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Topological aspects of electron wave-
function play a crucial role in determin-
ing the physical properties of materials.
Berry curvature and Chern number are
used to define the topological structure
of electronic bands. While Berry curva-
ture and its effects in materials have been
studied [1, 2], detecting changes in the
topological invariant, Chern number, is
challenging. In this regard, twisted dou-
ble bilayer graphene (TDBG) [3–7] has
emerged as a promising platform to gain
electrical control over the Berry curvature
hotspots [8] and the valley Chern num-
bers of its flat bands [9, 10]. In addition,
strain induced breaking of the three-fold
rotation (C3) symmetry in TDBG, leads
to a non-zero first moment of Berry cur-
vature called the Berry curvature dipole
(BCD), which can be sensed using nonlin-
ear Hall (NLH) effect [11]. We reveal, us-
ing TDBG, that the BCD detects topolog-
ical transitions in the bands and changes

its sign. In TDBG, the perpendicular elec-
tric field tunes the valley Chern number
and the BCD simultaneously allowing us
a tunable system to probe the physics of
topological transitions. Furthermore, we
find hysteresis of longitudinal and NLH
responses with electric field that can be
attributed to switching of electric polar-
ization in moiré systems. Such a hys-
teretic response holds promise for next-
generation Berry curvature-based memory
devices. Probing topological transitions,
as we show, can be emulated in other 3D
topological systems.

Exploring materials with new topological
phases and probing their symmetries has been
at the forefront of modern research. Topology is
often characterized by Berry curvature that man-
ifests as quantum Hall effect [1] or as anomalous
Hall effect in magnetic materials [1, 2]. While
these effects have led to many breakthroughs in
physics, these linear responses vanish in systems
that preserve time-reversal symmetry. However,
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even in time-reversal symmetry protected sys-
tems, broken inversion symmetry can lead to the
first moment of Berry curvature, namely Berry
curvature dipole (BCD), when further spatial
symmetries are reduced [11]. In presence of an
ac current (of frequency ω) in such system, the
BCD can drive a second-order electrical response,
namely the nonlinear Hall (NLH) voltage with
zero (DC) and second-harmonic (2ω) frequency.
Aligned with the recent interest in various non-
linear phenomena such as nonlinear optics, there
is a rapidly growing interest to look for quantum
materials that host the NLH effect [12, 13].

The topological phase of quantum materials
can be characterized by the band-specific topo-
logical invariant Chern number. Often systems
undergo transition between topological phases
and these transitions are hard to detect, un-
like phase transitions of order parameter. Re-
cent proposals suggest that topological transi-
tions are accompanied by simultaneous changes
in BCD [14, 15]. Moiré systems are known to be
natural candidates to host topological bands [16].
While the NLH effect has been observed for tran-
sition metal dichalcogenides (TMDCs) [17–21]
and corrugated bilayer graphene [22], the exper-
imental study in two-dimensional moiré systems
is limited [23]. Furthermore, topological transi-
tions along with BCD have not been experimen-
tally observed thus far.

Recently, the observation of several novel phe-
nomena in moiré systems such as magic-angle
twisted bilayer graphene has attracted atten-
tion [24–29]. Flat bands in twistronic systems
give rise to various electron correlation phe-
nomena such as Mott insulators and supercon-
ductivity [24–27]. In particular, the observa-
tion of anomalous Hall effect and orbital ferro-
magnetism point to the rich topology of these
twisted systems [28, 29]. Flat bands of moiré
systems are also susceptible to symmetry break-
ing by strain [30]. Together with the fact that
spatial symmetry breaking can lead to nonzero
BCD [30–32], bands in 2D moiré systems offer an
interesting platform to electrically tune topology
and detect it via the NLH effect.

In this work, we use twisted double bilayer
graphene (TDBG), in which two copies of bilayer

graphene are stacked together with a small twist
angle∼1.1◦, as a candidate system to study topo-
logical transitions using the NLH effect. While
the flat bands in TDBG host correlation induced
physics as in twisted bilayer graphene, TDBG is
additionally equipped with electric field tunabil-
ity [3–7, 33]. The perpendicular electric field,
apart from modulating the band structure, can
also change the valley Chern number of a flat
band [10]. Additionally, almost touching flat
bands with small tunable energy gaps of few
meV in TDBG gives rise to large Berry curva-
ture in this system [8, 16, 34]. We use elec-
tric field tunability to demonstrate that TDBG
hosts substantially large BCD due to strain. The
BCD changes sign abruptly and this can be at-
tributed to a topological transition, a change in
valley Chern number, with the electric field. Ad-
ditionally, hysteresis in both longitudinal resis-
tance and NLH signal as a function of the elec-
tric field suggests switching between metastable
states.

In TDBG, broken inversion symmetry allows
nonzero Berry curvature (Ω). Additionally,
imaging of small-angle twisted moiré devices re-
veals strain that breaks three-fold rotational (C3)
symmetry [23, 35, 36]. Such reduced symme-
try makes the Berry curvature distribution non-
symmetric and anisotropic over the moiré Bril-
louin zone (mBZ), leading to nonzero BCD (Λα)
given by,

Λα =
∑
n

∫
mBZ

dk

(2π)2
Ωn
z

∂εnk
~∂kα

∂f(εnk)

∂εnk
. (1)

Here α stands for the spatial index (x, y), εnk is
the energy of the nth band and f(εnk) is the Fermi-
Dirac function. In Eq. (1), a sum over all the
bands crossing the Fermi energy is implied. To
calculate the BCD in TDBG, we consider dis-
torted hexagonal moiré Brillouin zone with the
C3 symmetry broken by strain as shown in the
schematic of Fig. 1a. The effect of C3 symme-
try breaking is reflected in the Berry curvature
plots of Fig. 1b, c. Figure 1d shows the band
structure for TDBG with a twist angle of 1.10◦

under 0.1% strain with Ωz of the flat bands in-
dicated by the color. Together, nonzero Berry
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Fig. 1. Strain-mediated nonlinear Hall (NLH) effect in twisted double bilayer graphene
(TDBG). a, Schematic shows the distortion of the hexagonal moiré Brillouin zone due to strain, that
breaks the C3 symmetry. b, c, The Berry curvature (Ωz) of the valence band without strain (b) and with
strain (c) along three paths arranged in 120◦ angle as shown in a. d, The band structure of 1.10◦ TDBG
device with (solid lines) and without (dashed lines) 0.1% strain for an inter-layer potential of 11 meV, which
opens up a gap between the low-energy flat bands along with finite moiré gaps. The energy is measured from
the Fermi energy for zero doping. The overlayed color indicates the Berry curvature of the flat bands. e, The
corresponding variation of the y-component of the Berry curvature dipole (Λy) for the 0.1% strained (solid
line) and unstrained (dashed line) cases at 2 K. In the absence of strain there is no Berry curvature dipole
due to the presence of the C3 symmetry. f, Schematic of the NLH voltage measurement scheme without
the encapsulating hBNs and top metal gate for clarity. When a current (I) with frequency ω is sent from
1-4, the voltage drop between 6-5 at frequency ω gives the longitudinal voltage V ωxx and the voltage drop
between 2-6 at frequency 2ω gives the NLH voltage V 2ω

xy . The schematic of TDBG in the inset indicates
the two Bernal stacked AB bilayer graphenes, with an intermediate twist angle of θ = 1.10◦. g, h, NLH
voltage (V 2ω

xy ) (orange) and longitudinal voltage (V ωxx) (blue) vs. filling factor (ν) at D/ε0 = 0 Vnm−1 (g)
and D/ε0 = −0.3 Vnm−1 (h). The data is taken at 1.5 K with a current of 100 nA. The right axes indicate
the corresponding longitudinal resistance, Rxx. The two peaks in V ωxx at ν = ±4, marked by blue and green
arrows in g, indicate moiré peaks due to an angle inhomogeneity of ∼ 0.03◦, a signature of strain. The data
in h is truncated towards negative ν due to restrictions in gate voltage that can be applied without causing
a dielectric breakdown of the hBN.
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curvature and broken C3 symmetry generate a
nonzero BCD, as shown in Fig. 1e (see Methods
and Supplementary Information section I-III for
calculations).

We fabricate multiple TDBG devices to mea-
sure NLH voltage, which probes the BCD [11,
18]. The dual-gate geometry allows independent
control of the charge density (n) and the per-
pendicular electric displacement field (D) (see
Methods). Figure 1f shows our measurement
schematic to probe NLH effect. We send a cur-
rent with low-frequency ω and measure the lon-
gitudinal voltage (V ω

xx) and the second-harmonic
NLH voltage (V 2ω

xy ) at frequencies ω and 2ω, re-
spectively. In Fig. 1g, we show V ω

xx and V 2ω
xy as

a function of moiré filling factor (ν) at zero dis-
placement field for a TDBG device with twist
angle 1.10◦. Here ν = 4n/ns with ns represent-
ing the number of carriers to fill one moiré band
and factor 4 due to four-fold degeneracy of spin
and valley. Peaks in V ω

xx at ν = ±4 correspond
to the two moiré gaps. The substructures in the
peaks of V ω

xx (indicated by arrows) result from
slightly different twist angles, indicating an an-
gle inhomogeneity of ∼ 0.03◦ – a signature of
strain [36] that causes BCD in our system. In
Fig. 1h, we plot V ω

xx and V 2ω
xy for a non-zero per-

pendicular displacement field that creates a gap
at ν = 0 (charge neutrality point, CNP). We find
NLH voltage V 2ω

xy is high in the vicinity of band
edge around the moiré gaps at ν = ±4 and the
CNP gap in our strained TDBG devices.

