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Understanding patterns of variation in body size within
and among species is a central question in evolutionary
ecology (Schlichting and Pigliucci 1998). The most well
known pattern of variation in body size is Bergmann’s rule
(Bergmann 1847; Mayr 1956). The intraspecific version of
Bergmann’s rule holds that within endothermic species,
body size increases with increasing latitude (or decreasing
temperature; Blackburn et al. 1999; Ashton et al. 2000).
In general, mammals conform to this rule (Ashton et al.
2000).

Ray (1960) proposed that ectothermic organisms also
follow Bergmann’s rule, on the basis of primarily one line
of argument. Specifically, ectotherms reared at relatively
lower temperatures typically mature later at larger sizes
when compared with conspecifics reared at higher tem-
peratures (Atkinson 1994; Sibly and Atkinson 1994). Ray
(1960) reasoned that the negative slope of the reaction
norm between size at maturity and rearing temperature
combined with generally lower temperatures at higher lat-
itudes would produce a cline of increasing body size with
increasing latitude.

Ray (1960) summarized field data from previous studies
to add generality to his claim of ectotherms following Berg-
mann’s rule. In regard to fishes, he states that “the rule is
obeyed by a great number of fishes as shown by numerous
reports in the literature” (Ray 1960, p. 93), but he provides
no citations related to variation in body size across latitude.
All his citations regarding fish apply to meristic counts

* E-mail: mark_belk@byu.edu.

Am. Nat. 2002. Vol. 160, pp. 803–808. � 2002 by The University of Chicago.
0003-0147/2002/16006-010286$15.00. All rights reserved.

(Allen’s rule; Allen 1877) or growth of individuals from
the same population in the lab (Ray 1960).

Lindsey (1966) compiled data on average size of ecto-
therms (many taxa) at high and low latitudes, and his
article is also cited as providing support for Bergmann’s
rule in ectotherms (e.g., Bodie and Semlitsch 2000). How-
ever, as noted by Lindsey (“Bergmann’s rule, which con-
cerns a somewhat different phenomenon from that to be
considered here” [1966, p. 456]), the intraspecific version
of Bergmann’s rule applies to populations within species,
or at best among closely related species, not to the dis-
tribution of body size without respect to taxa. Obviously,
Lindsey’s analysis does not provide support for the intra-
specific version of Bergmann’s rule in ectotherms.

Subsequently, several authors, citing Ray (1960) and
Lindsey (1966), have asserted that ectotherms conform to
Bergmann’s rule and have spent a great deal of time elu-
cidating or challenging potential mechanisms for produc-
ing Bergmann-type size clines in ectotherms (Van Voorhies
1996, 1997; Partridge and Coyne 1997; Arnett and Gotelli
1999; Bodie and Semlitsch 2000). Unfortunately, whereas
there have been many assertions about whether ectotherms
follow Bergmann’s rule, we have found no comprehensive
reviews of patterns of intraspecific body size variation for
any ectothermic group.

To understand possible mechanisms of latitudinal var-
iation in body size in ectotherms, it is important to know
which taxa conform to Bergmann’s rule and which do not.
Mousseau (1997) summarized studies showing that at least
five species of orthopteran insects do not exhibit Berg-
mann-type size clines and suggested that ectotherms in
general follow the converse to Bergmann’s rule. However,
documentation of patterns of body size distribution for
other ectothermic taxa, especially vertebrates, are rare (for
exceptions, see Leggett and Carscadden 1978; Mills 1988;
Power and McKinley 1997), and rigorous tests of con-
cordance with Bergmann’s rule are nonexistent.

To provide information on patterns of intraspecific body
size variation among vertebrate ectotherms, and to test for
compliance with Bergmann’s rule, we compiled data for
several species of freshwater fishes of North America.
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Freshwater fishes were chosen because it has been sug-
gested that they conform to Bergmann’s rule (Ray 1960;
Van Voorhies 1996). Further, data on body size are avail-
able for several species from populations at varying lati-
tudes, which allows a comparison of body size in natural
environments. Specifically, we compare size at ages 1, 3,
and 5 yr and/or maximum body size (regardless of age)
for populations across the species’ latitudinal range to test
for patterns of increased body size at higher latitudes.

Methods

We compiled data on common large-bodied freshwater
fishes of North America primarily from summaries of
studies compiled by Carlander (1969, 1977, 1997). Total
length was used as the measure of body size because it is
the most often reported measure for fish populations. We
used maximum observed total length as a measure of as-
ymptotic body size (Stamps and Andrews 1992). Studies
were selected on the basis of the following criteria: sample
sizes were ≥50 individuals; data included estimates of total
length-at-age for ages 1, 3, and 5 yr as well as maximum
total length; locations were within the native range (i.e.,
they were native populations); and latitudinal locations
were verifiable given data in the original source. Species
were included if data were available for at least 16 locations
and the locations spanned at least 5� latitude. Thirteen
species representing seven families met the above criteria.
We transformed all length values using the natural
logarithm.

