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BERS EMBEDDING OF THE TEICHMÜLLER SPACE
OF A ONCE-PUNCTURED TORUS

YOHEI KOMORI AND TOSHIYUKI SUGAWA

Abstract. In this note, we present a method of computing monodromies of
projective structures on a once-punctured torus. This leads to an algorithm
numerically visualizing the shape of the Bers embedding of a one-dimensional
Teichmüller space. As a by-product, the value of the accessory parameter of
a four-times punctured sphere will be calculated in a numerical way as well
as the generators of a Fuchsian group uniformizing it. Finally, we observe the
relation between the Schwarzian differential equation and Heun’s differential
equation in this special case.

1. Introduction

The Teichmüller space was, as its name tells us, invented by O. Teichmüller
around 1940. At this early stage, however, quasiconformal mappings had not been
developed enough, and therefore, his work was difficult for most people to under-
stand. In the late 1950’s, L. V. Ahlfors and L. Bers established a firm foundation
to the theory of quasiconformal mappings, which led to a better understanding of
Teichmüller space and the further development of it. Among their contributions,
the idea of simultaneous uniformization due to Bers enabled us to embed the Te-
ichmüller space of a Riemann surface as a bounded domain in the normed vector
space of holomorphic quadratic differentials on it. In the latter half of the last cen-
tury, many authors have revealed a number of remarkable properties of Teichmüller
spaces. Most of them, however, are concerned with the internal geometry of the
spaces. On the one hand, in connection with the deformation of Kleinian groups,
the boundary of the Bers embedding (the so-called Bers boundary) of a Teichmüller
space has been investigated. In spite of much effort in this direction, the shape of the
Bers embedding is still mysterious at present because of its highly transcendental
nature. At least, the supporting evidence that the Bers boundary is fairly irregular
has been reported by, for instance, [22] and [38]. We also note that the Teichmüller
space of finite dimension greater than one is not a symmetric domain. Actually,
the analytic automorphism group of it is the homomorphic image of the mapping
class group on the surface under the discontinuous action on the Teichmüller space
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(Royden [34]). As Bers stated in his survey [3], even one-dimensional Teichmüller
spaces are exciting one’s curiosity enough.

The first attempt to compute a boundary point of a one-dimensional Teichmüller
space was made by R. M. Porter [32] and L. Keen, et al [13], [12], where they
succeeded in drawing several real rays of trace functions ending at cusps in the
case of the once-punctured square torus. The present authors are wondering why
no one has developed their approach further despite the remarkable progress of
computing technology in recent years. We note here that in the 1980’s C. McMullen,
D. Mumford and D. Wright obtained computer pictures of the Maskit embedding
of the Teichmüller space of a once-punctured torus. Since the Maskit embedding
had been expected to resemble the Bers embedding in shape, they made several
conjectures on the Bers embedding (see, for instance, [25]). Moreover, the Bers
boundary of a one-dimensional Teichmüller space was asserted to be a Jordan curve
by C. McMullen around 1990. A proof for the assertion in the literature has been
given by Y. Minsky as a corollary of his complete description of the space of discrete
faithful representations of once-punctured torus groups [27].

Furthermore, using Minsky’s Pivot Theorem, H. Miyachi [28] recently proved
that each cusp of the one-dimensional Teichmüller space is really cusp-shaped;
namely, to the endpoint of each rational pleating ray one can attach a subdomain
like cardioid in the Bers embedding.

On the other hand, B. Maskit [24] (see also [21]) discovered projective structures
such that the monodromies are quasi-Fuchsian groups but the developing maps are
not univalent (for details of the terminology used here, see the next section). Those
exotic projective structures have recently been studied intensively by many authors
(see, e.g., [26] , [36], [11]). However, the configuration of components of the interior
of exotic projective structures on a surface is still far from being clear.

In this article, we will give a practical method of computing the monodromy
of a given projective structure by solving a linear ordinary differential equation
of the second order which is associated with the Schwarzian differential equation.
Employing the bending coordinates, which were developed by L. Keen and C. Series
(see, e.g., [15]) and by C. McMullen [26], we explain how we can generate a picture
of the Bers embedding with sufficient precision.

Our method can also be applied to obtain the whole picture of exotic components
of the discreteness locus of projective structures and, if available, is an algorithm
of determining the discreteness of a given Möbius group generated by two elements
with parabolic commutator. This will be a main subject of our forthcoming paper
[18] with M. Wada and Y. Yamashita.

This article is organized as follows. Section 2 is devoted to the basic definitions
of Teichmüller spaces and related notions. In Section 3, we summarize known facts
about commensurable Fuchsian groups with given Fuchsian group Γ uniformizing a
once-punctured torus. The explicit description of coverings between corresponding
quotient surfaces will be helpful to transfer the computation on the once-punctured
torus to that on the commensurable four-times punctured sphere in Section 4.
In this way, we can avoid using elliptic functions in actual computations. This
method can also be used to obtain exact values of the Poincaré density of the
once-punctured square torus [37]. Section 5 gives an enumeration of free homotopy
classes of (non-peripheral, unoriented) simple closed curves on the topological once-
punctured torus by using the notion of Farey neighbours. In Section 6 we describe
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the natural “polar coordinates,” called the bending coordinates, of the Teichmüller
space of a once-punctured torus by following C. McMullen [26]. Our main theorem
states that some sort of radial ray, called a rational pleating ray, can be described as
a real locus of the entire function representing the trace of monodromy of a simple
closed curve corresponding to the ray. Using results in the preceding sections, we
can draw numerically all rational pleating rays in a recursive way. As a by-product,
we can compute the value of the accessory parameter and a standard generator pair
of a Fuchsian group uniformizing a given once-punctured torus as well. In the final
section, we investigate the relation between the Schwarzian differential equation in
the four-times punctured sphere and Heun’s differential equation. We will observe
that a simple change of indeterminants transforms the former one to the latter.
Thus the monodromy can be computed also by solving Heun’s differential equation
instead of the Schwarzian differential equation.

Acknowledgments. The authors should like to express deep thanks to Yoshitsugu
Takei and Shun Shimomura, who both pointed out the connection with Heun’s
differential equation. They also wish to thank Caroline Series and Hideki Miyachi
for enjoyable conversations about Theorem 6.3 during the first author’s stay at
Warwick. Finally, the authors are grateful to the referee for his/her careful reading
and thoughtful suggestions.

2. Basic definitions

Let Γ be a Fuchsian group acting on the unit disk D. In other words, Γ is a
discrete subgroup (possibly with torsion elements) of the analytic automorphism
group Aut(D) of D. Note that Aut(D) is Möbius conjugate to Aut(H) ∼= PSL(2,R),
where H denotes the upper half plane {z ∈ C; Im z > 0}. We denote by Q(D,Γ)
the set of holomorphic quadratic differentials ϕ(ζ)dζ2 for Γ on the unit disk, i.e., ϕ
are holomorphic in D and satisfy the functional equation ϕ ◦ γ · (γ′)2 = ϕ for each
γ ∈ Γ. (We often identify an element ϕ(ζ)dζ2 in Q(D,Γ) with the corresponding
coefficient ϕ(ζ).)

A quadratic differential ϕ(ζ)dζ2 ∈ Q(D,Γ) is called bounded if the norm

‖ϕ‖D = sup
ζ∈D

(1− |ζ|2)2|ϕ(ζ)|

is finite. We denote by B2(D,Γ) the complex Banach space consisting of all bounded
holomorphic quadratic differentials for Γ on D with the norm defined above.

It is well known that B2(D,Γ) is finite dimensional if and only if the Fuchsian
group Γ is cofinite; in other words, finitely generated and of the first kind. If Γ
is torsion-free and uniformizes a Riemann surface X of finite analytic type (g, n),
where g is the genus of X and n is the number of punctures of X with 2g−2+n > 0,
then dimB2(D,Γ) = 3g − 3 + n. In particular, dimB2(D,Γ) = 1 if and only if the
signature (g, n) is equal to (1, 1) or (0, 4). An element of B2(D,Γ) is sometimes
called a cusp form for a cofinite Γ. Each cusp form admits at most a simple pole at
a puncture or a branch point of the quotient Riemann surface (or orbifold).

We now explain a well-known method enabling us to construct a locally univa-
lent meromorphic function on D for which the Schwarzian derivative coincides with
the given holomorphic quadratic differential. For a good account including the his-
torical background, we refer the reader to [9, Chap. 10]. Let ϕ ∈ Q(D,Γ) be given.
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Then consider the following linear homogeneous ordinary differential equation of
the second order:

(2.1) 2η′′ + ϕη = 0 on D.

Since D is simply connected, a unique solution η exists on D for the given initial
data η(0) = a and η′(0) = b. We denote by η1 and η2 the special solutions of (2.1)
determined by η1(0) = 0, η′1(0) = 1 and η2(0) = 1, η′2(0) = 0. Then the Wronskian
η′1η2−η1η

′
2 is identically 1. We note that the ratio f := η1/η2 has Taylor expansion

in the form
f(ζ) = ζ + a3ζ

3 + · · ·
near the origin. A simple calculation shows that the Schwarzian derivative Sf =
(f ′′/f ′)′ − (f ′′/f ′)2/2 is equal to the given differential ϕ. Hereafter, we denote
by fϕ the meromorphic function f = η1/η2 just described above and call it the
(normalized) developing map of ϕ when we regard ϕ as a projective structure on
the surface D/Γ.

Here we briefly recall facts about the analytic automorphism group Aut(D)
of the unit disk D. Let SU(1, 1) be the subgroup of SL(2,C) consisting of all

matrices U in the form
(
u v
v̄ ū

)
with |u|2 − |v|2 = 1. Then the canonical pro-

jection SU(1, 1) → PSU(1, 1) = SU(1, 1)/{±I} gives the natural homomorphism
P : SU(1, 1) → Aut(D). In other words, P (U)(z) = (uz + v)/(v̄z + ū). It is well
known that SU(1, 1) is conjugate with SL(2,R) in SL(2,C).

We define the pullback U∗−1/2η of η under U by

U∗−1/2η(z) = (v̄z + ū)η(P (U)(z)).

Here we remark that the function v̄z + ū is a global branch of (P (U)′)−1/2.
A direct computation shows that U∗−1/2η satisfies differential equation (2.1) with

P (U)∗2ϕ = ϕ ◦ P (U) · (P (U)′)2 instead of ϕ. In particular, when P (U) ∈ Γ, we see
that U∗−1/2ηj is again a solution of (2.1) for j = 1, 2, and hence, we can write

U∗−1/2η1 = aη1 + bη2,(2.2)

U∗−1/2η2 = cη1 + dη2,

where a, b, c and d are constants, because η1 and η2 form a basis of the vector space
of solutions of (2.1). (The relations in (2.2) can be regarded as “additive laws” for
the solutions.) We note that we can deduce ad − bc = 1 from the fact that the
Wronskian of U∗−1/2η1, U

∗
−1/2η2 is identically 1.

