
ARTICLE IN PRESS

Int. J. Human-Computer Studies 65 (2007) 460–477

Berlin Brain–Computer Interface—The HCI communication

channel for discovery

Roman Krepkia,�, Gabriel Curiob, Benjamin Blankertza, Klaus-Robert Müllera,c
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Abstract

The investigation of innovative Human–Computer Interfaces (HCI) provides a challenge for future interaction research and

development. Brain–Computer Interfaces (BCIs) exploit the ability of human communication and control bypassing the classical

neuromuscular communication channels. In general, BCIs offer a possibility of communication for people with severe neuromuscular

disorders, such as amyotrophic lateral sclerosis (ALS) or complete paralysis of all extremities due to high spinal cord injury. Beyond

medical applications, a BCI conjunction with exciting multimedia applications, e.g., a dexterity discovery, could define a new level of

control possibilities also for healthy customers decoding information directly from the user’s brain, as reflected in EEG signals which are

recorded non-invasively from the scalp.

This contribution introduces the Berlin Brain–Computer Interface (BBCI) and presents set-ups where the user is provided with

intuitive control strategies in plausible interactive bio-feedback applications. Yet at its beginning, BBCI thus adds a new dimension in

HCI research by offering the user an additional and independent communication channel based on brain activity only. Successful

experiments already yielded inspiring proofs-of-concept. A diversity of interactive application models, say computer games, and their

specific intuitive control strategies are now open for BCI research aiming at a further speed up of user adaptation and increase of learning

success and transfer bit rates.

BBCI is a complex distributed software system that can be run on several communicating computers responsible for (i) the signal

acquisition, (ii) the data processing and (iii) the feedback application. Developing a BCI system, special attention must be paid to the

design of the feedback application that serves as the HCI unit. This should provide the user with the information about her/his brain

activity in a way that is intuitively intelligible. Exciting discovery applications qualify perfectly for this role. However, most of these

applications incorporate control strategies that are developed especially for the control with haptic devices, e.g., joystick, keyboard or

mouse. Therefore, novel control strategies should be developed for this purpose that (i) allow the user to incorporate additional

information for the control of animated objects and (ii) do not frustrate the user in the case of a misclassification of the decoded brain

signal.

BCIs are able to decode different information types from the user’s brain activity, such as sensory perception or motor intentions and

imaginations, movement preparations, levels of stress, workload or task-related idling. All of these diverse brain signals can be

incorporated in an exciting discovery scenario. Modern HCI research and development technologies can provide BCI researchers with

the know-how about interactive feedback applications and corresponding control strategies.
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1. Introduction

In the seven decades since the original publication of

Berger (1929) the electroencephalogram (EEG) has been

used mainly to evaluate neurological disorders and to

investigate brain function. Besides, people have also

speculated that it could be used to decipher thoughts or

intents, such that a person will be able to control devices

directly by her/his brain activity, bypassing the normal

channels of peripheral nerves and muscles. However, due

to the large amount of data to be analysed, it could attract

serious scientific attention only in the last decade,

promoted by the rapid development in computer hardware

and software, as nowadays it is possible to distribute tasks

of a complex system over different computers commu-

nicating with each other and to process acquired data in a

parallel manner and in real-time.

Moreover, recent research in digital signal processing

and data analysis provide the possibility to develop

intelligent and automatically adapting systems, which do

not rely on prior knowledge about the user, but set-up its

model at first contact and online. Obviously, a test person,

interacting with a computer application, generates distinct

spatio-temporal neuroelectric patterns in cortices of her/his

brain. In particular, the cerebral processing of visual or

auditory information provided by the monitor screen or

loudspeakers produces specific EEG patterns in the

primary visual or, respectively, auditory sensory cortices.

Those can easily be observed and classified by EEG

recorded over the respective cortex. Notably, further

cognitive processing of this information is widely distrib-

uted across the cortex posing a hard challenge for non-

invasive recording techniques to disentangle the contribu-

tions from different cortical processing modules. Thus,

while the intentions to control the system by performing

some motor, i.e., muscle activity, emerges inside the brain’s

high-level decision centers, finally they take their way to the

primary motor cortices, such that rising neural activity can

be read out from surface EEG electrodes placed over the

motor brain regions, which fortunately have a regular

somatotopic arrangement, i.e., the body is represented in a

orderly topography (Penfield and Rasmussen, 1950).

Due to physical limits in spatial resolution of surface

EEG, the discrimination of nearby located cortical areas

represents a challenging problem for data analysis, since

each single electrode acquires superposed data from within

a certain neighbourhood radius, where many originally

different signals are superimposed.

Currently, modern HCI and multimedia technologies

address only a subset of I/O channels humans use for

interaction with a computer application or a device. Those

demand mainly motor (joystick, pedal), visual (graphics,

animation) and acoustic (sound, music, speech) senses.

Recent research tries to include also olfaction (Harel et al.,

2003), tactile sensation (MacIntyre and Feiner, 1996;

Hardwick et al., 1996), interpretation of facial emotions

(Pantic and Rothkrantz, 2000) and gestures (Pentland,

1995; Quek et al., 2002). Since all these information

streams pass its own interface (hand/skin, eye, ear, nose,

muscles) yet indirectly converge or emerge in the brain, the

investigation of a direct communication channel between

the application and the human brain should be of high

interest to HCI researchers (Ebrahimi et al., 2003).

Furthermore, Steriadis and Constantinou (2003) state,

that development of Human–Computer Interfaces (HCIs)

for people with severe disabilities, e.g., amyotrophic lateral

sclerosis (ALS), or quadriplegia due to high spinal cord

injury or brainstem stroke patients, is an important issue

for integrating them into an emerging Information Society.

Due to the damage of normal communication paths, e.g.,

peripheral nerves and muscles that are required for

interaction with computers or other devices, information

on intention of movement execution can be extracted from

the last faultless communication stage. Green et al. (1999)

have shown that motor and sensory cortices of patients

with amputated extremities, e.g., arms or legs remain intact

and produce normal spatio-temporal activation patterns

on intentions to move the absent part of the body, as they

can be observed in healthy people. Accordingly, a

technique for recognizing and deciphering those patterns

and translating them into device control commands might

serve as the core for a wide variety of applications in the

field of HCI, which will provide to handicapped people the

ability to communicate with their environment or to

control various devices.

A special role must be assigned to the intelligibility of

feedback. Ramachandran (1999) reports that patients

following lateral hemisphere stroke display an indifference

to objects and events in the contralateral side of the world

(neglect). Looking into a mirror and imagining moving the

absent arm, which is a reflection of the other intact arm

helps to allay the phantom pains and accelerates the

recovery from neglect. Producing natural feedback on a

computer screen with actions, correlated to the intentions

of the patient might have similar helpful consequences for

the convalescence.

