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Abstract: We consider the problem of providing nonparametric confi-
dence guarantees — with finite sample Berry-Esseen bounds — for undi-
rected graphs under weak assumptions. We do not assume sparsity or in-
coherence. We allow the dimension D to increase with the sample size n.
First, we prove lower bounds that show that if we want accurate inferences
with weak assumptions then D must be less than n. In that case, we show
that methods based on Normal approximations and on the bootstrap lead
to valid inferences and we provide new Berry-Esseen bounds on the accu-
racy of the Normal approximation and the bootstrap. When the dimension
is large relative to sample size, accurate inferences for graphs under weak
assumptions are not possible. Instead we propose to estimate something less
demanding than the entire partial correlation graph. In particular, we con-
sider: cluster graphs, restricted partial correlation graphs and correlation
graphs.
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1. Introduction

There are many methods for estimating undirected graphs, such as the glasso
(Yuan and Lin, 2007; Friedman and Tibshirani, 2007) and sparse parallel regres-
sion (Meinshausen and Bühlmann, 2006). While these methods are very useful,
they rely on strong assumptions, in particular, sparsity and some type of inco-
herence assumption. Most methods do not come with any confidence guarantees.
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Recently, some papers — such as Liu (2013) and Ren et al. (2013) — have pro-
vided confidence guarantees but they still rely on eigenvalue conditions and
sparsity. Ravikumar et al. (2011) consider graph recovery with less restrictive
tail conditions on the distribution but they still invoke sparsity and incoher-
ence assumptions. A greedy method for discrete random variables is given in
Jalali, Johnson and Ravikumar (2011). Again, an incoherence-like assumption
(restricted convexity and smoothness) is invoked.

The purpose of this paper is to construct a nonparametric estimator Ĝ of an
undirected graph G with confidence guarantees that does not make sparsity and
incoherence assumptions. Furthermore, we provide Berry-Esseen type bounds on
the coverage of the confidence intervals.

The confidence guarantee we seek is

Pn(Ĝ ⊂ G) ≥ 1− α−O(rn) (1)

where n is the sample size, Pn denotes the distribution for n observations drawn
from P and rn is an explicit rate. The notation Ĝ ⊂ G means that the edges of
Ĝ are a subset of the edges of G. This means that, with high probability, there
are no false edges. One could use other error measures such as false discovery
rates, but we shall use the guarantee given by (1). Of course, setting Ĝ to be
the empty graph would trivially satisfy (1). So we also want to ensure that the
estimator has non-trivial power for detecting edges.

We focus at first on partial correlation graphs: a missing edge means that
the corresponding partial correlation is 0. We distinguish two cases. In the first
case, the dimension D can increase with n but is smaller than n. In that case we
show that Gaussian asymptotic methods and bootstrap methods yield accurate
confidence intervals for the partial correlations which then yield confidence guar-
antees for the graph. The novelty here is that we provide finite sample bounds
on the coverage accuracy. (We also show that, in principle, one can construct
finite sample intervals, but these intervals turn out to be too conservative to be
useful.)

In the second case, D can be large, even larger than n. In this case it is not
possible to get valid inferences for the whole graph under weak assumptions. We
investigate several ways to handle this case including: cluster graphs, restricted
partial correlation graphs and correlation graphs. Again we provide Berry-Essen
bounds for the methods.

Contributions. Here is a summary of our contributions:

1. We develop new Berry-Esseen bounds for the delta method and the boot-
strap with increasing dimension.

2. The methods provides confidence guarantees.

3. The methods do not depend on Normality or other parametric assump-
tions.

4. The methods do not require sparsity or incoherence conditions.

5. The methods have valid coverage when the dimension increases with the
sample size.

6. The methods are very simple and do not require any optimization.
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Related Work. Our approach is similar to the methods in Liu (2013) and Ren
et al. (2013). They use tests on partial correlations to estimate an undirected
graph. This approach has two advantages over other methods: it eliminates the
need to choose a tuning parameter (as in penalized methods like the glasso) and
it provides error control for the estimated graph. However, the results in that
paper assume conditions like those in most papers on the penalized methods
like the lasso, namely, sparsity. These conditions might be reasonable in some
situations, but our goal is to estimate the graph without invoking these assump-
tions. In the special case of fixed dimension, our method is similar to that in
Drton and Perlman (2004).

Schäfer et al. (2005), building on work by Ledoit and Wolf (2004), consider a
shrinkage approach to estimating graphs. They make no sparsity or incoherence
assumptions. Their examples suggest that their approach can work well in high
dimensions. Their method introduces a bias-validity tradeoff: large shrinkage
biases the partial correlations but have valid asymptotics in high dimensions.
Low shrinkage has low bias but compromises the validity of the asymptotics in
high dimensions. Shrinkage graphs are beyond the scope of this paper, however.

Previous research for increasing but moderate dimensions includes Portnoy
(1988) and Mammen (1993). Our results are very much in the spirit of those
papers. However, our emphasis is on finite sample Berry-Esseen style bounds.

Outline. We start with some notation in Section 2. We discuss various as-
sumptions in Section 3. We then establish lower bounds in Section 4. Finite
sample methods are presented in Section 5. However, these do not work well in
practice. Asymptotic methods for the moderate dimensional case are considered
in Section 6. Specifically, we develop a delta method and a bootstrap method
that accommodate increasing dimension. Recent results on high dimensional
random vectors due to Chernozhukov, Chetverikov and Kato (2012, 2013) play
an important role in our analysis. Methods for the high-dimensional case are
considered in Section 7. In Section 8 we give some numerical experiments and
some examples. Concluding remarks are in Section 9.

2. Notation

Let Y1, . . . , Yn ∈ R
D be a random sample from a distribution P . Each Yi =

(Yi(1), . . . , Yi(D))T is a vector of length D. We allow D ≡ D to increase with n.
We do not assume that the Yi’s are Gaussian. If A is a matrix, we will sometimes
let Ajk denote the (j, k) element of that matrix.

Let Σ ≡ Σ(P ) denote the D ×D covariance matrix of Yi and let Ω = Σ−1.
Let Θ = {θ}jk be the matrix of partial correlations:

θjk = − Ωjk√
ΩjjΩkk

. (2)

Let

S =
1

n

n∑

i=1

(Yi − Y )(Yi − Y )T (3)
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be the the sample covariance matrix and let Θ̂n be the matrix of sample partial
correlations. Given a matrix of partial correlations Θ let G ≡ G(P ) be the
undirected graph with D nodes and such that there is an edge between nodes j
and k if and only if θjk 6= 0. Equivalently, there is an edge if and only if Ωjk 6= 0.
In Section 7 we consider other types of graphs.

For any matrix A, let vec(A) denote the vector obtained by stacking the
columns of A. We define the following quantities:

µ = E(Y ), σ = vec(Σ), ω = vec(Ω) (4)

s = vec(S), δ =
√
n(s− σ), ∆ =

√
n(Y − µ). (5)

If A is m × n then there is a unique permutation matrix Kmn – called the
commutation matrix – such that

Kmnvec(A) = vec(AT ). (6)

Let J denote a D × D matrix of ones. For matrices L and U with the same
dimensions, we write L ≤ U to mean that Ljk ≤ Ujk for all j, k. If A is m× n
and B is p× q then the Kronecker product A⊗B is the mp× nq matrix




A11B · · · A1nB
...

...
Am1B · · · AmnB


 . (7)

The Frobenius norm of A is denotes by ||A||F =
√∑

j,k A
2
jk, the operator norm

by ||A|| = sup||x||=1 ||Ax|| and the max norm by ||A||max = maxj,k |Ajk|. Let
||A||1 = maxj

∑D
i=1 |Aij | and

|||A||| =
∑

jk

|Ajk|. (8)

We let Φ denote the cdf of a standard Normal random variable. Recall that a ran-
dom vectorX ∈ R

k is sub-Gaussian if there exists ζ > 0 such that, for all t ∈ R
k,

Eet
T (X−µ) ≤ e||t||

2 ζ2/2 (9)

where µ = E(X). The smallest and largest eigenvalues of a matrix A are denoted
by λmin(A) and λmax(A). We write an � bn to mean that there is some c > 0,
not depending on n, such that an ≤ cbn for all large n. We often use C to denote
a generic positive constant.

3. Assumptions

In this section we discuss the assumptions we make and we also discuss some of
the commonly used assumptions that we will not use.

The Assumptions. In the case where D < n we make the following as-
sumptions:

(A1) Y and vec(Y Y T ) are sub-Gaussian.
(A2) 0 < a ≤ λmin(Σ) ≤ λmax(Σ) ≤ A < ∞.
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(A3) λmin(T ) ≥ c0 > 0 where T is the asymptotic covariance of
√
n(s− σ) and

is given in Equation (23). Also assume that minj γjj > 0 where γ, the
asymptotic variances of the sample partial correlations, is given in (31).

(A4) maxj E|Vi(j)|3 ≤ C where Vi = vec[(Yi − µ)(Yi − µ)T ]− σ.

When D > n, we first perform a dimension reduction and then we assume (A1)–
(A4) on the reduced problem. We remark that the sub-Gaussian assumption is
stronger than needed and is made for simplicity.

Assumptions Note Made. Now we discuss the assumptions that are com-
monly made for this problem, but that we will not use.

