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Abstract: A Bertrand curve is a space curve whose principal normal line is the same as the principal normal line of
another curve. On the other hand, a Mannheim curve is a space curve whose principal normal line is the same as the
binormal line of another curve. By definitions, another curve is a parallel curve with respect to the direction of the
principal normal vector. Even if that is the regular case, the existence conditions of the Bertrand and Mannheim curves
seem to be wrong in some previous research. Moreover, parallel curves may have singular points. As smooth curves
with singular points, we consider framed curves in the Euclidean space. Then we define and investigate Bertrand and
Mannheim curves of framed curves. We clarify that the Bertrand and Mannheim curves of framed curves are dependent
on the moving frame.
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1. Introduction
Bertrand and Mannheim curves are classical objects in differential geometry ([1–4, 7, 15–17, 20]). A Bertrand
curve is a space curve whose principal normal line is the same as the principal normal line of another curve. On
the other hand, a Mannheim curve is a space curve whose principal normal line is the same as the binormal line
of another curve. Bertrand curves have been applied in computer-aided geometric design (cf. [19]). Moreover,
there are many papers of Bertrand curves in the other spaces (for instance, [8, 14, 18]). By definitions, another
curve is a parallel curve with respect to the direction of the principal normal vector. Even if that is the
regular case, the existence conditions of the Bertrand and Mannheim curves seem to be wrong in some previous
research. In order to define principal normal vector, the nondegenerate condition is needed. In general, the
parallel curve does not satisfy the nondegenerate condition. We clarify correct existence conditions of Bertrand
and Mannheim curves of regular space curves in §2. Moreover, parallel curves may have singular points. The
locus of the singular points of parallel curves is the evolute of the original curve, see [6, 9, 10, 13]. We consider
smooth curves with singular points. As smooth curves with singular points, we introduced the notion of framed
curves in the Euclidean space in [12]. Then we define Bertrand and Mannheim curves of framed curves in
Sections 3 and 4, respectively. We give existence conditions of the Bertrand and Mannheim curves of framed
curves, respectively (Theorems 3.3 and 4.3). Moreover, we clarify that the Bertrand and Mannheim curves of
framed curves are dependent on the moving frame (Remarks 3.7 and 4.8). We also give a difference between
nondegenerate regular space curves and framed curves (Theorem 4.5).
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All maps and manifolds considered in this paper are differentiable of class C∞ .

2. Preliminaries
Let R3 be the 3 -dimensional Euclidean space equipped with the inner product a · b = a1b1 + a2b2 + a3b3 ,
where a = (a1, a2, a3) and b = (b1, b2, b3) ∈ R3 . The norm of a is given by |a | =

√
a · a and the vector

product is given by

a× b = det

 e1 e2 e3
a1 a2 a3
b1 b2 b3

 ,

where {e1, e2, e3} is the canonical basis of R3 . Let S2 be the unit sphere in R3 , that is, S2 = {a ∈ R3||a | =
1} . We denote the 3 -dimensional smooth manifold {(a , b) ∈ S2 × S2|a · b = 0} by ∆ .

We quickly review the theories of Bertrand curves, Mannheim curves of regular curves, and framed curves.
Even if that is the regular case, the existence conditions of the Bertrand and Mannheim curves seem

to be wrong in classical (and recent) books [1–3, 7, 16, 20]. We clarify existence conditions of Bertrand and
Mannheim curves.

2.1. Regular space curves

Let I be an interval of R and let γ : I → R3 be a regular space curve, that is, γ̇(t) ̸= 0 for all t ∈ I , where
γ̇(t) = (dγ/dt)(t) . We say that γ is nondegenerate, or γ satisfies the nondegenerate condition if γ̇(t)×γ̈(t) ̸= 0

for all t ∈ I .
If we take the arc-length parameter s , that is, |γ′(s)| = 1 for all s , then the tangent vector, the principal

normal vector, and the binormal vector are given by

t(s) = γ′(s), n(s) =
γ′′(s)

|γ′′(s)|
, b(s) = t(s)× n(s),

where γ′(s) = (dγ/ds)(s) . Then {t(s), n(s), b(s)} is a moving frame of γ(s) and we have the Frenet–Serret
formula:  t′(s)

n′(s)
b′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 t(s)
n(s)
b(s)

 ,

where

κ(s) = |γ′′(s)|, τ(s) =
det(γ′(s), γ′′(s), γ′′′(s))

κ2(s)
.

If we take a general parameter t , then the tangent vector, the principal normal vector and the binormal vector
are given by

t(t) =
γ̇(t)

|γ̇(t)|
, n(s) = b(t)× t(t), b(t) =

γ̇(t)× γ̈(t)

|γ̇(t)× γ̈(t)|
.
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Then {t(t), n(t), b(t)} is a moving frame of γ(t) and we have the Frenet–Serret formula: ṫ(t)
ṅ(t)

ḃ(t)

 =

 0 |γ̇(t)|κ(t) 0
−|γ̇(t)|κ(t) 0 |γ̇(t)|τ(t)

0 −|γ̇(t)|τ(t) 0

 t(t)
n(t)
b(t)

 ,

where

κ(t) =
|γ̇(t)× γ̈(t)|

|γ̇(t)|3
, τ(t) =

det(γ̇(t), γ̈(t),
...
γ (t))

|γ̇(t)× γ̈(t)|2
.

Note that in order to define t(t), n(t), b(t), κ(t) , and τ(t) , we assume that γ is not only regular, but
also nondegenerate.

2.2. Bertrand curves of regular space curves

Definition 2.1 Let γ and γ : I → R3 be different nondegenerate curves. We say that γ and γ are Bertrand
mates if there exists a smooth function λ : I → R such that γ(t) = γ(t) + λ(t)n(t) and n(t) = ±n(t) for all
t ∈ I .

We also say that γ : I → R3 is a Bertrand curve if there exists another nondegenerate curve γ : I → R3

such that γ and γ are Bertrand mates.
If γ and γ are Bertrand mates, then the principal normal line of γ and the principal normal line of γ

are the same for each points. Note that if we take −λ instead of λ , then we may assume that n(t) = n(t) .
By a parameter change, we may assume that s is the arc-length parameter of γ .

Lemma 2.2 Let γ : I → R3 be nondegenerate with the arc-length parameter. Under the notation in Definition
2.1, if γ and γ are Bertrand mates, then λ is a nonzero constant.

Proof By differentiating γ(s) = γ(s) + λ(s)n(s) , we have

|γ̇(s)|t(s) = (1− λ(s)κ(s))t(s) + λ′(s)n(s) + λ(s)τ(s)b(s).

