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Abstract 
We describe a SAT-solver, BerkMin, that inherits such  
features of GRASP, SATO, and Chaff as clause recording, 
fast BCP, restarts, and conflict clause “aging”. At the 
same time BerkMin introduces a new decision making 
procedure and a new method of clause database 
management. We experimentally compare BerkMin with 
Chaff, the leader among  SAT-solvers used in the EDA 
domain.  Experiments  show that our solver is more robust 
than Chaff. BerkMin solved all the instances we used in 
experiments including very large CNFs from a 
microprocessor verification benchmark suite. On the other 
hand, Chaff was not able to complete some instances even 
with the timeout limit of  16 hours. 

 

1. Introduction 
 

 Given a conjunctive normal form (CNF)  F specified 
on a set of variables {x1,…,xn}, the satisfiability problem 
is to satisfy (set to 1)  all the disjunctions of F by some 
assignment of values to variables from {x1,…,xn}. A 
disjunction of F is also called a clause of F.  Many 
problems such as ATPG [16], logic synthesis [5], 
equivalence checking [6,9], and model checking [4] 
reduce to the satisfiability problem. 

In the last decade substantial progress has been made in 
the development of practical SAT algorithms 
[1,2,8,11,12,13,15,18]. All of them are search algorithms 
that aim at finding a satisfying assignment by variable 
splitting.  Search algorithms of that kind are descendants 
of the DPLL-algorithm [7].  

DPLL-algorithm can be considered as a special case of 
general resolution which is called tree-like resolution. It 
was shown in [3] that there is exponential gap between the 
performance of tree-like resolution and that of general 
resolution. 

Modern SAT-solvers have made at least two steps 
towards general resolution trying to eliminate the 
drawbacks and limitations of pure tree-like resolution.  
First, they record so called conflict clauses  [15], which 
are implicates of the original CNF. Adding conflict 
clauses allows one  to prune many of the branches of the 
search tree that are yet to be examined [1,13,15,18]. The 
deduced implicates are just added to the current CNF 
which we will also refer to as (clause) database.   

Second, some of the state-of-the-art SAT-solvers use 
the strategy of restarts when the SAT-solver abandons the 
current search tree (without completing it) and starts a 
new one.  So instead of one complete search tree the SAT-
solver constructs a set of incomplete (except the last one) 
trees. In [1,10] the usefulness of restarts was proven 
experimentally. Restarts are effectively used in Chaff  
[13].   

We introduce a new SAT solver called BerkMin 
(BerkMin stands for Berkeley-Minsk, the cities where the 
authors live). BerkMin can be considered as the next 
representative of the family of SAT-solvers that includes 
GRASP [15], SATO [18], Chaff [13].  BerkMin uses the 
procedures of  conflict analysis and non-chronological 
backtracking introduced in GRASP, fast BCP suggested in 
SATO, and Chaff’s idea of reducing the contribution of 
“aged” conflict clauses into decision making. Besides, 
BerkMin uses restarts. 

At the same time BerkMin introduces many new 
features into decision making and clause database 
management. First, the set of conflict  clauses is organized 
as a chronologically ordered stack (the top clause is the 
one deduced the last). If in the current node of the search 
tree there are unsatisfied conflict clauses, the next 
branching variable is chosen among the free variables, 
whose literals are in the top unsatisfied conflict clause.  
Second, we introduce a  heuristic to pick which out of  
two possible assignments to the chosen branching variable 
should be examined first. In the case of using a single 
search tree, spending time on  the selection of the branch 
to be examined first makes sense only for satisfiable 
CNFs. (For unsatisfiable CNFs both branches are 
“symmetric” i.e. the search tree size is not affected by 
whichever branch is examined first.) However, when 
using restarts the symmetry between the two alternative 
branches is broken even for unsatisfiable CNFs. 

Third, our procedure of computing the activity of 
variables is different from that of Chaff. The activity of 
variables in conflict making  is used by Chaff to single out 
good candidates for branching variables. For computing 
the activity of a variable x Chaff counts the number of 
occurrences of x in conflict clauses. This may lead to 
overlooking some variables that do not appear in conflict 
clauses while actively contributing to conflicts (e.g. if 
these variables are deduced). BerkMin solves this problem 
by taking into account a wider set of clauses involved in  



conflict making.  Fourth, we use a new procedure of 
clause database management performed after the current 
search tree is abandoned.  The novelty of the procedure is 
that the decision whether a database clause should be 
removed is based not only on its size (the number of 
literals). It is also based on the “activity” of this clause in 
conflict making and its “age”. 