We now study the evolution of V ω
xx and the

corresponding resistance (Rxx) in the experimen-
tally accessible parameter space of ν and D in
Fig. 2a. Schematics adjacent to Fig. 2a show
change in the underlying band structure with D
(see Supplementary Information section III for
calculated band structure). A finite displacement
field opens up a gap at CNP between the conduc-
tion and the valence flat bands. These flat bands
are separated from the remote moiré bands by
two moiré gaps, which close at larger values of
D. Apart from the peaks in V ω

xx corresponding
to the CNP gap at ν = 0 and the moiré gaps
at ν = ±4, we observe other features like the
cross towards the hole side (−4 < ν < 0) and
the halo around D/ε0 = ±0.3 Vnm−1 towards

the electron side (0 < ν < 4). These characteris-
tic features of TDBG within partial fillings of the
flat bands are likely to be connected to structures
in the density of states [33].

Figure 2b shows the evolution of the NLH volt-
age V 2ω

xy in the same parameter space of ν and D.
In Fig. 2c, we have plotted few line slices of V 2ω

xy

around ν = 0 for different D. We find that V 2ω
xy

peaks near the gaps at ν = 0 (CNP gap) and
ν = ±4 (moiré gaps). The coincidence of the
NLH voltage with the TDBG bandgaps reveals
that the Berry curvature hotspots, and hence the
BCD, reside predominantly in the vicinity of the
band edges. We explore this behavior further in
Fig. 3.
V 2ω
xy that we measure should scale quadrati-

cally with the in-plane ac electric field of fre-
quency ω. To verify the quadratic scaling, we
plot V 2ω

xy against the square of simultaneously
measured V ω

xx for two different (ν,D) biasing
points in Fig. 2d. The linear behavior of V 2ω

xy

with the square of V ω
xx confirms the quadratic

scaling near both the CNP gap and the moiré
gaps. Additionally, V 2ω

xy switches sign when we
reverse the Hall voltage probes and the direc-
tion of current simultaneously as depicted in
Fig. 2e. These observations clearly demonstrate
the second-order nature of the measured NLH
voltage, V 2ω

xy .
Having established V 2ω

xy as NLH voltage, we
now use D as a parameter to study scaling be-
tween normalized NLH voltage V 2ω

xy /(V ω
xx)2 and

square of longitudinal conductivity (σ2xx). Such
scaling can be used to quantify BCD, as dis-
cussed later. In Fig. 3a, we plot V 2ω

xy /(V ω
xx)2 (left

axis) and σ2xx (right axis) as a function of D for
ν = 0.125 (indicated by the green vertical line
in inset of Fig. 3a). The metallic behavior at
ν = 0.125 ensures that the Fermi energy is near
the band edge (see Extended Data Fig. 3a for
the temperature (T ) dependence of Rxx). Both
V 2ω
xy /(V ω

xx)2 and σ2xx show different trends in two
different regimes of the displacement field sepa-
rated at D/ε0 = −0.23 Vnm−1. Interestingly,
the two regimes are characterized by different
band structures– in regime-I, the flat bands are
gapped and are isolated from the remote moiré
bands, while in regime-II the valence flat band
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Fig. 2. Longitudinal and NLH voltages in TDBG. a, Longitudinal voltage (V ωxx) as a function of
filling factor (ν) and perpendicular electric displacement field (D) measured by sending an ac current of
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xy peaks

near the CNP gap and the moiré gaps. c, Line slices of V 2ω
xy vs. ν for different values of D. d, Linear

dependence of V 2ω
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the orientation of both the voltage probes and the current probes are flipped simultaneously indicating the
second-order nature of the NLH voltage.
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potential ∆ = 38 meV (e) and ∆ = 25 meV (f). The overlayed color indicates the Berry curvature for the
corresponding flat bands. The Berry curvature, and consequently, the valley Chern numbers for the bands
(indicated within brackets) change across the topological transition. g, h, The corresponding variation of
the calculated BCD as a function of energy (E) for ∆ = 38 meV (g) and ∆ = 25 meV (h). For a fixed band
filling, the BCD changes sign across the topological transition. The green, purple, red, and brown arrows
point to the sequence of the BCD peaks with the increase in E values.
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merges with the remote moiré band (see Meth-
ods and Extended Data Fig. 3b, c). It is known
that changes in band structure due to D lead
to change in the valley Chern numbers of the
bands [9, 10] which in turn should be reflected in
the change in sign of the BCD [15].

To investigate the close connection of such
topological transition with BCD, we first experi-
mentally analyze the scaling between V 2ω

xy /(V ω
xx)2

and σ2xx and later present a detailed calcula-
tion. In Fig. 3b, we find linear scaling between
V 2ω
xy /(V ω

xx)2 and σ2xx in both regime-I and regime-
II. The slope of a linear V 2ω

xy /(V ω
xx)2 vs. σ2xx

dependence characterizes the contribution from
skew-scattering (τ3) process [37], while the BCD
can be extracted from the y-intercept [17, 37]
(see Supplementary Information section VI). A
fixed temperature assures that the contributions
from skew-scattering or side-jump in the NLH
effect are not tuned within the linear fitted
regimes [38, 39]. Interestingly, near-zero slope in
regime-I suggests that the skew-scattering con-
tribution is minimal when the flat bands are iso-
lated from the remote moiré bands.

To distinguish the intrinsic BCD from other
extrinsic contributions like side-jump, we repeat
the scaling analysis for different fillings close to
the band edge (see Extended Data Fig. 1). Fig-
ures 3c and 3d show the extracted BCD from
regime-II and regime-I respectively. The drop in
extracted BCD away from CNP (ν = 0), consis-
tent with Berry curvature hotspot peaking at the
band edge, suggests that the NLH effect we ob-
serve is BCD dominated. The most striking ob-
servation, central to our study, is the sign change
of BCD across the topological transition between
regime-I and regime-II.

To theoretically verify the connection between
BCD sign change and the topological transition,
we calculate the band structure for two differ-
ent values of inter-layer potential in Fig. 3e, f.
A change in valley Chern number marks the
topological transition. Consistently, the BCD
changes sign as seen in Fig. 3h and 3g before and
after the topological transition, respectively (also
see Extended Data Fig. 4). We also note from
Fig. 3e and 3f that the Berry curvature changes
sign, around the Γ-point, across the topological

transition. Thus, the NLH effect acts as a good
probe to detect topological transitions associated
with the change in the valley Chern numbers [14].

We note that the BCD values in Fig. 3c, d are
higher than the BCD observed in WTe2 [17, 18].
The scaling analysis using temperature as a pa-
rameter also gives a similar magnitude of BCD
(see Extended Data Fig. 2). High BCD magni-
tude has been theoretically predicted in strained
twisted systems [15, 23, 30–32]. The origin of
high BCD in graphene-based moiré systems, in
the vicinity of the charge neutrality point, can be
understood using the model of strained twisted
bilayer graphene as a tilted Dirac system [40]. In
this model, BCD ∝ t ∝ λ3, where t is the tilt pa-
rameter and λ is the moiré wavelength. So, the
BCD is expected to be higher in moiré materials
as compared to non-moiré materials like bilayer
graphene, etc. (see Supplementary Information
section V for details).

Finally, we examine the variation of NLH volt-
age V 2ω

xy at large displacement fields and, inter-
estingly, observe a hysteretic response as shown
in Fig. 4a. Fig. 4b shows the simultaneously
measured V ω

xx, which also reveals hysteresis with
D. The sense of hysteresis is doping dependent
(see Supplementary Information section X.4) and
cannot be explained by charge traps in dielec-
tric. See Supplementary Information section X
for temperature effects, rate dependence, and
switching statistics of the hysteresis. The in-
set of Fig. 4b shows the difference in V ω

xx for up
and down sweeps. Intriguingly, the hysteresis is
maximal around D/ε0 = −0.23 Vnm−1 where
a topological transition takes place as shown in
Fig. 3b. However, more studies are required for
a full microscopic understanding.

Our experimental data suggest the existence
of metastable states; the origin of these states
can be due to two possible mechanisms. Firstly,
metastable polarization states in the system can
arise from a difference in charge density across
layers due to symmetry breaking in the device ge-
ometry (see Methods for further discussion). Sec-
ondly, flexoelectric coupling between perpendic-
ular electric field and the strain gradient across
the domain interfaces can lead to electric polar-
ization in moiré systems [41]. Polarization from
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both possible mechanisms can lead to change in
strain profile that can be further pinned by de-
fects; this can account for the hysteresis we ob-
serve. Strain and polarization, through the effec-
tive electric field, modify the band structure and
hence the value of V ω

xx and V 2ω
xy .