Since n(s) = n(s) , we have λ′(s) = 0 for all s ∈ I . Therefore λ is a constant. If λ = 0 , then γ(s) = γ(s) for
all s ∈ I . Hence, λ is a nonzero constant. 2

Theorem 2.3 Let γ : I → R3 be nondegenerate with the arc-length parameter. Suppose that τ(s) ̸= 0 for all
s ∈ I and A is a nonzero constant. Then γ and γ are Bertrand mates with γ(s) = γ(s) + An(s) if and only
if there exists a constant B such that Aκ(s) +Bτ(s) = 1 and Bκ(s)−Aτ(s) ̸= 0 for all s ∈ I .

Proof Suppose that γ(s) = γ(s) + An(s) and n(s) = n(s) for all s ∈ I . Note that s is not the arc-length
parameter of γ . By differentiating γ(s) = γ(s) +An(s) , we have

|γ̇(s)|t(s) = (1−Aκ(s))t(s) +Aτ(s)b(s).

Since n(s) = n(s) , there exists a smooth function θ : I → R such that(
b(s)
t(s)

)
=

(
cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

)(
b(s)
t(s)

)
.
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Then |γ̇(s)| sin θ(s) = Aτ(s) and |γ̇(s)| cos θ(s) = 1−Aκ(s) . It follows that

−A cos θ(s)τ(s) + (1−Aκ(s)) sin θ(s) = 0. (2.1)

By differentiating t(s) = sin θ(s)b(s) + cos θ(s)t(s) , we have

|γ̇(s)|κ(s)n(s) = θ′(s) cos θ(s)b(s)− θ′(s) sin θ(s)t(s) + (− sin θ(s)τ(s) + cos θ(s)κ(s))n(s).

Since n(s) = n(s) , θ′(s) = 0 for all s ∈ I . Therefore, θ is a constant. By τ(s) ̸= 0 and |γ̇(s)| sin θ = Aτ(s) ,
we have sin θ ̸= 0 . By the equation (2.1), we have Aκ(s) + A(cos θ/ sin θ)τ(s) = 1 . Hence, if we put
B = A cos θ/ sin θ , then Aκ(s) +Bτ(s) = 1 for all s ∈ I . Moreover,

|γ̇(s)|κ(s) = − sin θτ(s) + cos θκ(s) =
sin θ

A
(−Aτ(s) +Bκ(s)).

Since κ(s) ̸= 0 , we have Bκ(s)−Aτ(s) ̸= 0 for all s ∈ I .
Conversely, suppose that there exists a constant B such that Aκ(s) + Bτ(s) = 1 , Bκ(s) − Aτ(s) ̸= 0

and γ(s) = γ(s) +An(s) for all s ∈ I . It follows that

|γ̇(s)|t(s) = (1−Aκ(s))t(s) +Aτ(s)b(s) = τ(s)(Bt(s) +Ab(s)).

Since |γ̇(s)| =
√
A2 +B2|τ(s)| , we have t(s) = sgn(τ(s))(1/

√
A2 +B2)(B t(s) + Ab(s)), where sgn(τ(s)) =

1 if τ(s) > 0 and sgn(τ(s)) = −1 if τ(s) < 0 . By differentiating t(s) , we have |γ̇(s)|κ(s)n(s) =

sgn(τ(s))(1/
√
A2 +B2)(Bκ(s) − Aτ(s))n(s) . By the condition, we have n(s) = ±n(s) for all s ∈ I .

2

By a direct calculation and the proof of Theorem 2.3, we have the curvature and the torsion of γ

Proposition 2.4 Let γ and γ : I → R3 be different nondegenerate curves. Under the same assumptions in
Theorem 2.3, suppose that γ and γ are Bertrand mates with γ(s) = γ(s) +An(s) and Aκ(s) +Bτ(s) = 1 for
all s ∈ I , where B is a constant. Then the curvature κ and the torsion τ of γ are given by

κ(s) =
|Bκ(s)−Aτ(s)|
(A2 +B2)|τ(s)|

, τ(s) =
1

(A2 +B2)τ(s)
.

Proof Since γ(s) = γ(s) +An(s) , we have

γ̇(s) = (1−Aκ(s))t(s) +Aτ(s)b(s) = τ(s)(Bt(s) +Ab(s)).

Therefore,

γ̈(s) = τ ′(s)(Bt(s) +Ab(s)) + τ(s)(Bκ(s)−Aτ(s))n(s),
...
γ (s) = τ ′′(s)(Bt(s) +Ab(s)) + 2τ ′(s)(Bκ(s)−Aτ(s))n(s)

+τ(s)(Bκ′(s)−Aτ ′(s))n(s) + τ(s)(Bκ(s)−Aτ(s))(−κ(s)t(s) + τ(s)b(s)).

Since

|γ̇(s)| = |τ(s)|(A2 +B2)
1
2 ,

|γ̇(s)× γ̈(s)| = τ(s)2|Bκ(s)−Aτ(s)|(A2 +B2)
1
2 ,

det(γ̇(s), γ̈(s),
...
γ (s)) = τ(s)3(Bκ(s)−Aτ(s))2,
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we have the curvature and the torsion as

κ(s) =
|γ̇(s)× γ̈(s)|

|γ̇(s)|3
=

|Bκ(s)−Aτ(s)|
(A2 +B2)|τ(s)|

,

τ(s) =
det(γ̇(s), γ̈(s),

...
γ (s))

|γ̇(s)× γ̈(s)|2
=

1

(A2 +B2)τ(s)
.

2

As a corollary of Proposition 2.4, we have a well-known result that τ(s)τ(s) is a positive constant.
On the other hand, Aκ(s) + Bτ(s) = 1 and Bκ(s) − Aτ(s) = 0 for all s ∈ I if and only if κ(s) =

A/(A2 +B2) and τ(s) = B/(A2 +B2) . It follows that γ is a helix up to congruence, that is, γ(s) is given by

γ(s) =

(
A cos

s√
A2 +B2

, A sin
s√

A2 +B2
,

Bs√
A2 +B2

)
.

By a direct calculation, we have n(s) = (− cos(s/
√
A2 +B2),− sin(s/

√
A2 +B2), 0) . Hence,

γ(s) = γ(s) + λn(s) =

(
(A− λ) cos

s√
A2 +B2

, (A− λ) sin
s√

A2 +B2
,

Bs√
A2 +B2

)
,

where λ is a constant. If λ = A , then γ(s) = (0, 0, Bs/
√
A2 +B2) . Then γ is degenerate, that is, κ(s) = 0

for all s ∈ I . In this case, if λ ̸= A , then γ is nondegenerate and γ and γ are Bertrand mates, since

n(s) = sgn(A− λ)

(
− cos

s√
A2 +B2

,− sin
s√

A2 +B2
, 0

)
,

where sgn(A− λ) = 1 if A > λ and sgn(A− λ) = −1 if A < λ .

