Besov and Triebel-Lizorkin Spaces Related
to Singular Integrals with Flag Kernels

Dachun YANG

School of Mathematical Sciences
Beijing Normal University
Laboratory of Mathematics and Complex Systems
Ministry of Education
Beijing 100875 — People’s Republic of China

dcyang@bnu.edu.cn

Received: August 11, 2008
Accepted: January 8, 2009

ABSTRACT

Let si,s2 € (—1,1) and s = (s1,s2). In this paper, the author introduces
the Besov space B;q(RQ) with p,q € [1,00] and the Triebel-Lizorkin space
F3,(R?) with p € (1,00) and ¢ € (1,00] associated to singular integrals with
flag kernels. Some basic properties, including their dual spaces, some equiv-
alent norm characterizations via Littlewood-Paley functions, lifting properties
and some embedding theorems, on these spaces are given. Moreover, the au-
thor obtains the boundedness of flag singular integrals and fractional integrals
on these spaces.
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1. Introduction

In order to study the Ojp-complex on certain quadratic CR submanifolds of C”,
Nagel, Ricci, and Stein [6] introduced the notion of singular integrals with flag kernels
on R™. Since the flag singular integral is a special case of product singular integrals,
the boundedness of flag singular integrals on L?(R™) with p € (1, 00) is a simple corol-
lary of the boundedness of the corresponding product singular integrals. Recently,
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Han and Lu in [3] developed a corresponding Hardy space theory for flag singular
integrals on R™.

Motivated by [3,6, 7], letting s1,s2 € (—1,1) and s = (s1,s2), in this paper,
we introduce the Besov space B;q(]R2) with p,q € [1,00] and the Triebel-Lizorkin
space I (R?) with p € (1,00) and ¢ € (1,00] associated to singular integrals with
flag kernels. Some basic properties, including their dual spaces, some equivalent
norm characterizations via Littlewood-Paley functions, lifting properties, and some
embedding theorems on these spaces are given. Moreover, we obtain the boundedness
of flag singular integrals and fractional integrals on these spaces.

For the simplicity of presentation, we work on flag integrals on R?. However,
our method works for more general product Euclidean spaces.

It was proved in [5,6] that flag kernels on R? are closely connected with product
kernels on R? x R. We denote any element of R? x R by the 3-tuple z = (21, 72, x3),
where (z1,72) € R? and 23 € R. We endow R? with the following dilation that for any
§>0and z = (v1,12) € R?, §x = (61, 6x2) and the norm that ||z|| = (23 +|x2|)'/?,
which is equivalent to |z1] 4 |z2|'/2. Obviously, the homogeneous dimension of R?
is 3.

In order to express the cancellation conditions introduced by Nagel, Ricci,
and Stein in [6], we introduce the following terminology. A k-normalized bump func-
tion on R™ is a C*-function supported on the unit ball with C*-norm bounded by 1. It
was proved by Nagel, Ricci, and Stein in [6, Remark 2.1.7] that Definitions 1.1 and 1.2
given below are essentially independent of the choice of k € N. Hence we usually speak
of normalized bump functions rather than k-normalized bump functions.

In what follows, we denote by C' a positive constant which is independent
of the main parameters, but it may vary from line to line. Constants with sub-
scripts, such as C7, do not change in different occurrences. We also use subscripts
to indicate which parameters the constant depends on. Moreover, let N = {1,2,...}
and Z, = NU{0}.

Definition 1.1. A product kernel on R? x R, relative to the given dilations, is a dis-
tribution K on R? x R which coincides with a C'°° function away from the coordinate
subspace z; = 0 for j = 1,2,3 and which satisfies:

(i) (Differential inequalities) For each multi-index o = (a1, a0, a3) € (Z )3, there
exists a positive constant C, so that

091002093 K (1, w2, w3)| < Co | (w1, m)|| 73741 7202 g 7170

. . g
away from the coordinate subspaces, where 9% = 25
’ i Ozt
i

(ii) (Cancellation conditions)

(a) For each multi-index (a1, as) € (Z4)? and any given normalized bump
function ¢ on R and any § > 0, there exists a positive constant Co, 4,
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so that, for all (z1,x2) # (0,0),

= C‘Xhoéz || (xlv Z'Q) “7370‘1*2‘12.

‘/ 051052 K (21, w2, 23)p(0x3) d3

(b) For each a3 € Z, and any given normalized bump function ¢ on R?
and any d > 0, there exists a positive constant C,, so that, for all x5 # 0,

02K zl,xg,x;;)ga(dxl,ézxg) dridzs| < C’aa|x3|717”‘3.

R2
(c) For any given normalized bump function ¢ on R? x R and any 61,2 > 0,
there exists a positive constant C' so that

K(z1, 12, 23)0(0121, 6329, box3) day dry das| < C.

R2 xR

The following definition of flag kernels is just a special case of flag kernels in [6].

Definition 1.2. A flag kernel on R?, relative to the given dilations, is a distribution
K on R? which coincides with a C° function away from the coordinate subspace
z1 = 0 and which satisfies:

(i) (Differential inequalities) For each o = (a1, an) € (Z4)?, there exists a positive
constant C, so that, for all z1 # 0,

091 052 K (21, w2)] < Calaa| 77 (w1, 22) || 7722
(ii) (Cancellation conditions)

(a) For any given normalized bump function ¢ on R, any «; € Z,, and any
0 > 0, there exists a positive constant C,, so that, for all z; # 0,

< Ca1|x1|_1_a1'

05 K (1, 22)0(6x2) dao
R

(b) For any given normalized bump function ¢ on R, any as € Z,, and any
0 > 0, there exists a positive constant C,, so that for all zo # 0,

< COL2 |m2|717a2.

/ 052K (x1,22) (1) day

(c) For any given normalized bump function ¢ on R?, and any d1, 63 > 0, there
exists a positive constant C' so that

K(a:l, xg)gp(élxl, (52332) dxl dxg S C.

R2
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Remark 1.3. Tt was pointed by Nagel, Ricci, and Stein in [6] that the single normalized
bump function in Definitions 1.1 and 1.2 (ii)-(c) can be replaced by the tensor product
of normalized bump functions on R? and R.

The following proposition is completely similar to Proposition 3.2 and Lemma 4.5
in [5], which reveals the relation between the product kernel and the flag kernel.

Proposition 1.4. Let K be an integrable function on R? x R which is a product
kernel as in Definition 1.1. Then, for (z1,z2) € R2,

K(x1,x9) :/Kﬁ(;vl,mg — x3,23)dxs (1)
R

is a flag singular kernel on R2.
Conwersely, given K € L'(R?) which is a flag kernel as in Definition 1.2, then

1 T
Ky, 20, 23) = |361|2X<|:C1QI2>K<331J2 + z3),

where x s a non-negative smooth function supported on [1/2,1] such that
f11/2 x(t)dt = 1, is an integrable product kernel on R? x R such that (1) holds.

The organization of this paper is as follows. In section 2, we first establish
some Calderén reproducing formulae (see Lemma 2.3), whose dyadic version (see
Lemma 2.4) are essentially included in [3]. However, in this paper, we use a slightly
different way from [3] to define the topology of S.. r(R?); see Definition 2.1 below
and Definition 1.6 in [3]. Let s1,s2 € (—1,1) and s = (s1,s2). With a special
choice of approximations of the identity associated to flag kernels (see (1.3) of [3]),
we then introduce the norms of ||-||B;q(Rz) and H'||Fpsq(Rz) in Definition 2.5, and using
the Calderén reproducing formulae, we prove in Theorem 2.6 that these norms are
independent of the choice of the approximations of the identity associated to flag
kernels. Then we introduce the Besov space B;q(RQ) and the Triebel-Lizorkin space
szq (R?) in Definition 2.7. Some basic properties including dual spaces of these spaces
are presented in Propositions 2.9, 2.10, and 2.11. In Theorems 2.8, 2.14 and Corol-
lary 2.22, we establish some equivalent norm characterizations of these spaces in-
cluding various Littlewood-Paley functions. We remark that Corollary 2.22 clearly
reveals the difference between B;q (R?) and szq (R?) with the classical product Besov
and Triebel-Lizorkin spaces in [7].

The boundedness of flag singular integrals on B;q(IRz) and F;q (R?) is given in The-
orem 3.1 and the lifting properties of these spaces via Riesz potential operators is
presented in Theorem 4.6.

Finally, in Theorems 5.1 and 5.2, we establish some embedding theorems
on B3, (R?) and F3, (R?). The boundedness of flag fractional integrals is given in The-
orem 5.4.