Let Γ̃ be the inverse image P−1(Γ) of Γ under the projection P. We now define

the map χ̃ϕ : Γ̃ → SL(2,C) by χ̃ϕ(γ̃) =
(
a b
c d

)
, where a, b, c and d are the

above constants for U = γ̃ ∈ Γ̃. It is easy to see that χ̃ϕ is actually a group
homomorphism for each ϕ. By the holomorphic dependence of solutions on the
coefficients, the correspondence ϕ 7→ χ̃ϕ(γ̃) is a holomorphic map from Q(D,Γ)
to SL(2,C), where the space Q(D,Γ) is endowed with the Fréchet space structure
determined by the uniform convergence on compacta. Note that χ0 is nothing but
the identity. Furthermore, for a γ̃ ∈ Γ̃, we set

(2.3) Trγ̃(ϕ) = tr χ̃ϕ(γ̃) = a+ d.
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The trace function Trγ̃ is also holomorphic in ϕ and plays an important role in the
present investigation.

Taking the ratio of relations (2.2), we obtain

fϕ ◦ γ = χϕ(γ) ◦ fϕ
on D, where γ = P (γ̃) and χϕ(γ) is the Möbius transformation induced by χ̃ϕ(γ̃),
i.e., (az+ b)/(cz+d). The element χϕ(γ) is well defined because (az+ b)/(cz+d) is
independent of the choice of γ̃ ∈ P−1(γ) ⊂ Γ̃. Thus, the map χϕ : Γ → PSL(2,C)
is also a group homomorphism and will be called the monodromy homomorphism
of Γ associated with ϕ ∈ Q(D,Γ).

By virtue of the following theorem, we see that by considering only the mon-
odromy homomorphism we would lose nothing in the investigation of deformations
of Γ.

Theorem A. Let Γ be a cofinite Fuchsian group. For ϕ, ψ ∈ B2(D,Γ), the coinci-
dence χϕ = χψ on Γ implies ϕ = ψ.

This result traces back to Poincaré for the case when Γ uniformizes a compact
Riemann surface. The generalization above is due to I. Kra [19].

The (Bers embedded) Teichmüller space of a Fuchsian group Γ will be denoted
by T (Γ) and defined as the set of those holomorphic quadratic differentials ϕ ∈
Q(D,Γ) for which the developing maps fϕ are univalent and admit quasiconformal
extensions to Ĉ compatible with the action of Γ, where a quasiconformal extension
F of fϕ is said to be compatible with Γ if for each γ ∈ Γ there exists a Möbius
transformation γ′ such that F ◦ γ = γ′ ◦ F on Ĉ.
Remark 2.1. For simplicity, we have adopted a slightly different definition of the
Teichmüller space from the usual one. Our space T (Γ) here means, in the standard
definition, the Teichmüller space of the Fuchsian group acting on the exterior of
the unit disk, or, more intuitively, the Teichmüller space of the mirror image of the
surface D/Γ. Therefore, the reader should refer with special care to another paper.
For example, our standard generator pair θ0, θ∞ (see Section 3 below) should be
replaced by θ0

−1, θ∞.

When Γ is the trivial group 1, T (1) is called the universal Teichmüller space.
By definition, we see that T (Γ1) ⊂ T (Γ2) if Γ1 ⊃ Γ2. In particular, the universal
Teichmüller space contains all Teichmüller spaces of Fuchsian groups.

The Kraus-Nehari theorem says that ‖ϕ‖D ≤ 6 if fϕ is univalent. Hence T (Γ) is
a bounded subset of B2(D,Γ). We also note that the Ahlfors-Weill theorem implies
{ϕ ∈ B2(D,Γ); ‖ϕ‖D < 2} ⊂ T (Γ). It is also well known that T (Γ) is a connected
open subset of B2(D,Γ). For details, see [10]. By the existence of a conformally
natural extension operator from quasisymmetric homeomorphisms of S1 to quasi-
conformal ones of D (see Tukia [39] or Douady-Earle [4]), we can see that

(2.4) T (Γ) = T (1) ∩B2(D,Γ)

and that T (Γ) is contractible.
More generally, we consider the set K(Γ) of those quadratic differentials ϕ ∈

B2(D,Γ) for which the monodromy images χϕ(Γ) are discrete in PSL(2,C). The
following result is due to H. Shiga [35].

Theorem B. The Bers embedded Teichmüller space T (Γ) coincides with the con-
nected component of IntK(Γ) which contains the origin.
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Moreover, each element of IntK(Γ) is known to correspond to an isomorphism
onto a quasi-Fuchsian group (Shiga and Tanigawa [36]). Thus, the trace function
Trγ̃ for a hyperbolic element γ̃ ∈ Γ̃ satisfies

Trγ̃(IntK(Γ)) ⊂ C \ [−2, 2].

By virtue of Theorem B, we would see the shape of the Bers embedding if we
could mark the grids contained in K(Γ) for sufficiently fine mesh in the space
B2(D,Γ). This approach is out of our scope here, however, it will be a basis of
our forthcoming paper [18] in the case when D/Γ is a once-punctured torus. It
also has the advantage that one can draw a picture (up to translation) even if one
does not know about the value of the accessory parameter (see Section 5). To do
that, we need an algorithm determining the discreteness of a given Möbius group.
Such an algorithm, however, is available only for the special case when the group
is generated by two elements with parabolic commutator at present.

Our method here will rely on the internal geometry of the Teichmüller space,
and hence, it might be applicable to even higher dimensional cases.

3. Commensurability relations

All one-dimensional Teichmüller spaces are mutually conformally equivalent be-
cause they are all simply connected. In particular, the Teichmüller space of a
once-punctured torus is biholomorphic to that of a four-times punctured sphere.
There is, however, an intrinsic relation between them as is described below.

Let Γ be a Fuchsian group uniformizing a once-punctured torus X. It is a basic
fact that Γ has free generators θ0 and θ∞ with the properties: (i) both are hyper-
bolic; (ii) the commutator [θ0, θ∞] is parabolic; and (iii) the (signed) intersection
number θ0 · θ∞ equals 1. We call such (θ0, θ∞) a standard generator pair of Γ.

If a standard generator pair is given, then there exists a unique complex
number τ with Im τ > 0 satisfying the following property: The quotient surface
(C \ {m + nτ ;m,n ∈ Z})/Lτ = (C \ Lτ )/Lτ , where Lτ is the lattice group gen-
erated by 1 and τ over Z, is conformally equivalent to X in such a way that the
curves t+ (1 + τ)/2 and tτ + (1 + τ)/2 in C parametrized by t ∈ [0, 1] correspond
to θ0 and θ∞, respectively.

We call τ the Teichmüller parameter of the (marked) Fuchsian group Γ with
standard generator (θ0, θ∞). This parameter τ is known to give a global analytic
coordinate of the Teichmüller space of Γ onto the upper half plane H (see [10]).

Now consider the four-times punctured torus Z given as the quotient
(C \ {(m + nτ)/2;m,n ∈ Z})/Lτ = (C \ 1

2Lτ )/Lτ . Then the mapping z 7→ 2z in-
duces a four-sheeted (unbranched) covering Z → X. Note that the covering group
of Z → X is isomorphic to Z2 ⊕ Z2.

On the other hand, the conformal involution z 7→ −z induces a 2-sheeted
(unbranched) covering Z → Y, where Y is the four-times punctured sphere de-
scribed as Ĉ \ {e0, e1, e2, e3}, where e0 = ℘(0) = ∞, e1 = ℘(1/2), e2 = ℘(τ/2),
e3 = ℘((1 + τ)/2), in terms of the Weierstrass ℘-function with period lattice Lτ .
We note that e1 + e2 + e3 = 0.

Since the covering Z → X is Galois, we obtain a natural homomorphism from
Γ to Aut(Z). We denote by Γ0 the kernel of this homomorphism. Then Γ0 is a
Fuchsian group uniformizing Z. By the above remark, we note that Γ/Γ0

∼= Z2⊕Z2.



TEICHMÜLLER SPACE OF A ONCE-PUNCTURED TORUS 121

The composition of the universal covering D → D/Γ0
∼= Z and the above pro-

jection Z → Y is a universal covering of the four-times punctured sphere Y, whose
covering group will be denoted by Γ′. Then Γ′ is an extension of Γ0 such that
Γ′/Γ0

∼= Z2.
Similarly, by the involution z 7→ −z of C \ {m + nτ ;m,n ∈ Z}, we obtain a 2-

sheeted covering X →W, where W is a Riemann orbifold of signature (0; 2, 2, 2,∞).
In fact, W is realized as the complex plane with ramification of order 2 at the three
points e1, e2 and e3 via the covering map [z] 7→ ℘(z). This orbifold appears also as
the quotient space of Y by the action of the group G(e0, e1, e2, e3) described below.

Let a0, a1, a2 and a3 be distinct points in the Riemann sphere Ĉ and set Ω =
Ĉ\ {a0, a1, a2, a3}. Unless these points are in a special position, we cannot permute
these in an arbitrary way by a Möbius transformation. The domain Ω, however,
always has a special kind of symmetry.

For example, there exists a unique Möbius transformation A1 swapping a0 and
a1 and swapping a2 and a3. In fact, we take the Möbius transformation A sending
a0, a1, a2 to a1, a0, a3, respectively. Since A swaps a0 and a1, the transformation A
must be an involution, i.e., A2 = id. Therefore we conclude A(a3) = A−1(a3) = a2.

Similarly, we can take Möbius transformations A2 and A3 such that

A2(a0, a1, a2, a3) = (a2, a3, a0, a1),

A3(a0, a1, a2, a3) = (a3, a2, a1, a0).

We now have the group, denoted by G(a0, a1, a2, a3), formed by the elements
id, A1, A2 and A3, which acts on Ω as analytic automorphisms and is isomorphic to
Z2 ⊕ Z2. The quotient space Ω/G(a0, a1, a2, a3) is a Riemann orbifold of signature
(0; 2, 2, 2,∞). We remark that the fixed points of A1 can be expressed by

a0a1 − a2a3 ±
√

(a0 − a2)(a1 − a2)(a0 − a3)(a1 − a3)
a0 + a1 − a2 − a3

.

We now return to our case. The covering map R : Y → Y/G(e0, e1, e2, e3) = W
can be expressed explicitly by

R(z) =
z4 − 2(e1e2 + e2e3 + e3e1)z2 + 8e1e2e3z + (e1e2 + e2e3 + e3e1)2

4(z − e1)(z − e2)(z − e3)

=
z4 + g2z

2/2 + 2g3z + (g2/4)2

4z3 − g2z − g3
,

where g2 and g3 are well-known constants determined by the lattice Lτ . This ra-
tional function comes from the additive law in the theory of elliptic functions, i.e.,
℘(2z) = R(℘(z)), and was used to construct an example of complex dynamics such
that the Julia set equals the whole sphere Ĉ by Lattès in 1918 (see §4.3 of [2]).

