
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7859–7869,

November 16–20, 2020. c©2020 Association for Computational Linguistics

7859

BERT-of-Theseus: Compressing BERT by Progressive Module Replacing

Canwen Xu1∗, Wangchunshu Zhou2∗, Tao Ge3, Furu Wei3, Ming Zhou3

1 University of California, San Diego 2 Beihang University 3 Microsoft Research Asia
1 cxu@ucsd.edu 2 zhouwangchunshu@buaa.edu.cn

3 {tage,fuwei,mingzhou}@microsoft.com

Abstract

In this paper, we propose a novel model

compression approach to effectively compress

BERT by progressive module replacing. Our

approach first divides the original BERT into

several modules and builds their compact sub-

stitutes. Then, we randomly replace the origi-

nal modules with their substitutes to train the

compact modules to mimic the behavior of

the original modules. We progressively in-

crease the probability of replacement through

the training. In this way, our approach brings

a deeper level of interaction between the orig-

inal and compact models. Compared to the

previous knowledge distillation approaches for

BERT compression, our approach does not in-

troduce any additional loss function. Our ap-

proach outperforms existing knowledge distil-

lation approaches on GLUE benchmark, show-

ing a new perspective of model compression.1

1 Introduction

With the prevalence of deep learning, many huge

neural models have been proposed and achieve

state-of-the-art performance in various fields (He

et al., 2016; Vaswani et al., 2017). Specifically,

in Natural Language Processing (NLP), pretrain-

ing and fine-tuning have become the new norm

of most tasks. Transformer-based pretrained mod-

els (Devlin et al., 2019; Liu et al., 2019b; Yang

et al., 2019; Song et al., 2019; Dong et al., 2019)

have dominated the field of both Natural Language

Understanding (NLU) and Natural Language Gen-

eration (NLG). These models benefit from their

“overparameterized” nature (Nakkiran et al., 2020)

and contain millions or even billions of parameters,

making it computationally expensive and ineffi-

cient considering both memory consumption and

∗ Equal contribution. Work done during these two authors’
internship at Microsoft Research Asia.

1The code and pretrained model are available at https:
//github.com/JetRunner/BERT-of-Theseus

high latency. This drawback enormously hinders

the applications of these models in production.

To resolve this problem, many techniques have

been proposed to compress a neural network. Gen-

erally, these techniques can be categorized into

Quantization (Gong et al., 2014), Weights Prun-

ing (Han et al., 2016) and Knowledge Distillation

(KD) (Hinton et al., 2015). Among them, KD has

received much attention for compressing pretrained

language models. KD exploits a large teacher

model to “teach” a compact student model to mimic

the teacher’s behavior. In this way, the knowledge

embedded in the teacher model can be transferred

into the smaller model. However, the retained per-

formance of the student model relies on a well-

designed distillation loss function which forces the

student model to behave as the teacher. Recent

studies on KD (Sun et al., 2019; Jiao et al., 2019)

even leverage more sophisticated model-specific

distillation loss functions for better performance.

Different from previous KD studies which ex-

plicitly exploit a distillation loss to minimize the

distance between the teacher model and the student

model, we propose a new genre of model compres-

sion. Inspired by the famous thought experiment

“Ship of Theseus”2 in Philosophy, where all com-

ponents of a ship are gradually replaced by new

ones until no original component exists, we pro-

pose Theseus Compression for BERT (BERT-of-

Theseus), which progressively substitutes modules

of BERT with modules of fewer parameters. We

call the original model and compressed model pre-

decessor and successor, in correspondence to the

concepts of teacher and student in KD, respectively.

As shown in Figure 1, we first specify a substitute

(successor module) for each predecessor module

(i.e., modules in the predecessor model). Then, we

randomly replace each predecessor module with its

2https://en.wikipedia.org/wiki/Ship_

of_Theseus

https://github.com/JetRunner/BERT-of-Theseus
https://github.com/JetRunner/BERT-of-Theseus
https://en.wikipedia.org/wiki/Ship_of_Theseus
https://en.wikipedia.org/wiki/Ship_of_Theseus

7860

corresponding successor module by a probability

and make them work together in the training phase.

After convergence, we combine all successor mod-

ules to be the successor model for inference. In

this way, the large predecessor model can be com-

pressed into a compact successor model.

Theseus Compression shares a similar idea with

KD, which encourages the compressed model to

behave like the original, but holds many merits.

First, we only use the task-specific loss function

in the compression process. However, KD-based

methods use task-specific loss, together with one

or multiple distillation losses as its optimization

objective. Also, selecting various loss functions

and balancing the weights of each loss for differ-

ent tasks and datasets can be laborious (Sun et al.,

2019; Sanh et al., 2019). Second, different from

recent work (Jiao et al., 2019), Theseus Compres-

sion does not use Transformer-specific features for

compression thus is potential to compress a wide

spectrum of models. Third, instead of using the

original model only for inference in KD, our ap-

proach allows the predecessor model to work in as-

sociation with the compressed successor model, en-

abling a possible gradient-level interaction. More-

over, the different module permutations mixing

both predecessor and successor modules may add

extra regularization, similar to Dropout (Srivastava

et al., 2014). With a Curriculum Learning (Bengio

et al., 2009) driven replacement scheduler, our ap-

proach achieves promising performance compress-

ing BERT (Devlin et al., 2019), a large pretrained

Transformer model.

To summarize, our contribution is two-fold: (1)

We propose a novel approach, Theseus Compres-

sion, revealing a new pathway to model compres-

sion, with no additional loss function. (2) Our

compressed BERT model is 1.94× faster while re-

taining more than 98% performance of the original

model, outperforming other KD-based compres-

sion baselines.

2 Related Work

Model Compression Model compression aims

to reduce the size and computational cost of a large

model while retaining as much performance as

possible. Conventional explanations (Denil et al.,

2013; Zhai et al., 2016) claim that the large num-

ber of weights is necessary for the training of deep

neural network but a high degree of redundancy

exists after training. Recent work (Frankle and

Carbin, 2019) proposes The Lottery Ticket Hypoth-

esis claiming that dense, randomly initialized and

feed-forward networks contain subnetworks that

can be recognized and trained to get a comparable

test accuracy to the original network. Quantiza-

tion (Gong et al., 2014) reduces the number of bits

used to represent a number in a model. Weights

Pruning (Han et al., 2016; He et al., 2017) conducts

a binary classification to decide which weights to

be trimmed from the model. Knowledge Distil-

lation (KD) (Hinton et al., 2015) aims to train a

compact model which behaves like the original

one. FitNets (Romero et al., 2015) demonstrates

that “hints” learned by the large model can ben-

efit the distillation process. Born-Again Neural

Network (Furlanello et al., 2018) reveals that en-

sembling multiple identical-parameterized students

can outperform a teacher model. LIT (Koratana

et al., 2019) introduces block-wise intermediate

representation training. Liu et al. (2019a) distilled

knowledge from ensemble models to improve the

performance of a single model on NLU tasks. Tan

et al. (2019) exploited KD for multi-lingual ma-

chine translation. Different from KD-based meth-

ods, our proposed Theseus Compression is the first

approach to mix the original model and compact

model for training. Also, no additional loss is

used throughout the whole compression procedure,

which simplifies the implementation.