Revista Matemdtica Complutense
2009: vol. 22, num. 1, pags. 253—-302 256



Dachun Yang Singular integrals with flag kernels

2. Besov and Triebel-Lizorkin spaces on R?

We first introduce the Calderén reproducing formulae. To this end, we need to intro-
duce some spaces of distributions; see [3].

Definition 2.1. A Schwartz function f € S(R?) is said to belong to the space of test
functions, S, r(R?), related to flag singular integrals, if there exists a Schwartz func-
tion f* € S(R? x R) such that, for all (z,7;) € R,

f(z1,22) = / fH (@1, w0 — 23, 23) das,
R
where f* satisfies the following conditions: for all z3 € R and (ay, as) € (Z4)?,
(21, w0, 23) 28 252 dy dogy = 0,

R2

and for all (21, 72) € R? and a3 € Z,
/ fu($1,1'27$3)$§£3 dxs = 0.
R

We endow Se #(R?) with the same topology as S(R?), and we denote its dual space
by Soe,r(R2)".

Remark 2.2. Tt is easy to see that the space Sy r(R?) is a closed subspace of S(R?),
and if f € Sy r(R?) then, for all ap € Z,

/ f(x1, x2)x5? dag = 0.
R

Let P, (R) be the set of all polynomials on R in variable z5. Then, one can easily
see that if f € SOO,F(IR2)/7 h € Py, (R), and g € Sy r(R?), then (f,g) = (f,g + h),
namely, Soo (R?)' /Py, (R) C Sao r(R?)".

We now establish the following Calderén reproducing formulae by a method es-
sentially similar to that of Theorem 3 in the appendix of [2] and a dual argument;
see also [3].

Lemma 2.3. Let v € S(R?) with Jre YD (21, 29) dxy dzg = 0 and P € S(R)
with wa(2)(x3) drs = 0 satisfy the following admissible conditions: for all
(§1a§2) S RQ and (51762) 7é 07

2 dt

[ e eerd -1
0
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and, for all n € R and n # 0,

/ @ 2 2 =1
O t

For t1,t5 > 0 and x1,x2 € R, let
(1) _1 (1)(& ﬁ) @ 1 (2)(&)
wn (xl?xQ) t%/l/} t ) t% 5 7/) ( ) t2¢ ty )

and

Wrres (21, 72) = / W (21, 22 — )2 () de.

Then the identity

dty dtg

f(thZ / / wt1t2 * ¢t1t2 * f(xlﬂxQ) t, to

!/

holds in L*(R?), Soor(R?), and Ss r(R?).

Proof. From the Plancherel principle and the assumptions of the lemma, it is easy to
see that (2) holds in L?(R?). The fact that (2) holds in Sy, #(R?) and a dual argument
show that (2) also holds in Ss p(R2)". Thus, to finish the proof of Lemma 2.3,
we only need to show that (2) holds in So, #(R?). To do so, for f € Seo r(R?), €; > 0,
and §; > 0 with i = 1,2 and (21, 22) € R?, set

oo dt, dt
1 2
f61,€2,51752 (x17x2) = / ¢t1t2 * wtltz * f(x17$2) -

€1 €2 tl t2

We only need to show that for any fixed N € Z, and all (z1,22) € R?, there exists
a positive constant C' = Cﬁw“),w@),l\’ such that

£1,32) = facaiinonon)| < O+ 5 ) (2 + 5 ) (L4 o)) (3

Obviously, we may assume that 0 < ¢; < 1 < ¢; for ¢ = 1,2 in (3). To prove (3),
we write

dty dt2
f(m17x2) f61,62,51,52 T, 'TQ / / ’(/Jtltg * ¢t1t2 * f(x17$2) t
1

S /51/

= Hy + Hy + H3.
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We only estimate H;. The same technique also works for Hy and Hs. To estimate
H,, we further decompose it into

ot dt, dt
H1=/ / Vtrty * Yty * [ (21, 22) 7172 / / - =Hj + Hi.
o Jo t

Let 0@ = @ x @ for i = 1,2 and ¢y, = <p£1) * Sﬁg) Then it is easy to see that
Dtrty = Vtyty ¥ Viyt,- Since f € Soo p(R?), by Definition 2.1, there exists a function f*
as in Definition 2.1 such that, for all (21, x2) € R?,

f(z1,22) = / fH(21, @9 — w3, 03) das.
R
Using this fact, we have

whtz * wt1t2 * f 1'1,1’2

/ /2 / i (@1 — 1, w2 — g2 — 2)@i2 (2 — ys) f* (y1, Y2, s) dz dyy dya dys.
R
By the vanishing moments of ¢(!) and ¢, we further write

Vi, * Wiyts * f(9317332)

:// / wgf)(xl—yhxz—yz—Z)
R J|z—ys|<[|2]/2 / [[(z1—y1,22—y2—2) [|<[[(z1,22—2) || /2
X wif)(z - 93){ [ (Y1, y2,y3) — 21,22 — 2,3)]

Fyr,y2,2) — fHa1, 20 — )]}dyl dy2 dys dz

//Iz y3|>|z /2/(961 —y1,w2—y2—2)||<[[(z1,72— Z)H/2
Ll
R J]z—ys|<|z]/2 /|| (z1—y1,22—y2=2) | >[|(z1,22—2)| /2

+// / =Lt Lt Lt
R J|z—ysz|>12|/2 J|[(z1—y1,22—y2—2) | > (z1,22—2)[| /2

We denote the corresponding terms of Hi to I;, respectively, by H1171,7 where
1 =1,2,3,4, and by similarity we only estimate Hll,1 and H1172. By the mean value
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theorem, we have

R JR JR2
|z1 — 1] |2 — 2 — Z|1/2

g {(1 + (w1, 20 = 2) DN (1 + [[(w1, 22 = 2)[)VF2

wif)(m — Y1, Ty — Yo — 2)

1
———— dy1 dy2 dys dz
1+ 2N Y1 aY2 ays

<Ctt/ ! ! dz < Ctqt !
= e U [,z — 2) DN+ 2DV S T @A (2, z) )Y

2
x |2 (2 — ys)||2 - wslg

From this, we can easily deduce a desired estimate for H1171. Similarly, we have

|12\§0t1// 102 (2 — )]s — 2]
R J|2—ys|>|21/2
1
X

e s 0z

(1+||(£L'1,x2_2
< Ctqt / L L
T R U e = )V (4 )N
1
(1 + [[(z1, z2) )Y

dz

< Ctity

which gives a desired estimate of H{ ,.
In what follows, we denote by |a| the integer no more than a € R. To estimate HZ,
by the vanishing moments of 1) and f%, we write

¢t1t2 * q/}tlb * f x17332

(1) _ e
Pty (501 Y1, T2 — Y2 Z)
lys|<|z]/2 J[(z1—y1.22—y2—2) | <[ (z1,22—2) | /2

2) & d” (2
[g% (-w) = Y () o)
~=0
"y, y2,y3) — fH(x1, 2 — 2,y3)] dyr dyo dys dz

//y3> /2/(11 —y1,22—y2—2)||<[[(z1,22— Z)||/2
ST
R Jyz|<[z]/2 J|[(z1—y1,m2—y2—2) | > || (21,22 —2) || /2

+// / e =1+ T+ Jds+ Jy,
R Jys|>|2]/2 /(1 —y1,22—y2—2) || >][(z1,22—2) || /2
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and we also denote the corresponding terms of H? to J;, respectively, by H 1272-, where
1 =1,2,3,4. By similarity, we only estimate H12,1~ The Taylor expansion theorem
yields

t1 1 1
Jq| < C — dz
Nl < AU+WﬁJr%WW“h@rﬂﬂwm“
tl 1 tl 1 1

<C +C — :
= T w2 DV 7T T o) £ (1 + a2

which yields a desired estimate for Hf ;. This finishes the proof of Lemma 2.3. [

Similarly, we have a ‘discrete’ version of Lemma 2.3 and we omit the details of its
proof; see [3].

Lemma 2.4. Let v € S(R?) with Sz YD (21, 29) dxy dzg = 0 and P € S(R)
with fR’(/J(Z)(.Tg)d.Tg = 0 satisfy the following admissible conditions that for all
(&1,62) € R? and (&,&2) # 0,

oo

S M2 Re)) = 1,

klzfoo

and for all n € R and n # 0, ZZZZ_OOW(?)(Q*’“%))F = 1. For all ki,ke € Z and
1,02 € R, let Y1 (21, 22) = 23019V 2k, 9%10), 7 (25) = 25292 (2F215), and

Vky koo (T1, T2) = / 1/’1(611)(5517%2 - x'g)w;(i) (23) da.
R

Then the identity

oo

f('rl’xz) = Z Z wklkZ * wklkZ * f(ml"rQ) (4)

klzfoo kngoo
holds in L*(R?), Sao.r(R2), and Ss r(R?).

