) dx.

Proof. Choose ϕ ∈ Cc(R+) and ψ ∈ Cc(R
n−1) such that

2

∫ ∞

0
ϕ(t) dt =

∫

Rn−1

ψ(x′) dx′ = 1

and define f1(x) = [ϕ(x1)−ϕ(−x1)]ψ(x2, · · · , xn). One can easily check that

the zero moment of f1 is 0,
∫
Rn x1f1(x) dx = 1, and

∫
Rn xjf1(x) dx = 0 for

j 6= 1. Similarly, there exist functions fj ∈ Cc(R
n) with the zero moment 0

such that ∫

Rn

xifj(x) dx = δij (1 ≤ i, j ≤ n)

where δij is the Kronecker delta. Also let f0 ∈ Cc(R
n) be any even function

such that
∫
Rn f0(x) dx = 1 and define f̃ = αf0 +

∑n
j=1 βjfj where

α =

∫

Rn

f(x) dx, βj =

∫

Rn

xjf(x) dx
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for each j. Then we have f̃ ∈ Cc(R
n) and it is easily verified that the zero

and first moments of the function f − f̃ are all 0. Now, since fj ∈ Cc(R
n)

for each j, we have
∫

Rn

|f̃(x)|(1 + |x| log+ |x|) dx . |α| +
n∑

j=1

|βj |.

On the other hand, we have

|α| +
n∑

j=1

|βj | .

∫

Rn

|f(x)|(1 + |x|) dx

.

∫

Rn

|f(x)|(1 + |x| log+ |x|) dx.

Therefore the corollary follows from Theorem 3.4. The proof is complete.

For 1 < p ≤ 1 + 1
n , we have the following weighted norm inequalities.

Theorem 3.6. Let 1 < p ≤ 1 + 1
n and f ∈ L1. If f satisfies the zero

moment vanishing condition
∫

Rn

f(x) dx = 0,

then the following hold.

(1) For 1 < p < 1 + 1
n , we have

∫ ∞

0

∫

Rn

|Pt ∗ f(x)|p dx dt ≤ Cp

∫

Rn

|f(x)|p|x| dx.

(2) For p = 1 + 1
n , we have

∫ ∞

0

∫

Rn

|Pt ∗ f(x)|p dx dt ≤ Cp

∫

Rn

|f(x)|p
[
1 + |x|(log+ |x|)p

]
dx.

Proof. As in the proof of Theorem 3.4, we have

|Pt ∗ f(x)| ≤
∫

Rn

|f(y)| |Pt(x− y) − Pt(x)| dy

.

∫

K1

|f(y)|Pt(x) dy + (1 + t|x|−1)|∇Pt(x)|
∫

K2

|f(y)||y| dy

+

∫

K3

|f(y)|Pt(x− y) dy

= Λ1|f |(x, t) + Λ2|f |(x, t) + Λ3|f |(x, t),
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and therefore (1) and (2) are consequences of Lemma 3.1, Lemma 3.2,

Lemma 3.3 and Lemma 2.4. The proof is complete.

As in the case of p = 1, we have the following modified weighted norm

inequalities. Recall ωp denotes the weight defined in (1.3).

Corollary 3.7. Let 1 < p ≤ 1 + 1
n . Then, to each f ∈ L1 there

corresponds f̃ ∈ Cc(R
n) such that

∫ ∞

0

∫

Rn

|Pt ∗ (f − f̃)(x)|p dx dt ≤ Cp

∫

Rn

|f(x)|p(1 + ωp(x)) dx.

Proof. Using notations defined in the proof of Corollary 3.5, put f̃ =

αf0 ∈ Cc(R
n). Let q be the conjugate exponent of p. Since q/p > n for

1 < p < 1 + 1
n and q/p = n for p = 1 + 1

n , we have

∫

Rn

(1 + ωp(x))
−q/p dx <∞.

This, together with Hölder’s inequality, yields
∫

Rn

|f̃(x)|p(1 + ωp(x)) dx

. |α|p

≤
(∫

Rn

|f(x)| dx
)p

.

∫

Rn

|f(x)|p(1 + ωp(x)) dx.

Now, since the zero moment of the function f − f̃ is 0, the theorem follows

from Theorem 3.6. The proof is complete.

Finally, for p > 1+ 1
n , we have the following weighted norm inequalities.

Theorem 3.8. Let p > 1 + 1
n . For measurable functions f ≥ 0, we

have ∫ ∞

0

∫

Rn

|Pt ∗ f(x)|p dx dt ≤ Cp

∫

Rn

|f(x)|p|x| dx.(3.1)

Proof. Recall that we have
∫

Rn

Pt(x− y) dy = cn



BERGMAN NORM ESTIMATES OF POISSON INTEGRALS 103

for any t > 0 and x ∈ Rn. Also, recall that 5(|x − y|2 + t2) > 9(|x|2 + t2)

on K1 by definition. Thus we have Pt(x− y) . Pt(x) on K1. Now, Jensen’s

inequality yields
(∫

K1

f(y)Pt(x− y) dy

)p

≤ Cp

∫

K1

|f(y)|pPt(x− y) dy

. Pt(x)

∫

K1

|f(y)|p dy

= Λ1|f |p(x, t)

and therefore the estimate on K1 follows from Lemma 3.1.

Since |x|2 + t2 ≤ 5(|x− y|2 + t2) ≤ 9(|x|2 + t2) on K2 by definition, we

also have Pt(x− y) . Pt(x) on K2. Thus,
∫ ∞

0

∫

Rn

(∫

K2

f(y)Pt(x− y) dy

)p

dx dt

.