Faster BERT Very recently, many attempts have

been made to speed up a large pretrained language

model (e.g., BERT (Devlin et al., 2019)). Michel

et al. (2019) reduced the parameters of a BERT

model by pruning unnecessary heads in the Trans-

former. Shen et al. (2020) quantized BERT to

2-bit using Hessian information. Also, substan-

tial modification has been made to Transformer

architecture. Fan et al. (2020) exploited a structure

dropping mechanism to train a BERT-like model

which is resilient to pruning. ALBERT (Lan et al.,

2020) leverages matrix decomposition and param-

eter sharing. However, these models cannot ex-

ploit ready-made model weights and require a full

retraining. Tang et al. (2019) used a BiLSTM ar-

chitecture to extract task-specific knowledge from

BERT. DistilBERT (Sanh et al., 2019) applies a

naive Knowledge Distillation on the same corpus

used to pretrain BERT. Patient Knowledge Distilla-

tion (PKD) (Sun et al., 2019) designs multiple dis-

tillation losses between the module hidden states of

the teacher and student models. Pretrained Distilla-

7861

r1<latexit sha1_base64="tDa4SpSt1KoqCjrlptNnzWgSJRM=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM+1ClwU3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv70Zp53H5nSPJIPJo2ZF5Kx5AGnxFjrXg3dYbnq1JyF8Ca4K6g20aDyXcqnrWH5czCKaBIyaaggWvddJzZeRpThVLBZcZBoFhM6JWPWtyhJyLSXLUad4XPrjHAQKfukwQv3d0dGQq3T0LeVITETvZ7Nzf+yfmKCay/jMk4Mk3T5UZAIbCI83xuPuGLUiNQCoYrbWTGdEEWosdcp2iO46ytvQqdecxu1+p1bbV7CUgU4hTO4ABeuoAm30II2UBjDE7zAKxLoGb2h92VpDq16KvBH6OMH+UyPvg==</latexit>

r2
<latexit sha1_base64="h+aDnRRox0jWfXcSLnsUal9X6ak=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM+1ClwU3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv70Zp53H5nSPJIPJo2ZF5Kx5AGnxFjrXg3rw3LVqTkL4U1wV1BtokHlu5RPW8Py52AU0SRk0lBBtO67Tmy8jCjDqWCz4iDRLCZ0Ssasb1GSkGkvW4w6w+fWGeEgUvZJgxfu746MhFqnoW8rQ2Imej2bm/9l/cQE117GZZwYJunyoyAR2ER4vjceccWoEakFQhW3s2I6IYpQY69TtEdw11fehE695jZq9Tu32ryEpQpwCmdwAS5cQRNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McP+tCPvw==</latexit>

r3
<latexit sha1_base64="aQddVDQh1/aiqPuUdM0/5R70LL8=">AAAB6nicbZDNSgMxFIVvqtZarVa7dBMsggspM+1ClwU3LivaH2iHkkkzbWgmMyQZYRj6CG5cKOLWJ3LnwwimPwttPRD4OOdecu/1Y8G1cZwvlNva3snvFvaK+welw6Py8UlHR4mirE0jEameTzQTXLK24UawXqwYCX3Buv70Zp53H5nSPJIPJo2ZF5Kx5AGnxFjrXg0bw3LVqTkL4U1wV1BtokHlu5RPW8Py52AU0SRk0lBBtO67Tmy8jCjDqWCz4iDRLCZ0Ssasb1GSkGkvW4w6w+fWGeEgUvZJgxfu746MhFqnoW8rQ2Imej2bm/9l/cQE117GZZwYJunyoyAR2ER4vjceccWoEakFQhW3s2I6IYpQY69TtEdw11fehE695jZq9Tu32ryEpQpwCmdwAS5cQRNuoQVtoDCGJ3iBVyTQM3pD78vSHFr1VOCP0McP/FSPwA==</latexit>

prd1
<latexit sha1_base64="tBzKsfzk2Yhf3/64XLtOaf7L2o4=">AAAB7HicbZDLSgMxFIbPeKm13qouXRgtggstk7rQZcGNywpOW2iHkslk2tBMZkgyQhn6DG5cKOLWB3Lne/gAppeFtv4Q+Pj/c8g5J0gF18Z1v5yV1bX1wkZxs7S1vbO7V94/aOokU5R5NBGJagdEM8El8ww3grVTxUgcCNYKhreTvPXIlOaJfDCjlPkx6UsecUqMtbxUhT3cK1fcqjsVWgY8h0q90BTfxyeXjV75sxsmNIuZNFQQrTvYTY2fE2U4FWxc6maapYQOSZ91LEoSM+3n02HH6Mw6IYoSZZ80aOr+7shJrPUoDmxlTMxAL2YT87+sk5noxs+5TDPDJJ19FGUCmQRNNkchV4waMbJAqOJ2VkQHRBFq7H1K9gh4ceVlaNaq+Kpau8eV+gXMVIQjOIVzwHANdbiDBnhAgcMTvMCrI51n5815n5WuOPOeQ/gj5+MHyP6Q1g==</latexit>

prd2
<latexit sha1_base64="3O8ftj7T9jYMY7LuIr2ZxoWcEtk=">AAAB7HicbZDLSgMxFIbPeKm13qouXRgtggstM3Why4IblxWcttAOJZPJtKGZZEgyQhn6DG5cKOLWB3Lne/gAppeFtv4Q+Pj/c8g5J0w508Z1v5yV1bX1wkZxs7S1vbO7V94/aGqZKUJ9IrlU7RBrypmgvmGG03aqKE5CTlvh8HaStx6p0kyKBzNKaZDgvmAxI9hYy09V1Kv1yhW36k6FlsGbQ6VeaPLv45PLRq/82Y0kyRIqDOFY647npibIsTKMcDoudTNNU0yGuE87FgVOqA7y6bBjdGadCMVS2ScMmrq/O3KcaD1KQluZYDPQi9nE/C/rZCa+CXIm0sxQQWYfxRlHRqLJ5ihiihLDRxYwUczOisgAK0yMvU/JHsFbXHkZmrWqd1Wt3XuV+gXMVIQjOIVz8OAa6nAHDfCBAIMneIFXRzjPzpvzPitdceY9h/BHzscPyoKQ1w==</latexit>

