
BerkMin: a Fast and Robust Sat-Solver

Evgueni Goldberg Yakov Novikov
Cadence Berkeley Labs(USA),

Email: egold@cadence.com
Academy of Sciences (Belarus),
Email: nov@newman.bas-net.by

Abstract
We describe a SAT-solver, BerkMin, that inherits such
features of GRASP, SATO, and Chaff as clause recording,
fast BCP, restarts, and conflict clause “aging”. At the
same time BerkMin introduces a new decision making
procedure and a new method of clause database
management. We experimentally compare BerkMin with
Chaff, the leader among SAT-solvers used in the EDA
domain. Experiments show that our solver is more robust
than Chaff. BerkMin solved all the instances we used in
experiments including very large CNFs from a
microprocessor verification benchmark suite. On the other
hand, Chaff was not able to complete some instances even
with the timeout limit of 16 hours.

1. Introduction

 Given a conjunctive normal form (CNF) F specified
on a set of variables {x1,…,xn}, the satisfiability problem
is to satisfy (set to 1) all the disjunctions of F by some
assignment of values to variables from {x1,…,xn}. A
disjunction of F is also called a clause of F. Many
problems such as ATPG [16], logic synthesis [5],
equivalence checking [6,9], and model checking [4]
reduce to the satisfiability problem.

In the last decade substantial progress has been made in
the development of practical SAT algorithms
[1,2,8,11,12,13,15,18]. All of them are search algorithms
that aim at finding a satisfying assignment by variable
splitting. Search algorithms of that kind are descendants
of the DPLL-algorithm [7].

DPLL-algorithm can be considered as a special case of
general resolution which is called tree-like resolution. It
was shown in [3] that there is exponential gap between the
performance of tree-like resolution and that of general
resolution.

Modern SAT-solvers have made at least two steps
towards general resolution trying to eliminate the
drawbacks and limitations of pure tree-like resolution.
First, they record so called conflict clauses [15], which
are implicates of the original CNF. Adding conflict
clauses allows one to prune many of the branches of the
search tree that are yet to be examined [1,13,15,18]. The
deduced implicates are just added to the current CNF
which we will also refer to as (clause) database.

Second, some of the state-of-the-art SAT-solvers use
the strategy of restarts when the SAT-solver abandons the
current search tree (without completing it) and starts a
new one. So instead of one complete search tree the SAT-
solver constructs a set of incomplete (except the last one)
trees. In [1,10] the usefulness of restarts was proven
experimentally. Restarts are effectively used in Chaff
[13].

We introduce a new SAT solver called BerkMin
(BerkMin stands for Berkeley-Minsk, the cities where the
authors live). BerkMin can be considered as the next
representative of the family of SAT-solvers that includes
GRASP [15], SATO [18], Chaff [13]. BerkMin uses the
procedures of conflict analysis and non-chronological
backtracking introduced in GRASP, fast BCP suggested in
SATO, and Chaff’s idea of reducing the contribution of
“aged” conflict clauses into decision making. Besides,
BerkMin uses restarts.

At the same time BerkMin introduces many new
features into decision making and clause database
management. First, the set of conflict clauses is organized
as a chronologically ordered stack (the top clause is the
one deduced the last). If in the current node of the search
tree there are unsatisfied conflict clauses, the next
branching variable is chosen among the free variables,
whose literals are in the top unsatisfied conflict clause.
Second, we introduce a heuristic to pick which out of
two possible assignments to the chosen branching variable
should be examined first. In the case of using a single
search tree, spending time on the selection of the branch
to be examined first makes sense only for satisfiable
CNFs. (For unsatisfiable CNFs both branches are
“symmetric” i.e. the search tree size is not affected by
whichever branch is examined first.) However, when
using restarts the symmetry between the two alternative
branches is broken even for unsatisfiable CNFs.

Third, our procedure of computing the activity of
variables is different from that of Chaff. The activity of
variables in conflict making is used by Chaff to single out
good candidates for branching variables. For computing
the activity of a variable x Chaff counts the number of
occurrences of x in conflict clauses. This may lead to
overlooking some variables that do not appear in conflict
clauses while actively contributing to conflicts (e.g. if
these variables are deduced). BerkMin solves this problem
by taking into account a wider set of clauses involved in

conflict making. Fourth, we use a new procedure of
clause database management performed after the current
search tree is abandoned. The novelty of the procedure is
that the decision whether a database clause should be
removed is based not only on its size (the number of
literals). It is also based on the “activity” of this clause in
conflict making and its “age”.