(B1) Incoherence. A typical incoherence condition is

||ΓScS(ΓSS)
−1||∞ < 1 (10)

where Γ = Σ⊗Σ, S is the set of pairs with edges between them and || · ||∞
is the maximum absolute column sum. (There are other versions of this
assumption but they are similar in character.)

(B2) Sparsity. The typical sparsity assumption is that the maximum degree d
of the graph is o(

√
n).

(B3) Donut. It is assumed that each partial correlation is either 0 or is strictly
larger than

√
logD/n, thus forbidding a donut around the origin.

Discussion. Assumptions (A1) and (A4) will hold if Y has thin enough tails.
In fact, if the random variables are bounded or if we truncate the data, then
(A1) and (A4) are guaranteed to hold. Assumptions (A2) and (A3) are, strictly
speaking, not needed but without them the confidence intervals could be very
large. Both (A2) and (A3) are, in principal, testable, using methods like those
we develop in this paper (namely, by constructing bootstrap confidence intervals
for the eigenvalues).

In contrast, (B1)–(B3) are quite strong. They may be reasonable in certain
specialized cases. However, for routine data-analysis, we regard these assump-
tions with some skepticism when D > n. They serve to guarantee that many
high-dimensional methods will work, but seem unrealistic in practice. More-
over, the assumptions are very fragile. The incoherence assumption is especially
troubling although Ren et al. (2013) have been able to weaken it. The donut as-
sumption ensures that non-zero partial correlations will be detected with high
probability. To the best of our knowledge, (B1)–(B3) are not testable when
D > n. Nor are we aware of a single paper that has ever provided evidence that
they do hold in real applications with the exception of applications in engineer-
ing (signal processing) where the design is generated by the user.

Our goal is to develop methods that have confidence guarantees, with Berry-
Esseen bounds, and that avoid these assumptions.

4. Lower bounds

Constructing a graph estimator for which (1) holds is easy: simply set Ĝ to be

identically equal to the empty graph. Then Ĝ will never contain false edges.
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But to have a useful estimator we also want to have non-trivial power to detect
edges; equivalently, we want confidence intervals for the partial correlations to
have width that shrinks with increasing sample size. In this section we find
lower bounds on the width of any confidence interval for partial correlations.
This reveals constraints on the dimension D as a function of the sample size
n. Specifically, we show that (without sparsity) one must have D < n to get
consistent confidence intervals. This is not surprising, but we could not find
explicit minimax lower bounds for estimating partial correlations so we provide
them here.

The problem of estimating a partial correlation is intimately related to the
problem of estimating regression coefficients. Consider the usual regressionmodel

Y = β1X1 + · · ·+ βDXD + ǫ (11)

where ǫ ∼ N(0, σ2) and where we take the intercept to be 0 for simplicity. (Nor-
mality is assumed only in this section.) Suppose we want a confidence interval
for β1.

We will need assumptions on the covariance matrix Σ for X = (X1, . . . , XD).
Again, since we are interested in the weak assumption case, we do not want to
impose strong assumptions on Σ. In particular, we do not want to rule out the
case where the covariates are highly correlated. We do, however, want Σ to be
invertible. Let S denote all symmetric matrices and let

S(a,A) =
{
Σ ∈ S : a ≤ λmin(Σ) ≤ λmax(Σ) ≤ A

}
(12)

where 0 < a ≤ A < ∞. To summarize: Y = βTX + ǫ where ǫ ∼ N(0, σ2), and
Σ = Cov(X) ∈ S(a,A). Let P be all such distributions.

A set-valued function Cn is a 1− α confidence interval for β1 if

Pn(β1 ∈ Cn) ≥ 1− α (13)

for all P ∈ P . Let Cn denote all 1− α confidence intervals. Let

Wn = sup{x : x ∈ Cn} − inf{x : x ∈ Cn} (14)

be the width of Cn.

Theorem 1. Assume that D ≤ n and that α < 1/5. Then, for all large n,

inf
Cn∈Cn

sup
P∈P

E(W 2
n) ≥ 4α3 (1− 5α)

1

n−D + 1
. (15)

Proof. Let us write the model in vectorized form:

Y = Xβ + ǫ (16)

where Y = (Y1, . . . , Yn)
T , X is n×D, β = (β1, . . . , βD)T and ǫ = (ǫ1, . . . , ǫn)

T .
The proof has two stages. First we will derive a lower bound that involves

conditioning on X . In the second stage, we integrate over the marginal distri-
bution of X to get an unconditional bound on the width Wn. Let M = N(0,Σ)
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with λmin(Σ) ≥ a > 0. Without loss of generality, assume Σ−1
11 = 1. Let

p0(x, y) = p0(y|x)m(x) and p1(x, y) = p1(y|x)m(x) where p0(y|x) and p1(y|x)
will be specified later. Here, m(x) is the density of M . Let P0 and P1 be the
distributions with densities p0 and p1. Let P denote a generic distribution in P .
Now,

inf
Cn∈Cn

sup
P∈P

E(W 2
n) ≥ inf

Cn∈Cn

max
P∈{P0,P1}

E(W 2
n)

= inf
Cn∈Cn

max
P∈{P0,P1}

∫
E(W 2

n |X = x)dM(x)

= inf
Cn∈Cn

max
j=0,1

∫
Rj(x)dM(x)

where Rj(x) = Ej(W
2
n |X = x). Let

A =
{
x : R0(x) > R1(x)

}
.

For any two real numbers r0, r1, we have that max{r0, r1} ≥ (r0+ r1)/2. Hence,
∫

R0(x)dM(x) ∨
∫

R1(x)dM(x) ≥
∫

A

R0(x)dM(x) ∨
∫

Ac

R1(x)dM(x)

=

∫

A

[R0(x) ∨R1(x)]dM(x) ∨
∫

Ac

[R0(x) ∨R1(x)]dM(x)

≥ 1

2

(∫

A

[R0(x) ∨R1(x)]dM(x) +

∫

Ac

[R0(x) ∨R1(x)]dM(x)

)

=
1

2

∫
[R0(x) ∨R1(x)]dM(x).

Hence,

inf
Cn∈Cn

sup
P∈P

E(W 2
n) ≥ inf

Cn

1

2

∫
[E0(W

2
n |X = x) ∨ E1(W

2
n |X = x)]dM(x)

≥ 1

2

∫
inf
Cn

max
P0,P1

EP (W
2
n |X = x)dM(x).

Now we fix X = x ∈ R
n×D and lower bound infCn maxP0,P1

EP (Wn|X = x).
Assume that xTx is invertible. Consider Equation (16) where the matrix X is
taken as fixed. Multiplying each term in the equation by (xTx)−1xT we can
rewrite the equation as

Z = β + ξ

where, given X = x, ξ ∼ N(0, (xTx)−1).

Let S = xTx, b > 0, δ2 = 4α2S−1
11 , β0 = (0, b, . . . , b) and β̃0 = (δ, b, . . . , b)

which now defines P0 and P1. The (conditional) Kullback-Leibler distance be-
tween p0(y|x) and p1(y|x) is

1

2
(β̃0 − β0)

T (xTx)(β̃0 − β0) = 2α2S−1
11 S11.
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Note that, since D ≤ n, xTx is invertible with probability one. The conditional

total variation distance is thus bounded above by TV(x) ≡ α
√
S−1
11 S11. Let

A0 = {0 ∈ Cn} and A1 = {δ ∈ Cn}. Note that A0 ∩ A1 implies that W 2
n ≥ δ2.

So, given X = x,

P0(W
2
n ≥ δ2|X = x) ≥ P0(A0 ∩ A1|X = x)

= P0(A0|X = x) + P0(A1|X = x) − P0(A0 ∪ A1|X = x)

≥ P0(A0|X = x) + P0(A1|X = x) − 1

≥ P0(A0|X = x) + P1(A1|X = x) − 1− TV(x).

So far, we have a bound on Wn which depends on x. Now we will turn this
into an unconditional bound by integrating over the marginal distribution of X .

Note that
∫
TV(x)dM(x) ≤ α

∫ √
S−1
11 S11dM(X). Now

∫ √
S−1
11 S11dM(x) → 1

as n → ∞. Thus, for large enough n,
∫
TV(x)dM(x) ≤ 2α. Integrating over

dM(x) we have

P0(W
2
n ≥ δ2) ≥ P0(A0) + P1(A1)− 1−

∫
TV(x)dM(x)

≥ [1− α] + [1− α]− 1− 2α = 1− 4α.

Let E = {S−1
11 ≥ α

n−D+1}. Then,

P0(W
2
n ≥ δ2) = P0

(
W 2

n ≥ 4α2S−1
11

)

= P0

(
W 2

n ≥ 4α2S−1
11 , E

)
+ P0

(
W 2

n ≥ 4α2S−1
11 , Ec

)

≤ P0

(
W 2

n ≥ 4α3

n−D + 1

)
+ P0 (E

c) .

Then,

P0(E
c) = P0

(
S−1
11 <

α

n−D + 1

)
= P0

(
1

S−1
11

>
n−D + 1

α

)

= P0

(
χ2
n−D+1 >

n−D + 1

α

)
≤ α

by Markov’s inequality. Note that the χ2 random variable is well-defined since
D ≤ n. So

P0

(
W 2

n ≥ 4α3

n−D + 1

)
≥ P0(W

2
n ≥ δ2)− α ≥ 1− 4α− α = 1− 5α.

By Markov’s inequality,

E0(W
2
n) ≥ (1− 5α)

4α3

n−D + 1
.