2.3. Mannheim curves of regular space curves

Definition 2.5 Let γ and γ : I → R3 be different nondegenerate curves. We say that γ and γ are Mannheim
mates if there exists a smooth function λ : I → R such that γ(t) = γ(t) + λ(t)n(t) and n(t) = ±b(t) for all
t ∈ I .

We also say that γ : I → R3 is a Mannheim curve if there exists another nondegenerate curve γ : I → R3

such that γ and γ are Mannheim mates.
If γ and γ are Mannheim mates, then the principal normal line of γ and the binormal line of γ are the

same for each points. Note that if we take −λ instead of λ , then we may assume that n(t) = b(t) .
By a parameter change, we may assume that s is the arc-length parameter of γ .

Lemma 2.6 Let γ : I → R3 be nondegenerate with the arc-length parameter. Under the notation in Definition
2.5, if γ and γ are Mannheim mates, then λ is a nonzero constant.

Proof By differentiating γ(s) = γ(s) + λ(s)n(s) , we have

|γ̇(s)|t(s) = (1− λ(s)κ(s))t(s) + λ′(s)n(s) + λ(s)τ(s)b(s).

Since n(s) = b(s) , we have λ′(s) = 0 for all s ∈ I . Therefore, λ is a constant. If λ = 0 , then γ(s) = γ(s) for
all s ∈ I . Hence, λ is a nonzero constant. 2
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Theorem 2.7 Let γ : I → R3 be nondegenerate with the arc-length parameter. Suppose that τ(s) ̸= 0 for all
s ∈ I and A is a nonzero constant. Then γ and γ are Mannheim mates with γ(s) = γ(s)+An(s) if and only
if A(κ2(s) + τ2(s)) = κ(s) and κ(s)τ ′(s)− κ′(s)τ(s) > 0 for all s ∈ I .

Proof Suppose that γ(s) = γ(s) + An(s) and n(s) = b(s) for all s ∈ I . Note that s is not the arc-length
parameter of γ . By differentiating γ(s) = γ(s) +An(s) , we have

|γ̇(s)|t(s) = (1−Aκ(s))t(s) +Aτ(s)b(s).

Since n(s) = b(s) , there exists a smooth function θ : I → R such that(
t(s)
n(s)

)
=

(
cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

)(
b(s)
t(s)

)
.

Then |γ̇(s)| cos θ(s) = Aτ(s) and −|γ̇(s)| sin θ(s) = 1−Aκ(s) . It follows that

Aτ(s) sin θ(s) + (1−Aκ(s)) cos θ(s) = 0. (2.2)

By differentiating t(s) = cos θ(s)b(s)− sin θ(s)t(s) , we have

|γ̇(s)|κ(s)n(s) = −θ′(s) sin θ(s)b(s)− θ′(s) cos θ(s)t(s)− (cos θ(s)τ(s) + sin θ(s)κ(s))n(s).

Since n(s) = b(s) ,

cos θ(s)τ(s) + sin θ(s)κ(s) = 0 (2.3)

for all s ∈ I . By τ(s) ̸= 0 and |γ̇(s)| cos θ(s) = Aτ(s) , we have cos θ(s) ̸= 0 . Hence, sin θ(s) ̸= 0 . Since
n(s) = sin θ(s)b(s) + cos θ(s)t(s) , we have |γ̇(s)|κ(s) = −θ′(s) . By the equations (2.2) and (2.3), we have

A(κ2(s) + τ2(s)) = κ(s).

By differentiating (2.3), we have

−θ′(s) sin θ(s)τ(s) + cos θ(s)τ ′(s) + θ′(s) cos θ(s)κ(s) + sin θ(s)κ′(s) = 0.

Hence, θ′(s) = (−κ(s)τ ′(s)+κ′(s)τ(s))/(κ2(s)+τ2(s)) . Since |γ̇(s)|κ(s) > 0 , we have κ(s)τ ′(s)−κ′(s)τ(s) > 0

for all s ∈ I .
Conversely, suppose that A(κ2(s) + τ2(s)) = κ(s) , κ(s)τ ′(s)− κ′(s)τ(s) > 0 , and γ(s) = γ(s) + An(s)

for all s ∈ I . By differentiating γ(s) = γ(s) +An(s) , we have

γ̇(s) = |γ̇(s)|t(t) = (1−Aκ(s))t(s) +Aτ(s)b(s) = A
τ(s)

κ(s)
(τ(s)t(s) + κ(s)b(s)),

γ̈(s) =
d

ds
(|γ̇(s)|)t(s) + |γ̇(s)|2κ(s)n(s)

= A

(
τ(s)

κ(s)

)′

(τ(s)t(s) + κ(s)b(s)) +A
τ(s)

κ(s)
(τ ′(s)t(s) + κ′(s)b(s)).

Therefore, |γ̇(s)|3κ(s)b(s) = A2(τ(s)/κ(s))2(κ(s)τ ′(s) − κ′(s)τ(s))n(s) . By the condition, we have n(s) =

b(s) . It follows that γ and γ are Mannheim mates. 2

By a direct calculation and the proof of Theorem 2.7, we have the curvature and the torsion of γ .
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Proposition 2.8 Let γ and γ : I → R3 be different nondegenerate curves. Under the same assumptions in
Theorem 2.7, suppose that γ and γ are Mannheim mates with γ(s) = γ(s) + An(s) . Then the curvature κ

and the torsion τ of γ are given by

κ(s) =
κ(s)(κ(s)τ ′(s)− κ′(s)τ(s))

|Aτ(s)|(κ2(s) + τ2(s))
3
2

, τ(s) =
κ(s)

Aτ(s)
=

κ2(s) + τ2(s)

τ(s)
.

Proof Since γ(s) = γ(s) +An(s) , we have

γ̇(s) = (1−Aκ(s))t(s) +Aτ(s)b(s) = A
τ(s)

κ(s)
(τ(s)t(s) + κ(s)b(s)).

Therefore,

γ̈(s) = A

(
τ(s)

κ(s)

)′

(τ(s)t(s) + κ(s)b(s)) +A
τ(s)

κ(s)
(τ ′(s)t(s) + κ′(s)b(s)),

...
γ (s) = A

(
τ(s)

κ(s)

)′′

(τ(s)t(s) + κ(s)b(s)) + 2A

(
τ(s)

κ(s)

)′

(τ ′(s)t(s) + κ′(s)b(s))

+A
τ(s)

κ(s)
(τ ′(s)κ(s)− κ′(s)τ(s))n(s).

