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Abstract

We consider a simple model of competition under moral hazard with constant return
technologies. We consider preferences that are not separable in effort: marginal utility of
income is assumed to increase with leisure, especially for high income levels. We show that,
in this context, Bertrand competition may result in positive equilibrium profit. This result
holds for purely idiosyncratic shocks when only deterministic contracts are considered, and
extends to unrestricted contract spaces in the presence of aggregate uncertainty. Finally,
these findings have important consequences upon the definition of an equilibrium. We show
that, in this context, a Walrasian general equilibrium a la Prescott-Townsend may fail to
exist: any ’equilibrium’ must involve rationing.

1. Introduction

Consider an economy where a large number of insurers compete by offering insurance contracts
to a continuum of agents owing a risky endowment. These endowments are affected by two
types of shocks. One is idiosyncratic; the other is an aggregate shock affecting the economy as
a whole. The probability of occurrence of the individual shock is affected by some unobservable
prevention effort supplied by the agent, while the aggregate shock is exogenous. Finally, agents
have general VNM preferences exhibiting risk aversion, and the insurance technology is linear
and involves neither frictions nor fixed costs. What will the outcome of competition be in this
economy?
Two alternative representations of competition under asymmetric information have been

adopted in the literature. Following the ’strategic’ approach, insurance companies simultane-
ously offer contracts that are then purchased by the agents, and the competitive outcome is
modelled as a Nash equilibrium of this two-stage game1. From this perspective, our economy
∗Paper presented at seminars in Chicago, Los Angeles, Philadelphia, Milan, Paris and Toulouse and at the

NBER Conference on General Equilibrium (Berkeley, 1998). We thank the participants and Fernando Alvarez,
Richard Arnott, Alberto Bisin, Piero Gottardi, Bruno Jullien, Joseph Ostroy, Jose Scheinkman, Lars Stole, Rob
Townsend, Bill Zame and especially the editor (Lars Hansen) and three anonymous referees for helpful comments.
Errors are ours.

† University of California at Los Angeles. Email : abennardo@econ.ucla.edu
‡ University of Chicago. Email : pchiappo@midway.uchicago.edu
1The introduction of further stages, as discussed by Hellwig (1983) in an adverse selection setting, would not

affect the results in our moral hazard framework.



can be viewed as a moral hazard counterpart of Rothschild and Stiglitz’s model of competition
under adverse selection. Alternatively, one can, following the seminal contribution of Prescott
and Townsend (1984a), analyze the economy from a Walrasian viewpoint. Then an equilibrium
is defined as a set of market-clearing ’prices’, where the corresponding ’commodities’ are con-
tracts in a general sense, i.e. contingent lotteries on consumption and effort. In both cases, it has
been recognized that the outcome of competition depends on the set of available contracts. For
instance, if individual are not able to sign (and enforce) exclusive contracts, then the strategic
equilibrium need not coincide with a Pareto efficient allocation2. Also, it is well known that
efficiency may in this context require randomized contracts. If lotteries are not enforceable (i.e.,
only ’deterministic’ contracts can be implemented), then again the competitive outcome may
fail to be (second best) efficient.3

Albeit the results presented below hold both when lottery contracts are enforceable and
when only deterministic contracts can be implemented, our main interest, in the present paper,
is the pure moral hazard (PMH) context, where unobservability of effort is the only restriction
on agents’ trades (i.e., consumptions and trades are observable and contractible, lotteries are
enforceable, etc.). The realism of this framework can be questioned, and raises several difficult
issues (for instance, is it possible to monitor individual consumptions or to enforce lottery
contracts?). Still, we believe that the PMH case is the natural benchmark for a study of this
kind, if only because it allows to disentangle the impact of moral hazard per se from that of
other restrictions on trades. Once the logic of PMH situations has been understood, it becomes
easier to predict the outcomes of alternative models where additional constraints (say, non
enforceability of random contracts) are introduced.
In the PMH case, existing results in the literature, as well as conventional wisdom, suggest

that three main conclusions should hold in our framework: (i) competition drives profits to
zero, (ii) a Walrasian equilibrium exists and is (second best) efficient, and (iii) the strategic
equilibrium coincides with the Walrasian equilibrium4. The main claim of the present paper
is that existing results, which have been developed in particular frameworks, are not robust,
and that conventional wisdom is actually wrong. In fact, none of the three properties just
stated holds in general. We exhibit a robust example in which the equilibrium of the strategic
market game entails positive profits for the insurers, while the Walrasian equilibrium fails to
exist. This conclusion does not rely on specific assumptions such as arbitrary limitations on
the contract space or exogenous unobservability of particular transactions. Rather, it stems
from the interaction of two features of our model, namely non separable preferences and the
presence of an aggregate shock. These features are, if anything, more general than what can be

2The intuition is that the second-best optimal contract between an agent and an insurer typically entails
partial coverage in order to provide the agents with the right incentives to prevention. However, in the absence of
exclusivity, the agent could then purchase a complementary coverage from some competitor, which would unravel
the initial contract. See Helpman and Laffont (1975), Arnott and Stiglitz (1987) or Bisin and Guaitoli (1999) for
precise investigations.

3Actually, Bennardo (2001) shows that in situations where second best efficiency requires randomization, the
deterministic equilibrium contract may fail to be efficient even within the set of deterministic contracts.

4The last two conclusions are obviously specific to the moral hazard case. Under adverse selection, Rothschild
and Stiglitz have showed that a strategic equilibrium may fail to exist and/or to generate efficient outcomes.
This feature is due to the externality between contracts that characterizes adverse selection (whether a contract
makes profit or losses depends on the contracts proposed by the competitors). No externality of this type
occurs in a moral hazard context. The same remark applies to the existence of a Walrasian equilibrium a la
Prescott-Townsend under adverse selection (see Bisin and Gottardi (2002) for a thorough investigation).
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found in most of the literature; it is precisely the generality of our perspective that explains the
discrepancies with previous works.
The intuition of the main result can be summarized as follows. We assume that leisure

and consumption are gross complements, i.e., that the marginal utility (resp. disutility) of
leisure (resp. effort) increases with wealth, and that this effect becomes especially important
as the agent gets wealthier. It should be noted that this assumption, if anything, has better
empirical support than the alternative hypothesis that is adopted by most on the literature
- namely, that preferences are additively separable in leisure and consumption. Under moral
hazard, this form of complementarity gives rise to specific income effects that prevent ”usual”
undercutting strategies from eliminating profits. Specifically, we show that there exists some
(finite) consumption bundle that maximizes the agent’s utility on the set of contracts inducing
the higher prevention effort level. From this bundle, it is impossible to increase the agent’s utility
(say, by increasing his consumption when the ’good’ outcome is realized) without violating the
incentive constraint, the idea being that additional expected consumption increases the marginal
cost of effort, and that this effect, for large enough consumption levels, overcompensates the
standard incentive effect. If the technology is such that expected wealth in the economy exceeds
the expected consumption corresponding to the optimal bundle, then the principal makes a
positive profit at equilibrium.
For the sake of readability, we stick throughout the model to the insurance story just de-

scribed. However, the scope of our conclusions is much broader. They can be applied to labor
contracts, executive compensation, sharecropping or credit relationships, just to name a few.
They have several surprising implications. One is that the zero profit assumption, often viewed
as a shortcut for competition, should be handled with care. Competition generally implies that
agents receive the best contract available under several constraints, including a non negative
profit condition. Our result suggests that there is no reason to expect the non negative profit
restriction to always bind. A second consequence is that the Walrasian mechanism, powerful as
it is (at least in the Prescott-Townsend version), may fail to work in a moral hazard context. The
interpretation of our non existence result is that rationing may be needed to achieve efficiency.
To the best of our knowledge, this conclusion is new, at least when fully non linear (exclusive)
contracts are assumed to be enforceable. Finally, our conclusions have direct consequences for
the literature on incentives. That increasing an agent’s reward when the outcome is ’good’,
while keeping it unchanged in ’bad’ cases, may in fact reduce the agent’s overall incentives (es-
pecially for high levels of wealth or income) may shed a new light on such issues as managerial
incentives and executive compensation. These applications are considered in a companion paper
(Bennardo and Chiappori 2002).
The paper is organized as follows. In section 2, we describe the basic model and stress its

main properties. Section 3 is devoted to the study of equilibria a la Bertrand. The general
equilibrium perspective is developed in Section 4. Conclusions are discussed in the last section.