∫ ∞

0

∫

Rn

(∫

K2

f(y)Pt(x) dy

)p

dx dt

.

∫ ∞

0

(∫

|y|<6t
f(y) dy

)p

tn−np dt

.

∫ ∞

0

(∫

|y|<t
f(y) dy

)p

tn−np dt.

where the second inequality can be verified by an easy modification of the

estimate for Λ2 in the proof of Lemma 3.2. Thus, the estimate on K2 follows

from Lemma 2.1 with r = np−n−1 > 0. Finally, the estimate on K3 follows

from Lemma 3.3. The proof is complete.

Remark. Note that |x| is an Ap weight (see [3]) if and only if p > 1+ 1
n .

Thus, for the case p > 1 + 1
n , we could derive the weighted norm inequality

(3.1) by utilizing the well-known Ap weight theory. On the other hand, for

1 ≤ p ≤ 1 + 1
n , weights under consideration are not Ap weights, but still

appear to be quite natural. This seems to cause the fact that we only have

the modified weighted norm inequalities Corollary 3.5 and Corollary 3.7, in

case the weights are already fixed.

The case p = 2 is something special, because we then have Fourier

transform tools at hand. In the rest of this section, we mention some results

in that direction. The following Plancherel type theorem is noticed in [5].
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Lemma 3.9. For f ∈ L2, we have
∫ ∞

0

∫

Rn

|Pt ∗ f(x)|2 dx dt = cn

∫

Rn

|f̂(x)|2|x|−1 dx(3.2)

where f̂ denotes the Fourier transform of f .

This yields some immediate consequences. That is, for f ∈ L1∩L2, one

can see P [f ] ∈ b2 only if f̂(0) = 0 (by continuity of f̂) for n = 1. On the

other hand, we always have P [f ] ∈ b2 for n ≥ 2. Such bp containment results

will be investigated in the next section. Here, we mention some inequalities

which can be derived from (3.2).

Proposition 3.10. (n = 1) Let f ∈ L1. If f satisfies the zero moment

vanishing condition ∫

R

f(x) dx = 0,

then we have
∫ ∞

0

∫

R

|Pt ∗ f(x)|2 dx dt ≤ C

(∫

R

|f(x)||x|dx
)2

+ C

∫

R

|f(x)|2 dx.(3.3)

Proof. We may assume f ∈ L2. Since f̂(0) = 0 by assumption, we have

|f̂(x)| = |f̂(x) − f̂(0)| . |x|
∫

R

|f(y)||y| dy

for all x ∈ R. It follows that
∫

R

|f̂(x)|2|x|−1 dx =

∫

|x|<1
|f̂(x)|2|x|−1 dx+

∫

|x|>1
|f̂(x)|2|x|−1 dx

.

(∫

R

|f(x)||x|dx
)2

+

∫

R

|f(x)|2 dx

and therefore (3.3) holds by Lemma 3.9. The proof is complete.

For n ≥ 2, note that |x|−1 is integrable near the origin. Thus, a similar

argument yields the following.

Proposition 3.11. (n ≥ 2) For measurable functions f ≥ 0 on Rn,

we have
∫ ∞

0

∫

Rn

|Pt ∗ f(x)|2 dx dt ≤ C

(∫

Rn

f(x) dx

)2

+ C

∫

Rn

|f(x)|2 dx.



BERGMAN NORM ESTIMATES OF POISSON INTEGRALS 105

For n ≥ 2 and p = 2, one can also see that order of weight in Theorem

3.8 is sharp in the following sense.

Proposition 3.12. (n ≥ 2) We have

∫ ∞

0

∫

Rn

|Pt ∗ f(x)|2 dx dt ≤ Cα

∫

Rn

|f(x)|2|x|α dx(3.4)

for all measurable functions f ≥ 0 on Rn if and only if α = 1.

Proof. We only need prove the necessity by Theorem 3.8. So assume

(3.4) holds and take f(x) = e−t|x| for t > 0. Note f ∈ L2 for any t > 0. We

have f̂(x) = cnPt(x) (see [4], page 16) and thus

∫

Rn

|f̂(x)|2|x|−1 dx = c2n t
−n−1

∫

Rn

|x|−1(1 + |x|2)−n−1 dx.

On the other hand, we have

∫

Rn

|f(x)|2|x|α dx = t−n−α

∫

Rn

e−|x||x|α dx

so that α = 1 by Lemma 3.9. The proof is complete.

Having seen the above proposition, one might guess the sharpness of

orders of weights considered in our weighted norm inequalities. Our results

are indeed sharp in the sense that orders cannot be reduced at infinity.

We will see examples in Section 5. See Proposition 5.1, Proposition 5.4,

Proposition 5.5 and Proposition 5.6.

§4. Harmonic Bergman functions

We have seen that the zero or first moment vanishing hypothesis played

the key role in the proof of Theorem 3.4 and Theorem 3.6. In this section we

show that those cancellation properties are indeed necessary, which justifies

our hypotheses taken in the weighted norm inequalities of the previous

section.

Theorem 4.1. Let µ be a complex Borel measure on Rn. If P [µ] ∈ bp
for some 1 ≤ p ≤ 1 + 1

n , then µ(Rn) = 0.
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Proof. Assume µ is real without loss of generality. Put F = P [µ] and

assume F ∈ bp for some 1 ≤ p ≤ 1 + 1
n . Note that

F (x, t) =

∫

Rn

Pt(x− y) dµ(y)

= t−n

∫

|y|<R
dµ(y) +

∫

|y|<R
(Pt(x− y) − t−n) dµ(y)|

+

∫

|y|≥R
Pt(x− y) dµ(y)

(4.1)

for any R > 0. Now, assume µ(Rn) 6= 0. We may further assume µ(Rn) > 1.

