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Bernoulli equation and flow over a mountain
Wen-Yih Sun1,2,3* and Oliver M. Sun4,5

Abstract

The Bernoulli equation is applied to an air parcel which originates at a low level at the inflow region, climbs

adiabatically over a mountain with an increase in velocity, then descends on the lee side and forms a strong

downslope wind. The parcel departs from hydrostatic equilibrium during its vertical motion. The air parcel can be

noticeably cooler than the temperature calculated from adiabatic lapse rate, which allows part of enthalpy to be

converted to kinetic energy and produces a stronger wind at mountain peak and a severe downslope wind on the

lee side. It was found that the hydrostatic assumption tends to suppress the conversion from enthalpy to kinetic

energy. It is also shown that the Froude number defined in the atmosphere is equal to the ratio of kinetic energy

to the potential energy, same as in Boussinesq fluid. But in the atmosphere, the Froude number cannot be used to

determine whether a parcel can move over a mountain or not, unless the vertical motion is weak and the system is

near hydrostatic equilibrium. Numerical simulations confirm that except in highly turbulent areas, the potential

temperature and Bernoulli function are almost conserved along the streamline, as well as the change of kinetic

energy comes from the change of enthalpy instead of potential energy.
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Background

Severe downslope winds on the lee sides of mountains

have been observed frequently around the world. They

may trigger dust storms in the Taklimakan Desert and

Gobi Desert (Sun et al., 2013a, b). Several hypotheses

have also been proposed to explain these winds, including:

(a) hydraulic jump: if the mountain height exceeds a certain

threshold, a strong wind can develop along the lee when a

subcritical flow transitions to a supercritical flow (Long

1953; Peltier and Clark 1979; Smith 1985; Durran 1986;

Baines 1995; Doyle et al. 2000; Lin 2007). The hydraulic

jump was originally derived from shallow-water equations;

(b) superposition of upward- and downward-propagating

waves: Klemp and Lilly (1975) suggested that strong down-

slope winds occur when the atmosphere has a multilayer

structure that produces an optimal superposition of

upward- and downward-propagating waves; (c) wave break-

ing and enhancement of downslope winds by the energy

trapped by the wave-breaking region in the upper layer

and/or wave-induced critical layer (Clark and Peltier 1977,

1984; Peltier and Clark 1979; Smith 1989; Aihara and

Hirasawa 1988; Lin 2007). Because the numerical simula-

tions with a nonslip surface could not simulate the long-

lasting severe windstorms observed in Boulder from the

conventional theories, Sun (2013) has proposed a new theory:

(d) geostrophic adjustment of the geostrophic-unbalanced

upper-level jet introducing a convergence in the upper layer

and enhancing the downslope wind. Sun’s numerical sim-

ulations reproduced a long-lasting, strong downslope wind

(~50 m s−1) on the lee side over a nonslip surface. More

detailed discussions are referred to Sun (2013).

The Bernoulli equation in a two-layer fluid is a popular

explanation for the formation of hydraulic jump. The

Bernoulli equation has also been used to study the devel-

opment of blocking flows as well as aerodynamic and

hydrodynamic problems (Clancy 1975). Long (1953, de-

noted as L53 hereafter) presented a mathematically linear

equation governing steady mountain waves of large ampli-

tude in an incompressible fluid (Smith 1985, denoted as

S85 hereafter). S85 also used an incompressible Bernoulli

equation to calculate the severe downslope wind in the lee

of a mountain. Although the assumption of incompress-

ibility and hydrostatic equilibrium is useful for obtaining

analytical solutions, nonhydrostatic, nonlinear numerical

models in fully compressible fluid show that dynamic
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pressure can be significant for realistic flows moving over

a mountain; however, these effects are ignored in the

models of L53, S85, and others. The numerical simulations

also confirm that, over a free-slip surface, the Bernoulli

equation holds well for an isentropic flow over a mountain

before it reaches high-turbulence regions on the lee side.

However, the simulated density is not a constant along a

constant Bernoulli line.

According to the Bernoulli equation, the energy

needed for a parcel to climb over a mountain can come

from both kinetic energy and enthalpy. Therefore, the

conventional Froude number, i.e., Fr =U/Nh where U is

the basic flow speed, N the Brunt–Väisälä frequency,

and h the mountain height, may not be appropriate to

represent this energy conversion in a stratified, com-

pressible fluid flow. Through Bernoulli equation, we

prove that the conventional Froude number does repre-

sent the ratio between kinetic energy and potential en-

ergy in a compressible fluid.

It is noted that the Bernoulli equation is only exact for an

inviscid, steady flow. It is also noted that a small area of

returning flow near the surface on the windward side may

propagate upwind with time. In highly turbulent regions on

the lee side, the flow may become unsteady too. Our non-

linear numerical model requires eddy viscosity and weak

smoothing to ensure numerical stability in simulating flow

over a high mountain. However, the impacts of smoothing

and viscosity are found to be insignificant except in turbu-

lent regions or near the surface when a nonslip surface

is used. Numerical results show that conservations of

Bernoulli function (which is related to the total energy of

an air parcel and is defined as B in Methods) and potential

temperature hold quite well before the flow encounters

highly turbulent regions on the lee side of the mountain.