2. The model

2.1. Uncertainty

The economy consists of two class of individuals: a continuum of ex ante identical risk averse
agents and a ’large number’ of risk neutral principals competing by offering contracts to the
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agents. Agents have a risky endowment that is affected by two types of shocks. One is an
exogenous aggregate shock influencing the economy as a whole; i.e., there exist two different, ex
post verifiable aggregate (or ’collective’) states of the world, s = 1 and s = 2, that occur with
respective probabilities λ and (1−λ). In addition, the endowment is subject to an idiosyncratic
(or ’individual’, following the distinction emphasized by Cass and al. 1997) shock. Individual
shocks are identically and independently distributed (iid) throughout the population, and the
shock affecting an agent depends on an effort e supplied by this agent in an accident avoidance
technology. The level of effort is not observable by the insurer; we assume for simplicity that
it can take only two values, el and eh, with eh > el. In each aggregate state s, individual
wealth can take two values yas > y

b
s; the ’good’ outcome a obtains with probability P (e), where

P (eh) = P and P (el) = p < P . We assume furthermore that 2 is a ’bad’ aggregate state,
i.e. ya1 > y

a
2 and y

b
1 > y

b
2. An important assumption is that each agent has to exert the effort

before the aggregate state is revealed (i.e., before knowing whether the endowment space is
Y1 =

©
ya1 , y

b
1

ª
or Y2 =

©
ya2 , y

b
2

ª
).

A natural interpretation of this setting is that agents are households, while principals are
insurance companies mutualizing individual risks. Each household may incur an accidental
damage ξs = y

a
s−ybs to its property (the occurrence of an accident then defines the ’bad’ outcome,

b). The occurrence probability of a damage can be reduced if the agent provides some labor e
in a prevention or maintenance activity that is not observed by the insurer. Finally, the two
aggregate states can be interpreted as weather conditions: state 1 is ’normal weather’, whereas
state 2 corresponds to a ’hurricane’. The presence of aggregate uncertainty is one important
difference between our framework and most of the moral hazard literature. Of special interest is
the case where yb2 is very small; i.e., failing to provide the maintenance effort required is always
bad, but can reveal disastrous in case of a hurricane.
Alternative interpretations can of course be considered (e.g., agents and principals could be

respectively thought of as workers and managers, tenants and landlords, etc.). Following most
of the literature on competition under asymmetric information, we will stick to the insurance
interpretation. Throughout the paper, Ȳs = Pyas + (1− P ) ybs denotes the expected production
in state s when effort is eh, while ȳs = pyas + (1− p) ybs is the expected production in state s
when effort is el. From the previous assumptions, we have that

Ȳs > ȳs , ȳ1 > ȳ2 and Ȳ1 > Ȳ2

2.2. Preferences

Preferences of both the principals and the agents are state independent. Principals are risk
neutral profit maximizers. For any non negative consumption c and any effort e ∈ {e0, e1},
agent’s preferences are represented by the VNM utility function u(c, e) = v(c, 1 − e), where
1− e is the agent’s leisure, and v is twice continuously differentiable, strictly concave, strictly
increasing , and satisfies limc→0 ∂v/∂c = +∞. Let cxs , where x = a, b and s = 1, 2, denote the
agent’s consumption, contingent on each aggregate state and on the realization of the output.
A key point is that, in contrast with most of the literature on moral hazard, we assume that
u is not separable in effort and consumption. This assumption fits the particular interpretation
we just suggested, where effort is interpreted as working time. Non separability of leisure (with
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respect to consumption) is a standard finding of the empirical literature on labor supply (see
for instance Browning and Meghir (1997)); it reflects the very natural intuition that, in general,
the marginal utility of leisure increases with wealth, if only because number of consumable
goods (travel, services,...) are obvious complements of leisure.5 Surprisingly enough, many
standard results of the moral hazard literature turn out to be very sensitive to the separability
assumption, although most of the time the latter is only made for commodity and cannot be
considered as particularly realistic in any sense, as already recognized in the seminal contribution
of Grossman-Hart (1983).

2.3. Contracts

In our insurance setting with exclusive relationships, a deterministic contract specifies a required
effort level and a transfer dxs from the insurer to the agent, contingent on each realization of the
output (x) and of the aggregate state (s); typically, one expects that da1 < 0 (i.e., the agent pays
an insurance premium when no damage has occurred, at least in the good aggregate state). For
each transfer, the agent’s consumption is cxs = yxs + d

x
s . It is of course equivalent, and often

more convenient, to write the contract in consumption terms (instead of transfers). That is, a
deterministic contract is defined by a 5-uple

γ = (e; ca1 , c
b
1; c

a
2, c

b
2)

that prescribes the required effort level e and the contingent consumptions.
Such a contract is called deterministic albeit it is contingent on the state of world. ’De-

terministic’, here, means that the contract does not entail additional randomness. It is well
known that efficiency may require some explicit randomization, which in full generality can be
of two types: ex ante (whereby the contract prescribes some probability distribution on the
recommended level of effort) and ex post (whereby the agent’s contingent payment, conditional
on the realization of the shocks, is stochastic). Hence the fully general form of a contract is:

Γ =
¡
α, µah,1, µ

b
h,1, µ

a
l,1, µ

b
l,1, µ

a
h,2, µ

b
h,2, µ

a
l,2, µ

b
l,2

¢
(2.1)

where :

• α is the ex ante probability of effort eh (then el is chosen with probability 1− α)

• µah,s (resp. µbh,s) is the ex post probability distribution of consumption in state s, condi-
tional on output yas (resp. y

b
s) and the contractually required effort eh

5A Beckerian justification relies upon the existence of a domestic production function that produce some
agent-specific commodity, using time and the consumption good as complementary inputs. Note that, in this

case, the marginal utility of consumption is likely to increase with leisure - i.e., ∂2u
∂c∂e

< 0. For instance, if
well-being is proportional to the consumption of a single household good ξ, produced from some constant return
to scale technology :

ξ = f (c, 1− e) = (1− e)φ
µ

c

1− e
¶

where φ is increasing concave, then ∂2u
∂c∂e

= ∂2f
∂c∂e

is always negative.
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• similarly, µal,s (resp. µbl,s) is the ex post probability distribution of consumption in state s,
conditional on output yas (resp. y

b
s) and effort el.

The above construction is equivalent to the one proposed by Prescott and Townsend (1984a,b).
Technically, they define random contracts as joint probability distributions on effort, output and
consumption; the equivalence with our definition comes from the fact that lotteries on lotteries
are lotteries. In the remainder, we stick to our notation, where ex ante and ex post random-
ization are explicitly distinguished, for two reasons. One is clarity; we believe that the basic
intuitions (and, specifically, the role of randomization) can be better grasped with this less com-
pact but may be more pedagogical presentation. Also, the distinction is particularly useful for
the characterization of equilibrium contracts; indeed, ex ante and ex post randomization play
very different roles in the equilibrium outcomes, as it will become clear later on.
The general timing of actions is summarized in Figure 1 below.

Insert Figure 1 here

2.4. Incentive and feasibility constraints

Feasibility Allocations are constrained by a feasibility and an incentive compatibility condi-
tion. The feasibility constraint reflects the fact that the insurance company must break even in
each aggregate state. For deterministic contracts, this implies that

P (e) cas + (1− P (e)) cas ≤ P (e) yas + (1− P (e)) yas , s = 1, 2 (2.2)

For instance, if the contract induces the choice of the high effort level, the constraint becomes

Pcas + (1− P ) cbs ≤ Ȳs, s = 1, 2 (2.3)

while with a low level it becomes

pcas + (1− p) cbs ≤ ȳs, s = 1, 2 (2.4)

In the general case (allowing for random contracts), the constraint is

α
¡
PEah,s + (1− P )Ebh,s

¢
+ (1− α)

¡
pEal,s + (1− p)Ebl,s

¢ ≤ αȲs + (1− α) ȳs, s = 1, 2

where Eah,s =
R
cdµah,s (c) is the mean consumption corresponding to the distribution µ

a
h,s.