We experimentally compare the performance of
BerkMin with that of Chaff that is currently considered as
the best SAT-solver used in the EDA domain.
Experiments clearly show that BerkMin is more robust
than Chaff. By greater robustness of BerkMin we mean
that it is able to solve more instances than Chaff in a
reasonable amount of time. Though Chaff is faster on
some instances, BerkMin does not have problems solving
them. On the other hand, we give examples of CNFs that
are relatively easy for BerkMin and that cannot be solved
by Chaff even with the timeout limit of 16 hours.

In particular, BerkMin solved all the instances of the
benchmark suite fvp-unsat2.0 [17] in less than two hours.
This class consists of large unsatisfiable CNFs (except
one instance) describing verification of pipelined
microprocessors. The proof of unsatisfiability of the
instance pipe6.cnf from this suite by the best SAT-solver
takes 60 hours of CPU time on a SUN computer with
clock frequency 336MHz [17]. BerkMin solved this
instance in less than 20 minutes on a SUN computer with
clock frequency 450 MHz. A more complex instance
pipe7.cnf that no SAT-solver has been able to complete
was solved by BerkMin in 1 hour.

2. Basic notions

 Given a CNF F, a DPLL-algorithm based SAT-solver
looks for a satisfying assignment that is also called a
solution to the satisfiability problem. Search is organized
as a binary tree. If no solution is found after completing
search tree examination, then F is unsatisfiable. At each
node of the search tree the following three steps are
performed: a) choosing the next variable to split on and
selecting the value, 0 or 1, to be first assigned to the
chosen variable; b) running the Boolean Constraint
Propagation (BCP) procedure; c) performing conflict
analysis and backtracking if a conflict is encountered.

The choice of the next branching (splitting) variable is
usually based on a heuristic. Different heuristics are used
for different classes of CNFs (see, for example,
[1,8,11,12,13,15,18]). The heuristics used by BerkMin are
described in Section 4.

After choosing a branching variable (say variable y)
and its first value, the BCP procedure is initiated. It
performs as follows. Suppose that in the first branch
value 1 is assigned to variable y. Then all the clauses
having the positive literal of y are satisfied and so
removed from the current CNF. From all the clauses

having the negative literal of y, this literal is removed.
This may result in producing unit clauses i.e. clauses
having only one literal left. Suppose that ~x is such a unit
clause. This clause can be satisfied only by the assignment
x=0. This assignment is called deduced from clause ~x.
After making the deduced assignment (in our case x=0)
the procedure of discarding satisfied clauses and removing
literals that are set to 0 (in our case positive literals of x) is
performed again. This may lead to producing new unit
clauses. The BCP procedure is performed until 1) a
solution if found or 2) all clauses of the current CNF
contain at least two literals or 3) an empty clause is
produced (this situation is called a conflict). Before
producing an empty clause two unit clauses having the
opposite literals of the same variable must appear, for
example z and ~z. Deducing the value of z from either
clause makes the other clause unsatisfiable. The
efficiency of the BCP procedure can be improved by using
the technique suggested in SATO [18] that was also
incorporated into Chaff [13]. We omit the description of
this technique. In BerkMin, our own version of SATO’s
BCP procedure is implemented.

Suppose that BCP has been completed and no solution
is found in the current node. If no conflict is encountered
then the algorithm moves away from the root to the next
node. If there is a conflict, the algorithm backtracks.
Suppose that in the last chosen assignment leading to a
conflict, x was equal to 0. The simplest backtracking is
chronological: assignment x=0 is undone and all deduced
assignments obtained by the BCP procedure, initiated by
x=0, are undone as well. The aim of backtracking is to
restore the CNF as it was before making the assignment
x=0. If assignment x=1 has not been examined yet then it
is made now and the BCP procedure is initiated.
Otherwise, the algorithm backtracks to the first node of
the search tree where the alternative assignment has not
been examined yet. However, conflict analysis
sometimes allows to backtrack non-chronologically,
skipping a set of nodes of the search tree. The technique
of conflict analysis and non-chronological backtracking is
given in detail in [15]. In Section 3 we give a short
description of this technique.

3. Non-chronological backtracking and
conflict analysis

The notion of conflict analysis is crucial for

understanding non-chronological backtracking. Let F be a
CNF consisting of the set of clauses of the initial CNF F*
and implicates of F* deduced during search. Let C be a
clause of F. Suppose that a conflict is caused by clause
C=~a∨ x∨ ~c being unsatisfiable. That is, variables a,x,c
have been assigned a=1, x=0, c=1 which resulted in
removing all literals from clause C. A set R of value
assignments to variables of F is called an assignment

leading to a conflict on C (or a conflict assignment for
short) if after making the assignments from R and running
the BCP procedure, clause C becomes unsatisfiable.