Now choose R > 1 sufficiently large so that
∫

|y|<R
dµ(y) −

∫

|y|≥R
d|µ|(y) ≥ 1(4.2)

holds. Also, fix N > 0 such that

mN−1||µ|| < 1

2
.(4.3)

Also note

|Pt(x− y) − t−n| ≤ mt|x− y|2
tn+1(|x− y|2 + t2)

≤ m|x− y|
2tn+1

(4.4)

where the first inequality can be seen from the elementary inequality

a−m − b−m ≤ m(b− a)b−1a−m (0 < a < b).(4.5)

Now, it follows from (4.1), (4.2) and (4.4) that

|F (x, t)| ≥ t−n

∫

|y|<R
dµ(y) −mt−n−1

∫

|y|<R

|x− y|
2

d|µ|(y)

−t−n

∫

|y|≥R
d|µ|(y)

≥ t−n −mt−n−1

∫

|y|<R

|x− y|
2

d|µ|(y).

Therefore, for |x| < R and NR < t < 2NR, we have by (4.3)

|F (x, t)| ≥ t−n(1 −mt−1R||µ||) & N−nR−n,
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which yields

∫ 2NR

NR

∫

|x|<R
|F (x, t)|p dx dt & N1−npRn−np+1 & N1−np

where the second inequality holds, because n − np + 1 ≥ 0. But, this is

impossible by the fact

∫ 2NR

NR

∫

|x|<R
|F (x, t)|p dx dt ≤

∫ ∞

NR

∫

Rn

|F (x, t)|p dx dt→ 0

as R tends to infinity. This completes the proof.

As a consequence, we have the following bp-cancellation property. The

case p = 1 has been known [2].

Corollary 4.2. Let 1 ≤ p ≤ 1 + 1
n and F ∈ bp. Then

∫

Rn

F (x, δ) dx = 0

whenever F (·, δ) ∈ L1.

Proof. For t > δ, we have F (x, t) = P [f ](x, t) where f = F (·, δ).
Hence, the corollary follows from Theorem 4.1.

In addition to the zero moment vanishing property, b1-functions rep-

resented by Poisson integrals must also have the following first moment

vanishing property on the boundary.

Theorem 4.3. Let µ be a complex Borel measure on Rn and suppose

∫

Rn

|x| d|µ|(x) <∞.

If P [µ] ∈ b1, then

∫

Rn

xj dµ(x) = 0 (1 ≤ j ≤ n).



108 B. R. CHOE, H. KOO AND H. YI

Proof. Assume µ is real without loss of generality. Put F = P [µ] and

assume F ∈ b1. Note that, since the zero moment of µ is 0 by Theorem 4.1,

we have

F (x, t) =

∫

Rn

(Pt(x− y) − Pt(x)) dµ(y)

= −
∫

Rn

∇Pt(x) · y dµ(y) +

∫

2|y|>t
∇Pt(x) · y dµ(y)

+

∫

2|y|≤t
(Pt(x− y) − Pt(x) + ∇Pt(x) · y) dµ(y)

+

∫

2|y|>t
(Pt(x− y) − Pt(x)) dµ(y)

=: I + II + III + IV

(4.6)

for any t > 0. Put

αj =

∫

Rn

xj dµ(x) (1 ≤ j ≤ n)

and assume αj ≥ 0 for each j by making change of variables, if needed. Let

α =
∑
αj . It remains to show α = 0. Suppose not. Then we may further

assume α > 1. Now we estimate terms in (4.6). Fix t > 1 and x such that

2|x| < t, and t < 4
√
nxj for each j. For the first term, we have

|I| = 2mt
(|x|2+t2)m+1

∑
αjxj ≥ mt2

2
√

n(|x|2+t2)m+1 & 1
tn+1 .(4.7)

For the second term, we have

|II| ≤ 2m|x|
tn+2

∫

2|y|>t
|y| dµ(y) = t−n−1o(1)(4.8)

as t tends to infinity. To estimate the third term, note that

1

t

∫

2|y|≤t
|y|2 d|µ|(y) =

1

t

∫

2|y|≤
√

t
|y|2 d|µ|(y) +

1

t

∫
√

t<2|y|≤t
|y|2 d|µ|(y)

≤ 1

2
√
t

∫

Rn

|y| d|µ|(y) +

∫

2|y|>
√

t
|y| d|µ|(y)

= o(1)

as t tends to infinity. Also note that
∣∣|y|2 − 2x · y

∣∣ ≤ |y|(|y| + 2|x|) ≤ 3t2/4

for 2|y| ≤ t. Hence, by Lemma 2.6, we have

|III| .
1

tn+2

∫

2|y|≤t
|y|2 d|µ|(y) = t−n−1o(1)(4.9)
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as t tends to infinity. For the last term, we have by (4.5)

|Pt(x− y) − Pt(x)| ≤
mt ||x|2 − |x− y|2|

tn−1(|x− y|2 + t2)(|x|2 + t2)

≤ m |y| (t|x| + t|x− y|)
tn−1(|x− y|2 + t2)(|x|2 + t2)

≤ m|y|
tn+1

and therefore

|IV | ≤ m

tn+1

∫

2|y|>t
|y| d|µ|(y) = t−n−1o(1).(4.10)

Thus, by (4.6), (4.7), (4.8), (4.9) and (4.10), we finally see that there is a

positive constant N such that
∫ ∞

N

∫

Dt

|F (x, t)| dx dt &

∫ ∞

N
t−1 dt = ∞

where Dt is the set of all points x such that 2|x| < t and t < 4
√
nxj for

all j. Since F ∈ b1 by assumption, this is a contradiction. The proof is

complete.