Incentive compatibility Incentive compatibility imposes that the prescribed effort coincides
with the agent’s best choice. With random contracts, the constraint takes the form:

2X
s=1

£¡
PEUah,s + (1− P )EUbh,s

¢− ¡pEUal,s + (1− p)EUbl,s¢¤ ≥ 0 (2.5)
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where EUax,s =
R
u (c, ex)µ

a
x,s (c) is the expected utility corresponding to effort x and the distrib-

ution of consumption µax,s with x = h, l. In particular, a deterministic allocation (eh, c
a
1, c

b
1; c

a
2 , c

b
2)

is incentive-compatible if it satisfies:

λF
¡
ca1 , c

b
1

¢
+ (1− λ)F

¡
ca2, c

b
2

¢ ≥ 0 (2.6)

where

F (cas , c
b
s) = Pu(c

a
s , eh) + (1− P )u(cbs, eh)− pu(cas , el)− (1− p)u(cbs, el) (2.7)

denotes the difference (in some aggregate state s) between expected utilities under the high and
low efforts respectively. It is natural to assume that the incentive problem is non degenerate, in
the sense that the high effort can be implemented by some contract- i.e., that there exists some
strictly positive consumption level ga such that

F (ga, 0) > 0

We now state our main assumption on the agents’ preferences:

Assumption D : Marginal utility of consumption uniformly increases with leisure; i.e.,
there exists some k > 0 such that, for all (c, e)

∂2u

∂c∂e
(c, e) ≤ −k < 0 (D)

In addition,

lim
c→+∞

∂u(c, eh)/∂c

∂u(c, el)/∂c
= 0 (D∞)

lim
c→0

∂u(c, eh)/∂c

∂u(c, el)/∂c
= 1 (D0)

In words, we assume that marginal utility of consumption always increases with leisure, and
that this effect is particularly strong for wealthy agents, whereas it is almost negligible for very
low consumption levels.

The geometry of the incentive frontier It is convenient to fix the consumption plan in
state s to some arbitrary value

¡
c̄as , c̄

b
s

¢
and to consider, in the alternative state s0 6= s, the set

of consumption plans
¡
cas0 , c

b
s0
¢
that induce the high effort level. These must satisfy an equation

of the form:
F
¡
cas0 , c

b
s0
¢ ≥ H (2.8)

where H is a constant. In the (ca, cb) plane, the equation F
¡
cas0 , c

b
s0
¢
= H defines a family

of curves κH indexed by the constant H. Any of these curves splits the plane into two areas.
Within one of them, the incentive-compatible set KH , all contracts induce the high effort level
eh, whereas el is optimal in the complement K̄H .
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As it will become clear later on, the shape of the κH curves just defined plays a key role
in the derivation of our result, because it characterizes of the set of incentive compatible allo-
cations for both deterministic and randomized contracts. In the standard case where utility is
separable in effort and consumption, κH is increasing. We now show that this is no longer the
case under Assumption D: in the (ca, cb) plane, κH reaches a global maximum and decreases af-
terwards. Furthermore, for any given constant H the agent’s expected utility is bounded over the
the incentive-compatible set KH - a fact that will be directly linked to the existence of contracts
generating positive profit. Formally:

Lemma 2.1. Assume Assumption D holds true. Then :

• κH is a continuously differentiable curve in the (ca, cb) plane

• For (ca, cb) small enough, κH is increasing, with a slope smaller than 1.

• There exist a point ¡c̄a (H) , c̄b (H)¢ on κH in the (ca, cb) plane where cb is locally maxi-
mum, and such that, for any ca > c̄a (H), κH is decreasing in the (ca, cb) plane. Moreover,
the values of ca at which the maxima are reached are the same for all curves κH .

• For H 0 > H, κH0 is below κH in the (ca, cb) plane; i.e., if (c̄a, cb) ∈ κH and (c̄a, c0b) ∈ κH0

then c0b < cb

Proof: See Appendix

Insert here Figure 2

An illustration of this result is provided in Figure 2 for the simple case of a unique global
maximum: in the (ca, cb) plane, κH first increases, reaches a maximum, then declines. The in-
terpretation of the maximum level for cb is straightforward : a contract providing a consumption
larger than this maximum when the low production level is realized cannot induce the maximum
effort level, whatever consumption may be in the other state. In other words, a ’too generous’
allocation of consumption in the bad state cannot be offset by an even more generous provision in
the good state. The intuition is that increasing ca has two effects. On the one hand, it broadens
the difference between consumption in the good and in the bad states. This has good incentives
properties, since choosing the high effort increases the probability of receiving this difference.
Note, however, that this effect is related to marginal utility of income, so that its magnitude
decreases with wealth. On the other hand, a higher ca increases total (expected) consumption,
which, from Assumption D, raises marginal disutility of effort. This clearly reduces incentives.
For ca large enough, the latter effect may well dominate; it actually does under Assumption D.
A crucial consequence of Lemma 2 is that the agent’s utility is bounded over the incentive

compatible set KH , and reaches its maximal, as stated in the following Proposition:

Proposition 2.2. There exists a finite bundle c∗ (H) =
¡
ca∗ (H) , cb∗ (H)

¢
that maximizes the

agent’s expected utility under high effort on the set KH .
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Proof: See Appendix

As it can be seen on Figure 2, increasing the agent’s utility beyond its level at c∗(H) would
require a larger ca, cb or both, but this cannot be compatible with the incentive constraint. An
important consequence of this result is that the agent’s preferences on the contract space exhibit
a satiation property: no increase in consumption can improve the agent’s welfare.

3. Competitive equilibria: the strategic point of view

We now consider our model from a strategic point of view. Competition is represented as a
two-stage game. At stage one, each principal offers one or several contracts. At stage two,
each agent selects a contract and chooses an effort; then the state of the world is revealed and
consumption takes place. An equilibrium is then defined as a subgame perfect equilibrium of
this game. We will call it a Bertrand-Rothschild-Stiglitz (BRS) equilibrium because a feasible,
incentive-compatible contract is a Nash equilibrium outcome of our game if and only if it sat-
isfies Rothschild and Stiglitz’s (1976) condition of robustness to the introduction of additional
profitable contracts.

3.1. Preliminary characterization

A first step toward the characterization of BRS equilibria is provided by the following result:

Lemma 3.1. At any BRS equilibrium, agents’ ex ante utility is maximized under incentive
compatibility and non negative profit (feasibility) constraints.

Proof. Assume not. Then there exists some contract that is incentive compatible, makes non
negative profit, and provides the agent with strictly higher expected utility than the equilib-
rium one. Decrease the agent’s consumption in the state (1, b) by some ’small’ amount ² > 0.
The contract thus obtained is still incentive compatible and is still preferred by the agent to
the equilibrium one, but makes strictly positive profits - a contradiction with the equilibrium
condition.
It should be noted that this Lemma applies not only to general contract spaces, but also to

particular subclasses of contracts (e.g., deterministic ones); in both cases, the BRS equilibrium
generates the maximum level of utility attainable over the set of contracts at stake. A first and
simple consequence is the following:

Corollary 3.2. A BRS equilibrium always exists. Moreover, every competitive equilibrium is
constrained Pareto optimal.

The proof of this result is immediate since the agent’s program coincide with the definition
of the (constrained) efficient outcome preferred by the agents; again, the Corollary holds for any
contract space. Note, however, that the constrained Pareto efficiency of BRS equilibria is not a
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very robust result. For instance, it is well known that it does not hold under adverse selection.6

Even in the moral hazard context, the conclusion strongly depends on the assumption that only
one good is consumed in the economy, as proved in Bennardo (1997).

We shall now derive our first result, namely that the BRS equilibrium may entail positive
profits. For the sake of clarity, it is useful to convey the basic intuition in the simpler case where
only deterministic contracts can be offered, and then to analyze how the argument is affected
by the introduction of randomization.

3.2. The basic intuition: competition with deterministic contracts

Assume that the equilibrium deterministic contract involves the high effort level eh; and let
(ĉas , ĉ

b
s) denote the corresponding equilibrium consumptions in state s. Defining Ĥs by

F
¡
ĉas , ĉ

b
s

¢
= Ĥs, incentive compatibility requires that λĤ1+(1− λ) Ĥ2 = 0;7 hence for each state

s the equilibrium allocation
¡
ĉas , ĉ

b
s

¢
must, in the

¡
cas , c

b
s

¢
plane, be located on the curve κĤs

. On

this curve, from Lemma 3.1, the agent’s expected utility is maximum at
³
ca∗
³
Ĥs

´
, cb∗

³
Ĥs

´´
.

The question, now, is whether this optimal bundle is feasible given the economy’s production in
that state, Ȳs. If it is not, then at equilibrium the feasibility constraint is binding, i.e.

