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Abstract. We construct Bernstein-type operators on a triangle with one
curved side. We study univariate operators, their product and Boolean
sum, as well as their interpolation properties, the order of accuracy (de-
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1. Introduction

Starting with the paper [2] of R.E. Barnhill, G. Birkhoff and W.J. Gordon,
there have been constructed interpolation operators of Lagrange, Hermite and
Birkhoff type, that interpolate the values of a given function or the values of
the function and of certain of its derivatives on the boundary of a triangle
with straight sides (see, e.g., [3], [10], [11], [14], [15], [21]). In order to match
all the boundary information on a curved domain (as in Dirichlet, Neumann
or Robin boundary conditions for differential equation problems) there were
considered interpolation operators on a triangle with curved sides (see, e.g.,
[16], [17]).

Since the Bernstein-type operators interpolate a given function at the
endpoints of the interval, these operators can also be used as interpolation
operators both on triangles with straight sides (see, e.g., [8], [25], [26]) and
with curved sides. The aim of this paper is to construct Bernstein-type oper-
ators, and also their product and boolean sum, (see, e.g., [18], [19], [20]), for
a triangle with one curved side and to study such operators especially from
the theoretical point of view. We study here only the local problem and not
consider the global problem of assembling the curved elements in a triangu-
lation of a domain with curved boundaries, as there are, for example, in [6],
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[7], [13], [12]. Using modulus of continuity, respectively Peano’s theorem we
also study the remainders of the corresponding approximation formulas.

As in the case of a triangle with straight sides, by affine invariance, it is
sufficient to consider the standard triangle T̃h with vertices V1 = (0, h), V2 =
(h, 0) and V3 = (0, 0), with two straight sides Γ1, Γ2, along the coordinate
axes, and with the third edge Γ3 (opposite to the vertex V3) defined by the
one-to-one functions f and g, where g is the inverse of the function f, i.e.,
y = f(x) and x = g(y), with f(0) = g(0) = h, for h > 0. Also, we have
f(x) ≤ h and g(y) ≤ h, for x, y ∈ [0, h] . The functions f and g are defined
as in [3]. In the sequel we denote by eij (x, y) = xiyj , for i, j ∈ N.

2. Univariate operators

Let F be a real-valued function defined on T̃h and (0, y), (g(y), y), respec-
tively, (x, 0), (x, f(x)) be the points in which the parallel lines to the co-

ordinate axes, passing through the point (x, y) ∈ T̃h, intersect the sides Γi,
i = 1, 2, 3. (See Figure 1.)
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Figure 1. Triangle T̃h.

One considers the Bernstein-type operators Bx
m and By

n defined by

(Bx
mF ) (x, y) =

m∑

i=0

pm,i (x, y)F

(
i

m
g(y), y

)
,

with

pm,i (x, y) =

(
m

i

)(
x

g(y)

)i(
1− x

g(y)

)m−i

, 0 6 x+ y 6 g(y),

respectively,

(By
nF ) (x, y) =

n∑

j=0

qn,j (x, y)F
(
x, j

nf(x)
)

with

qn,j (x, y) =

(
n

j

)(
y

f(x)

)j (
1− y

f(x)

)n−j

, 0 ≤ x+ y ≤ f(x),
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where

∆x
m =

{
i

m
g(y)

∣∣∣∣ i = 0,m

}
and ∆y

n =
{

j
nf(x)

∣∣ j = 0, n
}

are uniform partitions of the intervals [0, g(y)] and [0, f(x)].

Theorem 2.1. If F is a real-valued function defined on T̃h then:

(i) Bx
mF = F on Γ2 ∪ Γ3,

(ii) By
nF = F on Γ1 ∪ Γ3,

and
(iii) (Bx

meij) (x, y) = xiyj , i = 0, 1; j ∈ N,

(Bx
me2j) (x, y) =

[
x2 + x(g(y)−x)

m

]
yj , j ∈ N,

(iv) (By
neij) (x, y) = xiyj , i ∈ N, j = 0, 1,

(By
nei2) (x, y) = xi

[
y2 + y(f(x)−y)

n

]
, i ∈ N.