Let Γ1 be the covering group of the universal cover D→ X →W of W. We note
that Γ0 C Γ C Γ1, Γ0 C Γ′ C Γ1, Γ0 = Γ ∩ Γ′, and that Γ1 = 〈Γ,Γ′〉.

In particular, B2(D,Γ1) ⊂ B2(D,Γ) and B2(D,Γ1) ⊂ B2(D,Γ′), and these are
all one-dimensional vector spaces; hence, all are equal. Now relation (2.4) leads to
the following result.

Lemma 3.1. The Bers embedded one-dimensional Teichmüller spaces of the com-
mensurable Fuchsian groups Γ,Γ′ and Γ1 all coincide:

T (Γ) = T (Γ1) = T (Γ′).
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Therefore, to consider the Bers embedding of the Teichmüller space of a once-
punctured torus is equivalent to also considering the corresponding four-times punc-
tured sphere. The latter sometimes has the advantage of making things in the
calculation simple, as we shall see in the next section.

4. The monodromy on a four-times punctured sphere

Let Γ be the Fuchsian group uniformizing a once-punctured torus and Γ′ be
the Fuchsian group commensurable with Γ uniformizing the corresponding four-
times punctured sphere. Although the space B2(D,Γ) = B2(D,Γ′) is complex
one-dimensional, it seems quite hard to calculate numerically the value of functions
in this space. On the other hand, an element of B2(D,Γ) can be regarded as
a holomorphic quadratic differential on the quotient space D/Γ, which is more
tractable than its lift to D. Indeed, R. M. Porter [32] and L. Keen [12] employed
this idea and succeeded in computing the real rays of trace functions for several
words of special type. In the authors’ opinion, the appearance of elliptic functions
in their methods has made the computation somewhat difficult.

So, the authors would like to propose an idea using quadratic differentials on the
four-times punctured sphere Y = D/Γ′ instead of those on the once-punctured torus
X = D/Γ.Our formulation will need only rational functions, so the involved compu-
tation will be much simpler than the other methods. In this section, we will provide
a method of computing the monodromy homomorphism χϕ : Γ→ PSL(2,C) up to
conjugation by PSL(2,C), where the conjugation does not depend on ϕ. In fact,
our construction gives global holomorphic mappings µ0, µ∞ : B2(D,Γ)→ SL(2,C)
such that the homomorphism χ̃′ϕ : Γ̃ → SL(2,C) determined by χ̃′ϕ(θ̃0) = µ0(ϕ)
and χ̃′ϕ(θ̃∞) = µ∞(ϕ) induces the same homomorphism Γ → PSL(2,C) as χϕ up
to PSL(2,C)-conjugacy (Theorem 4.3). Here θ̃r is a representative of θr in SU(1, 1)
for r = 0,∞. We remark that the argument developed below can also be applied to
the case of n-times punctured spheres, n > 4.

Recall the relation D/Γ′ ∼= C \ {e1, e2, e3}. For simplicity, by the map z 7→
(z − e2)/(e1 − e2), we transform the domain to the other one C \ {0, 1, λ}, denoted
still by the same letter Y as before, where λ = (e3 − e2)/(e1 − e2) = λ(τ) is known
to be a holomorphic universal covering of the domain C \ {0, 1} and usually called
an elliptic modular function (cf. [1, Chapter 7]).

We denote by p the universal covering D → Y ∼= D/Γ′ constructed above and
set z0 = p(0). Then we can associate the isomorphism, denoted by δ, from Γ′ onto
π1(Y, z0) with p by assigning the homotopy class of the image p([0, γ(0)]) to a given
γ ∈ Γ′.

Let ρY (z)|dz| denote the complete hyperbolic metric on Y of the constant neg-
ative curvature −4, i.e., 1/(1 − |ζ|2) = ρY (p(ζ))|p′(ζ)|. A holomorphic quadratic
differential ψ(z)dz2 on Y is said to be bounded if the norm

‖ψ‖Y := sup
z∈Y
|ψ(z)|ρY (z)−2

is finite. We denote by B2(Y ) the Banach space of bounded holomorphic quadratic
differentials on Y. We remark that a holomorphic quadratic differential ψ is bounded
on Y if and only if ψ has at most simple poles at the punctures of Y.
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By definition, the spaces B2(D,Γ′) and B2(Y ) are isometrically isomorphic via
the pullback p∗2 : B2(Y ) → B2(D,Γ′) defined by p∗2ψ = ψ ◦ p · (p′)2. In particular,
B2(Y ) is one-dimensional, too.

On the other hand, the rational function

(4.1) ψ0(z) =
1

z(z − 1)(z − λ)

belongs to B2(Y ), thus, ψ0 forms a basis of the vector space B2(Y ).
Now we consider the developing map fϕ : D → Ĉ, where ϕ is the pullback of a

given ψ ∈ B2(Y ) under the projection p. Then the (local) branch g of the function
fϕ ◦ p−1 near the basepoint z0 = p(0) with g(z0) = 0 satisfies the relation

(4.2) p∗2ψ
(
= ϕ = Sfϕ

)
= p∗2(Sg) + Sp.

The function g has the expansion

(4.3) g(z) =
1

p′(0)
(z − z0)− p′′(0)

2p′(0)3
(z − z0)2 + · · ·

around the point z0. We should remember the fact that the first two coefficients do
not depend on the particular choice of ϕ = p∗2ψ. Here the relation Sp = −p∗2(Sp−1)
holds and Sp−1 depends only on the domain Y ; in fact, this is independent of the
choice of the branch and the covering map p because of the invariance property
of the Schwarzian derivative: SA◦f = Sf for any Möbius transformation A. This
holomorphic quadratic differential Sp−1(z)dz2 will be written by νY (z)dz2 in this
article and called the uniformizing connection of Y (see [20]).

By the behaviour of the universal covering near the puncture, the quadratic
differential νY (z)dz2 is known to have a pole of the second order at every puncture
of Y with residue 1/2. By this observation, we have the following.

Lemma 4.1 ([8, Theorem 3.1],[20, (2.3.1)]). The uniformizing connection νY (z)dz2

of Y has the form

νY (z) =
1

2z2(z − 1)2
+

1
2(z − λ)2

+
c(λ)

z(z − 1)(z − λ)
,

where c(λ) is a constant determined by λ.

The constant c(λ) was called the accessory parameter by Poincaré and is known
to be difficult to compute in general. I. Kra [20] showed that c(λ) is real analytic
but not complex analytic in λ.

If a Möbius transformation A leaves Y invariant, we have νY = A∗2νY , in partic-
ular, νY is invariant under the action of the group G(0, 1,∞, λ). By this invariance,
when Y has a good symmetry, the value c(λ) can be computed explicitly. For ex-
ample, we easily see that c(λ) is real for a real λ and that c(λ) is purely imaginary
if Reλ = 1/2. In particular, we see that c(1/2) = 0. The following examples can be
found in [8].

Example 4.1. c(−1) = 1. Note that λ(−1 + i) = −1.

Example 4.2. c((1 +
√

3i)/2) = −i/
√

3. Note that λ((1 +
√

3i)/2) = (1 +
√

3i)/2.

For the moment, we proceed ahead as if we know the value of the accessory
parameter c(λ). We will return to this problem in the final part of Section 5.
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Since Sp = −p∗2(νY ), we can see from (4.2) that Sg is a globally defined quadratic
differential in Y :

(4.4) Sg = ψ + νY .

Now we write ψ in the form ψ = tψ0, where t is a complex number and ψ0 is given
by (4.1), and consider the linear ordinary differential equation on Y of the following
form:

(4.5) 2y′′ +
{

1
2z2(z − 1)2

+
1

2(z − λ)2
+

t+ c(λ)
z(z − 1)(z − λ)

}
y = 0.

We remark that I. Laine and T. Sorvali [23] investigated the general differential
equation y′′+C y = 0 with coefficient C meromorphic in a simply connected domain
and obtained a nice condition under which the (local) monodromy of the equation
becomes trivial (see Corollary 4.2 therein).

Introducing the auxiliary unknown function x, we can transform this equation
to the system of linear ordinary differential equations of the first order:

(4.6) y′ = yA, A =
(

0 1
− 1

2 (ψ + νY ) 0

)
,

where y =
(
x y

)
.

For a given point z1 ∈ Y, let y1 =
(
x1 y1

)
and y2 =

(
x2 y2

)
be the (local)

solutions of (4.6) near the point z1 satisfying y1(z1) =
(
1 0

)
and y2(z1) =

(
0 1

)
.

Then the matrix

Fz1 =
(

y1

y2

)
=
(
y′1 y1

y′2 y2

)
will be called the fundamental matrix of differential equation (4.6) at z1. Note that
detFz1 ≡ 1. In particular, the matrix Fz1 is a holomorphic map from a neighbour-
hood of z1 in Y to the complex Lie group SL(2,C) with Fz1(z1) = I, where I denotes
the identity matrix. The matrix Fz1 itself can be regarded as an SL(2,C)-valued
(local) solution of the differential equation (4.6). An arbitrary (local) solution y of
(4.5) near the point z1 with the initial conditions y′(z1) = a and y(z1) = b can be
expressed by (

y′ y
)

=
(
a b

)
Fz1 ,

and vice versa.
The holomorphic map Fz1 can be analytically continued along any path α from

z1 to z2 in Y. The resulting germ at z2 depends only on the homotopy class [α] of α
in Y, and hence, will be denoted by H[α]. Since the germ H[α] is an SL(2,C)-valued
local solution of (4.6) near the point z2, there exists a unique constant matrix
B ∈ SL(2,C) such that H[α] = BFz2 . The matrix B is called the transition matrix
along [α] and will be denoted by L[α] or, more precisely, Lt[α]. In what follows, we
will denote by Y [z1, z2] the set of homotopy classes of paths connecting z1 and z2

in Y.
By definition, we can see the following fundamental properties of the transition

matrix:

(i) H[α] = L[α]Fz2 for [α] ∈ Y [z1, z2],
(ii) L[α] = H[α](z2) for [α] ∈ Y [z1, z2], and
(iii) L[α]L[β] = L[α · β] for [α] ∈ Y [z1, z2] and [β] ∈ Y [z2, z3].
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Property (ii) means that the transition matrix L[α] can be computed by (numer-
ically) solving differential equation (4.6) along the path α. (In practical computa-
tions, a polygonal line should be taken as α.)

We set lt[α] = Lt[α] for [α] ∈ π1(Y, z0) = Y [z0, z0]. Then, by property (iii), the
map lt : π1(Y, z0) → SL(2,C) is a group homomorphism and will be called the
monodromy homomorphism associated with ψ = tψ0.