P ĉas + (1− P ) ĉbs = Ȳs
In that case, the equilibrium profit is zero, and the optimal consumption is located at an inter-
section of the feasibility constraint above and the curve κĤs

. This case is illustrated in Figure
3a. In the alternative situation, illustrated in Figure 3b, the expected production (conditional on
the high effort being exerted) exceeds the expected consumption corresponding to the optimal
bundle c∗(Ĥs) - formally:

Pca∗
³
Ĥs

´
+ (1− P ) cb∗

³
Ĥs

´
< Ȳs (Zs)

Then from Lemma 3.1 the equilibrium allocation (ĉas , ĉ
b
s) must coincide with the optimal

one
³
ca∗
³
Ĥs

´
, cb∗

³
Ĥs

´´
, and (Zs) implies that the agents receive less than the total amount

produced; the difference is the principal’s profit in the aggregate state s. This argument suggests
that when aggregate productions, Ȳ1 and Ȳ2, are both ’large enough’, then profit should be
positive in at least one state. This intuition turns out to be correct, although its proof is
somewhat tricky because the optimal incentive level Ĥs is endogenous and depends in particular
on aggregate productions. Formally, the following result holds:

Proposition 3.3. Under Assumption D, there exists an open set of parameters for which the
BRS equilibrium (eh; ĉ

a
1 , ĉ

b
1; ĉ

a
2 , ĉ

b
2) requires the high effort level and entails positive profits in

both states.

Proof: see Appendix
6 See Chassagnon and Chiappori (2002) for a recent discussion.
7As it is well-known, the incentive compatibility constraint must be binding at equilibrium.
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Insert here Figure 3

The economic intuition for this result is a clear consequence of what has been said above.
In the standard case (say, with separable preferences), equilibrium profits are zero because of
undercutting. Should profits be positive, a new entrant could attract all consumers and make
a positive profit. The trick - a direct generalization of undercutting - is to propose a contract
corresponding to an infinitesimal move along the Pareto frontier, in the direction of increased
consumer’s welfare (and decreased profits).
This argument, however, requires the possibility of a trade-off between welfare and profit. In

our case, such a trade-off may not exist, since consumer’s welfare cannot be increased beyond

the level reached at
³
ca∗
³
Ĥs

´
, cb∗

³
Ĥs

´´
. Then undercutting is just not feasible. In other

words, because of competitive pressure, principals would be willing to give away part of their
profits to the agents, in order to attract a larger number of them. However, this is not possible
here, because the incentive constraint results in an upper bound on the agents’ (contingent)
wealth: making them richer would kill incentives to work, which would in turn result in much
lower welfare for all.
Finally, the positive profit situation has an interesting interpretation in terms of the shape

of the Pareto frontier. Assume for a moment that λ = 0 (i.e., there is only one aggregate state),
and that parameters are such that inducing the high effort is optimal; the incentive constraint is
now F

¡
cas0 , c

b
s0
¢
= 0. Also, assume that the consumption bundle

¡
ca∗ (0) , cb∗ (0)

¢
is feasible, and

let u∗ (0) = Pu (ca∗ (0) , eh) + (1− P )u
¡
cb∗ (0) , eh

¢
denote the corresponding expected utility.

While the firm gets a profit equal to

π∗ (0) = Ȳ − Pca∗ (0)− (1− P ) cb∗ (0) > 0
it is impossible for the agent to reach an expected utility level greater than u∗ (0). Starting from
(u∗ (0) ,π∗ (0)), it is impossible to change the contract so as to decrease the principal’s profit
and increase the agent’s expected utility: no matter the contract, the agent’s welfare cannot go
beyond u∗ (0). In a standard representation of the Pareto frontier where the horizontal (resp.
vertical) axis represents the agent’s expected utility (resp. the principal’s profit), the frontier
has a vertical segment8. This fact is reminiscent of another, more well-known result already
mentioned by Grossmann and Hart (1983): in a standard principal-agent model with moral
hazard and non separable utility, the agent’s participation constraint may not be binding -
which would correspond to an horizontal segment on the Pareto frontier. Note, however, that
the two results are unrelated. In particular, one can exhibit utility functions that satisfy one
property but not the other.

3.3. Competition with unrestricted contract space

Although the previous argument provides the basic intuition underlying our results, it still relies
on the assumption that only deterministic contracts are implementable. It is however well-
known in contract theory that random contracts may be mutually profitable for principals and

8To be precise, only the upper limit of the segment, A, belongs to the Pareto frontier; all other points are
Pareto-dominated by A. Also, note that reaching the points below A requires free disposal, since it must be
possible to withdraw resources from the principal without increasing the agent’s wealth.
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agents in the presence of moral hazard (see Prescott and Townsend (1984), Gjiesdal (1985), and
Arnott-Stiglitz (1988)). We now characterize competitive equilibria in the space of randomized
contracts.
First, we can use Lemma 3.1 to characterize the equilibrium as an efficient allocation. For-

mally, if the contract Γ =
³
α, µah,1, µ

b
h,1, µ

a
l,1, µ

b
l,1, µ

a
h,2, µ

b
h,2, µ

a
l,2, µ

b
l,2

´
is an equilibrium, it must

solve the following program:

max
Γ

2X
s=1

¡
PEUah,s + (1− P )EUbh,s

¢
under the constraints

α
¡
PEah,s + (1− P )Ebh,s

¢
+ (1− α)

¡
pEal,s + (1− p)Ebl,s

¢ ≤ αȲs + (1− α) ȳs, s = 1, 2 (3.1)

and
2X
s=1

£¡
PEUah,s + (1− P )EUbh,s

¢− ¡pEUal,s + (1− p)EUbl,s¢¤ ≥ 0 (3.2)

This program, however, is not particularly simple or attractive. We shall now discuss its
main properties.

Ex post randomization We indicated above that, in its most general form, the contract Γ
entails both ex ante and ex post randomization. As it turns out, these two types of randomization
play completely different roles in our context. Specifically, ex post randomization plays no specific
role in our setting, and is actually useless under a mild strengthening of Assumption D, as stated
by the following result:

Proposition 3.4. At any BRS equilibrium, whenever the low effort is exerted the contract
entails no ex post randomization. Moreover, if the concavity of the utility function decreases
with effort, i.e.

∂3u

∂c2∂e
< 0 (DC)

then the equilibrium contract never entails ex post randomization

The first part of the Proposition is obvious: whenever the agent has chosen the low effort
level, no incentive problem arises, and increasing the risk born by the (risk averse) agent can
only reduce efficiency. The second part is less obvious, and was first demonstrated by Arnott
and Stiglitz (1988). The intuition for ex post randomization is that in some cases it can help
relaxing the incentive constraints. Assume, for instance, that u(c, e) is such that the agent is
risk neutral when e = eh, whereas he is risk averse for e = el. Then ex post randomization can
be used as an effective incentive device : it increases the relative cost of the low effort without
changing either expected profits or the agent’s expected utility conditional on eh. In fact, in this
extreme case, (sufficient) ex post randomization can implement the first best. This, however,
requires particular properties of the third cross derivative of the utility function (i.e., the way
∂2u/∂c2 changes with effort) that are ruled out by assumption (DC). Technically, (DC) implies
in particular that risk aversion increases with effort (decreases with leisure)9, which rules out

9This effect is somewhat natural. It has been argued, for instance, that more leisure provides more flexibility
to cope with adverse income shocks (say, by increasing labor supply). See for instance Gollier (1999)
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the ’incentive’ role of ex post randomization.
Also, it should be noted that (DC) is fully consistent with Assumption D. Indeed, the latter

states that the increase in marginal utility of income due to an increase in leisure is negligible
when consumption is small, and dominant when it is large, while DC requires that it increases
monotonically in-between.

Ex ante randomization On the contrary, ex ante randomization turns out to play a key
role in our context. To see why, start from the situation described above, where the equilibrium
with deterministic contracts entails some positive profit πs in both states s = 1, 2. Now, a
principal can successfully propose the following, ex ante randomized contract: with probability
α (where α is smaller than but very close to 1), the agent receives the deterministic equilibrium
contract; with probability 1 − α, he receives an alternative contract, entailing low effort and
some consumption level Cs independent of the individual shock (but contingent on the aggregate
state), with