Finally, talking about bio-feedback as the core of matter,

one cannot avoid mentioning the recently developed

commercial system ‘‘The Journey to the Wild Divine’’

(www.wilddivine.com). This incorporates different bio-

signals which can be acquired with inexpensive devices

and in home environment, like heart beat pulse, skin

surface conduction measured at the fingertips, breath

frequency and depth, etc. to train relaxation and medita-

tion. This incorporates sumptuous graphics and anima-

tions to visualize the user’s bio-signals in a relaxing gaming

scenario. Its greatest advantage is that it is made

amendable to a wide range of users. However, it forces

the user to generate a certain bio-signal pattern, rather than

employing some machine adaptation technique for fitting

the user’s current condition and learning to recognize the

user’s intension. Moreover, it is indistinct up to what

extend it is able to employ brain activity as an independent

control channel. Undisputable, this product marks a great
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step in bio-feedback research and development; however,

its scientific contribution to the area of signal processing

and brain–computer interfacing is limited.

In Section 2 we give a short introduction in state-of-the-

art in BCI, and in Section 3, we introduce a novel

communication channel that can be used in HCI as based

on a new technique for information retrieval directly from

the brain. This is followed by a demonstration of a set of

interactive applications used for bio-feedback, in Section 4.

Section 5 concludes with a discussion on future perspec-

tives of BCIs in the fields of human–computer interaction,

control and discovery.

2. State of the art in BCI

A recent review on BCI defines a Brain–Computer

Interface as a system for controlling a device, e.g., computer,

wheelchair or a neuroprosthesis by human intentions, which

does not depend on the brain’s normal output pathways of

peripheral nerves and muscles (Wolpaw et al., 2002).

There are several non-invasive methods of monitoring

brain activity encompassing functional Near-infrared

Imaging (fNIR), Positron Emission Tomography (PET),

functional Magnetic Resonance Imaging (fMRI), Magne-

toencephalography (MEG) or Electroencephalography

(EEG) techniques, which all have advantages and short-

comings.1 Notably, EEG alone yields data that is easily

recorded with comparatively inexpensive equipment, is

rather well studied and provides high temporal resolution.

Thus, it outperforms remaining techniques as an excellent

candidate for BCI. EEG-based BCI systems can be

subdivided into several groups according to the electro-

physiological signals they use.

2.1. Visual-evoked potentials

Visual-evoked potentials (VEPs) define a dependent BCI,

i.e., they depend on oculomotor control of gaze direction,

such that activity in the normal information pathways, e.g.,

peripheral nerves and muscles is needed to generate the

brain activity. Sutter (1992) described a brain response

interface (BRI) applying it as a keyboard interface: by

selecting a symbol from a set of 64 proposed in an 8� 8

matrix by focusing on it volunteers were able to type

10–12words/min. Symbols were changing their colour or

flashing with a certain frequency, which induces a distinct

spatiotemporal pattern in the visual cortex of the user’s

brain. However, this method requires stable control over

oculomotor muscles, needed for focusing a letter. A

dependent BCI is essentially an alternative method for

detecting messages carried out in the brain’s normal output

pathways, but does not give the user a new communication

channel that is independent of conventional channels.

2.2. P300-based BCI

BCI systems are defined to be independent, if they do not

rely on any muscular activity, if the message is not carried

by peripheral nerves and muscles, and, furthermore, if

activity in these pathways is not needed to generate the

brain activity (e.g., EEG) that does carry the message. For

example, a subject waiting for the occurrence of a rare

stimulus on the background of a series of standard stimuli

evokes a Positive peak over parietal cortex about 300ms

(P300) after appearance. Donchin and Smith (1970)

presented a P300-based BCI used for typing of ca.

5 letters/min. However, those techniques remain limited

to letter selection paradigms, similar to that one described

in the previous subsection.

Approaches for independent BCIs are of greater

theoretical interest than for dependent BCIs, because they

offer the brain a completely new output pathway and are

likely to be more useful for people with most severe

neuromuscular disabilities.

2.3. BCI based on motor imagery

In Albany, New York, Jonathan Wolpaw directs the

development of a BCI system that lets the user steer a

cursor by oscillatory brain activity into one of two or four

possible targets (Wolpaw et al., 1991). In the first training

sessions most of the subjects use some kind of motor

imagery, which is then, during further feedback sessions,

replaced by adapted strategies. Well-trained users achieve

hit rates of over 90% in the two-target set-up; however,

each selection typically takes 4–5 s.

The lab in Graz of Gert Pfurtscheller develops a BCI

system that is based on event-related modulations of the

m- and/or the central b-rhythm of sensorimotor cortices.

For control paradigm the focus is on motor preparation

and imagination. Feature vectors calculated from sponta-

neous EEG signals by adaptive auto-regressive modelling

are used to train a classifier. In a ternary classification task

accuracies of over 96% were obtained in an offline study

with trial duration of 8 s (Peters et al., 2001).

2.4. Event related (de-)synchronization

Physiologically meaningful signal features can be ex-

tracted from various frequency bands of recorded EEG,

e.g., Pfurtscheller (1999) reports that m and/or b rhythm

amplitudes serve as effective input for a BCI. Movement

preparation, followed by execution or even only motor

imagination is usually accompanied by a power decrease in

certain frequency bands, labelled as event-related desyn-

chronization (ERD); in contrast, their increase after a

movement indicates relaxation and is due to an event-

related synchronization (ERS) in firing rates of large

populations of cortical neurons. Table 1 summarizes

frequency bands (marginal frequency values are highly
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subject-specific) and neurophysiological features they are

assumed to encode.

2.5. Slow cortical potentials

Slow cortical potentials (SCP) are voltage shifts gener-

ated in cortex lasting over 0.5–10 s. Slow negativation is

usually associated with cortical activation, e.g., evoked by

the implementation of a movement or by the accomplish-

ment of a mental task, whereas positive shifts indicate

cortical relaxation (Birbaumer, 1997). Further studies

showed that it is possible to learn SCP control. Conse-

quently, it was used in Birbaumer et al. (1999) to control

movements of an object on a computer screen in a BCI

referred to as Thought Translation Device (TTD). After

repeated training sessions over months, through which

patients achieve accuracies over 75%, they are switched to

a letter support programme, which allows selection of up to

3 letters/min.

A new letter selection protocol, involving a predictive

algorithm that uses a set of first letters of a word to select

the whole word from a lexicon which adapts to the user’s

vocabulary simultaneously, increases the communication

rate and provides Internet access to a disabled user

(Birbaumer et al., 2000).