We now introduce the norms ||-[| g, gz and [|-|| 5 ge) for f € SOO,F(RQ)I and using

Lemma 2.3, we prove that they are independent of choices of (1) and 1),

Definition 2.5. Let v+, be the same as in Lemma 2.3 and s;,s2 € R. For
f € Suo.r(R?)' define

S dty dts 1M
e A e R
ra o Jo t1 12

Revista Matemdtica Complutense
261 2009: vol. 22, num. 1, pags. 253-302



Dachun Yang Singular integrals with flag kernels
for p, q € [1,00], and

o poo dty dta )"
P A e T
pq 0 0 1 2

for p € (1,00) and g € (1, 00|, where the usual modifications are made when p = oo
or ¢ = oc.

LP(R2)

We recall the definition of the strong maximal function: for any f € L{ (R?) and
all (w1, 12) € R2,

1
M(Pere) = sup o 1) o dis.
(z1,22)ER |R| R

R rectangle

Theorem 2.6. Let s1,s2 € (—1,1) and s = (s1,s2). The norm |||
P (R2) with p € (1,00) and q € (1,00] are independent

p,q € [1,00] and the norm |||
of the choices of ™ for i=1,2.

Proof. Let 9 be some other functions satisfying the same conditions as (@
for i = 1,2. We denote the corresponding norms, respectively, by |[| z: (g2
prq

and |-[| . g2y and now prove that there exists a positive constant C' such that,
ra
/

for all f € Soo r(R?),

Hf”(,B;q(Rz) < | f] B;,(R?) ()

and
11l 5, ey < IS

To prove (5) and (6), by Lemma 2.3, we first need to establish a desired estimate
for Py, u, * i,4,- By its definition, it is easy to show that, for all (z1,z2) € R?,

Ps, (R2)" (6)

1;ulw * ity (3317132) = (1/3;1) * 1/%(11)) *2 (1/3522) * @22))(561,362),

where, and in what follows, %5 denotes the convolution in the second variable. We
also set a A b = min{a, b} and a vV b = max{a, b} for a,b € R. We claim that

(i) for all t;, u; > 0 and all (1, 72) € R?,

U Ll) ( u Vit (7)

7(1) (1) &1 .
|(wu1 *wtl )(.Tl,.]fQ)‘ S C<t1 N 1 w1 \/tl T ||(x1,x2)||)47

(ii) for all t5, us > 0 and all z € R,

7(2) 4 @ Up y B2y wa Vi
|(1/}“2 * Yy )(Z)| s C(tz " U2) (ug Vg + |ZD2
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By similarity, we only show (7). To this end, by the mean value theorem and some
trivial computation, we can easily prove that, for all u; > 0 and (xy,x2) € R?,

uy
(ur + [ (21, 22)[)*

|94 (@, 22)| < C (9)

and, for all u; > 0 and (71, 72), (y1,92) € R? with [|(y1,y2)| < (u1 + ||(z1, 22)])/2,

(Y1, 92) U1
ur + [[(@r, o) || (ur + [|(21, 22) )"

W&ll) (1 + Y1, 20 + y2) — LY (z1,22)| < C (10)

The estimates (9) and (10), with 7])&11) and u; replaced respectively by z/}gll) and t,
also hold. We now prove (7) in the case u; > t;. In this case, as

/]R2 wﬁf’(yl,yz) dyy dy2 = 0,
we can write

() wt(ll))(ﬂ?hﬂh)

-/ [0 1 = g2 = 32) = 3D 1, 2)]
l(y1,w2) 1< (ua+[(z1,22)1)/2

1
X Q/Jt(l)(ylayz)dyl dyo
o
[[(y1,y2) 1> (ui+[[(z1,22)[]) /2
= D + Ds.

The estimate (10) yields that

t1 /
D <C
D1l < O T Gen el e
t1

=t oD

by
1

and the estimates (9) for 1;1311) and z/J,Ell) imply that

- t
|Da| < C |5 (21 — y1, 2o —yz)’714 dy1 dyz
1 Cyr,y2) 1> (ua 1l (z1,22) 1) /2 [ (y1,y2)|l

Uy tq
+C / - dy1 dyo
(u1 + |[(z1, z2)|)* | (y1,y2) | >u1/2 | (y1, y2)|1*
tq
C )
T (u + |(z, w2) )
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which proves (7).
Let t,s > 0 and (z1,22) € R%. We now estimate

/ t s d
w (E+ (21, 22) — (0, 9))* (s + )2 Y

t s
<
- /|y|gm/2 (2 + |z1]? + |22 — y[)? (s + |y])?

+/ +/ - = F1 4+ Ey + Es.
|z2|/2<|y|<2[z2| ly|>2]xa|

For Eq, in this case, we have that |xo — y| > |z2|/2 and

t S t
E, < / dy < C—r—7s
P @ P+ el /22 Ju (s D2 T T e a2l
for Fs, by the fact that
4 o1 [P+ [eg =yl > 2+ a1 + 2] > (¢ + [[(21,22)]1)%/2,
we also obtain an estimate similar to F;. For Fs, we have

S S

t / 1 dy < C t
Z o (s + 222 Je T+ D2 ™Y = ()2 (s + a2
Thus, for all t,s > 0 and (x1,z2) € R?,

Ey, <C

t S
/]R (t+ (1, 22) = (0,9)[)* (s + |y[)?

t t S
= C{ Gt ez T G ) 5 1 Jza])? } 1

Let M denote the Hardy-Littlewood maximal funnction on R2. Now, the esti-
mates (7), (8), and (11) and Lemma 2.3 yield that

|7pu1u2*f .’El,l'z
u1 (5 tg
<o G ()

X/{ up Vit " up Vit Uy V 1o }
g2 (1 Vi +[[(z1,22)[)*  (ur Vit + |21])? (u2 V tg + [22])?

dt, dt
X |y 1, % f21 — 21,22 — 22)| d21 d2a tTl =

tjg
t] Ul t2 U2
dt dtfz

XAM Wty # f) (21, 22) + Moy, % ) (@1, 22)} 5= 5, (12)
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which together with the Minkowski inequality and the LP(R?)-boundedness of M
and M yields that, for p € (1,00),

s * £l o ey

<o [T (A2 (A 2 s Sy T2 (13)

The estimate (13) combined with the Minkowski inequality shows that

||f||035q(]1§2)
<[ G0
o Jo 0 0 u1 U2
- dty dts? duy dus )M
G e+ e ot 2] Lt 2]
1 2 Uy Uz

+C{/ / ( 1>1 1< >S2 1~‘~71 _ 1 5 }1/

0 0 Ul 151 1&2 i Ul U2

+C{/ / ( 1) ( )82 1.., 1 dtQ— dul j}l/
0 0 ’LL1 tl ]’:2 i U1 ’U/Q

+C{/ / < ) ( )82 1 1 [th- aul dU/Q}l/
0 0 1 2 tl t2 i U1 U2

:F1+F2+F3+F4.
The Holder inequality and the assumption that s; > —1 for ¢ = 1,2 further imply
q
wtth * f

that
o0 o0
Flﬁc{/ / ty "9ty %2
0 0 Lr(R2)
GO T
ty to Uy Uz U1 Uz tl t2
dty dty )M
cof [7 [y el — gy o

Lr(R2) tl t2
where, and in what follows, we denote by ¢’ the conjugate index of ¢, namely,
1/g+1/¢ =1.
The same argument as for F} also yields the desired estimates for F; with
i = 2,3,4. This proves (5) and hence, by symmetry, the independence of the
B, (R2) with respect to the choice of ¥, for i =1, 2.

—_

e

Yirt, * f

norm |||
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We now turn to the proof of (6). From the estimate (12), it follows that, for all
uy,ug > 0 and (21, 72) € R?,

uy "y W}uluz * f( zlaIQ

el [ [ @) G
X [M (tlsthSzwtltz * f) (1, 22)

+Ms t1_81t2_827/}t1t2*f (zlamQ)
1 to

which combined with Lemma 2.3 and (10) yields that

||fH0F;q(R2) < CH{/O /0 |:M<t1_51t2_82"/}t1t2 * f)

9 dt, dto }1/‘1

+ MS (t1S1t252¢t1t2 * f>} - L
t1 t2

L (R2)

dty dts M
< CH{/ / Slqt qulwtltz * flq 11 2}
= Ol fll iy oy

where we have used the vector-valued inequality of Fefferman-Stein in [1]. This
proves (6) and, by symmetry, the independence of the norm ||-|| z. (r2) With respect
pra

to the choice of () for i = 1,2 . This finishes the proof of Theorem 2.6. O

L (R2)

Based on Theorem 2.6, we now introduce the Besov space Bf,q (R?) and the Triebel-
Lizorkin space F;Q(RQ) as follows.