Tunable BCD values, together with the cou-
pling of BCD to hysteresis in the same plat-
form, as we demonstrate using TDBG, may open
new frontiers for next-generation memory de-
vices. In general, probing topological transitions
using electrical transport is challenging. Our
experiment demonstrates that the NLH effect
can probe topological transitions. Electric field
tunable band structure of few-layer heterostruc-
tures provides a useful way for probing topolog-
ical transitions, as we show using TDBG. Our
approach to detect topological transitions using
NLH effect is applicable for 3D systems as well.
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METHODS

1 Device fabrication

We fabricate multiple dual gated TDBG devices. We have a metal top gate and
SiO2(∼280 nm)/Si++ back gate. Dual gates allow us to independently control the charge den-
sity (n) and the perpendicular displacement field (D), where n = (CBGVBG + CTGVTG)/e and
D = (CBGVBG − CTGVTG)/2. Here, CBG(CTG) is the back (top) gate capacitance and VBG(VTG)
is the voltage applied to the back (top) gate, respectively. e is the electronic charge. To pre-
pare the hBN/TDBG/hBN graphene stacks, we pre-cut bilayer graphene using a tapered optical
fiber scalpel [1]. The detail fabrication and twist angle determination procedure is discussed in the
methods of Ref. [8]. The twist angle is additionally confirmed via magneto-transport measurements.

2 Measurement technique

We send current using DS360 ultra-low distortion function generator. The chosen frequency for all
the data is 177 Hz, except for Supplementary Fig. 8 where we vary the frequency. The voltages, V ω

xx

and V 2ω
xy , are measured using SR830 lock-in amplifier in the first harmonic and second harmonic

mode, respectively. In addition, to measure the DC voltage (Supplementary Fig. 20) generated due
to the NLH effect, we use Keithley 2182 nanovoltmeter. For applying DC voltages to the top and
back gate, we use NI DAQ. The temperature is measured using a sensor placed close to the device.
The findings reported in the main manuscript are from a TDBG device with twist angle 1.10◦; other
devices are shown in Supplementary Fig. 5 and 16.

3 BCD estimation

3.1 Using electric field as parameter

To extract out the BCD (Λ), we use the formula E2ω
⊥

(E‖)2
= ξσ2xx + η, where E2ω

⊥ is the second-order
nonlinear electric field, E‖ is the in-plane longitudinal electric field, parallel to the direction of
current, ξ is the slope and η is the intercept. Using the fact that the length and width of our device
are 2 µm each, η = 2× y-intercept of V 2ω

xy

(V ωxx)
2 vs. σ2xx dependence. We fit the D-parametric plot of

V 2ω
xy

(V ωxx)
2 vs. σ2xx with a linear dependence (see Supplementary Information section VI for details) to

extract η and use the relation Λ = ηEFπe to estimate the BCD [17]. We assume that EF is ∼1%
(limited by the energy scale kBT set by the temperature T = 1.5 K) of the bandwidth (∼10 meV)
of the flat band. To ensure that we place the Fermi energy EF within the flat band and not at the
gap, we measure the temperature dependence of Rxx and find a metallic behavior irrespective of
the chosen value of D (see Extended Data Fig. 3a).

To verify the robustness of our observation of BCD sign change, we systematically show the
scaling of normalized nonlinear Hall voltage (V 2ω

xy /(V ω
xx)2) with square of longitudinal conductivity

(σ2xx) for three different fillings (ν) in Extended Data Fig. 1. Extended Data Fig. 1a, d, and g
shows the measured nonlinear Hall voltage V 2ω

xy and longitudinal voltage V ω
xx as a function of the

displacement field for three different ν. The background color denotes the two regimes– regime-I
and regime-II, across which a topological transition occurs. We see broad peaks in V ω

xx across the
critical electric field of D/ε0 = −0.23 Vnm−1 in all three cases. Using the measured V ω

xx and
V 2ω
xy as in Extended Data Fig. 1a, d, and g, we plot the corresponding normalized NLH voltage
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V 2ω
xy /(V ω

xx)2 and σ2xx = (I/V ω
xx)2 as a function of displacement field for the three fillings in Extended

Data Fig. 1b, e, and h. In Extended Data Fig. 1c, f, and i, we plot V 2ω
xy /(V ω

xx)2 vs. σ2xx, using
displacement field as a parameter. The displacement field (D/ε0 = −0.23 Vnm−1), at which the
change in sign of intercept occurs, remains invariant for different fillings. We extract the intercept
and use it to estimate BCD as described above, and plot in Fig. 3c and 3d of the main manuscript.

The extracted BCD values from the two regimes are opposite in sign. A characteristic signature of
a topological transition is a change in sign of BCD, as discussed in the main manuscript and also in
Ref. [15] and Ref. [14]. As we show via resistance vs. temperature measurements in Extended Data
Fig. 3c, displacement field closes the hole-side moiré gap around the same D/ε0 = −0.23 Vnm−1.
Displacement field, that causes the flat bands to touch the remote moiré valence bands, changes the
valley Chern number of the bands in TDBG [9, 10], as we independently show in our calculations
(Fig. 3e,f of the main manuscript) for the twist angle of 1.1◦. Such a change in sign of valley Chern
number accounts for the two linear regimes with different signs of intercepts.

3.2 Using temperature as parameter

To independently confirm the order of magnitude of the estimated BCD, we also study the temper-
ature dependence of the NLH voltage. In Extended Data Fig. 2, we show the scaling of normalized
nonlinear Hall voltage (V 2ω

xy /(V ω
xx)2) with the square of longitudinal conductivity (σxx) for the filling

ν = 0.125 (the same ν for which we show a linear scaling, using displacement field as a parameter, in
Fig. 3b of the main manuscript) and displacement field D/ε0 = −0.25 Vnm−1. In Extended Data
Fig. 2a, we show the temperature dependence of the NLH voltage V 2ω

xy (blue-colored data points)
and longitudinal voltage V ω

xx (orange-colored data points). We see that V 2ω
xy goes close to zero at

∼ 20 K. In Extended Data Fig. 2b, we plot the temperature dependence of V 2ω
xy /(V ω

xx)2 (black data
points) and σ2xx (red data points), using the data in Extended Data Fig. 2a. A decreasing σ2xx
with increasing temperature suggests that the filling ν = 0.125 corresponds to placing the Fermi
level in the conduction flat band. In Extended Data Fig. 2c, we plot V 2ω

xy /(V ω
xx)2 vs. σ2xx, using

temperature as a parameter and find similar linear dependence, as reported earlier [17], till T = 7 K.
The temperature regime is less than the Bloch-Grüneisen temperature, ensuring that the other ex-
trinsic contributions are not tuned in this temperature regime. A similar magnitude of y-intercept
in V 2ω

xy /(V ω
xx)2 as in Fig. 3b of the main manuscript, suggests that BCD using temperature as a

parameter is of similar magnitude that we get from parametric scaling of D.

4 Inferring band structure using R vs. T dependence

In Extended Data Fig. 3, we show the temperature (T ) variation of longitudinal resistance (Rxx)
for fillings at ν = 0 (corresponding to CNP in Extended Data Fig. 3b), ν = 0.125 (corresponding to
conduction flat band edge in Extended Data Fig. 3a) and ν = −4 (corresponding to hole-side moiré
gap in Extended Data Fig. 3c) at different displacement fields (D). In Extended Data Fig. 3b, we
see that as the magnitude of displacement field is increased, the slope of Rxx vs. T changes from
positive to negative, indicating a gap opening at CNP at a displacement field around |D|/ε0 of
0.2 Vnm−1. This establishes that in regime-I, a gap at CNP persists between the red colored flat
bands.

In Extended Data Fig. 3c, we see that as the magnitude of displacement field is increased, the
slope of Rxx vs. T changes from negative to positive, indicating a gap closing at the hole-side moiré
gap at ν = −4 at a displacement field around |D|/ε0 of 0.23 Vnm−1. This establishes that in
regime-II, the hole-side moiré gap is closed and the flat band has merged with the hole-side remote
moiré band.
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5 Berry curvature dipole and topological transition

To investigate the topological phase-transition and associated sign reversal of Berry curvature dipole
we have followed the low-energy continuum model approach of Bistritzer and MacDonald [2] for
twisted bilayer graphene and extended it to TDBG (see Supplementary Information section I for
details). The perpendicular electric field tunability of electronic band structure has been included in
the Hamiltonian by a parameter ∆, which represents constant potential gradient across the layers.
The presence of finite strain in the fabricated TDBG sample breaks the C3 symmetry (see Fig. 1a)
which causes non-zero BCD. The uniaxial strain has been introduced into our model Hamiltonian
as [3]

E = ε

(
− cos2 φ+ ν sin2 φ −(1 + ν) sinφ cosφ
−(1 + ν) sinφ cosφ − sin2 φ+ ν cos2 φ

)
, (2)

where a strain of magnitude ε is applied along a direction making angle φ with the zigzag direction
of graphene. ν, the Poisson’s ratio is equal to ∼ 0.16 for graphene. For our calculations, we have
considered strain along the zigzag direction (φ = 0◦).