Because the above data were biased toward large-bodied
predatory fishes, we compiled data on maximum standard
length from five species of small-bodied fishes (repre-
senting three families) from collections at the University
of Michigan’s Museum of Zoology (collection numbers
furnished on request). Samples were selected on the basis
of the following criteria: sample sizes were ≥50 individuals;
collection locations were within the native range; and the
largest individual in the sample was within the adult size
range (on the basis of ranges reported in Lee et al. 1980).
Collection locations for each species spanned at least 7�
latitude. We transformed all length values using the natural
logarithm.

The combined data set includes a large range of means
and variances (measured as coefficient of variation of the
mean, CV) in body sizes (table 1). To determine whether
variance in body size among populations showed some
trend with latitude (i.e., whether variance among means
increased or decreased with latitude), we compared vari-
ance between northern and southern halves of the entire
sample. For each species, we divided the data at the median
latitude and then calculated CV for each subdivided sam-
ple. To determine whether CVs were consistently higher

in one half or the other, we calculated the difference in
CV between halves and used a paired t-test to compare
the differences (Ramsey and Shafer 1997). There was no
difference between CVs from the two halves (age 1 yr,

, , ; age 3 yr, ,t p �0.03 df p 12 P p .97 t p 0.22 df p
, ; age 5 yr, , , ; max-12 P p .82 t p 0.21 df p 12 P p .83

imum length, , , ).t p 1.33 df p 17 P p .20
To test for compliance with Bergmann’s rule, we cor-

related mean total length-at-age and maximum total
length or maximum standard length with latitude. We used
latitude as an indicator of mean temperature. On the
North American continent, mean temperature decreases
by 0.5�–1.1�C per latitudinal degree (depending on the
season; Robinson and Henderson-Sellers 1999). Thus, over
the scale covered by the data, annual mean temperature
differed by 5.6�–19.2�C. A significant positive relationship
between size and latitude would constitute evidence for a
Bergmann-type size cline. Additionally, for large-bodied
species, to determine whether differences in maximum
length could be attributed to increased longevity at higher
latitudes, we correlated maximum observed age in a pop-
ulation with latitude.

Because data from a geographic gradient are potentially
spatially autocorrelated, individual data points may not be
completely independent. Therefore, traditional tests for
significance of correlation may not be reliable. To avoid
this problem, we tested correlation coefficients against a
null distribution created by randomized resampling
(Simon 1999). We randomly paired latitude and length
(or age) data 1,000 times to create a null distribution of
correlation coefficients for each combination of species
and length measure. We calculated the probability of the
observed correlation coefficient compared with the null
distribution generated by resampling. Because of the large
number of correlations being considered, we adjusted the
acceptable significance level by dividing 0.05 by the num-
ber of correlations for each category (13 correlations for
size-at-age and maximum age, and 18 correlations for
maximum size, resulting in a significance level of 0.004
and 0.003, respectively, for a one-tailed test) to guard
against inflation of Type I error rate (Bonferroni proce-
dure; Ramsey and Shafer 1997). In addition, to determine
how confident we can be that nonsignificant correlations
were not different from 0, we calculated 95% confidence
intervals for all correlation coefficients (fig. 1; Rencher
2000; Hoenig and Heisey 2001). Narrow confidence in-
tervals around 0 imply high confidence that the true cor-
relation does not differ from 0. This approach provides
information about the possibility of Type II error but does
not suffer from the fallacious inferences of post hoc “ob-
served power” tests (Hoenig and Heisey 2001).



Table 1: Species; family; number of populations included in analysis; latitudinal range of studies; mean total length for ages 1,
3, and 5 yr; mean maximum length; and mean maximum age

Species Family
No. of

populations
Latitudinal

range

Mean total length
Mean

maximum
length

Mean
maximum

ageAge 1 yr Age 3 yr Age 5 yr

Lepomis macrochirus
(bluegill sunfish) Centrarchidae 55 33�12�–46�10�N 53.9

(38.8)
128.9
(21.5)

170.2
(18.5)

180.1
(18.7)

5.5
(30.9)

Micropterus dolomieu
(smallmouth bass) Centrarchidae 28 34�12�–45�47�N 95.7

(17.0)
246.3
(18.5)

337.2
(14.3)

397.1
(15.8)

7.7
(36.2)

Micropterus salmoides
(largemouth bass) Centrarchidae 41 32�57�–46�10�N 133.8

(27.7)
309.7
(18.2)

409.6
(14.7)

462.2
(16.7)

6.6
(30.7)

Pomoxis annularis (white
crappie) Centrarchidae 58 32�04�–45�02�N 82.3

(25.1)
210.6
(21.4)