Now we establish the analogous upper bound.
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Theorem 2. Assume that D ≤ n and that 0 < α < 1. Then a 1−α confidence
interval for β1 is


β̂1 −

√

2σ2 log(4/α)
Σ−1
jj

(1 + x)(n−D + 1)
, β̂1 +

√

2σ2 log(4/α)
Σ−1
jj

(1− x)(n−D + 1)




where x =
√

16
3

log(4α−1)
n−D+1 . Hence,

inf
Cn∈Cn

sup
P∈P

E(W 2
n) = O

(
1

n−D + 1

)
. (17)

Proof. The least squares estimator is

β̂ = β + (XTX)−1XT ǫ = β + Z.

We want a 1 − α probability bound on |β̂j − βj | = |Zj|. Since Z|X ∼ N(0,
σ2(X ′X)−1), we have that

|Zj| ≤
√
2σ2(XTX)−1

jj log(4α−1)

with probability 1−α/2, conditional onX . We have thatXTX ∼ WishartD(Σ, n)
and

Σ−1
jj

(X ′X)−1
jj

∼ χ2
n−D+1.

For T ∼ χ2
D, we have

P (|D−1T − 1| ≥ x) ≤ exp−
3

16
Dx2

.

Therefore, setting x =
√

16
3

log(4α−1)
n−D+1 ,

Σ−1
jj

(1 + x)(n−D + 1)
≤ (X ′X)−1

jj ≤
Σ−1

jj

(1 − x)(n−D + 1)

with probability 1−α/2. Combining the results, gives a the bound on |Zj|.
Now consider estimating a partial correlation corresponding to a covariance

matrix Σ.

Theorem 3. Let W ∈ R
D where W ∼ N(0,Σ) with Σ ∈ S(a, S) (defined

in (12)). Let θ be the partial correlation between two components of W , say,
WD and WD−1. Let Cn be the set of 1 − α confidence intervals for θ. Assume
that D ≤ n and that α < 1/5. Then

inf
Cn∈Cn

sup
P∈P

E(W 2
n) ≥ 4α3 (1− 5α)

1

n−D + 1
. (18)
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Proof. Let b > 0 be a small positive constant. Let W = (W1, . . . ,WD) where

W1 = ǫ1

W2 = bW1 + ǫ2

W3 = bW2 + bW1 + ǫ3

... =
...

WD = qWD−1 + bWD−2 + · · ·+ bW1 + ǫD,

ǫ1, . . . , ǫD ∼ N(0, 1). For P0 take q = 0 and for P1 take q = δ. So, P0 = N(0,Σ0)
and P1 = N(0,Σ1), say. Then Ω1 = Σ−1

1 corresponds to a complete graph while
Ω0 = Σ−1

0 has a missing edge. Let us write W = (Y,X) where Y = W1 and X =
(W2, . . . ,WD). We note that the marginal distribution of X is the same under
P0 and P1. The conditional distribution of Y given X under Pj can be written

Y = βT
j X + ǫ

where β0 = (0, b, . . . , b) and β1 = (δ, b, . . . , b). The rest of the proof follows the
proof of Theorem 1.

We conclude that without further assumptions (namely sparsity plus inco-
herence) we cannot make reliable inferences unless D ≤ n.

Remark 4. These lower bounds were computed under the assumption of Nor-
mality. This is good enough to show the dependence on dimension. However,
this makes the minimax lower bound optimistic. When we develop the methods,
we shall not assume Normality.

5. A finite sample method

For completeness, we give here a finite sample confidence interval that has length
O(
√

D/n). However, the intervals do not work well in practice and we explore
asymptotic methods in the following section. In this section we suppose that
|Yi(j)| ≤ B for some finite constant B. First we recall the following result from
Vershynin (2010).

Theorem 5 (Vershynin, 2010). There exists cα, depending only on B, such that

P

(
||S − Σ|| > cα

√
D

n

)
≤ α.

Theorem 6. Let

ǫn =
cα

λ̂2

√
D

n

(
1− cα

λ̂

√
D

n

)−1

(19)

where λ̂ is the smallest eigenvalue of S. Let ∆n = 2ǫn/(1− ǫn). Then

inf
P∈P

P (Θ ≤ Θ ≤ Θ) ≥ 1− α (20)

where Θ = Θ̂+∆nJ and Θ = Θ̂−∆nJ where we recall that J is a D×D matrix
of ones.
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Proof. By the previous result, ||S−Σ|| ≤ cα

√
D
n with probability at least 1−α.

From Horn and Johnson (1990) page 381,

||S−1 − Σ−1||max ≤ ||S−1|| ||S−1(Σ− S)||
1− ||S−1(Σ− S)|| .

Note that, with probability at least 1− α,

||S−1(Σ− S)|| ≤ ||S−1|| ||Σ− S|| = ||Σ− S||
λ̂

≤ cα

λ̂

√
D

n
. (21)

Also note that ||S−1|| ≤ 1/λ̂. We conclude that

||S−1 − Σ−1||max ≤ ǫn.

From Lemma 3 of Harris and Drton (2012), ||Θ̂ − Θ||max ≤ 2δ
1−δ where δ =

||S−1 − Σ−1||max. The result follows.
Despite the apparent optimal rate, in practice the confidence intervals are

gigantic. Instead, we turn to asymptotic methods.

6. Increasing dimension and Berry-Esseen bounds

We call the case where D is increasing with n but smaller than n, the moderate
dimensional case. Here we derive confidence sets for the partial correlations in
this case. We deal with the high-dimensional case D > n in the next section.

Our goal is to show the accuracy of the delta method and the bootstrap. In
particular, we develop new results on the delta method for multiple non-linear
statistics with increasing dimension. The state-of-the-art for delta method re-
sults are the papers by Pinelis and Molzon (2013); Chen and Shao (2007) where,
in particular, the former applies to the multivariate case. Rather than adapt
those results, we instead develop a slightly different approach that leverages
recent developments in high dimensional statistics. This allows us to develop a
simultaneous delta method and bootstrap for multiple inference with increasing
dimension. Throughout this section, we assume that D < n.

In Sections 6.2–6.6 we assume that (A1)–(A4) hold.

6.1. Preliminary definitions and results

Recall that s = vec(S), σ = vec(Σ), ω = vec(Ω), θ = vec(Θ) and δ =
√
n(s−σ).

Define the map gj by θj = gj(σ). We can write θ = G(σ) where G(σ) =

(g1(σ), . . . , gD2(σ))T . Note that G : RD2 → R
D2

.
If D is fixed, the central limit theorem implies that

√
n(s− σ) N(0, T ) (22)

where
T ≡ T (σ) = E(ǫǫT ⊗ ǫǫT )− σσT (23)
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and ǫ ∼ N(0,Σ). The finite sample variance matrix of δ is given by (Boik and
Haaland (2006)),

Tn(σ) =
c1

n− 1
(E(ǫǫT ⊗ ǫǫT )−σσT )+

(
1− D

(
1− 1

n

)

n− 1

)
(ID2 −K(D,D))(Σ⊗Σ)

(24)
where K(D,D) is the commutation matrix defined in (6) and c1 = D(1− 1

n ).

Let S̃ = n−1
∑n

i=1(Yi − µ)(Yi − µ)T , s̃ = vec(S̃), Q = (Y − µ)(Y − µ)T and
q = vec(Q). Note that

s− σ = s̃− σ − q = V − q (25)

where V = n−1
∑

i Vi and Vi = vec((Yi − µ)(Yi − µ)T )− σ.

Lemma 7. For all ǫ > 0 we have the following inequalities:

P (||s− σ||∞ > ǫ) ≤ 2D2e−nζ2ǫ2/2

P (||s− σ|| > ǫ) ≤ 2D2e−nζ2ǫ2/(2D2)

E||δ||∞ ≤ ζ
√
2 log(2D2)

P (||q||∞ > ǫ) ≤ 4D2e−nǫζ2/2

where ζ is defined in (9).

Proof. Using the sub-Gaussian property, we have P (||s − σ||∞ > ǫ) =

P (||V ||∞ > ǫ) ≤ ∑
j P (|V j | > ǫ) ≤ 2

∑
j e

−nζ2ǫ2/2 = 2D2e−nζ2ǫ2/2. The
second result follows from the first since ||s − σ|| ≤ D||s − σ||∞. The third
inequality follows from a standard inequality; see Lemma 2.2 of Devroye and
Lugosi (2001) for example. For the fourth inequality, note that the absolute
value |qj | of each element of q has the form |Y (s) − µ(s)| |Y (t) − µ(t)|. So

P (||q||∞ > ǫ) ≤∑j P (|qj | > ǫ) ≤ 4D2e−nǫζ2/2.

Lemma 8. Let Φ be the cdf of a standard Gaussian random variable. Let A
and B be random variables. Then, for every ǫ > 0,

sup
z

|P (A+B < z)− Φ(z)| ≤ sup
z

|P (A < z)− Φ(z)|+ ǫ+ P (|B| > ǫ).