In Extended Data Fig. 4, we have plotted BCD as a function of inter-layer potential (∆) and
chemical potential (µ) at a fixed strain value of 0.1%. The butterfly structure signifies the evolution
of BCD with the perpendicular electric field. The sign reversal of BCD near critical inter-layer
potential ∆ = 34 meV indicates a topological transition. The upper panel of Extended Data Fig. 4
shows the y-component of BCD in the conduction band side (µ > 0). Before phase-transition, at 25
meV and 30 meV, the red lobe signifies the negative BCD for the first conduction band while the
blue lobe represents positive BCD for moiré conduction bands. The corresponding band dispersions
are shown in Extended Data Fig. 4b, c. The overlayed color indicates the Berry curvature hot
spots within the band. After the phase-transition, at ∆ = 38 and 43 meV, we observe positive
lobe of BCD for the first conduction band while negative lobe for the higher conduction band. The
corresponding dispersions are shown in Extended Data Fig. 4d, e. From the color map of Berry
curvature, it is evident that in regime-I (before transition), the valence (conduction) band has a
negative (positive) Berry curvature hotspot while it gets reversed in regime-II (after transition).

6 Metastable states in h-BN encapsulated twisted double bilayer
graphene

To identify the metastable states that possibly cause the observed hysteresis, we first present first-
principles density functional theory analysis of a Gr-Gr-h-BN trilayer, which constitutes one of the
halves which are twisted by a small angle in the TDBG. Interestingly, the outer h-BN monolayer
breaks the sublattice-symmetry opening up a small gap at the Fermi level (see Extended Data
Fig. 5a), accompanied by a weak layer asymmetry in the constitution of frontier electronic states
(bands of pz orbitals) reflecting on an accumulation of a small electronic charge on one of the two
graphene monolayers. This is expected from the lack of inversion or horizontal reflection symmetries
in the trilayer, and our estimate of its polarization (along the z-axis) is -0.34 µC/cm2. We analyze
effects of perpendicular electric field on the TDBG in two steps, focusing first on the coupling of field
with the DBG (twist angle = 0) and then discuss the effect of twist in terms of variation in stacking
between the DBGs. Using a rigid band model of frontier electronic states of DBG (for details
of rigid band model refer to Supplementary Information section XI), we demonstrate that electric
field permits switching to two metastable states with opposite polarization (Extended Data Fig. 5d)
arising from the inversion of frontier electronic states in one of the DBGs (see Extended Data Fig. 5c).
However, these states are symmetry equivalent and would not explain the hysteresis observed in
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resistances of TDBG, which we argue to arise from two mechanisms: (a) the inhomogeneous doping
across the layers in the TDBG due to differences in the top and bottom doping as evident in our
calculations of gated TDBG with a twist angle of 21.78o, and (b) switchable ferroelectric polarization
associated with redistribution of regions with different stacking sequences (AA versus AB) across
the twisted layers as shown in [4].

Our calculations of the TDBG (with 21.78o) with a bottom gate reveals the development of po-
larization upon doping with an estimate of 0.6 µC/cm2 (refer to Supplementary Fig. 19a). This is
comparable to P ∼ 0.68 µC/cm2 of bilayered h-BN [4] and larger than that (P ∼ -0.18 µC/cm2)
arising from the restructuring in terms of stacking sequence [5] in heterostructures. Thus, the ob-
served hysteresis has possible contributions from inhomogeneous stacking as well as inhomogeneous,
layer-dependent carrier concentration.
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Extended Data Fig. 1. Scaling of normalized nonlinear Hall voltage V 2ω
xy /(V ωxx)2 with the

square of longitudinal conductivity (σ2
xx) for different fillings ν with displacement field as

parameter. a, d, g, The variation of nonlinear Hall voltage V 2ω
xy (blue-colored data points corresponding

to the left axis) and longitudinal voltage V ωxx (orange-colored data points corresponding to the right axis) as
a function of the displacement field D/ε0 for three different fillings. b, e, h, The corresponding variation
of normalized nonlinear Hall voltage V 2ω

xy /(V ωxx)2 (black colored data points corresponding to the left axis)
and square of longitudinal conductivity σ2

xx (red-colored data points corresponding to the right axis) as a
function of the displacement field D/ε0, extracted for the same fillings used in a, g and d, respectively. c,
f, i, The variation of normalized nonlinear Hall voltage V 2ω

xy /(V ωxx)2 with square of longitudinal conductivity
σ2
xx plotted parametrically as a function of the displacement field D/ε0, using b, e and h, respectively.

The displacement field value of data points in Vnm−1 is indicated by the color (color bar is shown in top
right). The dashed green line and dashed blue line indicate fits to linear scaling in regime-I and regime-II
respectively, used to extract BCD. The fillings shown here are ν = 0.112 (a-c), 0.138 (d-f) and 0.150 (g-i).
The light green background and light blue background correspond to regime-I and regime-II, respectively, as
discussed in Fig. 3a of the main manuscript. The measurements were performed using a current of 100 nA
with a frequency of 177 Hz at a temperature of 1.5 K.
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polarization in h-BN-TDBG-h-BN that are accessible with the electric field.
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Supplementary Information

I Moiré flat bands in TDBG

To obtain the electronic band structure and related topological properties of the AB-AB twisted
double bilayer graphene (TDBG) with twist angle 1.1◦ we follow the continuum model approach
of Bistritzer and MacDonald [1]. The AB-AB TDBG can be fabricated by placing two AB-stacked
bilayer graphene (see the side view in Supplementary Fig. S1a) on top of each other and rotate the
bilayers with respect to each other. For the band structure calculation, we assume that the upper
bilayer (l = 1) is rotated by an angle θ/2 and the lower bilayer (l = 2) is rotated by an angle −θ/2
adding to total twist angle θ. The smallest continuum Hamiltonian near the K valley can be written
as [34]

H =


h+t + ∆+

t t+k 0 0

t+k
†

h+b + ∆+
b T (r) 0

0 T (r)† h−t + ∆−t t−k
0 0 t−k

†
h−b + ∆−b

 . (S1)

Here, +(−) sign stands for the l = 1(2) bilayer and t(b) represents the top (bottom) layer of each
bilayer. Due to rotation, the Dirac Hamiltonian modifies as h± = R(∓θ/2)~vFk · σ, where k is the
crystal momentum near the valley and σ = (σx, σy) are the Pauli matrices representing the sub-
lattice degree of freedom of single-layer graphene. The effect of dimer site potential on each layer of
a bilayer has been captured in the Hamiltonian by a parameter δ as h(t/b) = ~vFσ ·k+ δ(1∓σz)/2.
The inter-layer coupling matrix tk within each bilayer is represented as

tk =

(
−~v4π† −~v3π
γ1 −~v4π†

)
,

where π = kx + iky. The strong inter-layer coupling between the two dimer sites is denoted by
γ1 (shown by solid line in Supplementary Fig. S1a), the inter-layer hopping between two non-
dimer sites is denoted by v3 (shown by dashed line in Supplementary Fig. S1a) and the inter-layer
hopping between dimer and non-dimer sites is denoted by v4 (shown by dotted line in Supplementary
Fig. S1a). The various velocities can be calculated from the corresponding hopping amplitudes (γi)
using the conversion rule vi =

√
3|γi|a/(2~) with a = 2.46 Å. For our calculations, we consider the

following parameters: the dimer site potential δ = 15 meV, the intra-layer hopping γ0 = −3.1 eV,
which gives the Fermi velocity, vF = 106 m/s and γ1 = 361 meV. The remote hopping amplitudes
γ3 and γ4 are considered to be 283 meV and 138 meV, respectively.

The moiré coupling between the twisted bilayers (coupling between the two adjacent rotated
layers) in Eq. (S1) can be expressed as, T (r) =

∑
j=b,tl,tr Tqje

−iqj ·r. The hopping paths are given

by the three vectors qb = 8π
3a sin θ

2(0,−1), qtr = 8π
3a sin θ

2(
√
3
2 ,

1
2) and qtl = 8π

3a sin θ
2(−

√
3
2 , 1/2) and

the hopping matrices are given by,

Tb =

(
ω′ ω
ω ω′

)
; Ttr,tl =

(
ω′ ωe∓i2π/3

ωe∓i2π/3 ω′

)
. (S2)

The diagonal (ω′) and off-diagonal (ω) hopping strengths have been considered to be unequal due
to the out-of-plane corrugation effect and chosen in the scale 79 meV and 106 meV, respectively.
The tunability of the electronic band structure of the TDBG due to perpendicular electric field is
included in the model Hamiltonian by means of inter-layer potential difference parameter ∆. To
model the effective electric field as a constant gradient in potential, we use ∆−b =−∆+

t =
3
2∆ and

∆−t =−∆+
b =

1
2∆.
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Supplementary Fig. S1. a, The side view of the Bernal stacked (AB-stacked) bilayer graphene. The hopping
paths corresponding to γ1, γ3 and γ4 are shown by black solid, dashed and dotted lines. b, Schematic of hexagonal
moiré BZ. Three nearest neighbor connecting vectors, qb, qtr and qtl are shown by red, blue and green arrows
respectively. The high symmetry points in the moiré BZ are indicated by K,Γ,M and K′ along which we plot the
band dispersion (shown by cyan dashed line). c, The Berry curvature (in units of Å2) distribution in the moiré BZ
for conduction (left) and valence (right) bands in presence of ε = 0.1% strain. The kx and ky axes are normalized
with kθ = 8π/(3a) sin(θ/2) with a = 2.46 Å. d, The distribution of the Berry curvature dipole integrand of Eq. (S5)
[ ∂ε
∂ky

Ωz] over the Fermi surface in units of meV·Å3, in the isolated conduction flat band, without strain (left panel)
and with strain (right panel) applied along the zigzag edge of graphene.

