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Abstract

We develop an equilibrium framework that relaxes the standard assumption

that people have a correctly-specified view of their environment. Each player

is characterized by a (possibly misspecified) subjective model, which describes

the set of feasible beliefs over payoff-relevant consequences as a function of ac-

tions. We introduce the notion of a Berk-Nash equilibrium: Each player follows

a strategy that is optimal given her belief, and her belief is restricted to be the

best fit among the set of beliefs she considers possible. The notion of best fit

is formalized in terms of minimizing the Kullback-Leibler divergence, which is

endogenous and depends on the equilibrium strategy profile. Standard solution

concepts such as Nash equilibrium and self-confirming equilibrium constitute

special cases where players have correctly-specified models. We provide a learn-

ing foundation for Berk-Nash equilibrium by extending and combining results

from the statistics literature on misspecified learning and the economics litera-

ture on learning in games.
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1 Introduction

Economic models provide a framework to understand complex environments. Most

economists recognize that the simplifying assumptions underlying our models are often

wrong. But, despite recognizing that our models are likely to be misspecified, the

standard approach in economics is to assume that the economic agents themselves

have a correctly specified view of their environment. In this paper, we introduce an

equilibrium framework that relaxes this standard assumption and allows the modeler

to postulate that economic agents have a subjective and possibly incorrect view of

their world.

An objective game represents the true environment faced by the agent (or players,

in the case of several interacting agents). Payoff relevant states and privately ob-

served signals are realized according to some objective probability distribution. Each

player observes her own private signal and then players simultaneously choose actions.

The action profile and the realized payoff-relevant state determine a consequence for

each player, and consequences determine payoffs. This objective description of the

environment is fairly standard in economics.

While it is also standard to implicitly assume that players know the objective

game, we deviate from this practice by assuming that each player has a subjective

model that represents her own view of the environment. Formally, a subjective model

is a set of probability distributions over own consequences as a function of a player’s

own action and information. A key feature is that we allow the subjective model of

one or more players to be misspecified, which roughly means that the set of subjective

distributions does not include the true, objective distribution. For example, firms

might incorrectly believe that sales depend only on their own price and not also on

the price of other firms. Or a consumer might perceive a nonlinear price schedule to

be linear and, therefore, respond to average, not marginal, prices. Or traders might

not realize that the value of trade is partly determined by the terms of trade.

A Berk-Nash equilibrium is defined to be a strategy profile such that, for each

player, there exists a belief with support in that player’s subjective model that satisfies

two conditions. First, the strategy must be optimal (in a static sense) given the belief.

Second, the belief puts probability one on the set of subjective distributions over

consequences that are “closest” to the true distribution, where the true distribution

is determined by the objective game and the actual strategy profile. The notion of
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“closest” is given by a weighted version of the Kullback-Leibler divergence, also known

as relative entropy, that we define formally in the main text.

Berk-Nash equilibrium includes both standard and boundedly rational solution

concepts in a common framework, such as Nash, self-confirming (e.g., Battigalli (1987),

Fudenberg and Levine (1993a), Dekel et al. (2004)), fully cursed (Eyster and Rabin,

2005), and analogy-based expectation equilibrium (Jehiel (2005), Jehiel and Koessler,

2008). For example, suppose that the game is correctly specified (which means that the

support of each player’s prior contains the true, objective distribution) and that the

game is strongly identified (which means that there is always a unique distribution–

whether or not correct– that matches the observed data). Then Berk-Nash equilibrium

is equivalent to Nash equilibrium. If the strong identification assumption is dropped,

then Berk-Nash is a self-confirming equilibrium. In addition to unifying previous

approaches, the framework provides a systematic approach for both extending cases

previously analyzed in the literature and considering new types of misspecifications.

We provide a foundation for Berk-Nash equilibrium (and the corresponding use

of Kullback-Leibler divergence as a measure of “distance”) by studying a dynamic

environment with a fixed number of players playing the objective game repeatedly.

Players believe that the environment is stationary and start with a prior over a set

of subjective distributions over consequences. In each period, they play the objective

game and use the observed consequences to update their beliefs according to Bayes’

rule. The main objective is to characterize limiting behavior when players behave

optimally but learn with a possibly misspecified subjective model.1

The main result is that, if players’ behavior converges, then it converges to a Berk-

Nash equilibrium of the game. A converse of the main result, showing that we can

converge to any Berk-Nash equilibrium of the game for some initial (non-doctrinaire)

prior, does not hold. But we do obtain a positive convergence result by relaxing

the assumption that players exactly optimize. We show that, for any Berk-Nash

equilibrium, there exists a policy rule that is myopic and asymptotically optimal (in

the sense that optimization mistakes vanish with time) under which convergence to

equilibrium occurs with probability one.

There is a longstanding interest among economists in studying the behavior of

agents who hold misspecified views of the world. Early examples come from such di-

1In the case of multiple agents, the environment need not be stationary, and so we are ignoring
repeated game considerations where players take into account how their actions affect others’ future
play. We extend the results to a population model with a continuum of agents in Section 5.
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verse fields as industrial organization, mechanism design, psychology and economics,

macroeconomics, and information economics (e.g., Arrow and Green (1973), Kirman

(1975), Sobel (1984), Nyarko (1991), Sargent (1999), Kagel and Levin (1986)), al-

though many times there is no explicit reference to a problem of misspecified learning.

Most of the literature, however, focuses on particular settings, and there has been lit-

tle progress in developing a unified framework. Our treatment unifies both “rational”

and “boundedly rational” approaches, thus emphasizing that modeling the behav-

ior of misspecified players does not constitute a large departure from the standard

framework.

Arrow and Green (1973) provide a general treatment and make a distinction be-

tween an objective and subjective game. Their framework, though, is more restric-

tive than ours in terms of the types of misspecifications that players are allowed to

have. Moreover, they do not establish existence of equilibrium and they do not pro-

vide a learning foundation for equilibrium.2 Recently, Spiegler (2014) introduced a

framework that uses Bayesian networks to analyze decision making under imperfect

understanding of correlation structures.

Our paper is also related to the bandit (e.g., Rothschild (1974), McLennan (1984),

Easley and Kiefer (1988)) and the self-confirming equilibrium literatures, which point

out that agents might optimally end up with incorrect beliefs if feedback is incomplete

and experimentation is costly.3 We also allow for beliefs to be incorrect due to insuffi-

cient feedback, but our main contribution is to allow for misspecified learning. When

players have misspecified models, beliefs may be incorrect and endogenously depend

on own actions even if players persistently experiment with all actions; thus, an equi-

librium framework is needed to characterize steady-state behavior even in single-agent

settings.4

2Misspecified models have also been studied in contexts that are outside the scope of our paper
either because the decision problem is dynamic (we focus on the repetition of a static problem)
or because interactions are mediated by a price system. Examples include the early literature on
rational expectations with misspecified players (e.g., Blume and Easley (1982), Bray (1982), and
Radner (1982)), the macroeconomics literature on bounded rationality (e.g., Sargent (1993), Evans
and Honkapohja (2001)), a behavioral finance literature that studies under and over-reaction to
information (e.g., Barberis et al., 1998), and a literature that formalizes psychological biases and
studies related applications (e.g., Rabin (2002), Rabin and Vayanos (2010), Spiegler (2013)).

3In the macroeconomics literature, the term “self-confirming equilibrium” is sometimes used in a
broader sense to include cases where agents have misspecified models (e.g., Sargent, 1999).

4The literature on self-confirming equilibrium considers two interesting extensions, which are also
potentially applicable to our framework: refinements that restrict beliefs by allowing players to
introspect about other players’ motivations (e.g., Rubinstein and Wolinsky, 1994), and non-Bayesian
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From a technical point of view, our results extend and combine results from two

literatures. First, the idea that equilibrium is a result of a learning process is taken

from the literature on learning in games. This literature studies explicit learning

models in order to justify Nash and self-confirming equilibrium (e.g., Fudenberg and

Kreps (1988), Fudenberg and Kreps (1993), Fudenberg and Kreps (1995), Fudenberg

and Levine (1993b), Kalai and Lehrer (1993)).5 In particular, we follow Fudenberg

and Kreps (1993) in making the assumption that payoffs are perturbed, à la Harsanyi

(1973), to guarantee that behavior is continuous in beliefs and, therefore, to justify

how players might learn to play mixed strategy equilibria. We also rely on an idea by

Fudenberg and Kreps (1993) to prove the converse of the main result. We extend this

literature to account for the possibility that players learn with models of the world

that are misspecified even in steady state.

Second, we rely on and contribute to the statistics literature that studies the con-

sistency of Bayesian updating and characterizes limiting beliefs. In decision problems

with correctly-specified models, the standard approach is to use martingale conver-

gence theorems to prove that beliefs converge (e.g., Easley and Kiefer, 1988). This

result guarantees convergence of beliefs from a subjective point of view, which is,

unfortunately, not useful for our results because beliefs might still not converge in

an objective sense when the agent has a misspecified model. Thus, we take a differ-

ent route and follow the statistics literature on misspecified learning. This literature

characterizes limiting beliefs in terms of the Kullback-Leibler divergence (e.g., Berk

(1966), Bunke and Milhaud (1998)). We extend this statistics literature to the case

where agents are not only passively learning about their environment but are also

actively learning by taking actions.

We present the framework and several examples in Section 2, discuss the relation-

ship to other solution concepts in Section 3, and provide a learning foundation in

Section 4. We discuss assumptions and extension in Section 5 and conclude in Section

6.

models of updating that capture ambiguity aversion (Battigalli et al., 2012).
5See Fudenberg and Levine (1998, 2009) for a survey of this literature.
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2 The framework

2.1 The environment

A (simultaneous-move) game G =< O,Q > is composed of a (simultaneous-move)

objective game O and a subjective model Q. We now describe each of these two

components in detail.

Objective game. A (simultaneous-move) objective game is a tuple

O = 〈I,Ω, S, p,X,Y, f, π〉 ,

where: I is the finite set of players (a special case is a single-agent decision problem);

Ω is the set of payoff-relevant states; S = ×i∈IS
i is the set of profiles of signals, where

S
i is the set of signals of player i; p is a probability distribution over Ω× S, and, for

simplicity, it is assumed to have marginals with full support; X = ×i∈IX
i is a set of

profiles of actions, where X
i is the set of actions of player i; Y = ×i∈IY

i is a set of

profiles of (observable) consequences, where Y
i is the set of consequences of player i;

f = (f i)i∈I is a profile of feedback or consequence functions, where f i : X × Ω → Y
i

maps outcomes in Ω × X into consequences of player i; and π = (πi)i∈I , where π
i :

X
i × Y

i → R is the payoff function of player i.6 For simplicity, we prove the results

for the case where all of the above sets are finite. In Online Appendix F, we provide

technical assumptions under which the results extend to non-finite Ω and Y.

The timing of the objective game is as follows: First, a state and a profile of

signals are drawn according to the probability distribution p. Second, each player

privately observes her own signal. Third, each player simultaneously chooses an action.

Finally, each player observes her consequence and obtains a payoff. Note that the setup

implicitly assumes that players observe at least their own payoffs and actions.

A strategy of player i is a mapping σi : Si → ∆(Xi). The probability that player i

chooses action xi after observing signal si is denoted by σi(xi | si). A strategy profile

is a vector of strategies σ = (σi)i∈I ; let Σ denote the space of all strategy profiles.

Fix an objective game. For each strategy profile σ, there is an objective dis-

tribution over player i’s consequences, Qi
σ, where, for each (si, xi) ∈ S

i × X
i, Qi

σ(· |

6While it is redundant to have πi also depend on xi, it helps to reduce notation, particularly in
applications.
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si, xi) ∈ ∆(Yi) is defined as follows:

Qi
σ(y

i | si, xi) =
∑

{(ω,x−i):f i(xi,x−i,ω)=yi}

∑

s−i

∏

j 6=i

σj(xj | sj)p(ω, s−i | si). (1)

The objective distribution represents the true distribution over consequences, condi-

tional on a player’s own action and signal, given the objective game and a strategy

profile followed by the players.

Subjective model. The subjective model represents the set of distributions

over consequences that players consider possible a priori. For a fixed objective game,

a subjective model is a tuple

Q = 〈Θ, (Qθ) θ∈Θ〉 ,

where: Θ = ×i∈IΘ
i, where Θi is the parameter space of player i; and Qθ = (Qi

θi)i∈I ,

where Qi
θi : Si × X

i → ∆(Yi) represents the conditional distribution over player i’s

consequences parameterized by θi ∈ Θi; we denote the conditional distribution by

Qθi(· | s
i, xi).7

While the objective game represents the true environment, the subjective model

represents the players’ perception of their environment. This separation between ob-

jective and subjective models, which is often implicit in standard treatments of games,

is crucial in this paper.

A special case of a subjective model is one where each agent understands the

objective game being played but is uncertain about the distribution over states, the

consequence function, and (in the case of multiple players) the strategies of other

players. In that case, agent i’s subjective game is parameterized by piθi , f
i
θi , σ

−i
θi

and

a set Θi, and the subjective model Qi
θi is derived by replacing these primitives in

equation (1).

By directly defining Qi
θi as a primitive, we stress two points. First, this is the

object that is needed to characterize behavior in our setting. Moreover, by working

with general subjective distributions over consequences, we allow for more general

types of misspecifications, where players do not even have to understand the structural

elements that determine their payoff relevant consequences.

7For simplicity, this definition of a subjective model assumes that players know the distribution
over their own signals.
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We maintain the following assumptions about the subjective model.8

Assumption 1. For all i ∈ I: (i) Θi is a compact subset of an Euclidean space,

(ii) Qi
θi(y

i | si, xi) is continuous as a function of θi ∈ Θi for all (yi, si, xi) ∈ Y
i×S

i×X
i,

(iii) For every θi ∈ Θi, there exists a sequence (θin)n in Θi such that limn→∞ θin = θi

and, for all n, Qi
θin
(yi | si, xi) > 0 for all (si, xi) ∈ S

i × X
i, yi ∈ f i(xi,X−i, ω), and

ω ∈ supp(p(· | si)).

The last of these assumptions plays two roles. First, it rules out a stark form of

misspecification by guaranteeing that there exists at least one parameter value that

can rationalize every feasible observation. Second, it requires that if indeed a feasible

event is deemed impossible by some parameter value, then that parameter value is

not isolated in the sense that there are nearby parameter values that consider every

feasible event to be possible. In Section 5, we show that equilibrium may fail to

exist and steady-state behavior need not be characterized by equilibrium without this

continuity assumption.

2.2 Examples

We illustrate our environment by using several examples that had previously not

been integrated into a common framework. Also, previous work considered special

cases with relatively simple misspecifications, in which the “right” equilibrium beliefs

are fairly intuitive (e.g., simple averages of the data). Our framework, in contrast,

provides a characterization of equilibrium beliefs essentially for all types of misspecified

models, and, as some of the examples illustrate, this characterization is not necessarily

straightforward in more complex settings.

Example 2.1. Monopolist with unknown demand . A monopolist faces

demand function y = f(x, ω), where x ∈ X is the price chosen by the monopolist and

ω is a random shock, distributed according to p ∈ ∆(Ω). The monopolist observes

sales y, but not the random shock. The monopolist’s payoff function is π(x, y) = xy

(i.e., there are no costs). The monopolist does not know the true demand function f .

It believes that demand is

y = fθ(x, ω) = a− bx+ ω, (2)

8As usual, the superscript −i denotes a profile where the i’th component is excluded
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where θ = (a, b) ∈ Θ is a parameter vector and ω follows a standard normal distri-

bution. Then Qθ(· | x) is a normal distribution with mean a − bx and unit variance.

�

Example 2.2. Non-linear pricing . An agent chooses effort x ∈ X and

then income z = x + ω is realized, where ω is a random shock with zero mean. The

agent pays taxes t = τ(z), where τ(·) is a nonlinear tax schedule. The agent observes

y = (z, t) and obtains payoff π(x, z, t) = z − t − c(x), where c(x) is the cost of effort

x. The agent correctly understands how effort translates into income. She believes,

however, that she faces a linear tax schedule: t = θz + ε, where θ ∈ Θ is the constant

tax rate and ε follows a standard normal distribution and measures uncertain aspects

of the schedule (such as eligible deductions). This model captures an agent who fails

to respond to the marginal tax rate. �

Example 2.3. Misspecified market structure. Two firms compete by

simultaneously choosing prices. A state ω = (s, ε) is a vector of costs s = (s1, s2) and

demand shocks ε = (ε1, ε2). After a state is drawn, each firm i privately observes her

own cost si and chooses a price xi. The quantity sold by firm i is given by the demand

system

ln qi = α∗ + β∗ ln xj − γ∗ ln xi + εi,

where γ∗ > 1 is the demand elasticity (in absolute value). A consequence for firm

i is yi = (si, qi). The payoff of firm i is πi(xi, yi) = (xi − si)qi. Each firm i = 1, 2

(incorrectly) believes that they are a monopolist in this market and that the demand

function they face is

ln qi = αi − γi ln xi + εi, (3)

where εi follows a standard normal distribution and θi = (αi, γi) parameterizes the

subjective model. �

Example 2.4. Regression to the mean . An instructor observes the initial

performance s of a student and decides whether to praise or criticize him, x ∈ {C, P}.

The student then performs again and the instructor observes his final performance, s′.

The truth is that performances y = (s, s′) are independent, standard normal random

variables. The instructor’s payoff is π(x, s, s′) = s′ − c(x, s), where c(x, s) = κ |s| >

0 if either s > 0, x = C or s < 0, x = P , and, in all other cases, c(x, s) = 0.9

9Formally, a state is ω = (s, s′) and the feedback function is y = f(x, ω) = ω.
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The interpretation is that the instructor bears a (reputation) cost from lying that is

increasing in the size of the lie, where lying is defined as either criticizing an above-

average performance or praising a below-average performance. Because the instructor

has no influence on performance, it is optimal to praise if s > 0 and to criticize if

s < 0. The instructor, however, does not admit the possibility of regression to the

mean and believes that

s′ = s+ θx + ε,

where ε has a standard normal distribution, and θ = (θC , θP ) ∈ Θ parameterizes her

perceived influence on the performance of the student.10 �

Example 2.5. Classical monetary policy . There are two players, the gov-

ernment (G) and the public (P). The government chooses monetary policy xG and

the public chooses inflation forecasts xP . Inflation, e, and unemployment, U , are

determined as follows:11

e = xG + εe

U = u∗ − λ(e− xP ) + εU ,
(4)

where λ ∈ (0, 1) and where ω = (εe, εU) are random shocks with a full support

distribution and V ar(εe) > 0. Thus, inflation is determined by the government’s

action and a random term. And unemployment is determined by surprise inflation

according to a Phillips curve, where u∗ > 0 is the natural rate of unemployment.

Realized inflation and unemployment, but not the error terms, are observed by both

the public and the government. The government’s payoff is π(xG, e, U) = −(U2 + e2).

For simplicity, we focus on the government’s problem and assume that the public

has correct beliefs and chooses xP = xG. Under the classical subjective model, the

government believes (correctly) that its policy xG affects inflation, but it does not

realize that unemployment is affected by surprise inflation:

e = xG + εe

U = θ1 − θ2e+ εU .

10A model that allows for regression to the mean is s′ = αs+ θx + ε; in this case, the agent would
correctly learn that α = 0 and θx = 0 for all x.

11Formally, a state is ω = (εe, εU ) and the feedback function y = (e, U) = f(xG, xP , ω) is given by
the system of equations (4).
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The subjective model is parameterized by θ = (θ1, θ2). �

Example 2.6. Trade with adverse selection. A buyer and a seller simulta-

neously submit a (bid) price x ∈ X and an ask price a ∈ A, respectively. If a ≤ x, then

trade takes place at price x, and the buyer obtains payoff v−x, where v is the buyer’s

value of the object. If a > x, then no trade takes place and each player receives 0. At

the time she makes an offer, the buyer does not know her value or the ask price of the

seller. The seller’s ask price and the buyer’s value are drawn from p ∈ ∆(A× V).12

We consider two different feedback functions to illustrate the importance of making

explicit what players observe about the outcome of the game. Under perfect feedback,

the buyer observes the realized ask price and her own value. Under partial feedback,

the buyer observes the ask price, but she only observes her own value if she trades.

Finally, suppose that A and V are actually correlated but that the buyer naively

believes that they are independent. This is formally captured by letting Qθ = θ and

Θ = ∆(A)×∆(V). �

References for examples . Example 2.1 : Nyarko (1991) studies a special case

and shows that a steady state does not exist, although he does not allow for mixed

strategies. Example 2.2 : Sobel (1984) considers a similar misspecification to capture

a consumer who responds to average, not marginal, pricing. Example 2.3 : Arrow and

Green (1973) and Kirman (1975) study other examples in which firms have incorrect

perceptions about market structure. Example 2.4 : The story of the instructor who

does not understand regression to the mean is taken from Tversky and Kahneman

(1973); we are not aware of previous attempts to formalize the underlying misspec-

ification. Example 2.5 : The monetary policy example is based on Sargent (1999,

Chapter 7). Example 2.6 : This misspecification is first discussed in the lemons con-

text by Kagel and Levin (1986). It has been generalized by Eyster and Rabin (2005),

Jehiel and Koessler (2008), and Esponda (2008).

2.3 Definition of equilibrium

Distance to true model. In equilibrium, we will require players’ beliefs to put

probability one on the set of subjective distributions over consequences that are “clos-

12The typical story is that there is a population of sellers each of whom follows the weakly dominant
strategy of asking for her valuation; thus, the ask price is a function of the seller’s valuation and, if
buyer and seller valuations are correlated, then the ask price and buyer valuation are also correlated.
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est” to the objective distribution. In order to describe the right notion of “closest”,

we need some some additional definitions. The following function, which we call the

weighted Kullback-Leibler divergence (wKLD) function of player i, is a weighted

version of the standard Kullback-Leibler divergence in statistics (Kullback and Leibler,

1951). It represents a non-symmetric measure between the objective distribution over

i’s consequences given a strategy profile σ ∈ Σ and the distribution as parameterized

by θi ∈ Θi:13

Ki(σ, θi) =
∑

(si,xi)∈Si×Xi

EQi
σ(·|s

i,xi)

[

ln
Qi

σ(Y
i | si, xi)

Qi
θi
(Y i | si, xi)

]

σi(xi | si)pSi(si). (5)

The set of closest parameter values of player i given σ is the set

Θi(σ) ≡ arg min
θi∈Θi

Ki(σ, θi).

The interpretation is that Θi(σ) ⊂ Θi is the set of parameter values that player i can

believe to be possible after observing feedback consistent with strategy profile σ.

Remark 1. (a) The use of the Kullback-Leibler divergence to measure distance is not

an arbitrary assumption. We show in Section 4 that this is the right notion of distance

in a learning model with Bayesian players. (b) Because the wKLD function is weighted

by a player’s own strategy, it will place no restrictions on beliefs about outcomes that

only arise following out-of-equilibrium actions (beyond the restrictions imposed by Θ).

The next result collects some useful properties of the wKLD. We cannot directly

apply the Theorem of the Maximum to prove this result because the wKLD function

Ki may take infinite values. Instead, the proof relies crucially on Assumption 1 to

obtain upper hemicontinuity of Θi(·).

Lemma 1. (i) For all σ ∈ Σ, θi ∈ Θi, and i ∈ I, Ki(σ, θi) ≥ 0, with equality holding

if and only if Qθi(· | s
i, xi) = Qi

σ(· | s
i, xi) for all (si, xi) such that σi(xi | si) > 0. (ii)

For every i ∈ I, Θi(·) is non-empty, upper hemicontinuous, and compact valued.

Proof. See the Appendix.