A trivial assignment leading to a conflict on
C=~a∨ x∨ ~c is the set {a=1,x=0,c=1} since after making
these value assignments all literals of C are removed.
However, this conflict assignment is of no interest because
it does not provide any new information. Suppose, that we
found out that R={x=0, y=1, z=1} is also an assignment
leading to a conflict on C. Then clause x∨ ~y∨ ~z specified
by set R is an implicate of the current CNF F and can be
added to F. Clause x∨ ~y∨ ~z recording conflict
assignment R={x=0, y=1, z=1} is called a conflict clause.

Suppose that assignment x=0 of R={x=0, y=1, z=1} is
chosen (or deduced) in the current node. Let us assume
that values y=1 and z=1 are deduced at nodes v′ and v′′
respectively. Suppose also that v > v′ > v′′ where n1 > n2
means that node n2 is closer to the root than n1. After
adding conflict clause x∨ ~y∨ ~z to the current CNF we can
back-jump from node v right to node v′ (skipping the
nodes that may lie between v, v′). The point is that
current CNF Fv′ at node v′ is different from the one
obtained at node v′ before, because clause x∨ ~y∨ ~z has
been added to the database. Since variables y and z are
assigned value 1 at nodes v′ and v′′ , then at node v′ clause
x∨ ~y∨ ~z of CNF Fv′ is just equal to x and so assignment
x=1 can be deduced from it. Before adding clause
x∨ ~y∨ ~z this deduction was not possible. With this clause
in the current CNF we can back-jump to node v′ to make
this deduction.

Conflict analysis and conflict clause derivation are
described in [15]. We sketch here the main idea. Suppose
that at the current node v clause ~a∨ x∨ ~c becomes
unsatisfiable. We need to find a conflict assignment R
that includes only one assignment “initiated” at node v.
(This is either an assignment made to the branching
variable of node v or an assignment deduced in the BCP
procedure performed at node v.) The rest of the
assignments of R are made at nodes located above node v
(i.e. closer to the root).

Such a conflict assignment can be constructed from the
trivial conflict assignment R1={a=1, x=0, c=1} by
performing the BCP procedure “backwards”. For
example, suppose that all the value assignments of R1
were made at node v and assignment a=1 was deduced
from clause a∨ x∨ ~z (due to assignments x=0, z=1 made
before). Now R1 can be replaced with a non-trivial
conflict assignment R2={x=0, c=1, z=1}. (This conflict
assignment is obtained from R1 by replacing assignment
a=1 with x=0, z=1.) Suppose that assignment z=1 was
deduced at node v′ located above v. Then conflict
assignment R2 contains only two assignments (x=0 and
c=1) that were made at node v. Proceeding with the
“reverse” BCP procedure we will eventually produce a
conflict assignment containing only one assignment made

at node v. Suppose, for example, that assignment c=1 was
deduced from clause c∨ ~y∨ ~z and assignment y=1 was
made at node v′′ located above v. By replacing c=1 with
y=1, z=1 we obtain from R2 conflict assignment R3={x=0,
y=1, z=1}. R3 satisfies our requirement because only one
assignment of R3, namely x=0, was made at node v. The
corresponding conflict clause is x∨ ~y∨ ~z.

Formally, the deduction of clause x∨ ~y∨ ~z can be
described by the following chain of resolutions:
(~a∨ x∨ ~c) ∧ (a∨ x∨ ~z) ⇒ x∨ ~c∨ ~z , (x∨ ~c∨ ~z) ∧
(c∨ ~y∨ ~z) ⇒ x∨ ~y∨ ~z. Only the final result of this chain
(in our case clause x∨ ~y∨ ~z) is added to the current CNF.
The intermediate conflict assignments (like clause
x∨ ~c∨ ~z) are thrown away. The clauses of the current
CNF that are used in the deduction of the final conflict
clause will be called clauses responsible for the conflict.
In our example, clauses ~a∨ x∨ ~c , a∨ x∨ ~z , c∨ ~y∨ ~z are
responsible for the conflict. Clauses responsible for a
conflict are identified during the reverse BCP procedure
used to construct the conflict clause to be added to the
database.