prd3
<latexit sha1_base64="a5qsukoiAQevs5WpajXAk13dyrI=">AAAB7HicbZDPTsJAEManqIj4D/XowVVi4kFJCwc9knjxiIkFEmjIdruFDdtts7s1IQ3P4MWDxnj1gbz5Hj6AS+Gg4Jds8sv3zWRnxk84U9q2v6zC2vpGcbO0Vd7e2d3brxwctlWcSkJdEvNYdn2sKGeCupppTruJpDjyOe3449tZ3nmkUrFYPOhJQr0IDwULGcHaWG4ig0FjUKnaNTsXWgVnAdVmsc2/T06vWoPKZz+ISRpRoQnHSvUcO9FehqVmhNNpuZ8qmmAyxkPaMyhwRJWX5cNO0blxAhTG0jyhUe7+7shwpNQk8k1lhPVILWcz87+sl+rwxsuYSFJNBZl/FKYc6RjNNkcBk5RoPjGAiWRmVkRGWGKizX3K5gjO8sqr0K7XnEatfu9Um5cwVwmO4QwuwIFraMIdtMAFAgye4AVeLWE9W2/W+7y0YC16juCPrI8fzAaQ2A==</latexit>

scc1
<latexit sha1_base64="XpKkpxxeXC5nS6phQKWgehH6msI=">AAAB7HicbZDPSgMxEMYnVWutVqs9egkWwYOU3XrQY8GLxwpuW2iXkk2zbWg2uyRZYVn6DF48KOLVB/Lmwwimfw7a+kHgx/fNkJkJEsG1cZwvVNja3inulvbK+weVw6Pq8UlHx6mizKOxiFUvIJoJLplnuBGslyhGokCwbjC9nefdR6Y0j+WDyRLmR2QsecgpMdbyNKVDd1itOw1nIbwJ7grqLTSofVeKWXtY/RyMYppGTBoqiNZ910mMnxNlOBVsVh6kmiWETsmY9S1KEjHt54thZ/jcOiMcxso+afDC/d2Rk0jrLApsZUTMRK9nc/O/rJ+a8MbPuUxSwyRdfhSmApsYzzfHI64YNSKzQKjidlZMJ0QRaux9yvYI7vrKm9BpNtyrRvPerbcuYakSnMIZXIAL19CCO2iDBxQ4PMELvCKJntEbel+WFtCqpwZ/hD5+AHOvkJk=</latexit>

scc2
<latexit sha1_base64="UwdYqvPnTtqmoIyRVCpD/8CCfYE=">AAAB7HicbZDPSgMxEMYnVWutVqs9egkWwYOU3XrQY8GLxwpuW2iXkk2zbWg2uyRZYVn6DF48KOLVB/Lmwwimfw7a+kHgx/fNkJkJEsG1cZwvVNja3inulvbK+weVw6Pq8UlHx6mizKOxiFUvIJoJLplnuBGslyhGokCwbjC9nefdR6Y0j+WDyRLmR2QsecgpMdbyNKXD5rBadxrOQngT3BXUW2hQ+64Us/aw+jkYxTSNmDRUEK37rpMYPyfKcCrYrDxINUsInZIx61uUJGLazxfDzvC5dUY4jJV90uCF+7sjJ5HWWRTYyoiYiV7P5uZ/WT814Y2fc5mkhkm6/ChMBTYxnm+OR1wxakRmgVDF7ayYTogi1Nj7lO0R3PWVN6HTbLhXjea9W29dwlIlOIUzuAAXrqEFd9AGDyhweIIXeEUSPaM39L4sLaBVTw3+CH38AHUzkJo=</latexit>

scc3
<latexit sha1_base64="osMAFMJgTxy5SnjuwA8VczEC8OU=">AAAB7HicbZDNSgMxFIVv/Km1Wq126SZYBBdSZtqFLgtuXFZw2kI7lEyaaUMzmSHJCMPQZ3DjQhG3PpA7H0Yw/Vlo64HAxzn3kntvkAiujeN8oa3tnd3CXnG/dHBYPjqunJx2dJwqyjwai1j1AqKZ4JJ5hhvBeoliJAoE6wbT23nefWRK81g+mCxhfkTGkoecEmMtT1M6bA4rNafuLIQ3wV1BrYUG1e9yIWsPK5+DUUzTiElDBdG67zqJ8XOiDKeCzUqDVLOE0CkZs75FSSKm/Xwx7AxfWGeEw1jZJw1euL87chJpnUWBrYyImej1bG7+l/VTE974OZdJapiky4/CVGAT4/nmeMQVo0ZkFghV3M6K6YQoQo29T8kewV1feRM6jbrbrDfu3VrrCpYqwhmcwyW4cA0tuIM2eECBwxO8wCuS6Bm9ofdl6RZa9VThj9DHD3a3kJs=</latexit>

(a) Compression Training

scc1<latexit sha1_base64="XpKkpxxeXC5nS6phQKWgehH6msI=">AAAB7HicbZDPSgMxEMYnVWutVqs9egkWwYOU3XrQY8GLxwpuW2iXkk2zbWg2uyRZYVn6DF48KOLVB/Lmwwimfw7a+kHgx/fNkJkJEsG1cZwvVNja3inulvbK+weVw6Pq8UlHx6mizKOxiFUvIJoJLplnuBGslyhGokCwbjC9nefdR6Y0j+WDyRLmR2QsecgpMdbyNKVDd1itOw1nIbwJ7grqLTSofVeKWXtY/RyMYppGTBoqiNZ910mMnxNlOBVsVh6kmiWETsmY9S1KEjHt54thZ/jcOiMcxso+afDC/d2Rk0jrLApsZUTMRK9nc/O/rJ+a8MbPuUxSwyRdfhSmApsYzzfHI64YNSKzQKjidlZMJ0QRaux9yvYI7vrKm9BpNtyrRvPerbcuYakSnMIZXIAL19CCO2iDBxQ4PMELvCKJntEbel+WFtCqpwZ/hD5+AHOvkJk=</latexit>