2.6. Invasive methods for BCI

Using information recorded invasively from an animal

brain Nicolelis and Chapin (2002) report a BCI able to

control a robot. Four arrays of fine microwires penetrate

the animal’s scull and connect to different regions inside

the motor cortex. A robotic arm remotely connected over

the Internet implements roughly the same trajectory as the

owl monkey gripping for food. This invasive technology

allows the extraction of signals with fine spatial and

temporal resolution, since each microelectrode integrates

firing rates of few dozens of neurons. However, to make a

BCI attractive to an everyday-user it should be non-

invasive, fast mounted and leave no marks.

3. The Berlin Brain–Computer Interface (BBCI)

This section presents an independent non-invasive EEG-

based online-BCI, developed at Fraunhofer FIRST and the

Neurophysics Group of the Charité—Universitaetsmedizin

Berlin that overcomes limitations mentioned above. BBCI

is based on lateralized readiness potentials (LRP), which is

a form of SCP and appear during movement preparation.

Interestingly, the intrinsic movement execution is not

essential since LRP variants can be observed also for

imagined movements in healthy test persons. Note,

however, that the intention of a person to move her/his

amputated arm is not identical with imagined arm move-

ments of a healthy person because in the latter case an

additional ‘‘no-go’’ or ‘‘veto’’ signal is required to prevent

the actual motor performance. Therefore, the BBCI

focuses on the preparation of real, rather than imagined

movements.

The enormous amount of data to be processed in a

limited time forced the distribution of processing tasks over

several computers communicating via client–server inter-

faces. Moreover, this distributed concept allows advanta-

geous replacement of single modules according to

particular communication protocols. Fig. 1 illustrates the

distributed software design of the BBCI system.

The volunteer user (1) is facing a computer screen.

A drapery brain-cap (2) furnished with 128 electrodes is put

on her/his head. Four flat cables of 32 wires each connect

the cap with four amplifiers (3), which also perform

an A/D-conversion and transmit the acquired EEG at

sampling rate of 5 kHz and accuracy of 16 bits via a fiber
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Frequency bands

Band Frequency (Hz) Occur while/indicate
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y 3.5–8 Memory

a (m) 8–13 Relaxation, sensory idling

b 13–22 Motor idling

g 22–40 Feature binding Database
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Fig. 1. Distributed software design of the BBCI system.
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optic cable (to avoid electromagnetic interferences) to the

recorder PC (4). The recorder performs some predefined

simple preprocessing operations, i.e., subsampling to

1 kHz, optional low/high/band-pass or notch filters, and

stores the data in raw format for later offline analysis into

the database (5). Additionally it acts as Remote Data

Access (RDA) server, which allows up to 10 client

connections and serves one data block of acquired EEG

and auxiliary information, e.g., control signals or event

markers, each 40ms. A second computer (6) runs a

corresponding client, which performs, after data acquisi-

tion, some preprocessing steps for feature selection (details

in Section 3.4) in a parallel manner. For the detection and

the discrimination of user actions two separate non-

blocking threads were employed. Each is followed after an

optional synchronization by a classification step of the

current extracted feature vector (details in Section 3.5).

Finally, a combiner joins the two-classifier results and

produces a control command. Fig. 2 illustrates the parallel

approach of data processing. The online classifier (6) acts

as a server for various feedback clients (7) and serves each

40ms the control command that has been produced by the

combiner.

The feedback client is an interactive application that may

run on a separate computer and acquires the control

commands produced by the combiner module of the data

processing server. It is conceived to rely on simple control,

e.g., left/right movements, which may be expressed by a

small command set, and should give the user a feeling of

being inside the simulation. Currently, we employed simple

computer games like Pacman or Tele-Tennis, however,

other more sophisticated and challenging applications, like

Tetris or manoeuvreing through a Virtual Reality (VR)

maze are conceivable.

3.1. Data acquisition

We recorded brain activity with multi-channel EEG

amplifiers (Brain Products
TM

, Munich) using 128 channels

from a cap with Ag/AgCl Electrodes (+ of the contact

region is 5mm). Additionally, surface electromyogram

(EMG) signals, which detect muscle activity at both

forearms, as well as horizontal and vertical electrooculo-

gram (EOG) signals, which reflect eye movements, were

recorded. All signals were band-pass filtered between 0.05

and 200Hz and sampled at 1000Hz. For online analysis,

the data signals were then subsampled to 100Hz to

minimize the data processing effort.

The labels of electrodes are composed of some letters

and a number. The letters refer to anatomical structures

(Frontal, Parietal, Occipital, Temporal lobes and Central

sulcus), while the numbers denote sagittal (anterior–pos-

terior) lines. Odd numbers correspond to the left hemi-

sphere, while even numbers to the right; small ‘z’ marks

electrodes on the central sagittal line. Labels with 1 or 2

capital letters correspond to the 64 electrodes of the

extended international 10–20-system as defined in Shar-

brough et al. (1991) while labels with three capital letters

were composed from the neighbouring electrode labels and

denote additional channels in a 128-channel set-up. EEG

activity is measured against the reference electrode (Ref)

mounted on the nasion, while the ground electrode (Gnd)

is mounted on the forehead. Locations of the electrodes

and corresponding labels are illustrated in Fig. 3.

The voltage measured by the electrodes is very low and

fluctuates rapidly within the range of 7100 mV around a

baseline. Electrical noise from the surrounding environ-

ment (mainly 50Hz, resp., 60Hz power outlet frequency)

interferes with the data via connecting wires, which act as

small ‘‘antennas’’. To assure low impedances between the

electrodes and the scalp (desired below 5 kO), electrolyte

gel is filled into each electrode before experiments start.

3.2. Task and its neurophysiology

We let our subjects (all without neurological deficits)

take a binary (left/right hand) decision coupled to a motor

output, i.e., self-paced typewriting on a computer key-

board. Using multi-channel scalp EEG recordings, we

analyse the single-trial differential potential distributions of

the Bereitschaftspotential (BP/Readiness potential) preced-

ing voluntary (right or left hand) finger movements over
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the corresponding (left/right) primary motor cortex. As we

study brain signals from healthy subjects executing real

movements, our paradigm requires a capability to predict

the laterality of imminent hand movements prior to any

EMG activity to exclude a possible confound with afferent

feedback from muscle and joint receptors contingent upon

an executed movement.

The basic BBCI idea is focusing on control applications,

such as ‘‘virtual keyboard typing’’, that can be conceived as

potentially resulting from a natural sequence of motor

intention, followed by preparation and completing by the

execution. Accordingly, our neurophysiological approach

aims to capture EEG indices of preparation for an

immediately upcoming motor action. At present, we

exploit the BP, i.e., a slow negative EEG shift, which

develops over the activated motor cortex during a period of

about 1 s prior to the actual movement onset; it is assumed

to reflect mainly the growing neuronal activation (apical

dendritic polarization) in a large ensemble of pyramidal

cells. Previous studies of Lang et al., 1989 and Cui et al.