Proof. The interpolation properties (i) and (ii) follow from the relations:

pm,i (0, y) =

{
1, for i = 0,

0, for i > 0,

and

pm,i (g(y), y) =

{
0, for i < m,

1, for i = m,

respectively by

qn,j(x, 0) =

{
1, for j = 0,

0, for j > 0,

and

qn,j(x, f(x)) =

{
0, for j < n,

1, for j = n.

Regarding the properties (iii), we have

(Bx
meij) (x, y) = yj(Bx

mei0)(x, y), j ∈ N

and

(Bx
me00) (x, y) =

(
x

g(y)
+ 1− x

g(y)

)m

= 1,

Bx
me10(x, y) =

m∑

i=0

(
m

i

)(
x

g(y)

)i(
1− x

g(y)

)m−i
i

m
g(y)

= x

m−1∑

i=0

(
m− 1

i

)(
x

g(y)

)i(
1− x

g(y)

)m−1−i

= x

(
x

g(y)
+ 1− x

g(x)

)m−1

= x,
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Bx
me20(x, y) =

m∑

i=0

(
m

i

)(
x

g(y)

)i(
1− x

g(y)

)m−i

i2
(
g(y)

m

)2

=

(
g(y)

m

)2 m∑

i=0

(
m

i

)
i(i− 1)

(
x

g(y)

)i(
1− x

g(y)

)m−i

+ x
g(y)

m

=
m− 1

m
x2 + x

g(y)

m
= x2 +

x[g(y)− x]

m
.

Properties (iv) are proved in the same way. �

Now, let us consider the approximation formula

F = Bx
mF +Rx

mF.

Theorem 2.2. If F (·, y) ∈ C[0, g(y)] then
∣∣ (Rx

mF )(x, y)
∣∣ ≤

(
1 + h

2δ
√
m

)
ω(F (·, y); δ), y ∈ [0, h],

where ω(F (·, y); δ) is the modulus of continuity of the function F with regard
to the variable x.

Moreover, if δ = 1/
√
m then

∣∣ (Rx
mF ) (x, y)

∣∣ ≤
(
1 + h

2

)
ω(F (·, y); 1√

m
), y ∈ [0, h]. (2.1)

Proof. From the property (Bx
me00)(x, y) = 1, it follows that

∣∣ (Rx
mF ) (x, y)

∣∣ ≤
m∑

i=0

pm,i(x, y)
∣∣∣F (x, y)− F (

i

m
g(y), y)

∣∣∣.

Using the inequality
∣∣∣∣F (x, y)− F (

i

m
g(y), y)

∣∣∣∣ ≤
(

1
δ

∣∣∣∣x− i

m
g(y)

∣∣∣∣+ 1

)
ω(F (·, y); δ)

one obtains

|(Rx
mF )(x, y)| ≤

m∑

i=0

pm,i(x, y)

(
1
δ

∣∣∣∣x− i

m
g(y)

∣∣∣∣+ 1

)
ω(F (·, y); δ)

≤
[
1 +

1

δ

( m∑

i=0

pm,i(x, y)
(
x− i

m
g(y)

)2)1/2
]
ω(F (·, y); δ)

=

[
1 +

1

δ

√
x(g(y)−x)

m

]
ω(F (·, y); δ).

Since,

max
0≤x≤g(y)

[
x(g(y)− x)

]
= g2(y)

4 and max
0≤y≤h

g2(y) = h2,

it follows that

max
T̃h

[
x(g(y)− x)

]
=

h2

4
,

hence
∣∣(Rx

mF )(x, y)
∣∣ ≤

(
1 +

h

2δ
√
m

)
ω(F (·, y); δ).
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Now, for δ = 1/
√
m, one obtains (2.1). �

Theorem 2.3. If F (·, y) ∈ C2[0, h] then

(Rx
mF )(x, y) =

x[x− g(y)]

2m
F (2,0)(ξ, y), for ξ ∈ [0, g(y)]

and
∣∣(Rx

mF )(x, y)
∣∣ ≤ h2

8m
M20F, (x, y) ∈ T̃h,

where

MijF = max
T̃h

∣∣∣F (i,j)(x, y)
∣∣∣ .