scc2<latexit sha1_base64="UwdYqvPnTtqmoIyRVCpD/8CCfYE=">AAAB7HicbZDPSgMxEMYnVWutVqs9egkWwYOU3XrQY8GLxwpuW2iXkk2zbWg2uyRZYVn6DF48KOLVB/Lmwwimfw7a+kHgx/fNkJkJEsG1cZwvVNja3inulvbK+weVw6Pq8UlHx6mizKOxiFUvIJoJLplnuBGslyhGokCwbjC9nefdR6Y0j+WDyRLmR2QsecgpMdbyNKXD5rBadxrOQngT3BXUW2hQ+64Us/aw+jkYxTSNmDRUEK37rpMYPyfKcCrYrDxINUsInZIx61uUJGLazxfDzvC5dUY4jJV90uCF+7sjJ5HWWRTYyoiYiV7P5uZ/WT814Y2fc5mkhkm6/ChMBTYxnm+OR1wxakRmgVDF7ayYTogi1Nj7lO0R3PWVN6HTbLhXjea9W29dwlIlOIUzuAAXrqEFd9AGDyhweIIXeEUSPaM39L4sLaBVTw3+CH38AHUzkJo=</latexit>

scc3
<latexit sha1_base64="osMAFMJgTxy5SnjuwA8VczEC8OU=">AAAB7HicbZDNSgMxFIVv/Km1Wq126SZYBBdSZtqFLgtuXFZw2kI7lEyaaUMzmSHJCMPQZ3DjQhG3PpA7H0Yw/Vlo64HAxzn3kntvkAiujeN8oa3tnd3CXnG/dHBYPjqunJx2dJwqyjwai1j1AqKZ4JJ5hhvBeoliJAoE6wbT23nefWRK81g+mCxhfkTGkoecEmMtT1M6bA4rNafuLIQ3wV1BrYUG1e9yIWsPK5+DUUzTiElDBdG67zqJ8XOiDKeCzUqDVLOE0CkZs75FSSKm/Xwx7AxfWGeEw1jZJw1euL87chJpnUWBrYyImej1bG7+l/VTE974OZdJapiky4/CVGAT4/nmeMQVo0ZkFghV3M6K6YQoQo29T8kewV1feRM6jbrbrDfu3VrrCpYqwhmcwyW4cA0tuIM2eECBwxO8wCuS6Bm9ofdl6RZa9VThj9DHD3a3kJs=</latexit>

(b) Successor Fine-
tuning and Inference

Figure 1: The workflow of BERT-of-Theseus. In this example, we compress a 6-layer predecessor P =
{prd1, . . . , prd3} to a 3-layer successor S = {scc1, . . . , scc3}. prdi and scci contain two and one layer, re-

spectively. (a) During module replacing training, each predecessor module prdi is replaced with corresponding

successor module scci by the probability of p. (b) During successor fine-tuning and inference, all successor mod-

ules scc1...3 are combined for calculation.

tion (Turc et al., 2019) pretrains the student model

with a self-supervised masked LM objective on a

large corpus first, then performs a standard KD on

supervised tasks. TinyBERT (Jiao et al., 2019) con-

ducts the Knowledge Distillation twice with data

augmentation. MobileBERT (Sun et al., 2020) de-

vises a more computationally efficient architecture

and applies knowledge distillation with a bottom-to-

top layer training procedure. PABEE (Zhou et al.,

2020b) exploits early exiting to dynamically accel-

erate the inference of BERT.

3 BERT-of-Theseus

In this section, we introduce module replacing, the

technique proposed for BERT-of-Theseus. Further,

we introduce a Curriculum Learning driven sched-

uler to obtain better performance. The workflow is

shown in Figure 1.

3.1 Module Replacing

The basic idea of Theseus Compression is very sim-

ilar to KD. We want the successor model to act like

a predecessor model. KD explicitly defines a loss

to measure the similarity of the teacher and student.

However, the performance vastly relies on the de-

sign of the loss function (Hinton et al., 2015; Sun

et al., 2019; Jiao et al., 2019). This loss function

needs to be combined with task-specific loss (Sun

et al., 2019; Koratana et al., 2019). Different from

KD, Theseus Compression only requires one task-

specific loss function (e.g., Cross Entropy), which

closely resembles a fine-tuning procedure. Inspired

by Dropout (Srivastava et al., 2014), we propose

module replacing, a novel technique for model com-

pression. We call the original model and the tar-

get model predecessor and successor, respectively.

First, we specify a successor module for each mod-

ule in the predecessor. For example, in the con-

text of BERT compression, we let one Transformer

layer be the successor module for two Transformer

layers. Consider a predecessor model P which has

n modules and a successor model S which has n
predefined modules. Let P = {prd1, . . . , prdn}
denote the predecessor model, prdi and scci denote

the the predecessor modules and their correspond-

ing substitutes, respectively. The output vectors of

the i-th module is denoted as yi. Thus, the forward

operation can be described in the form of:

yi+1 = prdi(yi) (1)

During compression, we apply module replacing.

First, for (i+1)-th module, ri+1 is an independent

Bernoulli random variable which has probability p
to be 1 and 1− p to be 0.

ri+1 ∼ Bernoulli(p) (2)

Then, the output of the (i + 1)-th model is calcu-

lated as:

yi+1 = ri+1∗scci(yi)+(1−ri+1)∗prdi(yi) (3)

7862

where ∗ denotes the element-wise multiplication,

ri+1 ∈ {0, 1}. In this way, the predecessor mod-

ules and successor modules work together in the

training. Since the permutation of the hybrid model

is random, it adds extra noises as a regulariza-

tion for the training of the successor, similar to

Dropout (Srivastava et al., 2014).

During training, similar to a fine-tuning process,

we optimize a regular task-specific loss, e.g., Cross

Entropy:

L = −
∑

j∈|X|

∑

c∈C

[✶ [zj = c] · logP (zj = c|xj)]

(4)

where xj ∈ X is the i-th training sample; zj is its

corresponding ground-truth label; c and C denote

a class label and the set of class labels, respectively.

For back-propagation, the weights of all predeces-

sor modules are frozen. For both the embedding

layer and output layer of the predecessor model

are weight-frozen and directly adopted for the suc-

cessor model in this training phase. In this way,

the gradient can be calculated across both the pre-

decessor and successor modules, allowing deeper

interaction.

3.2 Successor Fine-tuning and Inference

To make the training and inference processes as

close as possible, we further carry out a post-

replacement fine-tuning phase to allow all succes-

sor modules to work together. After the replacing

compression converges, we collect all successor

modules and combine them to be the successor

model S:

S = {scc1, . . . , sccn}

yi+1 = scci(yi)
(5)

Since each scci is smaller than prdi in size, the pre-

decessor model P is in essence compressed into a

smaller model S. Then, we fine-tune the successor

model by optimizing the same loss of Equation 4.

The whole procedure including module replacing

and successor fine-tuning is illustrated in Figure

2(a). Finally, we use the fine-tuned successor for

inference as Equation 5.