We  experimentally compare the performance of 
BerkMin with that of Chaff that is currently considered as 
the best SAT-solver used in the EDA domain. 
Experiments clearly show that BerkMin is more robust 
than Chaff.  By greater robustness of BerkMin we mean 
that it is able to solve more instances than Chaff in a 
reasonable amount of time. Though Chaff is faster on 
some instances, BerkMin does not have problems solving 
them. On the other hand, we give examples of CNFs that 
are relatively easy for BerkMin  and that  cannot be solved 
by Chaff even with the timeout limit of 16 hours.  

In particular, BerkMin solved all the instances of the 
benchmark suite fvp-unsat2.0 [17] in less than two hours. 
This class consists of large unsatisfiable  CNFs (except 
one instance) describing verification of pipelined 
microprocessors. The proof of unsatisfiability of the 
instance pipe6.cnf from this suite by the best SAT-solver 
takes 60 hours of CPU time on a SUN computer with 
clock frequency 336MHz [17]. BerkMin solved this 
instance in less than 20 minutes on a SUN computer with 
clock frequency 450 MHz. A more complex instance 
pipe7.cnf that no SAT-solver has been able to complete 
was solved by BerkMin in 1 hour. 

 

2. Basic notions 
 

 Given  a CNF F, a DPLL-algorithm based  SAT-solver 
looks for a satisfying assignment that is also called a 
solution to the satisfiability problem.  Search is organized 
as a binary tree. If no solution is found after completing 
search tree examination, then F is unsatisfiable. At each 
node of the search tree the following three steps are 
performed: a) choosing the next variable to split on and 
selecting the value, 0 or 1, to be first assigned to the 
chosen variable; b) running the Boolean Constraint 
Propagation (BCP) procedure; c) performing conflict 
analysis and backtracking  if a conflict is encountered. 

The choice of the next branching  (splitting) variable is 
usually based on a heuristic. Different heuristics are used 
for different classes of CNFs (see, for example, 
[1,8,11,12,13,15,18]). The heuristics used by BerkMin are 
described in Section 4. 

After choosing a branching variable (say variable y) 
and its first value, the BCP procedure is initiated. It 
performs as follows.  Suppose that in the first branch 
value 1 is assigned to variable y. Then all the clauses 
having the positive literal of y are satisfied and so 
removed from the current CNF. From all the clauses 

having the negative literal of y, this literal is removed. 
This may result in producing unit clauses i.e. clauses 
having only one literal left. Suppose that  ~x is such a unit 
clause. This clause can be satisfied only by the assignment 
x=0.  This assignment is called deduced from clause  ~x. 
After making the deduced assignment (in our case x=0) 
the procedure of discarding satisfied clauses and removing 
literals that are set to 0 (in our case positive literals of x) is 
performed again. This may lead to producing new unit 
clauses.  The BCP procedure is performed until 1) a 
solution if found or 2) all clauses of the current CNF 
contain at least two literals or 3) an empty clause is 
produced (this situation is called a conflict). Before 
producing an empty clause two unit clauses having the 
opposite literals of the same variable must appear, for 
example z and ~z. Deducing the value of z  from either 
clause makes the other clause unsatisfiable.  The 
efficiency of the BCP procedure can be improved by using 
the technique suggested in SATO [18] that was also 
incorporated into Chaff [13].  We omit the description of 
this technique. In BerkMin, our own version of  SATO’s 
BCP procedure is implemented. 

Suppose that BCP has been completed and no solution 
is found in the current node. If no conflict is encountered 
then the algorithm moves away from the root to the next 
node.  If there is a conflict,  the algorithm backtracks. 
Suppose that in the last chosen assignment leading to a 
conflict, x was equal to 0. The simplest backtracking  is 
chronological: assignment x=0 is undone and all deduced 
assignments obtained by the BCP procedure, initiated by 
x=0, are undone as well. The aim of backtracking is to 
restore the CNF as it was before making the assignment 
x=0. If  assignment x=1 has  not been examined yet then it 
is made now and the BCP procedure is initiated. 
Otherwise,  the algorithm backtracks to the first node of 
the search tree where the alternative assignment has not 
been examined yet.   However, conflict analysis 
sometimes allows to backtrack non-chronologically, 
skipping a set of nodes of the search tree. The technique 
of conflict analysis and non-chronological backtracking is 
given in detail  in [15]. In Section 3  we give a short 
description of this technique. 