4. BerkMin’s decision making

When designing the decision making strategy of
BerkMin we tried to take into account the following two
facts. 1) Current SAT-solvers can quickly solve fairly
large “real-life” CNFs. This suggests that in such CNFs
short implicates can be deduced from a small subset of
clauses by branching on a small subset of variables. 2)
The set of variables responsible for conflicts may change
very quickly. Suppose, for example, that a variable x of
the CNF to be tested for satisfiability describes the output
of a gate feeding many AND gates. Then in the branch
x=0 the variables corresponding to the rest of the inputs of
these AND gates are not involved in conflict making.
However, in the branch x=1 all these variables
immediately become “active” again.

The two facts above imply that the choice of branching
variables for “real-life” CNFs should be very dynamic. It
must quickly adapt to all the changes of the set of
relevant variables caused by new value assignments.
Chaff’s idea of conflict clause “aging” is a significant
contribution to creating such a dynamic decision making
strategy.

Here is how this idea is implemented in BerkMin. Each
variable is assigned a counter (denote it by ac(z)) that
stores the number of clauses, responsible for at least one
conflict, that have a literal of z. The value of ac(z) is
updated during the reverse BCP procedure. As soon as a
new clause responsible for the current conflict is
encountered, the counters of the variables, whose literals
are in this clause, are incremented by 1. The values of all
counters are periodically divided by a small constant

greater than 1. (This constant is equal to 2 for Chaff and 4
for BerkMin.) This way the influence of “aged” clauses is
decreased and preference is given to recently deduced
clauses.

In Chaff, only literals of the conflict clauses added to
the current CNF are taken into account when computing
the “activity” of a variable z. (So if a literal of z occurs in
a clause responsible for the current conflict but z is not in
the conflict clause, Chaff does not change the value of the
activity of z.) Taking into account a wider set of clauses
responsible for conflicts allows BerkMin to get a more
accurate estimate of the activity of variables. If a variable
z is frequently assigned through deduction it may drive
many conflicts without appearing in conflict clauses. So
if, when computing the activity of z, one takes into
account only conflict clauses, this activity will be
underestimated.

Currently, BerkMin has two decision making
procedures. The first procedure is to pick the variable z
with the maximum value of ac(z) as the next branching
variable. However, it is BerkMin’s second choice. The
main decision making procedure (that was used in all
experiments) is based on chronological conflict clause
ordering.

The reason for using such an ordering is that we
believe that Chaff’s strategy is not “dynamic” enough. In
particular, it cannot adjust quickly to changes of the set of
relevant variables mentioned in the beginning of the
section. Consider the following example. Suppose that
Chaff divides counters by 2 , say, every 100 conflicts.
Suppose that immediately after dividing the counters, a
change of relevant variables occurred. Then for the next
20-30 conflicts the choice of branching variables will be
dominated by an “obsolete” set of active variables.

Here is how the problem is solved in BerkMin. The
clause database is organized as a stack. The clauses of the
initial CNF are located at the bottom of the stack and each
new conflict clause is added to the top of the stack. In the
process of assigning values some clauses of the stack get
satisfied. However there is always an unsatisfied clause
that is the closest to the top of the stack. We will call this
clause the current top clause. If the current top clause is a
conflict clause then it is just the most recently deduced
conflict clause that is not satisfied yet.

Let C be the current top clause. The idea is to choose
the next branching variable among free (unassigned yet)
variables of C, if it is a conflict clause. Among the
variables of C, the variable z with the largest value of
ac(z) is selected. Note, that variable z may look very
“passive” in the set of all the currently free variables.
However, the activity of these variables may be the result
of a very different set of conflicts that happened before
deducing C or would occur after the deduction of C.
These conflicts may involve quite different sets of
variables. Choosing z we take into account the fact that
these active variables may be irrelevant to the conflict

which had led to the deduction of C and to “similar”
conflicts i.e. the ones involving sets of variables that are
close to that of C.

Let ~z be the literal of variable z that is in the top
clause C. Suppose that z is chosen as the next branching
variable. BerkMin does not try to satisfy C immediately
by assigning z=0. It has a separate procedure for choosing
the branch to be examined first. This procedure is further
on. However, it is not hard to see that clause C will
become satisfied after no more than n-1 assignments to
branching variables where n is the number of literals of C.
Indeed, if C is not satisfied by the chosen assignment to z
and no conflict is produced during the following BCP
procedure, C remains the current top clause. Then a new
free variable is selected from the ones whose literals are in
C. So eventually either C will be satisfied by an
assignment to a branching variable (or by deduced
assignment) or after removing from C all literals but 1 it
will be satisfied during the BCP procedure.

If the current top clause is a clause of the original CNF
then all the unsatisfied clauses in the stack are also
clauses of the original CNF. In this case the most active
free variable of the current CNF (i.e. free variable z with
the greatest value of ac(z)) is selected.