Now we consider the ratio y1/y2, which will be denoted by hz1 , of y1 and y2

appearing in the fundamental matrix Fz1 at z1. In other words, hz1 = Π ◦ Fz1 ,

where Π : SL(2,C) → CP1 = Ĉ is defined by Π :
(
a b
c d

)
7→ b/d. Then hz1

satisfies the Schwarzian differential equation (4.4) and has expansion in the form
h(z) = (z − z1) + b3(z − z1)3 + · · · near the point z1. In particular, when we take
z0 as the reference point, comparing the above expansion with (4.3), we obtain

(4.7) g = k ◦ h, where k(z) =
p′(0)2z

p′(0)− p′′(0)z/2
and h = hz0 .

Note that the Möbius transformation k depends only on the universal covering p
of Y and that the function h can be analytically continued to the function l̄t[α] ◦ h
along a curve α, where l̄t[α] is the Möbius transformation induced by lt[α].

Let us look at the relation between χtϕ0 and lt for t ∈ C, where ϕ0 = p∗2(ψ0) ∈
B2(D,Γ′). First note that the monodromy homomorphism χtϕ0 is defined over the
Fuchsian group Γ1 = 〈Γ,Γ′〉 because B2(D,Γ′) = B2(D,Γ1). We also recall that
δ : Γ′ → π1(Y, z0) is the isomorphism mapping γ to p([0, γ(0)]). Now we are ready
to state the following theorem.

Theorem 4.2. The monodromies χtϕ0 and l̄t are essentially the same. More pre-
cisely,

(4.8) χtϕ0(γ) = k ◦ l̄t(δ(γ)) ◦ k−1

for each t ∈ C and γ ∈ Γ′, where ϕ0 = p∗2ψ0 and k is the Möbius transformation
given in (4.7).

Proof. Set g = k ◦ h, where h = hz0 . Then, as was explained, f = g ◦ p near the
origin. By the analytic continuation along the image curve α = δ(γ) of the oriented
hyperbolic geodesic segment joining 0 and γ(0) in the unit disk D, the function h
changes to l̄t(α) ◦h. Hence, analytically continuing both sides of f = k ◦h ◦ p along
this segment, we see f = A ◦ k ◦ h ◦ p = A ◦ g ◦ p near the point γ(0), here we write
A = k ◦ l̄t(δ(γ))◦k−1 for short. In particular, f ◦γ = A◦ g ◦p◦γ = A◦ g ◦p = A◦ f
near the origin. This implies χϕ(γ) = A. �
Remark 4.1. The monodromy homomorphism χϕ : Γ → PSL(2,C) has no natural
homomorphic lifts Γ → SL(2,C) unless we specify a homomorphic section s : Γ→
SU(1, 1) ⊂ SL(2,C) of Γ. In contrast, lt : π1(Y, z0) → SL(2,C) is intrinsically
homomorphic. Particularly, the composed map l0 ◦ δ : Γ′ → SU(1, 1) gives a
homomorphic lift of the Fuchsian group Γ′. As we can see from the standard local
theory of Fuchsian differential equations around regular singular points, tr (lt[α]) =
−2 holds for every simple loop [α] going around a puncture of Y. By this constraint,
the lift of Γ′ is uniquely determined (note that Γ′ is a free group generated by three
elements corresponding to punctures). Moreover, Y. Okumura [30] observes under
this constraint that tr (l0[α]) ≤ −2 holds for each dividing simple loop α in Y
(even in more general context). This implies that the homomorphism l0 ◦ δ has no
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homomorphic extensions to Γ1 = 〈Γ,Γ′〉. In fact, if such an extension, say χ : Γ1 →
SL(2,R), exists, then it must satisfy tr (χ(γ2)) = tr (χ(γ)2) = tr (χ(γ))2 − 2 ≥ 2
for each element γ ∈ Γ. If we choose γ to correspond to a non-peripheral simple
closed curve in X, then γ2 ∈ Γ′ corresponds to a dividing loop α in Y, and thus
tr (χ(γ2)) = tr (l0[α]) < −2, which is a contradiction.

As is well known, for determination of a homomorphism χ : Γ → PSL(2,C), it
is enough to know the values of tr 2(χ(γ)) for γ = θ0, θ∞ and θ1 = θ0θ∞, where
(θ0, θ1) is a standard generator pair of Γ. Using Theorem 4.2, we can compute
tr 2(χϕ(θr)) for r = 0, 1,∞. In fact, since δ(θ2

r) is a dividing loop in Y, we see
tr 2(χϕ(θr)) = ±tr (χϕ(θ2

r))+2 = −tr (lt(δ(θ2
r)))+2 by the above remark. However,

sometimes it is more convenient to have the representation χϕ itself rather than
just the traces. In order to directly compute χϕ(γ) for each γ ∈ Γ (up to Möbius
conjugation) we use the symmetry of the domain Y which was explained in the
previous section.

Given a once-punctured torus X = D/Γ represented by the Teichmüller param-
eter τ, it suffices to compute the monodromy images of the standard generator pair
(θ0, θ∞) of Γ. The fact that ϕ = p∗2ψ ∈ B2(D,Γ1) for each ψ ∈ B2(Y ) implies that
ψ(z)dz2 is invariant under the action of Γ1/Γ′ ∼= G(0, 1,∞, λ) < Aut(Y ), where
λ = λ(τ). Since νY (z)dz2 is also invariant, A∗−1/2y becomes a local solution of (4.5)
for each local solution y of (4.5) and for A ∈ G(0, 1,∞, λ) by the same reasoning
given in Section 2, whereA∗−1/2y is defined by y◦A·(A′)−1/2 and (A′)−1/2(z) = rz+s

for a representative
(
p q
r s

)
∈ SL(2,C) of A. We set for FA(z1) =

(
y′1 y1

y′2 y2

)
,

(4.9) A∗(FA(z1)) :=

(
(A∗−1/2y1)′ A∗−1/2y1

(A∗−1/2y2)′ A∗−1/2y2

)
= Mz1(A)Fz1 ,

where the matrix Mz1(A) is defined by

Mz1(A) =
(

1/(rz1 + s) 0
r rz1 + s

)
.

We consider the simple closed curves β̂0 and β̂∞ in Z induced by the curves
s+ (1 + τ)/4 and sτ + (1 + τ)/4 parametrized by s ∈ [0, 1] in C \ 1

2Lτ and we take
the reference point z0 in Y so that the intersection point of β̂0 and β̂∞ projects to
z0 under the projection Z → Y. Then the image curves β0 and β∞ in Y represent
the homotopy classes δ(θ2

0) and δ(θ2
∞), respectively.

Note that β0 separates 0 and λ from 1 and ∞. Hence we see that A0(z0) =
p(θ0(0)), whereA0(z)=(z−λ)/(z−1) ∈ G(0, 1,∞, λ) is determined byA0(0, λ, 1,∞)
= (λ, 0,∞, 1). Similarly, noting that β∞ separates 0 and ∞ from 1 and λ, we
have A∞(z0) = p(θ∞(0)), where A∞(z) = λ/z ∈ G(0, 1,∞, λ) is determined by
A∞(0,∞, 1, λ) = (∞, 0, λ, 1). For r = 0,∞, let αr be an oriented curve in Y joining
z0 and Ar(z0) which is homotopic to p∗([0, θr(0)]); in other words, homotopic to
the curve coming from the one s/2 + (1 + τ)/4 for r = 0 or sτ/2 + (1 + τ)/4 for
r =∞ in Z parametrized by s ∈ [0, 1].

Now we are in a position to state one of our main results.

Theorem 4.3. For suitable representatives θ̃0 of θ0 and θ̃∞ of θ∞ in SU(1, 1),

χ̃tϕ0(θ̃0) = Lt[α0]Mz0(A0), and χ̃tϕ0(θ̃∞) = Lt[α∞]Mz0(A∞)
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hold for all t ∈ C up to SL(2,C)-conjugacy independent of t, where ϕ0 = p∗2(ψ0)
and ψ0 is given by (4.1).

Remark 4.2. If the point z0 and the paths α0 and α∞ are replaced by other z1 ∈
Y, α′0 ∈ Y [z1, A0(z1)] and α′∞ ∈ Y [z1, A∞(z1)], the above result remains true as
far as α′0 · (A0)∗(α′0) and α′∞ · (A∞)∗(α′∞) are freely homotopic to β0 and β∞ in Y,
respectively.

Proof. We set ϕ = tϕ0 for a fixed t ∈ C and let f = fϕ : D→ Ĉ be the normalized
developing map for ϕ. Then f = k◦hz0◦p near the origin of D, where k is the Möbius
transformation given by (4.7). Let r represent 0 or∞. Analytically continuing both
sides along the segment [0, θr(0)] in D, we obtain

f = k ◦ Lt[αr]− ◦ hz′0 ◦ p
near the point θr(0), where we set z′0 = Ar(z0) and denote by M− the Möbius
transformation induced by a matrix M ∈ GL(2,C). Noting hz′0 ◦Ar = Mz0(Ar)− ◦
hz0 by (4.9) and p ◦ θr = Ar ◦ p, we have

f ◦ θr = k ◦ Lt[αr]− ◦ hz′0 ◦ p ◦ θr = k ◦ Lt[αr]− ◦ hz′0 ◦Ar ◦ p
= k ◦ Lt[αr]− ◦Mz0(Ar)− ◦ hz0 ◦ p = k ◦ Lt[αr]− ◦Mz0(Ar)− ◦ k−1 ◦ f

near the origin. This implies χϕ(θr) = k ◦ Lt[αr]− ◦ Mz0(Ar)− ◦ k−1. Hence,
χ̃ϕ(θ̃r) = ±k̃Lt[αr]Mz0(Ar)k̃−1, where k̃ is a matrix representing k. Since the quan-
tities χ̃tϕ0(θ̃r) and Lt[αr]Mz0(Ar) are globally holomorphic in t, we easily see that
the above sign is constant. (Note also that the conjugacy map k does not depend
on t.) Therefore, we obtain the required equalities by choosing a suitable sign of θ̃r
for each r. �

Remark 4.3. The following relation might be useful: For a point z1 in Y and
A ∈ G(0, 1,∞, λ), we set z2 = A(z1). Then we have L[α]Mz1 = Mz2L[A∗(α)] for
any path α connecting z1 and z2 in Y.

We note also that we can use the orbifold W instead of Y in order to compute
χϕ(θr) directly. The present method, however, has the merit that we can “save”
the polygonal path used in solving the differential equation numerically. If we try
to solve the differential equation along a closed polygonal path, then we would need
more segments.

5. Enumeration of simple closed curves

In the preceding section, we have presented a method of computing the mon-
odromy for a given projective structure and γ ∈ Γ. We explain here how to compute
the values of the trace function corresponding to an arbitrary simple closed geodesic
in a recursive and algebraic way using the particular values Trθ̃0

,Trθ̃∞ and Trθ̃1
,

where θ̃r is a fixed representative of θr in SU(1, 1) for each r. The materials here
are, more or less, known although rigorous proofs for those are sometimes difficult
to locate. The reader is referred to, e.g., [15], [27] and [40] for further discussions.
A good introduction to the Teichmüller space of a torus can also be found in [10].