13The notation EQ denotes expectation with respect to the probability measure Q. Also, we use
the convention that − ln 0 = ∞ and 0 ln 0 = 0.
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Optimality. In equilibrium, we will require each player to choose a strategy that

is optimal given her beliefs. A strategy σi for player i is optimal given µi ∈ ∆(Θi) if

σi(xi | si) > 0 implies that

xi ∈ arg max
x̄i∈Xi

EQ̄i

µi (·|s
i,x̄i)

[

πi(x̄i, Y i)
]

(6)

where, for all i and (si, xi),

Q̄i
µi(· | si, xi) =

ˆ

Θi

Qi
θi(· | s

i, xi)µi(dθi)

is the distribution over consequences of player i induced by µi.14

Definition of equilibrium. We propose the following solution concept.

Definition 1. A strategy profile σ is a Berk-Nash equilibrium of game G if, for

all players i ∈ I, there exists µi ∈ ∆(Θi) such that

(i) σi is optimal given µi, and

(ii) µi ∈ ∆(Θi(σ)), i.e., if θ̂i is in the support of µi, then

θ̂i ∈ arg min
θi∈Θi

Ki(σ, θi).

Definition 1 places two types of restrictions on equilibrium behavior: (i) optimiza-

tion given beliefs, and (ii) endogenous restrictions on beliefs. For comparison, notice

that the definition of a Nash equilibrium is identical to Definition 1 except that con-

dition (ii) is replaced with the condition that Q̄i
µi = Qi

σ; in other words, players must

have correct beliefs in a Nash equilibrium.

existence of equilibrium. The standard proof of existence of Nash equilibrium

cannot be used to show existence of a Berk-Nash equilibrium because the correspond-

ing version of a best response correspondence is not necessarily convex valued. To

prove existence, we first perturb the payoffs of the game and establish that equi-

librium exists in the perturbed game. We then consider a sequence of equilibria of

14Note that, even in the case where Qi
θi is derived by replacing subjective primitives pi

θi , f
i
θi , and

σ−i
θi in equation (1), so that player i correctly believes that every other player j mixes independently,

we still allow player i to have correlated beliefs about her opponents’ strategies, as in Fudenberg and
Levine (1993a).
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perturbed games where the perturbations go to zero and establish that the limit is

a Berk-Nash equilibrium of the (unperturbed) game.15 The part of the proof that

is not standard is establishing existence of equilibrium in the perturbed game. The

perturbed best response correspondence is still not necessarily convex valued. Our

approach is to characterize equilibrium as a fixed point of a belief correspondence and

show that this correspondence satisfies the requirements of a generalized version of

Kakutani’s fixed point theorem.

Theorem 1. Every game has at least one Berk-Nash equilibrium.

Proof. See the Appendix.

2.4 Examples: Finding a Berk-Nash equilibrium

We illustrate the definition by finding Berk-Nash equilibria for some of the examples

in Section 2.2.

Example 2.1, continued from pg. 7. Monopolist with unknown demand .

Suppose that the monopolist can choose a price of 2 or 10, i.e., X = {2, 10} and that

the true demand function is given by equation (2), with θ0 = (a0, b0) = (40, 5).

Figure 1 shows the true demand parameter value and the set of parameter values

Θ = [12, 32]× [1, 3] that the monopolist considers possible. In particular, θ0 /∈ Θ and,

therefore, we say that the monopolist has a misspecified model. The dashed line in

Figure 1 depicts optimal behavior: price 10 is uniquely optimal to the left, price 2 is

uniquely optimal to the right, and the monopolist is indifferent for parameter values

on the dashed line.

Let σ = (σ(2), σ(10)) denote the monopolist’s strategy. Because this is a single-

agent problem, the objective distribution does not depend on σ; hence, we denote it

by Qθ0(· | x) and note that it is a normal distribution with mean µθ0(x) = a0 − b0x

and unit variance. Similarly, for θ = (a, b), Qθ(· | x) is a normal distribution with

mean µθ(x) and unit variance. It follows from equation (5) that

15The idea of perturbations and the strategy of the existence proof date back to Harsanyi (1973);
Selten (1975) and Kreps and Wilson (1982) also used these ideas to prove existence of perfect and
sequential equilibrium, respectively.

13



K(σ, θ) =
∑

x∈{2,10}

σ(x)
1

2
EQ

θ0 (·|x)

[

(Y − µθ(x))
2 − (Y − µθ0(x))

2]

=
∑

x∈{2,10}

σ(x)
1

2
(µθ0(x)− µθ(x))

2 . (7)

The derivatives are

∂K(σ, θ)

∂a
=

∑

x∈{2,10}

σ(x) (µθ0(x)− µθ(x)) (8)

∂K(σ, θ)

∂b
=

∑

x∈{2,10}

σ(x) (µθ0(x)− µθ(x)) x. (9)

First, consider pure strategies. If σ = (0, 1) (i.e., the price is x = 10), the first

order condition becomes µθ0(10) = µθ(10). Any parameter value θ ∈ Θ such that the

mean of Y under θ and x = 10 is equal to the true mean under x = 10 minimizes

equation (7). In the left panel of Figure 1, these are the parameter values that lie on

the line with slope 10 (a0−b010 = a−b10) and belong to Θ; i.e., the line segment AB.

Thus, if the monopolist were to choose σ = (0, 1) in equilibrium, then its beliefs must

have support in the segment AB. But this segment lies to the right of the dashed line,

where it is not optimal to set a price of 10. Thus, σ = (0, 1) is not an equilibrium. A

similar argument establishes that σ = (1, 0) is not an equilibrium: If it were, then the

monopolist would believe that the parameter value is D. But D lies to the left of the

dashed line, where it is not optimal to set a price of 2.

Finally, consider a totally mixed strategy σ. Because expressions (8) and (9) cannot

be simultaneously equal to zero, the parameter value that minimizes K(σ, θ) lies on

the boundary of Θ. In fact, a bit of algebra shows that, for each totally mixed σ,

there is a unique minimizer θσ = (aσ, bσ) characterized as follows. If σ(2) ≤ 3/4, the

minimizer is in the segment BC: bσ = 3 and aσ = 16σ(2) + 20 is such that equation

(8) is zero. The left panel of Figure 1 depicts an example where the unique minimizer

θσ̂ under strategy σ̂ is given by the tangency between the contour lines of K(σ̂, ·)

and the feasible set Θ.16 If σ(2) ∈ [3/4, 15/16], then θσ = C is the northeast vertex

of Θ. Finally, if σ(2) > 15/16, the minimizer is in the segment CD: aσ = 32 and

16After some algebra, it can be shown that K(σ, θ) =
(

θ − θ0
)

′

Mσ

(

θ − θ0
)

, where Mσ is a weight-
ing matrix that depends on σ. In particular, the contour lines of K(σ, ·) are ellipses.
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bσ = (420− 416σ(2))/(100− 96σ(2)) is such that equation (9) is zero.

Because the monopolist is mixing, optimality requires that the equilibrium belief

θσ lies on the dashed line. The unique Berk-Nash equilibrium is σ∗ = (23/24, 1/24),

and its supporting belief, θσ∗ = (32, 8/3), is given by the intersection of the dashed

line and line segment CD, as depicted in the right panel of Figure 1. Note that, in this

example, it is not the case that the equilibrium belief about the mean of Y is correct.

Thus, an approach that had focused on fitting the mean, rather than minimizing K,

would have led to the wrong conclusion.17 �

Example 2.2, continued from pg. 8. Non-linear pricing . For any pure

strategy x and parameter value θ,

K(x, θ) = E

[

ln
Q(T | Z)p(Z | x)

Qθ(T | Z)p(Z | x)
| X = x

]

= −
1

2
E
[

(τ(Z)− θZ)2 | X = x
]

+ C,

where E denotes the true conditional expectation and C is a constant that does not

depend on θ. It is straightforward to check that θ(x) = E [(x+W )τ(x+W )] /E[(x+

W )2] is the unique parameter value that minimizesK(x, θ). In particular, the intuitive

conjecture that the agent believes that the constant marginal tax rate is given by the

expected average tax rate, E[τ(x+W )/(x+W )], is incorrect in this problem.18

A strategy x∗ is a Berk-Nash equilibrium if and only if x = x∗ maximizes (1− θ(x∗)) x

−c(x). In contrast, the optimal strategy xopt maximizes x−E[τ(x+W )]− c(x). For

example, suppose that τ(z) = z2 is progressive, c(·) is increasing and strictly convex,

and ω follows a normal distribution with zero mean and variance σ2. Then there is

a unique Berk-Nash equilibrium and unique optimal strategy. Moreover, there is a

threshold variance σ̄2 of the error term such that the Berk-Nash equilibrium strategy

is lower than the optimal one for all higher variances and higher than optimal for all

lower variances. Thus, despite a progressive tax schedule, naiveté can either decrease

or increase the incentives to put effort. �

Example 2.2, continued from pg. 8. Misspecified market structure. For

17The example also illustrates the importance of allowing for mixed strategies for existence of Berk-
Nash equilibrium, even in single-agent settings. As an antecedent, Esponda and Pouzo (2011) argue
that this is the reason why mixed strategy equilibrium cannot be purified in a voting application.

18This intuitive conjecture would be correct, however, if the agent had the following “random-
coefficient” misspecified subjective model: τ = (θ + ε)z.
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convenience, we focus on the case where prices and costs are chosen from a compact

interval and players follow pure strategies, where σi(si) is the price chosen by firm i

given cost si. Optimality implies that each firm i follows strategy

σi(si) =
[

γi/(γi − 1)
]

si. (10)

Since the error term is normally distributed, the minimizer of the wKLD function is

given by the ordinary least squares estimand of equation (3). Thus, for all σ = (σ1, σ2),

γi(σ) = −
Cov(ln σi(Si), α∗ + β∗ ln σj(Sj)− γ∗ ln σi(Si) + εi)

V ar(ln σi(Si))

= γ∗ − β∗Cov(ln σ
i(Si), ln σj(Sj))

V ar(ln σi(Si))
. (11)

By replacing (10) into (11), the equilibrium belief is given by

γi = γ∗ − β∗Cov(lnS
i, lnSj)

V ar(lnSi)
, (12)

and the unique equilibrium strategy is obtained by replacing (12) into (10).19 More-

over, (12) shows that firms estimate demand elasticity with a bias that depends on the

sign of β∗Cov(lnSi, lnSj). For example, suppose that β∗ > 0, so that the products

are substitutes, and that Cov(lnSi, lnSj) > 0. Then firms believe that demand is less

elastic compared to the true elasticity. The intuition is that, when a firm chooses a

higher price, it is because its costs are higher. But then the competitor’s cost is also

likely to be higher, so the other firm is also likely to choose a higher price. Because

products are substitutes, the increase in the price of the other firm mitigates the fall

in demand due to the increase in own price. This under-estimation of elasticity leads

firms to set higher prices compared to the Nash equilibrium, which is unique and given

by the dominant strategy σi(si) = [γ∗/(γ∗ − 1)] si. Note that disregarding the com-

petition leads to biased behavior in the Berk-Nash equilibrium, even though actions

are strategically independent and the (correct) best response does not depend on the

competitor’s choice. �

Example 2.4, continued from pg. 8. Regression to the mean . It is

straightforward to check that optimal strategies are characterized by a cutoff: Let

19This is true as long as we make an assumption on the primitives that makes γi > 1.
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σ ∈ R represent the strategy where the instructor praises an initial performance if it

is above σ and criticizes it otherwise. The wKLD function is

K(σ, θ) =

ˆ σ

−∞

E

[

ln
ϕ(S2)

ϕ(S2 − (θC + s1))

]

ϕ(s1)ds1+

ˆ ∞

σ

E

[

ln
ϕ(S2)

ϕ(S2 − (θP + s1))

]

ϕ(s1)ds1,

where ϕ is the density of the standard normal distribution and expectations are with

respect to the true distribution. It is straightforward to show that, for each σ, the

unique parameter vector that minimizes K(σ, ·) is

θC(σ) = E [S2 − S1 | S1 < σ]

= 0− E [S1 | S1 < σ] > 0

and, similarly, θP (σ) = 0 − E [S1 | S1 > σ] < 0. The intuition is that the instructor

is critical for performances below a threshold and, therefore, the mean performance

conditional on a student being criticized is lower than the unconditional mean per-

formance; thus, a student who is criticized delivers a better next performance in

expectation. Similarly, a student who is praised delivers a worse next performance in

expectation.

By following a strategy cutoff σ, the instructor believes, after observing initial

performance s1 > 0, that her expected payoff is s1 + θC(σ)− κs1 if she criticizes and

s1 + θP (σ) if she praises. By optimality, the cutoff makes her indifferent between

praising and criticizing. Thus,

σ∗ =
1

κ
(θC(σ

∗)− θP (σ
∗)) > 0

is the unique equilibrium cutoff. An instructor who ignores regression to the mean will

have incorrect beliefs about the influence of her feedback on the student’s performance;

in particular, she is excessively critical in equilibrium because she incorrectly believes

that criticizing a student improves performance and that praising a student worsens

it. Moreover, as the reputation cost κ→ 0, meaning that instructors care only about

performance and not about lying, σ∗ → ∞: instructors only criticize (as in Kahneman

and Tversky’s (1973) story). �
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3 Relationship to other solution concepts

We show that Berk-Nash equilibrium includes several solution concepts (both standard

and boundedly rational) as special cases.

3.1 Properties of games

correctly-specified games. In Bayesian statistics, a model is correctly specified

if the support of the prior includes the true data generating process. The extension to

single-agent decision problems is straightforward. For example, the monopoly problem

in Example 2.1 is not correctly specified because θ0 /∈ Θ. In games, however, we must

account for the fact that the objective distribution over consequences (i.e., the true

model) depends on the strategy profile. We say that a game is correctly specified if

players do not a priori rule out any of the objective distributions that might possibly

arise in equilibrium.20

Definition 2. A game is correctly specified given σ if, for all i ∈ I, there exists

θi ∈ Θi such that Qi
θi(· | si, xi) = Qi

σ (· | s
i, xi) for all for all (si, xi) ∈ S

i × X
i;

otherwise, the game is misspecified given σ. A game is correctly specified if it

is correctly specified for all σ; otherwise, it is misspecified.

identification. From the point of view of the agent, what matters is identifica-

tion of the distribution over consequences Qθ, not the parameter θ. If the model is

correctly specified, then the true Qθ0 is trivially identified.21 Of course, this is not true

if the model is misspecified, because the true distribution will never be learned. But

we want a definition that captures the same spirit: If two distributions are judged to

be equally a best fit (given the true distribution), then we want these two distributions

to be identical; otherwise, we cannot identify which distribution is a best fit.

The fact that our agents also take actions introduces an additional nuance to the

definition of identification. We can either ask for identification of the distribution over

20A more precise terminology would say that a game is correctly specified in steady state. The
reason is that, in the dynamic model, players believe that they face a stationary environment while
in fact the environment may be non-stationary outside the steady state.

21Similarly, the true parameter θ0 is identified if we impose the condition of identifiability of the
parameter, i.e., Qθ = Qθ0 implies that θ = θ0. But, as mentioned earlier, it suffices to consider
identification of distributions, not the parameter.
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consequences for those actions that are taken by the agent (i.e., on the path of play) or

for all actions (i.e., on and off the path). We refer to the former as weak identification

(because it highlights the potential to identify the distribution over consequences, if

all actions are taken) and to the latter as strong identification.

Definition 3. A game isweakly identified given σ if, for all i ∈ I: if θi1, θ
i
2 ∈ Θi(σ),

then Qi
θi1
(· | si, xi) = Qi

θi2
(· | si, xi) for all (si, xi) ∈ S

i × X
i such that σi(xi | si) > 0;

if the condition is satisfied for all (si, xi) ∈ S
i × X

i, then we say that the game is

strongly identified given σ. A game is [weakly or strongly] identified if it is

[weakly or strongly] identified for all σ.

Note that whether or not a game is correctly specified or identified depends on

the primitives of the game, which includes the feedback or consequence functions. In

particular, two games that are identical except for the feedback functions may differ

in terms of being correctly specified and identified.

It is straightforward to show that a correctly specified game is weakly identified.

We show in Online Appendix A that a correctly specified game is strongly identified

if it also satisfies the property that consequences are perceived to be independent of

own actions.

3.2 Relationship to Nash and self-confirming equilibrium

The next result shows that Berk-Nash equilibrium is equivalent to Nash equilibrium

when the game is both correctly specified and strongly identified.

Proposition 1. (i) Suppose that the game is correctly specified given σ and that σ is

a Nash equilibrium of its objective game. Then σ is a Berk-Nash equilibrium of the

(objective and subjective) game.

(ii) Suppose that σ is a Berk-Nash equilibrium of a game that is correctly specified

and strongly identified given σ. Then σ is a Nash equilibrium of the corresponding

objective game.

Proof. (i) Let σ be a Nash equilibrium and fix any i ∈ I. Then σi is optimal given

Qi
σ. Because the game is correctly specified given σ, there exists θi∗ ∈ Θi such that

Qi
θi∗

= Qi
σ and, therefore, by Lemma 1, θi∗ ∈ Θi(σ). Thus, σi is also optimal given
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Qi
θi∗

and θi∗ ∈ Θi(σ), so that σ is a Berk-Nash equilibrium. (ii) Let σ be a Berk-Nash

equilibrium and fix any i ∈ I. Then σi is optimal given Q̄i
µi , for some µi ∈ ∆(Θi(σ)).

Because the game is correctly specified given σ, there exists θi∗ ∈ Θi such that Qi
θi∗

=

Qi
σ and, therefore, by Lemma 1, θi∗ ∈ Θi(σ). Moreover, because the game is strongly

identified given σ, any θ̂i ∈ Θi(σ) satisfies Qi
θ̂i
= Qi

θi∗
= Qi

σ. Then σi is also optimal

given Qi
σ. Thus, σ is a Nash equilibrium.

The next example illustrates that Proposition 1 can be used to conclude that the

equilibrium of an incorrect model is Nash.

Example 2.5, continued from pg. 9. Classical monetary policy . We show

that, despite appearances, the game is correctly specified. Fix a strategy xP∗ for the

public. Note that U = u∗−λ(xG−xP∗ +εe)+εU , whereas the government believes that

U = θ1 − θ2(x
G + εe) + εU . Thus, by choosing θ∗ = (θ∗1, θ

∗
2) such that θ∗1 = u∗ + λxP∗

and θ∗2 = λ, it follows that the distribution over Y = (U, e) parameterized by θ∗

coincides with the objective distribution given xP∗ . Moreover, the model is strongly

identified: since V ar(εe) > 0, it is easy to check that θ∗ is the unique minimizer

of the wKL divergence. Thus, Proposition 1 implies that Berk-Nash equilibrium is

equivalent to Nash equilibrium. In particular, the equilibrium policies are the same

whether or not the government realizes that unemployment is driven by surprise, not

actual, inflation.22 �

The next result shows that a Berk-Nash equilibrium is also a self-confirming equi-

librium (SCE) in games that are correctly specified, but not necessarily strongly iden-

tified. Recall that, in a SCE, beliefs must be correct “on the equilibrium path” but

may be incorrect off equilibrium.23

Proposition 2. Suppose that the game is correctly specified given σ, and that σ is a

Berk-Nash equilibrium. Then σ is also a self-confirming equilibrium (SCE).24

22Sargent (1999) derived this result for a government that does OLS-based learning, which is a
special case of our example when errors are normally distributed.

23A strategy profile σ is a SCE if, for all players i ∈ I, σi is optimal given Q̂i
σ, where Q̂

i
σ(· | s

i, xi) =
Qi

σ(· | s
i, xi) for all (si, xi) such that σi(xi | si) > 0. This definition is slightly more general than the

typical one, e.g., Dekel et al. (2004), because it does not restrict players to believe that consequences
are driven by other players’ strategies.

24A converse of Proposition 2 holds if the set Q of possible views of the world imposes no a priori
restrictions on off equilibrium beliefs.
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Proof. Fix any i ∈ I and let θ̂i be any element in the support of µi, where µi is player

i’s belief supporting the choice of Berk-Nash equilibrium strategy σi. Because the

game is correctly specified given σ, there exists θi∗ ∈ Θi such that Qi
θi∗

= Qi
σ and,

therefore, by Lemma 1, Ki(σ, θi∗) = 0. Thus, it must also be that Ki(σ, θ̂i) = 0.

By Lemma 1, it follows that Qθ̂i(· | s
i, xi) = Qi

σ(· | s
i, xi) for all (si, xi) such that

σi(xi | si) > 0. In particular, σi is optimal given Qθ̂i , and Qθ̂i satisfies the desired

self-confirming restriction.

The novelty in our paper is to consider games that are not correctly specified. For

such games, as illustrated by the examples in the paper, a Berk-Nash equilibrium is not

necessarily a Nash or self-confirming equilibrium. The reason is that, in misspecified

games, beliefs can be incorrect even on the equilibrium path.

3.3 Relationship to fully cursed and ABEE

An analogy-based game satisfies the following four properties:

(i) The information structure is finite and partitional: The state space Ω has a

finite number of elements; we denote the true distribution over Ω by pΩ. In addition,

for each i, there is a partition S i of Ω, and the element of S i that contains ω (i.e., the

signal of player i in state ω) is denoted by si(ω).25

(ii) For each i, f i(x, ω) = (x−i, ω) for all (x, ω), i.e., each player gets perfect

feedback about (x−i, ω).

(iii) For each i, there exists a partition of Ω, denoted by Ai, and the element of Ai

that contains ω is denoted by αi(ω).

(iv) (Qi
θi)θi∈Θi is the set of all joint probability distributions over X

−i × Ω that

satisfy

Qi
θi

(

x−i, ω | si(ω′), xi
)

= Qi
Ω,θi(ω | si(ω′))Qi

X−i,θi(x
−i | αi(ω)).

In other words, every player i believes that x−i and ω are independent conditional on

the partition, i.e., Qi
X−i,θi(x

−i | ω) = Qi
X−i,θi(x

−i | αi(ω)) for all ω ∈ Ω.

Two special cases are noteworthy. If Ai = {Ω} for all i, then each player believes

that the actions of other players are independent of the state of the world. If Ai = S i

25This assumption is made only to facilitate comparison to the original definition of an analogy-
based expectation equilibrium (Jehiel (2005), Jehiel and Koessler (2008)).
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for all i, then each player believes that the actions of other players are independent of

the state, conditional on their own private information.

Definition 4. (Jehiel and Koessler, 2008) A strategy profile σ is an analogy-based

expectation equilibrium (ABEE) if for all i ∈ I, ω ∈ Ω, and xi such that σi(xi |

si(ω)) > 0,

xi ∈ arg max
x̄i∈Xi

∑

ω′∈Ω

pΩ(ω
′ | si(ω))

∑

x−i∈X−i

σ̄−i(x−i | ω′)πi(x̄i, x−i, ω′),

where σ̄−i(x−i | ω′) =
∑

ω′′∈Ω pΩ(ω
′′ | αi(ω′))

∏

j 6=i σ
j(xj | sj(ω′′)).

Proposition 3. In an analogy-based game, σ is a Berk-Nash equilibrium if and only

if it is an ABEE.

Proof. See the Appendix.

Proposition 3 shows the equivalence of Berk-Nash and ABEE for games that sat-

isfy the four properties above. As mentioned by Jehiel and Koessler (2008), ABEE

is equivalent to Eyster and Rabin’s (2005) fully cursed equilibrium in the special

case where Ai = I i for all i.26 In particular, Proposition 3 provides a misspecified-

learning foundation for these solution concepts. Jehiel and Koessler (2008) discuss

an alternative foundation for ABEE, where players receive feedback that is coarse

and aggregated over past play, and, therefore, multiple beliefs are consistent with this

feedback. Under this different feedback structure, ABEE can be viewed as a natural

selection of the set of self-confirming equilibrium.

Example 2.6, continued from pg. 10. Trade with adverse selection. As

a benchmark, the Nash equilibrium (NE) price maximizes

ΠNE(x) = Pr(A ≤ x) (E [V | A ≤ x]− x) .

In Online Appendix B, we show that x∗ is a Berk-Nash equilibrium price if and only

if x = x∗ maximizes an equilibrium belief function Π(x, x∗) which represents

26For experimental evidence of this type of naiveté, see the review by Kagel and Levin (2002) and
the recent work by Charness and Levin (2009), Ivanov et al. (2010), and Esponda and Vespa (2013).
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the belief about expected profit from choosing any price x under a steady-state x∗.