(1999) showed that in most subjects the spatial scalp

distribution of the averaged BP correlates consistently with

the moving hand (focus of brain activity is contralateral to

the performing hand).

The upper part of Fig. 4 shows Laplace filtered EEG

around the left and right hand motor cortices (electrodes

C3 and C4) within a time range of [�450:200]ms relative to

the key tap, averaged selectively for left-hand vs. right-

hand taps. The grey bars indicate a 100ms baseline

correction. The lateralization of BP is clearly specific for

left, resp., right finger movements. Four potential maps

show the scalp topographies of the BP averaged over time
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windows (upper) before movement preparation and (lower)

when BP reaches its maximum negativation, again

averaged over left-hand and right-hand taps separately.

Bold crosses mark electrode positions C3 and C4.

We would like to emphasize that the paradigm is shaped

presently for fast classifications in normally behaving

subjects and thus could open interesting perspectives for

a BCI assistance of action control in time-critical

behavioural contexts. Notably, also a possible transfer to

BCI controlled by paralyzed patients appears worthwhile

to be studied further because these patients were shown to

retain the capability to generate BPs with partially

modified scalp topographies (Green et al., 1999).

3.3. Training procedure

The Leitmotiv of BBCI is: ‘‘Let the machines learn!’’,

thus the user should invest only a minimum of time for

training the BBCI algorithms: The training procedure

described here serves for ‘‘teaching the machine’’ and

adjusting its model parameters to better match the user and

her/his brain signal’s properties. During the training

procedure we acquire example EEG from the user while

performing a certain task, e.g., execution or imagination of

left vs. right hand movement of the index or pinky fingers.

During the training session the user is instructed to sit

comfortably and, as far as possible, to omit any muscular

artifacts, like biting, gulping, yawning, moving the head,

arms, legs or the whole body. These would induce

electromyographic (EMG) noise activity that interferes

with EEG signals, such that the signal-to-noise-ratio

(SNR) decreases. Eye movements are to be minimized for

the same reason. To prevent possible (involuntarily)

cheating, e.g., producing eye movements correlated with

the performed tasks, vertical and horizontal EOG are

recorded, which can also be used for artifact correction,

i.e., cleaning up EEG signals of interfering EOG by a

weighted subtraction.

The training is performed in 3–4 sessions, each of about

7min, as illustrated in Fig. 5. Tasks are performed for a

period of 6min repeatedly with an interval of 0.5–2 s. All

training sessions may be performed in two experimental

kinds: (i) imagined, i.e., queried, (ii) executed, i.e., self-paced:

In the executed task experiment we acquire response markers

via keyboard, while the user determines her-/himself which

movement to perform next. During the imagined task

experiment a visual cue indicates the movement, which has

to be executed on the next auditory beat produced by a

digital metronome. Both stimuli place corresponding mar-

kers into the data, stored with a time stamp.

To train the learning machine and adjust its parameters,

we select time series of EEG activity acquired within a

certain time region before the marker, which gives the

training sample its label. We search for event markers in

the acquired data; these markers are (i) keyboard taps as

responses for executed movements, or (ii) a combination of
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the visual cue with the metronome beat stimuli for

imagined experiments. We then examine each marker for

affiliation to one of the classes of interest. Each class of

interest covers its own sample-selection parameter set

SSP ¼ ({mrk}, n, td, ti), where a set of marker labels mrk

identifies the affiliation of markers to classes, n gives the

number of training samples to be selected from the data, td
and ti are time constants indicating the delay of the initial

sample and the inter-sample interval. Beside the classes

indicating action, e.g., execution or imagination of a

movement, which in Fig. 6 provide samples 1a, 2a and

3a, an additional class indicating rest is introduced. This

provides in an analogue manner (incorporating t0d and t0i
time constants that indicate the delay of the initial rest-

sample and the inter-sample interval) training samples 1r

and 2r that are used together with action samples for

determining the detection of the task accomplishment,

though we use action samples only, for determining the

discrimination of which task has been completed. For

sample selection in the training procedure, negative time

constants are preferred, positive are allowed, however, they

make no sense for online analysis. Special attention must

be paid in fast-pace experiments to the issue that samples of

the rest class do not intersect with action class samples of

the preceding event marker, as they should not include any

information about action.

3.4. Preprocessing and feature selection

To extract relevant spatiotemporal features of slow brain

potentials we subsample signals from all or a subset of all

available channels and take them as high-dimensional

feature vectors. We apply a special treatment because in

pre-movement trials most information is expected to

appear at the end of the given interval. Starting point of

this treatment are epochs of 128 data points (width of a

sample window) of raw EEG data, corresponding to

1280ms as it is depicted in Fig. 7(a) for a single EEG

channel from �1400 to �120ms (td) relative to the

timestamp of the desired event marker. To emphasize the

late signal content, we first multiply the signal by a one-

sided cosine function (1), as shown in Fig. 7(b).

8n ¼ 0; . . . ; 127 : wðnÞ :¼ 0:5 � 1� cos
np

128

� �� �

. (1)

A Fast Fourier Transformation (FFT) filtering techni-

que is applied to the windowed signal. From the complex-

valued FFT coefficients all are discarded but the ones in the

pass-band (including the negative frequencies, which are

not shown); cf. Fig. 7(c). Transforming the selected bins

back into the time domain gives the smoothed signal of

which the last 200ms are subsampled at 20Hz by

calculating means of consecutive non-overlapping inter-

vals, each of 5 samples, resulting in 4 feature components

per channel, see Fig. 7(d).

3.5. Linear methods for classification

In BCI research it is very common to use linear

classifiers, but although linear classification already uses a
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very simple model, the analysis can still go wrong if the

underlying assumptions do not hold, e.g., in the presence of

outliers or strong noise, which are situations very typically

encountered in BCI data analysis. We will discuss these

pitfalls and point out ways around them.

Let us first fix the notation and introduce the linear

hyperplane classification model upon which we will rely

mostly in the following (cf. Fig. 8). In a BCI set-up we

measure k ¼ 1yK samples xk, where x are some

appropriate feature vectors in n-dimensional space. In the

training data we have a class label, e.g., ykA{�1,+1} for

each sample point xk. To obtain a linear hyperplane

classifier

y ¼ sign w
T
xþ b

� �

, (2)

we need to estimate the normal vector of the hyperplane w

and a threshold b from the training data by some

optimization technique. On unseen data x, i.e., in a BCI

feedback session, we compute the projection of the new

data sample onto the direction of the normal w via Eq. (2),

thus determining what class label y should be given to x

according to our linear model.