As a consequence of Theorem 4.3 and Corollary 4.2, we have the fol-

lowing b1-cancellation property. The proof is similar to that of Corollary

4.2.

Corollary 4.4. For F ∈ b1, we have
∫

Rn

F (x, δ) dx = 0

for any δ > 0. Also, we have
∫

Rn

xjF (x, δ) dx = 0 (1 ≤ j ≤ n)

whenever F (·, δ) ∈ L1(|x|dx).
The first moment vanishing property sometimes forces functions in b1

of certain type to be identically 0. For example, consider a positive finite

Borel measure µ on Rk
+ (1 ≤ k ≤ n) and let µ̃ be its reflection with respect

to the origin. Also, let λ be a positive finite Borel measure on Rn−k. Assume

first moments of µ and λ are all well defined.
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Corollary 4.5. Let µ and λ be as above. If P [(µ− µ̃)×λ] ∈ b1, then

either µ = 0 or λ = 0.

Proof. By Theorem 4.3, the first moments of (µ− µ̃) × λ are all 0. In

particular, for 1 ≤ j ≤ k, we have

0 = ||λ||
∫

Rk

xj d(µ− µ̃)

= 2||λ||
∫

Rk
+

xj dµ.

Summing up all these together, we obtain

||λ||
∫

Rk
+

|x′| dµ(x′) = 0

and therefore µ = 0 or λ = 0 as desired. The proof is complete.

Remark. Consider any closed cone E ⊂ Rn+1 with vertex at the origin

whose radial projection to the unit sphere is properly contained in Rn+1
+ .

For measures µ and λ considered in Corollary 4.5, one can actually obtain

a direct estimate on E:

P [(µ− µ̃) × λ](w) ≥ C|w|−n−1 (w ∈ E, |w| ≥ 1)

for some C > 0 if µ× λ 6= 0, which implies P [(µ− µ̃) × λ] /∈ b1.

In the next section we will see examples (Proposition 5.1, Proposition

5.4, Proposition 5.5) showing that the above cancellation properties do not

characterize the bp-containment of Poisson integrals. However, such can-

cellation properties and bp-containment of Poisson integrals are equivalent

under restrictions which are obviously suggested by weighted norm inequal-

ities of the previous section. For the case p = 1, we have the following.

Theorem 4.6. Suppose f ∈ L1 satisfies
∫

Rn

|f(x)||x| log+ |x| dx <∞.(4.11)

Then P [f ] ∈ b1 if and only if

∫

Rn

f(x) dx =

∫

Rn

xjf(x) dx = 0 (1 ≤ j ≤ n).
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Proof. This follows from Theorem 3.4, Theorem 4.1 and Theorem 4.3.

Similarly, for the case 1 < p ≤ 1 + 1
n , the following holds. Recall ωp

denotes the weight defined in (1.3). Also, note that the condition (4.12)

below, together with f ∈ Lp, implies f ∈ L1 (see the proof of Corollary

3.7).

Theorem 4.7. Let 1 < p ≤ 1 + 1
n . Suppose f ∈ Lp satisfies

∫

Rn

|f(x)|pωp(x) dx <∞.(4.12)

Then P [f ] ∈ bp if and only if
∫

Rn

f(x) dx = 0.

Proof. This follows from Theorem 3.6 and Theorem 4.1.

Remark. We will see examples (Proposition 5.1, Proposition 5.4,

Proposition 5.5) showing that the converses of the moment vanishing prop-

erties do not hold. Consequently, Theorem 4.6 and Theorem 4.7 do not hold

without the weighted integrability conditions (4.11) and (4.12). Neverthe-

less, one may consider some other aspects of those weighted integrability

conditions. Namely, one may ask whether their orders are optimal. Also,

one may ask whether they are necessary for the bp-containment of Poisson

integrals in case relevant moment vanishing conditions are already given.

Answers are yes for the first one and no for the second one. We will see

examples in the next section. See Proposition 5.1, Proposition 5.4, Propo-

sition 5.5 for the first one and Proposition 5.7, Proposition 5.8, Proposition

5.9 for the second one.

We now turn to the case p > 1 + 1
n . In this case one can immediately

see P [f ] ∈ bp from Theorem 3.8 whenever f satisfies the condition (4.13)

below and P [f ] defines an actual harmonic function.

Theorem 4.8. Let p > 1 + 1
n . If f is a measurable function on Rn

such that ∫

Rn

|f(x)|p|x| dx <∞,(4.13)

then P [f ] ∈ bp.
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Proof. As mentioned above, we only need to check that P [f ] is well

defined. First note that
∫

|x|>1
|f(x)|p dx ≤

∫

|x|>1
|f(x)|p|x| dx <∞.

Let q be the conjugate exponent of p. Since q/p < n, we have

∫

|x|<1
|x|−q/p dx <∞

and thus ∫

|x|<1
|f(x)| dx .

(∫

|x|<1
|f(x)|p|x| dx

)1/p

<∞

by Hölder’s inequality. Accordingly, f ∈ L1 + Lp and P [f ] is indeed a

harmonic function. The proof is complete.