By the proof of Theorem 2.7, we have κ(s)τ ′(s)− κ′(s)τ(s) > 0 for all s ∈ I . Since

|γ̇(s)| =
|Aτ(s)|
κ(s)

(κ2(s) + τ2(s))
1
2 ,

|γ̇(s)× γ̈(s)| = A2

(
τ(s)

κ(s)

)2

(κ(s)τ ′(s)− κ′(s)τ(s)),

det(γ̇(s), γ̈(s),
...
γ (s)) = A3

(
τ(s)

κ(s)

)3

(κ(s)τ ′(s)− κ′(s)τ(s))2,

we have the curvature and the torsion as

κ(s) =
|γ̇(s)× γ̈(s)|

|γ̇(s)|3
=

κ(s)(κ(s)τ ′(s)− κ′(s)τ(s))

|Aτ(s)|(κ2(s) + τ2(s))
3
2

,

τ(s) =
det(γ̇(s), γ̈(s),

...
γ (s))

|γ̇(s)× γ̈(s)|2
=

κ(s)

Aτ(s)
=

κ2(s) + τ2(s)

τ(s)
.

2

Note that A(κ2(s) + τ2(s)) = κ(s) and κ(s)τ ′(s)− κ′(s)τ(s) = 0 for all s ∈ I if and only if there exists
a constant B such that κ(s) = 1/(A(1 + B2)) and τ(s) = B/(A(1 + B2)) . It follows that γ is a helix up to
congruence, that is, γ(s) is given by

γ(s) =

(
A cos

s

A
√
1 +B2

, A sin
s

A
√
1 +B2

,
Bs√
1 +B2

)
.
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By a direct calculation, we have n(s) = (− cos(s/A
√
1 +B2),− sin(s/A

√
1 +B2), 0) . Hence,

γ(s) = γ(s) + λn(s) =

(
(A− λ) cos

s

A
√
1 +B2

, (A− λ) sin
s

A
√
1 +B2

,
Bs√
1 +B2

)
,

where λ is a constant. If λ = A , then γ(s) = (0, 0, Bs/
√
1 +B2) . Then γ is degenerate, that is, κ(s) = 0 for

all s ∈ I . If λ ̸= A , then γ is nondegenerate. However, in this case, γ and γ are not Mannheim mates, since

b(s) =
1√

B2 + (A−λ
A )2

(
B sin

s

A
√
1 +B2

, B cos
s

A
√
1 +B2

,
A− λ

A

)
.

Remark 2.9 If there exist nonzero constants A,C and a constant B such that Aκ(s) + Bτ(s) = 1 and
C(κ2(s) + τ2(s)) = κ(s) , then κ(s) = (1−Bτ(s))/A and

(A2 +B2)Cτ2(s) + (−2BC +AB)τ(s) + C −A = 0.

If there exists a solution, then τ(s) and κ(s) are constants. Hence, κ(s)τ ′(s)− κ′(s)τ(s) = 0 for all s ∈ I . It
follows that there are no Bertrand and Mannheim curves of regular space curves (cf. Theorem 4.5 and Remark
4.8).

2.4. Framed curves in the 3-dimensional Euclidean space
A framed curve in the 3 -dimensional Euclidean space is a smooth space curve with a moving frame, in detail
see [12].

Definition 2.10 We say that (γ, ν1, ν2) : I → R3 ×∆ is a framed curve if γ̇(t) · ν1(t) = 0 and γ̇(t) · ν2(t) = 0

for all t ∈ I . We say that γ : I → R3 is a framed base curve if there exists (ν1, ν2) : I → ∆ such that (γ, ν1, ν2)

is a framed curve.

We denote µ(t) = ν1(t)×ν2(t) . Then {ν1(t), ν2(t), µ(t)} is a moving frame along the framed base curve
γ(t) in R3 and we have the Frenet type formula, ν̇1(t)

ν̇2(t)
µ̇(t)

 =

 0 ℓ(t) m(t)
−ℓ(t) 0 n(t)
−m(t) −n(t) 0

 ν1(t)
ν2(t)
µ(t)

 , γ̇(t) = α(t)µ(t),

where ℓ(t) = ν̇1(t) · ν2(t) , m(t) = ν̇1(t) · µ(t), n(t) = ν̇2(t) · µ(t) and α(t) = γ̇(t) · µ(t) . We call the mapping
(ℓ,m, n, α) the curvature of the framed curve (γ, ν1, ν2) . Note that t0 is a singular point of γ if and only if
α(t0) = 0 .

Definition 2.11 Let (γ, ν1, ν2) and (γ̃, ν̃1, ν̃2) : I → R3 × ∆ be framed curves. We say that (γ, ν1, ν2) and
(γ̃, ν̃1, ν̃2) are congruent as framed curves if there exist a constant rotation A ∈ SO(3) and a translation
a ∈ R3 such that γ̃(t) = A(γ(t)) + a , ν̃1(t) = A(ν1(t)) and ν̃2(t) = A(ν2(t)) for all t ∈ I .

We gave the existence and uniqueness theorems for framed curves in terms of the curvatures in [12], also
see [11].
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Theorem 2.12 (Existence Theorem for framed curves) Let (ℓ,m, n, α) : I → R4 be a smooth mapping.
Then, there exists a framed curve (γ, ν1, ν2) : I → R3 ×∆ whose curvature is given by (ℓ,m, n, α) .

Theorem 2.13 (Uniqueness Theorem for framed curves) Let (γ, ν1, ν2) and (γ̃, ν̃1, ν̃2) : I → R3 ×∆ be

framed curves with curvatures (ℓ,m, n, α) and (ℓ̃, m̃, ñ, α̃) , respectively. Then (γ, ν1, ν2) and (γ̃, ν̃1, ν̃2) are

congruent as framed curves if and only if the curvatures (ℓ,m, n, α) and (ℓ̃, m̃, ñ, α̃) coincide.

Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve with the curvature (ℓ,m, n, α) . For the normal plane of
γ(t) , spanned by ν1(t) and ν2(t) , there is some ambient of framed curves similarly to the case of the Bishop
frame of a regular space curve (cf. [5]). We define (ν̃1(t), ν̃2(t)) ∈ ∆2 by

(
ν̃1(t)
ν̃2(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
ν1(t)
ν2(t)

)
,

where θ(t) is a smooth function. Then (γ, ν̃1, ν̃2) : I → R3 ×∆ is also a framed curve and µ̃(t) = µ(t). By a
direct calculation, we have

˙̃ν1(t) = (ℓ(t)− θ̇(t)) sin θ(t)ν1(t) + (ℓ(t)− θ̇(t)) cos θ(t)ν2(t) + (m(t) cos θ(t)− n(t) sin θ(t))µ(t),

˙̃ν2(t) = −(ℓ(t)− θ̇(t)) cos θ(t)ν1(t) + (ℓ(t)− θ̇(t)) sin θ(t)ν2(t) + (m(t) sin θ(t) + n(t) cos θ(t))µ(t).

If we take a smooth function θ : I → R which satisfies θ̇(t) = ℓ(t) , then we call the frame {ν̃1(t), ν̃2(t), µ(t)}
an adapted frame along γ(t) . It follows that the Frenet–Serret type formula is given by

 ˙̃ν1(t)
˙̃ν2(t)
µ̇(t)

 =

 0 0 m̃(t)
0 0 ñ(t)

−m̃(t) −ñ(t) 0

 ν̃1(t)
ν̃2(t)
µ(t)

 , (2.4)

where m̃(t) and ñ(t) are given by

(
m̃(t)
ñ(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
m(t)
n(t)

)
.

We also consider a special moving frame along a framed base curve under a condition. Let (γ, ν1, ν2) :

I → R3 ×∆ be a framed curve with m2(t) + n2(t) ̸= 0 . Then we define (n1(t), n2(t)) ∈ ∆ by

n1(t) =
m(t)ν1(t) + n(t)ν2(t)√

m2(t) + n2(t)
, n2(t) =

−n(t)ν1(t) +m(t)ν2(t)√
m2(t) + n2(t)

.

By a direct calculation, (γ, n1, n2) : I → R3 ×∆ is a framed immersion and n1(t)× n2(t) = µ(t) . We call
the moving frame {n1(t), n2(t), µ(t)} a Frenet type frame along γ(t) . Then the Frenet–Serret type formula
is given by  ṅ1(t)

ṅ2(t)
µ̇(t)

 =

 0 L(t) M(t)
−L(t) 0 0
−M(t) 0 0

 n1(t)
n2(t)
µ(t)

 , γ̇(t) = α(t)µ(t), (2.5)
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where

L(t) =
m(t)ṅ(t)− ṁ(t)n(t) + ℓ(t)(m2(t) + n2(t))

m2(t) + n2(t)
, M(t) =

√
m2(t) + n2(t).

Therefore, the curvature of the framed immersion (γ, n1, n2) is given by (L,M, 0, α) .
Since the original frame {ν1(t), ν2(t), µ(t)} and the Frenet type frame {n1(t) , n2(t) , µ(t)} have the

common unit vector µ(t) and the same orientation, the Frenet type frame is one of a rotated frame along γ(t) .
Let γ : I → R3 be nondegenerate. If we take ν1(t) = n(t) and ν2(t) = b(t) , then (γ, ν1, ν2) : I → R3×∆

is a framed curve and we have n1(t) = −n(t), n2(t) = −b(t), µ(t) = t(t) . This is the reason why we call
{n1(t), n2(t), µ(t)} the Frenet type frame along γ(t) .

As a special case of a framed curve, let us consider a spherical Legendre curve (see [21] for more detail).
We say that (γ, ν) : I → ∆ ⊂ S2 × S2 is a spherical Legendre curve if γ̇(t) · ν(t) = 0 for all t ∈ I . We call γ a
frontal and ν a dual of γ .

We define µ(t) = γ(t) × ν(t) . Then µ(t) ∈ S2 , γ(t) · µ(t) = 0 and ν(t) · µ(t) = 0 for all t ∈ I . It
follows that {γ(t), ν(t), µ(t)} is a moving frame along the frontal γ(t) .

Let (γ, ν) : I → ∆ be a spherical Legendre curve. Then we have γ̇(t)
ν̇(t)
µ̇(t)

 =

 0 0 m(t)
0 0 n(t)

−m(t) −n(t) 0

 γ(t)
ν(t)
µ(t)

 , (2.6)

where m(t) = γ̇(t) · µ(t) and n(t) = ν̇(t) · µ(t) .
We say that the pair of functions (m,n) is the curvature of the spherical Legendre curve (γ, ν) : I → ∆ .

3. Bertrand curves of framed curves
Let (γ, ν1, ν2) and (γ, ν1, ν2) : I → R3 ×∆ be framed curves with the curvature (ℓ,m, n, α) and (ℓ,m, n, α) ,
respectively. Suppose that γ and γ are different curves, that is, γ ̸≡ γ .

Definition 3.1 We say that framed curves (γ, ν1, ν2) and (γ, ν1, ν2) are Bertrand mates (or, (ν1, ν1)-mates)
if there exists a smooth function λ : I → R such that γ(t) = γ(t) + λ(t)ν1(t) and ν1(t) = ν1(t) for all t ∈ I .

We also say that (γ, ν1, ν2) : I → R3 ×∆ is a Bertrand curve if there exists a framed curve (γ, ν1, ν2) :

I → R3 ×∆ such that (γ, ν1, ν2) and (γ, ν1, ν2) are Bertrand mates.

Lemma 3.2 Under the notation in Definition 3.1, if (γ, ν1, ν2) and (γ, ν1, ν2) are Bertrand mates, then λ is
a nonzero constant.

Proof By differentiating γ(t) = γ(t) + λ(t)ν1(t) , we have

α(t)µ(t) = (α(t) + λ(t)m(t))µ(t) + λ(t)ℓ(t)ν2(t) + λ̇(t)ν1(t)

for all t ∈ I . Since ν1(t) = ν1(t) , we have λ̇(t) = 0 for all t ∈ I . Therefore, λ is a constant. If λ = 0 , then
γ(t) = γ(t) for all t ∈ I . Hence, λ is a nonzero constant. 2

We give a necessary and sufficient condition of a Bertrand curve for a framed curve.
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Theorem 3.3 Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve with the curvature (ℓ,m, n, α) . Then (γ, ν1, ν2)

is a Bertrand curve if and only if there exist a nonzero constant λ and a smooth function θ : I → R such that

λℓ(t) cos θ(t)− (α(t) + λm(t)) sin θ(t) = 0 (3.1)

for all t ∈ I .