Proof. Let E = {|B| < ǫ}. Then

P (A+B<z)−Φ(z) = P (A+B<z,E)+P (A+B < z,Ec)−Φ(z)

≤ P (A<z+ ǫ)+P (Ec)−Φ(z)

≤ P (A<z+ ǫ)−Φ(z+ ǫ)−Φ(z)+Φ(z+ ǫ)+P (|B| > ǫ)

≤ P (A<z+ ǫ)−Φ(z+ ǫ)+ ǫ+P (|B|>ǫ).
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Hence,

sup
z
[P (A+B < z)− Φ(z)] ≤ sup

z
[P (A < z + ǫ)− Φ(z + ǫ)] + ǫ + P (|B| > ǫ)

= sup
z
[P (A < z)− Φ(z)] + ǫ+ P (|B| > ǫ).

By a similar argument,

sup
z
[P (A+B < z)− Φ(z)] ≥ sup

z
[P (A < z)− Φ(z)]− ǫ− P (|B| > ǫ).

We need the following recent results on high-dimensional random vectors due
to Chernozhukov, Chetverikov and Kato (2012).

Theorem 9 (High-Dimensional CLT; CCK 2012). Let Y1, . . . , Yn ∈ R
k be ran-

dom vectors with mean µ and covariance Σ and finite third moments. Let

T = max
j

∣∣∣∣∣
1√
n

n∑

i=1

(Yi(j)− µ(j))

∣∣∣∣∣.

Let Z ∈ R
D be Gaussian with mean 0 and covariance Σ. Then

sup
z

∣∣∣∣∣P (T ≤ z)− P (max
j

|Zj | ≤ z)

∣∣∣∣∣ � M
(logD)7/8

n1/8
(26)

where M = (Emaxj [|Y (j)|+ |Z(j)|]3)1/4. Under the sub-Gaussian assumption,
M � (logD)1/8. Hence the upper bound is logD/n1/8.

Theorem 10 (Gaussian Anti-Concentration; CCK 2013). Let Z1, . . . , Zk be
centered, not necessarily independent, Gaussian random variables. Then

sup
z

P

(
|max

j
Zj − z| ≤ ǫ

)
≤ Cǫ

√
log(k/ǫ) (27)

where C depends only on maxj Var(Zj) and minj Var(Zj).

An immediate corollary of this result is the following.

Lemma 11. Let Z ∼ N(0,Σ) where Z ∈ R
k. There exists c > 0 depending only

on maxj Σjj and minj Σjj but not on k such that, for every ǫ > 0,

sup
t

[
P
(
max

j
|Zj | ≤ t+ ǫ

)
− P

(
max

j
|Zj| ≤ t

)]
≤ cǫ

√
log(k/ǫ)

and

sup
t
[P (max

j
Zj ≤ t+ ǫ)− P (max

j
Zj ≤ t)] ≤ cǫ

√
log(k/ǫ).
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Proof. Let Y = maxj Zj . Then

P
(
max

j
Zj ≤ t+ ǫ

)
− P

(
max

j
Zj ≤ t

)
≤ P (t− ǫ ≤ Y ≤ t+ ǫ)

= P (−ǫ ≤ Y − t ≤ ǫ)

≤ P (|Y − t| ≤ ǫ)

≤ 2 sup
z

P (|Y − z| ≤ ǫ) ≤ cǫ
√
log(k/ǫ)

where the last inequality is precisely the previous anti-concentration inequality.

Remark 12. A union bound would have given a bound of order kǫ instead of
ǫ
√
log k/ǫ. Lemma 11 leads to much sharper bounds in our delta method and

bootstrap bounds.

Theorem 13 (Gaussian Comparison; CCK 2013). Let X = (X1, . . . , Xk) ∼
N(0,ΣX) and Y = (Y1, . . . , Yk) ∼ N(0,ΣY ). Let ∆ = maxj,k |ΣX(j, k) −
ΣY (j, k). Then

sup
z

∣∣∣P (max
j

Xj ≤ z)− P (max
j

Yj ≤ z)
∣∣∣ ≤ C∆1/3(1 ∨ log(k/∆))2/3 (28)

where C is only a function of maxj ΣY (j, j) and minj ΣY (j, j).

6.2. Berry-Esseen bounds for high-dimensional delta method

Define
B =

{
a : ||a− σ|| ≤ C

√
D2 logn/n

}
. (29)

It follows from Lemma 7 that, for large enough C, P (s /∈ B) ≤ 1/n2. We
assume throughout the analysis that s ∈ B as the error this incurs is of smaller
order than the rest of the error terms. Let Θ and Θ̂ be the matrix of partial
correlations and the matrix of estimated partial correlations. Let θ = vec(Θ)

and θ̂ = vec(Θ̂). Recall that

θ = (θ1, . . . , θD2)T = G(σ) = (g1(σ), . . . , gD2(σ)).

By Taylor expansion and (25),

√
n(θ̂ − θ) =

√
nL(s− σ) + n−1/2R =

√
nLV −

√
nLq +

1√
n
R (30)

where L = dvec(G)/dσT so that L is the D2 × D2 matrix whose jth row is
ℓj ≡ ℓj(σ) ≡ dgj(σ)/dσ

T . Similarly, R = (R1, . . . , RD2)T where Rj = 1
2δ

THjδ
and Hj is the Hessian of gj, evaluated at some point between s and σ. Let

Γ = Var(
√
nL(s− σ)) = LTnL

T and γ = diag(Γ). (31)
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Let
Z =

√
nγ−1/2(θ̂ − θ) = (Z1, . . . , ZD2)T

where Zj =
√
n(θ̂j − θj)/ej is the normalized estimate, ej = γ1/2(j, j) =√

ℓj(σ)T T (σ)ℓj(σ) and T (σ) is defined in (23). The covariance of Z is

Γ̃ = γ−1/2Γγ−1/2.

Note that Γ̃jj = 1 for all j.

Theorem 14. Let W ∼ N(0, Γ̃) where W ∈ R
D2

and let

γn = max
j

sup
a∈B

|||Hj(a)|||√
ℓj(a)TTn(a)ℓj(a)

and ξn = max
j

sup
a∈B

||γ−1/2ℓj(a)||1.

where Tn is defined in (24). Then,

sup
z

∣∣∣P (max
j

|Zj | ≤ z)− P (max
j

|Wj | ≤ z)
∣∣∣ � An (32)

where

An =
logD

n1/8
+

4(γn + ξn)

ζ2

√
log(Dn)

n

√
log

(
Dζ2

4(γn + ξn)

√
n

log(Dn)

)
(33)

and we recall that ζ is defined in (9). Hence, if zα ≡ −Φ−1(α/D2) then

P (max
j

|Zj | > zα) ≤ α+An.

Remark 15. In the above result, the dimension enters mainly through the
terms γn and ξn. Except for these terms, the dependence on D is only logarith-
mic. We discuss these terms in Section 6.5.

Proof. By (30),

Z =
√
nγ−1/2(θ̂ − θ) =

√
nγ−1/2LV −

√
nγ−1/2Lq +

1√
n
γ−1/2R.

Note that Var(Wi) = Var(
√
nγ−1/2LV ). Fix ǫ > 0 and let

E =

{∣∣∣
∣∣∣γ

−1/2R√
n

∣∣∣
∣∣∣
∞

≤ ǫ

}
and E′ =

{
||
√
nγ−1/2Lq||∞ ≤ ǫ

}
.

Now

P (max
j

|Zj| ≤ z) = P (||
√
nγ−1/2LV −

√
nγ−1/2Lq +

1√
n
γ−1/2R||∞ ≤ z)

≤ P (||
√
nγ−1/2LV ||∞ − ||

√
nγ−1/2Lq||∞
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− || 1√
n
γ−1/2R||∞ ≤ z)

= P (||
√
nγ−1/2LV ||∞ − ||

√
nγ−1/2Lq||∞

− || 1√
n
γ−1/2R||∞ ≤ z, E) + P (||

√
nγ−1/2LV ||∞

− ||
√
nγ−1/2Lq||∞ − || 1√

n
γ−1/2R||∞ ≤ z, Ec)

≤ P (||
√
nγ−1/2LV ||∞ − ||

√
nγ−1/2Lq||∞ ≤ z + ǫ) + P (Ec)

= P (||
√
nγ−1/2LV ||∞ − ||

√
nγ−1/2Lq||∞ ≤ z + ǫ, E′)

+ P (||
√
nγ−1/2LV ||∞ − ||

√
nγ−1/2Lq||∞ ≤ z + ǫ, (E′)c)

+ P (Ec)

≤ P (||
√
nγ−1/2LV ||∞ ≤ z + 2ǫ) + P (Ec) + P ((E′)c).

So,

P (max
j

|Zj | ≤ z)− P (max
j

|Wj | ≤ z)

≤ P

(∣∣∣∣∣

∣∣∣∣∣
√
nγ−1/2LV

∣∣∣∣∣

∣∣∣∣∣
∞

≤ z + 2ǫ

)
− P (max

j
|Wj | ≤ z + 2ǫ)

+ P (max
j

|Wj | ≤ z + 2ǫ)− P (max
j

|Wj | ≤ z) + P (Ec) + P ((E′)c)

≤ P

(∣∣∣∣∣

∣∣∣∣∣
√
nγ−1/2LV

∣∣∣∣∣

∣∣∣∣∣
∞

≤ z + 2ǫ

)
− P (max

j
|Wj | ≤ z + 2ǫ)

+ Cǫ
√
logD/ǫ+ P (Ec) + P ((E′)c)

≤ C
logD

n1/8
+ Cǫ

√
logD/ǫ+ P (Ec) + P ((E′)c)

where we used Theorem 9 applied to V
∗
= γ−1/2LV and Lemma 11. Recall that

s ∈ B except on a set of probability 1/n2 and on this set,

(
γ−1/2R√

n

)

j

=
δTHjδ√
nℓTj Tnℓj

≤ γn
√
n||s− σ||2∞

and so by Lemma 7,

P (Ec) ≤ 2D2 exp

(
−−√

nζ2ǫ2

2γ2
n

)
.

