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Abstract: Plant phenolics have been for many years a theme of major scientific and 

applied interest. Grape berry phenolics contribute to organoleptic properties, color and 

protection against environmental challenges. Climate change has already caused significant 

warming in most grape-growing areas of the world, and the climatic conditions determine, 

to a large degree, the grape varieties that can be cultivated as well as wine quality. In 

particular, heat, drought and light/UV intensity severely affect phenolic metabolism and, 

thus, grape composition and development. In the variety Chardonnay, water stress 

increases the content of flavonols and decreases the expression of genes involved in 

biosynthesis of stilbene precursors. Also, polyphenolic profile is greatly dependent on 

genotype and environmental interactions. This review deals with the diversity and 

biosynthesis of phenolic compounds in the grape berry, from a general overview to a more 

detailed level, where the influence of environmental challenges on key phenolic 

metabolism pathways is approached. The full understanding of how and when specific 

phenolic compounds accumulate in the berry, and how the varietal grape berry metabolism 

responds to the environment is of utmost importance to adjust agricultural practices and 

thus, modify wine profile. 
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1. Introduction 

Phenolic compounds can be defined as molecules naturally derived from plants or microbes, 

consisting of a phenyl ring backbone with a hydroxyl group or other substitutes. Phenolic compounds 

of the grape are divided between nonflavonoid (with a simple C6 backbone; hydroxybenzoic acids, 

hydroxycinnamic acids, volatile phenols and stilbenes) and flavonoid compounds (flavones, flavonols, 

flavanones, flavan-3-ols and anthocyanins). Nonflavonoid phenolics are found in grapes and wine, but 

with the exception of hydroxycinnamic acids, they are present in low concentrations [1,2]. Flavonoids 

make up a significant portion of the phenolic material in grapes and include several classes [2]. They 

are C6–C3–C6 polyphenolic compounds, in which two hydroxylated benzene rings, A and B, are 

joined by a three-carbon chain that is part of a heterocyclic C ring (Figure 1). According to the 

oxidation state of the C ring, these compounds are divided into structural classes that include flavonols, 

flavan-3-ols (that include simple flavan-3-ols and their polymeric forms proanthocyanidins), and 

anthocyanins [3]. 

Figure 1. Flavonoid ring structure and numbering. 

 

Grape phenolics contribute to color, flavor, texture and astringency of wine and to its antioxidant 

properties. The biosynthesis of soluble phenolics begins with the aromatic amino acid phenylalanine,  

a product of the shikimate pathway. The early precursors of the shikimate pathway are  

erythrose-4-phosphate and phosphoenol pyruvate. This pathway is responsible for producing 

phenylalanine and the other amino acids tyrosine and tryptopahne [2,3]. Although the biosynthesis of 

many secondary compounds has been elucidated in detail, reports on the identification of transporters 

of secondary compounds have been published only recently [4,5] and a clear and precise understanding 

of flavonoid transport in plants is far from being elucidated. 

Two distinguishable tissues compose the grape skin, representing the hydrophobic barrier of the 

pericarp. The outermost—the epidermis—is strongly cutinized, while the inner thick-walled layers of 

hypodermis (assumed to consist of several layers, depending on the variety), contain most of the skin 

flavonoids. In this fraction, the major class of flavonoids is represented by anthocyanins, 

proanthocyanidins and, to a minor extent, simple flavan-3-ols and flavonols [4]. A schematic structure 
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of a ripe grape berry with the distribution pattern of secondary metabolites between tissues is shown in 

Figure 2. 

Figure 2. Schematic structure of a ripe grape berry and pattern phenolics biosynthesis 

distribution between several organs and tissues (indicated by arrows). 
a
 Anthocyanins are 

synthetized also in the inner flesh of the teinturier varieties [2,6–12]. 

 

While there is debate about the anthropogenic influence on climate, there are clearly recorded 

periods of extreme temperature events that may have implications for grape cultivation and wine 

quality [13–16]. Climate change imposes rapid drifts in weather patterns that determine the suitability 

of growing regions for specific types of wine [17]. Climate changes in the future might extend the 

north and south latitude boundaries of areas where good wines are produced [18]. However, some 

areas that nowadays are producing high quality grapes may be affected by heat and water stress [17]. 

The climate changes are particularly important for grapevine cultivation, in which heat, drought and 

light intensity are just some environmental stress factors that dramatically affect phenolic metabolism 

as well as grape development and chemical composition. In this regard, cultural practices, such as 

canopy management and irrigation may be optimized to adjust berry and wine quality. 

Nowadays, the genetic diversity conservation of grapevine is a big concern. The genus Vitis 

contains more than 70 species growing widely in distinct geographical areas [19]. The most renowned 

species is Vitis vinifera that was domesticated in Asia Minor or Armenia 5000 years ago, from where it 

spread to other countries. The high morphological and genetic diversity of vinifera has an estimated 

number of more than 10,000 cultivars. While many factors, such as viticulture practices, environmental 

conditions, and post-harvest processing activities, can all affect the content of total polyphenols or 
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individual polyphenolic compounds in grapes and grape products, varietal or genetic difference is one 

of the most important factors [20]. This review deals with the diversity and biosynthesis of phenolic 

compounds in the grape berry, from a general approach to a more detailed level, such as the influence 

of the environmental factors, including drought and heat, and the genotype dependence on the 

production of grape phenolics. The comprehension of how and when specific phenolic compounds 

accumulate in the berry, and how the grape berry metabolism responds to the environment is of utmost 

importance to adjust agricultural practices and thus, modify wine profile. 