II Impact of strain on electronic structure of TDBG

Equation (S1) and the corresponding band structure explain the measured resistance as a function of
charge density and displacement field reasonably well. However, it can not account for the measured
nonlinear Hall voltage due to the presence of C3 symmetry in the continuum model. So to break
the C3 symmetry we include the effect of uniaxial strain quantified as [3]

E = ε

(
− cos2 φ+ ν sin2 φ −(1 + ν) sinφ cosφ
−(1 + ν) sinφ cosφ − sin2 φ+ ν cos2 φ

)
, (S3)

which breaks the C3 symmetry [2, 3, 15, 30]. In Eq. (S3) ε is the strength of strain, ν is the Poisson
ratio (∼ 0.16 for graphene) and φ is the strain angle with respect to zigzag direction of graphene.
The strain matrix has two fold impact on the model Hamiltonian—i) The Dirac points of bilayer gets
shifted toD= (1−ET )K−A from K with A = β

d (εxx−εyy,−2εxy) (where β = 1.57 and d = 1.42 Å )
being the strain induced effective gauge field. As a result the moiré coupling vectors and the hopping
matrices get modified. ii) The Dirac Hamiltonian itself modifies to ~vF R̂ θ

2
[(1 + ET )k · σ]. In our

calculation we extend the strain implementation of Ref. [3] for twisted bilayer graphene to the
TDBG where the hetero strain is applied solely on the lower bilayer.

The breaking of C3 symmetry after strain implementation in the Hamiltonian is highlighted in
Fig. 1b, c of the main manuscript where the Berry curvature (Ω) of the valence band is plotted
along three paths arranged in 120◦ angle as shown by the blue, orange and green arrows in Fig. 1a
of the main manuscript. The Berry curvature is calculated using the periodic part of the Bloch
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Supplementary Fig. S2. a, Solid, dashed and dotted lines represent band structure with ε = 0.1%, 0.2% and
0.3% strain respectively for ∆ = 11 meV. b, In top, middle and bottom panel, the x and y components of Berry
curvature dipole are shown for strain stength ε = 0.1%, 0.2% and 0.3%, respectively.

wave-function, H|un〉 = En|un〉, as

Ωn ≡ Ωn
z = −2Im

∑
m 6=n

〈un|∂kxH|um〉〈um|∂kyH|un〉
(En − Em)2

. (S4)

In Supplementary Fig. S1c we have shown the Berry curvature distribution for the conduction
(left column) and valence (right column) bands over the moiré BZ. Due to the broken C3 symmetry,
the distribution of Berry curvature in the k-space becomes non-symmetric. Such non-symmetric
Berry curvature in the moiré Brillouin zone (mBZ) recently has been shown to cause nonlinear Hall
effect which is quantified by Berry curvature dipole (BCD) defined as

Dcd =
∑
n,ξ,gs

∫
mBZ

dk

(2π)2
Ωn
d

∂εnk
~∂kc

∂f(εnk)

∂εnk
. (S5)

Here, n is the band index, ξ is the valley index, gs is the spin index and f0 is the Fermi-Dirac
distribution function. For a two dimensional system (TDBG in our case) the Berry curvature acts
as pseudo-scalar and has only z-component. So depending on the direction of velocity, ∂ε

n

∂kc
, the BCD

has only two components Dxz ≡ Λx ≡ BCDx and Dyz ≡ Λy ≡ BCDy. The distribution of the Berry
curvature dipole kernel, ∂ε

∂ky
Ωz of the flat conduction band is highlighted in Supplementary Fig. S1d

where the left panel shows the kernel in absence of strain and the right panel shows the kernel in
presence of 0.1% strain. The variation of BCD with the strain strength is shown in Supplementary
Fig. S2 where three different magnitude of strain: 0.1%, 0.2% and 0.3% are considered.

24



E
ne

rg
y 

(m
eV

)
(A) (A) (A)

Supplementary Fig. S3. The evolution of band structure and Berry curvature dipole in presence of 0.1% strain
for three different ∆ values: ∆ = 11, 15 and 25 meV. The left most panel shows the BCD when CNP gap as well as
both the moiré gaps are present. The middle one highlights the scenario when the valence band side moiré gap is
closed. The right most panel reveals the BCD when only the CNP gap is present.

III Variation of band structure and Berry curvature dipole with
electric field in presence of strain

One of the experimental advantages of TDBG in comparison to the TBG counterpart is that one
can tune the electronic band dispersion and hence related physical properties by an external electric
field. This electric field tunability is captured in our Hamiltonian, Eq. S1, by the ∆ term. In this
section, we discuss how the band structure and Berry curvature dipole evolve with the variation
in external electric field in presence of strain. This is shown in Supplementary Fig. S3 (with 0.1%
strain) and we find that the evolution of the band structure is qualitatively consistent with our
experimental findings. In absence of an external electric field, i.e. ∆ = 0 meV, the strained flat
bands overlap and promote a metallic state. At the same time the flat bands are separated from
the higher moiré bands by a finite energy gap, namely moiré gap.

Application of finite external electric field pushes the flat bands away from each other. However,
a gap at charge neutrality point (CNP) appears only after certain threshold electric field and in
our model calculations we find it to be ∼ 9.5 meV. At ∆ = 11 meV, the CNP gap as well as both
the moiré gaps exist simultaneously. The corresponding band structure and BCD are shown in the
left most column of Supplementary Fig. S3. Gradual increment of ∆ enhances the CNP gap and
decreases the magnitude of both the moiré gaps. At ∆ ∼ 13 meV the valence flat band merges with
higher moiré bands while the conduction moiré gap remains finite. This scenario of band structure
and corresponding BCD are indicated in the middle column of Supplementary Fig. S3. Further
increment in ∆ eventually closes the moiré gap at conduction band side and only the CNP gap
persists. The right most column of Supplementary Fig. S3 shows the band structure and BCD at
∆ = 25 meV.

IV Sign reversal of Berry curvature dipole across the topological
phase transition

The electronic wave-functions in TDBG are known to be rich in topological aspects. It has been
predicted that tuning the strength of the electric field or twist angle can give rise to a topological
phase-transition in this system. However, to the best of our knowledge, topological phase transition
in TBG/TDBG has not been experimentally demonstrated. In our experiment we observe a topo-
logical phase-transition by tuning the electric field, which manifests as the sign reversal of BCD.
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The non-trivial topology of the electronic wave-functions in TDBG is characterized by the valley
Chern number (Cv) [9]. For an isolated band, the Chern number in each valley can be calculated
by integrating the Berry curvature in the mBZ as

Cnv =
1

2π

∫
mBZ

dkΩn. (S6)

Due to the presence of time reversal symmetry, the Chern numbers for K and K ′ valley are equal
and opposite which makes the total (adding the two valleys) Chern number, for a particular band,
zero. So to distinguish different topological phases we define a topological invariant (Z) as Z = |(CK
-CK′)/2|, where CK and CK′ are the Chern numbers for K and K’ valley, respectively. A topological
phase transition is identified with a change in the associated Z index, ∆Z. In presence of ε = 0.1
% strain we find a topological phase-transition near ∆ ∼ 34 meV in our calculation. We emphasize
that both the phases across the topological transition are robust in a large window of ∆.

The band dispersion, Chern number and Berry curvature dipole in these two distinct topological
phases are shown in Fig. 3e-h of the main manuscript. The bands plotted in Fig. 3f indicate the
phase before the transition (∆ = 25 meV) for the K valley. The corresponding Chern numbers of
the first conduction and first valence bands are 2 and -2, respectively resulting in Z= 2 for both
the bands. For ∆ = 38 meV, the band dispersion after the phase-transition, is plotted in Fig. 3e.
The calculated Chern numbers for this phase are 0 and 1 for the first conduction and first valence
bands, respectively. This results in Z= 0 for the first conduction band and Z= 1 for the first valence
band. Therefore the phase transition in conduction band is conveyed through ∆Z = 2 and in the
valence band through ∆Z = 1. Note that some recent literature reports the Chern numbers of the
flat bands can be tunable upto ±3 with variation in twist angle and electric field for the unstrained
moiré systems [3–5]. Interestingly the phase-transition near ∆ = 34 meV is also evident from the
band structure evolution across the critical point. Focusing on the conduction band side, we find
that as we gradually increase the electric field from ∆ = 25 meV, the first conduction band gets
closer to the higher conduction bands. However, it starts to move away from the higher band as
we cross the critical point. Remarkably, we find that the BCD changes its sign across this phase
transition which is also highlighted in Fig. 3g, h of the main manuscript. The similar BCD peaks
for two different phases are shown with arrows of same color. We emphasize here the exact values
of Chern numbers crucially depends on the chosen parameters. However, the topological transition
which is associated with finite value of ∆Z for each flat band can be seen for a broad range of
parameters.