The function Π depends on the feedback/misspecification assumptions. With perfect

feedback and subjective model Θ = ∆(A) ×∆(V), this is an example of an analogy-

based game. The buyer learns the true marginal distributions of A and V and believes

the joint distribution is given by the product of the marginal distributions. Therefore,

the buyer’s equilibrium belief function is

ΠCE(x) = Pr(A ≤ x) (E [V ]− x) , (13)

and, in particular, does not depend on the equilibrium strategy x∗. Berk-Nash equi-

librium coincides with fully cursed equilibrium in this case.

With partial feedback and subjective model ∆(A) × ∆(V), the price offered by

the buyer affects the sample of valuations that she observes. Also, the buyer does

not realize that this selected sample would change if she were to change her price.

Suppose that the buyer’s behavior has stabilized to some price x∗. Then, the buyer’s

equilibrium belief function is

ΠBE(x, x∗) = Pr(A ≤ x) (E [V | A ≤ x∗]− x) . (14)

Berk-Nash equilibrium coincides with naive behavioral equilibrium (Esponda, 2008)

in this case.

Next, suppose that there is perfect feedback and consider a more general misspec-

ified model. There is a partition of the set V into k “analogy classes” (Vj)j=1,...,k,

where ∪jVj = V and Vi ∩ Vj = 0 for all i 6= j. The buyer believes that (A, V ) are

independent conditional on V ∈ Vi, for each i = 1, ..., k. The parameter space is

ΘA = ×j∆(A) × ∆(V), where, for a parameter value θ = (θ1, ...., θk, θV) ∈ ΘA, θV

parameterizes the marginal distribution over V and, for each j = 1, ..., k, θj ∈ ∆(A)

parameterizes the distribution over A conditional on V ∈ Vj. This is an example of

an analogy-based game. Beliefs are as in a cursed equilibrium conditional on each

analogy class, and so the equilibrium belief function is27

ΠABEE(x) =
k
∑

j=1

Pr(V ∈ Vj) {Pr(A ≤ x | V ∈ Vj) (E [V | V ∈ Vj]− x)} . (15)

27Note the well known fact that analogy-based expectation equilibrium with a single analogy class
is equivalent to (fully) cursed equilibrium.
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Berk-Nash equilibrium coincides with analogy-based expectation equilibrium in this

case.

Finally, our setup allows us to extend ABEE to the case of partial feedback. Under

natural refinements, we show in Online Appendix B that the corresponding equilibrium

belief function is

ΠBEA(x, x∗) =
k
∑

i=j

Pr(V ∈ Vj) {Pr(A ≤ x | V ∈ Vj) (E [V | V ∈ Vj, A ≤ x∗]− x)} . �

4 Equilibrium foundation

In this section, we provide a learning foundation for equilibrium. We follow Fudenberg

and Kreps (1993) in considering games with (slightly) perturbed payoffs because, as

they highlight in the context of providing a learning foundation for mixed-strategy

Nash equilibrium, behavior need not be continuous in beliefs in the unperturbed game.

Thus, even if beliefs were to converge, behavior would not necessarily settle down in

the unperturbed game. Perturbations guarantee that if beliefs converge, then behavior

also converges.

4.1 Perturbed game

A perturbation structure is a tuple P = 〈Ξ, Pξ〉, where: Ξ = ×i∈IΞ
i and Ξi ⊆ R

#Xi

is a set of payoff perturbations for each action of player i; Pξ = (Pξi)i∈I , where

Pξi ∈ ∆(Ξi) is a distribution over payoff perturbations of player i that is absolutely

continuous with respect to the Lebesgue measure, satisfies
´

Ξi ||ξ
i||Pξ(dξ

i) < ∞, and

is independent from the perturbations of other players. A perturbed game GP =

〈G,P〉 is composed of a game G and a perturbation structure P .

The timing of a perturbed game GP coincides with the timing of its corresponding

(unperturbed) game G, except for two modifications. First, before taking an action,

each player not only observes a signal si but now she also privately observes a vector of

own payoff perturbations ξi ∈ Ξi, where ξi(xi) denotes the perturbation corresponding

to action xi. Second, her payoff given action xi and consequence yi is πi(xi, yi)+ξi(xi).

A strategy σi for player i is optimal in the perturbed game given µi ∈ ∆(Θi)
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if, for all (si, xi) ∈ S
i × X

i, σi(xi | si) = Pξ (ξ
i : xi ∈ Ψi(µi, si, ξi)), where

Ψi(µi, si, ξi) ≡ arg max
xi∈Xi

EQ̄i

µi
(·|si,xi)

[

πi(xi, Y i)
]

+ ξi(xi).

In other words, if σi is an optimal strategy, then σi(xi | si) is the probability that

xi is optimal when the state is si and the perturbation is ξi, taken over all possible

realizations of ξi.

The definition of Berk-Nash equilibrium of a perturbed game GP is analogous to

Definition 1, with the only difference that optimality must be required with respect

to the perturbed game.

4.2 Learning foundation

We fix a perturbed game GPand consider a setting where players repeatedly play the

corresponding objective game at each moment in time t = 0, 1, 2, ..., and where the

time-t state and signals, (ωt, st), are independently drawn from the same distribution

p every period. In addition, each player i has a prior µi
0 with full support over her

(finite-dimensional) parameter space, Θi.28 At the end of each period t, each player

uses Bayes’ rule and the information obtained in that period (her own signal, action,

and consequence) to update her beliefs. Players believe that they face a stationary

environment and myopically maximize the current period’s expected payoff.

Let Bi : ∆(Θi)× S
i × X

i × Y
i → ∆(Θi) denote the Bayesian operator of player i:

for all A ⊆ Θ Borel measurable and all (µi, si, xi, yi),

Bi(µi, si, xi, yi)(A) =

´

A
Qi

θi(y
i | si, xi)µi(dθ)

´

Θ
Qi

θi
(yi | si, xi)µi(dθ)

.

Note that Bayesian updating is well defined by Assumption 1.

Without loss of generality, we restrict behavior at time t to depend on the belief

at time t and the new information received at time t, i.e., the signal and payoff

perturbation.

Definition 5. A policy of player i is a sequence of functions φi = (φi
t)t, where

28We restrict attention to finite dimensional parameter spaces because, otherwise, Bayesian updat-
ing need not converge to the truth for most priors and parameter values even in correctly specified
statistical settings (Freedman (1963), Diaconis and Freedman (1986)).
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φi
t : ∆(Θi)×S

i×Ξi → X
i. A policy φi is optimal if φi

t ∈ Ψi for all t. A policy profile

φ = (φi)i∈I is optimal if φi is optimal for all i ∈ I.

Let H ⊆ (S×Ξ×X×Y)∞ denote the set of observable histories, where any history

h = (s0, ξ0, x0, y0, ..., st, ξt, xt, yt...) ∈ H must satisfy the feasibility restriction: for all

i ∈ I, yit = f i(xit, x
−i
t , ω) for some ω ∈ supp(p(· | sit)) for all t. Let Pµ0,φ denote the

(objective) probability distribution over H that is induced by the primitives of the

game, the priors µ0 = (µi
0)i∈I—which partly determine the initial actions—, and the

policy profiles φ = (φi)i∈I . Let (µt)t denote the sequence of beliefs µt : H → ×i∈I∆(Θi)

such that, for all t ≥ 1 and all i ∈ I, µi
t is the posterior at time t defined recursively

by µi
t(h) = Bi(µi

t−1(h), s
i
t−1(h), x

i
t−1(h), y

i
t−1(h)) for all h ∈ H, where sit−1(h) is player

i’s signal at t− 1 given history h, and similarly for xit−1(h) and y
i
t−1(h).

Definition 6. The sequence of intended strategy profiles given policy profile

φ = (φi)i∈I is the sequence (σt)t of random variables σt : H → ×i∈I∆(Xi)S
i

such that,

for all t and all i ∈ I,

σi
t(h)(x

i | si) = Pξ

(

ξi : φi
t(µ

i
t(h), s

i, ξi) = xi
)

(16)

for all (xi, si) ∈ X
i × S

i.

An intended strategy profile σt describes how each player would behave at time t

for each possible signal; it is random because it depends on the players’ beliefs at time

t, µt, which in turn depend on the past history.

One reasonable criteria to claim that the players’ behavior stabilizes is that their

intended behavior stabilizes with positive probability (cf. Fudenberg and Kreps, 1993).

Definition 7. A strategy profile σ is stable [or strongly stable] under policy profile

φ if the sequence of intended strategies, (σt)t, converges to σ with positive probability

[or with probability one], i.e.,

Pµ0,φ
(

lim
t→∞

‖σt(h)− σ‖ = 0
)

> 0 [or = 1]

The next result establishes that, if behavior stabilizes to a strategy profile σ, then,

for each player i, beliefs become increasingly concentrated on Θi(σ). The proof clarifies
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the origin of the wKLD function in the definition of Berk-Nash equilibrium. Lemma

2 extends results from the statistics of misspecified learning (Berk (1966), Bunke and

Milhaud (1998)) by considering a setting where there is active learning (i.e., agents

learn from data that is endogenously generated by their own actions). Three new

issues arise with active learning: (i) Previous results need to be extended to the case

of non-i.i.d. and endogenous data; (ii) It is not obvious that steady-state beliefs can

be characterized based on steady-state behavior, independently of the path of play

(this is where Assumption 1 plays an important role; See Section 5 for an example);

(iii) We allow KL divergence to be non-finite so that players can believe that other

players follow pure strategies.29

Lemma 2. Suppose that, for a policy profile φ, the sequence of intended strategies,

(σt)t, converges to σ for all histories in a set H ⊆ H such that Pµ0,φ (H) > 0. Then,

for all open sets U i ⊇ Θi(σ),

lim
t→∞

µi
t

(

U i
)

= 1

Pµ0,φ-a.s. in H.

Proof. It is sufficient to establish that limt→∞

´

Θi d
i(σ, θi)µi

t+1(dθ
i) = 0 a.s. in H,

where di(σ, θi) = inf θ̂i∈Θi(σ) ‖θ
i − θ̂i‖. Fix i ∈ I and h ∈ H. Then

ˆ

Θi

di(σ, θi)µi
t+1(dθ

i) =

´

Θi d
i(σ, θi)

∏t
τ=1Q

i
θi(y

i
τ | siτ , x

i
τ )µ

i
0(dθ

i)
´

Θi

∏t
τ=1Q

i
θi
(yiτ | siτ , x

i
τ )µ

i
0(dθ

i)

=

´

Θi d
i(σ, θi)

∏t
τ=1

Qi

θi
(yiτ |s

i
τ ,x

i
τ )

Qi
στ

(yiτ |s
i
τ ,x

i
τ )
µi
0(dθ

i)

´

Θi

∏t
τ=1

Qi

θi
(yiτ |s

i
τ ,x

i
τ )

Qi
στ

(yiτ |s
i
τ ,x

i
τ )
µi
0(dθ

i)

=

´

Θi d
i(σ, θi)etK

i
t(h,θ

i)µi
0(dθ

i)
´

Θi etK
i
t(h,θ

i)µi
0(dθ

i)
,

where the first line is well-defined by Assumption 1, the second line is well-defined

because Pµ0,φ (H) > 0 implies that all the terms we divide by are positive, and where

we define Ki
t(h, θ

i) = −1
t

∑t
τ=1 ln

Qi
στ

(yiτ |s
i
τ ,x

i
τ )

Qi

θi
(yiτ |s

i
τ ,x

i
τ )
.30 For any α > 0, define Θi

α(σ) ≡

29For example, if player 1 believes that player 2 plays A with probability θ and B with 1 − θ, if
we allow both θ = 0 and θ = 1 then the KL divergence will be infinity at θ = 1 if player 2 plays B

with positive probability.
30If, for some θi, Qi

θi(yiτ | siτ , x
i
τ ) = 0 for some τ ∈ {1, ..., t}, then we define Ki

t(h, θ
i) = −∞ and

exp
{

tKi
t(h, θ

i)
}

= 0.
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{θi ∈ Θi : di(σ, θi) < α}. Then, for all ε > 0 and η > 0,

ˆ

Θi

di(σ, θi)µi
t+1(dθ

i) ≤ ε+ C
Ai

t(h, σ, ε)

Bi
t(h, σ, η)

, (17)

where C ≡ supθi1,θ
i
2∈Θ

i ‖θi1 − θi2‖ <∞ (because Θi is bounded) and where

Ai
t(h, σ, ε) =

ˆ

Θi\Θi
ε(σ)

etK
i
t(h,θ

i)µi
0(dθ

i)

and

Bi
t(h, σ, η) =

ˆ

Θi
η(σ)

etK
i
t(h,θ

i)µi
0(dθ

i).

The proof concludes by showing that for every (sufficiently small) ε > 0, there exists

ηε > 0 such that limt→∞Ai
t(h, σ, ε)/B

i
t(h, σ, ηε) = 0. This result is achieved in several

steps. First, for all ε > 0, define Ki
ε(σ) = inf {Ki(σ, θi) | θi ∈ Θi\Θi

ε(σ)} and αε =

(Ki
ε(σ)−Ki

0(σ)) /3. By continuity of Ki(σ, ·), there exists ε̄ and ᾱ such that 0 < αε ≤

ᾱ <∞ for all ε ≤ ε̄. From now on, let ε ≤ ε̄. It follows that

Ki(σ, θi) ≥ Ki
ε(σ) > K0(σ) + 2αε (18)

for all θi such that di(σ, θi) ≥ ε. Also, by continuity of Ki(σ, ·), there exists ηε > 0

such that

Ki(σ, θi) < Ki
0(σ) + αε/2 (19)

for all θi ∈ Θi
ηε .

Second, let Θ̂i =
{

θi ∈ Θi : Qi
θi(y

i
τ | siτ , x

i
τ ) > 0 for all τ

}

be the set of parameter

values that can be rationalized by the observed history, and let Θ̂i
ηε(σ) = Θ̂i ∩Θi

ηε(σ).

We now show that µi
0(Θ̂

i
ηε(σ)) > 0. By Lemma 1, Θi(σ) is nonempty. Pick any

θi ∈ Θi(σ). By Assumption 1, there exists (θin)n in Θi such that limn→∞ θin = θi

and Qi
θin
(yi | si, xi) > 0 for all yi ∈ f i(Ω, xi,X−i) and all (si, xi) ∈ S

i × X
i. By

continuity of Ki(σ, ·), there exists θin̄ such that di(σ, θin̄) < .5ηε. By continuity of Q·

and Ki(σ, ·), there exists an open set U around θin̄ such that U ⊆ Θ̂i
ηε(σ). By full

support, µi
0(Θ̂

i
ηε(σ)) > 0.

Next, in Claim 2.1 in the Appendix we use a law of large numbers argument for
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non-iid random variables to establish that

lim
t→∞

Ki
t(h, θ

i) = −Ki(σ, θi) (20)

for all θi ∈ Θi, a.s. in H. Thus,

lim inf
t→∞

Bi
t(h, σ, ηε)e

t(Ki
0(σ)+

αε
2
) ≥ lim inf

t→∞

ˆ

Θ̂i
ηε

(σ)

et(K
i
0(σ)+

αε
2
+Ki

t(h,θ
i))µi

0(dθ
i)

≥

ˆ

Θ̂i
ηε

(σ)

elimt→∞ t(Ki
0(σ)+

αε
2
−Ki(σ,θi))µi

0(dθ
i)

= ∞, (21)

a.s. in H, where the first line follows because we do not integrate over the complement

of Θ̂i and exp is a positive function, the second line follows from Fatou’s Lemma and

(20), and the third line follows from (19) and the fact that µi
0(Θ

i
ηε(σ)) > 0.

Next, we consider the term Ai
t(h, σ, ε). Claims 2.2 and 2.3 in the Appendix imply

that there exists T such that, for all t ≥ T ,

Ki
t(h, θ

i) < −(Ki
0(σ) + (3/2)αε)

for all θi ∈ Θi\Θi
ε(σ), a.s. in H. Thus,

lim
t→∞

Ai
t(h, σ, ε)e

t(Ki
0(σ)+αε) = lim

t→∞

ˆ

Θi\Θi
ε(σ)

et(K
i
0(σ)+αε+Ki

t(h,θ
i))µi

0(dθ
i)

≤ µi
0(Θ

i\Θi
ε(σ)) lim

t→∞
e−tαε/2

= 0 (22)

a.s. in H. Equations (21) and (22) imply that limt→∞Ai
t(h, σ, ε)/B

i
t(h, σ, ηε) = 0

a.s.-Pµ0,φ.

Lemma 2 only implies that the support of posteriors converges, but posteriors

need not converge. We can always find, however, a subsequence of posteriors that

converges. By continuity of behavior in beliefs and the assumption that players are

myopic, the stable strategy profile must be statically optimal. Thus, we obtain the

following characterization of the set of stable strategy profiles when players follow

optimal policies.
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Theorem 2. Suppose that a strategy profile σ is stable under an optimal policy profile

for a perturbed game. Then σ is a Berk-Nash equilibrium of the perturbed game.

Proof. Let φ denote the optimal policy function under which σ is stable. By Lemma

2, there exists H ⊆ H with Pµ0,φ (H) > 0 such that, for all h ∈ H, limt→∞ σt(h) = σ

and limt→∞ µi
t (U

i) = 1 for all i ∈ I and all open sets U i ⊇ Θi(σ); for the remainder of

the proof, fix any h ∈ H. For all i ∈ I, compactness of ∆(Θi) implies the existence of

a subsequence, which we denote as (µi
t(j))j, such that µi

t(j) converges (weakly) to µ
i
∞

(the limit could depend on h). We conclude by showing, for all i ∈ I:

(i) µi
∞ ∈ ∆(Θi(σ)): Suppose not, so that there exists θ̂i ∈ supp(µi

∞) such that

θ̂i /∈ Θi(σ). Then, since Θi(σ) is closed (by Lemma 1), there exists an open set

U i ⊃ Θi(σ) with closure Ū i such that θ̂i /∈ Ū i. Then µi
∞(Ū i) < 1, but this contradicts

the fact that µi
∞

(

Ū i
)

≥ lim supj→∞ µi
t(j)

(

Ū i
)

≥ limj→∞ µi
t(j) (U

i) = 1, where the first

inequality holds because Ū i is closed and µi
t(j) converges (weakly) to µ

i
∞.

(ii) σi is optimal for the perturbed game given µi
∞ ∈ ∆(Θi):

σi(xi | si) = lim
j→∞

σi
t(j)(h)(x

i|si)

= lim
j→∞

Pξ

(

ξi : xi ∈ Ψi(µi
t(j), s

i, ξi)
)

= Pξ

(

ξi : xi ∈ Ψi(µi
∞, s

i, ξi)
)

,

where the second line follows from optimality of φi and the (standard) fact that Ψi is

single-valued with respect to µi, a.s.- Pξ,
31 and the third line follows from a standard

continuity argument provided in Claim A.4 in the Appendix.

4.3 A converse result

Theorem 2 provides our main justification for focusing on Berk-Nash equilibria: any

strategy profile that is not an equilibrium cannot represent the limiting behavior of

optimizing players. Theorem 2, however, does not imply that behavior will stabilize.

In fact, it is well known that there are cases where optimal behavior will not converge

31Ψi is single-valued a.s.-Pξ because the set of ξ
i such that #Ψi(µi, si, ξi) > 1 is of dimension lower

than #X
i and, by absolute continuity of Pξ, this set has measure zero.
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to Nash equilibrium, which is a special case of Berk-Nash equilibrium.32 Thus, some

assumption needs to be relaxed in order to prove convergence for general games.

An insight due to Fudenberg and Kreps (1993) is that a converse for the case of

Nash equilibrium can be obtained by relaxing optimality and allowing players to make

vanishing optimization mistakes.

Definition 8. A policy profile φ is asymptotically optimal if there exists a positive

real-valued sequence (εt)t with limt→∞ εt = 0 such that, for all i ∈ I, all (µi, si, ξi) ∈

∆(Θi)× S
i × Ξi, all t, and all xi ∈ X

i,

EQ̄i

µi
(·|si,xi

t)

[

πi(xit, Y
i)
]

+ ξi(xit) ≥ EQ̄i

µi (·|s
i,xi)

[

πi(xi, Y i)
]

+ ξi(xi)− εt

where xit = φi
t(µ

i, si, ξi).

Fudenberg and Kreps’ (1993) insight is to suppose that players are convinced early

on that the equilibrium strategy is the right one to play, and continue to play this

strategy unless they have strong enough evidence to think otherwise. And, as they

continue to play the equilibrium strategy, the evidence increasingly convinces them

that it is the right thing to do. This idea, however, need not work in the case of

Berk-Nash equilibrium. The reason is that, even if players always follow the same

strategy, beliefs need not converge if the model is misspecified. The following example

shows this point in a context without actions.

Example (Berk, 1966). An unbiased coin is tossed every period and the agent

believes that the probability of heads is either 1/4 or 3/4, but not 1/2. The agent,

who takes no actions in this example, observes the outcome of each coin toss and

updates her (non-doctrinaire) prior. In this case, both 1/4 and 3/4 are equidistant to

the true distribution 1/2, and it is straightforward to show that the agent’s beliefs do

not settle down. �

In this example, there is a failure of weak identification (see Definition 3). We can

show, however, that if the game is weakly identified, then Lemma 2 and Fudenberg and

Kreps’ (1993) insight can be combined to obtain the following converse of Theorem 2.

32Jordan (1993) shows that non-convergence is robust to the choice of initial conditions; Benaim
and Hirsch (1999) replicate this finding for the perturbed version of Jordan’s game. In the game-
theory literature, general global convergence results have only been obtained in special classes of
games—e.g. zero-sum, potential, and supermodular games (Hofbauer and Sandholm, 2002).

32



Theorem 3. Suppose that σ is an equilibrium of a perturbed game that is weakly iden-

tified given σ. Then there exists a profile of priors with full support and an asymptot-

ically optimal policy profile φ such that σ is strongly stable under φ.

Proof. See Online Appendix C.33

5 Discussion

importance of assumption 1. The following example illustrates that equilib-

rium may fail to exist and steady-state behavior need not be characterized by equi-

librium if Assumption 1 does not hold. A single agent chooses action x ∈ {A,B} and

obtains an outcome y ∈ {0, 1}. The agent’s model is parameterized by θ = (θA, θB)

, where Qθ(y = 1 | A) = θA and Qθ(y = 1 | B) = θB. The true model is

θ0 = (1/4, 3/4). The agent, however, is misspecified and considers only θ1 = (0, 3/4)

and θ2 = (1/4, 1/4) to be possible, i.e., Θ = {θ1, θ2}. In particular, Assumption 1(iii)

fails for parameter value θ1.

Suppose that A is uniquely optimal for parameter value θ1 and B is uniquely

optimal for θ2 (further details about payoffs are not needed). Then a Berk-Nash

equilibrium does not exist. If A is played with positive probability, then θ1 yields a

wKL divergence of infinity (i.e., θ1 cannot rationalize y = 1 given A) and θ2 is the

best fit. But then A is not optimal. If B is played with probability 1, then θ1 is the

best fit; but then B is not optimal.

In addition, Lemma 2 fails: Suppose that the path of play converges to pure

strategy B. The best fit given B is θ1, but it is not necessarily true that the posterior

converges weakly to a degenerate probability distribution on θ1. The reason is that it

is possible that, along the path of play, the agent tried action A and observed y = 1,

in which case the posterior would immediately assign probability 1 to θ2.

This example is a bit contrived, and, in general, Assumption 1(iii) seems fairly

mild. For example, this assumption (hence the results in the paper) would be satisfied

here if, for some ε̄ > 0, the parameter values θ = (ε, 3/4), for all 0 < ε ≤ ε̄, were also

included in Θ.

forward-looking agents. In the dynamic model, we assumed for simplicity

that all players are myopic and maximize current period’s payoffs given current beliefs.