3.3 Curriculum Replacement

Although setting a constant replacement rate p can

meet the need for compressing a model, we further

highlight a Curriculum Learning (Bengio et al.,

2009) driven replacement scheduler, which coordi-

nates the progressive replacement of the modules.

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Re
pl

ac
in

g
Ra

te

1 2

(a) Constant p=0.5

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1 2

(b) Linear Replace Scheduler

Figure 2: The replacing curves of a constant module

replace rate and a replacement scheduler. We use dif-

ferent shades of gray to mark the two phases of The-

seus Compression: (1) Module replacing. (2) Succes-

sor fine-tuning.

Similar to (Morerio et al., 2017; Zhou et al., 2020a),

we devise a replacement scheduler to dynamically

tune the replacement rate p.

Here, we leverage a simple linear scheduler θ(t)
to output the dynamic replacement rate pd for step

t.

pd = min(1, θ(t)) = min(1, kt+ b) (6)

where k > 0 is the coefficient and b is the basic

replacement rate. The replacing rate curve with a

replacement scheduler is illustrated in Figure 2(b).

In this way, we unify the two previously sepa-

rated training stages and encourage an end-to-end

easy-to-hard learning process. First, with more

predecessor modules present, the model would

more likely to correctly predict thus have a rel-

atively small cross-entropy loss, which is helpful

for smoothing the learning process. Then, at a later

time of compression, more modules can be present

together, encouraging the model to gradually learn

to predict with less guidance from the predeces-

sor and steadily transit to the successor fine-tuning

stage.

Second, at the beginning of the compression,

when θ(t) < 1, considering the average learning

rate for all n successor modules, the expected num-

ber of replaced modules is n · pd and the expected

average learning rate is:

lr′ = (npd/n)lr = (kt+ b)lr (7)

where lr is the constant learning rate set for the

compression and lr′ is the equivalent learning rate

considering all successor modules. Thus, when ap-

plying a replacement scheduler, a warm-up mecha-

nism (Popel and Bojar, 2018) is essentially adopted

at the same time, which helps the training of a

Transformer.

7863

4 Experiments

In this section, we introduce the experiments of

Theseus Compression for BERT (Devlin et al.,

2019) compression. We compare BERT-of-

Theseus with other compression methods and fur-

ther conduct experiments to analyze the results.

4.1 Datasets

We evaluate our proposed approach on the GLUE

benchmark (Wang et al., 2019; Dolan and Brock-

ett, 2005; Conneau and Kiela, 2018; Socher et al.,

2013; Williams et al., 2018; Rajpurkar et al., 2016;

Warstadt et al., 2019). Note that we exclude

WNLI (Levesque, 2011) following the original

BERT paper (Devlin et al., 2019).

The accuracy is used as the metric for SST-2,

MNLI-m, MNLI-mm, QNLI and RTE. The F1 and

accuracy are used for MRPC and QQP. The Pearson

correlation and Spearman correlation are used for

STS-B. Matthew’s correlation is used for CoLA.

The results reported for the test set of GLUE are

in the same format as on the official leaderboard.

For the sake of comparison with (Sanh et al., 2019),

on the development set of GLUE, the result of

MNLI is an average on MNLI-m and MNLI-mm;

the results on MRPC and QQP are reported with the

average of F1 and accuracy; the result reported on

STS-B is the average of the Pearson and Spearman

correlation.

4.2 Experimental Settings

We test our approach under a task-specific com-

pression setting (Sun et al., 2019; Turc et al., 2019)

instead of a pretraining compression setting (Sanh

et al., 2019; Sun et al., 2020). That is to say, we use

no external unlabeled corpus but only the train-

ing set of each task in GLUE to compress the

model. The reason behind this decision is that

we intend to straightforwardly verify the effective-

ness of our generic compression approach. The

fast training process of task-specific compression

(e.g., no longer than 20 GPU hours for any task

of GLUE) computationally enables us to conduct

more analytical experiments. For comparison, Dis-

tilBERT (Sanh et al., 2019) takes 720 GPU hours

to train. Plus, in real-world applications, this set-

ting provides with more flexibility when select-

ing from different pretrained LMs (e.g., BERT,

RoBERTa (Liu et al., 2019b)) for various down-

stream tasks and it is easy to adopt a newly released

model, without a time-consuming pretraining com-

pression. We will also discuss the possibility to

use an MNLI model for a general purpose with in-

termediate transfer learning (Pruksachatkun et al.,

2020).

Formally, we define the task of compression as

trying to retain as much performance as possible

when compressing the officially released BERT-

base (uncased)3 to a 6-layer compact model with

the same hidden size, following the settings in

(Sanh et al., 2019; Sun et al., 2019; Turc et al.,

2019). Under this setting, the compressed model

has 24M parameters for the token embedding (iden-

tical to the original model) and 42M parameters

for the Transformer layers and obtains a 1.94×
speed-up for inference.

4.3 Training Details

We fine-tune BERT-base as the predecessor model

for each task with the batch size of 32, the learning

rate of 2×10−5, and the number of epochs as 4. As

a result, we are able to obtain a predecessor model

with comparable performance with that reported

in previous studies (Sanh et al., 2019; Sun et al.,

2019; Jiao et al., 2019).

Afterward, for training successor models, fol-

lowing (Sanh et al., 2019; Sun et al., 2019), we

use the first 6 layers of BERT-base to initialize the

successor model since the over-parameterized na-

ture of Transformer (Vaswani et al., 2017) could

cause the model unable to converge while training

on small datasets. During module replacing, We

fix the batch size as 32 for all evaluated tasks to re-

duce the search space. All r variables only sample

once for a training batch. The maximum sequence

length is set to 256 on QNLI and 128 for the other

tasks. We perform grid search over the sets of learn-

ing rate lr as {1e-5, 2e-5}, the basic replacing rate

b as {0.1, 0.3}, the scheduler coefficient k making

the dynamic replacing rate increase to 1 within the

first {1000, 5000, 10000, 30000} training steps.

We apply an early stopping mechanism and select

the model with the best performance on the de-

velopment set. We conduct our experiments on a

single Nvidia V100 16GB GPU. The peak memory

usage is approximately identical to fine-tuning a

BERT-base, since there would be at most 12 layers

training at the same time. The training time for

each task varies depending on the different sizes

of training sets. For example, it takes 20 hours to

3https://github.com/google-research/

bert

https://github.com/google-research/bert
https://github.com/google-research/bert

7864

Method # Layer # Param. Loss Function External Data Used? Model-Agnostic?