2. Metabolism and Compartmentation of Phenolics in the Grape Berry 

2.1. Nonflavonoid Phenolics 

The hydroxycinnamates are the third most abundant class of soluble phenolics in grape berries, after 

proanthocyanidins and anthocyanins. Phenolic hydroxycinnamates are commonly accumulated in 

berry skin and the flesh of white and red vinifera and non-vinifera varieties [21]. Thus, while they are 

also found in red wines, they are usually the most abundant class of phenolics in free-run juice and  

white wines where they contribute to colour browning under oxidation with non-phenolic  

molecules [1,2,6,22]. In terms of concentration, p-coumaric, caffeic and ferulic acids are also 

predominant phenolics in grape. These three hydroxycinnamic acids are present primarily as trans 

isomers, although traces of cis isomers have been detected. They differ by the type and number of 

substituents on the aromatic ring. When these hydroxycinnamic acids are esterified with tartaric acid, 

they are named coutaric acid (trans-p-coumaroyl-tartaric acid), caftaric acid (trans-caffeoyl-tartaric 

acid), and fertaric acid (trans-feruloyl-tartaric acid) [3]. 

The synthesis of hydroxycinnamates occurs mainly before veraison (Table 1). During ripening, 

their concentration decreases with the increasing fruit size and dilution of solutes, though its content 

per berry remains almost constant. Although its accumulation occurs predominantly in the flesh they 

are present in all berry tissues [4,13] (Figure 2 and Table 1). In hypodermal, mesocarp and placental 

cells of the pulp, hydroxycinnamates may be conjugated with anthocyanins [2,3,13]. 

The levels of hydroxybenoic acids and their derivatives are commonly low in wine, compared to the 

levels of hydroxycinnamic acids. The most common hydroxybenzoic acids in grape berry include 

gentisic acid, salicylic acid, gallic acid, and p-hydroxybenzoic acid, which are mainly found in their 

free form [23–25]. Gentisic acid is accumulated at very low levels, as is salicylic acid which is 

involved in signaling in plants, particularly in the induction of defense and stress responses [3,25]. The 

most represented is gallic acid, which is found free as well as acyl substituent of flavan-3-ols. Other 

benzoic acids such as protocatechuic, vanillic and syringic acids are found in Riesling wine from 

Germany [26]. In the seeds, gallic acid can esterify the carbon in position 3 of flavan-3-ols [6]. 
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Table 1. Phenolic compounds produced and accumulated in the grape berry [3,5–7,9,10,27–34]. 

Compound 
Level of synthesis a 

Location 
Berry phenological scale b 

Skin Flesh Seed Blooming Green stage Veraison Ripening 

Nonflavonoids 
   

 
    

Hydroxycinnamic acids ++ +++ ++ 
Hypodermal cells and placental cells of the pulp;  

primarily in the vacuoles of mesocarp cells. 
+++ +++ + + 

Hydroxybenzoic acids + − ++ 
     

Stilbenes +++ + ++ Berry skin and seeds. − + ++ +++ 

Flavonoids 
       

Flavonols ++ − − 
Dermal cell vacuoles of the skin tissue  

and cell wall of skin and seeds. 
++ + +++ ++ 

Flavan-3-ols ++ + +++ 
Specific vacuoles of hypodermal skin cells  

and seed coat soft parenquima. 
+ ++ +++ ++ 

Anthocyanins +++ − * − 

Cell layers below the epidermis; storage  

confined to the vacuoles and cytoplasmic  

vesicles named anthocyanoplasts. 

− − + +++ 

a,b

 Very abundant compound (+++) to absent (−); * Teinturiers contain anthocyanis also in mesocarp cells. 
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A nonflavonoid compound class that, although present in trace quantities in wine, has been drawing 

attention is stilbenes [2]. These compounds occur naturally in a few edible plants, and several species 

of the genus Vitis are proficient at stilbenes synthesis, mainly in the skin at the mature stage (Table 1 

and Figure 2). Stilbene content of the berry changes across varieties [7]. Their synthesis also increases 

upon pathogen infection and in response to abiotic stress [8]. Some stilbenes, particularly resveratrol, 

have been drawing attention for their benefits to human health. Stilbenes can undergo glycosylations  

or methylations. Glycosylated resveratrol originate piceids, trans- and cis-resveratrol-3-O-β-D-

glucopyranosidade as well as astringin, which is a 3'-OH-trans-piceid. Modifications by addition of two 

methyl groups to the resveratrol originate pterostilbene (3,5-dimethoxy-4'-hydroxystilbene) with enhanced 

antifungal activity compared to the non-methylated form [35]. 

Trans-resveratrol (3,5,4'-trihydroxytilbene) is the stilbene with the simplest molecular structure, 

which is used as precursor for other compounds through various modifications of the stilbene unit.  

Cis-resveratrol is a trans-resveratrol isomer although less stable [35]. Oligomerisation of stilbenes can 

be derived in dimers, trimers and tetramers from oxidative coupling of resveratrol and derivatives by 

4-hydroxystilbenes peroxidases. Viniferins are a major group of resveratrol oligomers produced by 

oxidation of basic stilbenes. The most important viniferins are α- β- γ- δ- ε-viniferins, composed 

essentially by cyclic oligomers of resveratrol [3]. 

2.2. Flavonoids 

From an anatomical point of view, grape flavonoids are localized mainly in both the peripheral 

layers of berry pericarp (skin) and in some layers of the seed coat. Most of the skin flavonoids are 

abundant in the inner thick-walled layers of hypodermis. In this fraction, the major class of flavonoids 

is represented by anthocyanins, proanthocyanidins (also known as tannins) and, to a minor extent, 

simple flavan-3-ols and flavonols [4,6] (Figure 2 and Table 1). 

Flavonols are a class of flavonoids with a 3-hydroxyflavone backbone. They differ by the number 

and type of substituents on the B ring (see Introduction), and occur conventionally as glucosides, 

galactosides, rhamnosides and glucuronides with the sugar bond attached to the 3 position of the 

flavonoid skeleton. The grape berry synthetizes kaempferol, quercetin, myrcetin and the methylated 

forms isoharmnetin, laricitrin and syringetin [36]. Flavonols constitute the third component of 

flavonoids in the skin fraction (Table 1). Quercetin is known to behave as UV-protectant and to play a 

role in co-pigmentation with anthocyanins [4]. As reported below, flavonol concentration varies 

extensively among varieties, ranging from 0.018 mg to 0.176 mg per g of berry FW, but its content in 

the berry can be strongly affected by environmental factors, particularly sunlight exposure (among the 

others, see [20,28,37]. Flavonol synthesis occurs primarily during early stages of fruit development 

and ends at around veraison [28] (Table 1). 