3. Non-chronological backtracking and 
conflict analysis 

 
The notion of conflict analysis is crucial for 

understanding non-chronological backtracking. Let F be a 
CNF consisting of the set of clauses of the initial CNF F* 
and implicates of F* deduced during search. Let C be a 
clause of F. Suppose that a conflict is caused by clause 
C=~a∨ x∨ ~c being unsatisfiable. That is, variables a,x,c 
have been assigned a=1, x=0, c=1 which resulted in 
removing all literals from clause C. A set R  of value 
assignments to variables of  F is called an assignment  



leading to a conflict on C (or a conflict assignment for 
short)  if after making the assignments from R and running 
the BCP procedure, clause C becomes unsatisfiable. 

A trivial assignment leading to a conflict on 
C=~a∨ x∨ ~c is the set {a=1,x=0,c=1} since after making 
these value assignments all literals of C are removed. 
However, this conflict assignment is of no interest because 
it does not provide any new information. Suppose, that we 
found out that R={x=0, y=1, z=1} is also an assignment 
leading to a conflict on C. Then clause x∨ ~y∨ ~z specified 
by set  R  is an implicate of the current CNF F  and can be 
added to F.  Clause x∨ ~y∨ ~z recording conflict 
assignment R={x=0, y=1, z=1} is called a conflict clause.  

Suppose that assignment x=0 of R={x=0, y=1, z=1} is 
chosen (or deduced) in the current node. Let us assume 
that values y=1 and z=1 are deduced at nodes v′ and  v′′  
respectively. Suppose also that v > v′ > v′′  where n1 > n2 
means that node n2 is closer to the root than n1.  After 
adding conflict clause x∨ ~y∨ ~z to the current CNF we can 
back-jump from node v right to node v′  (skipping the 
nodes that may lie between v, v′ ). The point is that  
current CNF Fv′ at node v′ is different  from the one 
obtained at node v′  before, because clause x∨ ~y∨ ~z  has 
been added to the database. Since variables y and z are 
assigned value 1 at nodes v′ and v′′ , then at node v′ clause 
x∨ ~y∨ ~z of CNF Fv′  is just equal to  x and so assignment 
x=1 can be deduced from it.  Before adding clause 
x∨ ~y∨ ~z this deduction was not possible.  With this clause 
in the current CNF we can back-jump to node v′  to make 
this deduction. 

Conflict analysis and conflict clause derivation are 
described in [15].  We sketch here the main idea. Suppose 
that at the current node v clause  ~a∨ x∨ ~c  becomes 
unsatisfiable.  We need to find a conflict assignment R 
that includes only one assignment “initiated” at node v. 
(This is either an assignment made to the branching 
variable of node v or an assignment deduced in the BCP 
procedure performed at node v.) The rest of the 
assignments of R are made at nodes located above node v 
(i.e. closer to the root). 

Such a conflict assignment can be constructed from the 
trivial conflict assignment  R1={a=1, x=0, c=1} by 
performing the BCP procedure “backwards”. For 
example, suppose that all the value assignments of R1  
were made at node v  and assignment a=1 was deduced 
from clause a∨ x∨ ~z (due to assignments x=0, z=1 made 
before).  Now R1 can be replaced with a non-trivial 
conflict assignment R2={x=0, c=1, z=1}. (This conflict 
assignment is obtained from R1 by replacing assignment 
a=1 with x=0, z=1.) Suppose that assignment z=1 was 
deduced at node v′  located above v.  Then conflict 
assignment R2 contains only two assignments (x=0 and 
c=1) that were made at node v.  Proceeding with  the 
“reverse” BCP procedure we will eventually  produce a 
conflict assignment containing only one assignment made 

at node v. Suppose, for example, that assignment c=1 was 
deduced from clause c∨ ~y∨ ~z  and assignment y=1 was 
made at node v′′   located above v. By replacing  c=1 with 
y=1, z=1 we obtain from R2 conflict assignment R3={x=0, 
y=1, z=1}. R3 satisfies our requirement because only one 
assignment of R3, namely x=0, was made at node v.  The 
corresponding conflict clause is x∨ ~y∨ ~z.  

