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Abstract

We analyze a Bertrand-Edgeworth game in homogeneous product in-

dustry, under efficient rationing, constant marginal cost until full capacity

utilization, and identical technology across firms. We solve for the equilib-

rium and establish its uniqueness for capacity configurations in the mixed

strategy region of the capacity space such that the capacities of the largest

and smallest firm are sufficiently close.
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1 Introduction

The analysis of price competition among capacity-constrained sellers of a homo-
geneous product (Bertrand-Edgeworth competition) has received considerable
attention over recent years. Classic studies of duopoly under efficient rationing
and constant (and identical across firms) unit cost below capacity may be found
in Kreps and Scheinkman (1983) and Osborne and Pitchik (1986), the latter
also establishing uniqueness of equilibrium in the mixed strategy region of the
capacity space. More recently, De Francesco and Salvadori (2010) provided a
complete characterization of equilibria under triopoly besides pointing out some
general properties of equilibria under oligopoly. (For the triopoly, see also Hi-
rata, 2009.) Concerning oligopoly, however, determination of mixed strategy
equilibria when the price game does not possess pure strategy equilibria is only
available for special cases. In this paper we provide a complete analysis of
another, significant case, that of an almost symmetric oligopoly. This comple-
ments Vives (1986), who determined the symmetric mixed strategy equilibrium
in a symmetric oligopoly while leaving open the question of whether asymmetric
mixed strategy equilibria also exist.1 On the contrary, we prove that the equi-

1”Given n firms and restricting attention to symmetric equilibria...” (Vives, 1986, p. 114).
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librium we find, which collapses to that of Vives when firms are equally sized,
is unique.2

2 Preliminaries

There are n firms (1, 2, ..., n) producing an homogeneous commodity with given
capacities. For each firm i, production cannot exceed its capacity ki and marginal
cost is identical across the firms and constant until full capacity utilization is
reached (with no loss of generality marginal cost is assumed to be 0). Let
k1 > k2 > ... > kn and set K = k1 + ... + kn. Let D(p) be the mar-
ket demand function: D(p) > 0, D′(p) < 0, and D′′(p) 6 0 for p ∈ (0, p)
and D(p) = 0 for p > p. Let also P (x) = D−1(x) for x ∈ [0, D(0)) and
P (x) = 0 for x > D(0). The efficient rationing rule is assumed to hold; fur-
ther, in the case of a price tie demand is shared among equally-priced firms
in proportion to capacity, such that the residual demand accruing to firm i is
di(pi, p−i) = max{0, D(pi)−

∑
j:pj<pi

ki}×
ki

P

r:pr=pi
kr

and profit is πi(pi, p−i) =

pi min {di(pi, p−i), ki}.
Denote by pc the competitive price. Clearly, pc = P (K) if D(0) > K and

pc = 0 if D(0) 6 K. It has been proved (see, for instance, De Francesco and
Salvadori, 2010) that (p1, ..., pn) = (pc, ..., pc) is an equilibrium of the price game
if and only if

K − k1 > D(0) when D(0) 6 K, (1)

or
k1 6 −pc [D′(p)]p=pc when D(0) > K. (2)

Holding either condition, the firms get the competitive profit at any equilibrium;
furthermore, (pc, ..., pc) is the unique equilibrium when D(0) > K. Failing (1)
and (2), no pure strategy equilibrium exists whereas a mixed strategy equilib-
rium necessarily exists.

In the following, we denote by (φ1(p), ..., φn(p)) = (φi(p), φ−i(p)) an equi-
librium profile of mixed strategies, where φi(p) = Pr(pi < p) is the probability
of firm i charging less than p. For brevity, we denote firm i’s expected profit at
mixed strategy equilibrium (φi(p), φ−i(p)) as Π∗

i (rather than Π∗
i (φi(p), φ−i(p))

and denote by Πi(p, φ−i(p)) firm i’s expected profit when it charges p against
equilibrium strategy profile φ−i(p) on the part of its rivals. Let Si be the sup-

port of φi(p) and p
(i)
M and p

(i)
m the supremum and the infimum of Si, respectively.