Flavan-3-ols are the most abundant class of phenolics in the grape berry [38]. They have a 

monomeric (catechins) or polymeric structure known as proantocyanidins or condensed tannins. 

Catechins and proantocyanidins are located essentially in the seeds, then in the skins and very little in 

the pulp [39]. Catechins are responsible for bitterness in wine and may also be partially associated with 

astringency [1,2,6]. The five flavan-3-ols in grapes are (+)catechin and its isomer (−)epicatechin,  
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(+)gallocatechin, (−)epigallocatechin and catechin-3-O-gallate. Catechins are characterized by the 

presence of a hydroxyl group at the 3 position of the C ring [2,3,22,40]. 

Proantocyanidins are a diverse group of compounds composed by flavan-3-ols polymer subunits 

that are linked via 4–6 and 4–8 interflavan bonds. These phenolic compounds are the most abundant 

class of soluble polyphenols in grape berries. Proanthocyanidins vary in size, ranging from dimers to 

polymers with more than 40 units [2,3,28,41]. 

Flavan-3-ols are detectable in highest concentration in seeds (Figure 2 and Table 1). 

Proanthocyanidins are predominantly found in the hypodermal cell layers of the berry skin and in the 

soft parenchyma of the seed coat inside the vacuole or bound to cell wall polysaccharides [1–3,6]. 

Grape proanthocyanidins have a larger average size in the skin than in the seeds. These 

proanthocyanidin compounds are responsible for the grape skin organoleptic properties such as 

astringency and bitterness in grape skin or wine [2,4]. 

Anthocyanins are responsible for red, purple and blue pigmentation of the grape berries and, 

consequently, the red wine. The structures of the common anthocyanins in V. vinifera grapes and wine 

were determined in 1959 [2,42]. The core of the anthocyanidin, the flavylium, has the typical C6–C3–C6 

skeleton. Intrinsically, anthocyanins are glycosides and acylglycosides of anthocyanidins, and the 

difference of the aglycones and flavyliums (2-phenylbenzopyrilium) occurs at the 3' and 5' positions of 

the B ring, due to hydroxyl or methoxyl substitutions [43]. Anthocyanins can also be esterified by 

acids, such as acetic, coumaric or caffeic, linked to the 6' position of the glucose bonded to the  

3' position of the C ring [2,6]. There are 17 naturally occurring aglycones, but only six are reported in 

grapevine: malvidin, cyanidin, peonidin, delphinidin and petunidin. Traces of pelargonidin are found 

in Pinot Noir and Cabernet Sauvignon [44], but the malvidin-3-O-glucoside was found to be the major 

anthocyanin present along with its acylated forms [2]. V. vinifera contains only 3-O-monoglycosides 

due to two mutations in the 5-O-glucosyltransferase gene which implicated the loss of the dominant 

allele involved in the production of diglucosidic anthocyanins [43,45,46]. The anthocyanins commonly 

found in V. vinifera grape include delphinidin, cyanidin, petunidin, peonidin and malvidin  

3-glucosides, 3-(6-acetyl)-glucosides and 3-(6-p-coumaroyl)-glucosides, peonidin and malvidin  

3-(6-caffeoyl)-glucosides, being that malvidin-3-O-glucoside is generally the major anthocyanin 

present along with its acylated forms (Figure 2). 

Differently from proanthocyanidin, accumulation of anthocyanin pigments in red grape varieties 

starts from veraison and reaches its maximum in the latest phases of fruit maturation when the 

synthesis stops (Table 1). Anthocyanins are synthesized in the cytosol of the epidermal cells,  

are co-localized with proanthocyanidins in the skin hypodermal layers and then stored in the  

vacuole [4,9] (Figure 2 and Table 1). In a few teinturier varieties, accumulation in the berry skin is 

paralleled by accumulation in flesh [3,4,47]. In the red flesh variety Alicante Bouschet, colour 

development began in the flesh at the stylar end of the fruit and progressed toward the pedicel end 

flesh and into the skin [10]. 

2.3. Biosynthesis Pathways of Phenolic Compounds in Wine Grape 

The biosynthetic pathways of different phenolics have been recently thoroughly reviewed by 

Castellarin et al. [3] and He et al. [43] and are schematically presented in Figure 3. 
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Hydroxycinnamic acids are generated by modifications to intermediates of the phenylpropanoid 

pathway. First reaction synthesis of simple phenolics in grape involves the deamination of 

phenylalanine by the enzyme phenylalanine ammonia lyase (PAL), in which the product is cinnamic 

acid [48]. The enzyme cinnamate-4-hydroxylase (C4H) converts cinnamic acid to p-coumaric by 

hydroxylation. p-coumaric is esterified by the enzyme CoA-ligase (4CL) producing 4-coumaroyl-CoA. 

In these modifications, 3-hydroxylation of p-coumaric originate caffeic acid, which can be converted 

into ferulic acid by 3-methylation. This product is substrate of two enzymes, chalcone synthase (CHS) 

and stilbene synthase (STS). 

Figure 3. Biosynthetic pathways of grape berry secondary compounds. Phenylalanine 

ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumaroyl:CoA-ligase (4CL), 

stilbene synthase (STS), chalcone synthase (CHS), chalcone isomerase (CHI), flavonoid  

3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H), flavanone-3-hydroxylase 

(F3H), flavonol synthase (FLS), dihydroflavonol reductase (DFR), leucoanthocyanidin 

reductase (LAR), anthocyanidin reductase (ANR), leucoanthocyanidin dioxygenase 

(LDOX), dihydroflavonol 4-reductase (DFR), flavonoid glucosyltransferase (UFGT),  

O-methyltransferase (OMT) (adapted from [3,43]). 
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The first step of the stilbene pathway is controlled by STS. The competition of STS and CHS for 

the same substrate, 4-coumaroyl-CoA, controls the entry point into the stilbene pathway and flavonoid 

pathway. In an analogous way of CHS, STS carry out three reactions of condensation that produce 

resveratrol. Although, in the STS reaction, the terminal carboxyl group is removed prior to closure  

of the A ring, causing a different ring-folding in resveratrol compared to the CHS  

product tetrahydroxychalcone. 