Formally, the deduction of clause x∨ ~y∨ ~z can be 
described by the following chain of resolutions: 
(~a∨ x∨ ~c) ∧  (a∨ x∨ ~z) ⇒  x∨ ~c∨ ~z ,  (x∨ ~c∨ ~z) ∧  
(c∨ ~y∨ ~z) ⇒  x∨ ~y∨ ~z. Only the final result of this chain  
(in our case clause x∨ ~y∨ ~z ) is added to the current CNF. 
The intermediate conflict assignments (like clause 
x∨ ~c∨ ~z) are thrown away. The clauses of the current 
CNF that are used in the deduction of the final conflict 
clause will be called clauses responsible for the conflict. 
In our example, clauses ~a∨ x∨ ~c , a∨ x∨ ~z , c∨ ~y∨ ~z are 
responsible for the conflict. Clauses responsible for a 
conflict are identified during the reverse  BCP procedure 
used to construct the conflict clause to be added to the 
database. 

 

4. BerkMin’s decision making  
 

When designing the decision making strategy of 
BerkMin we tried to take into account the following two 
facts. 1) Current SAT-solvers can quickly solve fairly 
large “real-life” CNFs. This suggests that in such CNFs 
short implicates can be deduced from a small subset of 
clauses by branching on a small subset of variables. 2)  
The set of variables responsible for conflicts may change  
very quickly. Suppose, for example, that a variable x of 
the CNF to be tested for satisfiability describes the output 
of a gate feeding many AND gates. Then in the branch 
x=0 the variables corresponding to the rest of the inputs of 
these AND gates are not involved in conflict making. 
However, in the branch x=1 all these variables 
immediately become “active” again. 

The two facts above imply that the choice of branching 
variables for “real-life” CNFs should be very dynamic. It 
must quickly adapt to all the changes  of the set of 
relevant variables caused by new value assignments.  
Chaff’s idea of conflict clause “aging” is a significant 
contribution to creating such a dynamic decision making 
strategy.    

Here is how this idea is implemented in BerkMin. Each 
variable is assigned a counter (denote it by  ac(z)) that 
stores the number of clauses, responsible for at least one 
conflict, that have a literal of z. The value of ac(z) is 
updated during the reverse BCP procedure. As soon as a 
new clause responsible for the current conflict is 
encountered, the counters of the variables, whose literals 
are in this clause, are incremented by 1. The values of all 
counters are periodically divided by a small constant  



greater than 1. (This constant is equal to 2 for Chaff and 4 
for BerkMin.) This way the influence of  “aged” clauses is 
decreased and preference is given to recently deduced 
clauses. 

In Chaff, only literals of the conflict clauses added to 
the current CNF are taken into account when computing 
the “activity” of a variable z. (So if a literal of z occurs in 
a clause responsible for the current conflict but z is not in 
the conflict clause, Chaff does not change the value of the 
activity of z.)  Taking into account a wider set of clauses 
responsible for conflicts allows BerkMin to get a more 
accurate estimate of the activity of variables.  If  a variable 
z is frequently assigned through deduction  it may drive 
many conflicts without appearing in conflict clauses.  So 
if, when computing the activity of z, one takes into 
account only conflict clauses, this activity will be 
underestimated. 

Currently, BerkMin has two decision making 
procedures. The first procedure is to pick the variable z 
with the maximum value of ac(z)  as the next branching 
variable. However, it is BerkMin’s second choice. The 
main decision making procedure (that was used in all 
experiments) is based on chronological conflict clause 
ordering.  

The reason for  using such an ordering is that we 
believe that  Chaff’s strategy is not “dynamic” enough. In 
particular, it cannot adjust quickly to changes of  the set of 
relevant variables mentioned in the beginning of the 
section. Consider the following example. Suppose that 
Chaff divides counters by 2 , say, every 100 conflicts. 
Suppose that immediately after dividing the counters, a 
change of relevant variables occurred. Then for the next 
20-30 conflicts the choice of branching variables will be 
dominated by an “obsolete” set of active variables.  

Here is how the problem is solved in BerkMin. The 
clause database is organized as a stack. The  clauses of the 
initial CNF are located at the bottom of the stack and each 
new conflict clause is added to the top of the stack. In the 
process of assigning values some clauses of the stack get 
satisfied. However there is always an unsatisfied clause 
that is the closest to the top of the stack. We will call this 
clause the current top clause. If the current top clause is a 
conflict clause then it is just the most recently deduced 
conflict clause that is not satisfied yet. 