33Note that the requirement that the priors have full support makes the statement non trivial.
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In Online Appendix D, we extend Theorem 2 to the case of non-myopic players who

solve a dynamic optimization problem with beliefs as a state variable. A key fact used

in the proof of Theorem 2 is that myopically optimal behavior is continuous in beliefs.

Non-myopic optimal behavior is also continuous in beliefs, but the issue is that it may

not coincide with myopic behavior in the steady state if players still have incentives to

experiment. We prove the extension by requiring that the game is weakly identified,

which guarantees that players have no incentives to experiment in steady state.

stationarity of subjective models. An important assumption in our frame-

work is that players act as if they were facing a stationary environment. But, except

in single-agent settings, the environment may not be stationary if other players are

learning and experimenting with different strategies. There are a few reasons, how-

ever, why the assumption of stationary subjective models is sensible. The assumption

is exactly correct in steady state and approximately correct near the steady state.

Also, it is exactly correct in the construction we rely on to prove Theorem 3. More-

over, stationary models are a relatively simple and parsimonious way for people to

model their environment. Each player in our framework has a stationary model of

other players’ actions, but does not have a model to explain why other players take

certain actions. If, in contrast, one player had a model of how other players make

decisions, then the equilibrium concept would likely differ from Nash (or any related

concept, such as Berk-Nash). For example, if one player correctly believes that all

other players are like the players assumed in this paper, then she can influence their

behavior and the right notion of steady state would be more akin to a Stackelberg

equilibrium. Whether Nash (and Berk-Nash) or Stackelberg (and related concepts)

are appropriate or not is likely to depend on the application. While our paper focuses

on extending Nash to misspecified settings, it would be interesting to do the same for

Stackelberg and related concepts.34

large population models. Our framework assumes that there is a fixed num-

ber of players but, by focusing on stationary subjective models, rules out aspects of

“repeated games” where players attempt to influence each others’ play. Alternatively,

we can derive our results in a setting in which there is a population of a large number of

agents in the role of each player i ∈ I. In this case, agents have negligible incentives to

34If more than one player had a model of how other players make decisions, then we would have
the well-known infinite regress problem.
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influence each other’s play, and it is essentially optimal for agents to neglect repeated

game considerations. We discuss some variants of population models that differ in

the matching technology and feedback (the formal details are in Online Appendix E).

The right variant of population model will depend on the specific application.35

Single pair model : Each period a single pair of players is randomly selected from

each of the i populations to play the game. At the end of the period, the signals,

actions, and outcomes of their own population are revealed to everyone.36 Steady-

state behavior in this case corresponds exactly to the notion of Berk-Nash equilibrium

described in the paper.

Random matching model : Each period, all players are randomly matched and

observe only feedback from their own match. We now modify the definition of Berk-

Nash equilibrium to account for this random-matching setting. The idea is similar to

Fudenberg and Levine’s (1993) definition of a heterogeneous self-confirming equilib-

rium. Now each agent in population i can have different experiences and, hence, have

different beliefs and play different strategies in steady state.

For all i ∈ I, define

BRi(σ−i) =
{

σi : σi is optimal given µi ∈ ∆
(

Θi(σi, σ−i)
)}

.

Note that σ is a Berk-Nash equilibrium if and only if σi ∈ BRi(σ−i) for all i ∈ I.

Definition 9. A strategy profile σ is a heterogeneous Berk-Nash equilibrium of

game G if, for all i ∈ I, σi is in the convex hull of BRi(σ−i).

Intuitively, a heterogenous equilibrium strategy σi is the result of convex combi-

nations of strategies that belong to BRi(σ−i); the idea is that each of these strategies

is followed by a segment of the population i.37

35In some cases, it may be unrealistic to assume that players are able to observe the private signals
of previous generations, so some of these models might be better suited to cases with public, but not
private, information.

36Alternatively, we can think of different incarnations of players born every period who are able to
observe the history of previous generations.

37Unlike the case of heterogeneous self-confirming equilibrium, a definition where each action in
the support of σ is supported by a (possibly different) belief would not be appropriate here. The
reason is that BRi(σ−i) might contain only mixed, but not pure strategies (e.g., Example 1).
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Random-matching model with population feedback : Each period all players are

randomly matched; at the end of the period, each player in population i observes the

signals, actions, and outcomes of their own population. Define

B̄R
i
(σi, σ−i) =

{

σ̂i : σ̂i is optimal given µi ∈ ∆
(

Θi(σi, σ−i)
)}

.

Definition 10. A strategy profile σ is a heterogeneous Berk-Nash equilibrium

with population feedback of game G if, for all i ∈ I, σi is in the convex hull of

B̄R
i
(σi, σ−i).

The main difference when players receive population feedback is that their beliefs

no longer depend on their own strategies but rather on the aggregate population

strategies.

lack of payoff information. In the setup, players are assumed to observe

their own payoffs. It is straightforward to relax this assumption by simply changing

the definition of optimality. Currently, the fact that payoffs are observed implies

that any belief µi ∈ ∆(Θi) of player i yields a unique expected utility function xi 7→

EQ̄i

µi(·|si,xi)
πi(xi, Y i). If payoffs are not observed, then a belief µi may yield a set

of expected utility functions, since an observed consequence may be associated with

several possible, unobserved payoffs. In that case, optimality given µi should be

defined as choosing a strategy that is best for any of the possible expected utility

functions associated with µi.38

Equilibrium stability and refinements. Theorems 2 and 3 leave open the

possibility of refinements. One natural refinement is to require exact, not asymptotic,

optimality, and to ask whether certain equilibria can be reached with positive prob-

ability. Another possible refinement is to follow Harsanyi (1973) and rule out those

equilibria that are not regular in the sense that they might not be approachable by

equilibrium sequences of perturbed games. These ideas have been extensively studied

in related contexts (e.g., Benaim and Hirsch (1999), Fudenberg and Levine (1993b),

38Of course, the definition of identification would also need to be changed to require not only that
there is a unique distribution that matches the observed data, but also that this unique distribu-
tion implies a unique expected utility function (the latter condition is satisfied in our setup by the
assumption that realized payoffs are observed).
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Doraszelski and Escobar (2010)), and we illustrate them in Online Appendix G in the

context of Example 2.1.

contingent plans and extensive-form games. In the timing of the objec-

tive game, player i first observes a signal si, then takes an action xi, and finally

observes a consequence (which can be interpreted as an ex post signal) yi. We can

consider an alternative timing where player i commits to a signal-contingent plan of

action (i.e., a strategy) and observes both the realized signal si and the consequence yi

ex post. These two timing choices are equivalent in our setup. This equivalence may

suggest that Berk-Nash equilibrium is also applicable to extensive-form games. This

is correct provided that players compete by choosing contingent plan of actions and

know the extensive form of the game. But the right approach is less clear if players

have a misspecified view of the extensive form (for example, they may not even know

the set of strategies available to them) or if players play the game sequentially (for

example, we would need to define and update beliefs at each information set). The

extension to extensive-form games is left for future work.

origin of misspecified models. We view our decision to take players’ misspec-

ifications as given and characterize the resulting behavior as a first step towards being

able to endogenize the subjective model. Some explanations for why agents may have

misspecified models include the use of heuristics (Tversky and Kahneman, 1973),

complexity (Aragones et al., 2005), the desire to avoid over-fitting the data (Al-Najjar

(2009), Al-Najjar and Pai (2013)), and costly attention (Schwartzstein, 2009).

It would be interesting to allow for non-Bayesian agents who are aware of the pos-

sibility of misspecification and conduct tests to detect it. These tests, which would

impose additional restrictions on beliefs, might provide an alternative way to endog-

enize misspecifications.39

non-bayesian learning. We showed that the assumption of Bayesian updating

implies that the appropriate notion of “distance” in the definition of equilibrium is

the (weighted) Kullback-Leibler divergence. It would be interesting to explore how

other, non-Bayesian assumptions on the belief updating process yield other notions of

distance.

39Such additional restrictions on beliefs are imposed, for example, by Arrow and Green (1973) and
Esponda (2008).
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relationship to bounded rationality literature. As we showed, several

instances of bounded rationality can be formalized via misspecified learning. A recent

literature has emphasized other instances of bounded rationality in solution concepts

that are potentially related to learning, such as sampling equilibrium (Osborne and

Rubinstein (1998), Spiegler (2006)), the inability to recognize patterns (Piccione and

Rubinstein (2003), Eyster and Piccione (2013)), valuation equilibrium (Jehiel and

Samet, 2007), sparse Nash equilibrium (Gabaix, 2012), and cursed expectations equi-

librium (Eyster et al., 2013). Of course, many instances of bounded rationality do

not seem naturally fitted to misspecified learning, such as the literature that studies

biases in information processing due to computational complexity (e.g., Rubinstein

(1986), Salant (2011)), bounded memory (e.g., Wilson, 2003), or self-deception (e.g.,

Bénabou and Tirole (2002), Compte and Postlewaite (2004)).

6 Conclusion

We propose and provide a foundation for an equilibrium framework that allows agents

to have misspecified views of their environment. Our framework unifies both standard

solution concepts (Nash and self-confirming equilibrium) and a recent literature on

bounded rationality and misspecified learning. It also provides a systematic approach

to studying certain aspects of bounded rationality, that, we hope, stimulates further

developments in this area.
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Appendix

Notation: Let Zi = {(si, xi, yi) ∈ S
i × X

i × Y
i : yi = f i(xi, x−i, ω), x−i ∈ X

−i, ω ∈ supp(p(· | si))}

be the set of feasible signals, actions, and consequences of player i. For each zi =

(si, xi, yi) ∈ Z
i, define P̄ i

σ(z
i) = Qi

σ(y
i | si, xi)σi(xi | si)pSi(si). We sometimes abuse

notation and write Qi
σ(z

i) ≡ Qi
σ(y

i | si, xi), and similarly for Qi
θi . We begin by proving

a few claims.

Claim A.1. There exists θi∗ ∈ Θi and K <∞ such that, for all σ ∈ Σ, Ki(σ, θi∗) ≤

K.

Proof. By Assumption 1 and finiteness of Zi, there exists θi∗ ∈ Θ and α ∈ (0, 1) such

that Qi
θi∗
(zi) ≥ α for all zi ∈ Z

i. Thus, for all σ ∈ Σ, K(σ, θ∗) ≤ −EP̄ i
σ
[lnQi

θ∗
(Zi)] ≤

− lnα.

Claim A.2. Fix any θi ∈ Θi and (σn)n such that Qi
θi(z

i) > 0 for all zi ∈ Z
i and

limn→∞ σn = σ. Then limn→∞Ki(σn, θ
i) = Ki(σ, θi).

Proof. Note that

Ki(σn, θ
i)−K(σ, θi) =

∑

zi∈Zi

(

P̄ i
σn
(zi) lnQi

σn
(zi)− P̄ i

σ(z
i) lnQi

σ(z
i)
)

+
∑

zi∈Zi

(

P̄ i
σ(z

i)− P̄ i
σn
(zi)
)

lnQi
θi(z

i). (23)

The first term in the RHS of (23) converges to zero because limn→∞ σn = σ, Qσ is

continuous, and x ln x is continuous for all x ∈ [0, 1]. The second term converges

to zero because limn→∞ σn = σ, P̄ i
σ is continuous, and lnQi

θi(z
i) ∈ (−∞, 0] for all

zi ∈ Z
i.

Claim A.3. Ki is (jointly) lower semicontinuous: Fix any (θin)n and (σn)n such

that limn→∞ θin = θi, limn→∞ σn = σ. Then lim infn→∞Ki(σn, θ
i
n) ≥ K(σ, θi).
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Proof. Note that

Ki(σn, θ
i
n)−K(σ, θi) =

∑

zi∈Zi

(

P̄ i
σn
(zi) lnQi

σn
(zi)− P̄ i

σ(z
i) lnQi

σ(z
i)
)

+
∑

zi∈Zi

(

P̄ i
σ(z

i) lnQi
θi(z

i)− P̄ i
σn
(zi) lnQi

θin
(zi)
)

. (24)

The first term in the RHS of (24) converges to zero (same argument as equation 23).

The proof concludes by showing that, for all zi ∈ Z
i,

lim inf
n→∞

−P̄ i
σn
(zi) lnQi

θin
(zi) ≥ −P̄ i

σ(z
i) lnQi

θi(z
i). (25)

Suppose lim infn→∞ −P̄ i
σn
(zi) lnQi

θin
(zi) ≤M <∞ (if not, (25) holds trivially). Then

either (i) P̄ i
σn
(zi) → P̄ i

σ(z
i) > 0, in which case (25) holds with equality, or (ii)

P̄ i
σn
(zi) → P̄ i

σ(z
i) = 0, in which case (25) holds because its RHS is zero (by con-

vention that 0 ln 0 = 0) and its LHS is always nonnegative.

Claim A.4. Suppose that ξi is a random vector in R
#Xi

with an absolutely con-

tinuous probability distribution Pξ. Then, for all (si, xi) ∈ S
i × X

i,

σi(µi)(xi | si) = Pξ

(

ξi : xi ∈ arg max
x̄i∈Xi

EQ̄i

µi (·|s
i,x̄i)

[

πi(x̄i, Y i)
]

+ ξi(x̄i)

)

is continuous as a function of µi.

Proof. Fix si ∈ S
i and xi ∈ X

i and define gi(θi, x̄i) = EQi

θi
(·|si,x̄i) [π

i(xi, Y i)− πi(x̄i, Y i)],

Gi(µi, x̄i) =
´

Θi g
i(θi, x̄i)µi(dθi) and ∆ξi(x̄i) = ξi(x̄i)− ξi(xi) for all x̄i ∈ X

i. Because

gi(·, x̄i) is continuous and bounded, then Gi(·, x̄i) is continuous under weak conver-

gence. Then, for every ε > 0, there exists Nε such that, for all n ≥ Nε,

∣

∣σi(µi
n)(x

i | si)− σi(µi)(xi | si)
∣

∣ ≤ Pξ

(

∆ξi(x̄i) ≤ Gi(µi, x̄i) + ε ∀x̄i
)

− Pξ

(

∆ξi(x̄i) ≤ Gi(µi, x̄i)− ε ∀x̄i
)

≤
∑

x̄i∈Xi

Pξ

(

Gi(µi, x̄i)− ε ≤ ∆ξi(x̄i) ≤ Gi(µi, x̄i) + ε
)

.

By absolute continuity of Pξ, the above expression goes to zero as ε goes to zero.
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Proof of Lemma 1. Part (i). Note that

Ki(σ, θi) = −
∑

(si,xi)∈Si×Xi

EQi
σ(·|s

i,xi)

[

ln
Qi

θi(Y
i | si, xi)

Qi
σ(Y

i | si, xi)

]

σi(x
i | si)pSi(si)

≥ −
∑

(si,xi)∈Si×Xi

ln

(

EQi
σ(·|s

i,xi)

[

Qi
θi(Y

i | si, xi)

Qi
σ(Y

i | si, xi)

])

σi(x
i | si)pSi(si) (26)

= 0,

where Jensen’s inequality and the strict concavity of ln(·) imply the inequality in (26)

as well as the fact that (26) holds with equality if and only if Qi
θi(· | s

i, xi) = Qi
θi(· |

si, xi) for all (si, xi) such that σi(x
i | si) > 0 (recall that, by assumption, pSi(s

i) > 0).

Part (ii). Θi(σ) is nonempty : By Claim A.1, there exists K < ∞ such that the

minimizers are in the constraint set {θi ∈ Θi : Ki(σ, θi) ≤ K}. Because Ki(σ, ·) is

continuous over a compact set, a minimum exists.

Θi(σ) is uhc: Fix any (σn)n and (θin)n such that limn→∞ σn = σ, limn→∞ θin = θi,

and θin ∈ Θi(σn) for all n. We want to show that θi ∈ Θi(σ) (so that Θi(·) has a

closed graph and hence, by compactness of Θi, it is uhc). Suppose, in order to obtain

a contradiction, that θi /∈ Θi(σ). Then, by Claim A.1, there exists θ̂i ∈ Θi and ε > 0

such that Ki(σ, θ̂i) ≤ Ki(σ, θi) − 3ε and Ki(σ, θ̂i) < ∞. By Assumption 1, there

exists (θ̂ij)j with limj→∞ θ̂ij = θ̂i and, for all j, Qi
θ̂ij
(zi) > 0 for all zi ∈ Z

i. We will

show that there is an element of the sequence, θ̂iJ , that “does better” than θin given

σn, which is a contradiction. Because Ki(σ, θ̂i) < ∞, continuity of Ki(σ, ·) implies

that there exists J large enough such that
∣

∣

∣
Ki(σ, θ̂iJ)−Ki(σ, θ̂i)

∣

∣

∣
≤ ε/2. Moreover,

Claim A.2 applied to θi = θ̂iJ implies that there exists Nε,J such that, for all n ≥ Nε,J ,
∣

∣

∣
Ki(σn, θ̂

i
J)−Ki(σ, θ̂iJ)

∣

∣

∣
≤ ε/2. Thus, for all n ≥ Nε,J ,

∣

∣

∣Ki(σn, θ̂
i
J)−Ki(σ, θ̂i)

∣

∣

∣ ≤
∣

∣

∣Ki(σn, θ̂
i
J)−Ki(σ, θ̂iJ)

∣

∣

∣+
∣

∣

∣Ki(σ, θ̂iJ)−Ki(σ, θ̂i)
∣

∣

∣

≤ ε

and, therefore,

Ki(σn, θ̂
i
J) ≤ Ki(σ, θ̂i) + ε ≤ Ki(σ, θi)− 2ε. (27)

SupposeKi(σ, θi) <∞. By Claim A.3, there exists nε ≥ Nε,J such thatKi(σnε
, θinε

) ≥
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Ki(σ, θi) − ε. This result, together with expression (27), implies that Ki(σnε
, θ̂iJ) ≤

K(σnε
, θinε

) − ε. But this contradicts θinε
∈ Θi(σnε

). Finally, if Ki(σ, θi) = ∞, Claim

A.3 implies that there exists nε ≥ Nε,J such that Ki(σnε
, θinε

) ≥ 2K, where K is the

bound defined in Claim A.1. But this also contradicts θinε
∈ Θi(σnε

).

Θi(σ) is compact : As shown above, Θi(·) has a closed graph, and so Θi(σ) is a

closed set. Compactness of Θi(σ) follows from compactness of Θi. �

Proof of Theorem 1. We prove the result in two parts. Part 1. We

show existence of equilibrium in the perturbed game (defined in Section 4.1). Let

Γ : ×i∈I∆(Θi) ⇒ ×i∈I∆(Θi) be a correspondence such that, for all µ = (µi)i∈I ∈

×i∈I∆(Θi),

Γ(µ) = ×i∈I∆
(

Θi(σ(µ))
)

,

where σ(µ) = (σi(µi))i∈I ∈ Σ and is defined as

σi(µi)(xi|si) = Pξ

(

ξi : xi ∈ arg max
x̄i∈Xi

EQ̄i

µi
(·|si,x̄i)

[

πi(x̄i, Y i)
]

+ ξi(x̄i)

)

(28)

for all (xi, si) ∈ X
i × S

i. Note that if there exists a µ∗ ∈ ×i∈I∆(Θi) such that

µ∗ ∈ Γ(µ∗), then σ∗ ≡ (σi(µi
∗))i∈I is an equilibrium of the perturbed game. We now

show that such µ∗ exists by checking the conditions of the Kakutani-Fan-Glicksberg

fixed point theorem: (i) ×i∈I∆(Θi) is compact, convex and locally convex Hausdorff:

The set ∆(Θi) is convex, and since Θi is compact ∆(Θi) is also compact under the weak

topology (Aliprantis and Border (2006), Theorem 15.11). By Tychonoff’s theorem,

×i∈I∆(Θi) is compact too. Finally, the set is also locally convex under the weak

topology.40; (ii) Γ has convex, nonempty images: It is clear that ∆ (Θi(σ(µ))) is

convex valued for all µ. Also, by Lemma 1, Θi(σ(µ)) is non-empty for all µ; (iii)

Γ has a closed graph: Let (µn, µ̂n)n be such that µ̂n ∈ Γ(µn) and µn → µ and

µ̂n → µ̂ (under the weak topology). By Claim A.4, µi 7→ σi(µi) is continuous. Thus,

σn ≡ (σi(µi
n))i∈I → σ ≡ (σi(µi))i∈I . By Lemma 1, σ 7→ Θi(σ) is uhc; thus, by Theorem

17.13 in Aliprantis and Border (2006), σ 7→ ×i∈I∆(Θi(σ)) is also uhc. Therefore,

µ̂ ∈ ×i∈I∆(Θi(σ)) = Γ(µ).

Part 2. Fix a sequence of perturbed games indexed by the probability of perturba-

tions (Pξ,n)n. By Part 1, there is a corresponding sequence of fixed points (µn)n, such

40This last claim follows since the weak topology is induced by a family of semi-norms of the form:
ρ(µ, µ′) = |Eµ[f ]− Eµ′ [f ]| for f continuous and bounded for any µ and µ′ in ∆(Θi).
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that µn ∈ ×i∈I∆(Θi(σn)) for all n, where σn ≡ σi(µi
n, Pξ,n)(x

i|si) (see equation (28),

where we now explicitly account for the dependance on Pξ,n). By compactness, there

exist subsequences of (µn)n and (σn)n that converge to µ and σ, respectively. Since

σ 7→ ×i∈I∆(Θi(σ)) is uhc, then µ ∈ ×i∈I∆(Θi(σ)). We now show that if we choose

(Pξ,n)n such that, for all ε > 0,

lim
n→∞

Pξ,n

(∥

∥ξin
∥

∥ ≥ ε
)

= 0, (29)

then σ is optimal given µ in the unperturbed game–this establishes existence of equi-

librium in the unperturbed game. Suppose not, so that there exists i, si, xi, x̂i, and

ε > 0 such that σi(xi | si) > 0 and EQ̄i

µi
(·|si,xi) [π

i(xi, Y i)]+4ε ≤ EQ̄i

µi (·|s
i,x̂i) [π

i(x̂i, Y i)].

By continuity of µi 7→ Q̄i
µi and the fact that limn→∞ µi

n = µi, there exists n1 such

that, for all n ≥ n1, EQ̄i

µin
(·|si,xi) [π

i(xi, Y i)] + 2ε ≤ EQ̄i

µi
n
(·|si,x̂i) [π

i(x̂i, Y i)]. It then

follows from (28) and (29) that limn→∞ σi(µi
n, Pξ,n)(x

i|si) = 0. But this contradicts

limn→∞ σi(µi
n, Pξ,n)(x

i|si) = σi(xi | si) > 0. �

Proof of Proposition 3. In the next paragraph, we prove the following result:

For all σ and θ̄iσ ∈ Θi(σ), it follows that

Qi
Ω,θ̄iσ

(ω′ | si) = pΩ(ω
′ | si) (30)

for all si ∈ S i, ω′ ∈ Ω and

Qi
X−i,θ̄iσ

(x−i | αi) =
∑

ω′′∈Ω

pΩ(ω
′′ | αi)

∏

j 6=i

σj(xj | sj(ω′′)) (31)

for all αi ∈ Ai, x−i ∈ X
−i. Equivalence between Berk-Nash and ABEE is then im-

mediate by using (30) and (31) and by noticing that expected utility of player i

with signal si and beliefs θ̄σ is given by
∑

ω′∈ΩQ
i
Ω,θ̄iσ

(ω′ | si)
∑

x−i∈X−i Qi
X−i,θ̄iσ

(x−i |

αi(ω′))πi(x̄i, x−i, ω′).

Proof of (30) and (31): note that the (negative of) wKL divergence of player i
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given σ can be written, up to a constant, as

=
∑

si

∑

w̃,x̃−i

ln
(

Qi
Ω,θi(ω̃ | si)Qi

X−i,θi(x̃
−i | αi(ω̃))

)

∏

j 6=i

σj(x̃j | sj(ω̃))p(ω̃ | si)p(si)

=
∑

si

∑

ω̃

ln
(

Qi
Ω,θi(ω̃ | si)

)

pΩ(ω̃ | si)p(si)

+
∑

x̃−i

∑

αi∈Ai

ln
(

Qi
X−i,θi(x̃

−i | αi)
)

∑

ω̃∈αi

∏

j 6=i

σj(x̃j | sj(ω̃))pΩ(ω̃).