Since we need only the topological structure of a once-punctured torus for a while,
we treat first the topological once-punctured torus described as Σ = (R2 \ Z2)/Z2.
We denote by 〈z〉 the projection of a point z ∈ R2 \Z2 to Σ. Let [α] and [β] be the
homotopy classes in Σ with basepoint x = 〈(1/2, 1/2)〉 which are represented by
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the curves α(t) = x+ 〈(t, 0)〉 and β(t) = x+ 〈(0, t)〉, 0 ≤ t ≤ 1, respectively. Let A
and B be the homology classes corresponding to [α] and [β]. It is well known that
the fundamental group π1(Σ, x) is a free group generated by [α] and [β] and that
the homology group H1(Σ) is a free abelian group generated by A and B. Taking
A and B as a basis, we may regard H1(Σ) as the lattice group Z⊕ Z.

The fundamental group and the homology group coincide for the unpunctured
torus Σ = R2/Z2 and both are isomorphic to Z2 = Z ⊕ Z. In particular, the
homomorphism π1(Σ, x) → π1(Σ, x) induced by the natural inclusion Σ → Σ is
canonically isomorphic to the abelianization π1(Σ, x)→ H1(Σ) = H1(Σ).

A simple closed curve γ in Σ is said to be non-peripheral if γ can be continuously
shrunken to neither a point nor a puncture in Σ. A non-peripheral simple closed
curve γ corresponds to a homology class of the form pA + qB, where p and q
are relatively prime integers; that is, {mp + nq;m,n ∈ Z} = Z. We can easily
understand this as follows; cutting Σ along γ, we have a once-punctured annulus,
which implies that there is another non-peripheral simple closed curve γ′ such that
homology classes of γ and γ′ generate H1(Σ), hence the homology class of γ must
be of the above form.

The ratio p/q will be called the slope of γ. Note that the slope does not depend
on the orientation of the curve.

Remark 5.1. The reader should be careful with the term “slope” when referring to
another paper devoted to the subject similar to ours because some authors prefer
to call −q/p the slope of γ. The reason is explained by the fact that the pinching
deformation of a once-punctured torus along the curve γ corresponds to letting the
Teichmüller parameter τ ∈ H tend to the point −q/p ∈ ∂H (see [17] for details).
In this article, however, we adopt r = p/q as the slope so that r represents the
inclination of the vector (p, q).

As might be seen from the linear action of SL(2,Z) on R2 leaving Z2 invariant,
the mapping class group of Σ is isomorphic to SL(2,Z). This is a classical result.
However, this could be seen more easily with a stronger assertion about the relation
between simple closed curves and their slope.

Let us note here that the mapping class group M(Σ) of Σ is defined as
Homeo+(Σ)/Homeo0(Σ), where Homeo+(Σ) is the group of orientation-preserving
self-homeomorphisms of Σ and Homeo0(Σ) is the subgroup consisting of all home-
omorphisms which are homotopic to the identity in Σ. We also remark that the
mapping class group of Σ is isomorphic to the quotient of the automorphism group
of π1(Σ, x) over the inner automorphism group of π1(Σ, x).

Proposition 5.1. The mapping class group of Σ is canonically isomorphic to
SL(2,Z). For each rational r ∈ Q̂ there exists a non-peripheral simple closed curve
in Σ with slope r. If two non-peripheral simple closed curves in Σ have the same
slope, they are freely homotopic in Σ up to orientation.

The latter assertion can be found in [15].

Proof. Let S be the homeomorphism of Σ defined by S(〈(s, t)〉) = 〈(s, t)〉 for 0 ≤
t ≤ 1/2 and by S(〈(s, t)〉) = 〈(s+ 2t− 1, t)〉 for 1/2 ≤ t ≤ 1, which realizes a Dehn
twist around the curve α. Also let T be the rotation 〈(s, t)〉 7→ 〈(t,−s)〉 by π/2.
Then the induced homomorphisms S∗ and T∗ on π1(Σ, x) satisfy S∗(α, β) = (α, αβ)
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and T∗(α, β) = (β, α−1), and hence, they act on H1(Σ) as matrices
(

1 1
0 1

)
and(

0 −1
1 0

)
, respectively, under the above identification with Z⊕Z. It is well known

that the above two matrices generate SL(2,Z), and thus, the natural homomorphism
M(Σ)→ Aut(H1(Σ)) ∼= SL(2,Z) is surjective.

A rational r ∈ Q̂ can be written in the form r = p/q, where p and q are relatively
prime integers. Then there exist integers p′ and q′ such that pq′− p′q = 1. We now

take an element f∗ in M(Σ) which acts on H1(Σ) as the matrix
(
p p′

q q′

)
. Then

f∗(α) has slope r as desired.
We next show the uniqueness part. By means of the action of the mapping class

group, it is enough to show that a simple closed curve α∗ in π1(Σ, x) with slope
0 is necessarily homotopic to α in Σ. Since Σ \ α∗ is a punctured annulus, we can
connect both boundary components by a simple arc with endpoints at x. That arc
can be regarded as a simple closed curve, say β∗, in Σ so that α∗ and β∗ form
standard generators of π1(Σ, x). Furthermore, by repeated application of the Dehn
twist along α∗, we can choose β∗ so that it is homotopic to β in Σ.

If we take an orientation-preserving self-homeomorphism f of Σ fixing the point x
such that f∗(α) = α∗ and f∗(β) = β∗, then f∗ acts on π1(Σ, x) trivially. Therefore,
f is homotopic to the identity in the unpunctured torus Σ. Let ft be an isotopy in
Σ connecting the identity and f with f0 = id and with f1 = f. Since Σ = R2/Z2

is an abelian group, f̂t = ft − ft(0) is an isotopy in Σ fixing the origin 0 = 〈(0, 0)〉.
Hence f̂t|Σ is an isotopy in Σ connecting the identity and f, which implies that α∗

is freely homotopic to α.
Finally, we show the first assertion in the proposition. It suffices to prove the

injectivity of the natural homomorphismM(Σ)→ Aut(H1(Σ)) = SL(2,Z). Let f∗
be in the kernel of the above homomorphism. We may assume that f fixes x. Then
f∗(α) and f∗(β) have slope 0 and ∞, respectively. The last argument yields also
that f is homotopic to the identity in Σ. Hence f∗ is trivial on π1(Σ, x). �

We can extract from the proposition the following corollary, which will be utilized
effectively below.

Corollary 5.2. Let (γ1, γ2) be a standard generator pair of the fundamental group
π1(Σ, x) of the topological once-punctured torus Σ. Then (γ1, γ1γ2), (γ1γ2, γ2) and
(γ2, γ

−1
1 ) are all standard generator pairs of π1(Σ, x).

We next recall fundamental facts about Farey triangles (cf. [27]). The reader also
finds a good account for Farey sequences in [7] as well as an interesting historical
remark.

For three points a, b, c in R̂, we denote by ∆(a, b, c) the hyperbolic triangle formed
by three hyperbolic geodesics in the upper half plane H connecting two of the three
points a, b and c. Let ∆ = ∆(0, 1,∞). Then H is tessellated by ∆ and its conjugates
by the modular group PSL(2,Z). Note that the stabilizer of ∆ in PSL(2,Z) consists
of three elements and permutes the vertices of ∆ cyclically. Each triangle which is
conjugate with ∆ by the action of PSL(2,Z) is called a Farey triangle. The initial
Farey triangle ∆ and its reflection ∆′ = ∆(0,−1,∞) in the imaginary axis form a
fundamental domain of the modular group G2 = {±C ∈ PSL(2,Z);C ≡ I mod 2}
of level 2. We will say that both ∆ and ∆′ are of level 0. A Farey triangle which
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shares a side with that of level 0 will be called of level 1 unless it is of level 0.
Similarly, a Farey triangle which shares a side with that of level n will be called of
level n+ 1 unless it is of level ≤ n. It is important to note that the corresponding
graph to the above tessellation is a tree, namely, there is no closed circuit.

It is well known that the orbit of 0 under the action of PSL(2,Z) coincides with
Q̂. We denote by F̃(n) the set of rationals which appear as vertices of Farey triangles
of level ≤ n. Set F(n) = F̃(n) \ F̃(n − 1) for n = 0, 1, . . . . For instance, F(0) =
{−1, 0, 1,∞}, F(1) = {−2,−1/2, 1/2, 2}, F(2) = {−3,−3/2,−2/3,−1/3, 1/3, 2/3,
3/2, 3} and so on. We note that #F(n) = 2n+1 for n ≥ 1. An element r in F(n) will
be called of level n and designated by level(r) = n. Two rationals, r1 and r2, in Q̂
are said to be Farey neighbours if r1 and r2 are distinct vertices of a common Farey
triangle. For convenience, we adopt the notation r1 ∼ r2 to mean that r1 and r2 are
Farey neighbours. It should be remembered that this is not an equivalence relation.
Note that if r1 ∼ r2, then |level(r1)− level(r2)| ≥ 1 unless level(r1) = level(r2) = 0.

For two rationals r1 = p1/q1 and r2 = p2/q2 in Q̂, where pj and qj are relatively
prime integers, we assign the number D(r1, r2) = |p1q2 − p2q1|. Note that this is
independent of the particular choice of signs of pj and qj . The following statement
will be useful in our argument below.

Lemma 5.3. Two rationals r1 and r2 are Farey neighbours if and only if D(r1, r2)
= 1.

Proof. First assume that D(r1, r2) = 1. Then r1 and r2 can be written in the form
r1 = p1/q1 and r2 = p2/q2 so that p1q2 − p2q1 = 1. The Möbius transformation
g(z) = (p1z+p2)/(q1z+q2) sends∞ to r1 and 0 to r2, which implies that the Farey
triangle g(∆) contains r1 and r2 as vertices. The converse can be seen similarly. �

Let r1 and r2 be Farey neighbours with 0 ≤ r1 < r2 ≤ ∞. Then they are
represented in the form rj = pj/qj, where pj and qj are non-negative integers for
j = 1, 2 and satisfy p2q1−p1q2 = 1. We define r1⊕r2 = r2⊕r1 = (p1 +p2)/(q1 +q2).
Similarly, we define r1 	 r2 = r2 	 r1 = (p1 − p2)/(q1 − q2). For these operations,
one can show the following result.

Lemma 5.4. Let r1 and r2 be Farey neighbours with 0 ≤ r1 < r2 ≤ ∞. Then
∆(r1, r2, r1⊕r2) and ∆(r1, r2, r1	r2) are Farey triangles sharing the side connecting
r1 with r2 and the inequality r2 < r1 ⊕ r2 < r1 holds.