A linear classifier is defined by a hyperplane’s normal

vector w and an offset b, i.e., the decision boundary is

{x|wT
x+b ¼ 0} (thick line). Each of the two half-spaces

defined by this hyperplane corresponds to one class, i.e.,

f ðxÞ ¼ signðwT
xþ bÞ. The margin of a linear classifier is the

minimal distance of any training point to the hyperplane.

In this case it is the distance between the dotted lines and

the thick line (cf. Fig. 8).

3.5.1. Large margin classification

For linearly separable data there is a vast number of

possibilities to determine (w; b), that all classify correctly on

the training set, however, that vary in quality on the unseen

data (test set). An advantage of the simple hyperplane

classifier is that procedures have been established, e.g.,

Duda et al. (2001); or Vapnik (1995), on how to select the

optimal classifier w for unseen data.

Linear Support Vector Machines (SVM) realize the large

margin by determining the normal vector w. The one

particular strength of SVMs is that they can be turned into

nonlinear classifiers in an elegant and effective way that is

extensively described in Vapnik (1995), Schölkopf (1997),

and Mika et al. (2001).

3.5.2. Fisher’s discriminant

The event related potential (ERP) features are super-

positions of task-related and many task-unrelated

signal components, e.g., background auditory, visual or

receptional noise or task independent thoughts. The

mean of the distribution across trials is the non-oscillatory

task-related component, ideally the same for all trials.

The covariance matrix depends only on task-unrelated

components. Our analysis showed that the distribution

of ERP features is indeed normal. The important observa-

tion here is that the covariance matrices of both classes

(left/right movements) look very much alike (Blankertz

et al., 2003). This property of the ERP data set proposes

the application of the Fisher’s Discriminant as the

classificator.

The Fisher’s Discriminant is searching for a separating

hyperplane which subdivides the feature space into two

classes, optimizing its model parameters in two ways: (i) it

maximizes the distance between the centers of mass of the

two classes (inter-class variance) and (ii) minimizes the

variances of the data inside each class (intra-class

variances). The principal separation procedure used by

RFD is illustrated in Fig. 9.

Several other regularized linear classification procedures,

like Linear Perceptron with weight decay or Linear

Programming Machines (LPM) have been employed for

this task in Blankertz et al. (2002a, b); however, no

significant difference in classification accuracy could be

determined. The major advantage of the RFD-based

classifier is due to its lower computational costs,

such that the gain in performance could be maximized.

As well several nonlinear classifiers, e.g., Quadratic

Discriminant Analysis (QDA) or SVMs with Gaussian

kernels, as proposed in (Mika et al., 2003), have been

applied, however, their classification accuracy was

seldom higher than that of the best linear classifiers,

often they performed even worse. This fits with our

experience that the ERP features of different classes (e.g.,

left and right hand) of motor trials are Gaussian

distributed with equal covariance matrices. Thus, in this

case the classes are linear separable and hence linear

classifiers are more appropriate. Of course, nonlinear

classifiers can also learn linear problems, but due to the

increase of complexity of their models they are more

susceptible to noise which is a principle concern in EEG

data (see also the discussion of this issue in Müller et al.

(2003) and Krepki (2004)).
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3.5.3. Regularization and non-robust classifiers

Linear classifiers are generally more robust than their

nonlinear counterparts, since they have only limited

flexibility (less free parameters to tune) and are thus less

prone to over-fitting. Note, however, that in the presence of

strong noise and outliers even linear systems can fail. In

Fig. 10, one can clearly observe that one outlier or strong

noise event can change the decision surface drastically, if

the influence of single data points on learning is not

limited. The solid line in Fig. 10 shows the resulting

decision line, whereas the dashed lines mark the margin

area. In the middle and on the right the original decision

line is plotted grey. Illustrated is the noise sensitivity: only

one strong noise/outlier pattern can spoil the whole

estimation of the decision line.

Although this effect can yield strongly decreased

classification results for linear learning machines, it can

be even more devastating for nonlinear methods. A more

formal way to control one’s mistrust in the available

training data is to use regularization, as it is proposed in

Poggio and Girosi (1990) and Orr and Müller (1998) and

elsewhere. Regularization helps to limit (i) the influence of

outliers or strong noise (e.g., to avoid Fig. 10b), (ii) the

complexity of the classifier (e.g., to avoid Fig. 10c) and

(iii) the raggedness of the decision surface (e.g., to avoid

Fig. 10c).

The cross-validation procedure that is employed for

regularization purposes in the BBCI system is discussed in

more detail at the beginning of Section 4.

3.6. Bio-feedback

Finally, an interactive application, running on a separate

computer, receives combined results of classification via an

asynchronous client–server interface based on the User

Datagram Protocol (UDP) and acquires them in a

temporal queue. It examines the queue repeatedly for

stationary past signals persisting for a certain time length,

i.e., a Command Activation Term (CAT), and emits the

command corresponding to the class label of the classifica-

tion result (left/right/rest). After a command has been

emitted, it then falls into ‘‘relaxation’’ for a certain

time period, i.e., Command Relaxation Term (CRT),

which should be at least as long as the CAT. During this

period combiner outputs remain being collected in the

queue, but further command emissions are suppressed.
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This procedure, for three classes: left (black), right (grey)

and rest (dashed) is illustrated in Fig. 11. Here the

combiner yields the class label (denoted as colour of bars)

and the fuzzy values ~Pmax ¼ maxi ~Pi of the most likely

recognized class (depicted as amplitude) distributed over

time at a frequency of 25Hz. CAT is set to 10 periods

(400ms), and CRT is set to 14 periods (560ms).

This flexible set-up allows individual adjustments for

the user and the control strategy of the bio-feedback

application: (i) long CAT helps to avoid false-positively

emitted commands; (ii) short CAT, in contrast, allows fast

emission of commands, i.e., before the real movement is

executed; (iii) intraindividually adjusted CRT prevents

erroneous emissions and, respectively, allows volitional

successive emissions of the last command. These para-

meters depend strongly on the user and should be set

initially to values calculated from the results of the

application of trained classifier to the training data.

At starting point CAT0 may be set to the median length

of the stable signal containing a marker of the same

action class, and CRT0 to a value larger than CAT0 by

twice the amount of the standard deviation of the

distribution of lengths of stable signals. The values of

CAT and CRT should then be adjusted according to the

user’s demand.