Choosing

ǫ =
4(γn + ξn)

ζ2

√
log(Dn)

n
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we have P (Ec) ≤ 1
n2 and

ǫ
√
logD/ǫ ≤ 4(γn + ξn)

ζ2

√
log(Dn)

n

√
log

(
Dζ2

4(γn + ξn)

√
n

log(Dn)

)
.

Using Holder’s inequality,

|γ−1/2ℓTj q| ≤ ||q||∞ ||γ−1/2ℓj ||1 ≤ ||q||∞ ξn

so that ||γ−1/2Lq||∞ ≤ ||q||∞ ξn. Hence, using Lemma (7),

P ((E′)c) ≤ P (||q||∞ > ǫ/
√
ξnn) ≤ 4D2e−

√
nζ2ǫ/(2ξn) ≤ 1

n2

The result follows by computing a similar lower bound and taking the supremum
over z. For the last statement, note that Wj ∼ N(0, 1). So

P (max
j

|Zj|>zα)≤P (max
j

|Wj |>zα)+An ≤
∑

j

P (|Wj |>zα)+An ≤α+An.

In practice we need to use Tj =
√
n(θ̂j−θj)/êj where êj =

√
ℓj(s)TT (s)ℓj(s) ≡

Uj(s) is the estimated standard error. We have the following result for this case.

Theorem 16. Define γn and ξn as in the previous theorem. Let

ρn = max
j

sup
a∈B

||U ′
j(a)||1√

ℓj(a)TTn(a)ℓj(a)

where Uj(a) =
√
ℓTj (a)T (a)ℓj(a). Then,

sup
z

|P (max
j

|Tj | ≤ z)− P (max
j

|Wj | ≤ z)| � An + ρn

√
log n

n

where An is defined in (33). If z ≡ −Φ−1(α/D2) then

sup
z

|P (max
j

|Tj | > z)| ≤ α+An + ρn

√
logn

n
.

Proof. Let E = {maxj ej/êj < 1 + ǫ} and F = {maxZj < u/ǫ} where ǫ =

(4ρn/ζ)
√
logn/(nζ2) and u = ǫ

√
log(n). Note that ej − êj = Uj(σ) − Uj(s) =

(σ − s)TU ′
j where U ′ is the gradient of U evaluated at some point between s

and σ. Then, for 0 < ǫ ≤ 1,

P (Ec) ≤ P

(
max

j

ej − êj
ej

>
ǫ

1 + ǫ

)
= P

(
max

j

Uj(σ)− Uj(s)

ej
>

ǫ

1 + ǫ

)

= P

(
max

j

(σ − s)TU ′
j

ej
>

ǫ

1 + ǫ

)
≤ P

( ||s− σ||∞ maxj ||U ′
j ||1

ej
>

ǫ

1 + ǫ

)
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≤ P

(
||s− σ||∞ρn >

ǫ

1 + ǫ

)
= P

(
||s− σ||∞ >

ǫ

2ρn

)

≤ D2e−nǫ2/(2ρ2

n) ≤ 1

n2
.

Now,

P

(
max

j

√
n(θ̂j − θj)

êj
≤ z

)
− P (maxWj ≤ z)

= P

(
max

j
Zj

(
ej
êj

)
≤ z

)
− P (maxWj ≤ z)

≤ P

(
max

j
Zj(1− ǫ) ≤ z

)
+ P (Ec)− P (maxWj ≤ z)

= P

(
max

j
Zj − Zjǫ ≤ z

)
+ P (Ec)− P (maxWj ≤ z)

≤ P

(
max

j
Zj ≤ z + u

)
+ P (F c) + P (Ec)− P (maxWj ≤ z)

≤ P

(
max

j
Zj ≤ z + u

)
− P (maxWj ≤ z + u)

+ Cu
√
logD/u+ P (F c) + P (Ec)

≤ sup
z

[
P

(
max

j
Zj ≤ z

)
− P (max

j
Wj ≤ z)

]

+ Cu
√
logD/u+ P (F c) + P (Ec)

≤ An + Cu
√
logD/u+ P (F c) + P (Ec)

where An is defined in (33). Next,

P (F c) = P (max
j

Zj > u/ǫ) ≤ P (max
j

Wj > u/ǫ) +An

= P (max
j

Wj >
√
logn) +An

≤ E(maxj Wj)√
logn

+An �
√
logD√
logn

+An � An.

So

sup
z

|P (max
j

|Tj| ≤ z)− P (max
j

|Wj | ≤ z)|

� sup
z
[P

(
max

j
Zj ≤ z

)
− P (maxWj ≤ z)] +An

+
1

n2
+ Cu

√
logD

� An + ρn

√
log n

n
.

A similar lower bound completes the proof.
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6.3. The bootstrap

In this section we assume that maxj |Y (j)| ≤ B for some B < ∞. This is not
necessary but it simplifies the proofs. We do not require that B be known. Let
Y ∗
1 , . . . , Y

∗
n be a sample from the empirical distribution and let s∗ be the corre-

sponding (vectorized) sample covariance. Now let θ̂∗ be the partial correlations
computed from Y ∗

1 , . . . , Y
∗
n ∼ Pn where Pn is the empirical distribution. The

(un-normalized) bootstrap rectangle for θ is

Rn =

{
θ : ||θ − θ̂||∞ ≤ Zα√

n

}

where Zα = F̂−1(1− α) and

F̂ (z) = P

(√
n||θ̂∗ − θ̂||∞ ≤ z

∣∣∣∣ Y1, . . . , Yn

)
(34)

is the bootstrap approximation to

F (z) = P (
√
n||θ̂ − θ||∞ ≤ z).

The accuracy of the coverage of the bootstrap rectangle depends on supz |F̂ (z)−
F (z)|.

Let

Γ = Var(
√
nL(s− σ)) = LTnL

T .

Let Z ∼ N(0,Γ) where Z ∈ R
D2

. First we need the following limit theorem for
the un-normalized statistics.

Theorem 17. Define γ′
n = maxj supa∈B |||Hj(a)||| and ξ′n = maxj supa∈B ||ℓj(a)||1.

Then

sup
z

∣∣∣∣∣P (
√
n||θ̂ − θ||∞ ≤ z)− P (||Z||∞ ≤ z)

∣∣∣∣∣ �
logD

n1/8
+A′

n

where

A′
n =

logD

n1/8
+

4(γ′
n + ξ′n)

ζ2

√
log(Dn)

n

√
log

(
Dζ2

4(γ′
n + ξ′n)

√
n

log(Dn)

)
. (35)

Proof. The proof is the same as the proof of Theorem 14 with γ′
n and ξ′n

replacing γn and ξn.
Now we bound supz |F̂ (z)− F (z)|.

Theorem 18.

sup
z

|F̂ (z)− F (z)| � logD

n1/8
+ (γ′

n + ξ′n)
√
logn/n+OP

((
logD

n

)1/6
)
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and hence

P (θ /∈ Rn) ≤ α+
logD

n1/8
+ (γ′

n + ξ′n)
√
logn/n+O

((
logD

n

)1/6
)
.

Proof. Let Z ∼ N(0,Γ) and let Z ′ ∼ N(0,Γn) where Γn = Var(
√
nL(s∗ −

s)|Y1, . . . , Yn). Then

sup
z

|F̂ (z)− F (z)| ≤ sup
z

∣∣∣F (z)− P (||Z||∞ ≤ z)
∣∣∣+ sup

z

∣∣∣F̂ (z)− P (||Z ′||∞ ≤ z)
∣∣∣

+ sup
z

∣∣∣P (||Z ′||∞ ≤ z)− P (||Z||∞ ≤ z)
∣∣∣

= I + II + III.

In the previous theorem, we showed that I ≤ logD
n1/8 + A′

n. For II, we proceed
exactly as in the proof for of the previous theorem but with Pn replacing P (and
with Y1, . . . , Yn fixed). This yields, for any ǫ > 0,

F̂ (z)− P (||Z ′||∞ ≤ z) � logD

n1/8
+ ǫ
√
logD/ǫ

+ P (
√
n||Lq∗||∞ > ǫ|Y1, . . . , Yn)

+ P (n−1/2||R∗||∞ > ǫ|Y1, . . . , Yn)

where q∗ = vec((Y
∗ − Y )(Y

∗ − Y )T ), R∗
j = (1/2)δTH∗

j δ
∗, δ∗ =

√
n(s∗ − s) and

H∗
j is the Hessian of gj evaluated at a point between s and s∗.
Since all the Yi’s are contained in the bounded rectangle B×· · ·×B, it follows

that under the empirical measure Pn, Y
∗
i is sub-Gaussian with ζ = B. It then

follows that s∗ ∈ B expect on a set of probability at most 1/n. Choosing

ǫ =
4(γ′

n + ξ′n)

B2

√
log(Dn)

n

and arguing as in the proof of Theorem 14 we conclude that

F̂ (z)− P (||Z ′||∞ ≤ z) � logD

n1/8
+ ǫ
√
logD/ǫ

+ P (
√
n||Lq∗||∞ > ǫ|Y1, . . . , Yn)

+ P (n−1/2||R∗||∞ > ǫ|Y1, . . . , Yn)

≤ logD

n1/8
+ OP (A

′
n).