Cs = ȳs +
α

1− α
πs − ²

1− α

This contract is feasible, and entails a profit equal to ². For 1 − α and ² small enough,
Cs is arbitrarily large, and u(Cs, el) is larger than the utility generated at the deterministic
equilibrium. It follows that the new contract is strictly preferred to the deterministic one, hence
will attract all agents, while still generating positive profit - a contradiction with the definition
of an equilibrium. This shows that whenever the deterministic contract entails positive profit
in both aggregate states, the equilibrium contract cannot be deterministic, but must entail
randomization.
In the randomized contract just described, each agent can either be ’lucky’, in the sense that

he receives a no effort, high consumption contract; or he can get the standard, deterministic
contract, in which case he faces the same incentives to work as before. The intuition is simple.
Because of competitive pressures, profits should be dissipated in wage increases. This, however,
cannot be done in a deterministic way, because it would destroy incentives to work (that’s the
previous result). Ex ante randomization solves the problem by exploiting the separability of
expected utility across states; the idea being to distribute the profit in a contingent way, i.e., in
some states of the world (as defined by the ex ante random device). Technically, randomization
creates a (low probability) contingency where agents are prescribed to exert low effort, so that
the incentive constraint is not binding and profits can be freely distributed. From the agent’s
ex ante viewpoint, this randomized contract is better, because of the positive (even if small)
probability of being lucky.
It must be stressed that, at equilibrium, some agents will work (e = eh) whereas other will

not (e = el). This has some cost in term of total production, since the latter will be equal to
(1− α) ȳs + αȲs, which is strictly less than Ȳs. However, the loss may be very small (since
α can be arbitrarily close to one). On a more theoretical side, it is important to note that
the coexistence of different equilibrium effort levels does not require the corresponding utilities
to be equal. On the contrary, ex ante randomization is useful precisely because it allows the
coexistence of different and non equivalent (in terms of the agent’s utility) effort levels. This
intuition reveals crucial in more general contexts, and especially when different commodities are
produced (see Bennardo 1997).
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The main result Finally, the intuition given above for the role of randomization assumes
that (deterministic) equilibrium profit is positive in both states. We now concentrate on the
more interesting case where, in the absence of randomization, the equilibrium effort is eh and
the optimal contract entails positive profit in the good state (state 1) but zero profits in the
alternative state 2. This will typically be the case when Ȳ1 is large while Ȳ2 is small (see
Appendix D for a formal proof). We also assume that ȳ2 is much smaller than ȳ1 - i.e., although
prevention is always good, it becomes absolutely crucial in case of a hurricane.
In such a context, ex ante randomization can still be used to redistribute the profit that is

generated in the good state of the world, but this can no longer be done at no cost. The crucial
point is that, given the prevention technology, effort must be chosen (possibly in a random way)
before the aggregate state of the world is known. If a fraction 1 − α of the agents receive the
low effort contract, then with probability (1− λ) the average production of these agents will be
at the very low level ȳ2. Clearly, this risk is non insurable, since it directly reflects aggregate
uncertainty (technically, the resource constraint must be satisfied in each aggregate state). As
a result, redistribution of profit in state 1 is realized at a cost - namely, less total resources
are available in the bad state 2, where they are most needed. The question, now, is whether
the benefit or randomization - the ability to redistribute profit in the good state - is worth the
cost - namely, reducing everybody’s consumption in the bad state, although all agents would be
willing to transfer resources to that state.
The answer ultimately depends on the properties of the utility function, as stated the next

proposition.

Proposition 3.5. Assume that Assumptions D and DC are satisfied. If utility with the low
effort is unbounded above :

lim
x→+∞u (x, el) = +∞

then the BRS equilibrium contract always entails ex ante randomization and zero profit. Con-
versely, if utility is bounded above :

lim
x→+∞u (x, el) < +∞

then there exist an open range of parameters for which any BRS equilibrium contract is deter-
ministic and equilibrium profits are positive in state 1.

Proof: see Appendix

The intuition is that a very small 1−α leads to practically infinite consumption in the most
lucky case (low effort contract and good state of the world), and this perspective, however un-
likely, is sufficient to decide in favor of randomization whenever utility is unbounded. Conversely,
if utility is bounded, randomization may, depending on the parameters, become too costly. Then
the equilibrium contract is the deterministic one, and entails positive profit. Note that in our
context, a bounded utility has the following interpretation : there exists some consumption level
C̄, some (very small) probability 1 − ᾱ and some (very low) consumption level Ā such that a
lottery paying Ā with probability ᾱ and some arbitrarily large amount B with probability 1− ᾱ
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will never be preferred to C̄, whatever B. Or, to put it differently: paying an infinite amount
with a low probability is not sufficient to compensate for a large (but finite) and very likely loss.
From now on, our analysis will mainly focus on the situation just described where the equi-

librium contract is deterministic and generates positive profit in the aggregate state 1 and zero
profit in the aggregate state 2; let γ̂ = (eh; ĉ

a
1, ĉ

b
1; ĉ

a
2, ĉ

b
2) denote the corresponding equilibrium

contract.

4. A general equilibrium viewpoint

4.1. The framework

In the previous sections, we adopted a strategic point of view, where a finite number of princi-
pals simultaneously propose contracts. This setting explicitly takes into account the strategic
nature of competition, and relies upon an equilibrium concept borrowed from game theory (non
cooperative Nash in our case). We now consider an alternative, ’general equilibrium’ perspective
where agents are price takers in a general commodity space. The approach is borrowed from the
seminal work of Prescott and Townsend (1984a, b). We assume that the economy consists of two
types of agents, households and intermediaries - the latter corresponding to the principals in the
BRS context.10 We use the ’Walrasian’ concept of equilibrium under asymmetric information
defined by Prescott and Townsend. In particular, we use the modeling technology provided in
their papers. No restriction is placed on the space of enforceable contracts; i.e., we consider the
pure moral hazard case defined above, where the set of available (random) contracts allows to
exploit all potential gains from trade.
In this setting, a contract is a distribution on the space of allowable consumptions, produc-

tions and effort. Following Prescott Townsend, we make the simplifying assumption that the set
of possible consumption levels and, consequently, the set of allowable contractual contingent
payoffs are finite. Technically, a contract is a vector x of the simplex:

x = (..., P (c, ya1 , ei), P (c, y
b
1, ei), ..., P (c, y

a
2 , ei), P (c, y

b
2, ei), ...)

where c varies within the finite set of feasible consumption levels, and i ∈ {l, h} indexes the
effort level. Specific constraints have to be satisfied, that reflect the nature of the available
technology (e.g., the marginal probability of producing yx in the aggregate state s conditional
on supplying effort ei is given by nature) and the probability nature of the commodity (e.g.,
the sum of conditional probabilities must equal one)11. Also, the following notation will reveal
convenient:

x = (x1, x2)

where

xs = (..., P (c, y
a
s , el), P (c, y

b
s, el), P (c, y

a
s , eh), P (c, y

b
s, eh), ...)

10An alternative and equivalent interpretation assumes away intermediaries. The agents in the economy can
create insurance firms in the usual way, i.e. by allocating property rights (shares) among them, and profits (if
any) are distributed among shareholders.
11These constraints are exactly analogous to those in Prescott-Townsend; for brevity, we do not restate them

here.
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denotes the restriction of x to the aggregate state s (i.e., the distribution of consumption,
production and effort when state s is realized).
Each commodity (contract) x has a price. Prices of commodities are linear with respect to

the probabilities P (c, yxs , ei); i.e., if πc,yx1 ,ei is the price of a contract paying c contingent on ei
and on the realization of the endowment yxs , and zero otherwise, the value of the commodity x
is then given by the scalar product

Π.x

where
Π = (...,πc,ya1 ,ei ,πc,yb1,ei , ...,πc,y

a
2 ,ei
,πc,yb2,ei , ...)

Again, it is convenient to use the notation

Π = (Π1,Π2)

so that
Π.x = Π1.x1 +Π2.x2

Contracts are offered by risk-neutral intermediaries that are price takers and supply contracts
in a profit-maximizing way, subject to feasibility constraints of the form12

rs.x ≤ 0

where
rs = (..., c− yas , c− ybs, c− yas , c− ybs, ...)

In words, this constraint requires that, in each aggregate state of the world, intermediaries
cannot deliver more of the consumption good than what is actually produced.
Finally, households buy contracts at market price so as to maximize utility under budget

constraint, and under the additional constraint that any purchased contract must belong to the
consumption set. A specific feature of Prescott and Townsend’s approach is the treatment of
the incentive compatibility constraint. Prescott and Townsend suggest to include the constraint
within the definition of the agent’s consumption set (in other words, the agent cannot ’consume’
a contract that is not incentive compatible).
A first consequence of this setting is the following:

Lemma 4.1. At any equilibrium, profits must be zero. In particular, at any equilibrium with
positive trade, the price vector Πs must be either identically null or proportional to rs.
12 If intermediaries are allowed to trade among them commodities accross states of the world using Arrow-

Debreu securities (say, selling one unit of the commodity in state 1 in exchange for k units of the commodity in
state 2), then only one constraint is needed. However, since such trades cannot take place at equilibrium, the
equilibrium will actually satisfy the two constraints rsxs = 0. Our results hold under both interpretations.
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Proof. Assume that, at equilibrium, a contract generates positive profits. With a linear
technology, its supply would then be infinite, and market clearing cannot obtain, a contradiction.
Assume, now, that Πs is not identically null, and consider the two half spaces EΠs =

{x / Πsx > 0} and Ers = {x / rsx ≤ 0} . If Πs is not proportional to rs, then the two spaces
have a non empty intersection, which is a convex cone. If this cone has an empty intersection
with the positive orthant, no feasible contract generates a non-negative profit; then no trade
takes place at equilibrium. If, on the other hand, the intersection of the cone with the positive
orthant is not empty, there exists a contract that is feasible and generates a strictly positive
profit, a contradiction.