More precisely, p ∈ Si when φi(·) is increasing in p, i. e., when φi(p + h) >
φi(p − h) for any h ∈ (0, p). Besides being non-decreasing, φi(p) is continu-

ous except at p◦ such that Pr(pi = p◦) > 0. We also define pM = maxi p
(i)
M ,

pm = mini p
(i)
m , M = {i : p

(i)
M = pM}, and L = {i : p

(i)
m = pm}.

2Another special case was provided by Davidson and Deneckere (1984) who analyzed the
case of a single large firm and several equally-sized small firms: not dissimilarly from Vives,
they focused on equilibria that are symmetric as far as smaller firms are concerned.
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Clearly Π∗
i > Πi(p, φ−i(p)) for any p > 0; furthermore, Π∗

i = Πi(p, φ−i(p))
almost everywhere for p ∈ Si. The following Proposition lists some general
properties of mixed strategy equilibrium to be used in the next section.

Proposition 1 1. pM = arg maxp p(D(p) −
∑

j 6=1 kj).

2. Π∗
i = maxp p(D(p) −

∑
j 6=1 kj) for any i such that ki = k1.

3. pm = max{p̂, ̂̂p} where p̂ = Π∗
1/k1 and ̂̂p is the lower solution of equation

pD(p) = Π∗
1; p

(i)
m = pm for any i such that ki = k1.

4. Π∗
i = Πi(p, φ−i(p) for any p internal to Si and any i, so that Pr(pi = p) =

0 for any p ∈ (pm, pM ).

All these points were made for the duopoly by Kreps and Scheinkman (1983).
For an extension to oligopoly, see De Francesco and Salvadori (2010) and the
references contained therein.

3 Almost symmetric oligopoly

When a pure strategy equilibrium does not exist, pM < P (k2 + ... + kn). We
define an almost symmetric oligopoly as a capacity configuration such that k1

is so close to kn that pM 6 P (k1 + ... + kn−1).
3

Proposition 2 Let k1 > k2 > ... > kn and pM 6 P (k1 + ... + kn−1). Then:
(i) L = {1, 2, ..., n} and Π∗

j = pmkj for any j.
(ii) There exists an equilibrium where supports of equilibrium strategies are

Si = [pm, p
(i)
M ], each i = 1, ..., n, where p

(i)
M is solution to the equation in p

(p − pm)
∏

s6i ks

p[K − D(p)]ki−1
i

= 1, (3)

and distributions are

φj(p) =
1

kj

[
(p − pm)

∏n
s=1 ks

p(K − D(p))

]1/(n−1)

p ∈ [pm, p
(n)
M ], (4.j)

each j = 1, ..., n,

φj(p) =
1

kj

[
(p − pm)

∏i
s=1 ks

p(K − D(p))

]1/(i−1)

p ∈ [p
(i+1)
M , p

(i)
M ] (5.j.i)

each j = 1, ..., i, each i = 2, ..., n − 1.
(iii) No other equilibrium exists.

3In fact, this condition holds if D(pM ) − (k2 + ... + kn) ≥ k1 − kn.
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Remark
(a) p

(i+1)
M = p

(i)
M whenever ki+1 = ki, each i = 2, ..., n.

(b) p−pm

p[K−D(p)] is increasing in p;4 hence p
(i+1)
M < p

(i)
M whenever ki+1 < ki,

each i = 2, ..., n.

(c) p
(1)
M = p

(2)
M = pM .

(d) φj(p
(i)
M ) = ki

kj
for j ∈ {1, ..., i}, each i = 2, 3, ..., n.

Proof. (of Proposition 2)
(i) If #L < n, then on a neighbourhood of pm we would have Πi(p, φ−i(p)) =

pki for any i ∈ L, contrary to the constancy of Πi(p, φ−i(p)) in Si.
5 Therefore,

Π∗
i = pmki for any i.