Remark. For 1 ≤ p ≤ 1 + 1
n , we have seen that the bp-containment of

Poisson integrals, under restrictions (4.11) or (4.12), is characterized by the

zero or first moment vanishing condition. As mentioned before, such char-

acterizations fail to hold without any extra conditions. On the other hand,

for p > 1 + 1
n , one cannot expect any cancellation property by Theorem

4.8 and, in fact, there are many positive functions in bp (consider Poisson

integrals of positive functions with compact support). As far as such posi-

tive functions are concerned, the bound p = 1 + 1
n is known to be precise

as mentioned in the introduction.

We now close this section with the following for the case p = 2. Note

that there is no implication between this and our results above.

Proposition 4.9. For functions f ∈ L1 ∩ L2, the following hold.

(1) (n = 1) For f ∈ L1(|x|dx), we have P [f ] ∈ b2 if and only if

∫

Rn

f(x) dx = 0.

(2) (n ≥ 2) We always have P [f ] ∈ b2.

Proof. We have (1) by Proposition 3.10, Theorem 4.1 and (2) by Propo-

sition 3.11.
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§5. Examples

In this section we give various examples related to theorems obtained

in the previous sections. We will assume n = 1 for simplicity and thus

1+ 1
n = 2. Similar arguments will produce examples for n > 1. What we are

concerned here are (i) the failure of the converses of the moment vanishing

properties, (ii) the sharpness of the orders of weights in the weighted inte-

grability conditions for the bp-containment (and the same for the weighted

norm inequalities), and (iii) the failure of bp-containment characterizations

by means of our weighted integrability conditions in case relevant moment

vanishing conditions are given.

We first construct examples simultaneously concerning (i) and (ii) for

1 ≤ p ≤ 2. Our examples show that the moment vanishing properties are

not sufficient for the bp-containment. In other words, the sufficiencies of

Theorem 4.6 and Theorem 4.7 do not hold without weighted integrability

conditions (4.11) and (4.12). However, as far as orders of weights (in those

weighted integrability conditions) are concerned, our examples show that

our results are sharp (hence so are the weighted norm inequalities) in the

sense that orders at infinity cannot be reduced. We begin with the easiest

case.

Proposition 5.1. For 1 < p < 2, there exists a function f ∈ L1 ∩Lp

such that ∫ ∞

−∞
f(x) dx = 0,

∫ ∞

−∞
|f(x)|p|x|1−ε dx <∞(5.1)

for any ε > 0, but P [f ] /∈ bp.

Proof. Let X be the characteristic function of the interval [1,∞) and

define

f(x) = |x|−α(X (x) − X (−x))(5.2)

where α = 2
p . Then, clearly f ∈ L1 ∩Lp and (5.1) holds. We will show that

P [f ] /∈ bp. Now, for 0 < x < t and t > 1, we have

Pt ∗ f(x) =

∫ ∞

1

(
t

|x− y|2 + t2
− t

|x+ y|2 + t2

)
dy

yα

=

∫ ∞

1

4txy

(|x− y|2 + t2)(|x+ y|2 + t2)

dy

yα

≥
∫ ∞

t

4txy

(|x+ y|2 + t2)2
dy

yα
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& tx

∫ ∞

t
y−3−α dy

& t−1−αx

and thus
∫ ∞

1

∫ t

0
|Pt ∗ f(x)|p dx dt &

∫ ∞

1

∫ t

0
t−p−2xp dx dt

&

∫ ∞

1
t−1 dt

= ∞

as desired. The proof is complete.

The cases p = 1 and p = 2 are more subtle. To construct examples for

those cases, we first prove a couple of lemmas.

Lemma 5.2. Let α > 1 and ε > 0. Then, for t > 2e, we have

(1)

∫ t

e

dy

(log y)ε
≈ t

(log t)ε
,

(2)

∫ ∞

t

dy

yα(log y)1+ε
≈ 1

tα−1(log t)1+ε
.

Proof. For 2e < t ≤ eε+1 (if there is any such t), we have

∫ 2e

e

dy

(log y)ε
+

∫ t

2e

dy

(log y)ε
. 1 .

t

(log t)ε
.

For t > eε+1, we have by integration by parts

∫ t

eε+1

dy

(log y)ε
=

t

(log t)ε
− eε+1

(ε+ 1)ε
+ ε

∫ t

eε+1

dy

(log y)ε+1

≤ t

(log t)ε
+

ε

ε+ 1

∫ t

eε+1

dy

(log y)ε
.

Therefore, for t > 2e, we have

∫ t

e

dy

(log y)ε
.

t

(log t)ε
.

The other direction of the above inequality is clear and thus (1) holds. A

similar estimate yields (2). The proof is complete.
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Lemma 5.3. For ε > 0, consider functions f1 and f2 defined by

fj(x) = αjx
−j(log x)−1−εX (x) (j = 1, 2)

where X is the characteristic function of the interval [e,∞) and each αj > 0

is chosen so that
∫
fj(x)dx = 1. Then, we have

(1) Pt(x) − Pt ∗ f1(x) & t−1(log t)−ε

(2) Pt(x) − εα2P
′
t (x) − Pt ∗ f2(x) & t−2(log t)−ε

for all x, t with t < x < 2t and t sufficiently large.

Proof. Assume t < x < 2t and t is sufficiently large. By Lemma 5.2,

we have ∫ ∞

e

1

(x− y)2 + t2
dy

(log y)1+ε

≈ 1

t2

∫ t

e

dy

(log y)1+ε
+

∫ ∞

t

1

y2

dy

(log y)1+ε

≈ t−1(log t)−1−ε

= t−1(log t)−εo(1).