BERT-base (2019) 12 110M CEMLM + CENSP - -

Fine-tuning 6 66M CETASK ✗ ✓

Vanilla KD (2015) 6 66M CEKD + CETASK ✗ ✓

BERT-PKD (2019) 6 66M CEKD + PTKD + CETASK ✗ ✓

DistilBERT (2019) 6 66M CEKD + CosKD + CEMLM ✓ (unlabeled) ✓

PD-BERT (2019) 6 66M CEMLM + CEKD + CETASK ✓ (unlabeled) ✓

TinyBERT (2019) 4 15M MSEattn + MSEhidn + MSEembd + CEKD ✓ (unlabeled + labeled) ✗

MobileBERT (2020) 24 25M FMT+AT+PKT+CEKD+CEMLM ✓ (unlabeled) ✗

BERT-of-Theseus (Ours) 6 66M CETASK ✗ ✓

Table 1: Comparison of different BERT compression approaches. “CE” and “MSE” stand for Cross Entropy and

Mean Square Error, respectively. “KD” indicates the loss is for Knowledge Distillation. “CETASK”, “CEMLM”

and “CENSP” indicate Cross Entropy calculated on downstream tasks, Masked LM pretraining and Next Sentence

Prediction, respectively. Other loss functions are described in their corresponding papers.

train on MNLI but less than 30 minutes on MRPC.

4.4 Baselines

As shown in Table 1, we compare the layer num-

bers, parameter numbers, loss function, external

data usage and model agnosticism of our proposed

approach to existing methods. We set up a baseline

of vanilla Knowledge Distillation (Hinton et al.,

2015) as in (Sun et al., 2019). Additionally, we

directly fine-tune a truncated 6-layer BERT model

(the bottom 6 layers of the original BERT)4 on

GLUE tasks to obtain a natural fine-tuning base-

line. Under the setting of compressing 12-layer

BERT-base to a 6-layer compact model, we choose

BERT-PKD (Sun et al., 2019), PD-BERT (Turc

et al., 2019), and DistilBERT (Sanh et al., 2019) as

strong baselines. Note that DistilBERT (Sanh et al.,

2019) is not directly comparable here since it uses

a pretraining compression setting. Both PD-BERT

and DistilBERT use external unlabeled corpus. Ad-

ditionally, we use LayerDrop (Fan et al., 2020) on

BERT weights to prune the model on downstream

tasks. We do not include TinyBERT (Jiao et al.,

2019) since it conducts distillation twice and lever-

ages extra augmented data for GLUE tasks. We

also exclude MobileBERT (Sun et al., 2020), due

to its redesigned Transformer block and different

model size. Besides, in these two studies, the loss

functions are not architecture-agnostic thus limit

their applications on other types of models.

4.5 Experimental Results

We report the experimental results on the devel-

opment set of GLUE in Table 2 and submit our

predictions to the GLUE test server and obtain the

4We also tried the top 6 layers and interleaving 6 layers
but both perform worse than the bottom 6 layers.

results from the official leaderboard as shown in

Table 3. Note that DistilBERT does not report on

the test set. The BERT-base performance reported

on GLUE development set is the predecessor fine-

tuned by us. The results of BERT-PKD on the

development set are reproduced by us using the

official implementation. In the original paper of

BERT-PKD, the results of CoLA and STS-B on

the test set are not reported, thus we reproduce

these two results. Fine-tuning and Vanilla KD base-

lines are both implemented by us. All other results

are from the original papers.5 The macro scores

here are calculated in the same way as the official

leaderboard but are not directly comparable with

GLUE leaderboard since we exclude WNLI from

the calculation.

Overall, our BERT-of-Theseus retains 98.4%
and 98.3% of the BERT-base performance on

GLUE development set and test set, respectively.

On every task of GLUE, our model dramatically

outperforms the fine-tuning baseline, indicating

that with the same loss function, our proposed ap-

proach can effectively transfer knowledge from

the predecessor to the successor. Also, our model

obviously outperforms the vanilla KD (Hinton

et al., 2015) and Patient Knowledge Distillation

(PKD) (Sun et al., 2019), showing its supremacy

over the KD-based compression approaches. On

MNLI, our model performs better than BERT-PKD

but slightly lower than PD-BERT (Turc et al., 2019).

However, PD-BERT exploits an additional corpus

which provides much more samples for knowledge

transferring. Also, we would like to highlight that

5Please note that the reported results of DistilBERT are
different across various versions on arXiv. The results here are
from v3, which was the newest version when we composed
this paper.

https://arxiv.org/pdf/1910.01108v3.pdf

7865

Method
CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Macro
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K) Score

BERT-base (2019) 54.3 83.5 89.5 91.2 89.8 71.1 91.5 88.9 82.5

DistilBERT (2019) 43.6 79.0 87.5 85.3 84.9 59.9 90.7 81.2 76.5
PD-BERT (2019) - 83.0 87.2 89.0 89.1 66.7 91.1 - -

Fine-tuning 43.4 80.1 86.0 86.9 87.8 62.1 89.6 81.9 77.2
Vanilla KD (2015) 45.1 80.1 86.2 88.0 88.1 64.9 90.5 84.9 78.5
BERT-PKD (2019) 45.5 81.3 85.7 88.4 88.4 66.5 91.3 86.2 79.2
LayerDrop (2020) 45.4 80.7 85.9 88.4 88.3 65.2 90.7 85.7 78.8
BERT-of-Theseus 51.1 82.3 89.0 89.5 89.6 68.2 91.5 88.7 81.2

Table 2: Experimental results (median of 5 runs) on the development set of GLUE. The numbers under each dataset

indicate the number of training samples. All models listed above (except BERT-base) have 66M parameters, 6

layers and 1.94× speed-up.

Method
CoLA MNLI-m/mm MRPC QNLI QQP RTE SST-2 STS-B Macro
(8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K) Score

BERT-base (2019) 52.1 84.6 / 83.4 88.9 / 84.8 90.5 71.2 / 89.2 66.4 93.5 87.1 / 85.8 80.0

PD-BERT (2019) - 82.8 / 82.2 86.8 / 81.7 88.9 70.4 / 88.9 65.3 91.8 - -

Fine-tuning 41.5 80.4 / 79.7 85.9 / 80.2 86.7 69.2 / 88.2 63.6 90.7 82.1 / 80.0 75.6
Vanilla KD (2015) 42.9 80.2 / 79.8 86.2 / 80.6 88.3 70.1 / 88.8 64.7 91.5 82.1 / 80.3 76.4
BERT-PKD (2019) 43.5 81.5 / 81.0 85.0 / 79.9 89.0 70.7 / 88.9 65.5 92.0 83.4 / 81.6 77.0
BERT-of-Theseus 47.8 82.4 / 82.1 87.6 / 83.2 89.6 71.6 / 89.3 66.2 92.2 85.6 / 84.1 78.6

Table 3: Experimental results on the test set from the GLUE server. All models listed above (except BERT-base)

have 66M parameters, 6 layers and 1.94× speed-up.

on RTE, our model achieves nearly identical perfor-

mance to BERT-base and on QQP our model even

outperforms BERT-base. To analyze, a moderate

model size may help generalize and prevent overfit-

ting on downstream tasks. Notably, on both large

datasets with more than 350K samples (e.g., MNLI

and QQP) and small datasets with fewer than 4K

samples (e.g., MRPC and RTE), our model can

consistently achieve good performance, verifying

the robustness of our approach.