(ii) Because of part (i), at any equilibrium, pmkj =
[∏

s 6=j φs(p)
]
p[D(p) −

∑
s 6=j ks] +

[
1 −

∏
s 6=j φs(p)

]
pkj on a neighbourhood of pm. Hence

(p − pm)kj = p[K − D(p)]
∏

s 6=j

φs(p) for any j = 1, ..., n, (6)

implying that

φj(p) =
ki

kj
φi(p) for any i, j = 1, ..., n (7)

over such a neighbourhood. It follows from (6) and (7) that (p − pm)kj =

p[K −D(p)][φj(p)]n−1
∏

s 6=j
kj

ks
. Hence, at any equilibrium, equations (4.j) hold

on a neighbouhood of pm. Since all Sj are assumed to be connected, equations

(4.j) hold up to p = p
(n)
M , namely, the price equating to 1 the RHS of equation

(4.n) (and any equation (4.j) such that kj = kn). Let h be the number of
firms with capacity kn. Since all Sj are assumed to be connected there exists

a right neighbourhood of p
(n)
M that is contained in S1 ∩ ... ∩ Sn−h. Arguing as

above, pmkj =
[∏

s 6=j φs(p)
]
p[D(p) −

∑
s 6=j ks] +

[
1 −

∏
s 6=j φs(p)

]
pkj for any

j ∈ {1, ..., n − h} over such a neighbourhood: hence φj(p) = kr

kj
φr(p) for any

j, r ∈ {1, ..., n − h} and equations (5.j.n-h) hold. (Because of Remark 3(d),

equations (5.j.i) also hold for i ∈ {n−h + 1, ..., n− 1}, the intervals [p
(i+1)
M , p

(i)
M ]

being degenerate.) Iteration of this procedure will finally lead to equations
(5.j.2).

Remark (b) ensures that for each j, φ′
j(p) > 0 throughout (pm, p

(j)
M ). It

must also be checked that, for any j such that p
(j)
M < pM , Πj(p, φ−j(p)) 6 pmkj

for p
(j)
M < p < pM . Indeed, should it be Πj(p

′, φ−j(p
′)) > Π∗

j for some p′ ∈

4This is so if and only if p2D′(p) + pm[K − D(p) − pD′(p)] > 0. Note that pD′(p) =
P

j 6=1
kj − D(p) + δ with δ > 0 for p ∈ (pm, pM ). Hence the required condition becomes

[Π∗
1
− p(D(p) −

P

j 6=1
kj)] + [(p − pm)δ] > 0, which holds true since the expression in each

square bracket is positive.
5This property of mixed strategy equilibria in the given circumstances had already been

found by Hirata (2009, p. 7).
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(p
(j)
M , pM ), we would have

p′kj−p′[K−D(p′)]
∏

s 6=j

φs(p
′) > Π∗

j =
kj

k2
Π∗

2 =
kj

k2


p′k2 − p′[K − D(p′)]

∏

s 6=2

φs(p
′)


 ,

and hence 
p′[K − D(p′)]

∏

s 6=2

φs(p
′)




[
kj

k2
− φ2(p

′)

]
> 0,

since φj(p
′) = 1. This inequality is a contradiction since φ2(p

′) > φ2(p
(j)
M ) =

kj

k2

.
(iii) Assume that another equilibrium (φ1

◦(p), ..., φn
◦(p)) exists and let S◦

1 ,
S◦

2 , ..., S◦
n be the supports of the equilibrium strategies. Since part (i) holds, if

the supports are connected, then S◦
i = Si and φ◦

i (p) = φi(p), each i = 1, ..., n,
contrary to the assumption. Hence S◦

h is not connected for some h.6 Let (p◦, p◦◦)
be a gap in S◦

h and with no loss of generality take all supports to be connected in

the range [pm, p◦] so that kiφ
◦
i (p

◦) = kjφ
◦
j (p

◦) for each i, j such that p
(i)
M , p

(j)
M >

p◦. Further, assume that p′ ∈ S◦
j for some p′ ∈ (p◦, p◦◦) and some firm j 6= h.