It is straightforward to check that any parameter value that maximizes the above

expression satisfies (30) and (31). �

Proof of Statements in Lemma 2. Here, we prove the Claims used in the proof

of Lemma 2 in the text. For each zi ∈ Z
i, define freqit(z

i) = 1
t

∑t
τ=1 1zi(z

i
τ ). The

function Ki
t can be written as

Ki
t(h, θ

i) = κi1t(h) + κi2t(h) + κi3t(h, θ
i),

where

κi1t(h) = −
1

t

t
∑

τ=1

∑

zi∈Zi

(

1zi(z
i
τ )− P̄ i

στ
(zi)
)

lnQi
στ
(zi),

κi2t(h) = −
1

t

t
∑

τ=1

∑

zi∈Zi

P̄ i
στ
(zi) lnQi

στ
(zi),

and

κi3t(h, θ
i) =

∑

zi∈Zi

freqit(z
i) lnQi

θi(z
i).

The statements made below hold almost surely in H, but we omit this qualification

in the proofs.

Claim 2.1. limt→∞Ki
t(h, θ

i) = −Ki(σ, θi) for all θi ∈ Θi, a.s. in H.

Proof: First, consider κi1t(h). Define, for all z
i ∈ Z

i,

lit(h, z
i) =

(

1zi(z
i
τ )− P̄ i

στ
(zi)
)

lnQi
στ
(zi) (32)

and Li
t(h, z

i) =
∑t

τ=1 τ
−1liτ (h, z

i). Fix any zi ∈ Z
i. We now show that Li

t(h, z
i)
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converges a.s. to an integrable, and, therefore, a.s. finite Li
∞(h, zi). In order to

show this, we use martingale convergence results. First, we show that (Li
t(h, z

i))t is

a martingale with respect to Pµ0,φ. Let ht denote the partial history until time t.

Observe that

EPµ0,φ(·|ht)

[

Li
t+1(h, z

i)
]

=
t
∑

τ=1

τ−1liτ (h, z
i) +

1

t+ 1
EPµ0,φ(·|ht)

[

lit+1(h, z
i)
]

=
t
∑

τ=1

τ−1liτ (h, z
i) +

1

t+ 1

(

lnQi
σt+1

(zi)
)

EPµ0,φ(·|ht)

[

1zi(z
i
t+1)− P̄ i

σt+1
(zi)
]

=Li
t(h, z

i).

Second, we show that (Li
t(·, z

i))t satisfies

sup
t
EPµ0,φ

[

|Li
t|
]

≤M (33)

for some finite constant M . Note that

EPµ0,φ

[

(

Li
t(h, z

i)
)2
]

=EPµ0,φ

[

t
∑

τ=1

τ−2
(

liτ (h, z
i)
)2

+ 2
∑

τ ′>τ

1

τ ′τ
liτ (h, z

i)liτ ′(h, z
i)

]

=

{

t
∑

τ=1

τ−2EPµ0,φ

[

(

liτ (h, z
i)
)2
]

+
∑

τ ′>τ

2

τ ′τ
EPµ0,φ

[

liτ (h, z
i)liτ ′(h, z

i)
]

}

=
t
∑

τ=1

τ−2EPµ0,φ

[

(

liτ (h, z
i)
)2
]

≤

t
∑

τ=1

τ−2EPµ0,φ

[

(

lnQi
στ
(zi)
)2
Qi

στ
(zi)
]

≤1

where the third line follows from the fact that, for τ ′ > τ , EPµ0,φ [l
i
τ (h, z

i)liτ ′(h, z
i)] =

EPµ0,φ

[

liτ (h, z
i)EPµ0,φ(·|hτ ) [l

i
τ ′(h, z

i)]
]

= 0 because (lit)t is a martingale difference se-

quence; the fourth line follows from the law of iterated expectations and the fact
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that

EPµ0,φ(·|hτ−1)

[

(

liτ (h, z
i)
)2
]

=
(

lnQi
στ
(zi)
)2
(

P̄ i
στ
(zi)−

(

P̄ i
στ
(zi)
)2
)

≤
(

lnQi
στ
(zi)
)2
P̄ i
στ
(zi)

≤
(

lnQi
στ
(zi)
)2
Qi

στ
(zi);

and the last inequality follows because (ln x)2x ≤ 1 for all x ∈ [0, 1], where we use the

convention that (ln 0)20 = 0. Therefore, (33) holds and, by Theorem 5.2.8 in Durrett

(2010), Li
t(h, z

i) converges a.s.-Pµ0,φ to a finite Li
∞(h, zi). Thus, by Kronecker’s lemma

(Pollard (2001), page 105)41, it follows that

lim
t→∞

∑

zi∈Zi

{

t−1

t
∑

τ=1

lnQi
στ
(zi)

(

1zi
(

ziτ
)

− P̄ i
στ
(zi)
)

}

= 0

a.s.-Pµ0,φ. Therefore,

lim
t→∞

κi1t(h) = 0. (34)

a.s.-Pµ0,φ. Next, consider κi2t(h). The assumption that limt→∞ σt = σ and continuity

of Qi
σ lnQ

i
σ in σ imply that

lim
t→∞

κi2t(h) = −
∑

(si,xi)∈Si×Xi

EQσ(·|si,xi)

[

lnQi
σ(Y

i | si, xi)
]

σi(xi | si)pSi(s
i). (35)

Finally, consider κi3t(h, θ
i). For all zi ∈ Z

i,

∣

∣freqt(z
i)− P̄ i

σ(z
i)
∣

∣ ≤

∣

∣

∣

∣

∣

1

t

t
∑

τ=1

(

1zi(z
i
τ )− P̄ i

στ
(zi)
)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

t

t
∑

τ=1

(

P̄ i
στ
(zi)− P̄ i

σ(z
i)
)

∣

∣

∣

∣

∣

. (36)

The first term in the RHS of (36) goes to zero (the proof is essentially identical to

the proof above that κi1 goes to zero, where equation (32) is replaced by lit(h, z
i) =

(

1zi(z
i
τ )− P̄ i

στ
(zi)
)

. The second term goes to zero because limt→∞ σt = σ and P̄ i
· is

41This lemma implies that for a sequence (ℓt)t if
∑

τ ℓτ < ∞, then
∑t

τ=1

bτ
bt
ℓτ → 0 where (bt)t is

a non-decreasing positive real valued that diverges to ∞. We can apply the lemma with ℓt ≡ t−1lt
and bt = t.
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continuous. Thus, for all ζ > 0, there exists t̂ζ such that, for all t ≥ t̂ζ ,

∣

∣freqit(z
i)− P̄ i

σ(z
i)
∣

∣ < ζ (37)

for all zi ∈ Z
i. Therefore,

lim
t→∞

κi3t(h, θ
i) =

∑

(si,xi)∈Si×Xi

EQσ(·|si,xi)

[

lnQi
θi(Y

i | si, xi)
]

σi(xi | si)pSi(s
i). (38)

Equations (34), (35), and (38) imply (20). �

Claims 2.2 and 2.3 : We need the following definition. For any ξ > 0, let Θi
σ,ξ be

the set such that θi ∈ Θi
σ,ξ if and only if Qi

θi(y
i | si, xi) ≥ ξ for all (si, xi, yi) such that

Qi
σ(y

i | si, xi)σi(xi | si)pSi(si) > 0.

Claim 2.2. There exists ξ∗ > 0 and Tξ∗ such that, for all t ≥ Tξ∗,

Ki
t(h, θ

i) < −(Ki
0(σ) + (3/2)αε)

for all θi /∈ Θi
σ,ξ.

Proof: Equations (34) and (35) imply that, for all γ > 0, there exists t̂γ such that,

for all t ≥ t̂γ,

∣

∣

∣

∣

∣

∣

κi1t(h) + κi2t(h) +
∑

(si,xi)∈Si×Xi

EQσ(·|si,xi)

[

lnQi
σ(Y

i | si, xi)
]

σi(xi | si)pSi(si)

∣

∣

∣

∣

∣

∣

≤ γ.

(39)

For all θi /∈ Θi
σ,ξ, let z

i
θi be such that P̄ i

σ(z
i
θi) > 0 and Qi

θi(z
i
θi) < ξ. By (37), there

exists tpiL/2 such for all t ≥ tpiL/2,

κi3t(h, θ
i) ≤ freqit(z

i
θi) lnQ

i
θi(z

i
θi)

≤
(

piL/2
)

ln ξ, (40)

for all θi /∈ Θi
σ,ξ, where p

i
L = minZi{P̄ i

σ(z
i) : P̄ i

σ(z
i) > 0}. Then (39) and (40) imply
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that, for all t ≥ t1 ≡ max{tpiL/2, t̂1},

Ki
t(h, θ

i) ≤ −
∑

(si,xi)∈Si×Xi

EQσ(·|si,xi)

[

lnQi
σ(Y

i | si, xi)
]

σi(xi | si)pSi(si) + 1 +
(

piL/2
)

ln ξ

≤ #Z
i + 1 +

(

qiL/2
)

ln ξ (41)

for all θi /∈ Θi
σ,ξ, where the second line follows from the facts that

−
∑

(si,xi)∈Si×Xi

EQσ(·|si,xi)

[

lnQi
σ(Y

i | si, xi)
]

σi(xi | si)pSi(si) ≤

−
∑

(si,xi)∈Si×Xi

∑

yi∈Yi

(

lnQi
σ(y

i | si, xi)
)

Qi
σ(y

i | si, xi)

and x ln(x) ∈ [−1, 0] for all x ∈ [0, 1]. In addition, the fact that Ki
0(σ) < ∞ and

αε ≤ ᾱ < ∞ for all ε ≤ ε̄ implies that the RHS of (41) can be made lower than

−(Ki
0(σ) + (3/2)αε) for some sufficiently small ξ∗. �

Claim 2.3. For all ξ > 0, there exists T̂ξ such that, for all t ≥ T̂ξ,

Ki
t(h, θ

i) < −(Ki
0(σ) + (3/2)αε)

for all θi ∈ Θi
σ,ξ\Θ

i
ε(σ).

Proof: For any ξ > 0, let ζξ = −αε/(#Z
i4 ln ξ) > 0. Then, by (37), there exists

t̂ζξ such that, for all t ≥ t̂ζξ ,

κi3t(h, θ
i) ≤

∑

{zi:P̄ i
σ(z

i)>0}

freqit(z
i) lnQi

θi(z
i)

≤
∑

{zi:P̄ i
σ(z

i)>0}

(

P̄ i
σ(z

i)− ζξ
)

lnQi
θi(z

i)

≤
∑

(si,xi)∈Si×Xi

EQσ(·|si,xi)

[

lnQi
θi(Y

i | si, xi)
]

σi(xi | si)pSi(si)−#Z
iζξ ln ξ,

=
∑

(si,xi)∈Si×Xi

EQσ(·|si,xi)

[

lnQi
θi(Y

i | si, xi)
]

σi(xi | si)pSi(si) + αε/4 (42)

for all θi ∈ Θi
σ,ξ (since Q

i
θi(z

i) ≥ ξ for all zi such that P̄ i
σ(z

i) > 0). Then (39) and (42)

53



imply that, for all t ≥ T̂ξ ≡ max{t̂ζξ , t̂αε/4},

Ki
t(h, θ

i) < −Ki(σ, θi) + αε/2 (43)

for all θi ∈ Θi
σ,ξ. Finally, (43) and (18) imply the desired result. �
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Online Appendix

A Relationship between correctly specified game

and identification

The following property says that each player believes (either correctly or not) that

the distribution over her consequences does not depend on her actions. Thus, players

believe that they will get feedback about their payoff-relevant consequences irrespec-

tive of the action they take. This condition rules out those types of incorrect beliefs

that are mainly due to lack of experimentation (but not due to other reasons, such as

having a misspecified model).42

Definition 11. A game has subjective consequences that are own-action in-

dependent if the subjective model satisfies: for all i ∈ I and all θi ∈ Θi, Qi
θi does

not depend on xi, i.e., Qi
θi(y

i | si, xi) = Qi
θi(y

i | si, x̂i) for all xi, x̂i, si, yi.

Remark 2. For the special case of subjective models derived from primitives piθi , f
i
θi ,

and σ−i
θi
, an equivalent definition of subjective consequences that are own-action in-

dependent is that, for each player i and parameter value θi, the feedback function f i
θi

does not depend on xi.

We conclude by establishing useful connections between these properties.

Proposition 4. A game that is correctly specified is weakly identified. A game that

is correctly specified and has subjective consequences that are own-action independent

is strongly identified.

Proof. Fix any σ and i ∈ I. Because the game is correctly specified, there exists θi∗ ∈

Θi such that Qi
θi∗

= Qi
σ. In particular, Ki(θi∗, σ) = 0. By Lemma 1, Ki(θi, σ) ≥ 0 for

all θi ∈ Θi; therefore, θi∗ ∈ Θi(σ). Now consider any θ̂i ∈ Θi(σ). Since Ki(θi∗, σ) = 0,

it must also be true that Ki(θ̂i, σ) = 0. Lemma 1 then implies that Qi
θ̂i
(· | si, xi) =

42Arrow and Green (1973) defined a similar condition and restricted their setup to satisfy this
condition.
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Qθi∗
(· | si, xi) for all (si, xi) such that σi(xi | si) > 0. Thus, a game that is correctly

specified is also weakly identified. Now suppose, in addition, that the game has own-

action independent feedback. Then it follows that Qi
θ̂i

does not depend on xi and,

therefore, Qi
θ̂i
(· | si, xi) = Qθi∗

(· | si, xi) for all (si, xi). Thus, the game is strongly

identified.

As illustrated by Example 2.5, a correctly specified game might be strongly iden-

tified even if it does not satisfy own-action independent feedback.

B Example: Trading with adverse selection

In this section, we provide the formal details for the trading environment in Example

2.6. Let p ∈ ∆(A × V) be the true distribution; we use subscripts, such as pA and

pV |A, to denote the corresponding marginal and conditional distributions. Let Y =

A×V∪{�} denote the space of observable consequences, where � will be a convenient

way to represent the fact that there is no trade. We denote the random variable taking

values in V ∪ {�} by V̂ . Notice that the state space in this example is Ω = A× V.

Partial feedback is represented by the function fP : X× A× V → Y such that

fP (x, a, v) =







(a, v) if a ≤ x

(a,�) if a > x
,

and full feedback by the function fF (x, a, v) = (a, v). In all cases, payoffs are given

by the function π : X× Y → R, where

π(x, a, v) =







v − x if a ≤ x

0 otherwise
.

The objective distribution for the case of partial feedback, QP , is, for all x ∈ X,

QP (a, v | x) = p(a, v)1{x≥a}(x) (44)

for all (a, v) ∈ A× V and

QP (a,� | x) = pA(a)1{x<a}(x) (45)
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for all a ∈ A.

The objective distribution for the case of full feedback, QF , is, for all x ∈ X,

QF (a, v | x) = p(a, v)

for all (a, v) ∈ A× V and QF (a,� | x) = 0 for all a ∈ A.

We suppose that the buyer knows the environment except for the distribution

p ∈ ∆(A × V). Then, for any distribution in the subjective model, Qθ, expected

profits from choosing x ∈ X are perceived to be

EQθ(·|x)[π(x,A, V̂ )] =
∑

(a,v)∈A×V

1{x≥a}(x) (v − x)Qθ(a, v | x). (46)

We suppose that the buyer has either one of two misspecifications over p captured

by the parameter spaces ΘI = ∆(A) × ∆(V) (i.e., independent beliefs) or ΘA =

×j∆(A)×∆(V) (i.e., analogy-based beliefs) defined in the main text. Thus, combining

feedback and parameter spaces, we have four cases to consider, and, for each case, we

write down the corresponding subjective model and the wKLD function.

Cursed equilibrium. Feedback is fF and the parameter space is ΘI . The subjective

model is, for all x ∈ X,

QC
θ (a, v | x) = θA(a)θV (v)

for all (a, v) ∈ A × V and QC
θ (a,� | x) = 0 for all a ∈ A, where θ = (θA, θV ) ∈ ΘI .

43

Note that this is an analogy-based game. From (46), expected profits from choosing

x ∈ X are perceived to be

PrθA (A ≤ x) (EθV [V ]− x) , (47)

where PrθA denotes probability with respect to θA and EθV denotes expectation with

respect to θV .

43In fact, the symbol � is not necessary for this example, but we keep it so that all feedback
functions are defined over the same space of consequences.
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Also, for all (pure) strategies x ∈ X, the wKLD function is44

KC(x, θ) = EQF (·|x)

[

ln
QF (A, V̂ | x)

QC
θ (A, V̂ | x)

]

=
∑

(a,v)∈A×V

p(a, v) ln
p(a, v)

θA(a)θV (v)
.

For each x ∈ X, θ(x) = (θA(x), θV (x)), where θA(x) = pA and θV (x) = pV is the unique

parameter value that minimizes KC(x, ·). Together with (47), we obtain equation (13)

in the main text.

Behavioral equilibrium (naive version). Feedback is fP and the parameter space

is ΘI . The subjective model is, for all x ∈ X,

QBE
θ (a, v | x) = θA(a)θV (v)1{x≥a}(x)

for all (a, v) ∈ A× V and

QBE
θ (a,� | x) = θA(a)1{x<a}(x)

for all a ∈ A, where θ = (θA, θV ) ∈ ΘI . From (46), expected profits from choosing

x ∈ X are perceived to be exactly as in equation (47).

Also, for all (pure) strategies x ∈ X, the wKLD function is

KBE(x, θ) = EQP (·|x)

[

ln
QP (A, V̂ | x)

QBE
θ (A, V̂ | x)

]

=
∑

{a∈A:a>x}

pA(a) ln
pA(a)

θA(a)
+

∑

{(a,v)∈A×V:a≤x}

p(a, v) ln
p(a, v)

θA(a)θV (v)
.

For each x ∈ X, θ(x) = (θA(x), θV (x)), where θA(x) = pA and θV (x)(v) = pV |A(v | A ≤

x) for all v ∈ V is the unique parameter value that minimizes KBE(x, ·). Together

with (47), we obtain equation (14) in the main text.

Analogy-based expectations equilibrium. Feedback is fF and the parameter space

44In all cases, the extension to mixed strategies is straightforward.
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is ΘA. The subjective model is, for all x ∈ X,

QABEE
θ (a, v | x) = θj(a)θV (v)

for all (a, v) ∈ A × Vj, all j = 1, ..., k, and QABEE
θ (a,� | x) = 0 for all a ∈ A, where

θ = (θ1, θ2, ..., θk, θV ) ∈ ΘA. Note that this is an analogy-based game. From (46),

expected profits from choosing x ∈ X are perceived to be

k
∑

j=1

PrθV (V ∈ Vj)
{

Prθj(A ≤ x | V ∈ Vj) (EθV [V | V ∈ Vj]− x)
}

. (48)

Also, for all (pure) strategies x ∈ X, the wKLD function is

KABEE(x, θ) = EQF (·|x)

[

ln
QF (A, V̂ | x)

QABEE
θ (A, V̂ | x)

]

=
k
∑

j=1

∑

(a,v)∈A×Vj

p(a, v) ln
p(a, v)

θj(a)θV (v)
.

For each x ∈ X, θ(x) = (θ1(x), ..., θk(x), θV (x)), where θj(x)(a) = pA|Vj
(a | V ∈ Vj) for

all a ∈ A and θV (x) = pV is the unique parameter value that minimizes KABEE(x, ·).

Together with (48), we obtain equation (15) in the main text.

Behavioral equilibrium (naive version) with analogy classes. It is natural to also

consider a case, unexplored in the literature, where feedback fP is partial and the

subjective model is parameterized by ΘA. Suppose that the buyer’s behavior has

stabilized to some price x∗. Due to the possible correlation across analogy classes,

the buyer might now believe that deviating to a different price x 6= x∗ affects her

valuation. In particular, the buyer might have multiple beliefs at x∗. To obtain a

natural equilibrium refinement, we assume that the buyer also observes the analogy

class that contains her realized valuation, whether she trades or not, and that Pr(V ∈

Vj, A ≤ x) > 0 for all j = 1, ..., k and x ∈ X.45 We denote this new feedback

45Alternatively, and more naturally, we could require the equilibrium to be the limit of a sequence
of mixed strategy equilibria with the property that all prices are chosen with positive probability.
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assumption by a function fP ∗
: X× A× V → Y

∗ where Y
∗ = A× V ∪ {1, ..., k} and

fP ∗

(x, a, v) =







(a, v) if a ≤ x

(a, j) if a > x and v ∈ Vj

.

The objective distribution given this feedback function is, for all x ∈ X,

QP ∗

(a, v | x) = p(a, v)1{x≥a}(x) (49)

for all (a, v) ∈ A× V and

QP ∗

(a, j | x) = pA|Vj
(a | V ∈ Vj)pV (Vj)1{x<a}(x) (50)

for all a ∈ A and j = 1, ..., k.

The subjective model is, for all x ∈ X,

QBEA
θ (a, v | x) = θj(a)θV (v)1{x≥a}(x)

for all (a, v) ∈ A× Vj and j = 1, ..., k, and

QBEA
θ (a, j | x) = θj(a)





∑

v∈Vj

θV (v)



 1{x<a}(x)

for all a ∈ A and j = 1, ..., k, where θ = (θ1, θ2, ..., θk, θV ) ∈ ΘA. In particular, from

(46), expected profits from choosing x ∈ X are perceived to be exactly as in equation

(48).

Also, for all (pure) strategies x ∈ X, the wKLD function is

KBEA(x, θ) =EQP∗
(·|x)

[

ln
QP ∗

(A, V̂ | x)

QBEA
θ (A, V̂ | x)

]

=
∑

{(a,j)∈A×{1,...,k}:a>x}

pA|Vj
(a | V ∈ Vj)pV (Vj) ln

pA|Vj
(a | V ∈ Vj)pV (Vj)

θj(a)
(

∑

v∈Vj
θV (v)

)

+
k
∑

j=1

∑

{(a,v)∈A×Vj :a≤x}

p(a, v) ln
p(a, v)

θj(a)θV (v)
.
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For each x ∈ X, θ(x) = (θ1(x), ..., θk(x), θV (x)), where θj(x)(a) = pA|Vj
(a | V ∈ Vj) for

all a ∈ A and θV (x)(v) = pV |A(v | V ∈ Vj, A ≤ x)pV (Vj) for all v ∈ Vj, j = 1, ..., k is

the unique parameter value that minimizes KBEA(x, ·). Together with (48), we obtain

ΠBEA(x, x∗) =
k
∑

i=j

Pr(V ∈ Vj) {Pr(A ≤ x | V ∈ Vj) (E [V | V ∈ Vj, A ≤ x∗]− x)} .

(51)

A price x∗ is an equilibrium if and only if x = x∗ maximizes (51).

C Proof of converse result: Theorem 3

Let (µ̄i)i∈I be a belief profile that supports σ as an equilibrium. Consider the following

policy profile φ = (φi
t)i,t: For all i ∈ I and all t,

(µi, si, ξi) 7→ φi
t(µ

i, si, ξi) ≡







ϕi(µ̄i, si, ξi) if maxi∈I ||Q̄
i
µi − Q̄i

µ̄i || ≤
1
2C
εt

ϕi(µi, si, ξi) otherwise,

where ϕi is an arbitrary selection from Ψi, C ≡ maxI
{

#Y
i × supXi×Yi |πi(xi, yi)|

}

<

∞, and the sequence (εt)t will be defined below. For all i ∈ I, fix any prior µi
0 with

full support on Θi such that µi
0(·|Θ

i(σ)) = µ̄i (where for any A ⊂ Θ Borel, µ(·|A) is

the conditional probability given A).