Conversely, any rational r with 0 < r <∞ can uniquely be decomposed into the
form r = r1⊕r2 for rationals 0 ≤ r1 < r2 ≤ ∞ with r1 ∼ r2. Furthermore, if r 6= 1,
then level(r) = max{level(r1), level(r2)}+ 1 and level(r1) 6= level(r2).

Proof. It is immediate to see that r1 ⊕ r2 ∼ rj and r1 	 r2 ∼ rj for j = 1, 2 and
that r1 < r1 ⊕ r2 < r2. Hence, the first half of the assertion has been shown. To
show the second half, assume that 0 < r < ∞ is a rational and let n = level(r).
Then there is a sequence of Farey triangles ∆0 = ∆,∆1, . . . ,∆n such that ∆k−1

and ∆k have a common side for k = 1, . . . , n and that ∆n has r as its vertex.
Set ∆−1 = ∆′ for convenience. Note that ∆k is of level k and is contained in the
right half of the upper half plane H for k = 0, 1, . . . , n. Let r1 and r2 be the other
two vertices of ∆n. Since the side of ∆n connecting r1 with r2 separates r from
the left half of H, r lies between r1 and r2, and hence, the relation r = r1 ⊕ r2

follows. Assume now that r 6= 1. Then n > 0 and ∆n−1 = ∆(r1, r2, r1 	 r2). In
particular, max{level(r1), level(r2)} ≤ n−1. On the other hand, ∆n−1 shares a side
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joining r1	 r2 and, say, r2 with ∆n−2. We see then that level(r1) = n− 1 and that
level(r2) ≤ n− 2. �

For each rational r with 0 < r <∞, r 6= 1, we define r∗ by r∗ = r1 	 r2, where
r1 and r2 are as above. Then r∗ < min{r1, r2} or r∗ > max{r1, r2}. From the above
proof, one can also see that max{level(r∗), level(r2)} = n − 2 if level(r1) = n − 1.
Moreover, under the assumption that r1 < r2, the inequality r2 < r∗ holds if and
only if level(r1) = n− 1.

Finally, we extend the above operations for all pairs (r1, r2) of Farey neighbours.
When 0 ≤ −r1,−r2 ≤ ∞, we set r1⊕ r2 = −(−r1)⊕ (−r2) and r1	 r2 = −(−r1)	
(−r2) unless {r1, r2} = {0,∞}. Also let r∗ = −(−r)∗ for a rational r with 0 <
−r <∞ and r 6= −1. For r = ±1, we set r∗ = ∓1.

We now return to our case. Let X be a marked once-punctured torus with
Teichmüller parameter τ. Let H : R2 → R2 = C be the R-linear map sending (1, 0)
to 1 and (0, 1) to τ. Then H induces a homeomorphism h from the topological once-
punctured torus Σ onto X = (C\Lτ)/Lτ . The terminology above is translated, via
h : Σ → X, to that for X with standard generator pair (θ0, θ∞) of the Fuchsian
group Γ uniformizing X. For instance, a non-peripheral simple closed curve γ in
X has slope r if and only if h−1

∗ (γ) has slope r. By Proposition 5.1, the conjugacy
class of an element θr in Γ representing a non-peripheral simple closed curve of
slope r is uniquely determined up to inversion. In particular, the squared trace
function Tr2

θr : B2(D,Γ) → C is determined by its slope. We now explain how to
compute the trace functions Trθ̃r for all r ∈ Q̂ and suitable representatives θ̃r of θr
in SU(1, 1) in a recursive way by using only the values for r = 0, 1 and ∞.

We begin by setting σr = Trθ̃r for r = 0, 1,∞, where θ̃0 and θ̃∞ are arbitrarily
fixed representatives of θ0 and θ∞, respectively, and θ̃1 = θ̃0θ̃∞. Define σ−1 by the
formula σ−1 = σ0σ∞ − σ1. If we have defined the functions σr : B2(D,Γ) → C for
all r ∈ F̃(n), we then define σr for r ∈ F(n+ 1) by the formula

(5.1) σr = σr1σr2 − σr∗ ,

where r1 and r2 are Farey neighbours satisfying r = r1 ⊕ r2. Note here that r1, r2

and r∗ are all in F̃(n). In this way, we can define the functions σr for all r ∈ Q̂.

Proposition 5.5. The mapping σr : B2(D,Γ) → C gives the trace function for a
non-peripheral simple closed curve of slope r in X for each r ∈ Q̂.

Proof. In order to prove the proposition, we construct elements θ̃r in Γ̃ = P−1(Γ)
representing non-peripheral simple closed curves of slope r in a concrete way. Note
that a similar construction can be found in [15]. We start with θ̃0, θ̃∞ and θ̃1 =
θ̃0θ̃∞, which represents a simple closed curve of slope 1. By Corollary 5.2, (θ0, θ1)
and (θ1, θ∞) are standard generator pairs of Γ, where θ1 = P (θ̃1). Suppose that
we have defined θ̃r ∈ Γ̃ for all r ∈ F̃+(n) := F̃(n) ∩ [0,∞] in such a way that the
following properties are satisfied:

(1) θr represents a simple closed curve of slope r in X for r ∈ F̃+(n), where
θr = P (θ̃r), and

(2) (θr1 , θr2) is a standard generator pair for each pair of Farey neighbours
r1, r2 ∈ F̃+(n) with 0 ≤ r1 < r2 ≤ ∞.
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Then, for r ∈ F(n+ 1) with 0 < r <∞, we define θ̃r by

θ̃r = θ̃r1 θ̃r2 ,

where r1 and r2 are unique Farey neighbours with 0 ≤ r1 < r2 ≤ ∞ satisfying
r = r1⊕r2 (see Lemma 5.4). Note also, by Corollary 5.2, that (θr1 , θr) and (θr, θr2)
are standard generator pairs of Γ, where θr = P (θ̃r). In particular, θr represents a
simple closed curve with slope r. In this way, we extend θ̃r for all r ∈ F̃+(n + 1),
while preserving the above properties (1) and (2). By induction, we extend θ̃r for
all r ∈ Q̂ ∩ [0,∞].

For r ∈ Q̂ ∩ (−∞, 0), we can apply the same argument as above by replacing
(θ0, θ∞) by (θ∞, θ−1

0 ). More precisely, we set θ̃′0 = θ̃∞, θ̃
′
∞ = θ̃−1

0 and θ̃′1 = θ̃′0θ̃
′
∞ =

θ̃∞θ̃
−1
0 . Then θ̃′1 represents a simple closed curve of slope −1 in X. Also, in the

same way as above, we let
θ̃′r = θ̃′r1 θ̃

′
r2

for r ∈ F(n+ 1) with 0 < r <∞ after defining θ̃′s for all s ∈ F̃+(n). Finally, we set
θ̃−r = θ̃′r for r ∈ Q̂∩ (−∞, 0). Then we can easily see that θ−r = P (θ̃−r) represents
a simple closed curve of slope −r in X.

We are now at the final stage to show the assertion. The key is the general
formula

trAB + trA−1B = trA trB

for A,B ∈ SL(2,C). Let σ̂r = Trθ̃r for r ∈ Q̂. Then σ̂r = σr for all r ∈ F̃(0).
We show the same statement for all r ∈ F̃(n) for each n by induction. Suppose
that we have shown this up to n. Let r ∈ F(n+ 1) and r1 and r2 be unique Farey
neighbours with r1 < r2 satisfying r = r1⊕ r2. Since r1, r2, r

∗ = r1	 r2 ∈ F̃(n), we
see that σ̂s = σs for s = r1, r2, r

∗. As we observed above, r2 = r1 ⊕ r∗ if r2 < r∗.
In this case, θ̃r∗ = θ̃−1

r1 θ̃r2 , and hence,

σ̂r(ϕ) = tr χ̃ϕ(θ̃r1 θ̃r2) = tr χ̃ϕ(θ̃r1)tr χ̃ϕ(θ̃r2)− tr χ̃ϕ(θ̃−1
r1 θ̃r2)

= σr1(ϕ)σr2(ϕ) − σr∗(ϕ) = σr(ϕ).

When r∗ < r1, the relation r1 = r∗ ⊕ r2 holds, and hence, θ̃r∗ = θ̃r1 θ̃
−1
r2 . Since

trA−1B = trAB−1, we can see the same relation σ̂r = σr as above. We now
conclude that Trθ̃r = σr for all r ∈ Q̂ by induction. �

6. McMullen’s bending coordinates of the Bers slice

Following McMullen [26], we describe the bending coordinates of the Teichmüller
space T (Γ) of a once-punctured torus X = D/Γ. For precise definitions for the
terminology below, see [26] or references cited there.

Considering the slope, we have identified the space of simple closed geodesics on
X with Q̂ = Q ∪ {∞}. Extending this continuously, we obtain the homeomorphic
identification of the projectivized space PML(X) of measured laminations on X

with the extended real line R̂ ∼= S1.
Let ϕ ∈ T (X) \ {0} be a point in the Bers embedding. The group χϕ(Γ) is

then quasi-Fuchsian and its region of discontinuity consists of two quasidisks fϕ(D)
and Ĉ \ fϕ(D), which are denoted by Ω+

ϕ and Ω−ϕ , respectively. We remark that
χϕ(Γ) is never Fuchsian for ϕ ∈ T (Γ) \ {0}. Since fϕ is conformal on D, Ω+

ϕ/χϕ(Γ)
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is always conformally equivalent to X , whereas X∗ϕ := Ω−ϕ/χϕ(Γ) varies. We de-
note by Cϕ the hyperbolic convex hull of the limit set Λϕ ⊂ Ĉ of χϕ(Γ) in the
hyperbolic three-space H3, where we identify Ĉ with the sphere at infinity of H3.
Then the boundary ∂Cϕ in H3 consists of two connected components ∂C±ϕ facing
to Ω±ϕ . We write Mϕ for the hyperbolic three manifold H3/χϕ(Γ). Then Cϕ/χϕ(Γ)
is the convex core of Mϕ, whose boundary consists of two connected components
∂C±ϕ /χϕ(Γ). The nearest point retraction from Ω±ϕ to ∂C±ϕ induces the homotopy
equivalence between Ω±ϕ/χϕ(Γ) and ∂C±ϕ /χϕ(Γ), and hence, ∂C±ϕ /χϕ(Γ) are both
topological punctured tori (see for example [5]). The surfaces ∂C±ϕ /χϕ(Γ) are en-
dowed with the hyperbolic metric by Mϕ and both are pleated surfaces with the
natural bending measures on their pleating loci. We denote by [pl±(ϕ)] the projec-
tive class in PML(X) of the pleating locus of C±ϕ /χϕ(Γ). Note that each connected
component of ∂C±ϕ minus its pleating locus is contained in a hyperbolic plane in
H3. We write `pl−(ϕ)(Mϕ) and `pl−(ϕ)(X) for the hyperbolic length of the bending
lamination pl−(ϕ) on ∂C−ϕ /χϕ(Γ) and on X, respectively. Now we can state a result
of McMullen [26] on the bending coordinates of T (Γ).