(5.3)

Also, note that ∫ ∞

e

y

(x− y)2 + t2
dy

(log y)1+ε

≥
∫ ∞

t

y

(x− y)2 + t2
dy

(log y)1+ε

&

∫ ∞

t

dy

y(log y)1+ε

& (log t)−ε

(5.4)

and therefore, by (5.3) and (5.4),

Pt(x) − Pt ∗ f1(x) = α1

∫ ∞

e
[Pt(x) − Pt(x− y)]y−1(log y)−1−ε dy

= α1Pt(x)

∫ ∞

e

y − 2x

(x− y)2 + t2
dy

(log y)1+ε

& α1Pt(x)(log t)−ε[1 + o(1)]

& t−1(log t)−ε.
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This proves (1). A similar argument yields (note α1 = ε−1)

Pt(x) − Pt ∗ f2(x) = α2Pt(x)

∫ ∞

e

y − 2x

(x− y)2 + t2
dy

y(log y)1+ε

= α2Pt(x)[t
−1(log t)−εo(1) − 2εxt−1Pt ∗ f1(x)]

= −2εα2xt
−1Pt(x)Pt ∗ f1(x) + t−2(log t)−εo(1)

where the second equality holds by (5.3). Since P ′
t(x) = −2xt−1[Pt(x)]

2, it

follows that

Pt(x)−εα2P
′
t(x) − Pt ∗ f2(x)

= 2εα2xt
−1Pt(x) [Pt(x) − Pt ∗ f1(x)] + t−2(log t)−εo(1)

≈ t−1[Pt(x) − Pt ∗ f1(x)] + t−2(log t)−εo(1)

& t−2(log t)−ε.

The last inequality holds by (1). The proof is complete.

We are now ready to construct examples for p = 1 and p = 2. We first

consider the simpler case p = 2.

Proposition 5.4. There exists a function f ∈ L1 ∩ L2 such that

∫ ∞

−∞
f(x) dx = 0,

∫ ∞

−∞
|f(x)|2|x|(log+ |x|)2−ε dx <∞(5.5)

for any ε > 0, but P [f ] /∈ b2.

Proof. Let X1 and X2 be the characteristic functions of the interval

[−1
2 ,

1
2 ] and [e,∞), respectively. Consider a function f defined by

f(x) = X1(x) − 2x−1(log x)−3/2X2(x) =: f1 + f2.

Clearly, f ∈ L1 ∩ L2 and (5.5) is easily seen. We claim

|Pt ∗ f(x)| & t−1(log t)−1/2(5.6)

for all x, t with t < x < 2t and t sufficiently large. This yields

∫ ∞

N

∫ 2t

t
|Pt ∗ f(x)|2 dx dt &

∫ ∞

N
(t log t)−1 dt = ∞
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for N large and hence P [f ] /∈ b2. Now, assume t < x < 2t and t is sufficiently

large. We first estimate f1. Since

∫ 1/2

−1/2

y

(x− y)2 + t2
dy = 2

∫ 1/2

0

y

(x− y)2 + t2
− y

(x+ y)2 + t2
dy

= 8x

∫ 1/2

0

y2

((x− y)2 + t2)((x+ y)2 + t2)
dy

. t−3,

we have

Pt ∗ f1(x) =

∫ 1/2

−1/2
Pt(x− y) dy

= Pt(x) +

∫ 1/2

−1/2
[Pt(x− y) − Pt(x)] dy

= Pt(x) + Pt(x)

∫ 1/2

−1/2

2xy − y2

(x− y)2 + t2
dy

= Pt(x) +O(t−3).

For f2, we obtain from Lemma 5.3

Pt ∗ f2(x) + Pt(x) & t−1(log t)−1/2.

It follows that

Pt ∗ f(x) & t−1(log t)−1/2 +O(t−3) & t−1(log t)−1/2

so that (5.6) holds. The proof is complete.

Proposition 5.5. There exists a function f ∈ L1 ∩ L1(|x|dx) such

that ∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
xf (x) dx = 0,

∫ ∞

−∞
|f(x)||x|(log+ |x|)1−ε dx <∞

(5.7)

for any ε > 0, but P [f ] /∈ b1.
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Proof. Let X1, X2 be the characteristic functions of the intervals [−1
2 ,

1
2 ]

and [e,∞), respectively. Also, for a constant α > 0 chosen so that

α2

∫ ∞

e

dy

y2(log y)2
= 1,

let X3 be the characteristic function of the interval [0, α] and consider a

function f defined by

f(x) = X1(x) − α2(x log x)−2X2(x) + (X3(x) −X3(−x))
=: f1 + f2 + f3.

Clearly, f ∈ L1 ∩ L1(|x|dx) and (5.7) is easily verified. As in the proof of

Proposition 5.4, it suffice to prove

|Pt ∗ f(x)| & t−2(log t)−1(5.8)

for all x, t with t < x < 2t and t sufficiently large. So, assume t < x < 2t

and t is sufficiently large. For f1, as is seen in the proof of Proposition 5.4,

we have

Pt ∗ f1(x) = Pt(x) +O(t−3).

For f2, we obtain from lemma 5.3

Pt ∗ f2(x) + Pt(x) − α2P ′
t (x) & t−2(log t)−1.

For f3, we have

Pt ∗ f3(x) =

∫ α

0
[Pt(x+ y) − Pt(x− y)] dy

= −α2P ′
t(x) +

∫ α

0
[Pt(x+ y) − Pt(x− y) + 2P ′

t(x)y] dy

= −α2P ′
t(x) + 2P ′

t(x)

∫ α

0

y3(y2 − 2x2 + 2t2)

((x− y)2 + t2)((x+ y)2 + t2)
dy

= −α2P ′
t(x) +O(t−4).