Definition 2.7. Let s1,52 € (—1,1) and s = (s1, s2). The Besov space B;q(]RQ) with
p,q € [1,00] is defined by

. p
B, (R?) = { £ € Suor®) ¢ | fll 5, gy < 00 b
and the Triebel-Lizorkin space F;Q(RQ) with p € (1,00) and ¢ € (1, 0] is defined by
- p
B3y (B2) = { £ € Suor (B [y oy < o0}

Theorem 2.6 shows that the definitions of the spaces B;q(]RQ) and szq(RQ) are

independent of the choices of 1" with i = 1, 2.
From Lemma 2.3 and Lemma 2.4, we deduce the ‘discrete’ characterization of
Besov spaces B, (R?) and Triebel-Lizorkin spaces Fj, (R?) as below.
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Theorem 2.8. Let s1,82 € (—1,1), s = (s1,82) and all other notation be the same
as in Lemma 2.4. Then f € Bj,(R?) with p,q € [1,00] if and only if f € SOO,F(RQ)/
and

oo oo 1/q

10, ey = { Do D0 22y, ¢ f|zp<R2>} < o0;
k1=—o00 ko=—00

and f € F;q(R2) with p € (1,00) and q € (1,00] if and only if f € Seo.r(R?) and

1
/ — - - k1s1q9kasaq q e
||f||p;q(R2) = Z Z 2 2 |wk1k2 * fl
k1

=—00 ka=—00

< Q.

Lr(R?)

Furthermore, in this case, ||-||’:

and || ||'
< 2y, respectively. )
Fs (R?)

are equivalent to ||-|| 5. (R2) and
pra

e (R2 R2)

Since the proof of Theorem 2.8 is essentially the same as that of Theorem 2.6,
we omit the details.

The following properties of these spaces can easily be deduced from Theorem 2.8
and the monotonicity of the spaces 1%; see [9,11].

Proposition 2.9. Let s1,s2 € (—1,1) and s = (s1,52). Then

(i) If pe[l,00] and 1 < q1 < g2 < 00, then B;ql (R2) C B;q2 (R?), namely, there

exists a positive constant C' such that, for all f € B, (R?),

11 R2) ClliAl g (R2)
raz ray1

(ii) If pe (1,00) and 1 < q1 < g2 < o0, then FS (R2) - FS ,(R?), namely, there

exists a positive constant C such that, for all f S (]RQ)
1l gs, @2y < Cllfllig, @e):
(i) If p € (1,00) and q € (1, 0], then
By min(p.g)(R?) C Fpy(R?) C By o) (R?),
namely, there exists a positive constant C' such that, for oll f € B; min(p,q) (R?),

1A, ey < CI

) SCOIfllgs - (gey-

The following basic properties are useful in the study on the dual and interpolation
of these function spaces; see [4,9].
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Proposition 2.10. Let s1,82 € (=1,1) and s = (s1,82). Then

(i) The space B;q(RQ) is a Banach space and Soo p(R?) C B;q(Rz) C SOO,F(Rz)/
for p,q € [1,00]. If p,q € [1,00), then Ss p(R?) is dense in Bj,(R?).

(ii) The space F;jq(RQ) is a Banach space and Seo rp(R?*) C F;Q(RZ) C Soo.r(R2)
for p € (1,00) and q € (1,00]. If p,q € (1,00), then Seo r(R?) is dense
in Fpsq(R2).

Proof. We only prove the conclusion that Soo p(R?) C B;q(]RQ) of (i), and the con-

clusion that BS ,(R?) C S #(R2)" can be deduced from Lemma 2.3 and the Holder
inequality. Moreover by a routine procedure, we can prove that S, (R?) is dense
in B;q(]RZ) for p, q € [1,00) and we omit the details; see [4].

Let f € So.r(R?). By Definition 2.1, there exists a Schwartz function
ff € S(R? x R) satisfying all the properties of Definition 2.1 such that, for all
(1'17 .’172) S R27

f($1,$2):/]Rfﬂ(itlﬁz—xzsvﬂﬁzs)dx:s-

Let 1;,+, be the same as in Lemma 2.3, and we write

g dty dty )M
Bz (R?) = {/ / qt q||¢t1tz *fHLp(]Rp) tl ty }
{/ / dt dtQ} {/ / dt, dtg}l/q
+ e — = _|_ e — 7
o J1 ty to 1 Jo ty 1o
AL
1 J1 t1 to

=L;+ Ly+ Lz + Ly.

/]

To estimate Ly, for (z1,72) € R? and t1,t, > 0, by the vanishing moments of M
and ¢ we write

Yyt * f(21,22)

:// / ¢t(11)(551*yl7172*y2*2)
R J|z—y3|<|zl/2 S (@1 —y1,22— 92— 2) | <[l (21,22 —2) || /2
x Y (2 — ys){ [f“(yl,ym ys) — f(a1, 20 — z,ys)]

- |:fﬁ(y1ay27z) - fﬁ(xth - Zaz):l } dyl dy2 dy3 dZ+
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ST

R J|z—ys|>|2]/2 J|[(z1—y1,22—y2—2) | <[ (z1,22—2) | /2

ST
R J]z—y3|<|2|/2 /[[(z1—y1,22—y2—2)[| > (z1,22—2) || /2

ST
R J|z—ys|>|2]/2 J|[(z1—y1,22—y2—2) | > || (21,22 —2) | /2

Then, the same argument as that for I; with ¢ = 1,2, 3,4 in the proof of Lemma 2.3
yields that, for any N € Z, there exists a positive constant C' = Cy s such that, for
all ti,to > 0 and (xl,xg) S RQ,

|wt1t2 * f(xlaxQ)l < Ctity

1
(14 [I(1, 22) DY

which implies the desired estimate for L;. The same argument as that for J; with
1 =1,2,3,4 in the proof of Lemma 2.3 can yield a desired estimate for L. The es-
timates for L3 and L4 can be obtained in a similar way. We omit the details. This
finishes the proof of Proposition 2.9. O]

Based on Proposition 2.10, we can give out the dual spaces of these spaces as
below, which can be proved by an argument same as that of Theorem 7.1 in [4].
We omit the details.

Proposition 2.11. Let sq1,s2 € (—1,1), s = (s1, $2), and —s = (—s1, —s2). Then

() (B3, ()" = B2, (R) for p,q € [1,00) with p+1/p/ = 1/g+1/¢' = 1. More
precisely, given g € B;S, (R?), then L,(f) = (f,g) defines a linear functional
on Seo,r(R?) such that

1Lg(F)l < ClIf]

Bz, (R?) HQHB;Z/(RQV

and this linear functional can be extended to B;Q(RQ) with norm at most
Cliglls=:, e2)-

Conversely, if L is a linear functional on B;q(RQ), then there exists a unique

g€ B;Z, (R?) such that Ly(f) = (f,g) defines a linear functional on Ss r(R?),
and L s the extension of Ly with ||g||B;/.;,(R2) <C|L].

(i) (F;q(Rz))* = F,.5/(R?) for p,q € (1,00) with 1/p+1/p' =1/q+1/¢ = 1. More
precisely, given g € Fp_/;, (R?), then L,(f) = (f,g) defines a linear functional
on Seo r(R?) such that

LN < Cllifll 5 ®eylgll =2 2y
pa p'q
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and this linear functional can be extended to Flfq(Rz) with norm at most
Cligllee, @e)-

Conversely, if L is a linear functional on F;q(R2), then there exists a unique

g€ F_,S/ (R?) such that L,(f) = (f,g) defines a linear functional on Ss r(R?),
and L 45 the etension of Ly with ||g||F_ ®2) < CIIL]-

Remark 2.12. For s1,s9 € (—1,1), s = (s1,s2) and p,q € [1,o0], let us now define
OB;q (R?) to be the completion of So, #(R?) in B, (R?) endowed with the same norm
as B;Q(RQ). Then, in the sense of Proposition 2.11, we have

(oBpg(R?)" = By s (R?) (14)

with —s, p/, and ¢’ having the same meaning as in Proposition 2.11. The equality (14)
is new only for the case max(p,q) = oo in comparison with Proposition 2.11. This
fact can be easily proved by combining the argument in [4, pp. 116-120] with that in
[9, p. 180]; see also [10, pp. 121, 122]. We omit the details.

Now, using these properties, we establish the Lusin-area characterizations of
Triebel-Lizorkin spaces F};, (R?). First we introduce the following two kinds of Lusin-
area functions.