The underlying interactive feedback application should

be intuitive, simple to understand, and the control strategy

should give the user a feeling of natural acting; however, it

should require a small (at present: binary) control set of

commands, i.e., left-turn/right-turn, avoid fast animation

and high-contrast changes to prevent or at least to

minimize spoiling of data affected by artifacts, e.g., brisk

movements of eye, head or body. An issue of particular

importance for a fast pacing of control commands is a

‘‘natural mapping’’ of the action required in the virtual

reality scenario to the ‘‘action space’’ of the human

operator, which is coded in egocentric coordinates. To this

end the on-screen environmental perspective must con-

tinuously represent the viewing direction of the human

operator, so that, e.g., a selection of the option of right-

turn can be addressed by the intention to move the right

hand and vice versa.

3.7. On erroneously emitted commands

It is a well-known finding in human psychophysics, that

a subject’s recognition of having committed a response

error is accompanied by specific EEG variations that can

easily be observed in averaged ERPs. Blankertz et al.

(2002a, b) present a pattern recognition approach that

allows for a robust single trial detection of this error

potential from multi-channel EEG signals. It is an elegant

approach to overcome the problem of low classifi-

cation accuracy by a response checking mechanism that

is based on the subject’s brain signals themselves, such

that those persons benefit most who otherwise can only

reach a modest BCI control because of a substantial

fraction of classification errors. The ERP after an error

trial is characterized by two components: a negative wave

(NE) with a fronto-central maximum, and a following

broader positive peak (PE) with a centro-parietal max-

imum. NE seems to initiate some kind of comparison

process since it is present also in most correct trials, while

PE seems to indicate brain’s reaction of recognizing that

the subject’s action was erroneous. Fig. 12 shows average

miss-minus-hit EEG-traces at electrodes along the vertex

and the scalp EEG potential topographies around that

region.

To assess the potential value of error detection for

improving BCI transmission rates we calculate the amount

of information that can be read out from a 2-class decision

experiment (N ¼ 2) with a BCI providing an accuracy of

85% (p ¼ 0.85) using Shannon’s information criterion (3):

IðpÞ :¼ log2 N þ p log2 pþ ð1� pÞlog2
1� p

N � 1
, (3)

I(0.85) ¼ 0.39 bits per selection for the system alone,

however, it can be improved by more than 75% to 0.69 bits

per selection in a system involving an error correction

method working with 20% false-negative (FN ¼ 0.2) and

3% false positive (FP ¼ 0.03), where the accuracy of the

improved system can be calculated by

p0ðp;FP;FNÞ ¼ p � 1� FPð Þ þ 1� pð Þ � 1� FNð Þ

¼ 0:94; and Iðp0Þ ¼ 0:69 bit ð4Þ

Note, that this is only a theoretical value used as

BCI performance measure. Achievement of this informa-

tion transmission rate would require a specific coding

of the information by the BCI user. Fig. 13 shows a plot

of the theoretical information rate (I) in a two-class

experiment as a function of the accuracy (p) of the pure

BCI system with and without the error correction

procedure working with an assumed rate of 20% of

false negatives and 3% of false positives. Obviously the

gain gets less, the higher the original BCI accuracy is; note

that with the assumed parameters an error correction

approach is useful, as long as the pure BCI accuracy is

below 96%.
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4. Results

To enable the classifier training, we initially let the user

execute or imagine the required movement repeatedly. For

real movements, which can be monitored, the user may

perform tasks ‘‘self-paced’’. For imagined movements, or

in paralyzed patients, the lateralization of each action (left/

right) is queried by an auditory and/or visual cue. We

extract training samples, preprocess each as described in

Sections 3.3 and 3.4, calculate a set of optimal classifiers on

a selection of 90% of the markers and test each on

remaining 10% as it is described in Section 3.5.

This procedure is repeated 10 times with all non-over-

lapping test-sets, which is called 10-fold cross-validation,

cf. Fig. 14. In a 10� 10-fold cross-validation the whole

procedure is repeated 10 times with random foldings of the

data set.

By calculating means of training and test errors, we

obtain a measure for effectiveness of a particular classifier

model. A test error essentially higher than the training

error would indicate that the model is too complex for the

given data, such that the risk of over-training is high due to

bad generalization ability. Notably, test errors of the cross-

validation procedure depend on the choice of the delay

time td in the pre-processing procedure. Obviously

classification is ambiguous for large values of td and

mostly correct for td ¼ 0. Fig. 15 shows the cross-

validation test-error of classification of EEG single trials

as a function of td for a single subject performing in a self-

paced experiment with 30 taps/min.

The right ordinate enumerates the theoretical informa-

tion transfer rate in bits per minute that can be extracted

from the classification results. Compared to the errors of

classification based on EMG (upper curve), which reflects
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the muscle activity in the forearms, the EEG approach

yields superior classification results which become feasible

already 120ms prior to the actual movement execution.

The EEG-based classification procedure retains its higher

performance, as classifications obtained after the hit

marker is presented are not interesting any more. This

phenomenon is neurophysiologically evident, because the

decision about lateralization of the movement has to be

met in the brain firstly, followed by the preparation of

cortical neurons and emission of the command down to the

spinal cord, peripheral nerves and to the effector muscles

spending at least 60–80ms.

4.1. Feedback scenario ‘‘Jumping-Cross’’

Initially we implemented a very simple visual bio-

feedback application to provide the user with a first feeling

of her/his intentions: a thick black cross is moving over a

full-screened window containing a thin static fixation cross

in the center and two target fields (dark-red and dark-

green—indicating left-hand and right-hand movements,

respectively). The ordinate position of the ‘‘jumping-cross’’

reflects the normalized decision of the movement detection

classifier (‘‘up’’ indicating action vs. ‘‘down’’ indicating

rest), i.e., the cross jumps into the upper half of the

screen on upcoming action. The abscissa position provides

the natural mapping of the discrimination classifier

result (left vs. right). The ‘‘jumping-cross’’ trails a history

tail of 4 points (data drawn at 40ms intervals). The single

action trial is indicated as completed, when (i) the screen

freezes on occurrence of an event marker, i.e., after an

actual movement is performed, and when (ii) the corre-

sponding lateralization field, the cross is actually located in,

is highlighted. Fig. 16 illustrates a typical left and right

event.

A series of single trials acquired over the whole

experiment (here: 64 left and 64 right trials) may be

represented in an instructive summary plot, cf. Fig. 17.

Here, crosses were replaced, for clarity; by bold dots and

the history tails are painted bold for the three most recent

periods and thin for another four preceding periods. The

axes represent the classification results of the discrimina-

tion and detection classifiers, respectively. It can be

recognized at a single glance, that the majority of trials

have been classified correctly.

4.2. Feedback scenario ‘‘Brain-Pong’’

In following experimental sessions, we introduced a

simple discovery scenario based on a well-known game of

Tele-Tennis. Set-up for a single-player, it is similar to the

‘‘Ping Pong’’ video game, cf. Fig. 18. A yellow ball is

moving continuously over the screen in a certain direction,

being bounced from the two lateral sides and the upper

border of the screen. There is a movable bar (racket) at the

bottom of the screen, which can be controlled by the

subject’s intentions using several strategies. We describe

these in detail in Section 4.2.1.