Combining these estimates all together, we have

Pt ∗ f(x) & t−2(log t)−1 +O(t−3) & t−2(log t)−1

so that (5.8) holds. The proof is complete.
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Orders of weights in the weighted norm inequalities for p > 2 is also

sharp in the following sense.

Proposition 5.6. For p > 2, there exists a measurable function f ≥ 0

such that ∫ ∞

−∞
|f(x)|p|x|1−ε dx <∞(5.9)

for any ε > 0, but P [f ] /∈ bp.

Proof. Let X be the characteristic function of the interval [1,∞) and

consider a function f defined by f(x) = |x|−αX (x) where α = 2
p . Clearly

we have (5.9). Now, for 0 < x < t and 1 < t < y, we have Pt(x− y) & ty−2

and thus

Pt ∗ f(x) ≥
∫ ∞

t
Pt(x− y)y−α dy & t−α.

Therefore ∫ ∞

1

∫ t

0
|Pt ∗ f(x)|p dx dt &

∫ ∞

1
t−1 dt = ∞,

which shows P [f ] /∈ bp. The proof is complete.

We now construct examples concerning (iii). For 1 ≤ p ≤ 2, we have

seen above that the weighted integrability conditions (4.11) and (4.12) play

essential roles in Theorem 4.6 and Theorem 4.7. However, once relevant

moment vanishing conditions are given, they are not necessary for the bp-

containment, as the following examples show. We first consider the case

1 < p < 2.

Proposition 5.7. For 1 < p < 2, there exists a function f ∈ L1 ∩Lp

such that ∫ ∞

−∞
f(x) dx = 0,

∫ ∞

−∞
|f(x)|p|x| dx = ∞(5.10)

and yet P [f ] ∈ bp.

Proof. Fix α with 1 < α ≤ 2
p and let

f =
∞∑

k=1

k−α(X2k − X2k−1)(5.11)
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where Xk denotes the characteristic function of the interval [k, k + 1]. It is

easy to see that f satisfies (5.10) and f ∈ L1 ∩Lp. Put F = P [f ]. We claim

|F (x, t)| . t−1(1 + |x|)−1 (t > 1, x ∈ R),(5.12)

which implies

∫ ∞

1

∫ ∞

−∞
|F (x, t)|p dx dt .

∫ ∞

1

∫ ∞

0

1

tp(1 + x)p
dx dt <∞

and thus F ∈ bp by Lemma 2.4 as desired. Assume t > 1 in the rest of the

proof. Note

|P [X2k − X2k−1](x, t)|

= t

∣∣∣∣
∫ 2k+1

2k

1

(x− y)2 + t2
dy −

∫ 2k

2k−1

1

(x− y)2 + t2
dy

∣∣∣∣

≤ t

∫ 1

0

3 + 2|2k − x|
((2k + y − x)2 + t2)((2k − 1 + y − x)2 + t2)

dy

.
t(1 + |2k − x|)

(|2k − x|2 + t2)2
,

.
1

(|2k − x| + t)2

and thus, we have

|F (x, t)| .

∞∑

k=1

k−α

(|2k − x| + t)2
(5.13)

From this, for x < 0, the estimate

|F (x, t)| .
1

(1 + |x| + t)2
≤ 1

t(1 + |x|)

is clear. Also, for 0 ≤ x ≤ 1, it is immediate from (5.13) that

|F (x, t)| .
1

t2
.

1

t(1 + x)

For x > 1, we have 3(x− 1 + t) ≥ 1 + x+ t and therefore

∑

|2k−x|≥(x−1)/2

k−α

(|2k − x| + t)2
.

1

(x− 1 + t)2
.

1

(1 + x+ t)2
≤ 1

t(1 + x)
,
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and

∑

|2k−x|<(x−1)/2

k−α

(|2k − x| + t)2
.

1

(1 + x)α

∞∑

k=1

1

(|2k − x| + t)2

.
1

(1 + x)

∫ ∞

−∞

1

(|y − x| + t)2
dy

=
2

t(1 + x)
.

Combining all these estimates we see from (5.13) that (5.12) holds as de-

sired. The proof is complete.

One can modify the function considered in the proof of Proposition 5.7

to obtain an example for the case p = 2.

Proposition 5.8. There exists a function f ∈ L1 ∩ L2 such that

∫ ∞

−∞
f(x) dx = 0,

∫ ∞

−∞
|f(x)|2|x|(log+ |x|)2 dx = ∞(5.14)

and yet P [f ] ∈ b2.

Proof. We modify the construction in the proof of Proposition 5.7. For

example, modify the function (5.11) and consider

f =
∞∑

k=2

k−1(log k)−α(X2k − X2k−1)

where Xk has the same meaning as before. By taking 1 < α ≤ 3
2 , we have

f ∈ L1∩L2 and (5.14) is satisfied. Let F = P [f ]. Then, for t > 1 and x ∈ R,

a straightforward modification of estimates in the proof of Proposition 5.7

yields

|F (x, t)| .

∞∑

k=2

k−1(log k)−α 1

(|2k − x| + t)2
(5.15)

and thus

|F (x, t)| .
1

t(1 + |x|) +
1

t(1 + |x|)(1 + log(1 + |x|))α .
1

t(1 + |x|) .

This implies F ∈ b2 as before. The proof is complete.
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We also have an example of the same type for p = 1. Construction and

estimates of such an example are to be a bit more complicated because of

the additional first moment vanishing property.