Definition 2.13. Let s; € R and «; > 0 for i = 1,2, s = (s1,52) and ¢ € (1,00).
Let vy, for t; > 0 with ¢ = 1,2 be the same as in Lemma 2.3 and x = x(o,1). For
fe Soo,F(RZ), and (z1,22) € R?, we define

xl—y1|) <|$2—y2|>
S’ T1,%
q,al,a2(f 1 2 {/ / /]Rz < oty X oty

a dt, dt; 1M1
d@/ldyQt;t;}
1t

G i |z1 — y1] |z2 — vl
S;;al’w(f 21, 22) {/ / /]Rz ( oty )X< Ozzt% )

a dty dt, )7
Yeyt, * fy1,92)| dyrdys 5~ 2 21
1t2 1y

AL Lo )

dty di; )9
t5 t '

—S8194—S2q
O Pl

Yiyen * f(Y1,92)

and

—S5144—529
Xt 7,

Xty Mty T iy gy * f (1, y2) |9 dyy dyo

The characterizations of Lusin-area functions of F{fq(Rz) can be stated as below.
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Theorem 2.14. Let s1,52 € (—1,1), s = (s1,82), a; > 0 for i = 1,2, and p,q €
(1,00). Then, for f € SOO,F(RQ)/, the following three propositions are equivalent:
(i) f € Fp(R?);

(i) 5oy (f) € LP(R?);

q;01,02
(ili) S5a,.0,(f) € LP(R?).

Furthermore, in this case,

/]

F;q(]RZ) ~ ”S;;ozl,aQ (f)”LP(RZ) ~ ||‘§;;O¢1,a2 (f)”LP(RZ)‘

Proof. Letting f € I3, (R?), we first prove that S3 (f),Ss (f) € LP(R?) and

q;01,0e2 q;01,02

there exists a positive constant C' such that, for all f € F;q (R?),

155, a0 (P | o2y < CII £

Fg,(R?) (15)
and

H‘gg;oq,az (f)”Lp(RQ) < CHfHF}fq(H@) (16)

To this end, for (21, 22) € R%, t; > 0, |2; — y;| < ayu; with u; > 0,4 = 1,2, by (11),
we have

/ ur Vit U V to d
. w
R (w1 Vi +[[(y1 — 21,92 — 22) — (O,w)[[)* (u2 V2 + |w])?

C{ uy Vit
- (w1 Vit + ||(z1 — 21,22 — 22)||)*

up Vit uz V ito }
+ , (17
(ul \/t1+‘$1 —Zl|)2 (UQ \/t2+|$2—22|)2 ( )

and, similarly, for |11 — y1| < aju; and |73 — yo| < azu?, we also have

/ uy Vit ug V to d
. w
r (i1 Vir+ (g1 — 21,02 — 22) = (0,w) ()t (uz Viz + [w])?

SC{ ur Vit .
(ur Vit + ||(x1 — 21,22 — 22)||)
uy Vit Uz Vito }
N (18
(u1 Vit + |z — 21])? (u2 V t2 + |22 — 22])? 1)

Now the estimates (7), (8), Lemma 2.3, and the estimates (17) and (18), respectively,
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yield that

1 — Y1 T2 — Y
x(' l)x(' |)|¢u1u2*f(y1,yz)|
a1Uq a2U2

<o) ) Ed)

X M W D)) + Mol * a2} 52 (19
and
x('xl_yll)x<|w2 |)|¢u1u2*f(y1,yz)|
a1Uq « Ul
u1 u t2
<C/ / ( >(M>
dt, dty
X {M(wtltz * f)(xlva) + M (1/1t1t2 * f)(xl,xQ)} tl E (20)

Replacing (12) with (19) and (20), respectively, and repeating the argument of (6)
in Theorem 2.6, we then obtain (15) and (16).

We now show the converse of (15) and (16) and by similarity we only prove the con-
verse of (16). To this end, letting f € F;Q(RQ) and g € Fp_/;, (R?) and {W4, ¢, }1 t2>0
be the same as in Lemma 2.3, by (16), Proposition 2.11, and the Holder inequality,

we obtain
> dty dt
Il f] / / ¢t1t2*f7¢t1t2*9>7172
0 t1 12

Fy,(R2) =

L <1
”gHFplZ/(R%,

<C sup / S;;al az(f)(xl,502)5”[;?017&2(9)(3:1,asg)dxl dxo
HQH ~2, @) S <1JRr2

< C” q;a, (12( )”LP(JRZ)?
which establishes the equivalence of (i) and (ii) and, hence, completes the proof

of Theorem 2.14. O

Remark 2.15. From the proof of Theorem 2.14, it is easy to see that (15) and (16)
also hold for p € (1,00) and ¢ = co

Let us now state the Littlewood-Paley theorem corresponding to the following
g-function.

Definition 2.16. With the same notation as in Lemma 2.3, for f € SM7F(R2)/, we
define its Littlewood-Paley g-function, g(f), of f by

dt; dt
g(f)(z1, x2) {/ / [Viyes * fz1,22)]* — - 2} ;
t1
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where (z1,22) € R2.

Using the boundedness of vector-valued singular integrals and a dual argument
similar to the proof of Theorem 2.14, we can obtain the following result and we omit
the details; see [3].

Theorem 2.17. Let f € Soo r(R?) and p € (1,00). Then the norm lg(f)ll e w2y is
equivalent to the norm || f| 1 ®2).

From Theorem 2.17, Definition 2.7, and Theorem 2.14, it is easy to deduce the fol-
lowing conclusions:

Corollary 2.18. Let p € (1,00). Then FT?Q(R2) = LP(R?) with an equivalent norm.

0,0 (0,0
Moreover, the norms ||f||Lp(R2), ||g(f)||Lp(Rz), HS;M))MHL,)(Rz), and ||S§;al)’a2|\Lp(]R2)

are mutually equivalent, where ay, ag > 0.

We now establish a new characterization of Besov and Triebel-Lizorkin spaces.
First, we introduce the following new Besov and Triebel-Lizorkin norms.

Definition 2.19. Let 1, be the same as in Lemma 2.1 and s;,s2 € R. For
f € Soo.r(R?), define

Y B s dty dts )
Hf“lBs (®?) = {/ / ty 111(16% + t9) 7529 |1y, * f||qu(R2) — }
pa 0 0 t1 to

for p, q € [1,00], and

oo oo B dty dts ) M1
IFIl, s, (r2y = H{/ / ty U 4 ta) T ey, e [T —— —
Pq 0 0 t1 to

for p € (1,00) and g € (1, 00|, where the usual modifications are made when p = oo
or ¢ = oc.

Lr(R?)

We can also show that the definitions of |-, B3, (B2) and ||, F5, (B2) AT€ independent
of the choices of ¥(9) for i = 1,2 by an argument similar to that of Theorem 2.6.
Theorem 2.20. Let s1,s2 € (—1,1), |s1 + 2s2| < 1, and s = (s1,$2). The norm
||-H13;q(R2) with p,q € [1,00] and the norm ”'”lF;Q(W) with p € (1,00) and q € (1, ]
are independent of the choices of W@ for i =1,2.

Proof. Let ¢ for i = 1,2 be the same as in the proof of Theorem 2.6. We de-
note the corresponding norms, respectively, by |||, g (ge) and |||l 5 gey- To prove
raq rq

the theorem, by symmetry, we only need to show that there exists a positive con-
stant C such that, for all f € Sao p(R2)’,

11, 5, o) < CIFN, 2, g2
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and
Hf||2F;q(R2) < C”f”lF;q(Rz)’

which, with the same notation as in the proof of Theorem 2.6, are deduced from the
following facts:

S1 2
LGS E) Gy et
ta u2 ) \wy uj + U2 t1 ta
I (e )(mAw)<h>“<i+”)”mnmwgcx
t2 u U1 ’LL1+’LL2 Uy U2

The proofs of both facts are similar by symmetry and we only show (21). To this end,
we consider two cases.

and

o Case 1: uz <wuj. In this case, the left-hand side of (21) is equivalent to
// o up L) ()T ()T dh
to Uo U 'UJ% t1 to
/ /“ w6 (i ) (1) (1)
tz U9 (51 ’U/% t1 t2
+/ / =P+ P
0 t3

1

For Py, since t2 + to ~ t2, we then have

a<c/‘/ n u (T d
to U2 (25} t1 to

by the assumption that |s; + 2s3| < 1. For Py, since t? + t5 ~ to, we have

s [ () () (5)
2 to u2 uy uy tl t2

If 55 < 0, the fact that t5 > 7 and the assumption that \31 +2s5| < 1 imply the desired
estimate of Py; and if so > 0, the assumptions that ul > ug and s1,82 € (—1,1) also
imply the desired estimate of P, which completes the proof of case 1.
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o Case 2: u <uy. In this case, the left-hand side of (21) is equivalent to
/ / o up, f2) (L) ()" dh di
tg (5 (751 U2 tq t2
S1 S2
< C/ / 1 UQ tfg ti dtl dtz
o uz ) \w us i1 t2
u uy t t\" [t 7 dty dt
e / ( ) 2“)<1) () =
2 to  Uo Ul U2 t1 2
We can obtain the desired estimate for the second term of the last expression by the
assumptions that sy, se € (—1,1). For the first term, if so > 0, the fact that u% < Us
and the assumption that |s; + 2s2| < 1 can imply the desired estimate; and if so < 0,

the fact that to < t7 and the assumptions that sq,s2 € (—1,1) also yield the desired
estimate. This finishes the proof of (21) and hence, the proof of Theorem 2.20. [

From Lemma 2.3 and Lemma 2.4, by an argument similar to the proof of Theo-
rem 2.20, we also deduce the new ‘discrete’ characterization of Besov spaces B, (R?)
and Triebel-Lizorkin spaces F5, (R?) as follows. We omit the details.