In nonslip surface cases, above the surface frictional layer,

the simulated B, potential temperature, and streamlines

are near-parallel, and Bernoulli function and potential

temperature conservation also hold quite well.

Methods

The Bernoulli equation derived from the Navier–Stokes

equations consists of the kinetic energy, potential energy,

and enthalpy. The analytical solutions also reveal that

when an air parcel moves over a mountain, the change of

kinetic energy comes from the change of enthalpy instead

of from the potential energy, which invalids the popular

theory of hydraulic jump based on the conversion between

potential energy and kinetic energy. The detailed devia-

tions also show that the conventional Froude number

cannot be applied to estimate the mountain height a flow

can climb over because it ignores the change of enthalpy.

Numerical simulations obtained from National Taiwan

University–Purdue University nonhydrostatic model show

the detailed structure of the flow passing a mountain,

including an increase of velocity near the mountain peak

and a strong downslope wind on the lee side where the

temperature and pressure are relatively lower than the sur-

roundings. They also show that potential temperature,

streamline, and Bernoulli function almost remain constant

following the trajectory of an air parcel, but wind, pres-

sure, and density changes significantly.

Results and discussion

Basic equations and analytic solutions

The 2D nonhydrostatic equations for the dry, compress-

ible atmosphere can be written as:

∂u

∂t
þ u

∂u

∂x
þ w

∂u

∂z
¼ −

1

ρ

∂p

∂x
þ Du ð1Þ

∂w

∂t
þ u

∂w

∂x
þ w

∂w

∂z
¼ −

1

ρ

∂p

∂z
−g þ Dw ð2Þ

∂θ

∂t
þ u

∂θ

∂x
þ w

∂θ

∂z
¼ Dθ ð3Þ

∂ρ

∂t
¼ −

∂ρu

∂x
þ
∂ρw

∂z

� �

ð4Þ

p ¼ ρRT ð5Þ

θ ¼ T
po
p

� �R=cp

ð6Þ

where u and w are the x- and z-components of the wind;

p is the pressure; θ is the potential temperature; T is the

temperature; ρ is the density; R is the gas constant; cp is

the specific heat at constant pressure; Du and Dw are the

momentum diffusions along the x- and z-directions; and

Dθ is the heat diffusion. Equations (1)–(2) can be com-

bined and written compactly in vector form

∂V

∂t
þ ∇

V •V

2

� �

þ ∇� Vð Þ � V−
∇p

ρ
−gþD ð7Þ

where V = (u, w). If we define the displacement by

dr = (dx, dz) = Vdt and integrate (7) from the initial state

i to the final state f:

Z

f

i

∂V

∂t
þ ∇

V •V

2

� �

þ ∇� Vð Þ � V−
∇p

ρ
þ g−D

� �

• dr ¼ 0 ð8Þ

Because (∇ ×V) ×V is orthogonal to dr, (∇ ×V) ×

V • dr = 0.

Thus, for a steady, inviscid flow, the Bernoulli equa-

tion becomes:

V •V

2

� �

f

i
þ

Z

f

i

dp

ρ
þ gz

f

i
¼ 0:

�

�

�

�

�

�

�

�

�

ð9aÞ

Sun and Sun Geoscience Letters  (2015) 2:7 Page 2 of 12



Because in adiabatic process cpdT−
dp
ρ
¼ 0; Eq. (9a)

becomes:

V •V

2

� �

f

þ CpT f þ gzf ¼
V •V

2

� �

i

þ CpT i þ gzi

¼ B Bernoulli functionð Þ

ð9bÞ

Equation (9a) has been discussed in Clancy (1975).

Bernoulli function remains constant along a streamline.

From Eq. (9b), we can obtain

d
V •V

2

� �

þ cpT þ gz

� �

¼ d KEð Þ þ cpdT þ gdz ¼ 0 ð10Þ

where cpdT = d h, and h (specific enthalpy) = cvT + p/ρ,

where cv is the specific heat at constant volume. Hence,

Bernoulli function may be considered as the total en-

ergy, i.e., the summation of the kinetic energy, enthalpy,

and potential energy (PE).

We also define

BL≡
V •V

2

� �

þ
p

ρi z; x ¼ 0ð Þ
þ gz ð11aÞ

and

Bs≡
V •V

2

� �

þ
p

ρc
þ gz ð11bÞ

where the density ρ is replaced by the initial value ρi (z,

x = 0) in Eq. (11a) following L53, and ρc = 1 kg m−3 in

Eq. (11b) according to S85. The simulated Bernoulli

function, potential temperature, and streamlines gener-

ated from a nonlinear numerical model are almost paral-

lel before reaching high-turbulence regions or near a

nonslip surface. This implies that the flow is nearly adia-

batic, inviscid, and steady in the areas we are interested.

The contours of BL of Eq. (11a) will be presented as well

for comparison in the next section.