To emphasize the topological phase-transition more comprehensively we have plotted the x- and
y-components of BCD as a function of perpendicular electric field (∆) and chemical potential (µ)
in Supplementary Fig. S4 in presence of 0.1% strain along zigzag direction (φ = 0). A clear sign of
perpendicular electric field induced phase-transition can be realized from the butterfly like structure
near ∆ = 34 meV. Before the phase-transition (∆ < 34 meV) the x-component of BCD of the first
conduction band has positive sign (shown by the blue lobe) and the second conduction band has
negative sign (shown by the red lobe). However, after the phase-transition this trend gets reversed
as the first conduction band possesses negative BCDx (shown by the red lobe) and the second
conduction band possesses positive Λx (shown by the blue lobe). Apart from the fact that the sign
of the y-components of the BCD is opposite to the corresponding x-component, Λy also shows a
similar behavior. This abrupt change in the sign of BCD near ∆ ∼ 34 meV indicates a topological
transition. We emphasize here that we have considered µ = 0 to reside in the maxima of the valence
band and the shaded region near µ ∼ 50 meV is contribution of the further higher conduction bands
to the BCD.
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Supplementary Fig. S4. Dependence of the Berry curvature dipole on the chemical potential (µ) and perpen-
dicular electric field (∆) at the conduction band side. The butterfly like structure near ∆ = 34 meV indicates a
perpendicular electric field induced topological phase-transition.

V Origin of BCD in graphene based moiré materials

In this section we explore the origin of large BCD in graphene based moiré systems, in vicinity of
the charge neutrality point. For that we calculate Berry curvature dipole for a low energy tilted
massive Dirac model and extend it to strained two band model of twisted bilayer graphene [40].
The nonlinear Hall conductivity for a tilted massive Dirac Hamiltonian of the form

H = ~tkxσ0 + ~vkxσx + ~vkyσy +mσz (S7)

can be written as σyxx = e3τ
~ BCDx in the limit ωτ � 1, which is valid for transport experiments.

Up to linear order in the tilt value, the x-component of the BCD at chemical potential µ is given
by

BCDx =
3m~t
8πµ2

(
1− m2

µ2

)
. (S8)

From this expression we infer that within the constant scattering time approximation the BCD is
proportional to the tilt and the BCD peak in µ-axis is determined by the tilt and Berry curvature
hotspot.

The low energy mode for strained twisted bilayer graphene given, in vicinity of the charge neu-
trality point, is given by [40]

H = − ~
1 + 6α2

ψ†0

[
v0xkx + v0yky + ξσxvxkx + σyvyky + ξσxvxyky + σyvyxkx +mσz

]
ψ0. (S9)

Here, α = w/(~vFkθ) with kθ = 8π/(3a) sin(θ/2) and the various velocities are modified by strain
as shown in Ref. [40]. In Eq. (S9) while v0x, vx, vy are determined by the off-diagonal components
of strain matrix, the other components v0y, vxy, vyx are determined by the diagonal components of
strain matrix [40]. For a rough estimation, we will consider shear strain (diagonal components of
strain are zero) where the tilt velocity is given by

v0x = −ξvF
α2

1 + 6α2

16π

akθ
εxy. (S10)

Using this tilt value in Eq. (S8), we have

BCDx ∝ t ∝ v0x ∝ k−3θ εxy. (S11)
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This simple estimate indicates that the BCD is larger for systems with i) large moiré lengthscale,
and ii) with a large strain.

VI Scaling of nonlinear Hall Effect

In this section we describe the scaling law of the experimentally measured quantity V Ny
(V Lx )2

which is
related to the theoretically calculated nonlinear Hall conductivity σyxx and Drude conductivity σxx
as

V N
y

(V L
x )2

=
σyxx
σxx

. (S12)

The non-linear Hall conductivity can originate from three different sources: i) the Berry curvature
dipole, ii) side-jump scattering and iii) skew-scattering (also called anti-symmetric scattering). For
a tilted massive Dirac model Hamiltonian it can be shown that [39] the Berry curvature dipole and
the side-jump contributions to σyxx are inversely proportional to the impurity concentration making
the ratio in Eq. (S12) to be scattering independent. However, the skew-scattering part has different
impurity concentration dependence. Accounting for all the terms, we can write a general scaling
relation, following Du et al. [39],

V N
y

(V L
x )2

= Cin +
∑
i

Csji
ρi
ρxx

+
∑
i,j

Csk1ij

ρiρj
ρ2xx

+
∑
i

Csk2i

ρi
ρ2xx

. (S13)

Here, i, j represent different source of scattering, the superscripts in, sj and sk stands for Berry
curvature dipole, side-jump and skew-scattering contributions respectively. Considering only two
sources of scattering, the static (impurities) and dynamic (phonon), we can write the above equation
as follows

V N
y

(V L
x )2

=
1

ρ2xx

(
C1ρxx0 + C2ρ2xx0 + C3ρxx0ρxxT + C4ρ2xxT

)
. (S14)

Here, ρxx0 is the residual resistivity and ρxxT = ρxx − ρxx0 is the dynamical resistivity. The new
parameter set in Eq. (S14) can be obtained from the old one as

C1 = Csk20 ; C2 = Cin + Csj0 + Csk100 , (S15)

C3 = 2Cin + Csj0 + Csj1 + Csk201 , (S16)

C4 = Cin + Csj1 + Csk111 . (S17)

For finite temperature, using ρxxT = ρxx − ρxx0, we can write the scaling law in terms of the
conductivities as

V N
y

(V L
x )2
− C1σ−1xx0σ

2
xx = (C2 + C4 − C3)σ−2xx0σ

2
xx

+ (C3 − 2C4)σ−1xx0σxx + C4. (S18)

For experimental fitting we use a more simplified scaling law which reads as

V N
y

(V L
x )2

= Aσ2xx +B , (S19)

where A represents the slope and B is the intercept. From Eq. (S18) it is evident that the slope
A does not include any Berry curvature dipole contribution and is solely determined by the skew-
scattering and side-jump mechanism. The intercept B contains information of BCD.
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VII NLH voltage from other TDBG devices

In Supplementary Fig. S5a and Supplementary Fig. S5b, we show the dependence of longitudinal
resistance and nonlinear Hall voltage, respectively, on filling factor ν and displacement field D/ε0.
The data is taken from device-1 presented in main manuscript having a twist angle of 1.1◦, using a
different set of probes. Supplementary Fig. S5c and Supplementary Fig. S5d shows the dependence
of longitudinal resistance and nonlinear Hall voltage, respectively, on ν and D/ε0 from a different
TDBG device (device-2) with a twist angle of 1.26◦. The additional vertical feature of high resistance
in Supplementary Fig. S5c close to n = 2.9 × 1012 cm−2 can be attributed to moiré gap from a
regime in device-2 having a slightly different twist angle of 1.09◦. Twist angle angle variation in
same device is a signature of strain that breaks C3 symmetry and give rise to BCD. In all the cases,
the characteristic cross and halo feature that is present in the longitudinal resistance color plots (in
Supplementary Fig. S5a, Supplementary Fig. S5c herein and also in Fig. 2a of main manuscript) is
absent in the NLH voltage color plots (in Supplementary Fig. S5b, Supplementary Fig S5d herein
and also in Fig. 2b of main manuscript). This shows the universality of NLH voltage across multiple
TDBG devices and that the NLH signal only persists close to either the CNP or the moiré gaps, as
discussed in the main manuscript.
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Supplementary Fig. S5. NLH voltage in other TDBGs. a, b, Longitudinal voltage (V ωxx) (a) and
nonlinear Hall voltage (V 2ω

xy ) (b) as a function of filling factor (ν) and perpendicular electric displacement
field (D/ε0) at a temperature of 1.5 K. The voltages are measured using a different set of probes than that in
main manuscript for the 1.1◦ device. c, d, Longitudinal voltage (V ωxx) (c) and Nonlinear Hall voltage (V 2ω

xy )
(d) as a function of ν and D/ε0 at a temperature of 10 mK for another TDBG device with a twist angle of
1.26◦. The top x-axis indicates the charge density (n). The color bar provided in bottom left of a and c
indicates the corresponding values of the longitudinal resistance (Rxx) measured using 4-probe method. All
the measurements are performed using a constant current I = 100 nA sent with frequency ω = 177 Hz.
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VIII Characterization of NLH voltage

VIII.1 Quadratic nature

In Supplementary Fig. S6a, we show the quadratic scaling of the NLH voltage (V 2ω
xy ) with current

for the same filling ν = 0.125 used in Fig. 3a and 3b of main manuscript. In Fig. S6b shows the
linear dependence of V 2ω

xy on square of the longitudinal voltage (V ω
xx). A linear behavior estab-

lishes quadratic scaling of NLH voltage, that we measure, with current. Supplementary Fig. S6a
and Supplementary Fig. S6b together shows that the quadratic nature persists in the regime of
displacement field we use to extract BCD in Fig 3b of main manuscript. Supplementary Fig. S6c
shows the quadratic scaling of the NLH voltage that corresponds to a filling ν = 4.288 close to the
electron-side moiré gap. We see departure from linear behavior in Supplementary Fig. S6d for few
displacement fields towards high values of V ω

xx
2. This is outside the scope of our present study.