Proof. Taking into account that the degree of exactness of the operator Bx
m

is 1, i.e., dex(Bx
m) = 1, by Peano’s theorem, it follows

(Rx
mF )(x, y) =

∫ g(y)

0

K20(x, y; s)F
(2,0)(s, y)ds,

where

K20(x, y; s) = (x− s)+ −
m∑

i=0

pm,i(x, y)
( i

m
g(y)− s

)
+
.

For a given ν ∈ {1, ...,m} one denotes by Kν
20(x, y; ·) the restriction of the

kernel K20(x, y; ·) to the interval
[
(ν − 1) g(y)m , ν g(y)

m

]
, i.e.,

Kν
20(x, y; ν) = (x− s)+ −

m∑

i=ν

pm,i(x, y)

(
i

m
g(y)− s

)
,

whence,

Kν
20(x, y; s) =





x− s−
m∑
i=ν

pm,i(x, y)
(

i
mg(y)− s

)
, s < x

−
m∑
i=ν

pm,i(x, y)
(

i
mg(y)− s

)
, s ≥ x.

It follows that Kν
20(x, y; s) ≤ 0, for s ≥ x. For s < x we have

Kν
20(x, y; s) = x−s−

m∑

i=0

pm,i(x, y)

(
i

m
g(y)− s

)
+

ν−1∑

i=0

pm,i(x, y)

(
i

m
g(y)− s

)
.

As,
m∑

i=0

pm,i(x, y)

(
i

m
g(y)− s

)
= x− s,

it follows that

Kν
20(x, y; s) =

ν−1∑

i=0

pm,i(x, y)

(
i

m
g(y)− s

)
≤ 0.

So, Kν
20(x, y; ·) ≤ 0 for any ν ∈ {1, ...,m}, i.e., K20(x, y; s) ≤ 0, for s ∈

[0, g(y)].
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By mean value theorem, one obtains

(Rx
mF )(x, y) = F (2,0)(ξ, y)

∫ g(y)

0

K20(x, y; s)ds, 0 ≤ ξ ≤ g(y).

Since,
∫ g(y)

0

K20(x, y; s)ds =
x(x− g(y))

2m

and

max
0≤x≤g(y)

|x(x− g(y))|
2m

=
g2(y)

8m
≤ h2

8m
, y ∈ [0, h]

the conclusion follows. �

Remark 2.4. Analogous results are obtained for the remainder of the formula

F = By
nF +Ry

nF,

i.e.,

∣∣(Ry
nF )(x, y)

∣∣ ≤
(
1 + h

2δ
√
n

)
ω(F (x, ·); δ), F (x, ·) ∈ C[0, f(x)]

and

(Ry
nF )(x, y) ≤

(
1 + h

2

)
ω
(
F (x, ·); 1√

n

)

respectively,

(Ry
nF )(x, y) =

y[y − f(x)]

2n
F (0,2)(x, η), η ∈ [0, f(x)]

and
∣∣(Ry

nF )(x, y)
∣∣ ≤ h2

8n
M02F, (x, y) ∈ T̃h.

3. Product operator

Let Pmn = Bx
mBy

n, respectively, Qnm = By
nB

x
m be the products of the oper-

ators Bx
m and By

n.