Here, we will define a hydrostatic–adiabatic process as

an air parcel moves adiabatically from zi to zf and follows

the hydrostatic equation (i.e., dw/dt ~ 0). The change of

pressure with height in a hydrostatic–adiabatic process

can be derived

dp ¼ −ρgdz ¼ −ρi
p

pi

� �cv=cp

gdz ð12Þ

and

Z

zf

zi

gdz ¼ g zf −zi
� �

¼ gΔz ¼ −
p
cv=cp
i

ρi

Z

pf

pi

p−cv=cpdp ¼ cp T i−T f

� �

ð13Þ

The temperature lapse rate is:

β ¼ −
T i−T f

zi−zf
¼

g

cp
≡ βad ð14Þ

where βad ≡ g/cp is the dry adiabatic lapse rate, which is

frequently used to calculate the change of the air parcel

temperature due to compression/expansion during hydro-

static–adiabatic vertical motions.

Substituting (13) into Eq. (9b), we obtain

V •V

2

� �

f

¼
V •V

2

� �

i

ð15Þ

which confirms that the kinetic energy remains constant

in a hydrostatic–adiabatic process. When a parcel has a

large vertical velocity, it usually does not satisfy hydro-

static equilibrium. Hence Tf is different from (Ti − βadΔz),

Eq. (9b) can be written as:

V •V

2

� �

f

−
V •V

2

� �

i

¼ cpT i−cpT f þ gzi−gzf

¼ cp T i−
g

cp
zf −zi
� �

� �

−cpT f

¼ cp T i−βadΔz
	 


−cpT f

¼ cpT
ad
i;f −cpT f ¼ cp T ad

i;f −T f

� �

ð16Þ

where the temperature T ad
i;f ¼ T i−βadΔz; is the tem-

perature of an “artificial” air parcel moves from i to f

following the adiabatic lapse rate βad in a hydrostatic–

adiabatic process, which is different from the simulated

temperature Tf. Equation (16) also implies that the

change of kinetic energy comes from the enthalpy differ-

ence, cp T ad
i;f −T f

� �

. The temperatures Tf and T ad
i;f will be

presented in Table 1. The adiabatic lapse rate can also

be derived from dθ/dz = 0 and hydrostatic equation.

Hence, adiabatic lapse rate βad is a warming/cooling

rate in a hydrostatic–adiabatic process without chan-

ging the kinetic energy (KE) according to Eqs. (15)

and (16).

If the hydrostatic equation is applied to Eqs. (11a)

and (11b), the KE of the parcel keeps its initial value

because

dp ¼ −gpcdz or dp ¼ −gpidz:

If the pressure of an air parcel automatically adjusts to

its environment p ¼ �pð Þ; which is in hydrostatic equilib-

rium, during adiabatic motion (i.e., the parcel method in
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meteorology), the parcel temperature from i to f can be

calculated by

T f ¼ T i

pf

pi

� �R=cp

¼ T i

�pf

pi

� �R=cp

¼ T i

T i−
�βΔz

T i

� �

g
�βR

" #R=cp

¼ T i
T i−

�βΔz

T i

� �

g
�βcp

ð17Þ

where Δz = zf − zi, and the lapse rate of the environment

(with over bar) �β ¼ −
d �T
dz

; and d�p ¼ −�ρgdz ¼ −
�pgdz

R�T
; or d

ln�p ¼ −
g

R�β
d ln T i−

�βz
� �

. Equation (9b) becomes
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2
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cp
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� �
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−…
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1

2

g
�θ

d�θ

dz
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ð18Þ

or

g

θ

d�θ

dz
Δz2 ¼ N2

Δz2 ¼ V •Vð Þi− V •Vð Þf

¼ 2KEi−2KEf ð19Þ

where N is the Brunt–Väisälä frequency.

Equation (19) shows that 2KEi − 2KEf can be converted

to potential energy N2
Δz2 in a stable atmosphere. Let us

define Rat:

Rat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KEi−2KEf

p

NΔz
ð20Þ

If KEf = 0 and Δz = mountain height h, and 2KEi ¼ V•

V ¼ U2
i ; where Ui is the characteristic horizontal vel-

ocity at the inflow region, then Rat is identical to the

conventional Froude number in meteorology Fr ¼ U i

Nh
;

which is related to the ratio of the kinetic energy

change to the potential energy change. The Froude

number can also be derived for Boussinesq fluid which

Table 1 Property of air parcel along constant B at 1A, 1B, ..,4C: and T adi;f Kð Þ ¼ T adA;B Kð Þ ¼ TA−βadΔzA;B at row 1B, T adi;f Kð Þ ¼ T adB;C ¼ TB−

βadΔzB;C at 1C, T adi;f Kð Þ ¼ T adA�;B� ¼ TA�−βadΔzA�;B� 1B*, etc., for cases 1–4 at different locations

Case +
location

x (km) z (m) p (hPa) θ (Κ) T (K) B (mzs −2) U (m s−1) T adi;f Kð Þ ¼ T i−βadΔzi;f ρ (kgm−3) Kinetic energy
(mZ s−2)

C p T adi;f −T
� �

mzs‐2ð Þ

KEf − KEi
(mZ s−2)

1A 160 1099. 748.659 291.1 268.01 280,000 11.24 0.9733 63.12

1B 320 2391. 628.278 291.1 254.91 280,000 31.89 255.40 0.8588 508.9 487.9 445.7

1C 348 378.0 795.373 290.7 272.30 280,000 74.44 274.56 1.0178 2771. 2272. 2263.