Then, Πj(p
′, φ−j

◦(p′)) = Π∗
j = pmkj whereas Πh(p′, φ−h

◦(p′)) 6 Π∗
h = pmkh,

implying that khφ◦
h(p′) 6 kjφ

◦
j (p

′). Moreover, since khφ◦
h(p◦) = kjφ

◦
j (p

◦) and
φ◦

h(p) is constant over (p◦, p◦◦) whereas φ◦
j (p) is somewhere increasing over that

range, we obtain that khφ◦
h(p◦◦) < kjφ

◦
j (p

◦◦). Hence a contradiction since either
khφ◦

h(p◦◦) = kjφ
◦
j (p

◦◦) or khφ◦
h(p◦◦)jφ

◦
j (p

◦◦) according to whether p◦◦ ∈ S◦
j or

p◦◦ /∈ S◦
j , respectively. Since there is no firm j 6= h such that p′ ∈ S◦

j for any

p′ ∈ (p◦, p◦◦), (p◦, p◦◦) is a gap (or part of a gap) for all i such that p
(i)
M > p◦.

This leads to the following contradiction, Π1(p, φ◦
−1(p)) > Π1(p

◦, φ◦
−1(p

◦)) =
Π∗

1 for p ∈ (p◦, p◦◦).7 Thus no support can have a gap and hence no other
equilibrium exists.

To sum up, Proposition 2 determines the equilibrium and establishes its
uniqueness in the subset of the mixed strategy region of the capacity space
where pM 6 P (k1 + ...+kn−1).

8 It should be emphasized that this is a sufficient
condition for uniqueness: the equilibrium is still unique in other (though not
all) subsets.9 This can be seen most simply by showing that the equilibrium
is characterized as in Proposition 2 when inequality pM 6 P (k1 + ... + kn−1)
is slightly relaxed. Suppose that pm 6 P (k1 + ... + kn−1). Then, by reasoning
as in the proof of Proposition 2, at any equilibrium #L = n and equations

6The possibility of equilibria with gaps cannot be ignored. De Francesco and Salvadori
(2010) find conditions under which the support of the equilibrium strategy of one firm does
have a gap.

7Indeed, dΠ1/dp =
Q

j 6=1
φj(p)

h

D(p) −
P

j 6=1
kj + pD′(p)

i

+ k1

h

1 −
Q

j 6=1
φj(p)

i

: this is

positive since D(p) −
P

j 6=1
kj + pD′(p) > 0.

8A condition that is met, for example, when D(p) = 20− p, n = 4, k1 = 6, k2 = 5, k3 = 3,
and k4 = 2.

9The whole subset of the mixed strategy region where equilibrium is unique has been
found, for the triopoly, by De Francesco and Salvadori (2010); in the remaining subset the
equilibrium is indeterminate as far as the distributions of smaller firms are concerned.
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(4.j) hold on a neighbourhood of pm. Next, denote by p̃
(i)
M (each i = 1, ..., n)

the solution of equation (3) over the range (pm, pM ), let l = min{i : p̃
(i)
M 6

P (k1 + ...+kn−1)}, and assume that pM 6 P (
∑

j 6=l−1 kj).
10 Then, by reasoning

as in the proof of Proposition 2, it turns out that p
(i)
M = p̃

(i)
M , each i = 1, ..., n, and

that distributions are given by equations (4.j) and (5.j.i) throughout [pm, pM ].
This is immediate as far as any i ∈ {l, ..., n} is concerned. As for any i ∈

{1, ..., l− 1} (in the event of l > 2), Πi(p, φ−i(p)) =
[∏

j 6=i φj(p)
]
p[D(p)−K] +

[
1 −

∏
j 6=i φj(p)

]
pkj for p ∈ [p

(l)
M , pM ] since D(p) >

∑
j 6=l−1 kj . Hence equations

(5.j.i) hold throughout that range.
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