We have

(PmnF ) (x, y)=
m∑

i=0

n∑

j=0

pm,i (x, y) qn,j
(

i
mg(y), y

)
F
(

i
mg(y), j

nf
(

i
mg(y)

))

and

(QnmF ) (x, y)=

m∑

i=0

n∑

j=0

pm,i

(
x, j

nf(x)
)
qn,j (x, y)F

(
i
mg
(
j
nf(x)

)
, j
nf(x)

)
.
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Remark 3.1. The nodes of the operator Pmn, respectively, Qnm are given in
Figure 2.

Figure 2. The nodes for Pmn and Qnm, for m = n = 4.

Theorem 3.2. If F is a real-valued function defined on T̃h then:

(i) (PmnF )(V3) = F (V3),
PmnF = F, on Γ3

and
(ii) (QnmF )(V3) = F (V3),

QnmF = F, on Γ3.

Proof. The proof follows from the properties

(PmnF )(x, 0) = (Bx
mF )(x, 0),

(PmnF )(0, y) = (By
nF )(0, y),

(PmnF )(x, f(x)) = F (x, f(x)), x, y ∈ [0, h]

and

(QnmF )(x, 0) = (Bx
mF )(x, 0),

(QnmF )(0, y) = (By
nF )(0, y),

(QnmF )(g(y), y) = F (g(y), y), x, y ∈ [0, h],

which can be verified by a straightforward computation.
For example, the property (PmnF )(x, 0) = (By

mF )(x, 0) implies (PmnF )(0, 0) =
F (0, 0). �

Remark 3.3. The product operators Pmn and Qnm interpolate the function F
at the vertex (0, 0) and on the side y = f(x) (or x = g(y)).

Let us consider now the approximation formula

F = PmnF +RP
mnF,

where RP
mn is the corresponding remainder operator.

Theorem 3.4. If F ∈ C(T̃h) then
∣∣ (RP

mnF
)
(x, y)

∣∣ ≤ (1 + h)ω
(
F ; 1√

m
, 1√

n

)
, (x, y) ∈ T̃h



8 Petru Blaga, Teodora Cătinaş and Gheorghe Coman

Proof. We have

∣∣(RP
mnF )(x, y)

∣∣ ≤
[
1

δ1

m∑

i=0

n∑

j=0

pm,i(x, y)qn,j
(

i
mg(y), y

) ∣∣x− i
mg(y)

∣∣

+
1

δ2

m∑

i=0

n∑

j=0

pm,i(x, y)qn,j
(

i
mg(y), y

) ∣∣y − j
nf
(

i
mg(y)

)∣∣

+

m∑

i=0

n∑

j=0

pm,i(x, y)qn,j
(

i
mg(y), y

) ]
ω(F ; δ1, δ2).

Since,

m∑

i=0

n∑

j=0

pm,i(x, y)qn,j
(

i
mg(y), y

) ∣∣x− i
mg(y)

∣∣ ≤
√

x(g(y)− x)

m
,

m∑

i=0

n∑

j=0

pm,i(x, y)qn,j
(

i
mg(y), y

) ∣∣y − j
nf
(

i
mg(y)

)∣∣ ≤
√

y(f(x)− y)

n
,

m∑

i=0

n∑

j=0

pm,i(x, y)qn,j
(

i
mg(y), y

)
= 1,

it follows that

∣∣(RP
mnF )(x, y)

∣∣ ≤
(
1 +

1

δ1

√
x(g(y)− x)

m
+

1

δ2

√
y(f(x)− y)

n

)
ω(F ; δ1, δ2).

But

x
(
g(y)− x

)
≤ h2

4
and y

(
f(x)− y

)
≤ h2

4
,

whence,

∣∣(RP
mnF )(x, y)

∣∣ ≤
(
1 +

1

δ1

h

2
√
m

+
1

δ2

h

2
√
n

)
ω(F ; δ1, δ2)

and
∣∣(RP

mnF )(x, y)
∣∣ ≤ (1 + h)ω

(
F ;

1√
m
,

1√
n

)
.