All flavonoids stem from tetrahydroxychalcone. The flavonoid pathway leads to the synthesis of 

different classes of metabolites such as flavonols, flavan-3-ols, proanthocyanidins, and anthocyanins 

(Figure 3). 

Some mechanisms have been proposed concerning flavonoid transport in plants. Flavonoid uptake 

across the tonoplast may be mediated by a primary active transport, driven by ABC proteins. Very 

recently it was shown that the ABC protein ABCC1 that localizes to the tonoplast is involved in the 

transport of glucosylated anthocyanidins, which depends on the presence of GSH but not on the 

formation of an anthocyanin-GSH conjugate [49]. ABCC1 is expressed in the exocarp throughout 

berry development and ripening, with a significant increase at veraison. A genetic screen aimed to 

study flavonoid biosynthesis provided the first evidence for the involvement of MATE proteins in the 

transport of flavonoids across the tonoplast. MATE transporters are highly upregulated during 

maturation, the time when grape berries start to accumulate anthocyanins. It has also been suggested 

that flavonoid moieties, depending also on their different substituting groups (acyl, glycosyl and/or 

methoxyl), are driven to their accumulation sites by a complex vesicle trafficking system involving the 

Golgi apparatus [4]. The two grape berry MATEs, anthoMATE1 (AM1) and AM3, specifically 

transport acylated anthocyanins [50,51]. Subcellular localization assays revealed that anthoMATE 

transporters were closely related with these small vesicles, whereas GST was localized in the cytosol 

around the nucleus, suggesting an association with the endoplasmic reticulum [52]. While the 

biosynthesis and regulation mechanisms of anthocyanin synthesis have been extensively studied, the 

knowledge on the mechanisms of their sequestration in the vacuole and to what extent their color is 

affected by vacuole storage is still limited. 

3. Impact of Environment and Agricultural Practices in Grape Berry Phenolics 

Several regional climate models have been proposed in order to forecast the overall effects of 

individual or combined climate change-related variables [53]. Some models take into account air 

temperature and other variables, including precipitation, humidity, radiation, and historical viticultural 

records [54]. Spatial modeling research has indicated potential geographical shifts and/or expansion of 

viticultural regions with parts of southern Europe becoming too hot to produce high-quality wines and 

northern regions becoming viable [17,18,55]. For the Northern hemisphere, Jones et al. [56] predicted 

that temperatures at regions producing high-quality wine between 2000 and 2049 are going to warmby 

0.42 °C per decade and 2.04 °C overall. In the Bordeaux region, the predicted increase temperature 

overall trend would be 2.3 °C in the same period (Figure 4). 

For vineyards, the increase in the number of days with high temperatures is particularly relevant. 

Grape production and quality are sensitive to heat waves, especially at certain growth stages, such as 

flowering and ripening. At high temperatures, replacement of starch by lipids in leaf chloroplasts has 
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been reported for grapevines [57]. Prolonged periods with temperatures above 30 °C cause a reduction 

in photosynthesis, with consequent berry size and weight reduction [58]. High temperature conditions 

may have implications in premature veraison, berry abscission and reducing flavour development. 

Metabolic processes and sugar accumulation, beyond other parameters related to colour and aroma, 

may also be affected or completely stopped by high temperatures [11,59,60]. 

Figure 4. HadCM3 modeled growing season average temperature anomalies for the 

Bordeaux region. The anomalies are referenced to the 1950–1999 base period from the 

HadCM3 model. Trend values are given as an average decadal change and the total change 

over the 2000–2049 50-year period. Note: this figure is adapted with permission from [56]. 

Copyright Springer, 2005. 

 

Studies carried out in European countries have highlighted harvest date advances associated with 

temperature increases. In southern France, the harvest dates advanced by between 18 and 21 days from 

1940 to 2000 [61] and in Alsace (eastern France) the harvest was two weeks earlier in 2002 than in 

1972, a period during which temperature increased by 1.8 °C [62]. 

In the viticultural French region of Languedoc, the climacteric evolution over the period 1950–2006 

obeyed to two distinct climate periods, according to Laget et al. [63]. Observing the evolution of mean 

annual and seasonal temperatures, total solar radiation, night freshness index, the distribution and 

efficiency of rainfall and potential evapotranspiration (pET), it was reported an increase in mean 

annual temperatures of +1.3 °C between 1980 and 2006 and an increase in the mean pET of  

900 mm/year since 1999. It was also concluded that the harvest dates advanced by up to three weeks 

and sugar concentrations at harvest increased by up to 1.5% potential alcohol. In the Bordeaux region, 

from 1952 to 1997 changes in the dates of all the phenological events and in the length of the growing 

season were reported for Cabernet Sauvignon and Merlot [64]. Similar results were found in the 

southern hemisphere. In Australia, the date of designated maturity of Chardonnay, Cabernet Sauvignon 

and Shiraz advanced at rates of between 0.5 and 3.1 days per year between 1993 and 2006 [65]. A 

trend towards earlier maturity of several varieties was observed in 12 different Australian winegrape 

growing regions form 1993–2009 [66]. For most of the cases, the rate of change in the date of 

designated maturity was correlated with the rate of change in temperature. 
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3.1. Temperature and Radiation 

Of environmental factors including all external stimuli, the most influential of which for phenolic 

synthesis are light/radiation and temperature, as well as water and nutritional status. Phenolic synthesis 

and accumulation in grape berry is also determined by genetic factors and the interaction between 

genotype and environment [3,53]. The role of phenolics as photo-protectants explains their dependency 

on sun exposure [53]. In warmer climates, high light exposure can increase the concentration of 

phenolics and anthocyanins because of the higher activity of PAL [67]. Sun exposure is generally 

considered to be of primary importance for high quality wine production. However, it is not clear 

whether the effect on fruit composition is due to visible light or ultraviolet light or both [68,69]. 