The intuition is that if profits are positive, then any producer is willing to supply an infinite
amount of the corresponding contracts. Since demand is necessarily finite, there must be excess
supply and markets do not clear. It follows that the Prescott-Townsend approach explicitly
requires either zero profit or zero prices as an equilibrium condition.

4.2. Existence of an equilibrium

We now concentrate on the existence of an equilibrium. A first remark is that, in our setting,
a zero-price equilibrium cannot exist. Indeed, prices are used to decentralize the feasibility
constraints at the agents’ level. If they are zero, there is a positive demand for contracts that
are not feasible and an equilibrium cannot exist. Formally:

Lemma 4.2. At any equilibrium, neither Π1 nor Π2 can equal the null vector.

Proof. Assume that Πs is identically null. Consider a contract x = (x1, x2) such that xs
requires the low effort level and provides some very high level of consumption C with probability
one, whatever the idiosyncratic outcome. This contract is incentive-compatible, hence belongs
to the agents’s consumption set. Also, buying this contract cannot be incompatible with the
budget constraint, since its price is zero whatever C. For C large enough, it is preferred to
any incentive-compatible contract inducing high effort (remember the utility provided by such
contracts is bounded). At zero prices, there will be a positive demand for some contracts of this
kind. However, they cannot be supplied, since they violate the feasibility constraint.

We can now show our main result.

Proposition 4.3. Consider the set E of economies in which all Nash equilibrium contract entail
positive profit in the aggregate state 1 and zero profit in the aggregate state 2. No Walrasian
equilibrium exists in any economy belonging to the set E.

Proof. From Lemmas 4.1 and 4.2, at any equilibrium with non zero trade, the price vector must
be proportional to (r1, r2). Equilibrium prices are thus defined up to a multiplicative constant.
After normalization, the price of any contract (including γ̂) must be such that the producer
makes zero profit. It follows that, whenever the conditions for Proposition 4.3 are satisfied, the
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price of γ̂ must be negative (i.e., the agent receives money when purchasing the contract) and
equal to minus the profit made on γ̂.
Consider, now, the agent’s perspective. If he chooses γ̂, his budget constraint is not bind-

ing. So he can afford a contract that is slightly more expensive. For instance, he can buy
some contract that entails, in state 2, a consumption bundle

¡
ca2, c

b
2

¢
located on the incentive

frontier beyond
¡
ĉa2 , ĉ

b
2

¢
(i.e., such that ca2 > ĉa2, c

b
2 > ĉb2 - remember such a contract exists by

construction). Since Π2 is proportional to r2, the difference in price between the two contracts
is proportional to ca2 − ĉa2 + cb2 − ĉb2, hence can be made smaller than the profit made on γ̂.This
means that a contract of the form (eh; ĉa1 , ĉ

b
1; c

a
2 , c

b
2) belongs to the agent’s budget and consump-

tion sets, and is strictly preferred to γ̂. At any equilibrium, the demand of a contract of this
sort will be positive, whereas its supply must be zero since it violates the feasibility constraint
in state 2 - a contradiction.

Two comments are in order at this point. Firstly, the previous Proposition provides an
example of an economy where no Walrasian equilibrium a la Prescott-Townsend exists. This
conclusion may seem surprising, because of the close relationship between the Prescott-Townsend
approach and standard general equilibrium (GE) theory. A Prescott-Townsend economy is
but a particular case of a production economy with constant return to scale technologies; the
existence of an equilibrium obtains as a consequence of the standard existence theorem in GE.
However, the analogy between moral hazard economies and standard GE models requires a
reinterpretation of such basic concepts as prices or commodities. Through the reinterpretation
process, some assumptions that seem totally natural in the standard framework may become
much more restrictive, and may actually fail to be satisfied in many contexts. For instance,
monotonicity of preferences, a natural hypothesis in standard consumer theory, does not obtain
in the new setting. As it is well known, the existence theorem in GE (see Debreu 1959 or
Arrow and Hahn 1971) holds without monotonicity of preferences, but it then requires local non
satiation and resource-relatedness. With deterministic contracts only, local non satiation is not
satisfied in our context (utility is locally satiated at γ̂). When lottery contracts are enforceable,
local non satiation is satisfied, but resource relatedness is not.
Secondly, the result has an important implication for the links between Walrasian and

Bertrand equilibria13 . It can be easily showed that the two sets coincide whenever, at each
BRS equilibrium, firms make zero profits. For this class of economies, the Walrasian equilib-
rium concept can be interpreted as a reduced equilibrium form of a Bertrand-Nash game. In
the alternative case where BRS equilibria entail positive profits, a completely different result
obtains. BRS and Walrasian equilibria do not coincide; Walrasian equilibria do not exist in
that case, whereas BRS equilibria always exist and are constrained efficient. The key intuition
is that positive profits contradicts market clearing. Assume that the BRS equilibrium contract
entails positive profit (which implies in particular that the supply of these contracts is rationed
at equilibrium). By definition, this contract is preferred by agents to any alternative, feasible
one - including those entailing zero profit. As argued above, market clearing requires that only
contracts yielding zero profit can be exchanged. But any principal could then profitably deviate
by proposing a positive profit contract that is preferred by agents as well. In other words, the
Walrasian equilibrium concept does not satisfy the basic condition of absence of profitable devi-
13See Bennardo (1997) for a detailed analysis of the links between Walrasian and Bertrand equilibria within a

general, multi-commodity setting.
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ation defining non cooperative Nash equilibria. What market clearing conditions do is imposing
ad hoc constraints on the set of mutually convenient trades that agents can undertake (in our
case, an unfortunate consequence is that no equilibrium satisfying these constraints exist). In
this sense, the Walrasian-like equilibrium notion can be considered as a quite unsatisfactory
equilibrium concept.
Finally, a different modeling choice can be made; namely, the incentive constraint can be

imposed on the set of contracts offered by intermediaries instead of being introduced through the
definition of the consumption set. Then Walrasian equilibria always exists, even when Bertrand
equilibrium contracts generate positive profit; however, Walrasian equilibria are typically con-
strained inefficient (because they entail low effort). In this case, imposing market clearing
typically results in welfare losses.

5. Related literature

Our findings are related to three branches of the literature on asymmetric information: general
equilibrium approach, strategic competition with decentralized trading and mechanism design.
Helpman and Laffont (1975), Prescott and Townsend (1984), Gale (1996) and Bisin and

Gottardi (1998) are among the main contributors to the literature on general equilibrium with
asymmetric information. The relationships between our model and Prescott-Townsend have
been discussed in the previous section. In another seminal contribution, Helpman and Laffont
(1975) characterize Walrasian equilibria with moral hazard and anonymous trades and show
that Walrasian equilibria may not exist because of the discontinuity of the assets’ demand cor-
respondence generated by moral hazard under linear prices; when they exist, they are generically
constrained inefficient. Bisin and Gottardi (1997) generalize these results to a larger class of
economies and also demonstrate that existence can be restored by imposing (exogenous) bounds
on agents’ trades. Such bounds on trades are suggestive of rationing phenomena. In a Wal-
rasian setting, however, trades’ restrictions ensuring existence have to be exogenously imposed
(whether they can endogenously emerge from market interactions remain unclear), furthermore,
we rule out these problems by assuming non-anonymous, exclusive trades. Finally, Gale (1996)
studies competition with adverse selection in a non strategic-setting where markets are assumed
to clear through rationing. Although our approach and that of Gale are to some extent comple-
mentary, the hypotheses on the trading mechanisms are different. In the equilibrium notion used
by Gale, rationing is the only market clearing mechanism available (markets clear by rationing
instead of prices), while in our context rationing emerge only if it allows to exploit gains from
trade that cannot be achieved at market clearing prices.
Regarding the game-theoretic literatures on decentralized trading and mechanism design,

our findings are related to three types of results in these literature. One is the existence of Nash
equilibria with positive profit in insurance economies with anonymous trades which has been
studied in several papers by Arnott and Stiglitz (1987, 1988, 1993), and recently by Bisin and
Guaitoli (1999). A second related result is the existence of equilibria with rationing, which is
a standard result of the efficiency wage/credit rationing literature. Finally, the optimality of
budget breaking mechanisms for environments with asymmetric information and externalities
has been studied in the mechanism design literature and in the literature on moral hazard in
teams. The first two classes of models (moral hazard with anonymous trades and efficiency
wage) depart explicitly from the pure moral hazard case we consider in the present paper, in
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the sense that they restrict their attention to a particular subset of the contract space (i.e., they
assume away either exclusive or randomized contracts - or both), while the literature on budget
breaking with moral hazard focus on situation where budget breaking only occurs out of the
equilibrium path.
Specifically, in the single-good insurance setting with anonymous trades studied by Arnott-