Theorem 2.21. Let s1,52 € (—1,1), |s1 +2s.2\ <1, s = (s1, 82) and all other notation
be the same as in Lemma 2.4. Then f € Béq(Rz) with p,q € [1,00] if and only if
fe SOO,F(]RQ)I and

1715, e
= { Z Z ohs1a(9=2k1 o 9=k2) =824 gy f%ﬂ’(ﬂ{?)} < 00,

klzfoo kg:*OO

and f € F;q(R2) with p € (1,00) and q € (1,00] if and only if f € Seo.r(R2) and

171, @y

oo 00 1/q
N H{ Z Z 2k151Q(2—2k1 + 2_k2)_82qwjk1k2 * f|q} <o
I{)l:—OO kzZ—OO LP(RZ)
Furthermore, in this case, ”.‘%gq(Rz) and |- |F5 L) 97C equivalent to ||~H1354(R2)

and ||'||1F;Q(R2)> respectively.

As a corollary of Theorem 2.20 and Theorem 2.6, we obtain a new characterization
of Besov spaces B;q (R?) and Triebel-Lizorkin spaces F;q(R2) as below, which clearly
reveals the difference between B3, (R?) and F3, (R?) with the classical product Besov
spaces and Triebel-Lizorkin spaces in [7].
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Corollary 2.22. Let s1,82 € (—=1,1), |s1 4+ 2s2| <1, and s = (s1,82). Then

(i) For f € Soor(R?), f € B;q(RQ) with p,q € [1,00] if and only if ”leB;;q(RZ)
< 00. Moreover, in this case, || f]

Bs, (R2) ™ Hf||11'3;q(R2)~

(ii) For f € SOO,F(]Rz)/, fe F;q(RQ) with p € (1,00) and q € (1,00] if and only if
”leF;q(RZ) < 00. Moreover, in this case, ”fHF;q(R?) ~ Hf||1F;q(R2).

Proof. Theorem 2.6 and Theorem 2.20 imply that the definitions of the norms
Fs (R2)) and |||, g (R2) A€ independent of the choices of (")

Ml ey 1, e I
for i =1,2. Let 9 for i = 1,2 be the same as in Lemma 2.3 satisfying the following
additional conditions:

suppyp™ € {(61,&) €R? 1 1/2 < ||(&1,&)| < 2}
and

supp@ c {€eR :1/2< (] <2}

From the definitions of 1/, +,, the above conditions of the supports of ¢(9) with i = 1,2,
and the Plancherel principle, it is easy to deduce that v, = 0 if 7 < 8t5. Thus,
using such vy, 4, and noticing that t2 +to ~ t if t? < 8t5, by Definitions 2.5 and 2.19,
We. easily obtain that ”f”B';q(n@) ~ ”f”lB;q(lRQ) and Hf”F;q(W) ~ ||f||1F;q(]R2)' This
finishes the proof of Corollary 2.22. O

3. Boundedness of flag singular integrals

We now establish the boundedness on B;Q(RQ) and F;q (R?) of flag singular integrals.

Since it is well-known that the flag singular integral is bounded on LP(R?) for
p € (1,00), we then automatically deduce that it is also bounded on classical Besov
spaces and the new Besov spaces ng(]R2) associated with flag kernels, when p € (1, 00).
However, this is not true for Besov spaces when p = 1 or p = oo and Triebel-Lizorkin
spaces. Moreover, our argument also gives a direct proof for the boundedness of flag
singular integrals in LP(R?) with p € (1, 00).

Theorem 3.1. Let K be an integrable flag kernel on R? as in Definition 1.2, and
s = (s1,82) with s; € (—1,1) for i =1,2. Then
(i) If p,g € [1,00], then there exists a positive constant C such that, for all
f € B;,(R?),
1K * fll gy w2y < Cllfll s, m2)-

(ii) If p € (1,00) and q € (1,00], then there exists a positive constant C such that,
for all f € szq(RQ),

[ f]

o) < O]

By, (R2):
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Before proving Theorem 3.1, we first establish several lemmas which are used in
the proof of Theorem 3.1.

Lemma 3.2. Let K be a distribution on R which is a continuous function on

Q= R\ {0} and s be a function on R for all s > 0. Suppose that there exists
a positive constant Ck such that K satisfies the following conditions:

(i) For all xz3 € O, |K(x3)] < CK|Tl3|'

(i) For all x3 € Qq and x5 € R with |x3 — 24| < |zs|/2,

() — K(ah)] < Cre 2228

(iil) For any given bump function ¢ on R and any 6 > 0,

/RK(JZP,)QO((SJZ?,)CLIZ?, < Ck.

Suppose also that there exists a positive constant Cy such that

(iv) For all s >0 and xz3 € R, |¢s(z3)| < Cy iz

(v) Forall s >0 and x3,25 € R with |zs — 25| < (s + |x3])/2,

|zg — af| s
s+ |zl (s+|xs])?

[¥s(23) — ¥s(a3)] < Cy

(vi) For all s >0, fR (z3) dzs = 0.

(vii) supp s C {3 € R: |az| < s}.

Then there exists a positive constant C' such that, for all s >0 and z € R,

(Z — $3)Z/JS($3) d!Eg S CCKCw

5
(s +12)*
Proof. We consider two cases.

suppf C {z € R:

e Case 1: |z] < 5s. In this case, let § € Cg°(R), 0 < 0 < 1,
= 0({Z) for 2 € R. By (vii),

|z] <2}, and O(z) = 1 if |2|] < 1. We then define £(z)

Revista Matemdtica Complutense
277 2009: vol. 22, num. 1, pags. 253-302



Dachun Yang Singular integrals with flag kernels

we can write

/ K(z — x3)1)s(x3) drs
R

< / K (2 — o) [ (3) — u(2)]|E(as) des
|zs—2z|<(s+|z])/2

+f ()
2> (s-]1)/2
=G+ G2+ Gs.

| / K(z — 23)€(xs) des

Notice that £ is a normalized bump function multiplied with a normalizing constant
and some dilation. The assumptions (iii) and (iv) give us the desired estimate for Gj:

s
G3 <COgCyp—5.
B CER B
From (i) and (v), it follows that
1 |xs — 2| s

G chcw/ ‘

1
des < CCrCy—.
k12— @l s+ [wa] (s + Jag)2 0 = KT

The assumptions (i) and (iv) also yield that

Gy < / [K (2 = a3)| [[vs(z3)] + [0 (2) 1€ (x3) das
jwa—2|>(s+2)/2

2

< iy | [ontonldra + Co

S
_ CCxC
s+|z|>} e

(+|I)

which completes the proof of case 1.

o Case 2: |z| > 5s. In this case, by (vi), (vii), (ii), and (iv), we have

(2 — @3)¢s(3) das| = [K(Z —x3) — K(2)|¢s(23) dzs

<C’K/| |32||¢S 3 \dx3<CKC¢| 2

This finishes the proof of Lemma 3.2. O

The same argument as in the proof of Lemma 3.2 gives us the following result and
we omit the details.

Lemma 3.3. Let K be a distribution on R? which is a continuous function on
Qs = R%2\ {(0,0)} and v, be a function on R? for all s > 0. Suppose that there
exists a positive constant Cy such that K satisfies the following conditions:
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(i) For all (z1,x2) € Qa, |K(x1,22)| < C’Km.
(i) For all (z1,72) € Qo and (24, 2%) € R? with ||(z1, x2)— (27, 25) | < (21, 22)]/2,

(w1, 22) — (2, 75) |
(1, z2)]*

K (21, 2) — K (2}, 24)| < Cxc |

(iii) For any given bump function ¢ on R? and any & > 0,

K(x1,22)p(0x1, 629:2) dridzo| < Ck.