It has been shown that UV-B provoke several morphological, physiological and biochemical 

changes in higher plants, depending on the intensity, total dosage, plant species and the balance 

between UV-B and photosynthetically active radiation (PAR, 400–700 nm) [69,70]. On the other hand, 

UV-A and visible light may induce both protective and repair mechanisms, thus decreasing the negative 

impact of UV-B light [71]. However, relatively high levels of solar UV-B were reported to enhance the 

accumulation of UV-absorbing compounds, including flavonoids and related phenolics [72]. UV-B  

is also known to upregulate genes encoding PAL and CHS [70]. Phenolics transform short-wave,  

high-energy and highly destructive radiation into longer wavelength light, less destructive to the 

cellular leaf structures, including the photosynthetic apparatus [69]. Very few studies have attempted 

to separate the effects of visible light from those of UV light [59,73]. As discussed by Keller [74], this 

is surprising given that phenolic compounds are absorbed predominantly in the UV range of the 

spectrum and form an important part of fruit quality in grapes. 

Stilbene synthesis is enhanced in response to several abiotic factors. These factors include  

UV-radiation, wounding, ozone, anoxia and metal ions. Exposure to UV light induces the 

accumulation of stilbenes in grape berry through the induction of STS expression [75]. In berries, this 

is dependent on the development stage, since unripe berries respond to UV irradiation to a greater 

extent. A study on grape plantlets proved the existence of a positive correlation between resveratrol 

synthesis in leaves (induced by UV) and field resistance [76]. 

Flavonols are thought to protect plant tissue to UV radiation whereas anthocyanins are thought to 

provide some protection to UV radiation and high extreme temperatures [6]. Synthesis of flavonols is a 

light-dependent process. Sealing grape bunches in light-excluding boxes from before flowering until 

harvest completely inhibits flavonol synthesis. If shading is applied later in fruit development,  

flavonol content is reduced and no further accumulation is detected after the initiation of light  

deprivation [3,6,37,77,78]. In Pinot Noir, Shiraz, and Merlot varieties, the amount of these compounds 

has been shown to be highly dependent on light exposure of the tissues in which they accumulate [78]. 

Light modulates the expression of flavonol synthase (VvFLS), a key flavonol structural gene, and of 

VvMYBF1, a transcriptional regulator of flavonoid synthesis [79–81]. In Cabernet Sauvignon and 

Chardonnay, flavonols are the only phenolic components in both grape leaves and berries that are 

consistently and severely increased by UV radiation [68]. It was suggested that flavonols, but not 

anthocyanins or hydroxycinnamic acids, are important for UV protection in grapevine tissues. Similar 

results were recently confirmed by Koyama et al. [81] who showed that UV light specifically induced 

flavonols while not affecting other flavonoid components. However, the relatively high concentrations 
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of flavonols found even in the absence of UV radiation suggest that flavonols may also have a 

protective function against excess visible radiation [68]. In the vineyard, any cultural practices that 

favor the exposure of grape brunches to sunlight boost flavonol accumulation. This occurs equally in 

white and red grapes. 

Flavan-3-ols and proanthocyanidins are the most stable phenolics under diverse growing conditions. 

This is also true for accumulation of these compounds in seeds. However, some studies have shown a 

positive association between temperature and the number of seeds and total proanthocyanidin levels 

per berry at harvest [82,83]. Shading treatments increased the amount of seed proanthocyanidins and 

affected their composition in Pinot Noir [84], while had no effects in Shiraz [78], reiterating the 

importance to discriminate between irradiation and temperature effects [53]. 

Skin flavan-3-ols and proanthocyanidins are more sensitive than seed ones to environmental cues; 

sunlight has been shown to affect their relative content [78,81,84], as well as their mean degree of 

polymerization [81,84]. Sunlight exposure consistently increased the relative abundance of the  

tri-hydroxylated gallocatechins at the expense of the di-hydroxylated catechins and increased the mean 

degree of polimeryzation. 

When the effect of cluster temperature on proanthocyanidins biosynthesis was studied it was shown 

that there is no consistent relationship between temperature and total proanthocyanidins accumulation 

across three seasons [16]. In this field, experiment grape bunches were cooled during the day and 

heated at night (±8 °C). However, composition of proanthocyanidins was affected in the experiment 

because decreasing thermal time in degree-days favored a shift towards tri-hydroxylated forms. 

Although anthocyanins and proanthocyanidins share several steps in the biosynthetic pathway, there 

are many differences in their regulation and reactivity. In fact, in contrast with proanthocyanidins, 

several authors reported that light, temperature, and their interactive effects, highly influence 

anthocyanin accumulation in berry skins [85,86]. Exposure to sunlight is associated with an increase in 

anthocyanin accumulation, until the point when excessive heat causes berry temperature to become 

detrimental [3,77,87]. In growth chambers, optimal conditions for anthocyanin accumulation  

occurred when grapes were exposed to cool nights (15 °C) and mild, temperate days (25 °C) during 

ripening [88]. Higher temperatures (30–35 °C) promote the degradation of the existing anthocyanins [89]. 

In the Merlot variety, attenuation of the diurnal temperature fluctuations led to increased ripening rates 

and higher anthocyanin concentrations at harvest [90]. Moreover, absolute anthocyanin levels and 

chemical composition changes have also been related with warmer seasons, as indicated by the 

increased formation of malvidin, petunidin, and delphinidin coumaroyl derivatives [85]. In another 

study [87], the association of high temperatures with the increase of delphinidin, petunidin and 

peonidin-based anthocyanins in sun-exposed Merlot berries were observed, while malvidin derivatives 

remained unaffected. The complexity of combined solar radiation and temperature effects on flavonoid 

composition further expands the understanding of the effect of such environmental factors on 

anthocyanin biosynthesis [53]. 