Before describing how the branch to be examined first
is selected, we would like to make a few comments. It is
obvious that if the initial CNF is satisfiable, there may be
asymmetry between the two alternative branches
regardless of whether or not the used algorithm has
restarts. However, if the initial CNF is unsatisfiable and
the algorithm builds a single search tree, the two
alternative branches are symmetric. That is, the search tree
size is not affected by the choice of the branch to be
examined first.

Indeed, suppose that x is the next branching variable
and branch x=0 is examined first. The size of the subtree
built in the alternative branch x=1 is, in general, affected
by conflict clauses deduced in branch x=0. However these
conflict clauses cannot contain literal x because a clause
containing literal x is satisfied by x=1. So the only kind of
conflict clauses that affect computations in branch x=1 are
the ones that do not contain a literal of x. But the conflicts
described by such clauses are symmetric in x and can be
deduced in either branch. So branches x=0 and x=1
“interact” only through conflict clauses that are symmetric
in x. Then the size of subtrees constructed in branches
x=0 and x=1 does not depend on which one is examined
first. However, in case of using restarts, asymmetry
between the alternative branches exists even for
unsatisfiable CNFs. The reason is that, when branching on
a variable x, the algorithm does not commit to examining
the alternative branch if no solution was found in the
branch examined first.

Let us describe now the procedure used for branch
selection. First we consider the case when the current top
clause is a conflict one. In this case the choice of the first

assignment to a variable x is aimed at having uniform
distribution of positive and negative literals in conflict
clauses of the database. For this purpose, for each literal l
cost function lit_ac(l) is computed. lit_ac(l) gives the
number of conflict clauses generated so far that contain
literal l. Initially lit_ac(l) is equal to 0. As soon as a
conflict clause C is added to the database, for each literal l
of C the value of lit_ac(l) is incremented by 1. The value
of lit_ac(l) is not divided by a constant (as it is done for
counters ac(z)). Besides, the value of lit_ac(l) is not
recomputed after some conflict clauses are removed from
the database according to the rules described in section 5.

If x is the next branching variable, the literal l,
l∈ {x,~x} with the largest value of lit_ac(l) is selected. If
lit_ac(x) = lit_ac(~x), literal l, l∈ {x,~x} is selected at
random. Then x is assigned the value setting the chosen
literal l to 1. So all clauses having literal l become
satisfied and no conflict clause can contain l. On the other
hand, the opposite literal (i.e. ~l) is set to 0 and so conflict
clauses may include ~l. So, setting the literal with the
largest value of lit_ac(l) to 1, we reduce the gap between
the numbers of occurrences of x and ~x in conflict
clauses of the database.

Now we describe how the branch to be examined first
is selected when the current top clause is a clause of the
original CNF. We will call a clause binary if it contains
only two literals. For each literal l, a cost function
nb_two(l) is computed that approximates the number of
binary clauses in the “neighborhood” of literal l. Function
nb_two(l) is computed as follows. First, the number of all
binary clauses containing literal l is calculated. Then for
each binary clause C containing literal l, the number of
binary clauses containing literal ~v is computed where v is
the other literal of C. The sum of all computed numbers
gives the value of nb_two(l). This cost function can be
considered as an estimate of the power of BCP performed
after setting l to 0. The greater the value of nb_two(l) is
the more assignments will be deduced from the binary
clauses containing literal ~v after setting literal l to 0 in
clause C. This is the reason why, given the next branching
variable x, the literal l, l∈ {x,~x}, with the greatest value of
nb_two (l) is selected. If nb_two (x) = nb_two (~x) then
l∈ {x,~x} is chosen at random. Then x is assigned the
value setting literal l to 0. To reduce the amount of time
spent on computing nb_two (l) we use a threshold value
(in our experiments it was equal to 100). As soon as the
value of nb_two (l) exceeds the threshold its computation
is stopped. It should be noticed that the idea of taking into
account binary clauses in decision making is not new. For
example, it is successfully used in SATZ [12] (though cost
functions of SATZ are different from ours).

BerkMin uses a relatively complex decision making
procedure. However this complexity has been justified in
numerous experiments. This fact refutes the claim made
in [14] that for SAT-solvers using clause recording the
quality of decision making is of no great importance.

5. Clause database management

Before starting the next iteration (i.e. building a new
search tree), some clauses are “physically” removed from
the database. This allows one to reduce memory used for
database allocation. In the process of removing clauses
BerkMin’s data structures are partially or completely
recomputed to fit them into smaller memory blocks.