Let C be the current top clause. The idea is to choose 
the next branching variable among free (unassigned yet) 
variables of C, if it is a conflict clause.  Among the 
variables of C, the variable z with the largest value of  
ac(z) is selected.  Note, that variable z may look very 
“passive” in the set of all the currently free variables. 
However, the activity of these variables may be the result 
of a very different set of conflicts that happened before 
deducing C or would occur after the deduction of C.  
These conflicts may involve  quite different sets of 
variables. Choosing z we take into account the fact that 
these active variables may be irrelevant to the conflict 

which had led to the deduction of  C and to “similar” 
conflicts i.e. the ones involving  sets of variables that are 
close to that of C. 

Let  ~z be the literal of variable z that is in the top 
clause C. Suppose that z  is chosen as the next branching 
variable. BerkMin does not try to satisfy C immediately 
by assigning z=0. It has a separate procedure for choosing 
the branch to be examined first. This procedure is further 
on. However, it is not hard to see that clause C will 
become satisfied after no more than n-1 assignments to 
branching variables where n is the number of literals of C.  
Indeed, if C is not satisfied by the chosen assignment to z 
and no conflict is produced during the following BCP 
procedure, C remains the current top clause. Then a  new 
free variable is selected from the ones whose literals are in 
C. So eventually either C will be satisfied by an 
assignment to a branching variable (or by deduced 
assignment) or after removing from C all literals but 1 it 
will be satisfied during the BCP procedure. 

If the current top clause is a clause of the original CNF 
then all the unsatisfied clauses in  the stack are also 
clauses of the original CNF. In this case the most active 
free variable of the current CNF (i.e.  free variable z with 
the greatest value of ac(z)) is selected. 

Before describing how the branch to be examined first 
is selected, we would like to make a few comments. It is 
obvious that if the initial CNF is satisfiable, there may be 
asymmetry between the two alternative branches 
regardless of whether or not the used algorithm has 
restarts. However, if the initial CNF is unsatisfiable and 
the algorithm builds a single search tree, the two 
alternative branches are symmetric. That is, the search tree 
size is not affected by the choice of the branch to be 
examined first.  

Indeed, suppose that x is the next branching variable 
and branch x=0 is examined first.  The size of the subtree 
built in the alternative branch x=1 is, in general, affected 
by conflict clauses deduced in branch x=0.  However these 
conflict clauses cannot contain literal x because a clause 
containing literal x is satisfied by x=1. So the only kind of 
conflict clauses that affect computations in branch x=1 are 
the ones that do not contain a literal of x. But the conflicts 
described by such clauses are symmetric in x and can be 
deduced in  either branch. So branches x=0 and x=1 
“interact” only through conflict clauses that are symmetric 
in x.  Then the size of subtrees constructed in branches 
x=0 and x=1 does not depend on which one is examined 
first. However, in case of using restarts, asymmetry 
between the alternative branches exists even  for 
unsatisfiable CNFs. The reason is that, when branching on 
a variable x, the algorithm does not commit to examining 
the alternative branch if no solution was found in the 
branch examined first. 

Let us describe now the procedure used for branch 
selection. First we consider the case when the current top 
clause is a conflict one. In this case the choice of the first 



assignment to a variable x is aimed at having uniform 
distribution of positive and negative literals in conflict 
clauses of the database. For this purpose,  for each literal l 
cost function  lit_ac(l) is computed. lit_ac(l)  gives the 
number of conflict clauses generated so far that contain 
literal l. Initially lit_ac(l) is equal to 0. As soon  as  a 
conflict clause C is added to the database, for each literal l 
of C the value of lit_ac(l) is incremented by 1. The value 
of lit_ac(l) is not divided by a constant (as it is done for 
counters ac(z)). Besides, the value of lit_ac(l) is not 
recomputed after some conflict clauses are removed from 
the database according to the rules described in section 5.  

If x is the next branching variable, the literal l, 
l∈ {x,~x} with the largest value of lit_ac(l) is selected. If 
lit_ac(x) = lit_ac(~x), literal l, l∈ {x,~x} is selected at 
random. Then x is assigned the value setting the chosen 
literal l to 1. So all clauses having literal l become 
satisfied and no conflict clause can contain  l. On the other 
hand, the opposite literal (i.e. ~l) is set to 0 and so conflict 
clauses may include  ~l. So, setting  the literal with the 
largest value of  lit_ac(l) to 1, we reduce the gap between 
the numbers of occurrences of x and ~x  in  conflict 
clauses of the database. 