4.6 Intermediate-Task Transfer Learning

Although our approach achieves good performance

under a task-specific setting, it requires more

computational resources to fine-tune a full-size

predecessor than a compact BERT (e.g., Distil-

BERT (Sanh et al., 2019)). Pruksachatkun et al.

(2020) found that models trained on some datasets

can be used for a second-round fine-tuning. Thus,

we use MNLI as the intermediate task and release

our compressed model by conducting compres-

sion on MNLI to facilitate downstream applica-

tions. After compression, we fine-tune the succes-

sor model on other sentence classification tasks and

compare the results with DistilBERT (Sanh et al.,

2019) in Table 4. Our model achieves an identi-

cal performance on MRPC and outperforms Distil-

BERT on the other sentence-level tasks. Also, our

intermediate-task transfer results also outperform

PD-BERT (Turc et al., 2019) on three tasks, indicat-

ing that our task-specific model is also competitive

for a general purpose through the intermediate-task

transfer learning approach.

5 Analysis

In this section, we conduct extensive experiments

to analyze our BERT-of-Theseus.

5.1 Impact of Module Replacement

As pointed out in previous work (Fan et al., 2020),

different layers of a Transformer play imbalanced

roles for inference. To explore the effect of dif-

ferent module replacements, we iteratively use

one compressed successor module (constant replac-

ing rate, without successor fine-tuning) to replace

its corresponding predecessor module on QNLI,

MNLI and QQP, as shown in Table 5. Our results

show that the replacement of the last two modules

have limited influence on the overall performance

while the replacement of the first module signif-

icantly harms the performance. To analyze, the

linguistic features are mainly extracted by the first

7866

Method MNLI MRPC QNLI QQP RTE SST-2 STS-B

BERT-base (2019) 83.5 89.5 91.2 89.8 71.1 91.5 88.9

DistilBERT (2019) 79.0 87.5 85.3 84.9 59.9 90.7 81.2
PD-BERT (2019) 83.0 87.2 89.0 89.1 66.7 91.1 -

BERT-of-Theseus MNLI 82.1 87.5 88.8 88.8 70.1 91.8 87.8

Table 4: Experimental results of intermediate-task transfer learning on GLUE-dev.

Replacement QNLI(∆) MNLI(∆) QQP(∆)

Predecessor 91.87 84.54 89.48

prd1 → scc1 88.50 (-3.37) 81.89 (-2.65) 88.58 (-0.90)
prd2 → scc2 90.54 (-1.33) 83.33 (-1.21) 88.43 (-1.05)
prd3 → scc3 90.76 (-1.11) 83.27 (-1.27) 88.86 (-0.62)
prd4 → scc4 90.46 (-1.41) 83.34 (-1.20) 88.86 (-0.62)
prd5 → scc5 90.74 (-1.13) 84.16 (-0.38) 89.09 (-0.39)
prd6 → scc6 90.57 (-1.30) 84.09 (-0.45) 89.06 (-0.42)

Table 5: Impact of the replacement for different mod-

ules on GLUE-dev. prdi → scci indicates the replace-

ment of the i-th module from the predecessor.

few layers. Therefore, the reduced representation

capability becomes the bottleneck for the following

layers.

5.2 Impact of Replacing Rate

We attempt to adopt different replacing rates on

GLUE tasks. First, we fix the batch size to be 32
and learning rate lr to be 2 × 10−5 and conduct

compression on each task. On the other hand, as

we analyzed in Section 3.3, the equivalent learning

rate lr′ is affected by the replacing rate. To further

eliminate the influence of the learning rate, we fix

the equivalent learning rate lr′ to be 2× 10−5 and

adjust the learning rate lr for different replacing

rates by lr = lr′/p.

We illustrate the results with different replacing

rates on two representative tasks (MRPC and RTE)

in Figure 3. The trivial gap between two curves

in both figures indicate that the effect of different

replacing rates on equivalent learning rate is not

the main factor for the performance differences.

A replacing rate in the range between 0.5 and 0.7
can always lead to a satisfying performance on all

GLUE tasks. However, a significant performance

drop can be observed on all tasks if the replacing

rate is too small (e.g., p = 0.1). On the other hand,

the best replacing rate differs across tasks.

5.3 Impact of Replacement Scheduler

To study the impact of our curriculum replace-

ment strategy, we compare the results of BERT-

0.1 0.3 0.5 0.7 0.9
Replacing Rate

0.80

0.82

0.84

0.86

Av
g.

 A
cc

 a
nd

 F
1

MRPC-LR
MRPC-ELR

(a) MRPC

0.1 0.3 0.5 0.7 0.9
Replacing Rate

0.54
0.56
0.58
0.60
0.62
0.64
0.66

Ac
c

RTE-LR
RTE-ELR

(b) RTE

Figure 3: Performance of different replacing rate on

MRPC and RTE. “LR” and “ELR” denote that the

learning rate and equivalent learning rate are fixed, re-

spectively.

of-Theseus compressed with a constant replacing

rate and with a replacement scheduler. The con-

stant replacing rate for the baseline is searched

over {0.5, 0.7, 0.9}. Additionally, we implement

an “anti-curriculum” baseline, similar to the one

in (Morerio et al., 2017). For each task, we adopt

the same coefficient k and basic replacing rate b
to calculate the pd as Equation 6 for both curricu-

lum replacement and anti-curriculum. However,

we use 1 − pd as the dynamic replacing rate for

anti-curriculum baseline. Thus, we can determine

whether the improvement of curriculum replace-

ment is simply due to an inconstant replacing rate

or an easy-to-hard curriculum design.

As shown in Table 6, our model compressed

with curriculum scheduler consistently outperforms

a model compressed with a constant replacing

rate. In contrast, a substantial performance drop

is observed on the model compressed with an anti-

curriculum scheduler, which further verifies the

effectiveness and importance of the curriculum re-

placement strategy.

5.4 Impact of Predecessor Layers

We further replace different numbers of Trans-

former layers with one layer to verify the effec-

tiveness of Theseus Compression under different

settings. We replace 3/4 layers with one Trans-

former layer, resulting in a 4/3-layer BERT model.