1D 347 1087. 730.587 325.2 297.29 309,930 35.90 0.8563 645.9

1A* 160 253.9 832.548 286.9 272.24 276,007 10.39 1.0656 54.00

1B* 320 2061. 656.594 286.9 254.36 276,007 24.41 254.60 0.8994 298.13 234.9 244.1

2A 160 1123. 744.034 291.3 267.67 279,890 4.037 0.9685 8.154

2B 320 2227. 641.966 291.3 256.65 279,890 22.94 256.90 0.8715 262.3 250. 254.2

2C 340 562.3 776.768 291.3 271.01 279,890 65.61 272.90 0.9987 2155. 1898. 1892.

2A* 160 582.9 796.686 289.3 271.10 278,039 2.183 1.0239 2.393

2B* 320 2061. 656.197 289.3 256.52 278,039 18.22 256.67 0.8913 166.1 155.6 163.7

3A 160 531.3 798.692 287.4 269.55 276,000 8.159 1.0325 33.28

3B 320 2139 647.706 287.4 253.84 276,000 10.71 253.86 0.8891 57.45 17.07 24.16

3C 353 305.1 819.443 287.4 271.52 276,000 23.23 271.74 1.0516 270.0 220.9 212.5

4A 160 2870. 588.768 295.7 254.15 283,597 18.55 0.8072 172.0

4B 320 3149. 565.735 295.7 251.31 283,597 24.16 251.43 0.7844 292.5 119.5 120.5

4C 332 1087 737.338 295.6 270.99 283,597 38.19 271.42 0.9481 739.2 436.7 446.7

*indicates parcel trajectory at the inflow region and at mountain peak
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experiences a hydraulic jump over an obstacle of

height h:

Fr ¼
U i
ffiffiffiffiffiffi

g 0h
p ¼

U i
ffiffiffiffiffiffiffiffiffiffi

g θ0

θ
h

q ¼
U i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gh
θi

d�θ
dzhð Þ−θi
θ

q

¼
U i
ffiffiffiffiffiffiffiffiffiffiffiffi

g
θ
d�θ
dz
h2

q ¼
U i

Nh
: ð21Þ

where g’ = gθ’/θ is the reduced gravity and �θ is the en-

vironmental potential temperature (Baines 1995). It is

noted that variation of pressure is not included in the

equation of state in Boussinesq fluid, i.e., ρ’/ρ = −θ’/θ.

The reciprocal of the Froude number (Nh/Ui), the nondi-

mensional mountain height, is defined by some meteorol-

ogists as a measure of nonlinearity for the continuously

stratified flow over topography, instead of Froude number

because they argued that U/Nh does not represent the ra-

tio of KE and PE as originally defined in the shallow-water

fluid for the flow over bottom topography (Lin 2007). On

the other hand, (21) confirms that U/Nh in a stratified

fluid flow does represent the ratio of KE change and PE

change, as that defined in the shallow water; thus, it is ap-

propriate to call it Froude number.

Equation (20) implies that Uf = (2KEf)
1/2 should be less

than Ui if the air parcel pressure is the same as the sur-

rounding environment, which is in hydrostatic equilibrium.

For a large mountain about 10-km wide (a ~ 10 km),

the mountain waves may be considered as hydrostatic

nonrotating waves in linear theory (Gill 1982). The con-

stant phase lines are tilted upstream with height, thus

producing a high pressure on the windward slope and a

low pressure on the lee slope. The flow decelerates over

the windward slope and accelerates over the lee slope.

The ground level pressure perturbation and wind vanish

at the peak (Gill 1982; Lin 2007). The linearized equa-

tions also show that the decrease of the wind on the

windward slope is equal to the increase of wind on the

lee side. However, they are different from the nonlinear

model simulations, in which the increase of wind on the

lee slope is much larger than the decrease on the wind-

ward slope; the positive wind perturbation extends to

the mountain peak, as shown in Durran (1986), Hsu and

Sun (2001), etc. But, it was mostly ignored because the

conventional theory states that the change of kinetic en-

ergy comes from the decrease of potential energy. The

patterns of the surface wind and pressure simulated

from nonlinear models with a = 10 km are close to the

pattern of the linear, nonhydrostatic waves with a ~ 1 km

than the hydrostatic waves discussed in Queney (1948),

Gill (1982), etc. The increase of U at the peak further re-

duces the pressure according to Bernoulli equation and

results in sucking more air from the lower layer in the

upstream. Because the pressure pf is lower than the

pressure on the upstream region at the same height, penv,

according to (6), we obtain

T f ¼ θ
pf

po

� �R=cp

< T env ¼ θ
penv
po

� �R=cp

¼ T ad
i;f

which is consistent with KEf −KEi ¼ cp T ad
i;f −T f

� �

. More

detail will be presented in Results and discussion.