Proof Suppose that (γ, ν1, ν2) is a Bertrand curve. By Lemma 3.2, there exist a framed curve (γ, ν1, ν2) and
a nonzero constant λ ∈ R such that γ(t) = γ(t) + λν1(t) and ν1(t) = ν1(t) for all t ∈ I . By differentiating
γ(t) = γ(t) + λν1(t) , we have

α(t)µ(t) = (α(t) + λm(t))µ(t) + λℓ(t)ν2(t).

Since ν1(t) = ν1(t) , there exists a function θ : I → R such that(
ν2(t)
µ(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
ν2(t)
µ(t)

)
. (3.2)

Then we have

α(t) sin θ(t) = λℓ(t), α(t) cos θ(t) = α(t) + λm(t). (3.3)

It follows that λℓ(t) cos θ(t)− (α(t) + λm(t)) sin θ(t) = 0 for all t ∈ I .
Conversely, suppose that λℓ(t) cos θ(t) − (α(t) + λm(t)) sin θ(t) = 0 for all t ∈ I . We define a mapping

(γ, ν1, ν2) : I → R3 ×∆ by

γ(t) = γ(t) + λν1(t), ν1(t) = ν1(t), ν2(t) = cos θ(t)ν2(t)− sin θ(t)µ(t).

Then (γ, ν1, ν2) is a framed curve. Therefore, (γ, ν1, ν2) and (γ, ν1, ν2) are Bertrand mates. 2

Proposition 3.4 Suppose that (γ, ν1, ν2) and (γ, ν1, ν2) are Bertrand mates, where γ(t) = γ(t) + λν1(t) and
λℓ(t) cos θ(t) − (α(t) + λm(t)) sin θ(t) = 0 for all t ∈ I . Then the curvature (ℓ,m, n, α) of (γ, ν1, ν2) is given
by

ℓ(t) = ℓ(t) cos θ(t)−m(t) sin θ(t),

m(t) = ℓ(t) sin θ(t) +m(t) cos θ(t),

n(t) = n(t)− θ̇(t), (3.4)

α(t) = λℓ(t) sin θ(t) + (α(t) + λm(t)) cos θ(t).

Proof By the equation (3.2), we have ν2(t) = cos θ(t)ν2(t)− sin θ(t)µ(t) . By differentiating, we have

−ℓ(t)ν1(t) + n(t)µ(t) = (−ℓ(t) cos θ(t) +m(t) sin θ(t))ν1(t)

+(−θ̇(t) + n(t)) sin θ(t)ν2(t) + (n(t)− θ̇(t)) cos θ(t)µ(t).

Since ν1(t) = ν1(t) , we have ℓ(t) = ℓ(t) cos θ(t)−m(t) sin θ(t) . Again by (3.2) , n(t) = n(t)− θ̇(t) . Moreover,
by differentiating µ(t) = sin θ(t)ν2(t) + cos θ(t)µ(t) , we have

−m(t)ν1(t)− n(t)ν2(t) = (−ℓ(t) sin θ(t)−m(t) cos θ(t))ν1(t)

+(θ̇(t)− n(t)) cos θ(t)ν2(t) + (n(t)− θ̇(t)) sin θ(t)µ(t).
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Since ν1(t) = ν1(t) , we have m(t) = ℓ(t) sin θ(t) + m(t) cos θ(t) . By the equation (3.3), we also have α(t) =

λℓ(t) sin θ(t) + (α(t) + λm(t)) cos θ(t) . 2

By Theorem 3.3, we have the following result.

Corollary 3.5 Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve with the curvature (ℓ,m, n, α) .
(1) If ℓ(t) = 0 for all t ∈ I , then (γ, ν1, ν2) is a Bertrand curve.
(2) If there exists a nonzero constant λ such that α(t) + λm(t) = 0 for all t ∈ I , then (γ, ν1, ν2) is a

Bertrand curve.

Proof (1) If we take θ(t) = 0 , then the equation (3.1) is satisfied. (2) If we take θ(t) = π/2 , then the
equation (3.1) is satisfied. 2

Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve with curvature (ℓ,m, n, α) . If we take an adapted frame
{ν̃1, ν̃2, µ} , then the curvature is given by (0, m̃, ñ, α) , see (2.4) . By Theorem 3.3 or Corollary 3.5, we have
the following.

Corollary 3.6 For an adapted frame, (γ, ν̃1, ν̃2) is always a Bertrand curve.

Remark 3.7 By Corollary 3.6, a Bertrand curve of a framed base curve is dependent on the moving frame.
Even if those are regular space curves, the same phenomenon occurs when we consider the other moving frames
(for instance, Bishop frame [5]).

Next we consider the principal normal direction like as regular cases. Let (γ, ν1, ν2) : I → R3 ×∆ be a
framed curve with the curvature (ℓ,m, n, α) . Since γ̇(t) = α(t)µ(t) , µ(t) is the unit tangent direction and

γ̈(t) = α̇(t)µ(t)− α(t)m(t)ν1(t)− α(t)n(t)ν2(t),

γ̇(t)× γ̈(t) = α2(t)n(t)ν1(t)− α2(t)m(t)ν2(t),

(γ̇(t)× γ̈(t))× γ̇(t) = −α3(t)m(t)ν1(t)− α3(t)n(t)ν2(t),

the principal normal direction is given by ±n1(t) away from singular points of γ (that is, α(t) ̸= 0). Hence,
we consider Frenet type frame {n1, n2, µ} , see (2.5) in Section 2.4.

Corollary 3.8 Let (γ, ν1, ν2) and (γ, ν1, ν2) : I → R3×∆ be framed curves. Then (γ, n1, n2) and (γ, n1, n2)

are Bertrand mates if and only if there exists a constant λ such that the equations (3.1) and (3.4) are satisfied,
where θ(t) is a constant.

Proof Since the curvature n(t) = n(t) = 0 and Proposition 3.4, θ̇(t) = 0 for all t ∈ I . It follows that θ is a
constant. By Theorem 3.3, we have the result. 2

Remark 3.9 When (m(t), n(t)) = (0, 0) at some points, if there exist a nonnegative smooth function r : I → R
and a smooth function φ : I → R such that m(t) = r(t) cosφ(t), n(t) = r(t) sinφ(t) , then we can consider the
same result for Corollary 3.8.

We give a construction of Bertrand curves of framed curves by using spherical Legendre curves, see (2.6)
in Section 2.4. For regular cases see [15].
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Theorem 3.10 Let (γ, ν) : I → ∆ be a spherical Legendre curve with the curvature (m,n) . Suppose that λ, φ

are nonzero constants with sinφ ̸= 0 , c ∈ R3 is a constant vector. Set

γ̃(t) = λ

∫
m(t)γ(t)dt+ λ cotφ

∫
m(t)ν(t)dt+ c,

ν̃1(t) = µ(t) = γ(t)× ν(t),

ν̃2(t) = cosφγ(t) + sinφν(t).