We now show that if εt ≥ 0 for all t and limt→∞ εt = 0, then φ is asymptotically

optimal. Throughout this argument, we fix an arbitrary i ∈ I. Abusing notation, let

U i(µi, si, ξi, xi) = EQ̄
µi

(·|si,xi) [π
i(xi, Y i)] + ξi(xi). It suffices to show that

U i(µi, si, ξi, φi
t(µ

i, si, ξi)) ≥ U i(µi, si, ξi, xi)− εt (52)

for all (i, t), all (µi, si, ξi), and all xi. By construction of φ, equation (52) is satisfied

if maxi∈I ||Q̄
i
µi − Q̄i

µ̄i || >
1
2C
εt. If, instead, maxi∈I ||Q̄

i
µi − Q̄i

µ̄i || ≤
1
2C
εt, then

U i(µ̄i, si, ξi, φi
t(µ

i, si, ξi)) = U i(µ̄i, si, ξi, ϕi(µ̄i, si, ξi)) ≥ U i(µ̄i, si, ξi, xi), (53)
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for all xi ∈ X
i. Moreover, for all xi,

∣

∣U i(µ̄i, si, ξi, xi)− U i(µi, si, ξi, xi)
∣

∣ =

∣

∣

∣

∣

∣

∣

∑

yi∈Yi

π(xi, yi)
{

Q̄i
µ̄i(yi | si, xi)− Q̄i

µi(yi | si, xi)
}

∣

∣

∣

∣

∣

∣

≤ sup
Xi×Yi

|πi(xi, yi)|
∑

yi∈Yi

∣

∣

{

Q̄i
µ̄i(yi | si, xi)− Q̄i

µi(yi | si, xi)
}∣

∣

≤ sup
Xi×Yi

|πi(xi, yi)| ×#Y
i × max

yi,xi,si

∣

∣Q̄i
µ̄i(yi | si, xi)− Q̄i

µi(yi | si, xi)
∣

∣

so by our choice of C, |U i(µ̄i, si, ξi, xi)− U i(µi, si, ξi, xi)| ≤ 0.5εt for all x
i. Therefore,

equation (53) implies equation (52); thus φ is asymptotically optimal if εt ≥ 0 for all

t and limt→∞ εt = 0.

We now construct a sequence (εt)t such that εt ≥ 0 for all t and limt→∞ εt = 0.

Let φ̄i = (φ̄i
t)t be such that φ̄i

t(µ
i, ·, ·) = ϕi(µ̄i, ·, ·) for all µi; i.e., φ̄i is a stationary

policy that maximizes utility under the assumption that the belief is always µ̄i. Let

ζ i(µi) ≡ 2C||Q̄i
µi − Q̄i

µ̄i || and suppose (the proof is at the end) that

P
µ0,φ̄( lim

t→∞
max
i∈I

|ζ i(µi
t(h))| = 0) = 1 (54)

(recall that P µ0,φ̄ is the probability measure over H induced by the policy profile φ̄; by

definition of φ̄, P µ0,φ̄ does not depend on µ0). Then by the 2nd Borel-Cantelli lemma

(Billingsley (1995), pages 59-60), for any γ > 0,
∑

t P
µ0,φ̄ (maxi∈I |ζ

i(µi
t(h))| ≥ γ) <

∞. Hence, for any a > 0, there exists a sequence (τ(j))j such that

∑

t≥τ(j)

P
µ0,φ̄

(

max
i∈I

|ζ i(µi
t(h))| ≥ 1/j

)

<
3

a
4−j (55)

and limj→∞ τ(j) = ∞. For all t ≤ τ(1), we set εt = 3C, and, for any t > τ(1), we set

εt ≡ 1/N(t), where N(t) ≡
∑∞

j=1 1{τ(j) ≤ t}. Observe that, since limj→∞ τ(j) = ∞,

N(t) → ∞ as t→ ∞ and thus εt → 0.

Next, we show that

Pµ0,φ
(

lim
t→∞

‖σt(h
∞)− σ‖ = 0

)

= 1,
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where (σt)t is the sequence of intended strategies given φ, i.e.,

σi
t(h)(x

i | si) = Pξ

(

ξi : φi
t(µ

i
t(h), s

i, ξi) = xi
)

.

Observe that, by definition,

σi(xi | si) = Pξ

(

ξi : xi ∈ arg max
x̂i∈Xi

EQ̄
µ̄i

(·|si,x̂i)

[

πi(x̂i, Y i)
]

+ ξi(x̂i)

)

.

Since ϕi ∈ Ψi, it follows that we can write σi(xi | si) = Pξ (ξ
i : ϕi(µ̄i, si, ξi) = xi).

Let H ≡ {h : ‖σt(h)− σ‖ = 0, for all t}. Note that it is sufficient to show that

Pµ0,φ (H) = 1. To show this, observe that

Pµ0,φ (H) ≥Pµ0,φ
(

∩t{max
i
ζ i(µt) ≤ εt}

)

=
∞
∏

t=τ(1)+1

Pµ0,φ
(

max
i
ζ i(µt) ≤ εt | ∩l<t {max

i
ζ i(µl) ≤ εl}

)

=
∞
∏

t=τ(1)+1

Pµ0,φ̄
(

max
i
ζ i(µt) ≤ εt | ∩l<t {max

i
ζ i(µl) ≤ εl}

)

=Pµ0,φ̄
(

∩t>τ(1){max
i
ζ i(µt) ≤ εt}

)

,

where the second line omits the term Pµ0,φ (maxi ζ
i(µt) < εt for all t ≤ τ(1)) because

it is equal to 1 (since εt ≥ 3C for all t ≤ τ(1)); the third line follows from the fact

that φi
t−1 = φ̄i

t−1 if ζ
i(µt−1) ≤ εt−1, so the probability measure is equivalently given by

P
µ0,φ̄; and where the last line also uses the fact that P µ0,φ̄ (maxi ζ

i(µt) < εt for all t ≤ τ(1)) =

1. In addition, for all a > 0,

P
µ0,φ̄

(

∩t>τ(1){max
i
ζ i(µt) ≤ εt}

)

=P
µ0,φ̄

(

∩n∈{1,2,...} ∩{t>τ(1):N(t)=n} {max
i
ζ i(µt) ≤ n−1}

)

≥1−
∞
∑

n=1

∑

{t:N(t)=n}

P
µ0,φ̄

(

max
i
ζ i(µt) ≥ n−1

)

≥1−
∞
∑

n=1

3

a
4−n = 1−

1

a
,

where the last line follows from (55). Thus, we have shown that Pµ0,φ (H) ≥ 1− 1/a

for all a > 0; hence, Pµ0,φ (H) = 1.
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We conclude the proof by showing that equation (54) indeed holds. Observe that

σ is trivially stable under φ̄. By Lemma 2, for all i ∈ I and all open sets U i ⊇ Θi(σ),

lim
t→∞

µi
t

(

U i
)

= 1 (56)

a.s. − P
µ0,φ̄ (over H). Let H denote the set of histories such that xit(h) = xi and

sit(h) = si implies that σi(xi | si) > 0. By definition of φ̄, P µ0,φ̄(H) = 1. Thus, it

suffices to show that limt→∞ maxi∈I |ζ
i(µi

t(h))| = 0 a.s.-P µ0,φ̄ over H. To do this, take

any A ⊆ Θ that is closed. By equation (56), for all i ∈ I, and almost all h ∈ H,

lim sup
t→∞

ˆ

1A(θ)µ
i
t+1(dθ) = lim sup

t→∞

ˆ

1A∩Θi(σ)(θ)µ
i
t+1(dθ).

Moreover,

ˆ

1A∩Θi(σ)(θ)µ
i
t+1(dθ) ≤

ˆ

1A∩Θi(σ)(θ)

{

∏t
τ=1Q

i
θ(y

i
τ | siτ , x

i
τ )µ

i
0(dθ)

´

Θi(σ)

∏t
τ=1Q

i
θ(y

i
τ | siτ , x

i
τ )µ

i
0(dθ)

}

=µi
0(A | Θi(σ))

=µ̄i(A),

where the first line follows from the fact that Θi(σ) ⊆ Θi; the second line follows from

the fact that, since h ∈ H, the fact that the game is weakly identified given σ implies

that
∏t

τ=1Q
i
θ(y

i
τ | siτ , x

i
τ ) is constant with respect to θ for all θ ∈ Θi(σ), and the last

line follows from our choice of µi
0. Therefore, we established that a.s.-P µ0,φ̄ over H,

lim supt→∞ µi
t+1(h)(A) ≤ µ̄i(A) for A closed. By the portmanteau lemma, this implies

that, a.s. -P µ0,φ̄ over H,

lim
t→∞

ˆ

Θ

f(θ)µi
t+1(h)(dθ) =

ˆ

Θ

f(θ)µ̄i(dθ)

for any f real-valued, bounded and continuous. Since, by assumption, θ 7→ Qi
θ(y

i |

si, xi) is bounded and continuous, the previous display applies to Qi
θ(y

i | si, xi), and

since y, s, x take a finite number of values, this result implies that limt→∞ ||Q̄i
µi
t(h)

−

Q̄i
µ̄i || = 0 for all i ∈ I a.s. -P µ0,φ̄ over H. �
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D Non-myopic players

In the main text, we proved the results for the case where players are myopic. Here,

we assume that players maximize discounted expected payoffs, where δi ∈ [0, 1) is the

discount factor of player i. In particular, players can be forward looking and decide to

experiment. Players believe, however, that they face a stationary environment and,

therefore, have no incentives to influence the future behavior of other players. We

assume for simplicity that players know the distribution of their own payoff perturba-

tions.

Because players believe that they face a stationary environment, they solve a (sub-

jective) dynamic optimization problem that can be cast recursively as follows. By the

Principle of Optimality, V i(µi, si) denotes the maximum expected discounted payoffs

(i.e., the value function) of player i who starts a period by observing signal si and by

holding belief µi if and only if

V i(µi, si) =

ˆ

Ξi

{

max
xi∈Xi

EQ̄
µi

(·|si,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si

[

V i(µ̂i, Si)
]]

}

Pξ(dξ
i),

(57)

where µ̂i = Bi(µi, si, xi, Y i) is the updated belief. For all (µi, si, ξi), let

Φi(µi, si, ξi) = arg max
xi∈Xi

EQ̄
µi

(·|si,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si

[

V i(µ̂i, Si)
]]

.

We use standard arguments to prove the following properties of the value function.46

Lemma 3. There exists a unique solution V i to the Bellman equation (57); this

solution is bounded in ∆(Θi) × S
i and continuous as a function of µi. Moreover, Φi

is single-valued and continuous with respect to µi, a.s.- Pξ.

Proof. We first show that

ξi 7→ max
xi∈Xi

EQ̄i

µi (·|s
i,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si

[

H i(Bi(µi, si, xi, Y i), Si)
]]

is measurable for anyH i ∈ L∞(∆(Θi)×S
i) and any (µi, si). It suffices to check that set

of the form
{

ξi : maxxi∈Xi EQ̄i

µi
(·|si,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si
[H i(Bi(µi, si, xi, Y i), Si)]

]

< a
}

46Doraszelski and Escobar (2010) study a similarly perturbed version of the Bellman equation.
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is measurable for any a ∈ R. It is easy to see that this set is of the form

∩xi∈Xi

{

ξi : EQ̄i

µi
(·|si,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si

[

H i(Bi(µi, si, xi, Y i), Si)
]]

< a
}

.

Each set in the intersection is trivially (Borel) measurable, therefore the intersection

(of finitely many) of them is also measurable.

We now define the Bellman operator H i ∈ L∞(∆(Θi)× S
i) 7→ T i[H i] where

T i[H i](µi, si) ≡

ˆ

Ξi

{

max
xi∈Xi

EQ̄i

µi (·|s
i,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si

[

H i(Bi(µi, si, xi, Y i), Si)
]]

}

Pξ(dξ
i).

By our first result, the operator is well-defined. Moreover, since
´

||ξi||Pξ(dξ
i) < ∞

and πi is uniformly bounded, it follows that T i maps L∞(∆(Θi)× S
i) into itself. By

Blackwell’s sufficient conditions, there exists a unique V i ∈ L∞(∆(Θi)×S
i) such that

V i = T i[V i].

In order to establish continuity of V i, by standard arguments it suffices to show that

T i maps C(∆(Θi)×S
i) into itself, where C(∆(Θi)×S

i) ≡ {f ∈ L∞(∆(Θi)×S
i) : µi 7→

f(µi,si) is continuous, for all si}. Suppose that H i ∈ C(∆(Θi) × S
i). Since µi 7→

Bi(µi, si, xi, yi) is also continuous for all (si, xi, yi), by the Dominated convergence

theorem, it follows that µi 7→
´

Si
H i(Bi(µi, si, xi, yi), ŝi)pSi(dŝi) is continuous, for all

(si, xi, yi). This result and the fact that θi 7→ EQi

θi
(yi|si,xi)

[´

Si
H i(Bi(µ̃i, si, xi, yi), ŝi)pSi(dŝi)

]

is bounded and continuous (for a fixed µ̃i), readily implies that

µi 7→ EQ̄i

µi
(·|si,xi)

[

Ep
Si

[

H i(Bi(µi, si, xi, Y i), Si)
]]

is also continuous. This result and the fact that µi 7→ EQ̄i

µi (·|s
i,xi) [π

i(xi, Y i)] is contin-

uous (θi 7→
∑

yi∈Yi πi(xi, yi)Qi
θi(y

i|si, xi) is continuous and bounded), imply that T i

maps C(∆(Θi)× S
i) into itself.

The fact that Φi single-valued a.s.−Pξ, i.e., for all (µ
i, si), Pξ (ξ

i : #Φi(µi, si, ξi) > 1) =

0, follows because the set of ξi such that #Φi(µi, si, ξi) > 1 is of dimension lower than

#X
i and, by absolute continuity of Pξ, this set has measure zero.

To show continuity of µi 7→ Φi(µi, si, ξi), observe that, by the previous calculations,

(µi, xi) 7→ EQ̄i

µi
(·|si,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si
[V i(µ̂i, Si)]

]

is continuous (under the

product topology) for all si and a.s.− Pξ. Also, X
i is compact. Thus by the theorem

of the maximum, µi 7→ Φi(µi, si, ξi) is continuous, a.s.− Pξ.
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Without loss of generality, we restrict behavior to depend on the state of the

recursive problem. Optimality of a policy is defined as usual (with the requirement

that φi
t ∈ Φi for all t).

Lemma 2 implies that the support of posteriors converges, but posteriors need not

converge. We can always find, however, a subsequence of posteriors that converges.

By continuity of dynamic behavior in beliefs, the stable strategy profile is dynami-

cally optimal (in the sense of solving the dynamic optimization problem) given this

convergent posterior. For weakly identified games, the convergent posterior is a fixed

point of the Bayesian operator. Thus, the players’ limiting strategies will provide no

new information. Since the value of experimentation is non-negative, it follows that

the stable strategy profile must also be myopically optimal (in the sense of solving the

optimization problem that ignores the future), which is the definition of optimality

used in the definition of Berk-Nash equilibrium. Thus, we obtain the following char-

acterization of the set of stable strategy profiles when players follow optimal policies.

Theorem 4. Suppose that a strategy profile σ is stable under an optimal policy profile

for a perturbed and weakly identified game. Then σ is a Berk-Nash equilibrium of the

game.

Proof. Let φ denote the optimal policy function under which σ is stable. By Lemma

2, there exists H ⊆ H with Pµ0,φ (H) > 0 such that, for all h ∈ H, limt→∞ σt(h) = σ

and limt→∞ µi
t (U

i) = 1 for all i ∈ I and all open sets U i ⊇ Θi(σ); for the remainder

of the proof, fix any h ∈ H. For all i ∈ I, compactness of ∆(Θi) implies the existence

of a subsequence, which we denote as (µi
t(j))j, such that µi

t(j) converges (weakly) to

µi
∞ (the limit could depend on h). We now show that µi

∞ ∈ ∆(Θi(σ)). Suppose

not, so that there exists θ̂i ∈ supp(µi
∞) such that θ̂i /∈ Θi(σ). Then, since Θi(σ)

is closed (by Lemma 1), there exists an open set U i ⊃ Θi(σ) with closure Ū i such

that θ̂i /∈ Ū i. Then µi
∞(Ū i) < 1, but this contradicts the fact that µi

∞

(

Ū i
)

≥

lim supj→∞ µi
t(j)

(

Ū i
)

≥ limj→∞ µi
t(j) (U

i) = 1, where the first inequality holds because

Ū i is closed and µi
t(j) converges (weakly) to µ

i
∞.

Given that limj→∞ σt(j) = σ and µi
∞ ∈ ∆(Θi(σ)) for all i, it remains to show that,

for all i, σi is optimal for the perturbed game given µi
∞ ∈ ∆(Θi), i.e., for all (si, xi),

σi(xi | si) = Pξ

(

ξi : ψi(µi
∞, s

i, ξi) = {xi}
)

, (58)

13



where ψi(µi
∞, s

i, ξi) ≡ argmaxxi∈Xi EQ̄i

µi
∞

(·|si,xi) [π
i(xi, Y i)] + ξi(xi).

To establish (58), fix i ∈ I and si ∈ S
i. Then

lim
j→∞

σi
t(j)(h)(x

i|si) = lim
j→∞

Pξ

(

ξi : φi
t(j)(µ

i
t(j), s

i, ξi) = xi
)

= Pξ

(

ξi : Φi(µi
∞, s

i, ξi) = {xi}
)

,

where the second line follows by optimality of φi and Lemma 3. This implies that

σi(xi|si) = Pξ (ξ
i : Φi(µi

∞, s
i, ξi) = {xi}). Thus, it remains to show that

Pξ

(

ξi : Φi(µi
∞, s

i, ξi) = {xi}
)

= Pξ

(

ξi : ψi(µi
∞, s

i, ξi) = {xi}
)

(59)

for all xi such that Pξ (ξ
i : Φi(µi

∞, s
i, ξi) = {xi}) > 0. From now on, fix any such xi.

Since σi(xi | si) > 0, the assumption that the game is weakly identified implies that

Qi
θi1
(· | xi, si) = Qi

θi2
(· | xi, si) for all θi1, θ

i
2 ∈ Θ(σ). The fact that µi

∞ ∈ ∆(Θi(σ)) then

implies that

Bi(µi
∞, s

i, xi, yi) = µi
∞ (60)

for all yi ∈ Y
i. Thus, Φi(µi

∞, s
i, ξi) = {xi} is equivalent to

EQ̄
µi∞

(·|si,xi)

[

πi(xi, Y i) + ξi(xi) + δEp
Si

[

V i(µi
∞, S

i)
]

]

> EQ̄
µi∞

(·|si,x̃i)

[

πi(x̃i, Y i) + ξi(x̃i) + δEp
Si

[

V i(Bi(µi
∞, s

i, x̃i, Y i), Si)
]]

≥ EQ̄
µi∞

(·|si,x̃i)

[

πi(x̃i, Y i) + ξi(x̃i)
]

+ δEp
Si

[

V i(EQ̄
µi
∞

(·|si,x̃i)

[

Bi(µi
∞, s

i, x̃i, Y i)
]

, Si)
]

= EQ̄
µi∞

(·|si,x̃i)

[

πi(x̃i, Y i) + ξi(x̃i)
]

+ δEp
Si

[

V i(µi
∞, S

i)
]

for all x̃i ∈ X
i, where the first line follows by equation (60) and definition of Φi, the

second line follows by the convexity47 of V i as a function of µi and Jensen’s inequality,

and the last line by the fact that Bayesian beliefs have the martingale property. In

turn, the above expression is equivalent to ψ(µi
∞, s

i, ξi) = {xi}.

E Population models

Using arguments similar to the ones in the text, it is now straightforward to conclude

that the definition of heterogenous Berk-Nash equilibrium captures the steady state

47See, for example, Nyarko (1994), for a proof of convexity of the value function.
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of a learning environment with a population of agents in the role of each player. To

see the idea, let each population i be composed of a continuum of agents in the unit

interval K ≡ [0, 1]. A strategy of agent ik (meaning agent k ∈ K from population i) is

denoted by σik. The aggregate strategy of population (i.e., player) i is σi =
´

K
σikdk.

Random matching model. Suppose that each agent is optimizing and that, for all i,

(σik
t ) converges to σ

ik a.s. in K, so that individual behavior stabilizes.48 Then Lemma

2 says that the support of beliefs must eventually be Θi(σik, σ−i) for agent ik. Next,

for each ik, take a convergent subsequence of beliefs µik
t and denote it µik

∞. It follows

that µik
∞ ∈ ∆(Θi(σik, σ−i)) and, by continuity of behavior in beliefs, σik is optimal

given µik
∞. In particular, σik ∈ BRi(σ−i) for all ik and, since σi =

´

K
σikdk, it follows

that σi is in the convex hull of BRi(σ−i).

Random matching model with population feedback. Suppose that each agent is

optimizing and that, for all i, σi
t =
´

K
σik
t dk converges to σi. Then Lemma 2 says

that the support of beliefs must eventually be Θi(σi, σ−i) for any agent in population

i. Next, for each ik, take a convergent subsequence of beliefs µik
t and denote it µik

∞.

It follows that µik
∞ ∈ ∆(Θi(σi, σ−i)) and, by continuity of behavior in beliefs, σik is

optimal given µik
∞. In particular, σik ∈ ¯BRi(σ−i) for all i, k and, since σi =

´

K
σikdk,

it follows that σi is in the convex hull of ¯BRi(σ−i).

F Extension to non-finite space of consequences

In this section we extend Lemma 2 to the case where the state space Ω and the space of

consequences of each player i, Yi, are non-finite, Borel subsets of an Euclidean space.

The signal and action spaces continue to be finite. We assume that PΩ is absolutely

continuous with respect to the Lebesgue measure.49

Let Zi = {(si, xi, yi) ∈ S
i × X

i × Y
i : yi = f i(ω, xi, x−i), x−i ∈ X

−i, ω ∈ supp(p(· | si)}

be the set of feasible signals, actions, and consequences of player i. For each A ⊆ Y
i

48We need individual behavior to stabilize; it is not enough that it stabilizes in the aggregate. This
is natural, for example, if we believe that agents whose behavior is unstable will eventually realize
they have a misspecified model.

49It is straightforward to extend this section to the case where PΩ is absolutely continuous with
respect to some σ-finite measure ν.
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Borel,

Qi
σ(A | si, xi) =

ˆ

{(ω,x−i):f i(ω,xi,x−i)∈A}

µσ−i(dx−i|ω)PΩ(dω|s
i)

for all (si, xi) ∈ S
i×X

i, and ω 7→ µσ−i(·|ω) ∈ ∆(X−i) with µσ−i(x−i|ω) ≡
∑

s−i

∏

j 6=i σ
j(xj |

sj)p(s−i | ω). Define P̄ i
σ(A, s

i, xi) = Qi
σ(A | si, xi)σi(xi | si)pSi(si).

For any measurable function h : Yi → R and for any (si, xi) ∈ S
i × X

i, let

ˆ

A

h(y)Qi
σ(dy | si, xi) =

ˆ

{(ω,x−i):f i(ω,xi,x−i)∈A}

h(f i(ω, xi, x−i))µσ−i(dx−i|ω)PΩ(dω|s
i)

for any A ⊆ Y
i. For the case A = Y

i, the expression in the RHS becomes

ˆ

Ω

∑

x−i∈X−i

h(f i(ω, xi, x−i))µσ−i(x−i|ω)PΩ(dω|s
i).

Suppose that the density of Qi
σ(· | s

i, xi) exists, and denote it by qiσ(·|s
i, xi). We

sometimes abuse notation and write qiσ(z
i) ≡ qiσ(y

i | si, xi), and similarly for qiθi .

The following conditions are needed to extend the results.