Several subjects who used the BBCI system to play

‘‘Brain-Pong’’ reported several long phases with many

successive successful trials. This provided them with the

feeling that the racket was becoming integrated as a part of

their own body and that no particular effort was required

to maintain control. Moreover, it was reported that in

successful phases, performance improved even more,

whereas in failure phases filled with mismatching trials,

performance dropped drastically. These observations are

also evident from the neurological and machine-learning

point of view. Since the user is not put under pressure

during training sessions, she/he generates ordinary brain
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patterns that are fed into the learning machine. However,

during application sessions with feedback, the user may

become greedy and at some point generate different brain

patterns induced by an additional effort to re-seize control

over the feedback. To conclude, the user puts her/himself

in a conflicting situation by applying more effort to gain

control; the effort induces an immediate change in the

brain pattern feature space, spanned by the training data

and thus recognizable by the classifier, which results even

more in losing control. ‘‘Brain Gamers’’ further report that

when control performance worsens significantly (subjec-

tively measured), simply adopting a relaxed state or

indifferent attitude to the game helps to re-gain control

over the machine.

4.2.1. Control strategies

Basically, we have implemented two different control

strategies for the racket, while both appear appropriate in

this scenario; in other applications one might be preferred

over the other.

In the ‘‘stepwise displacement’’ strategy the racket is

moved by a fixed displacement step (e.g., defined as

percentage of the window width) into the direction

indicated by the class label (left or right) if one particular

command class is recognized for at least one CAT

duration. The racket remains stationary if a ‘‘rest’’

command is detected (a stable signal for at least the CAT

duration) or if no stable signal is present (if combined

classifier result indicates more than one class label within a

single CAT duration). Each step is followed by a relaxation

period (CRT), which, for this control strategy, is set just

slightly longer than CAT. Thus, the racket could be moved

into the same direction by more than one step, with the

minimal inter-step interval given by CRT+1.

Notably, although the Lateralized Readiness Potential

(LRP) can indicate the preparation for one particular

movement, a series of movements (and movement repeti-

tions in particular) need not necessarily be linked with

LRPs of the same strength for every single movement;

rather, the LRP might index primarily the start of the

whole series, invoking subcortico-cortical routines for the

execution of the repeated actions. This points to a potential

limitation of the ‘‘stepwise displacement’’ strategy: if a fast

racket transition from one side of the screen to the other is

required, the user has to emit a series of identical

commands. The identification of optimal EEG correlates

for such a hyper-command will require further neurological

studies.

A second control strategy utilizes a ‘‘graded displace-

ment’’ code which exploits the strength of the recognized

command signal, e.g., a measure of BP amplitude, instead

of just the command emission time point identified by the

combiner. From its initial location at the screen center, the

racket can be deflected laterally (outward), but, as it is

attached to an imaginary spring, it will be returned to its

initial point (inward) whenever the fuzzy values of neither

the ‘‘left’’ nor the ‘‘right’’ classes are significantly high. This

control strategy has only a virtual ‘‘rest’’-class for which

fuzzy value may be calculated from the combination of the

results of the ‘‘left’’- and ‘‘right’’-class fuzzy values. The

outward racket deflections are calculated each time a new

result data block is received from the classifiers, i.e., at a

frequency of 25Hz. Each deflection is proportional to the

difference between the momentary graded values of the two

action classes if and only if the graded value of the virtual

‘‘rest’’-class is below a certain (usually low) threshold;

otherwise, it is set to zero, such that the racket is almost

always on the move. The value of the ‘‘rest’’-class threshold

controls the trigger sensitivity for the displacement activa-

tion and can be adjusted, together with the constant of

proportionality for the racket outward deflection, depend-

ing on the individual user’s experience and demand.

4.3. Feedback scenario ‘‘Pacman’’

Finally, the well-known Pacman video game has been

adapted to serve as bio-feedback. The idea is to combine

the information, available from the ‘‘jumping-cross’’ feed-

back with an aim-gain inventively in a discovery applica-

tion. A random labyrinth is generated in a full-screened

window, which has exactly one shortest way (without

detours) from the entry (in the left wall) to the exit (in the

right wall). This path is marked with grey track marks. The

player may also decide to run the Pacman through the rest

of the labyrinth, e.g., to receive additional credits for

harvesting some apples.

As control strategy we use the following approach: The

Pacman makes one step each 1.5–2 s and moves always

straight ahead until it reaches a wall or a right- or left-turn

command is received. The direction the Pacman is intended

to make in the next step is pointed by its yellow nose. When

the system recognizes a turn-command for at least one

CAT duration, Pacman turns its head indicating the

recognition of the command and takes the next crossing

possibility in the maze. After a turn command is acknowl-

edged, the Pacman does not accept any further commands

for at least CRT. The simulation is finished when the

Pacman reaches the exit of the labyrinth, cf. Fig. 19.

A healthy subject will be able to navigate the Pacman

through the presented labyrinth within 40 s (20 steps, each

of 2 s) using a conventional keyboard or a mouse. Using

brain control it takes considerably longer, however, the

‘‘fun-factor’’ of navigating just by intentions of the own

brain turned out to be very appealing. Moreover, it is

highly interesting that when immersed into the BCI-game

scenario the user has sometimes the feeling that the

Pacman moves in the correct direction though the user

was consciously not aware of his decision, sometimes

consciously not even ready for a decision.

4.4. Feedback scenario ‘‘Virtual Arm’’

The ‘‘Virtual Arm’’ feedback scenario is based on a

Virtual Reality (VR) platform X-Rooms (www.x-rooms.de).
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The user is instructed to control a part of the body that may

be absent and that is displayed on a computer screen. This

feedback application still remains an open research field that

requires prior solving of many neurological, technical and

fundamental research problems, as well as design and

conduction of further experiments with patients.

During the training session the user is instructed to

perform imagined movements of the arm, e.g., bending it at

the proximal (shoulder or elbow) and distal (hand or

fingers) joints, which are triggered by an external query.

During the application session the user is presented with a

black full-screen window containing an image of a human

arm. The BBCI is capable of recognizing the two spatio-

temporal brain patterns as belonging to two different

classes. The proximal joint flexion action is implemented by

the up and down movement of the entire arm, i.e., by

bending it in the shoulder or elbow joint. The distal

joint flexion actions then are implemented by the hand

closure and opening movement, i.e., by finger movements,

cf. Fig. 20.