Now we describe how the branch to be examined first 
is selected  when the current top clause is a clause of the 
original CNF. We will call a clause binary if  it contains 
only two literals.  For each literal l, a cost function 
nb_two(l) is computed that approximates the number of 
binary clauses in the “neighborhood” of literal l.  Function 
nb_two(l) is computed  as follows.  First, the number of all 
binary clauses containing literal l is calculated. Then for 
each binary clause C containing literal l, the number of 
binary clauses containing literal ~v is computed where v is 
the other literal of C. The sum of all computed numbers 
gives the value of nb_two(l).  This cost function can be 
considered as an estimate of the power of BCP performed 
after setting l to 0. The greater the value of nb_two(l) is 
the more assignments will be deduced from the binary 
clauses containing literal ~v after setting  literal l to 0 in 
clause C. This is the reason why, given the next branching 
variable x, the literal l, l∈ {x,~x}, with the greatest value of 
nb_two (l) is selected. If nb_two (x) = nb_two (~x) then 
l∈ {x,~x} is chosen at random. Then x is assigned the 
value setting literal l to 0. To reduce the amount of time 
spent on computing  nb_two (l) we use a threshold value 
(in our experiments it was equal to 100). As soon as the 
value of nb_two (l) exceeds the threshold its  computation  
is stopped. It should be noticed that the idea of taking into 
account binary clauses in decision making is not new. For 
example, it is successfully used in SATZ [12] (though cost 
functions of  SATZ are different from ours).  

BerkMin uses a relatively complex decision making 
procedure. However this complexity has been  justified in 
numerous experiments.  This fact  refutes the claim made 
in [14] that for SAT-solvers using clause recording the 
quality of  decision making is of no great importance. 

 

5. Clause database management 
 

Before starting the next iteration (i.e. building a new 
search tree), some clauses are “physically” removed from 
the database. This allows one to reduce memory used for 
database allocation. In the process of removing clauses 
BerkMin’s data structures are partially or completely 
recomputed to fit them into  smaller memory blocks. 

 A fraction of clauses is removed “automatically” due 
to retaining some value assignments deduced in the last 
iteration. Namely, all the value assignments, that were 
deduced from unit conflict clauses (if any) and in the BCP 
procedure triggered by the assignments deduced from unit 
conflict clauses, are retained in the new iteration. All the 
clauses that are satisfied by the retained assignments are 
removed from the current CNF. 

 The rest of the clauses to be removed are selected 
using heuristics described below. Our approach is based 
on the following hypothesis. More recently deduced 
clauses are more valuable because it took more time to  
deduce them  from the original set of clauses.  

From the view point of clause removal heuristics, the 
set of conflict clauses is a queue. New conflict clauses are 
added to the tail of this queue while clauses to be 
considered for removal are located in its head. In the 
experiments, from the head part of the queue whose size is 
1/16th of  the whole queue, all clauses with more than 8 
literals were removed. From the rest 15/16 of the queue 
clauses containing more than 42 literals were removed. 
However, BerkMin always keeps in the queue the last 
conflict clause and a fraction of “active” clauses 
regardless of how many literals they have.  The activity of 
a clause C is measured by the number of conflicts for 
which C has been responsible so far. In the head part of 
the queue only clauses with activity value greater than 60 
are considered as active. In the rest of the queue active 
clauses are the ones whose activity is greater than 7. The 
threshold value of the activity for the clauses of the head 
part of the queue is increased every 1024 nodes (the 
starting value is 60). So large clauses that are not used in 
conflicts any more will be soon removed from the 
database. 

The current search tree is abandoned after generating 
550 conflict clauses (that are added to the tail of the 
queue). Before starting a new search tree BerkMin starts 
removing clauses trying to get rid of at least 1/16 of the 
conflict clauses forming the queue. If after applying the 
rules described above, the number of removed clauses was 
less than 1/16 of the queue, the threshold on the size of 
clauses removed from the head part decreased by one 
literal. (However, after the threshold value   reaches 4, it 
does   not decrease any more.) In our experiments it was 
almost always possible to remove 1/16 of the queue, so 



the clause database was kept small. It should be noted that 
the described procedure of clause removal makes 
BerkMin incomplete because there is a possibility of  
looping. Indeed, it is possible that the algorithm removes 
and then deduces the same set of clauses.  For example, if 
all the clauses deduced in the current iteration have more 
than 42 literals and their activity is less than 7, all of them 
will be removed from the database. Then after restarting 
the algorithm, the same set of clauses will be deduced and 
then removed again and so on. 