3.2. Agricultural Practices and the Levels of Synthesized Metabolites 

In a vineyard, the environment varied due to the natural soil heterogeneity and the uneven light 

distribution. Physical characteristics of the vineyard can also affect flavonoid accumulation. These 
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include altitude of the cultivation site, heat stress, defoliation, mineral supply or soil type, all of which 

have shown some influence. Nitrogen, potassium and phosphate are the nutrients commonly applied as 

fertilizers, although only nitrogen and potassium have thus far attracted viticultural research. Both low 

and excessively high levels of nitrogen have been shown to decrease color in grape berries, while high 

potassium has been reported to decrease color in grapes [85,91,92]. Despite the age of the soil, which 

largely determine the micronutrient pool, structure and texture, and significantly affects plant  

growth [93–95], the major consequence of soil type is the capacity of the soil to hold water while 

remaining sufficiently well-drained to avoid waterlogging [85,96,97]. 

Despite the relevance of these parameters, vineyard microclimate has a fundamental influence in the 

metabolite biosynthesis. The importance of the effect of canopy microclimate on chemical composition 

of berry was initially raised by Shaulis and co-workers [98] in their investigations with Concord 

grapevines. The amount and the distribution of light intercepted by the vines are determined by the 

architecture of the vineyard, mainly row orientation, height, width, porosity of the canopy, and 

distance between rows [99]. The term “microclimate” was adopted by Smart [100] to define the 

environmental conditions within the immediate vicinity of the leaves and fruit [101]. 

Cultural practice effects on berry have long been studied; among them, leaf removal and cluster 

thinning, which modify leaf area/yield ratio and fruit-zone microclimate, could potentially improve 

grape quality [86,96,102,103]. The amount of intercepted light affects the whole plant photosynthetic 

capacity, water balance, and source to sink balance [99,104]. The source to sink balance is an 

important parameter that controls berry sugar, organic acids, and secondary metabolites content with 

qualitative enological potential [105]. In general, berries grown under open canopy conditions, 

compared to berries grown under shaded canopy conditions, have higher juice sugar concentration 

(measured as total soluble solids), improved acid balance (lower juice pH and higher titratable acidity). 

However, while some exposure to light may be appropriate, high temperatures resulting from full 

exposure of berries are likely to inhibit anthocyanin metabolism [101]. 

Vine vigor has been reported to impact upon the proanthocyanidins content and chemical 

composition of grape skins in Pinot noir. In the berry skin, proanthocyanidins were higher in low-vigor 

vines, with an increase in the proportion of epi-gallocatechin subunits, as much in polymers as on 

average size, observed with decreasing vine vigor [85,106]. It seems that severe canopy shade  

down regulate gene expression in the anthocyanin biosynthesis pathway, [107,108] while photon  

fluxes of 100 mmol/m
2
/s on the berries temperature becomes the overriding variable in anthocyanin  

synthesis [74,77,85,87]. 

Among environmental and viticultural parameters investigated in the past decades for various grape 

varieties, it is known that the water status is a potential modulator of secondary metabolism during the 

berry development [109–112]. Many scientific articles have extensively reported the effects of water 

deficit on the accumulation of various grape secondary metabolites (Table 2). Grapevine irrigation can 

alleviate water-stress-related reductions in plant growth and development, demonstrating the 

importance of cultural practice at vineyard to guarantee wine quality or even plant survival in regions 

affected by seasonal drought [113]. Several reports demonstrated that large fluxes of water are not 

essential for the optimal plant performance for agricultural purposes and that moderate water deficits 

might be used successfully in grapevine production through control of sink-source relationships, 

thereby maintaining or ameliorating fruit quality [113]. Plant water status affects berry composition, 
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but the effects might be contrasting according to the level and the moment in time when water is 

applied or deficit is imposed. Furthermore, grape response to moderate irrigation might also be 

cultivar-dependent as V. Vinifera varieties have been shown to respond differently to water stress [114]. 

Overall, regulation of grapevine water deficit is a powerful tool to manage the amount of secondary 

metabolite compounds and improve wine quality [115]. 

The impact of water on stilbene biosynthesis in grapes has been evaluated. The water deficit 

increases the specific steady state transcript abundance of a STS gene and phenylpropanoid 

metabolism in general. The increase of STS mRNA abundance suggests an increase in resveratrol 

accumulation [116]. However, conflicting results have been reported on the effects of water deficit on 

resveratrol synthesis. Research conducted by Vezzuli et al. [117] observed little effect of drought on 

resveratrol concentrations in grape berry skin. In another study on Cabernet Sauvignon and 

Chardonnay varieties, harvested at six and eight weeks after veraison, respectively, Deluc et al. [118] 

demonstrated that water deficit increased the accumulation of trans-piceid (the glycosylated form of 

resveratrol) by five-fold in Cabernet Sauvignon berries but not in Chardonnay. However, the 

abundance of two stilbene-derived compounds—trans-piceid and trans-resveratrol—was not 

significantly different between the two cultivars when well-watered. Similarly, water deficit 

significantly increased the transcript abundance of genes involved in the biosynthesis of stilbene 

precursors in Cabernet Sauvignon. In contrast, the transcript abundance of the same genes declined in 

Chardonnay in response to water deficit. 

The increased concentration of flavonols, skin-derived proanthocyanidins and anthocyanins has also 

been observed in wines from grapes grown under the decreased vine water status [85,115]. 