Similarly, the air over the mountain peak descends and

accelerates to fill the mass deficit on the lee side created

by blocking of the mountain. The wind speed also in-

creases as long as its temperature is cooler than that cal-

culated from adiabatic lapse rate. This has been

confirmed by the nonlinear numerical model and will be

presented in Results and discussion.

From (5), we may obtain

d lnp ¼ d lnρþ d lnT ; or
p0

p
¼

ρ0

ρ
þ
T 0

T
ð22Þ

For an adiabatic process, from (6), we obtain

d lnT ¼ d lnθ þ
R

cp
d lnp; or

T 0

T
¼

R

cp

p0

p
ð23Þ

If we define T 0 ¼ T f −T
ad
i;f , we can obtain

p0

p
¼

Cp

R

T 0

T
; and

ρ0

ρ
¼

Cv

R

T 0

T
; ð24Þ

where p0 ¼ pf −p
ad
i;f and ρ0 ¼ ρf −ρ

ad
i;f . Hence, if T ' ≠ 0,

both p’ and ρ’ are also different from zero, where p’ can

be interpreted as the dynamic pressure.

Model and numerical simulations

The National Taiwan University–Purdue University non-

hydrostatic model simulations are used for comparison

with the analytical results discussed in the previous sec-

tion. The prognostic variables are potential temperature,

velocity, density, turbulent kinetic energy, etc. The detailed

equations, physics, parameterizations, and numerical

schemes of the model can be found in Hsu and Sun

(2001), Sun and Hsu (2005), and Sun (2013). Following

Sun et al. (2012, 2013c), we also partially filter the high-

frequency acoustic waves to permit a larger time interval

while solving for internal gravity waves, since the model

uses a time-splitting technique.

The Arakawa C grids are applied in the terrain follow-

ing the σ-coordinate, which is defined as:

σ ¼
p0 zð Þ−p0 ztop

� �

p0 zsurfaceð Þ−p0 ztop
� � ; ð25Þ

where p0, the pressure in the reference atmosphere, is a

function of height. The domain consists of 671 × 400
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grids with a uniform horizontal spatial interval dx =

1 km, and a vertical spatial interval, dz ≈ 75 m, except

the first layer above the ground where dz ≈ 25 m. Both

free-slip and nonslip surfaces are applied at the ground.

In addition to Newtonian damping applied to the upper

layers, the top is set at ≈30 km, higher than in most

models, to reduce spurious reflections from the top

boundary, which could produce standing waves and arti-

ficially enhance the downslope wind in the numerical

model. The variables are fixed at the inflow, x = 0; and

an open boundary is used at the outflow. An idealized

mountain with a Witch-of-Agnesi profile h = hm/{(x −

xo)/a]
2} is centered at xo = 320 km with characteristic

width ɑ = 10 km, and height hm = 2 km (Doyle et al.

2000; Hsu and Sun 2001; Sun and Hsu 2005; and Sun

2013). A free-slip surface is applied to cases 1–3, and a

nonslip surface is applied to case 4.

Case 1: U = 20 m s−1, and β = 3.5 K km−1 for z <

12 km, and β = 0.7 K km−1 for z > 12 km at inflow.

Figure 1a shows the simulated x-component wind (in-

dicated by a shaded color), potential temperature θ

(dashed black lines), Bernoulli function B (thick white

line), streamlines (thin black line), and pressure p (thin

white line) at t = 6 h, when the flows are almost steady

except in the highly turbulent regions. Fig. 1b is the same

as Fig. 1a, except that the shaded colors indicate

temperature. The contours of B, θ, and streamlines are al-

most parallel before flows reach the highly turbulent areas

on the lee side, indicating that the flow is nearly steady,

adiabatic, and inviscid, even though weak smoothing and

a turbulence parameterization are present in the model.

The contours of B or θ are thus approximately trajectories,

except inside areas of high turbulence.

We can follow the trajectory of an air parcel along

B = 280,000 m2 s−2, which passes 1A (x = 160 km, z =

1099.14 m) in the upstream region, where θ = 291.1 K,

T = 268.01 K, U = 11.24 m s−1, and ρ = 0.9733 kg m−3; 1B

(x = 320 km, z = 2391 m) over the mountain peak where

θ = 291.1 K, T = 254.91 K, U = 31.89 m s−1, and ρ =

0.8588 kg m−3; and 1C (x = 348 km, z = 378 m) with

strong downslope wind, U = 74.44 m s−1, θ = 290.7 K,

T = 272.30 K, and ρ = 1.0178 kg m−3, as shown in Table 1.

Fig. 1a, b also shows that, near the mountain top, the

wind becomes stronger but the temperature is lower

than in the surrounding air. The temperature at 1C is

also cooler than its surroundings.