R2
Suppose also that there exists a positive constant Cy such that
(iv) For all s >0 and (z1,22) € R?, [ths(z1,29)| < Cy G Tz -

(v) For all s > 0 and (x1,72), (z},25) € R? with ||(z1,22) — (2}, 25)|| <
(s + (21, 22)[1)/2,

[Ge1, 29) — (2, 25)|| 5
st @)l (s (@, z2) )

|’¢S(Z‘1,l‘2) - ws(x/laxé)‘ < Cll’

(vi) For all s >0, fR2 Ys(x1, x2) day deg = 0.

(vii) supp¢s C { (z1,22) € R : |[(x1,22)]| < s}
Then there exists a positive constant C' such that, for all s >0 and z € R,

s
K(zy — — ) a (w1, y2) dyn dya| < S
. (71— y1, 22 — Y2)s (Y1, y2) dy1 dy2| < CCCy Gt @

We also need the following basic estimate.

Lemma 3.4. Let (V) € C§°(R?), supp M) C { (z1,22) € R? : ||(z1,22)|| < 1} and

zw(l)(a?l,l‘g) dSL‘l dl’g =0. (22)
R

For s > 0 and (z1,73) € R?, set wgl)(xl,xg) = LM (L 22) Then there ezists a
positive constant C' such that

(i) For all ty,u; >0 and (w1,22) € R?,

t1> t1 Vuqg

(1) p (D < C(ul A :
|(’L/)t1 ¢u1 )(fl,l‘g)’ = (tl Voug + ||((E1,.’£2)||)4

ti w

Revista Matemdtica Complutense
279 2009: vol. 22, num. 1, pags. 253-302



Dachun Yang Singular integrals with flag kernels

(i) For all ty,us > 0 and (x1,22), (y1,92) € R? with ||(y1,y2) — (z1,22)| <
(t1 Vur + [|(z1, 22)[)) /2,

|(¢t(11) + o0) (g1, 92) — (011 % V) (21, 22)|

<C<U1 1>|(y1,y2)—(3?1,332)|| . t1Vuy
t t1Vouy + [(,22)|| (B vV our + [[(21, 22) )

Proof. The same argument as in the proof of (7) also yields (i). We only show (ii)
in the case u; < t1. In this case, the estimate (ii) becomes that if ||(y1, y2)— (21, x2)|| <
(t1 + [[(x1,22)]])/2 then

[(h) ) s we) — (1, = D) (1, 2)]
ol [(y1,92) — (1, 22)| t1
Tt i+ (s @) (t1 + [[(z1, 22) )

To guarantee
(@) ) 1, we) — (f,) = 6 0) (@1, 22)] # 0

when [[(y1,92) — (z1,22)|| < (41 + |[(z1,22)|)/2, we always have ||(x1,z2)| < Cty.
Thus, by (22) and the mean value theorem,

(8 9 0) (1, w2) — () ) (1, 22)]
Rz{[wt(ll)(yl —21,Y2 — %2) —wt(ll)(xl — 21,%2 — 22)]

- [1/ft(11)(y17 y2) — 1/11511)(5517 z2)] }1/11(}1)(217 2) dzy dzy

uy [|(y1,92) — (z1, 22)|| t
ti ti (@)l (4 (@, 22) DY

u
< @) — (@m)]| < C
1

which completes the proof of Lemma 3.4. O

The same argument as in the proof of Lemma 3.4 also yields the following basic
estimates and we omit the details.
Lemma 3.5. Let 9 € Cg°(R), suppy@ c (—1,1), and fR (z3)dxs = 0. For
s >0 and z3 € R, set wf)(xg) = %1/)(2)(%). Then there exists a positive constant C
such that

(i) For all to,us >0 and x3 € R,

‘(w *w(z))( )‘<C<U2 t2>( ta V ug

t2 tQ\/U2+|(E3D2-
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(ii) For all ta,us >0 and x3,y3 € R with |y5 — x3| < (t2 V us + |23])/2,

(2 % 6P (y3) — (02 % D) (w3)]

ty  ug ) taVoug + x| (t2 Vug + |z3])

Lemma 3.6. Let K* be a product kernel on R? xR and v, be the same as in
Lemma 3.2. For (z1,x3) € R? and z € R, define

K(xl,anx:i): QKﬁ(xl,xQ,ngz)gbs(z)dz.
R

Then K satisfies the same conditions of K on (x1,x2) € R? as in Lemma 3.3 with
Cx no more than C’wm.

Proof. For any fixed (21, x2) € Qy, by Definition 1.1, it is easy to see that K*(x1, 2o, -)
satisfies all the conditions of Lemma 3.2 with Cgs(y, 4,,) < C’m. Thus,

Lemma 3.2 yields that, for all s > 0, (z1,22) € Q, and z3 € R,

~ S 1
K(xy,x0,23)| < CC, =
[ (w22, 22)] < O m Tom 2) P

which shows that for any fixed 3 € R, K (-1, -2, x3) satisfies Lemma 3.3 (i).

We now show that K satisfies Lemma 3.3 (ii). Let |[(z1,22) — (y1,%2)| <
|[(x1,22)]|/2. By the mean value theorem and Definition 1.1, we have that

|K* (21, 22, 23) — K*(y1, 72, 23)|
<C

1
[((1 = w)x1 + Ky, (1 = K)z2 + Ky2)[|*|23]

x{|az1—y1+ 2 — bl }
(1 = K)zr + w1, (1 = K)z2 + Kya) |
.2~ (o)
1
[(21, z2) |3

<

)

where £ € (0,1) and we used the fact that

(1= &)z1 + wyr, (1= K)z + Ky2)|| > [(21, 22)]|/2.
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Similarly, if |x3 — ys| < |z3|/2, we have

|[Ku(]}1,$2,$3) - Kﬂ(y17y2ﬂx3)] - [Kﬂ(xlax27y3) - Kﬁ(ylayQayi’))H
< C ‘%3 - y3|
T (1 = K)x1 + Ky, (1= K)z2 + Ky2)[[*(1 = Ko)w3 + Koys|?

|£C2—y2| }
X €r1 — +
{ll il [((1 = K)z1 + Ky1, (1 — k)22 + Ky |
[(z1,22) — (y1,92)|[|x3 — y3]

|
<C
[[(z1, o) [[*f3|?

)

where £, k0 € (0,1). Let ¢ be a normalized bump function on R. The mean value
theorem and Definition 1.1 further yield that, for all 6 > 0,

/ K (21,2, 03) — K1, g2, 23)] p(03) ders
R

1
[((1 = &)1 + Ky, (1 = K)z2 + Ky2)||*
|302 — y2|
— k)x1 + Kky1, (1 — K)zo + Ky2)||

<C

<[ -mi+ g

(21, 22) — (y1,2) |l
< @ m)l

)

where x € (0,1). Thus, for any fixed (z1,22) € Q2 and any (y1,y2) € R? with
[(x1,22) — (y1,y2)|| < |[(21,22)]/2, Kﬁ(xl,xg, = Kﬁ(yl, Y2, +) satisfies all the condi-
tions of Lemma 3.2 with

[(z1,22) — (y1,92)|
Crt(mr 2. )— Kt Z<C
(z1,22,") (y1,92,7) ||(1,1,$2)||4

Lemma 3.2 yields that

|K(117$27$3) - f((yhyz,%‘)\

/[Kﬁ(xl,xg,xg —2) = K*(y1,y2, 73 — 2)|1bs(2) dz
i

sl e) — ()]
Gl (et

< CC¢

which shows that, for any fixed 23 € R, K(-1, -2, 23) satisfies Lemma 3.3 (ii).
Finally, let ¢ be a normalized bump function on R? and § > 0. By the mean value
theorem and Definition 1.1, we can easily show that

Kﬁ(aﬂl7 Za,)p(dz1, 52m2) dxq dxs

R2
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satisfies all the conditions of Lemma 3.2 and hence

f((xl, xa, x3)(0x, 6225) da1 day

R2

/ [ Kﬁ(gcl, xo,x3 — 2)p(dxq, (52362) dxy dﬂcg] Ys(2) dz
R [JR?

5

(s + |z3])?’