293.9
(16.7)

314.3
(23.3)

5.8
(29.3)

Pomoxis nigromaculatus
(black crappie) Centrarchidae 38 28�04�–45�02�N 77.6

(26.2)
210.3
(23.7)

269.9
(21.5)

280.3
(23.1)

5.7
(32.5)

Morone chrysops (white
bass) Percichthyidae 24 32�38�–43�59�N 174.0

(25.3)
345.4
(14.1)

389.9
(12.3)

410.5
(11.3)

5.6
(28.6)

Perca flavescens (yellow
perch) Percidae 65 34�43�–49�15�N 83.2

(26.9)
188.5
(17.8)

240.6
(14.3)

259.4
(16.4)

6.4
(32.3)

Stizostedion canadense
(sauger) Percidae 31 35�47�–49�15�N 149.8

(21.2)
351.9
(14.5)

458.2
(13.4)

518.7
(15.1)

6.6
(26.5)

Stizostedion vitreum
(walleye) Percidae 74 36�05–49�15�N 169.2

(27.7)
355.7
(20.2)

457.6
(16.1)

570.9
(19.8)

8.6
(26.3)

Ictalurus punctatus
(channel catfish) Ictaluridae 17 34�59�–42�07�N 100.7

(30.1)
263.8
(21.5)

381.1
(18.6)

554.4
(22.3)

8.4
(18.3)

Esox lucius (northern
pike) Esocidae 16 41�32�–65�50�N 217.1

(37.3)
420.3
(30.9)

552.3
(26.6)

836.9
(36.2)

10.6
(61.8)

Carpiodes carpio (river
carpsucker) Catostomidae 16 33�48�–42�02�N 93.8

(27.4)
241.4
(21.4)

313.5
(14.8)

385.1
(17.3)

7.4
(28.0)

Oncorhynchus clarki (cut-
throat trout) Salmonidae 18 38�39�–48�47�N 108.2

(33.2)
275.3
(30.6)

422.9
(25.9)

447.8
(35.1)

5.6
(23.3)

Pimephales promelas (fat-
head minnow) Cyprinidae 57 36�54�–48�59�N … … … 57.1

(15.2)a

…

Notemigonus crysoleucas
(golden shiner) Cyprinidae 19 39�49�–46�42�N … … … 84.1

(31.7)a

…

Richardsonius balteatus
(redside shiner) Cyprinidae 29 40�53�–47�54�N … … … 81.8

(13.5)a

…

Gambusia affinis (western
mosquitofish) Poeciliidae 27 24�40�–33�21�N … … … 38.5

(9.3)a

…

Etheostoma caeruleum
(rainbow darter) Percidae 27 26�13�–33�35�N … … … 51.0

(11.5)a

…

Note: Numbers in parentheses are the coefficient of variation of the mean (CV). Ellipsis dots indicate no data available.
a Standard length was used instead of total length.
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Figure 1: Correlation coefficient and 95% confidence interval for the correlation of (a) size at age 1 yr, (b) size at age 3 yr, (c) size at age 5 yr, (d)
maximum length, and (e) maximum age with latitude. Species are as follows: (1) Lepomis macrochirus, (2) Micropterus dolomieu, (3) Micropterus
salmoides, (4) Pomoxis annularis, (5) Pomoxis nigromaculatus, (6) Morone chrysops, (7) Perca flavescens, (8) Stizostedion canadense, (9) Stizostedion
vitreum, (10) Ictalurus punctatus, (11) Esox lucius, (12) Carpiodes carpio, (13) Oncorhynchus clarki, (14) Pimephales promelas, (15) Notemigonus
crysoleucas, (16) Richardsonius balteatus, (17) Gambusia affinis, (18) Etheostoma caeruleum. Filled circles indicate the coefficient is significantly different
from 0.

Results

Among the species used in this analysis, there is no evi-
dence for increasing total length-at-age with increasing
latitude. Almost all species exhibited a negative trend of
body size with latitude. Accordingly, the correlation be-
tween total length-at-age and latitude was either signifi-
cantly negative or did not differ significantly from 0 (fig.
1a, 1b, 1c). Five of 18 species exhibited a positive trend
of maximum length with latitude. However, no species
yielded correlation coefficients that differed significantly
from 0 (fig. 1d ). Eleven of 13 species exhibited a positive
trend of maximum age with latitude, and five species
showed a significant positive correlation (fig. 1e).