Rows 1A, 1B, and 1C of Table 1 confirm that potential

temperature remains almost constant along a constant

B-function, which implies conservation of θ and B to be

a good approximation, as shown in Fig. 1a, b. The

temperature at 1B, T1B = 254.91 K is less than the

temperature of a parcel rising from 1A to 1B following

adiabatic lapse rate, T ad
A;B ¼ TA−βadΔzA;B ¼ 255:40 K.

Hence, U = 31.89 m s−1 at 1B over the mountain top is

much stronger than U = 11.24 m s−1 at 1A in the lower

upstream region. The temperature at 1C, TC = 272.30 K

is also less than T ad
A;B ¼ TB−βadΔzB;C ¼ 274:56 K; while

U = 74.44 m s−1 at 1C is stronger than U = 31.89 m s−1

at 1B. Table 1 also shows the difference in KE between

1A and 1B, KEB − KEA = 445.7 m2 s−2, and the difference

in enthalpy cp T ad
A;B−TB

� �

= 487.9 m2 s−2 at 1B. The dif-

ference of kinetic energy between 1B and 1C is

2263 m2 s−2 and cp T ad
B;C−TC

� �

is 2272 m2 s−2 at 1C, in

good agreement with Eq. (16). Fig. 1a and Table 1 also

show that the severe downslope winds on the lee side

originate from z ≈ 1.1 km instead of from mid-level (4–

6 km) at x ≈ 160 km, because the increase of U depends

on the change of enthalpy, cp T ad
i;f −T f

� �

, instead of gΔz.

Notably, the wind is relatively weak over the warm

spot at 1D (x = 347 km, z = 1087 m) where B =

309,930 m2 s−2, θ = 325.197 K, T = 297.29 K, and U =

36.9 m s−1 as shown in row 1D of Table 1 and Fig. 1b.

This warm spot with a weak wind is created by adiabatic

subsidence warming, associated with a large descent

from the mid-atmosphere. By contrast, the velocity in an

incompressible fluid would be greater with increasing

drop height.

Rows of 1A* and B* in Table 1 show that the parcel

with B = 276,007 m2 s−2, θ = 286.9 K, T = 272.24 K, and

U = 10.39 m s−1 from the inflow region at 1A* (x =

160 km, z = 253.9 m) moves to the mountain top 1B*

(x = 320 km, z = 2061 m) with B = 276,007 m2 s−2, θ =

286. 9 K, T = 254.36 K, and U = 24.41 m s−1. The poten-

tial temperature θ remains almost constant along B =

276,007 m2 s−2. The wind at 1B* is much stronger than

that at 1A* while the pressure and temperature are lower

than the environment as shown in Fig. 1b. The simu-

lated temperature at 1B*, T1B* = 254.36 K, is lower than.

T ad
A�;B ¼ TA�−βadΔzA�;B� ¼ 254:60 K: The KE difference

between 1A* and 1B* is 244.1 m2 s−2 and is also very

close to cp T ad
A�;B�−TB�

� �

= 250.0 m2 s−2 at 1B* according

to Eq. (16).

Along B = 280,000 m2 s−2 at 1A, 1B, and 1C, θ remains

around 291.1 K, but the density changes considerably

following the motion (i.e., dρ/dt ≠ 0); density also

changes noticeably but θ remains near 286.9 K along

B = 276,007 m2 s−2 at 1A* and B*. This differs signifi-

cantly from dρ/dt = 0, as proposed by L53, or the con-

stant density case of S85. The atmosphere used in L53

or S85 does not allow the parcel to depart from hydro-

static equation during its adiabatic motions. The stronger

the acceleration, the larger it departs from hydrostatic

equilibrium, since dw
dt

¼ −
∂p0

ρ∂z
−g ρ0

ρ
:
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The wind of a compressible air parcel can increase while

the parcel rises with a cooling rate larger than adiabatic

lapse rate. It means that extra-compressibility beyond the

compression/expansion of hydrostatic–adiabatic process

is crucial to the change of KE in the real atmosphere.

The conventional Froude number only considers the

a

b

Fig. 1 a Simulated U (shaded color), B (thick white lines), θ (dashed black lines), p (thin white lines), and streamlines at t = 6 h integration for case 1.

b Same as Fig. 1a except that the shaded color represents temperature T
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conversion between the kinetic energy and potential en-

ergy as discussed in Eqs. (19) and (20) and is not definitive

in the real atmosphere.

As discussed in Sun (2013), the zone of the weak (or

reverse) winds in the mid-level (5 km ~ 10 km) creates a

new blocking as an artificial steep mountain for the

westerly flow in z = 7 ~ 8 km. The flow moves over and

creates strong winds on the lee side of this blocking.

Combining a strong wind passing over the zone of

weak-wind barrier and that exiting from the upper part

of the hydraulic jump, the westerly wind reaches more

than 60 m s−1 in z ~ 8.2 km and x ~ 340 km. We can also

see that the wind comes from z ≤ 8.2 km from the west

and from the lower layer through the hydrostatic jump.