 A fraction of clauses is removed “automatically” due
to retaining some value assignments deduced in the last
iteration. Namely, all the value assignments, that were
deduced from unit conflict clauses (if any) and in the BCP
procedure triggered by the assignments deduced from unit
conflict clauses, are retained in the new iteration. All the
clauses that are satisfied by the retained assignments are
removed from the current CNF.

 The rest of the clauses to be removed are selected
using heuristics described below. Our approach is based
on the following hypothesis. More recently deduced
clauses are more valuable because it took more time to
deduce them from the original set of clauses.

From the view point of clause removal heuristics, the
set of conflict clauses is a queue. New conflict clauses are
added to the tail of this queue while clauses to be
considered for removal are located in its head. In the
experiments, from the head part of the queue whose size is
1/16th of the whole queue, all clauses with more than 8
literals were removed. From the rest 15/16 of the queue
clauses containing more than 42 literals were removed.
However, BerkMin always keeps in the queue the last
conflict clause and a fraction of “active” clauses
regardless of how many literals they have. The activity of
a clause C is measured by the number of conflicts for
which C has been responsible so far. In the head part of
the queue only clauses with activity value greater than 60
are considered as active. In the rest of the queue active
clauses are the ones whose activity is greater than 7. The
threshold value of the activity for the clauses of the head
part of the queue is increased every 1024 nodes (the
starting value is 60). So large clauses that are not used in
conflicts any more will be soon removed from the
database.

The current search tree is abandoned after generating
550 conflict clauses (that are added to the tail of the
queue). Before starting a new search tree BerkMin starts
removing clauses trying to get rid of at least 1/16 of the
conflict clauses forming the queue. If after applying the
rules described above, the number of removed clauses was
less than 1/16 of the queue, the threshold on the size of
clauses removed from the head part decreased by one
literal. (However, after the threshold value reaches 4, it
does not decrease any more.) In our experiments it was
almost always possible to remove 1/16 of the queue, so

the clause database was kept small. It should be noted that
the described procedure of clause removal makes
BerkMin incomplete because there is a possibility of
looping. Indeed, it is possible that the algorithm removes
and then deduces the same set of clauses. For example, if
all the clauses deduced in the current iteration have more
than 42 literals and their activity is less than 7, all of them
will be removed from the database. Then after restarting
the algorithm, the same set of clauses will be deduced and
then removed again and so on.

A simple way of eliminating the possibility of looping
is as follows. One conflict clause deduced since the last
restart is marked and forever forbidden to be removed
from the database (unless it is satisfied by an assignment
retained from the previous iteration). Then we guarantee
that the number of marked clauses in the database grows
monotonically and so no looping is possible. The number
of marked clauses to be kept can be reduced n times by
marking a clause only after performing n iterations
(restarts). This technique is not hard to implement.
However, we have not done that because BerkMin never
looped in our experiments.

6. Experimental results

BerkMin was written from scratch in Microsoft’s

Visual C++ under Windows-95. Then it was ported to
Solaris using GNU’s C++ compiler gcc. In the
experiments, we compared BerkMin with Chaff [13]. The
binary of Chaff was downloaded from [19]. Both
programs were run on the same SUNW, Ultra-80 system
with clock frequency 450MHz and 4Gbytes of memory.

The results of the experiments are shown in Tables
1,2,3. Table 1,2 are mostly self-explanatory. Table 1
contains instances for which BerkMin’s and Chaff’s
performances are comparable. Table 1 gives results on
two classes of instances from the Dimacs benchmark
suite (hole and par16) that can be downloaded from [20].
All the other Dimacs instances that were used in [13] to
estimate Chaff’s performance are too easy for both
programs. Besides, Table 1 contains results on the class
blocksworld, that is also available at [20], and the “easy”
classes of CNFs from [17] encoding verification of
pipelined microprocessors. The result of the program that
had the best runtime on a class of instances is shown in
bold. It is worth mentioning that in class fvp-unsat1.0
Chaff is faster only on one instance (9vliw_bp_mc.cnf).
All the 100 CNFs of the class vliw-sat1.0 are obtained by
modification of 9vliw_bp_mc.cnf. So Chaff has better
performance on classes fvp-unsat1.0 and vliw-sat1.0 due
to one instance.