Stiglitz and Bisin-Guaitoli, positive profits are a consequence of a discontinuity in the demand for
insurance. Such a discontinuity is in turn caused by the externality that appears in the absence
of exclusive relationship - a point first emphasized by Helpman and Laffont (1974) (see also
Hellwig (1983) and Segal (1999) on this point). The idea, here, is that when agents can freely
buy insurance from different insurers, the profitability of the contract offered by each insurer
depends (through incentives) on the total amount of insurance that the agent receives. In our
setting, positive profits equilibria exist even though exclusive contracts rule out this externality.
In addition, the positive profit result in Arnott-Stiglitz does not extend to economies where
agents can trade randomized contracts.
The efficiency wages literature (see Shapiro-Stiglitz (1984) and Malcomson-MacLeod (1989)

among others) is based on another type of externality - namely, the profitability of a labor
contract depends on the unemployment rate of the economy (i.e. on the hiring decisions of
all the other firms in the economy). The initial Shapiro-Stiglitz (1984) model also imposes
exogenous bounds upon the ’punishment’ that can be inflicted to an agent (typically, he can
only be laid off at worse). Even under these restrictions, however, the rationing result is not
robust to the introduction of non linear pricing devices such as bonding, as showed by Carmichael
(1985). Malcomson and Mac-Leod, on the other hand, assume ’double moral hazard’, in the
sense that neither the agent’s effort, nor the principal’s measurement of output are verifiable.
Under this assumption, the emergence of efficiency wages does not require limited liability; it
stems from the restrictions on the set of enforceable contracts due to the principals’ incentive
constraints. However, rationing, again, is not robust to the introduction of random contracts,
and specifically of tournaments, as argued by Malcomson (1984). Similar considerations also
apply to the credit market model of Stiglitz and Weiss (1981). Finally, an interesting difference
with our results is that in both efficiency wage and credit rationing models, the informed party
(the agent) is rationed, while in our setting it is the non informed party (the principal) who is
rationed and gets a rent in equilibrium.
Equilibrium positive profits are finally reminiscent of a general result in the mechanism

design literature, namely that budget breaking mechanisms are generally welfare enhancing in
the presence of externalities among privately informed agents. The fundamental contribution
of Holmstrom (1982) showed that budget breaking mechanism generally improve incentives in
team production with moral hazard. In this context, the non measurability of the individual
contributions to the collective output (the non-separability of the production function) implies
that feasible payoffs to one agents depend on the effort exerted by all others. In the Holmstrom
model, however, the first best (or second best) allocation is achievable through a mechanism
inducing principals’ profit or losses out of equilibrium (i.e. if agents choose out of equilibrium
actions-efforts) but such that principals get zero profit given the equilibrium actions. Under
this mechanism, agents consume exactly what they produce. In our setting, in contrast, the
technology is fully separable, and principals make positive profit in equilibrium.
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6. Conclusion

Our paper studies an economy in which identical agents interact with linear principals in a
moral hazard context with observable trades. This economy is successively considered from two
viewpoints. We first adopt a ’strategic’ perspective. The main result, here, is the existence of
BRS equilibria in which the producers, albeit using a constant return to scale technology, make
positive profits and have a rationed effective supply at equilibrium. When only deterministic
contracts are enforceable, this conclusion obtains in the absence of aggregate uncertainty, under
simple and fairly general assumptions on preferences and technologies; namely, the marginal
utility of consumption must increase with leisure, especially when income is high. To the best
of our knowledge, this result is new, and may shed a new light on the properties of strategic
competition under moral hazard in situations where exogenous limitations prevent the use of
randomized contracts.
A second result is that when randomized contracts are allowed for, positive profit equilibria

may still appear, although not in the absence of aggregate uncertainty. Hence the general
intuition that competition drives profits to zero may fail to hold in an asymmetric information
context, even with totally unrestricted contract spaces.
These results have a counterpart in the alternative, general equilibrium perspective. When-

ever BRS equilibria entail positive profits, the standard Walrasian concept, which imposes mar-
ket clearing, cannot be interpreted as a reduced form equilibrium of a game in which agents
set prices in order to exploit potential gains from trade. That is, a producer and a worker can
profitably deviate from the Walrasian equilibrium by exchanging out-of-equilibrium contracts
at relative prices that are not compatible with Walrasian market clearing.
One important related point is that, once rationing emerges, contracts must be allocated

among the agents in the rationed side of the market (the supply side in our model) in a way that
is not entirely determined by market prices. The precise form of the equilibrium will typically
depend on the particular rationing scheme adopted - a choice that necessarily involves some
degree of arbitrariness. However, while different rationing schemes may decentralize different
allocations, the mere existence of rationing is purely endogenous. In situations similar to the
one we just described, rationing is a necessary consequence of the assumed absence of profitable
deviations that defines Nash equilibria. In that sense, it emerges as a by-product of individual
rationality - and specifically of the agents’ ability to implement any type of trades that turn
out to be mutually beneficial. This feature is to be contrasted, in particular, with the so-called
’disequilibrium’ approach initiated by Benassy (1975), Dreze (1982) and others, where rationing
was a consequence of exogenously imposed restrictions on price movements (typically, prices were
assumed rigid (at least in the short run), albeit prices changes would have improved welfare).
Two questions remain open at this stage. One concerns the robustness of our results. Al-

though our setting is highly specific (two outcomes, two effort levels, identical agents) our results
can be extended to more general environments (see Bennardo-Chiappori 1999). Similarly, the
exclusivity assumption can be viewed as imposing an extreme form on non-linear pricing; how-
ever, it can be replaced with the milder hypothesis that contractual terms of trades are verifiable
at sufficiently low costs and non linear (but not necessarily exclusive) contracts are enforceable.
Finally, we do believe that our conclusions are by no means pathological, and that on the con-
trary they are likely to hold in many (sufficiently complex) second best contexts. A general
property is that competition among principals results in equilibrium allocations which maxi-
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mize agent’s welfare subject to several constraints, including non negative profits and incentive
compatibility conditions. However, there is simply no general argument suggesting that the non
negative profit constraint should be binding in all cases.
The second fundamental issue concern the modeling of strategic interactions between different

types of agents ( possibly including large intermediaries) in a fully developed general equilibrium
model where agents interact in several markets and several commodities are possibly produced
and exchanged. A natural question, in this context, is whether a reduced form equilibrium
concept can be defined and used. By reduced form, we mean a model that, while abstracting
from the detailed game theoretic specification of the trading mechanisms, can select a set of
allocations that coincides with the Nash equilibrium outcomes of a class of games in which
maximizing agents and firms exploit arbitrage possibilities by choosing their trading plans.
These questions are addressed in Bennardo (1997, 2001) where the Bayesian perfect equilibria
of a multicommodity general equilibrium economy with moral hazard are characterized, and a
(reduced form) equilibrium concept is also proposed, that replaces Walrasian market clearing
with the Nash-type requirement of absence of profitable deviations.
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Appendix

A. Proof of lemma 2.1

Note first that, from Assumption D,

∂F

∂cb
= (1− P ) ∂u(c

b, eh)

∂c
− (1− p) ∂u(c

b, el)

∂c
< 0 (A.1)

Consider the equation
F (ca, cb) = H (A.2)

From the implicit function theorem, (A.2) defines (when it admits solutions) cb as a contin-
uously differentiable function of ca and H. A first consequence of (A.1) is that, for any given
ca, cb is a decreasing function of H. Consider, now, cb as a function of ca for some given H; this
is the definition of the curve κH . Its slope is given by:µ

∂cb

∂ca

¶
κ

= −∂F/∂c
a

∂F/∂cb
=

P ∂u(ca,eh)
∂c − p∂u(ca,el)∂c

−
h
(1− P ) ∂u(cb,eh)∂c − (1− p) ∂u(cb,el)∂c

i
In this fraction, the denominator is strictly positive. Consider, now, the numerator, say N .