�

4. Boolean sum operators

Finally, we consider the Boolean sums of the operators Bx
m and By

n, i.e.,

Smn := Bx
m ⊕By

n = Bx
m +By

n −Bx
mBy

n,

respectively,

Tnm := By
n ⊕Bx

m = By
n +Bx

m −By
nB

x
m.
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Theorem 4.1. If F is a real-valued function defined on T̃h then

SmnF
∣∣
∂T̃ = F

∣∣
∂ T̃

and

TnmF
∣∣
∂T̃ = F

∣∣
∂T̃

.

Proof. As,

(PmnF ) (x, 0) = (Bx
mF ) (x, 0) ,

(PmnF ) (0, y) = (By
nF ) (0, y) ,

(Bx
mF ) (x, h− x) = (By

nF ) (x, h− x) = (PmnF )(x, h− x) = F (x, h− x)

the conclusion follows. �

For the remainder of the Boolean sum approximation formula,

F = SmnF +RS
mnF,

we have the following result.

Theorem 4.2. If F ∈ C(T̃h) then
∣∣(RS

mnF )(x, y)
∣∣ ≤(1 + h

2 )ω(F (·, y); 1√
m
) + (1 + h

2 )ω(F (x, ·); 1√
n
) (4.1)

+ (1 + h)ω(F ; 1√
m
, 1√

n
), (x, y) ∈ T̃h.

Proof. The identity

F − SmnF = F −Bx
mF + F −By

nF − (F − PmnF )

implies that
∣∣(RS

mnF )(x, y)
∣∣ ≤

∣∣ (Rx
mF ) (x, y)

∣∣+
∣∣ (Ry

nF (x, y)
∣∣+
∣∣(RP

mnF )(x, y)
∣∣

and the conclusion follows. �

5. Numerical examples

Example 5.1. We consider the following test functions, generally used in the
literature, (see, e.g., [22]):

F1(x, y) =
1
3 exp[− 81

16 ((x− 0.5)2 + (y − 0.5)2)],

F2(x, y) =
1.25 + cos 5.4y

6 + 6(3x− 1)2
.

(5.1)

In Figure 3 and Figure 4 we plot the graphs of the maximum errors for
approximating by Bx

mFi, B
y
nFi, PmnFi, SmnFi, i = 1, 2, on T̃h, considering

h = 1,m = 5, n = 6 and f : [0, 1] → [0, 1], f(x) =
√
1− x2.
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Figure 3. The maximum approximation errors for F1.
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Table 1 contains the maximum approximation errors for the functions
given in (5.1) for the Bernstein type operators and for some operators ob-
tained in [16], namely Lagrange-type operators

(L1F )(x, y) =
g(y)− x

g(y)
F (0, y) +

x

g(y)
F (g(y), y),

(P13F )(x, y) =
g(y)− x

g(y)
F (0, y)+

x

g(y)[y + g(y)]
[g(y)F (y+g(y), 0)+yF (0, y+g(y))],

(S12F ) (x, y) =
g(y)− x

g(y)
F (0, y) +

f(x)− y

f(x)
F (x, 0) +

y

f(x)
F (x, f(x))

− g(y)− x

g(y)

[
h− y

h
F (0, 0) +

y

h
F (0, h)

]
,

Hermite-type operator

(H1F )(x, y) =
[x− g(y)]2

g2(y)
F (0, y)+

x[2g(y)− x]

g2(y)
F (g(y), y)+

x[x− g(y)]

g(y)
F (1,0)(g(y), y),

and Birkhoff-type operator

(B1F ) (x, y) = F (0, y) + xF (1,0) (g (y) , y) .

Max error F1 F2

Bx
mF 0.0525 0.0821

By
nF 0.0452 0.0692

PmnF 0.0858 0.0943
QnmF 0.0857 0.0944
SmnF 0.0095 0.0144
TnmF 0.0095 0.0112

L1F 0.2097 0.2259
P13F 0.2943 0.2261
S12F 0.1718 0.1809
H1F 0.0758 0.2210
B1F 0.6235 0.5302

Table 1. The approximation errors.
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