Theorem C ([26, Theorem 1.5]). The mapping

Φ : ϕ 7→
(

[pl−(ϕ)],
`pl−(ϕ)(Mϕ)
`pl−(ϕ)(X)

)
gives a homeomorphism from T (Γ) \ {0} onto PML(X)× (0, 1) = R̂× (0, 1), where
we identify PML(X) with R̂ ∼= S1 as above.

For r ∈ R̂, we set Pr = Φ−1({r} × (0, 1)). These proper arcs in T (Γ) \ {0} will
be called pleating rays. In the special case where for r ∈ Q̂, Pr is called a rational
pleating ray of slope r. We remark that `pl−(ϕ)(X) is constant on Pr. In particular,
if r ∈ Q̂, we have `pl−(ϕ)(X) = arccosh(|tr θr|/2) for ϕ ∈ Pr.

The next result guarantees the computability of the rational pleating rays up to
the accessory parameter. For r ∈ Q̂, put

Hr := {ϕ ∈ B2(D,Γ) ; σr(ϕ) is real and σr(ϕ)2 > 4} = σ−1
r ((−∞,−2) ∪ (2,+∞))

and call it the hyperbolic locus of slope r. Note that 0 ∈ Hr for all r ∈ Q̂.

Theorem 6.1. The rational pleating ray Pr, r ∈ Q̂, is the unique connected com-
ponent of Hr \ {0} with endpoint 0 on which σr(ϕ)2 is strictly smaller than σr(0)2.

Besides Theorem C, we need the local pleating theorem due to Keen and Series
[14, Theorem 8.1] for the proof of our theorem. We state it here in a specialized
form for our aim.

Theorem D. Let ϕ0 ∈ Pr∪{0} for some r ∈ Q̂. Then there exists a neighbourhood
U of ϕ0 in T (Γ) such that every element ϕ ∈ (Hr\{0})∩U satisfies either [pl−(ϕ)] =
r or [pl+(ϕ)] = r.

Proof of Theorem 6.1. Let r ∈ Q̂. We may assume that σr(0) > 2. Take a point
ϕ ∈ Pr, then the axis of χϕ(θr) in H3 lies on the boundary ∂C−ϕ which is invariant
under χϕ(θr). Therefore χϕ(θr) does not rotate H3 around the axis; namely, it is
hyperbolic (see [14, Proposition 6.4] for details) which implies that Pr is contained
in Hr \ {0}.
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Figure 1. Bers embedding of the once-punctured square torus
with pleating rays of level ≤ 4

Recall the inequalities due to McMullen [26, Corollary 3.5]

`pl−(ϕ)(X
∗
ϕ) < `pl−(ϕ)(Mϕ) < `pl−(ϕ)(X) and(6.1)

`pl+(ϕ)(X) < `pl+(ϕ)(Mϕ) < `pl+(ϕ)(X
∗
ϕ)(6.2)

for every ϕ ∈ T (Γ) \ {0}. Since `pl−(ϕ)(Mϕ) = arccosh(σr(ϕ)/2) for ϕ ∈ Pr, we see
that σr(ϕ)→ 2 as ϕ approaches the Bers boundary along Pr by Theorem C. This
means that the endpoint of Pr corresponds to the cusp pinched along the simple
closed geodesic of slope r. In particular, Pr is closed in Hr \ {0}.

In order to show that Pr is a connected component of Hr \ {0} ending at the
basepoint 0 on which σr < σr(0), it suffices to see that Pr is open in Hr \ {0}.
Suppose that ϕ0 ∈ Pr. Note from (6.1) that 2 < σr(ϕ0) < σr(0). Therefore, |σr| <
σr(0) in a sufficiently small neighbourhood U of ϕ0 in T (Γ) \ {0}. By Theorem
D, we can further choose U so that every ϕ ∈ Hr ∩ U satisfies [pl−(ϕ)] = r or
[pl+(ϕ)] = r. If the latter case occurred, (6.2) would yield σr(0) < |σr(ϕ)|. However,
this contradicts the choice of U. Therefore, only the first case occurs, namely, Hr ∩
U ⊂ Pr. Thus the openness follows. The uniqueness immediately follows from
Theorems C and D. �

We emphasize that the set described in the above theorem can be computed,
at least in a numerical way, by tracing the real locus of the function σr in the
decreasing direction from the origin. Figures 1 and 2 were created in this way. The
above theorem shows also that the entire function σr has no branch point on the
pleating ray Pr and at the origin. Furthermore, H. Miyachi [28] recently proved
that σr has no branch point at the cusp corresponding to θr. Summarizing the
above, we obtain the next result.

Corollary 6.2. Each rational pleating ray Pr in T (Γ) with its endpoints is a regular
analytic simple closed arc and σr(ϕ)2 is positive real and decreases to 4 when ϕ
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Figure 2. Bers embedding of a once-punctured “long” rectangu-
lar torus (λ = 0.001)

moves along the ray toward the cusp on the Bers boundary of T (Γ) corresponding
to slope r.

We take a closer look at the analytic structure of pleating rays for the later use.

Theorem 6.3. Any two rational pleating rays intersect transversally at the base-
point unless the tangent vectors have opposite directions there.

The above assertion seems true even when we allow all pleating rays. We, how-
ever, content ourselves here with the above form since we will require only the case
of rational pleating rays in this paper. See the final part of this section explaining
how to numerically compute the value of the accessory parameter and a standard
pair of generators of a Fuchsian group.

We should comment on the similar result for the Maskit embedding of the Te-
ichmüller space of once-punctured tori (see [15], [27] and [40]). The Maskit em-
bedding is a deformation space of terminal regular b-groups of type (1, 1) and it
is realized as an unbounded domain in H, where ∞ plays the same role as the
basepoint in the Bers embedding even though no groups correspond to ∞. Ratio-
nal pleating rays can also be considered for the Maskit embedding; among other
things, Keen and Series [15, Proposition 3.2] showed that for a point µ = s + it
of the rational pleating ray of slope p/q, the real part s tends to 2p/q as t → ∞.
This result implies that the asymptotic behaviour of rational pleating rays at the
basepoint (∞ for the Maskit embedding) characterizes them.

To prove Theorem 6.3, we need a preliminary result connecting the real analytic
structure of the Teichmüller space with the complex analytic one, which might be
of independent interest.

Let γ be a hyperbolic element in an arbitrarily given Fuchsian group Γ. We
denote by `γ : T (Γ)→ R+ the length function on T (Γ) corresponding to γ; namely,
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for ϕ ∈ T (Γ), `γ(ϕ) is the hyperbolic length of the closed geodesic corresponding
to γ in the Riemann surface Ω−ϕ/χϕ(Γ), where Ω−ϕ = Ĉ \ fϕ(D). Let εγ(ϕ) be the
logarithm of the multiplier of χϕ(γ) with positive real part. Therefore, σ2

γ(ϕ) =
tr 2χϕ(γ) = 2 cosh(εγ(ϕ)) + 2 and Re εγ(ϕ) > 0. If we knew the conformal mapping
gϕ from D onto Ω−ϕ , we could relate `γ to εγ by the formula

tr 2
[
gϕ
−1 ◦ χϕ(γ) ◦ gϕ

]
= 2 cosh `γ(ϕ) + 2.

It is, however, difficult to find gϕ, in general. We can, at least, say something
regarding its origin.

Lemma 6.4. For a fixed ϕ ∈ B2(D,Γ), the formula

d

dt
`γ(tϕ)

∣∣∣∣
t=0

= Re
d

dt
εγ(tϕ)

∣∣∣∣
t=0

holds, where the differentiation is taken with respect to the real parameter t.

Proof. We refer the reader to [10] and [29] as standard textbooks for the basic facts
used herein. In this proof, we take advantage of the lower half plane H∗ instead of
the unit disk D, so that we regard Γ as a Fuchsian group acting onH. This procedure
is harmlessly done, as usual, through the Cayley transform z 7→ −i(1 + z)/(1− z).

Let µ be a Beltrami differential for Γ in H with ‖µ‖∞ < 1. We extend µ to be 0
in H∗. On the other hand, let µ∗ denote the Beltrami coefficient for Γ defined by

µ∗(z) =

µ(z), z ∈ H,

µ(z̄), z ∈ H∗.

We denote by Fµ and Fµ the quasiconformal self-homeomorphism of C with Bel-
trami coefficients µ and µ∗, respectively, normalized so as to fix 0 and 1. Note that
Fµ maps H onto itself while Fµ maps H∗ conformally onto the quasidisk Fµ(H∗).
(Note also that Fµ ◦ Fµ−1 is a conformal mapping from H onto Fµ(H).) There-
fore, FµΓFµ−1 is a Fuchsian group while FµΓ(Fµ)−1 is a Kleinian group acting on
Fµ(H∗). It is known that the mapping Φ : µ 7→ SFµ|H∗ is a holomorphic submersion
from the open unit ball of the Banach space of Beltrami differentials for Γ onto
T (Γ).

For a given ϕ, we take a Beltrami differential µ in such a way that the Fréchet
derivative of Φ at the origin sends µ to ϕ.

Let γ ∈ Γ be a hyperbolic element. Conjugating by a suitable Möbius transfor-
mation, we may assume that γ is expressed in the form γ(z) = eε0z, where ε0 > 0
is a constant. Set γt = F tµ ◦ γ ◦ (F tµ)−1 and γt = Ftµ ◦ γ ◦ F−1

tµ for t ∈ R small
enough. Then, by definition, these Möbius transformations can be written as

γt(z) = eε(t)z and γt(z) = eε
∗(t)z.

We now recall Gardiner’s variation formula for the multiplier of a hyperbolic Möbius
transformation under quasiconformal mappings, [6]. As Miyachi remarked in [28,
§8.1], the formula is valid not only for Fuchsian groups but also for Kleinian groups.
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Gardiner’s formula reads as

d

dt
ε(t)

∣∣∣∣
t=0

=
∫∫

A+

µ(z)
z2

dxdy, and

d

dt
ε∗(t)

∣∣∣∣
t=0

=
∫∫

A

µ∗(z)
z2

dxdy =
∫∫

A+

(
µ(z)
z2

+
µ(z)
z̄2

)
dxdy,

where A = {1 < |z| < eε} and A+ = A ∩H. Hence, we obtain (ε∗)′(0) = 2Re ε′(0).
From the definitions, the basic relations 2`γ(Φ(tµ)) = ε∗(t) and εγ(Φ(tµ)) = ε(t)

follow. Noting that Φ(tµ) = tϕ + O(|t|2) as t → 0, we get the desired relation
between `γ and εγ . �

Proof of Theorem 6.3. The argument and notation herein will be based on a paper
of McMullen, [26]. Let r ∈ Q̂. Since Pr is a real locus of an analytic function defined
in C, the unit direction vector of Pr at the origin,

Θr = lim
ϕ→0 in Pr

‖ϕ‖−1
D ϕ,

is well defined. We show that the mapping r 7→ Θr is injective on Q̂.
First we observe that Θr is parallel to the tangent vector d

dtgrtγ(X∗) at t =
0, where grtγ(X∗) is the point in T (Γ) corresponding to the time t grafting of
the mirror image X∗ = X∗0 of X along the simple closed geodesic representing a
hyperbolic element γ ∈ Γ of slope r. Let u be the real part of the holomorphic
function εγ : T (Γ) → C given above. By the relation σ2

γ(ϕ) = 2 cosh(εγ(ϕ)) + 2,
the vector Θr has the opposite direction to the gradient ∇u at the origin because
u is harmonic. On the other hand, McMullen’s theorem [26, Theorem 3.8] states
the formula

d

dt
grtγ(X∗) = −∇`γ(X∗),

where the gradient is taken with respect to the Weil-Petersson metric. In our case,
the Teichmüller space T (Γ) is one-dimensional, and therefore, the Weil-Petersson
(Kähler) metric is conformally equivalent to the Euclidean metric. Now, the formula
∇`γ = ∇u deduced from Lemma 6.4 connects these facts to conclude the above
claim.