Then (γ̃, ν̃1, ν̃2) : I → R3 ×∆ is a framed curve with the curvature (ℓ̃, m̃, ñ, α̃) ,

ℓ̃(t) = − cosφm(t) + sinφn(t), m̃(t) = − sinφm(t)− cosφn(t), ñ(t) = 0, α̃(t) =
λm(t)

sinφ
.

Moreover, (γ̃, ν̃1, ν̃2) is a Bertrand curve.

Proof By definition, |ν̃1(t)| = |ν̃2(t)| = 1 and ν̃1(t) · ν̃2(t) = 0 for all t ∈ I . By a direct calculation, we have

µ̃(t) = ν̃1(t)× ν̃2(t) = µ(t)× (cosφγ(t)− sinφν(t)) = sinφγ(t) + cosφν(t).

Since ˙̃γ(t) = λm(t)γ(t) + λ cotφm(t)ν(t) = (λm(t)/ sinφ)µ̃(t) , ˙̃γ(t) · ν̃1(t) = ˙̃γ(t) · ν̃2(t) = 0 for all t ∈

I . Therefore, (γ̃, ν̃1, ν̃2) is a framed curve. By ˙̃ν1(t) = −m(t)γ(t) − n(t)ν(t) and ˙̃ν2(t) = (cosφm(t) −
sinφn(t))µ(t) , we have the curvature of (γ̃, ν̃1, ν̃2) by

ℓ̃(t) = ˙̃ν1(t) · ν̃2(t) = − cosφm(t) + sinφn(t),

m̃(t) = ˙̃ν1(t) · µ̃(t) = − sinφm(t)− cosφn(t),

ñ(t) = ˙̃ν2(t) · µ̃(t) = 0,

α̃(t) = ˙̃γ(t) · µ̃(t) = λm(t)

sinφ
.

If we take θ(t) = −φ , then we have

λℓ̃(t) cos θ(t)− (α̃(t) + λm̃(t)) sin θ(t)

= λ(− cosφm(t) + sinφn(t)) cosφ+

(
λm(t)

sinφ
+ λ(− sinφm(t)− cosφn(t))

)
sinφ

= 0

for all t ∈ I . By Theorem 3.3, (γ̃, ν̃1, ν̃2) is a Bertrand curve. 2

4. Mannheim curves of framed curves
Let (γ, ν1, ν2) and (γ, ν1, ν2) : I → R3 ×∆ be framed curves with the curvatures (ℓ,m, n, α) and (ℓ,m, n, α) ,
respectively. Suppose that γ and γ are different curves, that is, γ ̸≡ γ .

Definition 4.1 We say that framed curves (γ, ν1, ν2) and (γ, ν1, ν2) are Mannheim mates (or, (ν1, ν2)-mates)
if there exists a smooth function λ : I → R such that γ(t) = γ(t) + λ(t)ν1(t) and ν1(t) = ν2(t) for all t ∈ I .
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We also say that (γ, ν1, ν2) : I → R3 × ∆ is a Mannheim curve if there exists a framed curve
(γ, ν1, ν2) : I → R3 ×∆ such that (γ, ν1, ν2) and (γ, ν1, ν2) are Mannheim mates.

Lemma 4.2 Under the notation in Definition 4.1, if (γ, ν1, ν2) and (γ, ν1, ν2) are Mannheim mates, then λ

is a nonzero constant.

Proof By differentiating γ(t) = γ(t) + λ(t)ν1(t) , we have

α(t)µ(t) = (α(t) + λ(t)m(t))µ(t) + λ(t)ℓ(t)ν2(t) + λ̇(t)ν1(t)

for all t ∈ I . Since ν2(t) = ν1(t) , we have λ̇(t) = 0 for all t ∈ I . Therefore, λ is a constant. If λ = 0 , then
γ(t) = γ(t) for all t ∈ I . Hence, λ is a nonzero constant. 2

We give a necessary and sufficient condition of a Mannheim curve for a framed curve.

Theorem 4.3 Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve with the curvature (ℓ,m, n, α) . Then (γ, ν1, ν2)

is a Mannheim curve if and only if there exist a nonzero constant λ and a smooth function φ : I → R such that

λℓ(t) sinφ(t) + (α(t) + λm(t)) cosφ(t) = 0 (4.1)

for all t ∈ I .

Proof Suppose that (γ, ν1, ν2) is a Mannheim curve. By Lemma 4.2, there exist a framed curve (γ, ν1, ν2)

and a nonzero constant λ ∈ R such that γ(t) = γ(t) + λν1(t) and ν1(t) = ν2(t) for all t ∈ I . Then we have
α(t)µ(t) = (α(t) + λm(t))µ(t) + λℓ(t)ν2(t) . Since ν1(t) = ν2(t) , there exists a function φ : I → R such that(

µ(t)
ν1(t)

)
=

(
cosφ(t) − sinφ(t)
sinφ(t) cosφ(t)

)(
ν2(t)
µ(t)

)
. (4.2)

Then we have

α(t) cosφ(t) = λℓ(t), −α(t) sinφ(t) = α(t) + λm(t). (4.3)

It follows that λℓ(t) sinφ(t) + (α(t) + λm(t)) cosφ(t) = 0 for all t ∈ I .
Conversely, suppose that λℓ(t) sinφ(t) + (α(t) + λm(t)) cosφ(t) = 0 for all t ∈ I . We define a mapping

(γ, ν1, ν2) : I → R3 ×∆ by

γ(t) = γ(t) + λν1(t), ν1(t) = sinφ(t)ν2(t) + cosφ(t)µ(t), ν2(t) = ν1(t).

Then (γ, ν1, ν2) is a framed curve. Therefore, (γ, ν1, ν2) and (γ, ν1, ν2) are Mannheim mates. 2

Proposition 4.4 Suppose that (γ, ν1, ν2) and (γ, ν1, ν2) are Mannheim mates, where γ(t) = γ(t)+λν1(t) and
λℓ(t) sinφ(t) + (α(t) + λm(t)) cosφ(t) = 0 for all t ∈ I . Then the curvature (ℓ,m, n, α) of (γ, ν1, ν2) is given
by

ℓ(t) = −ℓ(t) sinφ(t)−m(t) cosφ(t),

m(t) = φ̇(t)− n(t),

n(t) = ℓ(t) cosφ(t)−m(t) sinφ(t), (4.4)

α(t) = λℓ(t) cosφ(t)− (α(t) + λm(t)) sinφ(t).
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Proof By the equation (4.2), we have µ(t) = cos θ(t)ν2(t)− sin θ(t)µ(t) . By differentiating, we have

−m(t)ν1(t) + n(t)ν2(t) = (−ℓ(t) cosφ(t) +m(t) sinφ(t))ν1(t)

+(−φ̇(t) + n(t)) sinφ(t)ν2(t) + (n(t)− φ̇(t)) cosφ(t)µ(t).