A simple way of eliminating the possibility of looping 
is as follows.  One conflict clause deduced since the last 
restart is marked and  forever forbidden to be  removed 
from the database (unless it is satisfied by an assignment 
retained from the previous iteration). Then we guarantee 
that the number of marked clauses in the database grows 
monotonically and so no looping is possible. The number 
of marked clauses to be kept  can be reduced n times by 
marking a clause  only after performing n iterations 
(restarts).  This technique is not hard to implement. 
However, we have not done that because BerkMin never 
looped in our experiments. 
 

6. Experimental results 
 
BerkMin was written from scratch in Microsoft’s 

Visual C++ under Windows-95. Then it was ported to 
Solaris using GNU’s C++ compiler gcc.  In the 
experiments, we compared BerkMin with Chaff [13]. The 
binary of Chaff was downloaded from [19].  Both 
programs were run on the same SUNW, Ultra-80 system 
with clock frequency 450MHz and 4Gbytes of memory.  

The results of the experiments are shown in Tables 
1,2,3. Table 1,2 are mostly self-explanatory. Table 1 
contains instances for which BerkMin’s and Chaff’s 
performances are comparable. Table 1 gives results on 
two classes of instances  from  the Dimacs benchmark 
suite (hole and par16) that can be downloaded from [20]. 
All the other Dimacs instances that were used in [13] to 
estimate Chaff’s performance are too easy for both 
programs. Besides, Table 1 contains results on the class 
blocksworld, that is also available at [20], and the “easy” 
classes of CNFs from [17] encoding verification of 
pipelined microprocessors.   The result of the program that 
had the best runtime on a class of instances is shown in 
bold. It is worth mentioning that in class fvp-unsat1.0 
Chaff is faster only on one instance (9vliw_bp_mc.cnf). 
All the 100 CNFs of the class vliw-sat1.0 are obtained by 
modification of 9vliw_bp_mc.cnf.  So Chaff has better 
performance on classes fvp-unsat1.0 and vliw-sat1.0 due 
to one instance. 

Table 2 contains results on more complex classes of 
CNFs. Class Beijing can be downloaded from  [20]. Class 
Hanoi from the Dimacs benchmark suite consisting of two 

CNFs hanoi4.cnf and hanoi5.cnf was extended by a more 
complex example hanoi6.cnf (courtesy of Henry Kautz).  
Class fvp-unsat2.0,  that can be downloaded from [17], 
consists of large CNFs encoding microprocessor 
verification. Finally, class Miters  consists of CNFs 
obtained by encoding equivalence checking of artificial 
combinational circuits (We used artificial circuits because 
their complexity was easy to control).  

Each class of Table 2 contains at least one CNF that 
Chaff was not able to solve without exceeding the timeout 
limit (60 000 sec.). In the  column “time” describing 
Chaff’s performance, the upper number gives the total 
time spent on the instances that Chaff finished.  The lower 
number is equal to the upper number plus 60 000 times the 
number of aborted instances in the class.  

In our opinion, the main conclusion that can be drawn 
from Table 2 is that BerkMin is more robust than Chaff.  
One more argument substantiating this point of view is the 
following.  The web site [21] gives statistics on the 
performance of 23 SAT-solvers (including a version of 
Chaff) on a representative set of instances. This set 
includes the 16 CNFs of  class Beijing which are all 
satisfiable except one CNF. Each of the 23 SAT-solvers 
had at least two CNFs of the Beijing class that it was not 
able to solve in the timeout limit  (10 000 sec.) 
Interestingly, there are no “universally” hard CNFs in this 
class. That is a CNF that cannot be solved by one SAT-
solver can be finished in a few seconds by another, which 
suggests that these SAT-solvers are not robust. At the 
same time, BerkMin was able to solve all the 16 CNFs of 
the Beijing class in about 8 minutes. 