Condition 1. (i) θ 7→ qiθ(f
i(ω, xi, x−i)|si, xi) is continuous a.s.-Lebesgue and for all

(si, x) ∈ S
i × X; (ii) for any θi ∈ Θi, there exists an open ball B(θi), such that

´

supθ′∈B(θi) |ln q
i
θ′(f

i(ω, xi, x−i)|si, xi)|PΩ(dω|s
i) <∞, for all (si, x) ∈ S

i×X; (iii) For

any θi ∈ Θi,
´

∣

∣ln qiθi(f
i(ω, xi, x−i)|si, xi)

∣

∣

2
PΩ(dω|s

i) <∞, for all (si, x) ∈ S
i × X.

Condition 2. (i) σ 7→ qiσ(·|s
i, xi) is continuous a.s.-Lebesgue for all (si, xi) ∈ S

i ×X
i;

(ii) there exists a l̄ : Yi → R+∪{∞} such that for any σ ∈ Σ, qiσ(·|s
i, xi)max{1, | ln qiσ(·|s

i, xi)|} ≤

l̄(·) a.s.-Lebesgue and for all (si, xi) ∈ S
i × X

i, and
´

Yi l̄(y)dy <∞.

Roughly, these conditions impose continuity and uniform-integrability-type restric-

tions of the log densities. Condition 1(ii) is analogous to assumption 2.1 in Bunke and

Milhaud (1998) and it implies that ln qiθ(f
i(ω, xi, x−i)|si, xi) is PΩ−integrable for all

(si, x) ∈ S
i × X, for all θ ∈ Θi.50 Condition 1(iii) is needed to establish (pointwise)

50Note that this assumption rules out the case in which the wKLD function is infinity, and it was
not required in the main text for the case of a finite set of consequences. A finite wKLD function
might rule out the case where a player believes her opponent can follow any possible pure strategy,
but this is not really an issue for practical purposes because we can restrict a player to believe that
her opponent chooses each strategy with probability at least ε > 0 and then take ε → 0.
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LLN-type results for 1
t

∑t
τ=1 (ln q

i
θ(y

i
τ |s

i
τ , x

i
τ )) using martingale convergence methods.

Condition 2(ii) is also needed to ensure uniform integrability of qiσ(·|s
i, xi) ln qiσ(·|s

i, xi)

and qiσ(·|s
i, xi).

The next condition ensures that the family of subjective densities is stochastic

equi-continuous. This condition is needed to show an uniform LLN-type result for

t−1
∑t

τ=1 log qθ(yτ |sτ , xτ ) and it is standard.

Condition 3. For any ε > 0 there exists a δ = δ(ε) > 0 such that

sup
||θ−θ′||≤δ

∣

∣qiθ(f
i(ω, xi, x−i)|si, xi)− qiθ′(f

i(ω, xi, x−i)|si, xi)
∣

∣ ≤ ε

a.s.-PΩ and for all (si, x) ∈ S
i × X.

In this section we letKi
t(h, θ

i) = −1
t

∑t
τ=1

(

ln
qiστ (y

i
τ |s

i
τ ,x

i
τ )

qi
θ
(yiτ |s

i
τ ,x

i
τ )

)

andKi(σ, θi) =
´

(

ln qiσ(y|s,x)

qi
θ
(y|s,x)

)

P̄ i
σ(dz).

The main results of this section are the following two Lemmas.

Lemma 4. For any θi ∈ Θi and any ǫ > 0, there exists a t(ǫ, θi) such that

∣

∣Ki
t(h, θ

i) +Ki(σ, θi)
∣

∣ ≤ ǫ

for all t ≥ t(ǫ, θi) a.s.-Pµ0,φ.

Henceforth, let ε > 0 and αε be as in the proof of Lemma 2

Lemma 5. There exists a t(αε) such that, for all t ≥ t(αε)

Ki
t(h, θ

i) ≤ −K0(σ)−
3

2
αε

for all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}.

These Lemmas extend the results in Claims 2.1 and 2.2-3 to the non-finite con-

sequence space. Given these Lemmas, the extension of Lemma 2 to the non-finite

consequence space follows from analogous steps to those in the Proof of Lemma 2 in

the text and therefore a formal proof is omitted.
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In order to proof these lemmas we need the following intermediate results (their

proof are relegated to the end of the section). Let ϕa(z
i, θ) ≡ ln qiθ(y|s

i, xi)1{qiθ(y
i|si, xi) ≥

a}+ln a1{qiθ(y
i|si, xi) < a} for any a ≥ 0 (we omit the i to ease the notational burden).

Also, fix a (σt)t and σ as in the statement of Lemma 2.

Lemma 6. For any a > 0:

(i) θ 7→ ϕa(z, θ) is continuous a.s.-P̄ i
σ.

(ii) There exists a mapping (yi, si, xi) 7→ ϕ̄a(y
i, si, xi), such that |ϕa(z

i, θ)| ≤ ϕ̄a(z
i)

and
´

Zi ϕ̄a(z
i)P̄ i

σ(dz
i) <∞.

(iii) For any ε > 0, there exists a δ′(ε, a) > 0 such that for any θ ∈ Θi

sup
θ′∈Θi|||θ−θ′||≤δ′(ε,a)

|ϕa(Z, θ)− ϕa(Z, θ
′)| < ε

a.s.-P̄ i
σt

for all t.

(iv) For any θi ∈ Θi,
´

Zi |ϕa(z
i, θ)|2P̄ i

σ(dz
i) <∞.

Lemma 7. For any ǫ > 0 and any θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}, there exists a t(ǫ, a, θ)

such that, for all t ≥ t(ǫ, a, θ)

1

t

t
∑

τ=1

ϕa(Zτ , θ)−

ˆ

ϕa(z, θ)P̄
i
στ
(dz) ≤ ǫ.

Lemma 8. For any ǫ > 0 and any θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}, there exists a t(ǫ, a, θ)

such that, for all t ≥ t(ǫ, a, θ)

1

t

t
∑

τ=1

ˆ

ϕa(z, θ)P̄
i
στ
(dz)−

ˆ

ϕa(z, θ)P̄
i
σ(dz) ≤ ǫ

Lemma 9. For any ǫ > 0, there exists a a(ǫ) such that, for all 0 < a ≤ a(ǫ)

ˆ

ϕa(z, θ)P̄
i
σ(dz)−

ˆ

ln qiθ(y|s, x)P̄
i
σ(dz) ≤ ǫ

for all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}.
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Lemma 10. For any ǫ > 0, there exists a to(ǫ) such that

∣

∣

∣

∣

∣

1

t

t
∑

τ=1

ln qiστ
(Y i

τ |S
i
τ , X

i
τ )−

ˆ

ln qiσ(y
i|si, xi)P̄ i

σ(dz)

∣

∣

∣

∣

∣

≤ ǫ

for all t ≥ to(ǫ).

Proof. [Proof of Lemma 4] Given Lemma 10 it only remains to show that For any

θi ∈ Θi and any ǫ > 0, there exists a t(ǫ, θi) such that

∣

∣

∣

∣

∣

1

t

t
∑

τ=1

ln qiθ(Y
i
τ |S

i
τ , X

i
τ )−

ˆ

(

ln qiθ(y|s, x)
)

P̄ i
σ(dz)

∣

∣

∣

∣

∣

≤ ǫ

for all t ≥ t(ǫ, θi) a.s.-Pµ0,φ.

In order to show this, we use martingale convergence results analogous to those in

the proof of Claim 2.1; thus we only present a sketch. Henceforth we omit the index

i. Let ℓτ (θ) ≡ ln qθ(Zτ , θ)−
´

ln qθ(z)Qστ
(dz). And let Lt(h, θ) =

∑t
τ=1 τ

−1ℓτ (θ). We

now show that Lt(h, θ) converges a.s. to an integrable L∞(h, θ).

First, it is easy to show that (Lt(h, θ))t is a martingale with respect to Pµ0,φ, i.e.

EPµ0,φ(·|ht) [Lt+1(h, θ)] = Lt(h, θ) . Second, we show that suptEPµ0,φ [max{Lt(h, θ), 0}] <

∞, by directly showing that suptEPµ0,φ [|Lt(h, θ)|] <∞. By the Jensen inequality it is

enough to bound EPµ0,φ

[

(Lt(h, θ))
2] uniformly in t. Moreover, by the same steps as in

the proof of Claim 2.1 one can show that EPµ0,φ

[

(Lt(h, θ))
2] ≤

∑t
τ=1 τ

−2EPµ0,φ

[

(ln qθ(Zτ ))
2]

. And, by iterated expectations

EPµ0,φ

[

(ln qθ(Zτ ))
2] =EPµ0,φ

[

∑

x−i

ˆ

Ω

(

ln qθ(f(ω,X
i, x−i), Si, X i, θ)

)2
µσ−i

t
(x−i|ω)PΩ(dω|S

i)

]

≤
∑

x−i

EPµ0,φ

[
ˆ

Ω

(

ln qθ(f(ω,X
i, x−i), Si, X i, θ)

)2
PΩ(dω|S

i)

]

which is finite by condition 1(iii).

Therefore, suptEPµ0,φ [max{Lt(h, θ), 0}] <∞ holds and, by Theorem 5.2.8 in Dur-

rett (2010), Lt(h, θ) converges a.s.-P
µ0,φ to L∞(h, θ). Let H be the set of h for which

Lt(h, θ) converges to L∞(h, θ) and L∞(h, θ) < ∞. Since L∞(h, θ) is Pµ0,φ-integrable,
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H has probability 1 under Pµ0,φ. For any h ∈ H, by Kronecker’s lemma (Pollard

(2001), page 105)51, 1
t

∑t
τ=1 ℓτ (θ) → 0 and thus the desired result follows.

Proof. [Proof of Lemma 5] We show that: For any ǫ > 0, there exists a t(ǫ) such that,

for all t ≥ t(ǫ)

Ki
t(h, θ

i) ≤ − inf
θ∈{θ∈Θ|d(σ,θ)≥ε}

Ki(σ, θi) + 2ǫ

for all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}. This is sufficient since by continuity of Ki(σ, ·),

Ki(σ, θi) ≥ K0(σ) + 2αε for any θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}. Thus by choosing ǫ = αε

4

it follows that

Ki
t(h, θ

i) ≤ −K0(σ)− 2αε + 2ǫ = −K0(σ)−
3

2
αε.

Let a ≡ a(0.25ǫ) as in Lemma 9. We divide the proof in several steps and through-

out the proof we omit the dependence on i to ease the notational burden.

STEP 1. Note that {θ ∈ Θ | d(σ, θ) ≥ ε} is compact. Consider the following open

cover of the set: {θ | ||θ−θ′|| < 2−jδ} for all θ′ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε} and j = 1, 2, ...

. Where δ = δ′(0.25ǫ, a) and δ′ is as in Lemma 6(iii). By compactness, there exists a

finite sub-cover: B1 ≡ {θ | ||θ − θ1|| < 2−j1δ}, ...., BK ≡ {θ | ||θ − θK || < 2−jKδ} of K

elements. Note that K only depends on δ and thus only on ǫ (note that a = a(0.25ǫ))

(actually, it also depends on ε, but this is considered fixed).

STEP 2. We now show that: There exists a t(ǫ) such that, for all t ≥ t(ǫ)

1

t

t
∑

τ=1

(− ln qθ(Yτ |Sτ , Xτ )) ≥ inf
θ∈{θ∈Θ|d(σ,θ)≥ε}

ˆ

(− ln qθ(y|s, x)) P̄
i
σ(dz)− ǫ

for all t ≥ t∗(ǫ) and all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}. Or equivalently,

1

t

t
∑

τ=1

(ln qθ(Yτ |Sτ , Xτ )) ≤ sup
θ∈{θ∈Θ|d(σ,θ)≥ε}

ˆ

(ln qθ(y|s, x)) P̄
i
σ(dz) + ǫ

51This lemma implies that for a sequence (ℓt)t if
∑

τ ℓτ < ∞, then
∑t

τ=1

bτ
bt
ℓτ → 0 where (bt)t is

a non-decreasing positive real valued that diverges to ∞. We can apply the lemma with ℓt ≡ t−1lt
and bt = t.
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for all t ≥ t∗(ǫ) and all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}.

First note that ln qθ(y|s, x) ≤ ϕa(z, θ) for all a ≥ 0. And thus using the construc-

tion in step 1,

sup
θ∈{θ∈Θ|d(σ,θ)≥ε}

1

t

t
∑

τ=1

ln qθ(Yτ |Sτ , Xτ ) ≤ max
k=1,...,K

1

t

t
∑

τ=1

sup
θ∈Bk

ϕa(Zτ , θ)

≤ max
k=1,...,K

1

t

t
∑

τ=1

ϕa(Zτ , θk)

+ max
k=1,...,K

1

t

t
∑

τ=1

sup
θ∈Bk

|ϕa(Zτ , θ)− ϕa(Zτ , θk)|

≤ max
k=1,...,K

1

t

t
∑

τ=1

{

ϕa(Zτ , θk)−

ˆ

ϕa(z, θk)P̄
i
στ
(dz)

}

+ max
k=1,...,K

1

t

t
∑

τ=1

ˆ

ϕa(z, θk)P̄
i
στ
(dz) + 0.25ǫ

where the last line follows from Lemma 6(iii) and the fact that for θ ∈ Bk , ||θ−θk|| < δ.

By Lemma 7 there exist a t1(k, ǫ)(= t(0.25ǫ, a, θk)) such that

1

t

t
∑

τ=1

{

ϕa(Zτ , θk)−

ˆ

ϕa(z, θk)P̄στ
(dz)

}

≤ 0.25ǫ

for all t ≥ t1(k, ǫ) and all k = 1, ..., K. Then

sup
θ∈{θ∈Θ|d(σ,θ)≥ε}

1

t

t
∑

τ=1

ln qθ(Yτ |Sτ , Xτ ) ≤ max
k=1,...,K

{

1

t

t
∑

τ=1

ˆ

ϕa(z, θk)P̄στ
(dz)−

ˆ

ϕa(z, θk)P̄σ(dz)

}

+ max
k=1,...,K

{
ˆ

ϕa(z, θk)P̄σ(dz)

}

+ 0.5ǫ

for all t ≥ t1 ≡ maxk=1,..,K t1(k, ǫ). By Lemma 8 there exist a t2(ǫ) ≥ t1 such that

1

t

t
∑

τ=1

ˆ

ϕa(z, θk)P̄στ
(dz)−

ˆ

ϕa(z, θk)P̄σ(dz) ≤ 0.25ǫ

21



for all t ≥ t2(ǫ) and all k = 1, ..., K. Thus

sup
θ∈{θ∈Θ|d(σ,θ)≥ε}

1

t

t
∑

τ=1

ln qθ(Yτ |Sτ , Xτ ) ≤ max
k=1,...,K

{
ˆ

ln qθk(y|s, x)P̄σ(dz)

}

+ max
k=1,...,K

{
ˆ

ϕa(z, θk)P̄σ(dz)−

ˆ

ln qθk(y|s, x)P̄σ(dz)

}

+ 0.75ǫ

for all t ≥ t2(ǫ). By Lemma 9, and our choice of a,

ˆ

ϕa(z, θk)P̄
i
σ(dz)−

ˆ

ln qθk(y|s, x)P̄σ(dz) ≤ 0.25ǫ.

And thus

sup
θ∈{θ∈Θ|d(σ,θ)≥ε}

1

t

t
∑

τ=1

ln qθ(Yτ |Sτ , Xτ ) ≤ max
k=1,...,K

{
ˆ

ln qθk(y|s, x)P̄σ(dz)

}

+ ǫ.

Since {θ1, ..., θK} ⊆ {θ ∈ Θ | d(σ, θ) ≥ ε} it follows that

sup
θ∈{θ∈Θ|d(σ,θ)≥ε}

1

t

t
∑

τ=1

ln qθ(Yτ |Sτ , Xτ ) ≤ sup
θ∈{θ∈Θ|d(σ,θ)≥ε}

ˆ

ln qθ(y|s, x)P̄σ(dz) + ǫ.

for all t ≥ t2(ǫ).

This result readily implies that:

1

t

t
∑

τ=1

(− ln qθ(Yτ |Sτ , Xτ )) ≥ inf
θ∈{θ∈Θ|d(σ,θ)≥ε}

ˆ

(− ln qθ(y|s, x)) P̄σ(dz)− ǫ

for all t ≥ t2(ǫ) and all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}.

STEP 3. By Lemma 10: There exists a to(ǫ) such that

∣

∣

∣

∣

∣

1

t

t
∑

τ=1

ln qστ
(Yτ |Sτ , Xτ )−

ˆ

ln qσ(y|s, x)P̄σ(dz)

∣

∣

∣

∣

∣

≤ ǫ

for all t ≥ to(ǫ). Therefore, by this and the result in step 2:

1

t

t
∑

τ=1

(

ln
qστ

(Yτ |Sτ , Xτ )

qθ(Yτ |Sτ , Xτ )

)

≥ inf
θ∈{θ∈Θ|d(σ,θ)≥ε}

ˆ

(

ln
qσ(y|s, x)

qθ(y|s, x)

)

P̄σ(dz)− 2ǫ
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for all t ≥ t(ǫ) ≡ max{t2(ǫ), t
o(ǫ)} and all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}.

F.1 Proofs of Supplementary Lemmas

In order to prove the intermediate lemmas, we need the following claims:

Claim 1. Ki is (jointly) continuous and finite: Fix any (θin)n and (σn)n such that

limn→∞ θin = θi, limn→∞ σn = σ. Then limn→∞Ki(σn, θ
i
n) = K(σ, θi).

Proof. We first show that Ki(σ, θ) =
´

Zi P̄
i
σ(dz

i) ln qiσ(z
i)−
´

Zi P̄
i
σ(dz

i) ln qiθi(z
i) < ∞.

Observe that for any θ ∈ Θi and σ,

ˆ

P̄ i
σ(dz

i) ln qiθi(z
i) =

∑

si,xi

∑

x−i

ˆ

Ω

(

− ln qiθ(f
i(ω, xi, x−i)|si, xi)

)

µσ−i(x−i|ω)PΩ(dω|s
i)σi(xi|si)pSi(si)

By condition 2(ii) this is clearly finite. Finally, observe that

ˆ

Zi

P̄ i
σ(dz

i) ln qiθi(z
i) =

∑

xi,si

{
ˆ

Yi

qiσ(y
i|si, xi) ln qiσ(y

i|si, xi)dyi
}

σi
n(x

i | si)pSi(si),

which by condition 1(ii)(iii) is finite.

We now show continuity of Ki,

Ki(σn, θ
i
n)−K(σ, θi) =

ˆ

Zi

(

P̄ i
σn
(dzi) ln qiσn

(zi)− P̄ i
σ(dz

i) ln qiσ(z
i)
)

+

ˆ

Zi

(

P̄ i
σ(dz

i) ln qiθi(z
i)− P̄ i

σn
(dzi) ln qiθin(z

i)
)

. (61)

The first term in the RHS converges to zero by by analogous steps to those in the

proof of Claim 2.

The proof concludes by showing that the second term in the RHS of (61) is such

that:

lim
n→∞

ˆ

P̄ i
σn
(dzi) ln qiθin(z

i) =

ˆ

P̄ i
σ(dz

i) ln qiθi(z
i). (62)

Observe that for any θ ∈ Θi and σ,

ˆ

P̄ i
σ(dz

i) ln qiθi(z
i) =

∑

si,xi

∑

x−i

ˆ

Ω

(

− ln qiθ(f
i(ω, xi, x−i)|si, xi)

)

µσ−i(x−i|ω)PΩ(dω|s
i)σi(xi|si)pSi(si).
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Since θin → θi, then eventually θin ∈ B(θi) (where B(θi) is that of condition 1(ii)).

Thus, by condition 1(ii) and the Dominated Convergence Theorem (DCT),

lim
n→∞

ˆ

Ω

(

− ln qiθ(f
i(ω, xi, x−i)|si, xi)

)

µσ−i(x−i|ω)PΩ(dω|s
i)

=

ˆ

Ω

lim
n→∞

(

− ln qiθn(f
i(ω, xi, x−i)|si, xi)

)

µσ−i(x−i|ω)PΩ(dω|s
i).

We note that θ 7→ − ln qiθ(f
i(ω, xi, x−i)|si, xi) is continuous a.s.-PΩ by condition 1(i)

(by this condition continuity is a.s.-Lebesgue, but since PΩ is absolutely continuous

with respect to Lebesgue, continuity also holds a.s.-PΩ) and it is also finite a.s−PΩ.

Thus, it follows that the RHS of the previous display equals

ˆ

Ω

(

− ln qiθ(f
i(ω, xi, x−i)|si, xi)

)

µσ−i(x−i|ω)PΩ(dω|s
i).

Since #X <∞ and #S
i <∞ the desired result follows.

Claim 2. Fix any θ ∈ Θi and σ ∈ Σ and (σn)n with limn→∞ σn = σ. Then limn→∞Ki(σn, θ) =

Ki(σ, θ).

Proof. Note that

Ki(σn, θ
i)−K(σ, θi) =

ˆ

Zi

(

P̄ i
σn
(dzi) ln qiσn

(zi)− P̄ i
σ(dz

i) ln qiσ(z
i)
)

+

ˆ

Zi

(

P̄ i
σ(dz

i)− P̄ i
σn
(dzi)

)

ln qiθi(z
i). (63)

The first term in the RHS of (63) can be written as

∑

xi,si

{
ˆ

Yi

(

qiσn
(yi|si, xi) ln qiσn

(yi|si, xi)− qiσ(y
i|si, xi) ln qiσ(y

i|si, xi)
)

dyi
}

σi
n(x

i | si)pSi(si)

+
∑

xi,si

{
ˆ

Yi

(

qiσ(y
i|si, xi) ln qiσ(y

i|si, xi)
)

dyi
}

{

σi(xi | si)− σi
n(x

i | si)
}

pSi(si)

≡ T1,n + T2,n

Note that σ 7→ qiσ(y
i|si, xi) is continuous (condition 2(i)) and so is x ln x, thus

lim
n→∞

qiσn
(yi|si, xi) ln qiσn

(yi|si, xi) = qiσ(y
i|si, xi) ln qiσ(y

i|si, xi)
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a.s-Lebesgue and for all (si, xi) ∈ S
i × X

i. By condition 2(ii) there exists a y 7→ l̄(y)

such that such that for any σ ∈ Σ, |qiσ(·|s
i, xi) ln qiσ(·|s

i, xi)| ≤ l̄(·) a.s.-Lebesgue and

for all (si, xi) ∈ S
i × X

i and
´

Yi l̄(y)dy < ∞ . Then, by applying the Dominated

Convergence Theorem (DCT) for each (si, xi), it follows that

lim
n→∞

ˆ

Yi

(

qiσn
(yi|si, xi) ln qiσn

(yi|si, xi)− qiσ(y
i|si, xi) ln qiσ(y

i|si, xi)
)

dyi = 0.

Thus, T1,n → 0. It is easy to see that |T2,n| ≤ #X
i
´

L̄i(y)dy||σi − σi
n|| and thus also

vanishes as n→ ∞.

The second term in the RHS of (63) can be written as

∑

xi,si

{
ˆ

Yi

ln qiθi(y
i|si, xi)

(

qiσn
(yi|si, xi)σi

n(x
i | si)− qiσ(y

i|si, xi)σi(xi | si)
)

dyi
}

pSi(si).

By condition 2(i) limn→∞ qiσn
(yi|si, xi)σi

n(y
i|si) = qiσ(y

i|si, xi)σi(yi|si) a.s-Lebesgue

and for all (si, xi) ∈ S
i × X

i. By condition 2(ii) |qiσ(y|s
i, xi)σi(xi|si)| ≤ l̄(y) a.s.-

Lebesgue and for all (si, xi). Also, since ln qiθi(y
i|si, xi) = ln qiθi(f

i(ω, xi, x−i)|si, xi) is

integrable (see remark below condition 1), it follows that | ln qiθi(y
i|si, xi)qiσ(y|s

i, xi)σi(xi|si)| ≤

| ln qiθi(y
i|si, xi)|l̄(yi) and is integrable. Thus by the DCT, the previous display con-

verges to 0.