Recently, it was shown that the concentrations of flavonol increase under drought stress in a white 

grapevine Chardonnay, but not in a red grapevine Cabernet Sauvignon [119]. Few studies have 

reported that water deficit may modify the skin proanthocyanidins [120–123], but this topic still awaits 

further clarification. In Shiraz, the application of water stress before and after veraison differently 

affects the grape berry polyphenol biosynthesis [124]. The authors showed that pre-veraison water 

deficit had no effect on total proanthocyanidin accumulation, whereas pre- and post-veraison deficits 

specifically affected the flux of anthocyanin biosynthesis in stressed grape berries sampled with 

equivalent sugar content. However, both water deficits differently affected the anthocyanin 

composition. Pre-veraison water deficit increased anthocyanin accumulation except for malvidin and 

p-coumaroylated derivatives, whereas post-veraison water deficit enhanced the overall anthocyanin 

biosynthesis, particularly malvidin and p-coumaroylated derivatives. In Merlot variety under water 

stress, an increase of anthocyanin content between 37% and 57% for two consecutive years was 

reported by Castellarin et al. [125]. 

Imposing water deficits from the onset of ripening until maturity in the Merlot variety reduced the 

berry weight and increased the concentration of anthocyanins and skin tannins [126], and  

the application of water deficits also modulated chemical composition changes during berry  

ripening [125,127]. 
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Table 2. Effect of water deficit on grapevine secondary metabolism. 

Variety Compound Effect of water deficit References 

Aragonez (Tempranillo) Anthocyanins Decreased concentration. [128] 

Barbera Resveratrol No effect. [117] 

Cabernet Sauvignon 
Trans-piceid  

stilbene precursors 

5-fold increase in concentration. Increased transcript abundance  

of genes involved in the biosynthesis of stilbene precursors  

and phenylpropanoid metabolism in general. 
[85,111,115,116,118,119,127,129] 

 Flavonols Increased concentration in the skin and in the wine. No changes in seeds. 

 
Anthocyanins 

Increased of concentration in the skin and in the wine.  

Increased expression of many genes responsible for their biosynthesis. 

Chardonnay Stilbene precursors Increased concentration. 
[119] 

Flavonols Decreased transcript abundance of biosynthetic genes. 

Merlot Anthocyanins Increased concentration and biosynthesis; 
[125,126] 

Proanthocyanidins Increased concentration in berry skin. 

Shiraz Anthocyanins Increased concentration. [124] 
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When Aragonez (Syn. Tempranillo) grapevines were subjected to three irrigation regimes 

(conventional sustained deficit irrigation (DI), regulated deficit irrigation (RDI) and non-irrigated 

(NI)), the main compounds affected by water availability were proanthocyanidins and flavonols which 

were increased with irrigation at pea size, veraison, mid-ripening and full maturation phenological 

stages [128]. Concentrations of anthocyanin at full maturation were observed to be higher in the skin 

of berries belonging to DI and RDI vines than in NI ones. In general, although no differences in sugar 

accumulation were observed between the water treatments, a decrease in the quality parameters in 

grape skins in NI vines was observed, may resulting from high temperature and excessive cluster 

sunlight exposition. 

4. Varietal Dependence on Grape Berry Phenolics 

Traditionally, morphological and agronomical characteristics have been the main criteria for 

differentiating grapevine cultivars, but it is well known that many of those characters are strongly 

influenced by environmental conditions [130]. Grapevine varieties are not genetically homogeneous 

and intravarietal diversity varies across cultivars [131,132]. Even vines multiplied by vegetative 

propagation display a broad range of characteristics [133]. As referred to in the introduction, the grape 

phenolic profile depends greatly on the grape variety [7,36,134,135]. In a recent study, Liang et al. [20] 

showed that the polyphenol profile revealed significant differences among 344 European grape 

varieties. Polyphenol variations among several varieties are summarized in Table 3. 

Table 3. Varietal differences in the grape berry composition. 

Varietiy 

Nonflavonoids Flavonoids 

References 

Hydroxycinnamic 

acids  

mg·g
−1

 FW 

Hydroxybenzoic 

acids  

mg·g
−1

 FW 

Stilbenes  

mg·g
−1

 

FW 

Flavonols  

mg·g
−1

 

FW 

Flavan-

3-ols  

mg·g
−1

 

FW 

Anthocyanins  

mg·g
−1

 FW 

Araclinos 0.742 0.034 0.001 0.042 0.386 0.655 [20] 

Aragonez      0.658 [136] 

Cabernet  

Sauvignon 

0.103 0.011 0.003  

0.095 

0.039 1.830 1.830  

1.084 

[8,136,137] 

Chardonnay 0.138 0.022   0.129  [20] 

Coudsi 0.088 0.008 0.012 0.018 0.128  [20] 

Garnacha      0.474 [137] 

Greco di 

Tufo 
  0.0002    [7] 

Melon 0.822   0.049   [20] 

Pinot Noir 0.152 0.018 0.003 0.035 0.161 0.800 [7,20] 

Rofar Vidor 0.402 0.081  0.053 0.440 0.655 

[20] 

Royalty   0.002 0.148 0.734 5.123 

Sauvignon 

Blanc 
0.221 0.035 0.003 0.022 0.123  

Touriga 

Nacional 
0.754 0.024 0.006 0.176 0.33 2.632 
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Phenolics from grape and wine have generated remarkable interest with their antioxidant and free 

radical scavenging properties. Catechins, proanthocyanidins and anthocyanins are the most 

concentrated natural antioxidants present in red grape and wine [2,138] and it is believed that they play 

important beneficial roles in the mammalian systems [139]. The differences in phenolic composition 

observed across varieties might impact their respective health benefits. A study of 21 white and red 

winegrape varieties of Portugal showed remarkable differences in total phenolic concentrations in full 

mature berries, which were correlated to their total antioxidant activity (Figure 5). Of them, Borraçal 

grapes had the highest total phenolic content, even above the teinturier Alicante Bouschet. 

Figure 5. Total phenolic grape berry profile of 21 Portuguese V. vinifera varieties grown in 

Estremadura Region (Instituto Nacional de Investigação Agrária, INIA, Dois-Portos, 

Portugal), collected at full mature state. Error bars denote the SD from the mean, n = 3.  

Inset: correlation between total phenolic content and antioxidant activity (Teixeira, A., 

Eiras-Dias, J. and Gerós, H.). 