Table 3 gives some details of Chaff’s and BerkMin’s 
performance on a few instances from classes fvp-unsat1.0, 
Hanoi, and fvp-unsat2.0. Chaff was aborted on the 3 
instances marked with the star symbol. The two columns 
(Database size) / (Initial CNF size) give the ratio of the 
total number of generated conflict clauses and clauses of 
the initial CNF to  the number of clauses of the initial 
CNF. Table 3 shows that BerkMin has  better performance 
because it builds smaller search trees and its clause 
database is  smaller. Besides, column  (Largest CNF size)/ 
(Initial CNF size) shows that the number of clauses 
BerkMin had to keep in memory at the same time was at 
most 4 times the number of clauses in the initial CNF. 
Unfortunately, Chaff does not report the size of the largest 
intermediate CNF. However judging by the data output by 
the Unix utility called “top”, Chaff took much more 
memory than our program. BerkMin was developed on a 
PC with  128 Mbytes of memory. So it was designed to 
reduce the probability of  exceeding that limit. In 
experiments BerkMin took more than 128 Mbytes of 
memory only on a few instances of very large CNFs. On 
the other hand, Chaff often used 1Gbytes of memory and 
more. 

 
 



7. Conclusions 
 

This paper describes a new SAT solver, BerkMin, 
that is more robust than Chaff, currently the best SAT 
solver in the EDA domain.  BerkMin has four new 
features distinguishing it from the predecessors. Three of 
them develop Chaff’s idea that  recently deduced clauses 
are the most important to satisfy. First,  all clauses are 

chronologically sorted so that BerkMin always tries to 
satisfy the most recently deduced clause that is left 
unsatisfied. Second, BerkMin gets a better estimation of 
the activity of variables by  taking into account a set of 
clauses which is wider than what Chaff takes. Third, 
BerkMin uses a new clause database management strategy 
that takes into account not only the size of a clause but its 
activity in conflict making and its “age”. The fourth new 
feature of BerkMin is its branch selection strategy. 

  
 

Chaff BerkMin Class of 
benchmarks 

Number of 
instances Time (sec.) Number of 

Aborted  
Time (sec.) Number of 

Aborted 
Blocksworld 7 52.5 0 9.0 0 
Hole 5 79.9 0 339  0 
Par16 10 33.9 0 13.6 0 
sss 1.0 48 41.6 0 13.4 0 
sss 1.0a 8 17.4 0 17.9 0 
sss-sat 1.0 100 383.9 0 254.4 0 
fvp-unsat1.0 4 589.1 0 1637.4 0 
vliw-sat 1.0 100 2602.9 0 7305.0 0 

 
Table 1. Benchmarks on which Chaff’s and BerkMin’s performances are comparable 

 
 

Chaff BerkMin                 Class of benchmarks Number of 
instances Time (sec.) Number of 

Aborted  
Time (sec.) Number 

of 
Aborted 

Beijing 16 468.1 
(>120,468.1) 

2 494.0 0 

Miters 5 1515.9 
(>121,515.9) 

2 3477.6 0 

Hanoi 3 1320.6 
(> 61,320.6) 

1 1401.3 0 

fvp-unsat2.0 22 19679.4 
(> 139,679.4) 

2 6869.7 0 

 
Table 2. Benchmarks on which BerkMin dominates 

 
 

Chaff BerkMin  
Instance 
number 

 
Satis-
fiable 

(Database 
size) / 
(Initial 
CNF size) 

Number of 
decisions 

Time 
(sec.) 

(Database 
size) / 
(Initial 
CNF size) 

(Largest 
CNF size)/ 
(Initial 
CNF size) 

Number 
of 
decisions 

Time 
(sec.) 

9vliw_bp_mc no 2.42 1,124,797 567.4 1.88 1.04 2,384,485 1625.0 
hanoi5 yes 31.49 504,463 1313.4 8.68 2.38 194,672 71.2 
hanoi6* yes 129.04 5,580,228 49021.1 19.58 4.19 1,948,717 1328.7 
4pipe no 3.01 412,358 354.6 1.49 1.08 144,036 40.9 
5pipe no 1.65 461,275 333.7 1.09 1.01 213,859 71.8 
6pipe* no 15.97 5,580,228 49131.2 1.71 1.05 1,371,445 1015.6 
7pipe* no 7.37 11,779,016 48053.1 1.95 1.05 3,357,821 3673.2 

 
Table 3. Details of Chaff’s and BerkMin’s performance on some instances 
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