For III, we use Theorem 13 which implies that

III ≤ C∆1/3(1 ∨ log(k/∆))2/3

where ∆ = maxs,t |Γ(s, t) − Γn(s, t)|. Each element of Γn(s, t) is a sample mo-
ment and Γ(s, t) is corresponding population moment, and so, since Pn is sub-
Gaussian, ∆ = OP (

√
logD/n). Hence, III = OP (

logD
n )1/6.
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6.4. A super-accurate bootstrap

Now we describe a modified approach to the bootstrap that has coverage error
only O(logD/n1/8) which is much more accurate than the usual bootstrap as
described in the last section. The idea is very simple. Let R be the 1 − α
bootstrap confidence rectangle for σ described in Section 7.1. Write θ = G(σ)
and define

T =
{
G(σ) : σ ∈ R

}
.

By construction, T inherits the coverage properties of R and so we have imme-
diately:

Corollary 19.

P (θ ∈ T ) ≥ 1− α−O

(
logD

n1/8

)
−O

(
logD

n

)1/6

.

The set T then defines confidence sets for each θj , namely,

Cj =
[
inf{gj(σ) : σ ∈ R}, sup{gj(σ) : σ ∈ R}

]
.

We should stress that, in general, obtaining a confidence set by mapping a
confidence rectangle can lead to wide intervals. However, our foremost concern
in this paper is coverage accuracy.

Constructing the set T can be difficult. But it is easy to get an approximation.
We draw a large sample σ1, . . . , σN from a uniform distribution on the rectangle
R. Now let

θj = min
1≤s≤N

gj(σs), θj = max
1≤s≤N

gj(σs).

Then [θj , θj ] approximates the confidence interval for θj . Alternatively, we take
σ1, . . . , σN to be the bootstrap replications that are contained in R. Note that
there is no need for a multiple comparison correction as the original confidence
rectangle is a simultaneous confidence set.

6.5. Comments on the error terms

The accuracy of the delta method depends on the dimension D mainly through
the terms γn, ξn and ρn. Similarly, the accuracy of the (first version of the)
bootstrap depends on γ′

n and ξ′n. In this section we look at the size of these
terms. We focus on γ′

n and ξ′n.
Recall that ℓj = dθj/dσ

T . Then

ℓj(σ) =
dθj
dσT

=
dθj
dωT

dω

dσT
.

Let (s, t) be such that θj = Θst. Then,
dθj
dωT is 1×D2 and dω

dσT is D2 ×D2. Now
dω
dσT = −Ω⊗ Ω and

dθj
dωT is 0 except for three entries, namely,

dθj
dΩss

= − θj
2Ωss

,
dθj
dΩtt

= − θj
2Ωss

,
dθj
dΩst

=
θj
Ωst

.
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Define (J,K,M) by σJ = Σss, σK = Σtt and σM = Σst. Then

ℓj =
dθj
dσT

=
θj

2Ωss
[Ω⊗ Ω]J +

θj
Ωst

[Ω⊗ Ω]M +
θj
2Ωtt

[Ω⊗ Ω]K = fj(Ω⊗ Ω) (36)

where [A]j denotes the jth row of A and fj is a sparse vector that is 0 except
for three entries.

Now the Hessian is Hj = ( dℓ1
dσT , . . . ,

dℓD2

dσT )T where

dℓj
dσT

=
dℓj
dωT

dω

dσT
= − dℓj

dωT
(Ω⊗ Ω).

Now

dℓj
dωT

=

((
dω

dσT

)T

⊗ I

)
d

dωT

(
dθj
dω

)
+

(
I ⊗ dθj

dωT

)
d

dωT

dω

dσT

= −(Ω⊗ Ω⊗ I)fj − (I ⊗ fj)
d

dωT
(Ω⊗ Ω)

= −(Ω⊗ Ω⊗ I)fj

− (I ⊗ fj)(ID ⊗K(D,D) ⊗ ID)(ID2 ⊗ vec(Ω) : vec(Ω)⊗ ID2 );

where we used the fact that

dvec(Ω⊗ Ω)

dωT
= (ID ⊗K(D,D) ⊗ ID)(ID2 ⊗ vec(Ω) : vec(Ω)⊗ ID2);

see, for example, p 185 of Magnus and Neudecker (1988). Note that ||fj ||0 =
O(1) independent of D. The presence of this sparse vector helps to prevent the
gradient and Hessian from getting too large.

By direct examination of ℓj and Hj we see that the size of γ
′
n and ξ′n depends

on how dense Ω is. In particular, when Ω is diagonally dominant, γ′
n and ξ′n are

both O(1). In this case the error terms have size O((logD)/n1/8). However, if
Ω is dense, then ||ℓj||1 can be of order O(D2) and and |||Hj ||| can be of order
O(D4). In this case the error can be as large as D4/n1/8. On the other hand, the
bootstrap in Section 6.4 always has accuracy O((logD)/n1/8). But the length
of the intervals could be large when Ω is dense. And note that even in the
favorable case, we still require D < n for the results to hold. (We conjecture
that this can be relaxed by using shrinkage methods as in Schäfer et al. (2005).)
These observations motivate the methods in the next section which avoid direct
inferences about the partial correlation graph in the high-dimensional case.

It is interesting to compare the size of the errors to other work on inference
with increasing dimension. For example, Portnoy (1988) gets accuracy

√
D3/2/n

for maximum likelihood estimators in exponential families and Mammen (1993)
gets accuracy

√
D2/n for the bootstrap for linear models.

6.6. Back to graphs

Finally, we can use the above methods for estimating a graph with confidence
guarantees. We put an edge between j and k only if 0 is excluded from the
confidence interval for θjk. The desired guarantee stated in (1) then holds.
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7. The high dimensional case

Now we consider the case where D > n. We present three methods for dealing
with the high-dimensional case:

(B1) Correlation graphs. This is a common technique in biostatistics. We
connect two nodes if the confidence interval for two variables excludes
[−ǫ, ǫ] for some threshold ǫ ∈ [0, 1]. Our contribution here is to provide
confidence guarantees using the bootstrap that are valid as long as D =

o(en
1/7

). In this paper we use ǫ = 0.
(B2) Cluster graphs. We cluster the features and average the features within

each cluster. These averaged features define a (dimension-reduced) set of
new features. As long as the number of clusters L is o(n) we get valid
inferences. In this case, each node corresponds to the average of the vari-
ables in a cluster and the edges correspond to conditional independence
statements about the new features.

(B3) Restricted Graphs. Define the restricted partial correlation

θjk ≡ sup
|S|≤L

|θ(Y (j), Y (k)|Y (S))|

where L is some fixed number, θ(Y (j), Y (k)|Y (S)) is the partial corre-
lation between Y (j) and Y (k) given the set of variables Y (S) where S
varies over all subsets of {1, . . . , D}−{j, k} of size L These are sometimes
called lower-order partial correlations. Now construct a graph based on
the restricted partial correlations. Note that L = 0 is a correlation graph
and L = D is a partial correlation graph. (This is similar to the idea in
Castelo and Roverato, 2006). The bootstrap leads to valid inferences only

requiring D = o(en
1/7

).

Remark 20. Following Schäfer et al. (2005), we could estimate U = (1−λ)Σ+
λT where T is, for example, a diagonal matrix. The graph is constructed from
biased partial correlations corresponding to U−1. When λ is close to 1, high-
dimensional asymptotic confidence intervals have accurate coverage. Thus we
have a bias-validity tradeoff. Investigating this tradeoff is quite involved and so
we will examine this method elsewhere.

In this section we make the following assumptions.

(A1) Y and vec(Y Y T ) are sub-Gaussian.

(A2) maxj E|Vi(j)|3 ≤ C where Vi = vec[(Yi − µ)(Yi − µ)T ]− σ.

(A3) D = o(en
1/7

).

The proofs of the results in this section are similar to those in Section 6 but
they are easier as the error terms are, by design, not dependent on dimension
sensitive quantities like γn and ξn. Because of this, we shall only present proof
outlines.
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(B1) Select a threshold ǫ.

(B2) Compute the sample covariance matrix R.

(B3) Construct a 1−α bootstrap confidence rectangle R for the correlations.

(B4) Put an edge between nodes j and k if [−ǫ, ǫ] is not in the confidence
interval for ρjk .

Fig 1. The Correlation Graph Algorithm.

7.1. Correlation graphs

The simplest approach to constructing graphs is to use correlation or covariances
rather than partial correlation. Let ρjk denoted the correlation between Y (j)
and Y (k). The true graph Gǫ connects j and k if |ρ(j, k)| > ǫ where 0 ≤ ǫ ≤ 1 is
some user-specified threshold. The algorithm is in Figure 1. Of course, we can
use either ρ or σ; we get the same graph from either.

Theorem 21. Let rjk denote the sample correlation between Y (j) and Y (k)
and let r be the D2 × 1 vector of correlations. Similarly, let ρ be the vector of
true correlations. Define Zα by the bootstrap equation

P
(
max
jk

√
n|r∗jk − rjk| > Zα

∣∣∣ Y1, . . . , Yn

)
= α. (37)

Let

R =
{
a ∈ R

D2

: ||a− r||∞ ≤ Zα√
n

}
.