Therefore, the increase of kinetic energy does not come

from the conversion of potential energy, as discussed

previously. The slanting strips of strong and weak (or

reverse) westerly winds in z > 10 km resemble the propa-

gating mountain waves. Because the air density de-

creases with height, the amplitude of mountain waves

increase with height in the upper layer.

Case 2: Observed x-component wind and temperature

of 11 January 1972 in Boulder are used at x = 0.

This case has been studied intensively, as discussed in

Sun (2013) and papers quoted in Background and in

Klemp and Lilly (1975), Lilly (1978), Clark and Peltier

(1984), Durran (1986), Doyle et al. (2000), Hsu and Sun

(2001), Sun and Hsu (2005), Lin (2007), etc. Fig. 2a, b

shows the observed wind and potential temperature as

functions of height at the inflow region. The shaded colors

in Fig. 3a, b, c show the simulated wind, temperature, and

density, respectively, at t = 6 h. The contours of B (thick

white line), θ (dashed black lines), and the streamlines are

almost parallel before the flow becomes turbulent, similar

to case 1. Bernoulli B = 279,890 m2 s−2 at 2C (x = 340 km,

z = 562.3 m), the location of a severe downslope wind

on the lee side, where U = 65.61 m s−1, θ = 291.3 K,

T = 271.01 K, and ρ = 0.9987 kg m−3. The contour

B = 279,890 m2 s−2 can be traced back to 2B (x = 320 km,

z = 2227 m) over the mountain peak, where U= 22.94 m s−1,

θ= 291.3 K, T= 256.65 K, and ρ= 0.8715 kg m−3,

and 2A (x = 160 km, z = 1123 m) in the upstream where

U = 4.037 m s−1, θ = 291.3 K, T = 267.67 K, and ρ =

0.9685 kg m−3. Rows 2A, 2B, and 2C in Table 1 show

that the temperature at 2B, TB = 256.65 K, is cooler than

T ad
A;B = 256.90 K, and TC = 271.01 K is less than T ad

B;C =

272.90 K at 2C. The large increase in KE between 2B

and 2C (KEC −KEB = 1892 m2 s−2) is consistent with
cp T ad

B;C−TC

� �

= 1898.0 m2 s−2 due to a large cooling (1.89 K)

of the air parcel while it ascends/descends adiabatically. It

is noted that the extra cooling also accompanies the

a b

Fig. 2 a θ (z) at inflow for case 2. b U (z) at inflow for case 2
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a

b

c

Fig. 3 a Same as Fig. 1a except for case 2. b Same as Fig. 1b except for case 2. c ρ (shaded color), θ (dashed black lines), p (thin white lines),

streamlines, and BL (thick white lines), based on ρi in Eq. (11a) at t = 6 h for case 2
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pressure and density decreases compared to hydrostatic–

adiabatic process in the area of severe downslope wind on

the lee side (Fig. 2a, b).

We can also identify the properties of the air parcel

originating at 2A* (x = 160 km, z = 582.9 m) with B =

278,039 m2 s−2, θ = 289.3 K, T = 271.10 K, and U =

2.18 m s−1, which reaches the mountain top at 2B*

(x = 320 km, z = 2061. m), where B = 278,039 m2 s−2, θ =

289.3 K, T = 256.52 K, and U = 18.22 m s−1. Again,

cp T ad
A�;B�−TB�

� �

= 155.6 m2 s−2 is also close to KEB* −

KEA* = 163.7 m2 s−2 shown in the rows of 2A* and 2B*

of Table 1. The situation is similar to the previous case,

even though the temperature and wind at x = 0 are height-

dependent. Rows 2A*–2B* of Table 1 also show that θ re-

mains nearly constant along a constant B-line, but the

density changes considerably as discussed in case 1.

It is also notable that the pressure of the parcel is

lower than the surrounding pressure at the same height

(Fig. 3a, b). The contour of B = 2,790,000 m2 s−2 (Fig. 3a,

b) shows that a warm parcel with a weak wind in the

lower layer in the upstream rises to the mountain top

while its temperature decreases beyond adiabatic lapse

rate and the wind increases. Fig. 3a, b also shows that

the region of strong downslope wind on the lee side is

cooler than its surroundings. As discussed previously,

the strong downslope wind originates from a relatively

low level as in cases 1 and 2. The change of KE depends

on cp T ad
i;f −T f

� �

instead of the vertical displacement of

gΔz. The source region of downslope wind around 2 km

(Fig. 3b) is higher than in case 1 because of a strong

wind shear at x = 0 in case 2.

Figure 3c and Table 1 show that the contours of θ

(dashed black lines), streamlines, ρ (shaded color), and

BL (thick white line) based on ρ = ρi (z, x = 0, t = 0) of

Eq. (11a). The contours of BL and density are parallel,

but they intercept isentropic lines and streamlines near

the mountain. This indicates that parcels at the moun-

tain peak cannot follow a constant BL to 2C (x = 340 km,

z = 562.3 m). Similarly, the contours of BS based on a
constant density (ρ = 1 kg m−3) of Eq. (11b) also inter-
cept constant isentropic lines and streamlines (not

shown); therefore, a parcel cannot follow BS lines either.