A first remark is that, when ca is small, N is positive (this is a direct consequence of Assumption
D). Then µ

∂cb

∂ca

¶
κ

=
P ∂u(ca,eh)

∂c − p∂u(ca,el)∂c

P ∂u(cb,eh)
∂c − p∂u(cb,el)∂c +

h
∂u(cb,el)

∂c − ∂u(cb,eh)
∂c

i < 1
Also, N can be written as

N =
∂u(ca, el)

∂c

µ
P
∂u(ca, eh)/∂c

∂u(ca, el)/∂c
− p
¶

From Assumption D, this implies that N is negative for ca large enough; then κH is decreas-
ing.
Thus κH is increasing for ca small enough, decreasing for ca large enough, and continuously

differentiable in between. Hence it has one (global) maximum value (and possibly several local
maxima); c̄a (H) corresponds to the greatest local maximum.
Note, finally, that any local maximum must satisfy the first order condition .

P
∂u(ca, eh)

∂c
= p

∂u(ca, el)

∂c

This equation does not depend on H. Hence the values of ca at which the maxima are
reached are the same for all curves κH . Note that if the ratio

∂u(c,eh)/∂c
∂u(c,el)/∂c

is monotonic, there
exists one local (and global) maximum only.
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B. Proof of proposition 2.2

We first establish the following Lemma:

Lemma B.1. For any given H̄, there exist a value va
¡
H̄
¢
such that for any H ≥ H̄, at any

point (ca, cb) on the incentive frontier κH with ca > va
¡
H̄
¢
, the slope of the agent’s indifference

curve through (ca, cb), assuming effort eh, is negative and smaller (in absolute value) than that
of κH .

Proof of the Lemma
The slope of the indifference curve is given byµ

∂cb

∂ca

¶
u

=
−P

(1− P )
∂u(ca,eh)

∂c
∂u(cb,eh)

∂c

We thus want to show that, for ca large enough,

−P
(1− P )

∂u(ca,eh)
∂c

∂u(cb,eh)
∂c

≥ P ∂u(ca,eh)
∂c − p∂u(ca,el)∂c

−
h
(1− P ) ∂u(cb,eh)∂c − (1− p) ∂u(cb,el)∂c

i
Note, first, that in the above expression both denominators are positive. Hence it is equivalent

to:
P

1− P
∂u(ca,eh)

∂c
∂u(ca,el)

∂c

≤ p

1− p
∂u(cb,eh)

∂c
∂u(cb,el)

∂c

For ca large enough, the left hand side term goes to zero, while the right hand side term is
bounded away from zero. Indeed, from Lemma 2.1, κH̄ is bounded above in the (ca, cb) plane,
and this upper bound is also an upper bound for all κH with H ≥ H̄. Hence the conclusion.

Lemma B.1 essentially states that, from any point on κH where ca is large enough (so that
κH is decreasing in the

¡
ca, cb

¢
plane), an agent who is constrained to move along κH always

prefers the direction in which ca is reduced (and cb is increased).
We can now conclude the proof of the Proposition. If KH is bounded, the result is obvious.

Assume it is not, and let vb (H) be such that
¡
va (H) , vb (H)

¢
belongs to κH . A consequence

of Lemma B.1 is that the agent prefers
¡
va (H) , vb (H)

¢
to any (ca, cb) on κH such that ca >

va (H). Then the contract that maximizes expected utility on K must belong to the set

KH ∩ [0, va (H)]×
£
0, vb (H)

¤
This set is compact, hence the result. A characterization of c∗ (H) is that the slope of the

incentive constraint and that of the indifference curve are equal:

−P
(1− P )

∂u(ca∗H ,eh)
∂c

∂u(cb∗H ,eh)
∂c

=
P

∂u(ca∗H ,eh)
∂c − p∂u(ca∗H ,el)

∂c

−
h
(1− P ) ∂u(cb∗H ,eh)∂c − (1− p) ∂u(cb∗H ,el)∂c

i
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C. Proof of Proposition 3.3

Pick up two values H1 and H2 such that λH1 + (1− λ)H2 = 0. Define va (Hs) as in Lemma
B.1 above. Pick up two values Y1 and Y2 such that

Ys > max
(ca,cb)∈κHs
ca≤va(Hs)

Pca + (1− P ) cb

Let (ĉas , ĉ
b
s) denote the equilibrium consumptions in state s corresponding to (Y1, Y2), and define

H̄s by F
¡
ĉas , ĉ

b
s

¢
= H̄s, s = 1, 2. Since λH1 + (1− λ)H2 = λH̄1 + (1− λ) H̄2 = 0, we have that

Hs ≤ H̄s for at least one s. Then κH̄s
is below κHs

, and since from Lemma B.1 ĉas < v
a (Hs),

it must be the case that
P ĉas + (1− P ) ĉbs < Ȳs

D. Proof of Proposition 3.5

Take some given, ’large’ Y1. We first show that for Y2 and (P − p) small enough, the deterministic
equilibrium is such that profit is zero in the bad state 2. Assume not, and define Ĥs as above.
We show that by reducing Ĥ2 by dH, hence relaxing the incentive constraint in state 2, while
increasing Ĥ1 by 1−λ

λ .dH, one can increase welfare, which contradicts the efficiency of the
equilibrium. The change dH generates a gain dW2 in state 2 and a loss −dW1 in state 1. Define

W (H) = max
F (ca,cb)=H

Pu(ca, eh) + (1− P )u(cb, eh)

Then

W 0 (H) =
(1− P ) ∂u(cb,eh)∂c

(1− P ) ∂u(cb,eh)∂c − (1− p) ∂u(cb,el)∂c

If Y2 is small, so is cb2, and from Assumption D, the gain in state 2 is

dW2 =
(1− P ) ∂u(cb,eh)/∂c

∂u(cb,el)/∂c

(1− P ) ∂u(cb,eh)/∂c
∂u(cb,el)/∂c

− (1− p)
.dH ' 1− P

P − p .dH

If Y1 is large, on the other hand, cb1 is bounded away from zero, so

∂u(cb, eh)/∂c

∂u(cb, el)/∂c
≤ λ

for some λ < 1 over a neighborhood of cb. It follows that

−dW1 =
(1− P ) ∂u(cb,eh)/∂c

∂u(cb,el)/∂c

(1− p)− (1− P ) ∂u(cb,eh)/∂c
∂u(cb,el)/∂c

.dH ≤ 1− P
(1− p)− (1− P )λ .dH
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When P − p is small enough, dW2 > −dW1, QED.
Starting from the deterministic equilibrium, we now consider first the consequences of the

introduction of some infinitesimal ex ante randomization, as described in subsection 3.2. Switch-
ing from the deterministic equilibrium to a randomized contract of this kind has a benefit dB1
in state 1 and a cost −dB2 in state 2; for 1 − α small enough, both the benefit and the cost
are infinitesimal, and proportional to 1 − α at the first order. We now compare the first order
benefit and cost. In state 1, the benefit comes from the fact that, with probability 1 − α, the
agent gets a large consumption C with no effort instead of the deterministic equilibrium contract¡
eh, ĉ

a
1, ĉ

b
1

¢
; hence

dB1 = (1− α) .∆u

where
∆u = u (C, el)−

¡
Pu(ĉa1, eh) + (1− P )u(ĉb1, eh)

¢
In state 2, the total amount of resources available is decreased by (1− α)

¡
Ȳ2 − ȳ2

¢
; −dB2

can be approximated by a product of the form (1− α)
¡
Ȳ2 − ȳ2

¢
K, where K is related to the

expected marginal utility of income in that state (technically, K is larger than the lower bound
of marginal utility of income in some neighborhood of the contract in state 2). Note that if Ȳ2
is small enough, K is arbitrarily large.
When α goes to 1, the consumption level C goes to infinity. If u is unbounded, ∆u goes

to infinity, and so does dB1, whereas dB2 remains bounded; the first order effect of the ran-
domization is positive. If, on the other hand, u is bounded by some ū, then ∆u is bounded by
ū − ¡Pu(ĉa1, eh) + (1− P )u(ĉb1, eh)¢. For Ȳ2 small enough, the marginal utility of income term
K is arbitrarily large, and the first order effect of the randomization is negative.

Finally, consider the case of a non infinitesimal ex ante randomization. By the same argument
used above, the gain it generates is bounded above since ∆u is bounded. On the other hand the
cost of a non-infinitesimal randomization must be strictly larger than that of an infinitesimal
one, as it is immediate to verify, and becomes arbitrarily large for Ȳ2 small enough. Hence we
can conclude that no ex ante randomization can be profitable.
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