Since ν1(t) = ν2(t) , we have n(t) = ℓ(t) cosφ(t)−m(t) sinφ(t) . Again by (4.2), m(t) = φ̇(t)−n(t) . Moreover,
by differentiating ν1(t) = sinφ(t)ν2(t) + cosφ(t)µ(t) , we have

ℓ(t)ν2(t) +m(t)µ(t) = (−ℓ(t) sinφ(t)−m(t) cosφ(t))ν1(t)

+(φ̇(t)− n(t)) cosφ(t)ν2(t) + (n(t)− φ̇(t)) sinφ(t)µ(t).

Since ν1(t) = ν2(t) , we have ℓ(t) = −ℓ(t) sinφ(t) − m(t) cosφ(t) . By the equation (4.3), we have α(t) =

λℓ(t) cosφ(t) + (α(t) + λm(t)) sinφ(t) . 2

As a difference between nondegenerate regular space curves and framed curves, we have a relation between
Bertrand and Mannheim curves of framed curves.

Theorem 4.5 Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve with the curvature (ℓ,m, n, α) . Then (γ, ν1, ν2)

is a Bertrand curve if and only if (γ, ν1, ν2) is a Mannheim curve.

Proof Suppose that (γ, ν1, ν2) is a Bertrand curve. By Theorem 3.3, there exist a nonzero constant λ and a
smooth function θ : I → R such that λℓ(t) cos θ(t)−(α(t)+λm(t)) sin θ(t) = 0 for all t ∈ I . If φ(t) = θ(t)+π/2 ,
then we have λℓ(t) sinφ(t)+(α(t)+λm(t)) cosφ(t) = 0 for all t ∈ I . By Theorem 4.3, (γ, ν1, ν2) is a Mannheim
curve.

Conversely, suppose that (γ, ν1, ν2) is a Mannheim curve. By Theorem 4.3, there exist a nonzero constant
λ and a smooth function φ : I → R such that λℓ(t) sinφ(t) + (α(t) + λm(t)) cosφ(t) = 0 for all t ∈ I . If
θ(t) = φ(t) − π/2 , then we have λℓ(t) cos θ(t) − (α(t) + λm(t)) sin θ(t) = 0 for all t ∈ I . By Theorem 3.3,
(γ, ν1, ν2) is a Bertrand curve. 2

If (γ, ν1, ν2) is a framed curve, then (γ, ν2, ν1) is also a framed curve. Since we can choose a moving
frame, the above result can be proved by the definitions of Bertrand and Mannheim curves of framed curves.
On the other hand, for regular cases, the moving frame is fixed. Therefore, the above result does not hold (cf.
Remark 2.9).

By Theorem 4.3, we have the following result.

Corollary 4.6 Let (γ, ν1, ν2) : I → R3 ×∆ be a framed curve with the curvature (ℓ,m, n, α) .
(1) If ℓ(t) = 0 for all t ∈ I , then (γ, ν1, ν2) is a Mannheim curve.
(2) If there exists a nonzero constant λ such that α(t) + λm(t) = 0 for all t ∈ I , then (γ, ν1, ν2) is a

Mannheim curve.

Proof (1) If we take φ(t) = π/2 , then the equation (4.1) is satisfied. (2) If we take θ(t) = 0 , then the
equation (4.1) is satisfied. 2

If we take an adapted frame {ν̃1, ν̃2, µ} , then the curvature is given by (0, m̃, ñ, α) , see (2.4) . By
Theorem 4.3 or Corollary 4.6, we have the following.

Corollary 4.7 For an adapted frame, (γ, ν̃1, ν̃2) is always a Mannheim curve.
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Remark 4.8 By Corollary 4.7, a Mannheim curve of a framed base curve is dependent on the moving frame.
By Corollaries 3.6 and 4.7, (γ, ν̃1, ν̃2) is not only a Bertrand curve but also a Mannheim curve (cf. Remark
2.9).

Next we consider the principal normal direction like as regular cases, see (2.5) and Corollary 3.8.

Corollary 4.9 Let (γ, ν1, ν2) and (γ, ν1, ν2) : I → R3×∆ be framed curves. Then (γ, n1, n2) and (γ, n1, n2)

are Mannheim mates if and only if there exist a constant λ and a smooth function φ : I → R such that

λL(t) sinφ(t) + (α(t) + λM(t)) cosφ(t) = 0,

L(t) cosφ(t)−M(t) sinφ(t) = 0,

L(t) = −L(t) sinφ(t)−M(t) cosφ(t),

M(t) = φ̇(t),

α(t) = λL(t) cosφ(t)− (α(t) + λM(t)) sinφ(t)

for all t ∈ I .

Proof Since the curvature n(t) = n(t) = 0 and Proposition 4.4, M(t) = φ̇(t) and L(t) cosφ(t)−M(t) sinφ(t) =

0 for all t ∈ I . By Theorem 4.3, we have the result. 2

However, if we consider (γ, n2, n1) , we have the following result.

Corollary 4.10 Let (γ, ν1, ν2) and (γ, ν1, ν2) : I → R3 × ∆ be framed curves. Then (γ, n1, n2) and
(γ, n2, n1) are Mannheim mates if and only if there exists a constant λ such that the equations (4.1) and (4.4)

are satisfied, where φ(t) is a constant.

Proof Since the curvature n(t) = m(t) = 0 and Proposition 4.4, φ̇(t) = 0 . It follows that φ is a constant.
By Theorem 4.3, we have the result. 2

By Theorem 3.10 and Corollary 4.10, we can construct Mannheim curves of framed curves by using
spherical Legendre curves.

As related topics, we investigate singularities of parallel curves (circler evolutes) in [Honda S, Takahashi
M. Evolutes and involutes of Bishop directions of framed curves in the Euclidean space. In preparation]. Also,
the definition and properties of evolutes (spherical evolutes) of framed immersions are given in [13]. Furthermore,
we consider higher dimensional cases of Bertrand and Mannheim curves of framed curves in [Honda S, Takahashi
M. Bertrand and Mannheim curves of framed curves in higher dimensional Euclidean space. In preparation].
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