A future vision is that a patient not capable of

controlling her/his own limb (in this case an arm) could

then gain control over a virtual limb in a natural way. As a

result, if the patient’s Central Nervous System (CNS) is still

intact and capable of generating the appropriate control

commands for bending and grasping, and if she/he is still

able to feel or imagine an amputated limb, the BBCI

system would serve as a bridge between the command

emission unit and the executing extremity, bypassing all the

intermediate interfacing elements such as spinal cord,

peripheral nerves and muscles.

For users with absent limbs, prostheses can be replaced

by intelligent robotic mechanisms that can be controlled by

the user’s brain signals encoded as emitted commands.

Furthermore, a Virtual Arm that is physically located at a

remote place, but connected to the BBCI user via the

Internet can be controlled easily by generating brain

activity patterns independent from those of a real arm

movement. This could provide the operator with a ‘‘third

limb’’ that would be able to perform some simple, but

important tasks in some difficult accessible environment.

Orthosis can be employed for users whose limbs are

present, yet who have no control of these limbs due to a

neuromuscular disease. In this case, if the executive muscles

of the limb are still intact and usable to implement

movements, an electro-stimulator sleeve (e.g., an arm or

wrist band) is employed to process the user’s brain signals

encoded as control commands. The sleeve transforms

control signals from the Virtual Arm interface into an

electrical stimulation of limb muscles, such that the

imagination of a certain movement yields the execution

of the desired movement in the limb. The underlying intent

of this feedback scenario was to investigate a virtual

version of such prosthesis and to define the control

procedure for the orthosis. The technical realization of

such a prototype is a challenge to be met by experts in the

field of robotics and prosthesis development and research.
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Fig. 19. Feedback scenario ‘‘Pacman’’ and the construction of Pacman’s head.

Fig. 20. Feedback scenario ‘‘Virtual Arm’’.
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Experiments with patients are still to be conducted within

the scope of future BBCI research.

5. Conclusion and discussion

BCIs have traditionally been conceived and used in

assistance systems for the disabled, e.g., Wolpaw et al.

(1991, 2002) and Birbaumer et al. (1999) and many more.

We have shown in this contribution that our BBCI

discovers also the interesting path towards interactive

applications; exemplified here as gaming and robotic arm

control.

The field of HCI research is expanding to encompass

brain signal-based communication and interaction. That

trend had its onset when, among other factors, BCIs

introduced a new technique for reliably decoding

brain signals and converting these into control commands,

which can be used for appealing interaction. Currently, the

two most prominent and promising paths of BBCI

application are rehabilitation, discovery and gaming,

although further application fields are conceivable, such

as the monitoring of the mental state of a patient or vehicle

driver. The latter could be used to prevent overfatigue of

truck drivers and guard against accidents. The bio-

feedback signals introduced in this contribution hold

potentials for further optimization, but already now allow

a user who has taken a ‘‘cold-start’’ to explore and discover

her/his individual possibilities in using the new commu-

nication channel. Concerning rehabilitation the most

promising perspectives, e.g., for quadriplegic patients, are

the intuitive use of mental motor commands to trigger

goal-directed actions of mechanical devices, such as a

motorized wheel-chair, or to use a ‘‘mental keyboard’’ for

typing messages.

In general, the question surrounding an ideal bio-

feedback signal for BBCI will find different answers

appropriate for each new application. However, we

propose that bio-feedback in an exciting gaming scenario

(Pacman), or within a native VR environment (Virtual

Arm), can be realized more naturally and thus more

successfully. Eventually such bio-feedback can enable the

user to adapt to the classification engine and vice versa; the

classification engine might find it easier to classify correctly

in the course of mutual adaptation (Krepki, 2004).

While most BCIs (except VEP or P300-based) require

extensive training (4200 h) from their users, it is one

distinctive feature of the BBCI that it employs advanced

signal processing and machine learning technology for

training the computer rather than the human subject, such

that the user can start ‘‘communicating’’ without extensive

prior training. There are several aspects for further

improvement of BBCI: so far we have used a paradigm,

where the user actually implements or imagines the

accomplishment of a movement, i.e., typing with the left

or right index or pinky fingers. In ongoing research we

transfer this paradigm to assistance systems where a

disabled person still has movement intentions and their

respective neural correlate, but no means for an actual

movement.

Another issue with pioneering appeal is the thrilling

possibility that, because the BBCI bypasses the conduction

delays from brain to muscles, it could speed up the

initiation of actions in competitive, dual-player scenarios

or applications that require ultra-fast actions, like emer-

gency braking. However, the experimental design of this

kind of application must differ to some extent from those

performed previously and presented within the scope of

this work. The conceptual scheme, design and implementa-

tion of such competitive scenarios as a feedback applica-

tion will require considerable innovation.

Let us finally discuss how much information we can

expect to transmit in such a new BCI channel. Invasive

technologies, like those proposed in Nicolelis and

Chapin (2002) can achieve bit-rates that are high enough

for, e.g., an online 3-D robot control (as discussed earlier),

but require hundreds of microelectrodes implanted

into the brain’s cortex, which is an unlikely condition for

healthy subjects. For non-invasive techniques our own

earlier studies have shown that in a pseudo-online

idealized evaluation (i.e., data are recorded and analysed

later as if online) record bit-rates of up to 50 bits per

minute are possible (Blankertz et al., 2003). Our recent

experiments have shown that even higher transfer-bit

rates can be achieved if several data processing models

are combined (Dornhege et al., 2004a, b). In spelling task

experiments conducted by Wolpaw et al. (1991),

Pfurtscheller et al. (1993) and Birbaumer et al. (1999)

that are truly online with bio-feedback, single subjects

can reach a level of 2–3 letters/min. A recent BBCI

study even achieves 37 bits/min in a real-time feedback

set-up (Blankertz et al., 2006). At first sight, this

might appear rather slow for a communication device, as

other communication devices, e.g., a computer mouse can

achieve 300–350 bits/min (MacKenzie, 1991). Yet, one

should realize that a BCI communication channel is

largely independent of other channels and offers a unique

feature of ultra-fast action emissions for each single

reaction trial.

Finally, there is a strong agreement that BCI research

will seek to develop new and more natural feedback modi

and feedback applications rather than re-developing and

adapting well-known applications to be controlled by brain

signals. The reason for that is because the latter were

designed to rely on classical communication and control

strategies. Moreover, the field of human–computer inter-

action will be increasingly in demand and will be called on,

in particular, to provide new techniques and communica-

tion protocols that can serve as a basis for BCI-based

communication. In conclusion, we discussed state-of-the-

art BCI research and presented recent results that could be

achieved by providing interactive feedback to the user.

BCIs are able to open up new vistas for exploring own

brain skills and discovering new ways in human–computer

communication.
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