Proposition 5.9. There exists a function f ∈ L1 ∩ L1(|x|dx) such

that ∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
xf (x) dx = 0,

∫ ∞

−∞
|f(x)||x| log+ |x| dx = ∞

(5.16)

and yet P [f ] ∈ b1.

Proof. Let

f =

∞∑

k=2

(k log k)−2(X2k − X2k−1)

where Xk denotes the characteristic function of the set [k, k+1]∪[−k−1,−k].
Then it is not hard to see f ∈ L1 ∩L1(|x|dx) and (5.16). Let F = P [f ]. To

show F ∈ b1, we use the same argument as in the proof of Proposition 5.7.

Thus, it is sufficient to show

|F (x, t)| .
1

(1 + |x| + t)3
+

1

t2(1 + |x|(log+ |x|)2)(5.17)

for t > 1 and x ∈ R. To estimate (5.17), put

H(x, t, y) =
t

(x− y)2 + t2
+

t

(x+ y)2 + t2

=
2t(x2 + t2 + y2)

((x− y)2 + t2)((x+ y)2 + t2)
.

Then, we see

P [X2k − X2k−1](x, t) =

∫ 2k+1

2k
H(x, t, y) dy −

∫ 2k

2k−1
H(x, t, y) dy

=

∫ 1

0
[H(x, t, y + 2k) −H(x, t, y + 2k − 1)] dy
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and therefore

|F (x, t)| ≤
∞∑

k=2

(k log k)−2

∫ 1

0
|H(x, t, y + 2k) −H(x, t, y + 2k − 1)| dy.

Note that F (x, t) is even with respect to x and hence we only need to

consider x > 0. So assume t > 1 and x > 0. Then, one can obtain an

estimate (uniform in y, 0 < y < 1)

|H(x, t, y + 2k) −H(x, t, y + 2k − 1)| .
kt

(|2k − x|2 + t2)2

≤ k

(|2k − x| + t)3
.

It follows that

|F (x, t)| .

∞∑

k=2

k−1(log k)−2 1

(|2k − x| + t)3
.

Now, repeating almost the same argument as in the proof of Proposition

5.7, we have

|F (x, t)| .
1

(1 + x+ t)3
+

1

t2(1 + x)(1 + log(1 + x))2
.

So, we have (5.17) and the proof is complete.

We finally give an example showing that our weighted integrability

condition for p > 2 is not necessary for the bp-containment, either.

Proposition 5.10. For p > 2, there exists a function f ∈ Lp such

that ∫ ∞

−∞
|f(x)|p|x| dx = ∞(5.18)

and yet P [f ] ∈ bp.

Proof. Consider a function f defined in (5.11). This time we take 1
p <

α ≤ 2
p . It is easily verified that f satisfies (5.18) and f ∈ Lp. Put F = P [f ].

We will see

|F (x, t)| . t−1+1/p(1 + |x|)−α (t > 1, x ∈ R),(5.19)
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which implies F ∈ bp as before. Assume t > 1 and let x ∈ R. The estimate

(5.13) is still available and thus we have by Hölder’s inequality

|F (x, t)| .

( ∞∑

k=1

k−pα

(|2k − x| + t)pα

)1/p( ∞∑

k=1

1

(|2k − x| + t)q(2−α)

)1/q

where q is the conjugate exponent of p. Note

∞∑

k=1

1

(|2k − x| + t)q(2−α)
.

∫ ∞

−∞

1

(|y − x| + t)q(2−α)
dy . t1−q(2−α).

Also, we have as in the proof of Proposition 5.7

∞∑

k=1

k−pα

(|2k − x| + t)pα
.

1

(1 + |x| + t)pα
+

1

tpα−1(1 + |x|)pα

.
1

(1 + |x|)pα
.

It follows from these estimates

|F (x, t)| . (1 + |x|)−αtα−1−1/p,

which in turn implies (5.19), since 0 < α− 1
p ≤ 1

p . The proof is complete.

Remark. We have seen that the converses of moment vanishing prop-

erties fail to hold. One can naturally expect the same failure in the sense

of principal values. For an example in case n = 1, consider the function f

defined in (5.2) with α = 1. For any 1 < p ≤ 2, one can easily check f ∈ Lp,

f /∈ L1 and

p.v.

∫ ∞

−∞
f(x) dx = 0

but P [f ] /∈ bp. What we do not know is the other way round. That is,

suppose P [f ] ∈ bp for some 1 ≤ p ≤ 1 + 1
n . Does f necessarily have the

relevant moment vanishing property in the sense of principal values?



BERGMAN NORM ESTIMATES OF POISSON INTEGRALS 125

References

[1] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer-Verlag,

New York, 1992.

[2] W. Ramey and H. Yi, Harmonic Bergman Functions on Half-Spaces, Trans. Amer.

Math. Soc., 348 (1996), 633–660.

[3] E. Stein, Harmonic Analysis, Princeton Mathematical series 43, Princeton University

Press, Princeton, NJ, 1993.

[4] E. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton University

Press, Princeton, NJ, 1971.

[5] H. Yi, Harmonic Bergman Functions on Half Spaces, Ph. D Thesis, Michigan State

University, 1994.

Boo Rim Choe
Department of Mathematics

Korea University

Seoul 136–701

Korea

choebr@semi.korea.ac.kr

Hyungwoon Koo
Department of Mathematics

Hankuk University of Foreign Studies

Yongin, Kyungki-Do

449-791

Korea

koohw@maincc.hufs.ac.kr

HeungSu Yi
Department of Mathematics

Research Institute of Basic Sciences

Kwangwoon University

Seoul 139–701

Korea

hsyi@math.kwangwoon.ac.kr