VIII.2 Phase

In Supplementary Fig. S7, we show the phase of the measured NLH voltage as a function of dis-
placement field for the filling ν = 0.125. The filling and the range of displacement field is same
to that we explore in Fig. 3a and 3b of main manuscript. When an ac current I = I0 sinωt
is sent, quadractic scaling of the second harmonic NLH voltage dictates that V 2ω

xy ∝ I2 ∝
I20 sin2 ωt = I20 (1 + sin(2ωt− π/2))/2. The phase remains close to 90◦ across the two regimes,
which is consistent to the second order nature of V 2ω

xy . We additionally note that we measured the
out-of-phase component of the NLH voltage consistently throughout all the data presented in main
manuscript and supplementary.

VIII.3 NLH voltage at other frequency

Supplementary Fig. S8 shows the nonlinear Hall voltage (V 2ω
xy ) dependence on displacement field for

three different frequencies of the driving current. No frequency dependence of V 2ω
xy is observed even

when the frequency we explored is varied by an order of magnitude (from ∼ 18-178 Hz). This is
consistent to earlier reports [17, 18, 23]. Theoretically, independence of NLH voltage with frequency
in the low-frequency regime such that ωτ → 0, where ω is the frequency and τ is the scattering
time, is a signature that the NLH voltage is BCD-induced [11].
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Supplementary Fig. S6. Additional quadratic scaling data. a, b, Quadratic dependence of V 2ω
xy on

current (I) (a) and linear dependence of V 2ω
xy on (V ωxx)2 (b) for the same filling ν = 0.125 as in Fig. 3b of

main manuscript, at different displacement fields. c, d, Quadratic dependence of V 2ω
xy on current (I) (c)

and linear dependence of V 2ω
xy on (V ωxx)2 (d) for a filling close to electron-side moiré gap at ν = 4.288, for

different displacement fields.
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Supplementary Fig. S7. Phase of nonlinear Hall voltage. Variation of the phase of the nonlinear Hall
voltage with displacement field for the same filling ν = 0.125 and temperature T = 1.5 K as in Fig. 3b of
main manuscript. The cartoon indicates the density of states in the two regimes I (light green background)
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Supplementary Fig. S8. Frequency dependence of nonlinear Hall voltage. The nonlinear Hall voltage
V 2ω
xy vs. displacement field, measured at a frequency of 2ω for current with three different frequencies,
ω = 18.03 Hz (blue line), 67.09 Hz (orange line) and 177.81 Hz (green line). V 2ω

xy remains constant even
when the frequency (ω) of current is varied by an order of magnitude. The data is taken for a fixed filling
ν = 0 and temperature T = 1.5 K. The data corresponding to orange curve was taken for D < 0.
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IX Scaling of NLH voltage with conductivity

IX.1 V 2ω
xy /(V ω

xx)2 vs σ2
xx using displacement field as parameter for different fixed

temperature

In Supplementary Fig. S9a, we show the dependence of V 2ω
xy /(V ω

xx)2 on (σ2xx) using D/ε0 as a
parameter for the same filling ν = 0.125 where the range of |D|/ε0 extends below 0.175 V/nm (in
Fig. 3b of main manuscript, |D|/ε0 is varied till 0.175 V/nm). We see that at lower displacement
fields, V 2ω

xy /(V ω
xx)2 is close to zero. Interestingly, from Extended Data Fig. 3b, we note that as the

magnitude of displacement field is decreased to below 0.18 V/nm, the R vs T at ν = 0 becomes
metallic, indicating a closing of the gap between the flat bands. Supplementary Fig. S9b shows
V 2ω
xy /(V ω

xx)2 dependence on σ2xx at an elevated temperature of T = 12 K for the same filling ν = 0.125.
Here, we see that the intercept is very close to zero in regime-I as well, that was otherwise nonzero
at T = 1.5 K in Supplementary Fig. S9a. The inset in Supplementary Fig. S9b shows the variation
of the y-intercept in regime-I, as a function of temperature. Systematic variation of the intercept
(or, V 2ω

xy /(V ω
xx)2 for σ → 0) with T confirms additionally that V 2ω

xy /(V ω
xx)2 for σ → 0, as we extract

in Fig. 3d of main manuscript, is related to BCD.

IX.2 Extracting BCD via a second method

For low frequency, the BCD (Λ) can also be represented as [11, 18]

Λ =
2~2σ3xxV 2ω

xy W

e3τI2
. (S20)

Here, σxx is the longitudinal conductivity, V 2ω
xy is the nonlinear Hall voltage, W is the width of

TDBG, τ is the scattering time, I is the current sent with low frequency and e is the electronic
charge. Using Drude formula, σxx = ne2τ/m, where n is the charge density and m is the effective
mass, and σxx = IL

V ωxxW
= I

V ωxx
(for our case, length (L)=width (W )=2 µm) in eq. (S20), we obtain

Λ =
2~2Wn

em
×

(
V 2ω
xy

(V ω
xx)2

)
. (S21)

In Supplementary Fig. S10, we plot the BCD using eq. (S21) using V 2ω
xy

(V ωxx)
2 for σxx → 0 (the y-

intercept in Fig. 3b of main manuscript) for different fillings ν = 4n/nS. Here, nS = 2.8×1012 cm−2

is the required charge density to completely fill the flat conduction band, corresponding to a twist
angle of 1.1◦. With an assumption of m=3me, whereme is mass of electron, we get a good agreement
with the BCD extracted in Fig. 3c of main manuscript.
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Supplementary Fig. S9. Scaling of V 2ω
xy /(V ωxx)2 vs σ2

xx at elevated temperatures. a, b, The variation
of normalized nonlinear Hall voltage V 2ω

xy /(V ωxx)2 with square of longitudinal conductivity σ2
xx plotted para-

metrically as a function of the displacement field D/ε0 for T = 1.5 K (a) and T = 12 K (b) at ν = 0.125.
The color of the data points indicate the corresponding displacement field. The horizontal dashed gray line
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xy /(V ωxx)2 = 0 is a guide to the eye. The inset in b shows the extracted y-intercept of the normalized
nonlinear Hall voltage V 2ω

xy /(V ωxx)2 for regime-I at few other temperatures for the same filling.
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X Additional hysteresis data

X.1 Repeatability and histogram
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Supplementary Fig. S11. Switching statistics as a function of temperature. a, Variation of longitu-
dinal voltage V ωxx with displacement field D/ε0 (red colored plot corresponding to left axis, as indicated by
the red arrow) when D/ε0 is swept from left to right along the x-axis at a constant rate of 2.5 mV nm−1

s−1. The blue colored plot (corresponding to the right axis) shows the variation of the numerical derivative
dV ω

xx

d(D/ε0)
with D/ε0. The data is plotted for the same direction of D/ε0 for 59 cycles at a constant temperature

of T = 3.4 K, indicating repeatability. b, The variation of V ωxx with D/ε0 at few fixed temperatures. For
each temperature, the data is plotted for 59 up cycles. c-g, Switching statistics at few fixed temperatures
as mentioned in each subpanel. The histogram counts the position (in D/ε0 axis) of the minima of dV ω

xx

d(D/ε0)

for the 59 up cycles at each fixed temperature.
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X.2 Temperature dependence
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Supplementary Fig. S12. Temperature dependence of hysteresis in longitudinal and nonlinear
Hall voltages. a, b, Variation of the longitudinal voltage, V ωxx with perpendicular displacement field (D/ε0) for
ν = −0.05 (a) and ν = 0.05 (b) at different fixed temperatures. The right axes indicate the corresponding longitudinal
resistance, Rxx. c, d, Variation of the corresponding nonlinear Hall voltage, V 2ω

xy for ν = −0.05 (c) and ν = 0.05 (d)
with D/ε0. The solid and dashed lines stand for the voltage response with increasing and decreasing values of D/ε0,
respectively. The arrows indicate the sweep direction of D/ε0. The displacement field was swept at a constant rate
of 2.5 mV nm−1 s−1.
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X.3 Effect of current and frequency
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Supplementary Fig. S13. Current (I) (a) and frequency (b) dependence of hysteresis in longitudinal resistance
Rxx with displacement field (D/ε0) at a fixed temperature T = 1.5 K. The displacement field was swept at a constant
rate of 2.5 mV nm−1 s−1. Independence of hysteresis on value of driving current in a rules out any heating effect.
Independence of hysteresis on frequency in b rules out any effect of stray capacitance.
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X.4 Data for other fixed ν
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Supplementary Fig. S14. Dependence of sense of hysteresis on doping. a, b, Hysteresis in longitudinal
resistance Rxx with displacement field (D/ε0) for a doping below CNP at ν = −0.04 (a) and above CNP at ν = 0.04

(b). The arrows indicate direction of sweeping D. On the negative D side, the red curve leads the blue curve in a,
while it lags in b. Such a change in hysteretic response due to doping cannot be accounted for via charge traps in
dielectric. The insets show the relative difference in V ωxx of up and down sweep. The relative difference is maximum
around D/ε0 = −0.23 Vnm−1, where a topological transition takes place as discussed in main manuscript. Hysteresis
in V 2ω

xy with displacement field (D/ε0) for a doping below CNP at ν = −0.04 (c) and above CNP at ν = 0.04 (d),
showing similar flipping in sense of hysteresis. The temperature was fixed at T = 1.5 K and the displacement field
was swept at a constant rate of 2.5 mV nm−1 s−1.
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X.5 Rate dependence
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Supplementary Fig. S15. V 2ω
xy vs D/ε0 hysteresis at a fixed ν = −0.05 for three different rates of sweeping