7867

Strategy CoLA(∆) MNLI(∆) MRPC(∆) QNLI(∆) QQP(∆) RTE(∆) SST-2(∆) STS-B(∆)

Constant Rate 44.4 81.9 87.1 88.5 88.6 66.4 90.6 88.4

Anti-curriculum 42.8 (-1.6) 79.8 (-2.1) 85.6 (-1.5) 87.8 (-0.7) 87.6 (-1.0) 62.4 (-4.0) 88.8 (-1.8) 85.4 (-3.0)
Curriculum 51.1 (+6.7) 82.3 (+0.4) 89.0 (+1.9) 89.5 (+1.0) 89.6 (+1.0) 68.2 (+1.8) 91.5 (+0.9) 88.7 (+0.3)

Table 6: Comparison of models compressed with a constant replacing rate, a curriculum replacement scheduler

and its corresponding anti-curriculum scheduler on GLUE-dev.

Method
#Layer Speed- CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Macro

up (8.5K) (393K) (3.7K) (105K) (364K) (2.5K) (67K) (5.7K) Score

BERT-base (2019) 12 1.00× 54.3 83.5 89.5 91.2 89.8 71.1 91.5 88.9 82.5

Fine-tuning 6 1.94× 43.4 80.1 86.0 86.9 87.8 62.1 89.6 81.9 77.2
BERT-of-Theseus 6 1.94× 51.1 82.3 89.0 89.5 89.6 68.2 91.5 88.7 81.2

Fine-tuning 4 2.82× 33.9 78.4 86.0 82.3 87.1 58.2 87.2 78.4 73.9
BERT-of-Theseus 4 2.82× 41.3 80.0 87.5 86.1 88.7 61.9 89.1 82.5 77.2

Fine-tuning 3 3.66× 27.5 78.1 81.9 80.4 86.5 57.7 85.9 76.8 71.9
BERT-of-Theseus 3 3.66× 35.0 78.8 84.3 82.1 87.3 59.5 87.2 78.9 74.1

Table 7: Experimental results of replacing different numbers of layers with one layer on GLUE-dev. “#Layer”

indicates the number of layers in the compressed models.

The results are shown in Table 7. BERT-of-Theseus

consistently outperforms the fine-tuned truncated

BERT baselines, demonstrating its effectiveness

under different settings.

6 Discussion

In this paper, we propose Theseus Compression, a

novel model compression approach. We use this ap-

proach to compress BERT to a compact model that

outperforms other models compressed by Knowl-

edge Distillation. Our work highlights a new genre

of model compression and reveals a new path to-

wards model compression.

For future work, we would like to explore the

possibility of applying Theseus Compression on

heterogeneous network modules. First, many

developed in-place substitutes (e.g., ShuffleNet

unit (Zhang et al., 2018) for ResBlock (He et al.,

2016), Reformer Layer (Kitaev et al., 2020) for

Transformer Layer (Vaswani et al., 2017)) are natu-

ral successor modules that can be directly adopted

in Theseus Compression. Also, it is possible to

use a feed-forward neural network to map features

between the hidden spaces of different sizes (Jiao

et al., 2019) to enable replacement between mod-

ules with different input and output sizes. Although

our model has achieved good performance com-

pressing BERT, it would be interesting to explore

its possible applications in other neural models. As

summarized in Table 1, our model does not rely

on any model-specific features to compress BERT.

Therefore, it is potential to apply Theseus Com-

pression to other large models (e.g., ResNet (He

et al., 2016) in Computer Vision). In addition, we

would like to conduct Theseus Compression on

more types of neural networks including Convo-

lutional Neural Networks and Graph Neural Net-

works. We will also investigate the combination of

our compression-based approach with recently pro-

posed dynamic acceleration method (Zhou et al.,

2020b) to further improve the efficiency of pre-

trained language models.

Acknowledgments

We are grateful for the insightful comments from

the anonymous reviewers. Tao Ge is the corre-

sponding author.

References

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In LREC.

Misha Denil, Babak Shakibi, Laurent Dinh,
Marc’Aurelio Ranzato, and Nando de Freitas.
2013. Predicting parameters in deep learning. In
NeurIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

7868

deep bidirectional transformers for language under-
standing. In NAACL-HLT.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In IWP@IJCNLP.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In NeurIPS.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In ICLR.

Jonathan Frankle and Michael Carbin. 2019. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In ICLR.

Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
2018. Born-again neural networks. In ICML.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. 2014. Compressing deep convolutional
networks using vector quantization. arXiv preprint
arXiv:1412.6115.

Song Han, Huizi Mao, and William J. Dally. 2016.
Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huff-
man coding. In ICLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Chan-
nel pruning for accelerating very deep neural net-
works. In ICCV.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In
ICLR.

Animesh Koratana, Daniel Kang, Peter Bailis, and
Matei Zaharia. 2019. LIT: Learned intermediate
representation training for model compression. In
ICML.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In ICLR.

Hector J. Levesque. 2011. The winograd schema chal-
lenge. In AAAI Spring Symposium: Logical Formal-
izations of Commonsense Reasoning.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and
Jianfeng Gao. 2019a. Improving multi-task deep
neural networks via knowledge distillation for
natural language understanding. arXiv preprint
arXiv:1904.09482.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In
NeurIPS.

Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René
Vidal, and Vittorio Murino. 2017. Curriculum
dropout. In ICCV.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. 2020. Deep
double descent: Where bigger models and more data
hurt. In ICLR.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained language models: When and why
does it work? In ACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2015. Fitnets: Hints for thin deep nets. In
ICLR.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: hessian based ultra low
precision quantization of BERT. In AAAI.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP.

https://doi.org/10.2478/pralin-2018-0002
https://doi.org/10.2478/pralin-2018-0002

7869

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to se-
quence pre-training for language generation. In
ICML.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP-IJCNLP.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In ACL.

Xu Tan, Yi Ren, Di He, Tao Qin, Zhou Zhao, and Tie-
Yan Liu. 2019. Multilingual neural machine transla-
tion with knowledge distillation. In ICLR.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
TACL, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In NeurIPS.

Shuangfei Zhai, Yu Cheng, Zhongfei (Mark) Zhang,
and Weining Lu. 2016. Doubly convolutional neu-
ral networks. In NeurIPS.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. 2018. Shufflenet: An extremely efficient con-
volutional neural network for mobile devices. In
CVPR.

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and
Ming Zhou. 2020a. Scheduled drophead: A reg-
ularization method for transformer models. arXiv
preprint arXiv:2004.13342.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020b. Bert loses
patience: Fast and robust inference with early exit.
In NeurIPS.