We now present the proofs of the lemmas

Proof. [Proof of Lemma 6] (i) ϕa can be viewed as a composition function θ 7→

ϕa(z, θ) = Fa◦qθ(z) where Fa(t) = ln(t)1{t ≥ a}+a1{t < a}. Clearly Fa is continuous

and constant (equal to a) in a neighborhood of 0; this and condition 1(i) imply that

ϕa is continuous a.s.-Lebesgue and for all (s, x) ∈ S
i × X

i; thus is continuous a.s.-P̄ i
σ

(because PΩ is absolutely continuous w.r.t. Lebesgue).

(ii) Note that

ϕa(z
i, θ) ≤ | ln qiθ(y

i|si, xi)| = | ln qiθ(f
i(ω, xi, x−i)|si, xi)| ≤ sup

θ∈Θ
| ln qiθ(f

i(ω, xi, x−i)|si, xi)| ≡ q̄i(ω, si, x).

We now show that q̄i(·, si, x) is PΩ-integrable for all (s
i, x) ∈ S

i ×X . Take (B(θ))θ∈Θ

where B(θ) is as in condition 1(ii). By compactness of Θ, there exists a finite sub-cover
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B(θ1), ..., B(θK) for some K <∞ . Thus

ˆ

Ω

q̄i(ω, si, x)PΩ(dω) ≤
K
∑

k=1

ˆ

Ω

sup
θ∈B(θk)

| ln qiθ(f
i(ω, xi, x−i)|si, xi)|PΩ(dω)

and by condition 1(ii) this is finite. Since #X <∞, this holds uniformly in x ∈ X.

Also,

ϕa(z
i, θ) ≥ ln a

and thus, ϕ̂a(ω, s
i, x) ≡ max{q̄i(ω, si, x),− ln a} is such that

|ϕa(z
i, θ)| ≤ ϕ̂a(ω, s

i, x)

for zi = (f i(ω, xi, x−i), si, xi). Note that by condition 1(ii) and 2(ii),

∑

x−i

ˆ

Ω

ϕ̂a(ω, s
i, x)µσ−i(x−i|ω)PΩ(dω|s

i) =
∑

x−i

ˆ

Ω

max{q̄i(ω, si, x),− ln a}µσ−i(x−i|ω)PΩ(dω).

For a > 1, max{q̄i(ω, si, x),− ln a} ≤ max{q̄i(ω, si, x), 0} = q̄i(ω, si, x); and for

a ≤ 1, max{q̄i(ω, si, x),− ln a} ≤ q̄i(ω, si, x)− ln a. Note that
´

Ω
(− ln a)PΩ(dω) < ∞

is finite for all a > 0. Thus by this fact and integrability of q̄i(·, si, x), it follows that
∑

x−i

´

Ω
ϕ̂a(ω, s

i, x)µσ−i(x−i|ω)PΩ(dω|s
i) is finite.

Finally, for any zi = (yi, si, xi), let ϕ̄a(y
i, si, xi) = ϕ̂a(ω, s

i, x) for some (ω, x−i)

such that f i(ω, xi, x−i) = yi (there is always at least one pair). Since ϕ̂ ≥ 0, clearly

ˆ

Zi

ϕ̄a(z
i)P i

σ(dz
i) ≤

∑

x−i

ˆ

Ω

ϕ̂a(ω, s
i, x)µσ−i(x−i|ω)PΩ(dω|s

i)

and thus the desired result follows.

(iii) We first note that condition 3 states that:

∣

∣qiθ(f
i(ω, xi, x−i)|si, xi)− qiθ′(f

i(ω, xi, x−i)|si, xi)
∣

∣ ≤ ε′

for all θ and θ′ such that ||θ − θ′|| ≤ δ(ε′), a.s.-PΩ and for all (si, x) ∈ S
i × X. This

readily implies that
∣

∣qiθ(y
i|si, xi)− qiθ′(y

i|si, xi)
∣

∣ ≤ ε′

for all θ and θ′ such that ||θ− θ′|| ≤ δ(ε′), a.s.-P̄ i
σt

and for all (si, x) ∈ S
i×X and all t.
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Consider any θ and θ′ such that ||θ − θ′|| ≤ δ(ε′) where δ(ε′) is as in condition 3

and ε′ = aε. If qθ(y|s, x) < a and qθ′(y|s, x) < a, then clearly |ϕa(z, θ)−ϕa(z, θ
′)| < ε.

If qθ(y|s, x) ≥ a and qθ′(y|s, x) ≥ a (and suppose WLOG, qθ(y|s, x) > qθ′(y|s, x)),

then

|ϕa(z, θ)−ϕa(z, θ
′)| ≤ ϕa(z, θ)−ϕa(z, θ

′) ≤
1

qθ′(y|s, x)
(qθ(y|s, x)− qθ′(y|s, x)) ≤

1

a
aε = ε.

(because ln(t) − ln(t′) ≤ 1
t′
(t − t′)). Finally, qθ′(y|s, x) < a and qθ(y|s, x) ≥ a (the

reverse case is analogous), then

|ϕa(z, θ)− ϕa(z, θ
′)| ≤ ϕa(z, θ)− ϕa(z, θ

′) ≤
1

a
(qθ′(y|s, x)− qθ(y|s, x)) ≤

1

a
aε = ε

because ϕa(z, θ) = ln qθ(y|s, x) ≤ ln a+ 1
a
(qθ(y|s, x)− a) and a = ϕa(z, θ

′). Thus, the

desired result follows from condition 3 and δ′(ε, a) ≡ δ(aε).

(iv) From our previous calculations |ϕa(z
i, θ)| ≤ max{| ln qiθ(y

i|si, xi)|,− ln a}.

Hence, it suffices to show that max{| ln qiθ(·|·, ·)|
2, (ln a)2} is integrable. This follows

from similar algebra to the one in part (i) and condition 1(iii).

Proof. [Proof of Lemma 9] Clearly, {θ ∈ Θ | d(σ, θ) ≥ ε} is compact. Let Ga(θ) ≡
´

ϕa(z, θ)Qσ(dz). Observe that G0(θ) =
´

ln qθ(y|s, x)Qσ(dz).

Note that ϕa(z, θ) ≤ ϕa′(z, θ) for all a ≤ a′ and all (z, θ), and thus Ga(θ) ≤ Ga′(θ).

We now show that G0 is lower semi-continuous over {θ ∈ Θ | d(σ, θ) ≥ ε}, i.e.,

lim inf
θ→θ0

G0(θ) ≥

ˆ

lim inf
θ→θ0

ln qθ(y|s, x)Qσ(dz) =

ˆ

ln qθ0(y|s, x)Qσ(dz).

This (in fact, continuity) follows from Claim 1.

Ga is also continuous for a > 0. This follows from the fact that θ 7→ ϕa(z
i, θ) is

continuous by Lemma 6(i)(ii) and the DCT.

For any θ ∈ Θ,

Ga(θ) =

ˆ

ϕa(z, θ)Qσ(dz) =

ˆ

ln qθ(y|s, x)1{qθ(y|s, x) ≥ a}Qσ(dz) + ln a

ˆ

1{qθ(y|s, x) ≤ a}Qσ(dz)

≤

ˆ

ln qθ(y|s, x)1{qθ(y|s, x) ≥ a}Qσ(dz)
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because, for a < 1, ln a < 0 and
´

1{qθ(y|s, x) ≤ a}Qσ(dz) ≥ 0. Thus

lim
a→0

Ga(θ) ≤ lim
a→0

ˆ

ln qθ(y|s, x)1{qθ(y|s, x) ≥ a}Qσ(dz)

=

ˆ

lim
a→0

ln qθ(y|s, x)1{qθ(y|s, x) ≥ a}Qσ(dz)

=G0,

where the second line follows from the DCT and we can use this theorem because

| ln qθ(y|s, x)1{qθ(y|s, x) ≥ a}| ≤ | ln qθ(y|s, x)| and this is integrable (see the remark

below condition 1).

Since Ga(θ) ≥ G0(θ) this shows that (pointwise in) θ, Ga(θ) converges to G0(θ)

as a → 0. By Dini’s theorem (Dudley (2002), Theorem 2.4.10), this convergence is

uniform. That is, for any ǫ > 0, there exists a a(ǫ) such that, for all 0 < a ≤ a(ǫ)

|

ˆ

ϕa(z, θ)Qσ(dz)−

ˆ

ln qθ(y|s, x)Qσ(dz)| ≤ ǫ

for all θ ∈ {θ ∈ Θ | d(σ, θ) ≥ ε}.

Proof. [Proof of Lemma 8] Fix any ǫ > 0 and a > 0. Let

ˆ

ϕa(z, θ)P̄σt
(dz)−

ˆ

ϕa(z, θ)P̄σ(dz)

=
∑

x,s

ˆ

Y

ϕa(y, s, x, θ)Qσ(dy|s, x) {σt(x | s)− σ(x | s)} pS(s)

−
∑

x,s

ˆ

Y

ϕa(y, s, x, θ) {Qσ(dy|s, x)−Qσt
(dy|s, x)}σt(x | s)pS(s)

= T1t(θ) + T2t(θ).
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Regarding T1 note that

|T1t(θ)| ≤ ||σt − σ||
∑

x,s

ˆ

Y

|ϕa(y, s, x, θ)|Qσ(dy|s, x)pS(s)

≤ ||σt − σ||
∑

x,s

ˆ

Y

ϕ̄a(y, s, x)Qσ(dy|s, x)pS(s)

≤ ||σt − σ||C(a)

where the second and third lines follow from Lemma 6; with C(a) some constant

which might depend on a. We know that ||σt − σ|| → 0, thus T1t → 0. The fact that
´

ϕa(z, θ)P̄σt
(dz) converges to

´

ϕa(z, θ)P̄σ(dz), implies that 1
t

∑t
τ=1

´

ϕa(z, θ)P̄στ
(dz)

does too.

It suffices to show that T2t(θ) ≤ ǫ for t sufficiently large; pointwise in θ ∈ Θ. First

observe that

|T2t(θ)| ≤
∑

xi,si

∣

∣

∣

∣

ˆ

Y

ϕa(y, s
i, xi, θ)

{

Qσ(dy|s
i, xi)−Qσt

(dy|si, xi)
}

∣

∣

∣

∣

since actions and signals belong to a finite discrete set, it suffices to show that the

RHS vanishes pointwise in si, xi. Observe that

ˆ

Y

ϕa(y
i, si, xi, θ)Qσ(dy

i|si, xi) =
∑

x−i

ˆ

Ω

ϕa(f(ω, x
i, x−i), si, xi, θ)µσ−i(x−i|ω)PΩ(dω|s

i).

Thus

|T2t(θ)| ≤

∣

∣

∣

∣

∣

∑

x−i

ˆ

Ω

ϕa(f(ω, x
i, x−i)si, xi, θ)

{

µσ−i(x−i|ω)− µσ−i
t
(x−i|ω)

}

PΩ(dω|s
i)

∣

∣

∣

∣

∣

≤
∑

x−i

sup
ω∈Ω

∣

∣

∣
µσ−i(x−i|ω)− µσ−i

t
(x−i|ω)

∣

∣

∣

ˆ

Ω

∣

∣ϕa(f(ω, x
i, x−i), si, xi, θ)

∣

∣PΩ(dω|s
i)

≤
∑

x−i

∣

∣

∣

∣

∣

∑

s−i

{

∏

j 6=i

σj(xj | sj)−
∏

j 6=i

σj
t (x

j | sj)

}∣

∣

∣

∣

∣

ˆ

Ω

∣

∣ϕa(f(ω, x
i, x−i), si, xi, θ)

∣

∣PΩ(dω|s
i).

Clearly
∣

∣

∣

∑

s−i

{

∏

j 6=i σ
j(xj | sj)−

∏

j 6=i σ
j
t (x

j | sj)
}∣

∣

∣
→ 0 for all x−i and thus it suffices

to show that
´

Ω
|ϕa(f(ω, x

i, x−i), si, xi, θ)|PΩ(dω|s
i) is finite. By the proof of Lemma

6(ii), this quantity is bounded above by max{q̄i(ω, si, x),− ln a} which is integrable.
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Proof. [Proof of Lemma 7] Let ℓτ (θ) ≡ ϕa(Zτ , θ)−
´

ϕa(z, θ)P̄στ
(dz). And let Lt(h, θ) =

∑t
τ=1 τ

−1ℓτ (θ). It suffices to show that Lt(h, θ) converges a.s. to an integrable

L∞(h, θ). By following the same steps as those in the proof of Lemma 4, it suffices to

show that EPµ0,φ

[

(ϕa(Zτ , θ))
2] <∞. This follows from Lemma 6(iv).

G Global stability: Example 2.1 (monopoly with

unknown demand).

Theorem 3 says that all Berk-Nash equilibria can be approached with probability 1

provided we allow for vanishing optimization mistakes. In this appendix, we illustrate

how to use the techniques of stochastic approximation theory to establish stability

of equilibria under the assumption that players make no optimization mistakes. We

present the explicit learning dynamics for the monopolist with unknown demand,

Example 2.1, and show that the unique equilibrium in this example is globally stable.

The intuition behind global stability is that switching from the equilibrium strategy

to a strategy that puts more weight on a price of 2 changes beliefs in a way that makes

the monopoly want to put less weight on a price of 2, and similarly for a deviation to

a price of 10.

We first construct a perturbed version of the game. Then we show that the learning

problem is characterized by a nonlinear stochastic system of difference equations and

employ stochastic approximation methods for studying the asymptotic behavior of

such system. Finally, we take the payoff perturbations to zero.

In order to simplify the exposition and thus better illustrate the mechanism driving

the dynamics, we modify the subjective model slightly. We assume the monopolist only

learns about the parameter b ∈ R; i.e., her beliefs about parameter a are degenerate at

a point a = 32 6= a0 and thus are never updated. Therefore, beliefs µ are probability

distributions over R, i.e., µ ∈ ∆(R).

Perturbed Game. Let ξ be a real-valued random variable distributed according

to Pξ; we use F to denote the associated cdf and f the pdf. The perturbed payoffs are
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given by yx− ξ1{x = 10}. Thus, given beliefs µ ∈ ∆(R), the probability of optimally

playing x = 10 is

σ(µ) = F (8a− 96Eµ[B]) .

Note that the only aspect of µ that matters for the decision of the monopolist is Eµ[B].

Thus, letting m = Eµ[B] and slightly abusing notation, we use σ(µ) = σ(m) as the

optimal strategy.

Bayesian Updating. We now derive the Bayesian updating procedure. We as-

sume that the the prior µ0 is given by a Gaussian distribution with mean and variance

m0, τ
2
0 .

52

We now show that, given a realization (y, x) and a prior N(m, τ 2), the posterior

is also Gaussian with a mean and variance specified below. To do this, note that the

posterior is given by (up to omitted constants)

e−0.5(y−a+bx)2e−0.5
(b−m)2

τ2

´

e−0.5(y−a+bx)2e−0.5
(b−m)2

τ2 db
.

After tedious but straightforward algebra one can show that this expression equals

(up to omitted constants)

exp



















−0.5

(

b−
(−(y−a)x+mτ−2)

(x2+τ−2)

)2

(x2 + τ−2)−1



















.

Thus, the posterior is also Gaussian with mean
(−(y−a)x+mτ−2)

(x2+τ−2)
and variance (x2 + τ−2)

−1
.

Hence, in order to keep track of the evolution of the sequence of posteriors (µt)t, it

suffices to keep track of the mean and variance, which evolve according to the following

52This choice of prior is standard in Gaussian settings like ours. As shown below this choice
simplifies the exposition considerably.
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law of motion:

mt+1 =

(

−(Yt+1 − a)Xt+1 +mtτ
−2
t

)

(

X2
t+1 + τ−2

t

)

= mt

(

τ−2
t

(

X2
t+1 + τ−2

t

)

)

+
−(Yt+1 − a)

Xt+1

(

X2
t+1

(

X2
t+1 + τ−2

t

)

)

= mt +

(

−(Yt+1 − a)

Xt+1

−mt

)(

X2
t+1

X2
t+1 + τ−2

t

)

,

and

τ 2t+1 =
1

(X2
t+1 + τ−2

t )
.

Nonlinear Stochastic Difference Equations and Stochastic Approximation.

As shown below, the Bayesian updating is fully characterized by the law of motion

of (mt)t and (τ 2t )t. We now cast this law of motion as a nonlinear system of stochas-

tic difference equations to which we can apply results from stochastic approximation

theory.

It is convenient to define rt+1 ≡ 1
t+1

(

τ−2
t +X2

t+1

)

and keep track of this variable

as opposed to τ 2t+1. Note that, rt+1 =
1

t+1

∑t+1
s=1 x

2
s +

1
t+1
τ−2
0 =

x2
t+1

t+1
+ t

t+1
rt. Therefore,

mt+1 = mt +
1

t+ 1

X2
t+1

rt+1

(

−(Yt+1 − a)

Xt+1

−mt

)

and

rt+1 = rt +
1

t+ 1

(

X2
t+1 − rt

)

.

Let βt = (mt, rt)
′, Zt = (Xt, Yt),

G(βt, zt+1) =

[

x2
t+1

rt+1

(

−(yt+1−a)
xt+1

−mt

)

(

x2t+1 − rt
)

]

and

G(β) =

[

G1(β)

G2(β)

]

= EPσ
[G(β, Zt+1)]

=

[

F (8a− 96m)100
r

(

−(a0−a−b010)
10

−m
)

+ (1− F (8a− 96m)) 4
r

(

−(a0−a−b02)
2

−m
)

(4 + F (8a− 96m)96− r)

]
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where Pσ is the probability over Z induced by σ (and y = a0 − b0x+ ω).

Therefore, the dynamical system can be cast as

βt+1 = βt +
1

t+ 1
G(βt) +

1

t+ 1
Vt+1

with

Vt+1 = G(βt, Zt+1)−G(βt).

Stochastic approximation theory (e.g., Kushner and Yin (2003)) implies, roughly

speaking, that in order to study the asymptotic behavior of (βt)t it is enough to study

the behavior of the orbits of the following ODE

β̇(t) = G(β(t)).

Characterization of the Steady States. In order to find the steady states

of (βt)t, it is enough to find β∗ such that G(β∗) = 0. Let H1(m) ≡ F (8a −

96m)10 (−(a0 − a) + (b0 −m) 10)+(1− F (8a− 96m)) 2 (−(a0 − a) + (b0 −m) 2). Ob-

serve that G1(β) = r−1H1(m) and that H1 is continuous and limm→−∞H1(m) = ∞

and limm→∞H1(m) = −∞. Thus, there exists at least one solution H1(m) = 0.

Therefore, there exists at least one β∗ such that G(β∗) = 0.

Let b̄ = b0 −
a0−a
10

= 5− 4
5
= 21

5
and b = b0 −

a0−a
2

= 1, r̄ = 4 + F (8a− 96b)96 and

r = 4+F (8a− 96b̄)96, and B ≡ [b, b̄]× [r, r̄]. It follows that H1(m) < 0 for all m > b̄,

and thus m∗ must be such that m∗ ≤ b̄. It is also easy to see that m∗ ≥ b. Moreover,

dH1(m)

dm
= −96f(8a− 96m)10 (−(a0 − a) + (b0 −m) 10)

+96f(8a− 96m)2 (−(a0 − a) + (b0 −m) 2)− F (8a− 96m)100− (1− F (8a− 96m)) 4

= 96f(8a− 96m) {(−2(a0 − a) + (b0 −m) 4)− (−10(a0 − a) + (b0 −m) 100)}

−4− 96F (8a− 96m)

= 96f(8a− 96m) {8(a0 − a)− (b0 −m) 96} − 4− 96F (8a− 96m).

Thus, for any m ≤ b̄ , dH1(m)
dm

< 0, because m ≤ b̄ implies 8(a0 − a) ≤ (b0 −m)80 <

(b0 −m)96.

Therefore, on the relevant domain m ∈ [b, b̄], H1 is decreasing, thus implying that

there exists only one m∗ such that H1(m
∗) = 0. Therefore, there exists only one β∗
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such that G(β∗) = 0 .

We are now interested in characterizing the limit of β∗ as the perturbation vanishes,

i.e. as F converges to 1{ξ ≥ 0}. To do this we introduce some notation. We consider

a sequence (Fn)n that converges to 1{ξ ≥ 0} and use β∗
n to denote the steady state

associated to Fn. Finally, we use Hn
1 to denote the H1 associated to Fn.

We proceed as follows. First note that since β∗
n ∈ B for all n, the limit exists

(going to a subsequence if needed). We show that m∗ ≡ limn→∞m∗
n = 8a

96
= 8

3
.

Suppose not, in particular, suppose that limn→∞m∗
n <

8a
96

= 8
3
(the argument for the

reverse inequality is analogous and thus omitted). In this case limn→∞ 8a−96m∗
n > 0,

and thus limn→∞ Fn(8a− 96m∗
n) = 1. Therefore

lim
n→∞

Hn
1 (β

∗
n) = 10 (−(a0 − a) + (b0 −m∗) 10) = 10

(

−8 +
70

3

)

> 0.

But this implies that there exists a N such that Hn
1 (β

∗
n) > 0 for all n ≥ N which is a

contradiction.

Moreover, define σ∗
n = Fn(8a− 96m∗

n) and σ
∗ = limn→∞ σn. Since H

n
1 (m

∗
n) = 0 for

all n and m∗ = 8
3
, it follows that

σ∗ =
−2
(

−8 +
(

5− 8
3

)

2
)

10
(

−8 +
(

5− 8
3

)

10
)

− 2
(

−8 +
(

5− 8
3

)

2
) =

1

24
.

Global convergence to the Steady State. In our example, it is in fact

possible to establish that behavior converges with probability 1 to the unique equi-

librium. By the results in Benaim (1999) Section 6.3, it is sufficient to establish the

global asymptotic stability of β∗
n for any n, i.e., the basin of attraction of β∗

n is all of

B.

In order to do this let

L(β) = (β − β∗
n)

′ P (β − β∗
n)

for all β; where P ∈ R
2×2 is positive definite and diagonal and will be determined
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later. Note that L(β) = 0 iff β = β∗
n . Also

dL(β(t))

dt
= ∇L(β(t))′G(β(t))

= 2 (β(t)− β∗
n)

′ P (G(β(t)))

= 2
{

(m(t)−m∗
n)P[11]G1(β(t)) + (r(t)− r∗n)P[22]G2(β(t))

}

.

Since G(β∗
n) = 0,

dL(β(t))

dt
=2 (β(t)− β∗

n)
′ P (G(β(t))−G (β∗

n))

=2 (m(t)−m∗
n)P[11] (G1(β(t))−G1 (β

∗
n))

+ 2 (r(t)− r∗n)P[22] (G2(β(t))−G2 (β
∗
n))

=2 (m(t)−m∗
n)

2 P[11]

ˆ 1

0

∂G1(m
∗
n + s(m(t)−m∗

n), r
∗
n)

∂m
ds

+ 2 (r(t)− r∗n)
2 P[22]

ˆ 1

0

∂G2(m
∗
n, r

∗
n + s(r(t)− r∗n))

∂r
ds

where the last equality holds by the mean value theorem. Note that dG2(m∗
n,r

∗
n+s(r(t)−r∗n))
dr

=

−1 and
´ 1

0
dG1(m∗

n+s(m(t)−m∗
n),r

∗
n)

dm
ds =

´ 1

0
(r∗n)

−1 dH1(m∗
n+s(m(t)−m∗

n))
dm

ds. Since r(t) > 0 and

r∗n ≥ 0 the first term is positive and we already established that dH1(m)
dm

< 0 for all

m in the relevant domain. Thus, by choosing P[11] > 0 and P[22] > 0 it follows that
dL(β(t))

dt
< 0.

Therefore, we show that L satisfies the following properties: is strictly positive

for all β 6= β∗
n and L(β∗

n) = 0, and dL(β(t))
dt

< 0. Thus, the function satisfies all the

conditions of a Lyapounov function and, therefore, β∗
n is globally asymptotically stable

for all n (see Hirsch et al. (2004) p. 194).
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