To show the injectivity, we next use the fact that grafting and twisting along γ
are related by the relation d

dtgrtγ(X∗) = i · ddt twtγ(X∗) at the origin with a suitable
orientation for γ (see the proof of Theorem 3.8 in [26]). Therefore, the (positive)
earthquake path and the pleating locus (with respect to γ) form a right angle at
the basepoint. Hence, it suffices to show that different earthquake paths starting
from the basepoint have different directions. This assertion has been proved by
Kerckhoff [16, Theorem 3.5] in a more general setting. �

We conclude this section with a comment on the numerical computation of the
accessory parameter and the Fuchsian group uniformizing a given once-punctured
torus.

In the above, we have assumed that we know the value of the accessory param-
eter. However, in practical calculations, we need to know it in advance. We now
indicate how to do that by using our methods developed above. Let λ ∈ C \ {0, 1}
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be given. Instead of (4.5), we consider the differential equation

(6.3) 2y′′ +
{

1
2z2(z − 1)2

+
1

2(z − λ)2
+

t

z(z − 1)(z − λ)

}
y = 0.

We want to find the value t = c(λ) for the given λ. Let α0 and α∞ be the
same as in Section 4 and let L̂t[αr] be the transition matrix of (6.3) along the
path αr for r = 0,∞. We set A(t) = L̂t[α0]Mz0(A0) and B(t) = L̂t[α∞]Mz0(A∞),
where Mz0(Ar) is given in Section 4. Then F0(t) = trA(t), F∞(t) = trB(t) and
F1(t) = trA(t)B(t) are all entire functions. Let Γ(t) be the Möbius group generated
by A(t) and B(t). Theorem 4.3 implies that Γ(c(λ)) is Möbius conjugate to the
original Fuchsian group Γ uniformizing the once-punctured torus X corresponding
to τ where λ = λ(τ). Therefore, if t = c(λ), the following hold:

(6.4) F0(t), F∞(t), F1(t) ∈ (−∞,−2) ∪ (2,+∞).

Conversely, if t ∈ C satisfies (6.4), t is a candidate for the value of the accessory
parameter c(λ). In fact, for t with (t − c(λ))ψ0 ∈ T (Y ), Γ(t) is never Fuchsian
unless t = c(λ). Recalling the fact that Γ(t) is conjugate to a subgroup of PSL(2,R)
precisely when the values F0(t), F∞(t) and F1(t) are all real, we see that Γ(t) is
Fuchsian if and only if (6.4) hold under the assumption that (t− c(λ))ψ0 ∈ T (Y ).
Note also that |t−c(λ)| < 2/‖ψ0‖Y implies (t−c(λ))ψ0 ∈ T (Y ) by the Ahlfors-Weill
theorem (see Section 2). Therefore, we can conclude that t = c(λ) from condition
(6.4) if we are certain that |t− c(λ)| < 2/‖ψ0‖Y .

Hence, if we are given an initial point t0 which is sufficiently close to c(λ), we
can construct a sequence tn tending to the value c(λ) as follows. By Theorem 6.3,
we can choose two of F0, F∞, F1, say F0 and F1, so that the corresponding pleating
rays P0 and P1 are transversal at the basepoint. Then the point t = c(λ) will be
determined (at least locally) as the intersection of the real loci of functions F0 and
F1. Set

t2j+1 = t2j − i
ImF0(t2j)
F ′0(t2j)

and

t2j+2 = t2j+1 − i
ImF1(t2j+1)
F ′1(t2j+1)

for j = 0, 1, . . . . Then, in a similar way to Newton’s method, the sequence tn
converges to c(λ) if t0 is sufficiently close to c(λ) (see, for example, [31, § 3.5.2]).
Note here that the transversality of the pleating rays guarantees the convergence
of tn.

We make a few technical remarks. Since it is difficult to calculate the derivative
of Fr practically, we replace it by a suitable difference quotient in the above formulae
like the Secant method. It is typical to use (Fr(tn)− Fr(tn−2))/(tn − tn−2) as the
difference quotient provided that tn − tn−2 is sufficiently small.

It is difficult to give the initial point t0 a priori for a given λ. However, if we know
the value of c(λ0) for some λ0 (e.g., λ0 = 1/2), we may choose a finite sequence
λ1, λ2, . . . , λn = λ so that λj and λj−1 are close enough for j = 1, . . . , n. Then, we
could compute c(λj) by using the value of c(λj−1) as the initial point t0 for λj . In
this way, we could reach λ after n-times of this procedure.
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Figure 3. Graph of the accessory parameter c(λ) in 0 < λ < 1/2

Using the above method, we have drawn the graph of the function c(λ) in 0 <
λ < 1/2 in Figure 3. Note that Hempel [8] has obtained the asymptotic formula

c(λ) =
1
2
− π2

2(− log |λ|)2
(1 + o(1))

as λ→ 0 in C.

7. Relationship with Heun’s differential equation

In this section, we explain that our differential equation (4.5) can be translated
to Heun’s differential equation in the standard way. It may be more advantageous
to use the latter form because that is more widely studied and the behaviour of
coefficients is tamer than the former near the singularities (see [33] and its extensive
references).

Heun’s equation has the form

u′′ +
(
c0
z

+
c1

z − 1
+

c2
z − λ

)
u′ +

abz − q
z(z − 1)(z − λ)

u = 0,

where c0, c1, c2, a, b and q are complex parameters satisfying the relation

c0 + c1 + c2 = a+ b+ 1.

More generally, a linear differential equation of the form u′′ + Pu′ + Qu
= 0 can be transformed locally to the form y′′ + Ry = 0 by putting u(z) =
exp(−

∫ z
P (ζ)dζ/2)y(z). In the case when c0 = c1 = c2 = a = b = 1 and

q = (1 − t− c(λ))/2, Heun’s equation takes the form

(7.1) u′′ +
(

1
z

+
1

z − 1
+

1
z − λ

)
u′ +

2z + t+ c(λ)− 1
2z(z − 1)(z − λ)

u = 0

and the above-mentioned transformation

u =
y√

z(z − 1)(z − λ)

reduces Heun’s equation to our equation (4.5). It is an interesting fact that the
factor ω(z) := 1/

√
z(z − 1)(z − λ) forms a basis of the one-dimensional vector

space of Abelian differentials on the torus defined as the algebraic curve w2 =
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z(z − 1)(z − λ). In particular, (ω ◦ A) · A′ = ±ω holds for an automorphism A of
Y = C \ {0, 1, λ}.

Therefore, for a solution u of (7.1) and A ∈ Aut(Y ), we can see that A∗1/2u :=
(u ◦A)(A′)1/2 is a solution of (7.1) again.

We now set

F̃z1 =
(
u′1 u1

u′2 u2

)
,

where u1 and u2 are the fundamental solutions of (7.1) at z1, namely, the solutions
satisfying the initial conditions u1(z1) = 0, u′1(z1) = 1 and u2(z1) = 1, u′2(z1) = 0,
respectively. For [α] ∈ Y [z1, z2] we denote by H̃[α] the germ at z2 obtained by
analytic continuation of the fundamental matrix F̃z1 along the path α in Y. In the
same way as in the case of (4.5), we also define the transition matrix L̃[α] = L̃t[α]
by the relation H̃[α] = L̃[α]F̃z2 for [α] ∈ Y [z1, z2]. Then, the similar relations to (i),
(ii) and (iii) in Section 3 hold for these quantities. Noting the elementary identity

ω

(
y1

y2

)
=
(
ω(z1) 0
ω′(z1) ω(z1)

)(
u1

u2

)
= K(z1)

(
u1

u2

)
for the fundamental solutions of (4.5) and (7.1) at z1, where

K(z) = ω(z)
(

1 0
µ(z) 1

)
, µ(z) = −1

2

(
1
z

+
1

z − 1
+

1
z − λ

)
,

we have the fundamental relation Fz1K = K(z1)F̃z1 near z1 ∈ Y. By analytic
continuation, we obtain H[α]K(z2) = K(z1)H̃[α] for [α] ∈ Y [z1, z2], in particular,

(7.2) L[α] = K(z1)L̃[α]K(z2)−1.

Let z1 be a point in Y = C \ {0, 1, λ}. We now take curves ε1, ε2, ε3 and ε4 in
Y starting from z1, rounding 0, 1, λ and ∞, respectively, once anticlockwise and
ending at z1, so that π1(Y, z1) = 〈[ε1], [ε2], [ε3], [ε4]〉 and [ε1][ε2][ε3][ε4] = 1. Then,
the next result immediately follows.

Theorem 7.1. Let lt and l̃t be monodromy homomorphisms of differential equa-
tions (4.5) and (7.1) from π1(Y, z1) into SL(2,C), respectively. We then have
lt[εj] = −l̃t[εj ] for j = 0, 1, 2, 3. In particular, lt = l̃t on the canonical image
of the Fuchsian group Γ0 = Γ ∩ Γ′.

Corollary 7.2. The monodromy group for (4.5) is discrete if and only if the mon-
odromy group for (7.1) is.

Since L[αr]Mz0(Ar) is conjugate with L̃[αr]M̃z0(Ar) in GL(2,C), where M̃z0(Ar)
= K(Ar(z0))−1Mz0(Ar)K(z0) for r = 0,∞, we obtain the following statement from
Theorem 4.3.

Theorem 7.3. For suitable choices of representatives θ̃0 of θ0 and θ̃∞ of θ∞ in
SU(1, 1),

χ̃tϕ0(θ̃0) = L̃t[α0]M̃z0(A0),

and
χ̃tϕ0(θ̃∞) = L̃t[α∞]M̃z0(A∞)

for any t ∈ C up to SL(2,C)-conjugacy, where ϕ0 = p∗2(ψ0).
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