Table 2 contains results on more complex classes of
CNFs. Class Beijing can be downloaded from [20]. Class
Hanoi from the Dimacs benchmark suite consisting of two

CNFs hanoi4.cnf and hanoi5.cnf was extended by a more
complex example hanoi6.cnf (courtesy of Henry Kautz).
Class fvp-unsat2.0, that can be downloaded from [17],
consists of large CNFs encoding microprocessor
verification. Finally, class Miters consists of CNFs
obtained by encoding equivalence checking of artificial
combinational circuits (We used artificial circuits because
their complexity was easy to control).

Each class of Table 2 contains at least one CNF that
Chaff was not able to solve without exceeding the timeout
limit (60 000 sec.). In the column “time” describing
Chaff’s performance, the upper number gives the total
time spent on the instances that Chaff finished. The lower
number is equal to the upper number plus 60 000 times the
number of aborted instances in the class.

In our opinion, the main conclusion that can be drawn
from Table 2 is that BerkMin is more robust than Chaff.
One more argument substantiating this point of view is the
following. The web site [21] gives statistics on the
performance of 23 SAT-solvers (including a version of
Chaff) on a representative set of instances. This set
includes the 16 CNFs of class Beijing which are all
satisfiable except one CNF. Each of the 23 SAT-solvers
had at least two CNFs of the Beijing class that it was not
able to solve in the timeout limit (10 000 sec.)
Interestingly, there are no “universally” hard CNFs in this
class. That is a CNF that cannot be solved by one SAT-
solver can be finished in a few seconds by another, which
suggests that these SAT-solvers are not robust. At the
same time, BerkMin was able to solve all the 16 CNFs of
the Beijing class in about 8 minutes.

Table 3 gives some details of Chaff’s and BerkMin’s
performance on a few instances from classes fvp-unsat1.0,
Hanoi, and fvp-unsat2.0. Chaff was aborted on the 3
instances marked with the star symbol. The two columns
(Database size) / (Initial CNF size) give the ratio of the
total number of generated conflict clauses and clauses of
the initial CNF to the number of clauses of the initial
CNF. Table 3 shows that BerkMin has better performance
because it builds smaller search trees and its clause
database is smaller. Besides, column (Largest CNF size)/
(Initial CNF size) shows that the number of clauses
BerkMin had to keep in memory at the same time was at
most 4 times the number of clauses in the initial CNF.
Unfortunately, Chaff does not report the size of the largest
intermediate CNF. However judging by the data output by
the Unix utility called “top”, Chaff took much more
memory than our program. BerkMin was developed on a
PC with 128 Mbytes of memory. So it was designed to
reduce the probability of exceeding that limit. In
experiments BerkMin took more than 128 Mbytes of
memory only on a few instances of very large CNFs. On
the other hand, Chaff often used 1Gbytes of memory and
more.

7. Conclusions

This paper describes a new SAT solver, BerkMin,
that is more robust than Chaff, currently the best SAT
solver in the EDA domain. BerkMin has four new
features distinguishing it from the predecessors. Three of
them develop Chaff’s idea that recently deduced clauses
are the most important to satisfy. First, all clauses are

chronologically sorted so that BerkMin always tries to
satisfy the most recently deduced clause that is left
unsatisfied. Second, BerkMin gets a better estimation of
the activity of variables by taking into account a set of
clauses which is wider than what Chaff takes. Third,
BerkMin uses a new clause database management strategy
that takes into account not only the size of a clause but its
activity in conflict making and its “age”. The fourth new
feature of BerkMin is its branch selection strategy.

Chaff BerkMin Class of
benchmarks

Number of
instances Time (sec.) Number of

Aborted
Time (sec.) Number of

Aborted
Blocksworld 7 52.5 0 9.0 0
Hole 5 79.9 0 339 0
Par16 10 33.9 0 13.6 0
sss 1.0 48 41.6 0 13.4 0
sss 1.0a 8 17.4 0 17.9 0
sss-sat 1.0 100 383.9 0 254.4 0
fvp-unsat1.0 4 589.1 0 1637.4 0
vliw-sat 1.0 100 2602.9 0 7305.0 0

Table 1. Benchmarks on which Chaff’s and BerkMin’s performances are comparable

Chaff BerkMin Class of benchmarks Number of
instances Time (sec.) Number of

Aborted
Time (sec.) Number

of
Aborted

Beijing 16 468.1
(>120,468.1)

2 494.0 0

Miters 5 1515.9
(>121,515.9)

2 3477.6 0

Hanoi 3 1320.6
(> 61,320.6)

1 1401.3 0

fvp-unsat2.0 22 19679.4
(> 139,679.4)

2 6869.7 0

Table 2. Benchmarks on which BerkMin dominates

Chaff BerkMin
Instance
number

Satis-
fiable

(Database
size) /
(Initial
CNF size)

Number of
decisions

Time
(sec.)