Discussion

Contrary to Ray’s (1960) conclusions, the pattern of dis-
tribution of body size within species of freshwater fishes
of North America does not follow Bergmann’s rule. If we
consider size-at-age, then many species follow the converse
of Bergmann’s rule. This is consistent with the pattern of
decreasing body size with increasing latitude observed in
the few other studies that have quantified latitudinal pat-
terns of body size in freshwater fishes (e.g., lake sturgeon
Acipenser fulvescens, Acipenseridae [Power and McKinley
1997]; European minnow Phoxinus phoxinus, Cyprinidae
[Mills 1988]). If we consider maximum length (regardless
of age), none of the 18 species, including both large- and
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small-bodied species, exhibits a significant pattern of in-
creasing body size with increasing latitude.

Two species exhibited relatively large, positive correla-
tions (albeit nonsignificant) between maximum body size
and latitude (Micropterus dolomieu and Esox lucius). Given
the relatively broad confidence intervals around the cor-
relation coefficient, some might suggest that these two
species conform to Bergmann’s rule. In this case, it is
interesting to note that both species also exhibit a signif-
icant positive relationship between maximum age and lat-
itude. Thus, the relationship of increasing maximum body
size with increasing latitude is merely a by-product of
increased longevity at higher latitudes. As such, body size
per se does not require an adaptive explanation. Rather,
the question becomes, Why do organisms live longer at
higher latitudes?

Given the lack of comprehensive reviews of patterns of
intraspecific body size variation for any ectothermic group,
why is there a popular sense that ectotherms follow Berg-
mann’s rule? A review of the literature suggests that nearly
all such assertions rest on the observation that organisms
raised at lower temperatures mature at larger sizes com-
pared with organisms raised at higher temperatures (Ray
1960; Atkinson 1994; Sibly and Atkinson 1994). Thus,
lower temperatures at increasingly higher latitudes should
produce a cline of increasing body size with increasing
latitude. However, this argument depends on two dubious
assumptions. First, it assumes all individuals and popu-
lations of the species have the same reaction norm (i.e.,
there are no genetic differences in the reaction norm be-
tween size at maturity and rearing temperature among
populations across the geographic range of the species).
Because of the potential for genetic variation among pop-
ulations and variation in genotype-by-environment inter-
actions (e.g., Schlichting and Pigliucci 1998), the pattern
of variation in body size across a species’ range cannot be
extrapolated from variation in body size generated among
individuals from the same population in response to tem-
perature variation in the lab. Additionally, patterns of
growth and maturation observed in a laboratory setting
are often not representative of patterns in wild populations
(Adolph and Porter 1996 and citations therein).

The second assumption is that size at maturity is a good
predictor of maximum or mean body size within a pop-
ulation. If this assumption were true, the observation of
maturation at larger size when raised at cooler tempera-
tures would suggest a reversal in relative size-at-age be-
tween high- and low-latitude populations as organisms
grow: lower-latitude populations would be larger initially,
but higher-latitude populations would be larger at later
ages (i.e., after maturation; e.g., Perrin 1995). Our data
do not support this prediction. Fish at lower latitudes are
larger at all ages (even at age 5, which represents post-

maturation ages for all species in the analysis; Lee at al.
1980). Additionally, most fishes exhibit indeterminate
growth, albeit growth rates are reduced after maturation.
Thus, for species that live longer than one season, size at
maturity is probably a poor predictor of adult body size.

A related mechanism proposed for generating increased
size at maturity at higher latitudes is the effect of season-
ality on the age and size at maturity (Adolph and Porter
1996). Lower growth rates at higher latitudes and the sea-
sonal availability of conditions conducive to reproduction
combine to predict delayed maturity at larger sizes at
higher latitudes. Once again, size at maturity is probably
a poor predictor of adult body size. However, the predic-
tions of the model presented by Adolph and Porter (1996)
for size-at-age and maximum body size are similar to the
pattern observed in our data. Specifically, the model pre-
dicts smaller size-at-age at higher latitudes and relative
invariant maximum body size across latitudes.

It is interesting to note that although length of growing
season decreases significantly as latitude increases (e.g.,
McCauley and Kilgour 1990), many species show no sig-
nificant relationship between total length-at-age and lat-
itude. This suggests that many of the species surveyed here
exhibit some compensating mechanism to ameliorate the
full effect of decreased length of growing season on growth.
Conover and Schultz (1995) have suggested that counter-
gradient variation for growth among populations along a
latitudinal gradient would result in little phenotypic var-
iation in body size among populations. Our data are con-
sistent with this suggestion. Arnett and Gotelli (1999) have
suggested that countergradient variation for growth in an
ant lion (Myrmeleon immaculatus) resulted in a Bergmann-
type size cline. However, there seems to be little evidence
that countergradient variation for growth in freshwater
fishes would result in larger body sizes at higher latitudes.

In summary, our data suggest that freshwater fishes of
North America do not conform to Bergmann’s rule. We
suggest that variation in body size among other ecto-
thermic taxa should be explored and that assertions about
whether ectotherms do or do not follow Bergmann’s rule
should rely on actual patterns of body size variation rather
than on extrapolations from responses in the laboratory.
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