Then

P (ρ ∈ R) ≥ 1− α−O

(
logD

n1/8

)
−O

(
logD

n

)1/6

.

We thus have

P (Ĝǫ ⊂ Gǫ for all ǫ) ≥ 1− α+
logD

n1/8
+O

(
logD

n

)1/6

. (38)

Remark 22. A very refined Berry-Esseen result for a single correlation was
obtained by Pinelis and Molzon (2013).

Proof Outline. The proof is the same as the proof of Theorem 18. However, in
this case, it is easy to see that γ′

n and ξ′n are O(1), independent of the D since
the gradient ℓj and Hessian Hj is a function only of the bivariate distribution
of (Y (s), Y (t)) corresponding to the correlation.

7.2. Cluster graphs

The idea here is to partition the features into clusters, average the features
within each cluster and then form the graph for the new derived features. If the
clusters are sufficiently few, then valid inference is possible.

There are many clustering methods. Here we consider choosing a set of repre-
sentative features — or prototypes — using the L-centers algorithm, which we
describe below. Then we assign each feature to its nearest center. We average
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(B1) Choose L = o(n).

(B2) Randomly split the data into two halves D1 and D2.

(B3) Using D1 select L proto-features:

(a) Choose a feature j randomly and set S = {j} and C = {1, . . . , D}−
S.

(b) Repeat until S has L elements:

i. For each j ∈ C compute the minimum distance dj =
mini∈S d(i, j).

ii. Find j ∈ C to maximize dj . Move j from C to S.

(c) For L clusters by assigning each feature to its closest center.

(d) Average the features within each clusters.

(B4) Using D2, construct a confidence graph for the L new features using
either the delta method or the bootstrap from Section 6.

(B5) (Optional): Construct a correlation graph for the features within each
cluster.

Fig 2. The Cluster Graph Algorithm.

the features within each cluster and then find the undirected graph of these new
L derived features. Let G̃ be the graph for these new features. We estimate G̃
using confidence intervals for the partial correlations. Note that the graph G̃ as
well as the estimated graph Ĝ are both random.

To ensure the validity of the confidence intervals, we use data spitting. We
split the data randomly into two halves. The first half is used for clustering.
The confidence intervals are constructed from the second half of the data.

The cluster-graph algorithm is described in Figure 2. It is assumed in the
algorithm that the number of features L = o(n) is specified by the user. An
improvement is to use a data-driven approach to choosing L. We leave this to
future work.

The asymptotic validity of the method follows from the results in Section 6
together with the data-splitting step. Without the data-splitting step, the proofs
in Section 6 would not be valid since the feature selection process would intro-
duce a bias. The independence introduced by the splitting thus seems critical.
Whether it is possible to eliminate the data-splitting is an open problem. Let
us state, without proof, the validity assuming the bootstrap is used. A similar
result holds for the delta method.

Theorem 23. Let θ be the vector of k partial correlations for the features
selected from the first half of the data. Let R be the confidence rectangle using
the second half of the data. Then

P (θ /∈ Rn) ≤ α+
(logL)

n1/8
+ (γ′

n + ξ′n)
√

logn/n+O

((
logL

n

)1/6
)

(39)

where γ′
n and ξ′n are functions of the distribution of the selected features.

Another possibility is as follows. For each (j, k) let Zjk be a dimension re-
duction of the variables (Y (s) : s 6= j, k). Then we could estimate the partial
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correaltion of Y (j) and Y (k) given Zjk. This would require a separate dimension
reduction step for each pair (j, k).

7.3. Restricted partial correlations

Instead of building a graph from partial correlations, we can use a weaker mea-
sure of dependence. Motivated by Castelo and Roverato (2006), we define

θjk = sup
|S|≤L,(j,k)/∈S

|θ(Y (j), Y (k)|Y (S))|. (40)

For L = 0 we get a correlation graph. For L = D−2 we get back the usual partial
correlation graph. By choosing 0 < L = o(n) we get something in between these
two cases while still retaining validity of the confidence intervals.

The estimate of θjk is the sample version

θ̂jk = sup
|S|≤k

|θ̂(Y (j), Y (k)|Y (S))|. (41)

Theorem 24. Define Zα by the bootstrap equation

P
(
max
jk

√
n|θ̂∗jk − θ̂jk| > Zα

∣∣∣ Y1, . . . , Yn

)
= α. (42)

Let

R =
{
a ∈ R

D2

: ||a− θ̂||∞ ≤ Zα√
n

}
.

Then

P (θ ∈ R) ≥ 1− α−O

(
(logL)

n1/8

)
−O

((
logL

n

)1/6
)
.

The proof is basically the same as the proof of Theorem 21. We remark,
however, that in this case, L has to be fixed and chosen in advance.

We think that the restricted partial correlation idea is very promising but
currently we have no efficient way to compute the graph this way. To compute
the restricted partial correlation we would need to do the following: for each pair
(j, k) we have to search over the

(
D−2
L

)
subsets and find the maximum. This is

repeated for all D2 pairs. Then the entire procedure needs to be bootstrapped.
Despite the fact that the method is currently not computationally feasible, we
include it because we believe that it may be possible in the future to find efficient
computational approximations.

8. Experiments

In this section we illustrate the methods with some simple examples. We consider
three models:

(B1) Dense Model: Ωjk = a for all j 6= k.

(B2) Markov Chain: Y (j) = aY (j + 1) + ǫj .

(B3) Structural Equation Model: Y (j) = a
∑j−1

s=1 Y (s) + ǫj , j = 2, . . . , D.
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Fig 3. Bootstrap based undirected graph for Dense model with α = .9, a = .9, n = 100 and

dimensions 20,30,40,50.
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Fig 4. Bootstrap based undirected graph for Markov model with α = .9, a = .9, n = 100 and

dimensions 20,30,40,50.

The purpose of the experiments is to get some intuitive sense of how much
information in the original graph is captured in the dimension reduced graph.

In each case we show results for the bootstrap. We stopped when the results
became numerically unstable. Then we increased the dimension and switched
to the high dimensional methods, namely, the cluster graphs, the correlation
graphs and the restricted graphs. (We do not include the block graphs which
did not work well.) The results are in Figures 3, 4, 5, 6, 7 and 8.
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Fig 5. Bootstrap based undirected graph for SEM model with α = .9, a = .5, n = 100 and

dimensions 8,12,16,20.
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Fig 6. Cluster graph for Dense model with α = .9, a = .9, n = 100 and dimensions 70, 80,

90, 100 and L = 20.

The results for the dense model are good up to D = 50. After that, the clus-
ter graph method is used and it clearly captures the qualitative features of the
graph. Validity holds as D increases but the power starts to decrease leading to
missing edges. The cluster graph is interesting here as it obviously cannot recon-
struct the Markov structure but still does capture interesting qualitative features
of the underlying graph. The SEM model is difficult; it is a complete graph but
some edges are harder to detect. The power again falls off as D increases. Again
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Fig 7. Cluster graph for Markov model with α = .9, a = .9, n = 100 and dimensions 70, 80,

90, 100 and L = 20.

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

Fig 8. Cluster graph for SEM model with α = .9, a = .5, n = 100 and dimensions 28, 32,

36, 40 and L = 10.

we see that the cluster graph loses information but permits us to find a graph
with qualitative features similar to the true graph with higher dimensions.

The correlation graph for the dense and SEM models, while preserving va-
lidity has essentially no power. More precisely, the graphical model leaves a
very small imprint in the correlation matrix. For example, the covariance in the
dense model is easily seen to be O(a/D). So while the inverse covariance matrix
is dense, the covariance matrix has small entries. The correlation graph for the
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Fig 9. Correlation graph for Markov model with α = .9, a = .9, n = 100 and dimensions 70,

80, 90, 100 and L = 20.
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Fig 10. Correlation Graphs, n=100, D=12.

Markov model does contain useful information as shown in Figure 9. Of course,
there are extra edges due to the induced correlations. Nevertheless, most of the
essential structure is apparent.

We also considered the behavior of the correlation graph for a few other mod-
els. Figure 10 shows the correlation graph for a null model, a dense covariance
matrix, a four-block model and a partial Markov chain (10 edges). In each case,
n = 100 and D = 12. Figure 11 shows the same models but with D = 200. For
these models the method does very well even with D > n.
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Fig 11. Correlation Graphs, n=100, D=200.

As mentioned earlier, the restricted partial correlation graph is so computa-
tionally intensive that it is not yet practical. We believe the method is promising
which is why we have included it in the paper but at this point we do not have
numerical experiments.

Finally, as a sanity check, we checked the coverage of the bootstrap for two
models: the null model (no edges) and the Markov model. We declare an error
if there is even a single wrong edge. Using α = .10 and n = 100 we have the
following error rates:

Model/Dimension D = 20 D = 50
Null .01 .01
Markov .00 .01

The error rates is well under α. Indeed, we see that the coverage is conserva-
tive as we would expect.

We re-ran all the experiments with α = 0.05 and α = 0.01. As expected,
with smaller α we tend to get slightly sparser graphs. However, the differences
were quite small. The cluster graph for the SEM model showed the greatest
sensitivity to the choice of α. The others were quite insensitive.