(Database
size) /
(Initial
CNF size)

(Largest
CNF size)/
(Initial
CNF size)

Number
of
decisions

Time
(sec.)

9vliw_bp_mc no 2.42 1,124,797 567.4 1.88 1.04 2,384,485 1625.0
hanoi5 yes 31.49 504,463 1313.4 8.68 2.38 194,672 71.2
hanoi6* yes 129.04 5,580,228 49021.1 19.58 4.19 1,948,717 1328.7
4pipe no 3.01 412,358 354.6 1.49 1.08 144,036 40.9
5pipe no 1.65 461,275 333.7 1.09 1.01 213,859 71.8
6pipe* no 15.97 5,580,228 49131.2 1.71 1.05 1,371,445 1015.6
7pipe* no 7.37 11,779,016 48053.1 1.95 1.05 3,357,821 3673.2

Table 3. Details of Chaff’s and BerkMin’s performance on some instances

8. Acknowledgements

We would like to thank the anonymous reviewers
for their insightful recommendations for improving this
paper.

References

1. L.Baptista, J.P.Marques-Silva. The interplay of

randomization and learning on real-world instances of
satisfiability // Proceedings of AAAI Workshop on
Leveraging Probability and Uncertainty in Computation. -
July 2000.

2. R.J.J.Bayardo, R.C. Schrag. Using CSP Look-Back
Techniques to Solve Real-World SAT Instances, in:
Proceeding of the Fourteenth National Conference on
Artificial Intelligence (AAAI’97), Providence, Rhode
Island, 1997, pp. 203-208.

3. E.Ben-Sasson, R. Impagliazzo, A.Wigderson. Near
optimal separation of Treelike and General resolution //
Proceedings of SAT-2000: Third Workshop on the
Satisfiability Problem. - May 2000. -P.14-18.

4. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu.
Symbolic model checking using SAT procedures instead
of BDDs // Proceedings of Design Automation
Conference, DAC'99. -1999.

5. R.K.Brayton et. al. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, -1984.

6. J.Burch, V.Singhal. Tight Integration of Combinational
Verification Methods// Proceedings of International.
Conf. on Computer-Aided Design.-1998.

7. M.Davis, G.Longemann, D.Loveland. A Machine
program for theorem proving// Communications of the
ACM. -1962. -V.5. -P.394-397.

8. O.Dubois, P.Andre, Y. Boufkhad, J.Carlier. SAT versus
UNSAT. In: Johnson and Trick, Second DIMACS Series
in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 1996, pp.415-
436.

9. E. Goldberg, M.Prasad. Using Sat for combinational
equivalence checking// Proceedings of Design,
Automation and Test in Europe Conference. –2001. -
P.114-121.

10. C.P.Gomes, B. Selman, H.Kautz. Boosting combinational
search through randomization // Proceedings of
International Conference on Principles and Practice of
Constraint Programming. - 1997.

11. J.W. Freeman. Improvements to propositional
satisfiability search algorithms // Ph.D. thesis, Department
of computer and Information science, University of
Pennsylvania, Philadelphia , 1995.

12. C.M.Li. A constrained-based approach to narrow search
for Satisfiability // Information processing letters.-1999. -
V. 71. -P. 75-80.

13. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S.
Malik. Chaff: Engineering an Efficient SAT Solver. In:
Proceeding of the 38th Design Automation Conference
(DAC’01), 2001.

14. J.P.M.Silva. The impact of branching heuristics in
propositional satisfiability algorithms. Proceedings of the
9th Portuguese Conference on Artificial Intelligence
(EPIA), September 1999.

15. J.P.M.Silva, K.A.Sakallah. GRASP: A Search Algorithm
for Propositional Satisfiability // IEEE Transactions of
Computers. -1999. -V. 48. -P. 506-521.

16. P. Stephan, R.Brayton, A. Sangiovanni-Vencentelli.
Combinational Test Generation Using Satisfiability //
IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems. -1996.-Vol. 15. -P.
1167-1176.

17. M.Velev. CMU benchmark suite. Available from
http://www.ece.cmu.edu/~mvelev.

18. H.Zhang. SATO: An efficient propositional prover//
Proceedings of the International Conference on
Automated Deduction. -July 1997. -P.272-275.

19. http://www.ee.princeton.edu/~chaff/spelt3/chaff2_200103
23_spelt3-bin-solaris.tar

20. http://www.satlib.org/benchm.html
21. http://www.lri.fr/~simon/satex/satex.php3