Case 3: At x = 0, the observed x-component wind of

11 January 1972 in Boulder is used, but β = 3.5 K km−1

for z < 12 km; β = 0.7 K km−1 for z > 12 km.

The simulated wind (shaded colors) at t = 6 h (Fig. 4)

reveals that the downslope wind (U = 23.23 m s−1) at 3C

(x = 353 km, z = 305.1 m; row 3C in Table 1) is much

weaker than the U = 65.6 m s−1 of case 2 or 74 m s−1 of

case 1. A stable stratification and a weak wind in the

low layer cause the flow to move over the mountain in

close to hydrostatic equilibrium (i.e., dw/dt ≈ 0). At 3A

(x = 160 km, z = 531.3 m), U = 8.159 m s−1 is slightly less

than U = 10.71 m s−1 at 3B (x = 320 km, z = 2139 m),

and TB = 253.84 K is slightly less than T ad
A;B ¼ 253:86K:

Fig. 4 Same as Fig. 1a except for case 3
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KEB −KEA = 24.16 m2 s−2 is very close to cp T ad
A;B−TB

� �

=

17.07 m2 s−2. The increase of KE at 3B comes from the de-

crease of enthalpy. At 3C,TC = 271.52 K is also slightly less

than T ad
B;C ¼ 271:74K; and cp T ad

B;C−TC

� �

= 220.9 m2 s−2 is

close to KEC −KEB = 212.5 m2 s−2. This is consistent with

the Bernoulli equation and also confirms that if T ad
i;f ¼ T i−

βadΔz≈T f ; we will have KEf ≈KEi.

Case 4. It is the same as case 2, except on a nonslip surface.

Since a free-slip surface is unrealistic, we examine the

validity of the Bernoulli equation over a nonslip surface,

which avoids the propagation of the hydraulic jump ob-

tained on a free-slip surface. The simulated θ and B lines

at t = 6 h deform drastically due to the effect of surface

friction (Fig. 5). However, θ and B lines at 500 m or

more above the ground are not affected by surface

friction. Table 1 shows that the contour of B= 283,597 m2 s−2

comes from 4A (x = 160 km, z = 2870. m) with U =

18.55 m s−1 and θ = 295.7 K and reaches 4B (x = 320 km,

z = 3149 m) over the mountain peak with U = 24.16 m s−1

and θ = 295.7 K. The change of kinetic energy, KEB−KEA =

120.5 m2 s−2 is very close to cp T ad
A;B−TB

� �

= 119.5 m2 s−2.

After passing over the mountain peak, the flow descends

and creates a strong downslope wind U = 38.19 m s−1

and θ= 295.6 K at 4C (x= 332 km, z= 1087.08 m). KEC −

KEB = 446.7 m2 s−2 and cp T ad
B;C−TC

� �

= 436.7 m2 s−2. These

are in good agreement because they are derived from a

very large value of B (=283,597 m2 s−2). Above the sur-

face friction layer, lines of θ, B, and streamlines are

nearly parallel. The potential temperature is almost

conserved along B = 283,597 m2 s−2 as well. The wind

speed increases while the parcel moves over the moun-

tain top at x = 320 km, along B = 283,597 m2 s−2. How-

ever, the contours of B ≤ 281,000 m2 s−2 deform

drastically when they approach the mountain. They are

also quite irregular in the areas of high turbulence on

the lee side, where the flow becomes unsteady. The

strong downslope wind comes from a layer which is

above the influence of surface friction. Overall, the down-

slope wind is much weaker than in case 2. As discussed in

Sun (2013), the severe downslope wind can be enhanced

and maintained by the convergence of the geostrophic-

unbalanced, northwesterly upper-level-jet due to geo-

strophic adjustment. The simulated wind here is much

weaker than those in Sun (2013), because neither the

Coriolis force nor the geostrophic-unbalanced upper-level

jet is included here. For more details, the reader is referred

to Sun (2013).

Conclusions

The Bernoulli equation is applied to an air parcel that

originates from a low level at the inflow region, speeds

up as it moves adiabatically over a mountain, then

Fig. 5 Same as Fig. 1a except for case 4
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descends on the lee side and forms a strong downslope

wind. Excess compressibility of the atmosphere beyond

hydrostatic–adiabatic process allows the air parcel to de-

part from hydrostatic equilibrium, resulting in a change

in kinetic energy (i.e., wind speed) which comes from

changes in enthalpy. Numerical simulations confirm

that potential temperature remains almost constant but

temperature, density, and pressure vary considerably along

constant Bernoulli lines. The mechanism described here

does not appear in the incompressible, quasi-hydrostatic

fluids used by L53 or S85. The results also suggest that the

conventional Froude number, defined as the ratio of kin-

etic energy to the potential energy in the atmosphere, is

not a good indicator for determining whether an air parcel

can move over a mountain, except if the vertical motion is

weak and the process is near hydrostatic equilibrium.
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