9. Conclusion

We have described methods for inferring graphs that use weak assumptions
and that have confidence guarantees. Our methods are atavistic: we use very
traditional ideas that have been swept aside in light of the newer sparsity-based
approaches. We do not mean in any way to criticize sparsity-based methods
which we find fascinating. But our main message is that the older methods still
have a role to play especially if we want methods that use weaker assumptions.
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There are several open problems that we will address in the future. We briefly
describe a few here. First, we do not have any theory to characterize how the
original graph relates to the graph of the dimension reduced problem. It would
be useful to have some general theory which shows which features of the original
graph are preserved.

Perhaps the most important extension is to go beyond linear measures of
dependence. Following Bergsma (2011), write

Y = g(X) + ǫY and Z = h(X) + ǫZ

and define the nonparametric partial correlation

θY Z.X =
E(ǫY ǫZ)√
E(ǫ2Y )E(ǫ

2
Z)

.

Let

ǫ̂Yi = Yi − ĝ(Xi) and ǫ̂Zi = Yi − ĥ(Xi).

Let

θ̂Y Z.X =

∑
i ǫ̂Yi ǫ̂Zi√∑

i ǫ̂
2
Yi

∑
i ǫ̂

2
Zi

.

Bergsma shows that, for some q1, q2 > 0,

√
n(θ̂Y Z.X − θY Z.X) =

√
n(rY Z.X − θY Z.X) +OP

(
n−min(q1,q2)

)

where

rY Z.X =

∑
i ǫYiǫZi√∑

i ǫ
2
Yi

∑
i ǫ

2
Zi

and

nq1(ĝ(x)− g(x)) = OP (1), nq2(ĥ(x)− h(x)) = OP (1).

One can then extend the techniques in this paper to get confidence measures.

Other problems for future development are: the development of computation-
ally efficient methods for computing the restricted partial correlation graph and
the extension of our theory to shrinkage graphs.

Appendix: Alternative delta method

If one is only interested in a single partial correlation, then one can use use a
Taylor series together with the Berry-Esseen theorem. We provide this analysis
here. At the end, we can turn this into a joint confidence set for all partial
correlations using the union bound but this leads to a larger error than our
earlier analysis. So the main interest of this section is single partial correlations.
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Let us write θjk = gjk(σ) where gjk : RD×D → [−1, 1]. Let ℓjk andHjk denote
the gradient and Hessian of gjk. Both ℓjk and Hjk are bounded continuous
functions as long as Σ is invertible. The linearization of θjk is

√
n(θ̂jk − θjk) = δT ℓjk +

Rjk√
n

(43)

where ℓjk ≡ ℓjk(σ) and the remainder term Rjk is

Rjk =
1

2
δTHjk(σ̃)δ (44)

for some σ̃ between σ and s. We compute ℓjk and Hjk explicitly in Section 6.5.

Let

s2jk = U(σ), ŝ2jk = U(s)

where

Ujk(σ) = ℓjk(σ)
TT (σ)ℓjk(σ). (45)

The asymptotic variance of the linearized partial correlation δT ℓjk is s2jk and

its estimate is ŝ2jk.

Define B = {a : ||a− σ|| ≤ C
√
D2 logn/n}. It follows from Lemma 7 that,

for large enough C, s ∈ B except on a set of probability at most 1/n. Let

ξn = sup
a∈B

max
jk

||ℓjk(a)||1

γn = sup
a∈B

max
jk

√
|||Hjk(a)|||
sjk(a)

ρn = sup
a∈B

max
jk

||Q′
jk(a)||1
sjk

.

Note that these constants are also functions of D.

We begin by approximating the distribution of a single partial correlation.
Let

Tjk =

√
n(θ̂jk − θjk)

sjk
.

We start by assuming that s2jk = ℓjk(σ)
T T (σ)ℓjk(σ) is known.

Lemma 25. We have

max
j,k

sup
z

|P (Tjk ≤ z)− Φ(z)| � 1√
n
+

2γn√
n
log(nD2).

Proof. We have

Tjk =
U

sjk
+

Rjk

sjk
√
n
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where U =
√
naT (s − σ) = n−1

∑
i Vi where Vi = vec(YiY

T
i ) − σ and a = ℓjk.

By Lemma 8, for every ǫ > 0,

sup
z

|P (Tjk ≤ z)− Φ(z)| ≤ sup
z

∣∣∣∣P
(

U

sjk
≤ z

)
− Φ(z)

∣∣∣∣+ ǫ+ P

(∣∣∣∣
Rjk

sjk
√
n

∣∣∣∣ > ǫ

)
.

Note that Var(Vi) = s2jk and

E|Vi|3 ≤ C
∑

i

|aj |3.

Let Z ∼ N(0, 1). By the Berry-Esseen theorem,

sup
t

∣∣∣∣∣P
(
Un

sjk
≤ t

)
− P (Z ≤ t)

∣∣∣∣∣ �
∑

j |aj |3√
n(aTTa)3/2

≤
∑

j |aj |3√
nc

3/2
0 ||a||3

≤ 1√
n

since ||a||3 ≤ ||a||2 and
∑

j |aj|3
||a||3 =

||a||3
3

||a||3
2

. Now

∣∣∣∣
Rjk

sjk
√
n

∣∣∣∣ =
1

2

δTHjkδ

sjk
√
n

≤ γn||δ||2max√
n

.

From Lemma 8,

P

(∣∣∣∣
Rjk

sjk
√
n

∣∣∣∣ > ǫ

)
≤ P

(
γn||δ||2max√

n
> ǫ

)
= P (||s− σ||∞ >

√
ǫ

n1/4√γ
)

≤ D2e−nǫ/(γ
√
n).

Let ǫ = γ√
n
log(nD2). Then D2e−nǫ/(γ

√
n) ≤ ǫ. The result follows.

Now let

Zjk =

√
n(θ̂jk − θjk)

ŝjk

where ŝ2jk = ℓjk(s)
TT (s)ℓjk(s).

Theorem 26.

max
j,k

sup
z

∣∣∣∣∣P
(√

n(θ̂jk − θjk)

ŝjk
≤ z

)
− Φ(z)

∣∣∣∣∣ �
√

ρn
n

log(nD2) +
γn√
n
log(nD2).

Proof. Let E = {sjk/ŝjk > 1 + ǫ} and F = {Tjk > u/ǫ} where ǫ =√
ρn/n log(nD2) and u = ǫ log(n). Note that sjk − ŝjk = U(σ) − U(s) =

(σ − s)TQ′ where Q′ is the gradient of Q evaluated at some point between
s and σ. Then, for 0 < ǫ ≤ 1,

P (Ec) = P

(
sjk − ŝjk

sjk
>

ǫ

1 + ǫ

)
= P

(
U(σ)− U(s)

sjk
>

ǫ

1 + ǫ

)
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= P

(
(σ − s)TQ′

sjk
>

ǫ

1 + ǫ

)
≤ P

( ||s− σ||∞||Q′||1
sjk

>
ǫ

1 + ǫ

)

≤ P

(
||s− σ||∞ρn >

ǫ

1 + ǫ

)
= P

(
||s− σ||∞ >

ǫ

2ρn

)

≤ D2e−nǫ2/(4ρ2

n) ≤ ǫ.

Now,

P

(√
n(θ̂jk − θjk)

ŝjk
≤ z

)
− Φ(z) = P

(
Tjk

(
sjk
ŝjk

)
≤ z

)
− Φ(z)

≤ P (Tjk(1− ǫ) ≤ z) + P (Ec)− Φ(z)

= P (Tjk − Tjkǫ) ≤ z) + P (Ec)− Φ(z)

≤ P (Tjk ≤ z + u) + P (F c) + P (Ec)− Φ(z)

≤ P (Tjk ≤ z + u)− Φ(z + u) + P (F c) + P (Ec) + u

≤ P (Tjk ≤ z + u)− Φ(z + u) + P (F c) + ǫ+ u.

Now

P (F c) = P (Tjk > u/ǫ) ≤ P (Z > u/ǫ) +
γn√
n
log(nD2)

= P (Z > logn) +
γn√
n
log(nD2)

� γn√
n
log(nD2).

So,

P

(√
n(θ̂jk − θjk)

ŝjk
≤ z

)
− Φ(z) ≤ P (Tjk ≤ z + u)− Φ(z + u) + ǫ+ u+

1

n

+
γn√
n
log(nD2)

�
√

ρn
n

log(nD2) +
γn√
n
log(nD2).

Taking the supremum over z gives an upper. A similar lower bound completes
the proof.

Now we turn to bounding P (maxjk |Zjk| > z). We use the union bound. So,

P (max
jk

|Zjk| > z) ≤
∑

jk

P (|Zjk| > z)

= D2Φ(z) +
∑

jk

[P (|Zjk| > z)− Φ(z)]

≤ D2Φ(z) +D2

[√
ρn
n

log(nD2) +
γn√
n
log(nD2)

]
.
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Setting z = −Φ(α/D2) we have that

P (max
jk

|Zjk| > z) ≤ α+D2

[√
ρn
n

log(nD2) +
γn√
n
log(nD2)

]
.

Corollary 27. Let z ≡ zα/D2 and let

R =
⊗

j,k

[
θ̂jk − zŝjk√

n
, θ̂jk +

zŝjk√
n

]
.

Then

P (θ ∈ R) = 1− α+D2

[√
ρn
n

log(nD2) +
γn√
n
log(nD2)

]
.

Note the presence of the D2 term. This term is avoided in the analysis in
Section 6.
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