D/ε0 at 2.5 mV nm−1s−1 (a), 1.6 mV nm−1s−1 (b), and 0.3 mV nm−1s−1 (c).
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X.6 hysteresis data from another device
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Supplementary Fig. S16. Hysteresis in device-2 with twist angle of 1.26◦. a, b, Variation of the
longitudinal voltage V ωxx with perpendicular displacement field (D/ε0) for a small negative filling (a) and
positive filling (b) around CNP (ν = 0). The right axes indicate the corresponding longitudinal resistance,
Rxx. c, d, Variation of the nonlinear Hall voltage V 2ω

xy with D/ε0 for similar small negative doping (c)
and positive doping (d) around CNP. The red and blue solid lines stand for the voltage response with
increasing and decreasing values of D/ε0, respectively. The arrows indicate the sweep direction of D/ε0.
The displacement field was swept at a constant rate of 2.7 mV nm−1 s−1. The temperature was fixed at
10 mK. Measurement was performed with a current of 100 nA at a frequency of 177 Hz.
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XI Polarization calculation details

XI.1 Computational Details

Our first-principles calculations are based on density functional theory (DFT) as implemented in
Quantum ESPRESSO (QE) package [6]. We use ultrasoft pseudopotentials to represent the inter-
action between ionic cores and valence electrons. The exchange-correlation energy of electrons is
treated within a generalized gradient approximation (GGA) [7] with a functional form parameter-
ized by Perdew, Burke, and Ernzerhof [8]. We truncated the plane wave basis used in expansion of
Kohn-Sham wave functions and charge density with energy cut-offs of 45 Ry and 360 Ry respectively.
We used 18×18×1 uniform grid of k-points for sampling the Brillouin zone (BZ) integrations. The
discontinuity in occupation numbers of electronic states was smeared with broadening temperature
of kBT = 0.005 Ry using a Fermi-Dirac distribution function. We include van der Waals (vdW)
interaction using PBE + D2 method of Grimme [9]. The 2D system is simulated using a periodic
supercell, with a vacuum layer of 12 Å separating adjacent periodic images of the sheet. To simulate
response to electric field, we add a saw-tooth potential as a function z.

XI.2 Results and Discussion

Twisted double bilayer graphene, TDBG, in our experiments is composed of two AB-stacked bilayers
of graphene rotated by an angle [10] θ and encapsulated from top and bottom by hexagonal boron
nitride (h-BN-TDBG-h-BN) (Supplementary Fig. S17b). Thus, parallelly stacked one atomic plane
of hexagonal boron nitride and two layers of graphene (Gr-Gr-h-BN) is a building block making
a half of h-BN-TDBG-h-BN (upper trilayer) (Supplementary Fig. S17a). Interestingly, a single
Gr-Gr-h-BN unit is noncentrosymmetric and lacks the horizontal mirror symmetry. Hence, it is
expected to have a non-vanishing polarization (dipole moment perpendicular to the plane). We
consider two different configurations of Gr-Gr-h-BN which have been obtained by changing stacking
sequences of Gr-Gr-h-BN (i) stacking of h-BN same as bottom graphene and (ii) stacking sequence
of h-BN not matching with either of the two graphene layers. However, the energies of the two
configurations are comparable (0.1 meV) and we carry out our theoretical analysis with the first
configuration as a model.

We first examine the electronic structure of Gr-Gr-h-BN and find a band gap of ∼ 26 meV
at K point (h-BN breaks sublattice symmetry of AB-stacked bilayer graphene, Supplementary
Fig. S18a). From the slope of macroscopic average electrostatic potential in vacuum, our estimate
of polarization of Gr-Gr-h-BN is Pz ≈ -0.34 µC/cm2 (Extended Data Fig. 5b). Thus, Gr-Gr-h-
BN has a nonzero polarization due to the broken inversion and horizontal reflection symmetries.
This mechanism is similar to ferroelectricity in bilayer h-BN [4]. The lower trilayer of TDBG is
h-BN-Gr-Gr (Supplementary Fig. S17c) and has exactly the same polarization with opposite sign.

The sense of hysteresis in longitudinal and nonlinear Hall voltage for doping just below charge
neutrality point (CNP) is flipped on changing the doping to a point just above CNP. To understand
the metastable states governing this hysteresis, we present a rigid band model for h-BN-Gr-Gr
(lower trilayer) and Gr-Gr-h-BN (upper trilayer) of electronic states coupling with electric field and
determine polarization as a function of electric field. Evolution of band energies with perpendicular
electric field is modeled as

H i = εi + eE〈Zi〉 (S22)

where i is the band index (i = 1 to 4 for the four bands close to Fermi at K point), εi is energy
of i th band, e is charge of an electron, E is electric field, 〈Z〉 is the average position of each
state (Supplementary Fig. S18b-e). 〈Z〉 is minus (-) for h-BN-Gr-Gr (lower trilayer) and plus (+)
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Supplementary Fig. S17. a, Structure of Gr-Gr-h-BN. b, Unit cell of twisted double bilayer graphene en-
capsulated between hexagonal boron nitride (h-BN-TDBG-h-BN) with a rotation angle of 21.78o. c, Structure of
h-BN-Gr-Gr. The building blocks of h-BN-TDBG-h-BN are Gr-Gr-h-BN and h-BN-Gr-Gr. The atomic species C, B
and N are displayed in yellow, grey and blue colors, respectively.

for Gr-Gr-h-BN (upper trilayer), respectively. Band 2 of the lower trilayer and band 3 of upper
trilayer cross at E = -0.0039 V/Å (band 3 of lower trilayer and band 2 of upper trilayer cross at E
= 0.0039 V/Å), resulting in redistribution of charges among these bands (Extended Data Fig. 5c).
We show that there exist two metastable states for (i) E < -0.0039 V/Å and (ii) E > 0.0039
V/Å, with distinct polarization states in h-BN-TDBG-h-BN, that can be accessed with electric
field within our rigid band model (Extended Data Fig. 5d). However, the resistance associated with
the two metastable states remains the same. While the metastable states in h-BN-TDBG-h-BN are
explained using the rigid band model, the hysteresis in resistance seen in experiments can originate
from the broken symmetry, which can possibly arise from the distinction in coupling of top and
bottom gates inducing inhomogeneous doping in the channel or by a twist between two trilayers.

To understand the role of a gate electrode, we obtain the difference in planar-averaged electron
charge density, ρ̄(z ) for n = 4 ×1012/cm2, E = 0.00625 V/Å and n = 4 ×1012/cm2, E = 0 V/Å with
and without electric boundary conditions of a gate (Supplementary Fig. S19b and S19c) in h-BN-
TDBG-h-BN with a twist angle θ = 21.78o. Asymmetry in ∆ρ̄(z) at the atomic planes (red dashed
lines in Supplementary Fig. S19b and S19c) indicate accumulation and depletion of electronic charge
and local polarization arising from polarizability of pz orbitals and a transfer of a tiny amount of
charge. In the presence of gate, a positive electric field (along ẑ) pushes the electrons to the bottom
gate (the scale of y-axis in Supplementary Fig. S19c is higher than Supplementary Fig. S19b),
highlighting the inhomogeneity in doping. We note that a spontaneous electric dipole pz can also
arise from the restructuring of the regions with AA, AB, BA and BB stacking upon application of
electric field [4] and contribute to the observed hysteresis.
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Supplementary Fig. S18. a, Electronic structure of Gr-Gr-h-BN shows a band gap of 26 meV at K point.
b-e, Visualization of wavefunctions of four states near Fermi energy at K point of Band 1 (b), Band 2 (c), Band
3 (d) and Band 4 (e) of Gr-Gr-h-BN shows contribution from pz orbitals of carbon of graphene. The average position,
〈Z〉 in terms of interlayer distance d = 3.2 Å for bands 2 and 3 is 3/2d, and 1/2d, respectively.
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Supplementary Fig. S19. a, Polarization in TDBG calculated as a function of doping in the presence of a
bottom gate. b, c, The difference in planar-averaged electron charge density, ρ̄(z ) for n = 4 ×1012/cm2, E = 0.00625
V/Å and n = 4 ×1012/cm2, E = 0 V/Å without (b) and with (c) gate set-up in h-BN-TDBG-h-BN with a twist
angle θ = 21.78o. In the presence of gate, a positively oriented electric field pushes the electrons at the bottom gate
(the scale of y-axis in c is higher than b).
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XII DC voltage

Apart from the second harmonic voltage V 2ω
xy , the nonlinear Hall effect also gives rise to a DC

voltage [11, 17]. In Supplementary Fig. S20, we show the measured DC voltage in perpendicular
direction to an ac current applied with frequency 177 Hz. The dependence of the DC voltage is shown
for the full parameter space of (ν,D) for the same device used to show the NLH voltage dependence
in Fig. 2b of main manuscript. DC voltage, together with the measured second harmonic V 2ω

xy ,
provides additional evidence for NLH effect in TDBG devices.
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Supplementary Fig. S20. Dependence of DC voltage on filling factor and displacement field. DC
voltage (VDC) as a function of filling factor (ν) and displacement field (D/ε0) measured perpendicular to
current I = 100 nA applied with a frequency of 177 Hz. The color bar provided in top right indicates the
corresponding values of VDC .
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