 

Owing to its biological and agricultural importance, the genetics and biochemistry of the flavonoid 

biosynthetic pathway have been widely studied and the great intravarietal variability recommends the 

use of more precise methods to characterize and classify grape germplasm collections. Methods used 

to track back the variety and for producing a given wine rely on the composition in proteins, amino 

acids and aroma compounds, or on DNA analysis [130,140,141]. To a certain extent, flavonol profiles 

have demonstrated that some of them can be used as chemical markers for the authentication and 

varietal differentiation of grapes and wines [142]. Among those metabolic compounds, which  

have frequently been used as chemical markers in chemotaxonomy, in recent years the  

cultivar-characteristic profiles of monomeric anthocyanins have been widely used for the classification 

and differentiation of grape cultivars and monovarietal wines [38,143,144]. Despite the strong role of 

the genetic background in determining the composition of anthocyanins, the content of anthocyanins in 

grapes changes during their maturation and seasonal conditions, and the physical and chemical 
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characteristics of the soil also influence the distribution of anthocyanins in grapes [130,136]. For 

example, Downey et al. [78] found that the anthocyanin fingerprint was altered by cluster exposition or 

shading to sunlight, by temperature regimes reached during the growing season, and by water deficit 

treatments [125]. Moreover, Guidoni et al. [145] stated that cluster thinning changed the proportion of 

anthocyanins, increasing cyanidin and peonidin 3-O-glucosides whereas malvidin 3-O-glucoside and 

acylated anthocyanins were not affected. The relative proportion of anthocyanins also varies during 

grape ripening; however, this composition is practically constant in the final stages of ripening [146]. 

Nevertheless, most references coincide with the fact that the non-genetic factors such as several 

environmental conditions or viticultural practices have a greater effect on the concentration of 

anthocyanins rather than on their relative composition [130,136]. Moreover, it is commonly accepted 

that anthocyanin concentration of grape berry also varies according to the genetic background, which 

is independent of seasonal conditions or production area [147]. 

5. Conclusions and Future Perspectives 

Grapevine phenolics play distinctive roles during the development of the fruit until full maturation. 

Hydroxybenzoic acids may be involved in signaling, particularly in the induction of defense and stress 

responses, and stilbenes are effective antifungal agents. Flavonols are thought to act as UV and 

extreme temperature protectants, as well as free radical scavengers. The astringency role of 

proanthocyanidins (condensed tannins) is thought to act as a feeding deterrent to herbivorous and other 

insects. Anthocyanins play important roles in DNA protection and defense against photo-oxidative 

stress. In wine, hydroxycinnamates contribute to colour browning under oxidation in association with 

molecules. Also, proanthocyanidins contribute to mouthfell of red wine, as well as colour stability by 

forming complexes with anthocyanins that are responsible for the colour, and also contribute to the 

sensory attributes of wine. Important nutraceutical and pharmacologic properties have also been 

attributed to grape berry phenolics, including antimicrobial, anticarcinogenic and antioxidant. Several 

reports indicate that trans-resveratrol inhibits the proliferation of tumor cells and had a putative 

protection against diabetes. Their role against neurodegenerative diseases were recently postulated  

due to the resveratrol ability to activate the protein SIRT1 that was related to many diseases  

associated with aging [148]. Thus, the continued study of grape phenolics has an important basic and 

applied relevance. 

The physiology of grapevine has already suffered from significant impacts of global climate change 

in recent decades. Harvest occurs sooner and sooner, although grape growers tend to wait longer for 

ripeness. Berry sugar content (and alcohol in the wine) tends to increase whereas phenolic and 

aromatic ripeness are not always achieved. Acidity tends to decrease with potential effects on wine 

aging capacity. Water supply is becoming shorter in many regions [149]. The site and season 

conditions are the most important factors that influence phenolic content of a grape cultivar. In 

particular, light and temperature affect to a great extent the phenolic content of the berry. These 

parameters are the most difficult to manage, although some viticulture practices, including strategic 

use of irrigation, utilization of cover crops, row orientation, trellising, and other canopy modifications 

may optimize plant interaction with light and temperature. Thus, the development of management 

strategies for optimizing grapevine phenolic composition in challenging environments is an important 
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issue in modern viticulture. The improvement and implementation of standardized tools to 

quantitatively and qualitatively measure flavonoids in the grape berry is also an important research 

topic that could provide important developments in the future. 

Although the inherent plasticity of grapevine response to environmental conditions may account for 

phenolic variation, several evidences introduced in this review show that phenolic profile is very 

dependent on the genotype. In this regard, the selection of new varieties with pleasant sensorial flavors 

but with improved climate tolerance may be an important investment for viticulturists and the wine 

industry. To address this challenge, scientists and breeders need to work together at an international 

level to generate knowledge about the valuable diversity, and patterns, processes and correlations with 

traits such as resistance and grape quality, which is the aim of the ongoing European Cost Action 

COSTFA1003 “East-West Collaboration for Grapevine Diversity Exploration and Mobilization of 

Adaptive Traits for Breeding” (2010–2013). For instance, despite the large number of studies on grape 

colour, there is still not a complete understanding of the genetics underlying this phenotype. In this 

regard, specific genes significantly associated with total skin and pulp anthocyanin were recently 

detected in red and rose cultivars from the Portuguese Ampelographic Collection, suggesting their 

involvement in anthocyanin content [150]. 

Important efforts have been undertaken by several research laboratories worldwide to understand 

and enhance the mechanisms of phenolic biosynthesis in grapevine, but this area of basic research is 

still widely open. Although the biosynthesis of many secondary compounds was already elucidated in 

some plants, the identification and characterization of specific transport steps have been published only 

recently, but a complete understanding of flavonoid transport and compartmentation in grape berry 

tissues in response to the environment is far from being elucidated. In addition, how the networks of 

phenolic biosynthesis are regulated and coordinated in different varieties, tissues and environments 

remains to be uncovered. In this regard, future investigation will involve the exploration of grapevine 

genetic diversity and the study of the role of specific genes or metabolic pathways in response to 

environmental conditions, taking advantage of the already available grapevine reference genome. 
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