<Ce,

which yields that, for any fixed #3 € R, K(-1,-,23) satisfies Lemma 3.3 (iii). This
finishes the proof of Lemma 3.6. O

Proof of Theorem 3.1. By Proposition 1.4, there exists an integrable product ker-
nel K* on R? x R such that for all (z1,22) € R?,

K(xy,20) = /RKﬁ(xl,:Eg — 3, x3) drs.
Let 14,4, be the same as in Lemma 2.3; moreover, let
supp ) C { (w1, 2) ¢ || (@1, 25)|| < 1}
and suppy? C (—1,1). By Lemma 2.3, for ui,us > 0 and (1, 22) € R?, we have
(Yuyuy * K x f) (21, 22)

dty dt
/ / d}uluz * K x ’(/}tltg * wtltz * f)(xl,xQ) ! 2

23
0, 29

and

,lizj’u,lug * K*¢t1t2 ZL'l,fEQ

// 77/1(1)*10 Y (@1 —y1, 22 — 3 — Y2)

X {/ K*(y1,y2, v3 — y3) (1/%522) * %(22)) (y3) dyg} dyy dys dxs.
R

Lemma 3.5 implies that 1/)522) * wg) satisfies all the conditions of Lemma 3.2 with

s =wus V ity and
Uzt
C <C
P p® (t2 u2>’

which together with Lemma 3.6 shows that

K(y1,y2,73) = / K (y1,y2, w3 — y3) (¥ * 7/1§22))(y3)dy3
R
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satisfies all the conditions of Lemma 3.3 for any fixed z3 € R with

t Vit
Cp < c<“2 A 2)“222
to U2 (UQ V ity + |I3|)

From this, Lemma 3.5, and Lemma 3.3, it follows that

|('¢)u1u2 * K x wtltz)(mth”

t t Vi Vi
co(mab)(man) wVh wVh
tl Uq tg U9 R (U1 V tl + ||(.1‘1,$2 - $3)||) (UQ vV tQ + |l‘3|)

which together with the estimate (11) yields that

|(wu1u2 * K x ¢t1f/2)(z1’x2)|

t t
<o(Bat)(2a2
tl Ul tg U

{ U7 \/tl + u1Vt1 UQ\/tQ }

(ur Vir + (1, 22) )t (wa Vit + |1])? (ue V iz + |22])?

Inserting the last estimate into (23) yields that

|(wu1u2 * K f)(l‘l,l‘g

<o L))

X M iy * ) za) + My (e, » £, m2)) 52 2

24
o 2

Replacing (12) with (24) in the proof of Theorem 2.6 and repeating the proof there,
we complete the proof of Theorem 3.1 and we omit the details. O

4. Lifting properties

In this section, we use Theorem 3.1 in the last section to establish the lifting property
of Bs (R?) and F% (R?). First, we introduce the following Riesz potential operators
related to flag singular integrals.

Definition 4.1. Let {¢y,1, }1, 1,z be the same as in Lemma 2.4 and (a1, a2) € RxR.
Then the Riesz potential operator I(,, q,) for f € SOO,F(RQ)/ is defined by

Loy a0) ()1, 22) Z Z g~heng=leoz(yy ok ) (21, 22),

l1=—OO l2——OO

where (z1,72) € R2.
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From Definition 4.1, it is easy to deduce the following simple property of Riesz
potential operators.

Proposition 4.2. Let {wl(ll)}llez and {7/11(22)}1262 be the same as in Lemma 2.4.
For f € S(R?) and (x1,22) € R?, let

I () (@1, 22) Z 2 b (i) x ) (1, 22),

llffoo
and for f € S(R)" and x3 € R, let
1O Z 271202 (%)« f)(w5).
lz—*OO

Then
Loz = IS 1) = IQ) ).

One of the main theorems in this section is the following boundedness of [, a,)
on B, (R?) and I35, (R?) as below.

Proposition 4.3. Let |s;| < 1, |ay| <1, |s; +ay| <1 for i =1,2, s = (s1,52) and
s+a=(s1+a1,s+ az). Then

(i) If p,q € [1,00], I(a,,ay) is bounded from B;Q(RZ) _to B;;ra(RQ), namely, there
exists a positive constant C such that for all f € By (R?),

Maran) (D)l ze oy < CllF gy ooy

(ii) If p € (1,00) and q € (1,00], I(a, a,) is bounded from F;q(Rz).to F;;Q(RQ),
namely, there exists a positive constant C' such that for all f € ng(RQ),

||I(a1,a2)(f)||p ST (R2) = OHJC”FS (R2)"

To prove Proposition 4.3, we first establish the following basic estimate. In what
follows, for any a,b € R, let a A b = min{a, b}.

Lemma 4.4. For 1 =1, 2, let Ié? be the same as in Proposition 4.2 and {ii(g?}kiel
be the same as in Lemma 2.4 with supp ™M) C { (z1,22) € R? : ||(z1,22)| < 1} and

supp@ c {z3 €R : |z3| <1},

Then,
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(i) For |on| <1 and any € > 0, there exists a positive constant Ce, o, such that
for all ky,71 € Z and all (z1,75) € R?,

D) 5 I 5 98D (21, 2)|
<, al(l + |k1 _ jl|)2—(k1Aj1)0t12—|k1—j1\(1+01A0)
9= (k1nj1)(1—ar—er)
X . .
@ T 1 (zr, w2) [ e

(ii) For |ag| < 1 and any €3 > 0, there exists a positive constant Ce, o, Such that
for all ko, 52 € Z and all x5 € R,

7(2 2
(03« 15+ 052 (3)]
< 062 a2(]- + |k2 _]2|) k}z/\jz)a22 |k72 ]2‘(1-‘1—0(2/\0)
9= (k2Aj2)(1—az—e2)

X (2_(k2Aj2) + |x3|)2—a2—62.

Proof. By similarity, we only show (i). Without loss of generality, we may further
assume that 7; > ky. In this case, we write

w(l *I(l) 12)(-1)(x1,x2)

J1 00
Z 2—l1o¢1,(/](1 *’(/}l Jl (1‘171'2) + Z R Z
l1=—00 li=ki1+1 l1=j1+1
=01 + Oz + Os.

We now consider two cases.

o Case 1: ||(z1,72)| > 5-27F.

In this case, by the vanishing moment of ()
and the mean value theorem,

|01] =

Z 2™ l1a1/2/ 1/)k (x1 —y1,22 — Y2)
R

l1 — 00

x [ (g1 —ut,y2 — u) — L (1, yz)]%/;ﬁ)(ula us) dy1 dyz duy dus| <
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k1
< 2—51011 ~(1)
< E /R2 /RZWJkl (Y1, 2)]

11:—00
o)
L —y; — 0 —yy — 0
X U s (x1 — 1 Ui, Ta — Y2 ug)||us
‘3¢l<11) (xl — yl — 9“1 Xro — y2 - QUQ) ‘u2|
0ya ’
x [ (ur, ua)| dyy dya duy dus, (25)

where 6 € (0,1). The support condition of D) yields that

|[(x1 —y1 — Our, 22 — yo — Ouz)||

From this, it follows that |O;] is further controlled by

k1

_ 1 .
O <C 2herg=in < g2 Rienghi—i :
<€ 3 lna) e = e

271{)1(17&1761)

11:700

Similarly, for Os, we have

J1
0 =| 3 e [ g e
=k +1 R? JR?
X W;(cll)(yl — U1, Y2 — Ug) — 1/;1211)(291, yz)wj(-ll)(ul, uz) dyy dye duy dus
) 1 J1 ) 2—k1(1—o¢1)
< 2k 9~ — g—kiaigki—j1 , (26
: [ Ton w20
1=k1+1
since

(@1 = y1, 22 = w2)ll = ([ (21, 22) || = | (Y1, y2) | = [I(21, 22) | /2.
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For O, by the vanishing moment of ¢»(") and the mean value theorem, we have

Z g~hes /RZ/ wkl (u1 —y1,u2 — yo) — ¢ (UhUZ)]

li=j1+1

03| =

X wl(f)(yh yz)zﬁﬁ)(xl — Uy, T2 — uz) duy dug dyy dyz

< 2= lion / / i(l)(ul — Y1 U — o) — 1;(1) w1, g
Z R2 \|(U1,u2)|\§2*k1’ k1 ) kl( )’

li=j1+1

00
X |’¢l(11)(y1, yg)wj(})(l‘l —U1,T2 — UQ)‘ du1 dUQ dyl dyg + Z 27110{1
li=j1+1

T(1
/]Rz / [l (u1,u2)||>27F1 |w —Y1,Uz —Y2) — ¢£1)(u1,u2)|

[l (u1—y1,ue—y2) || <2751
X |¢11 y17y2)w§1)($1 — Uy, Ty — U3 | )| duy dug dy;y dys = O% + Og (27)
For O3}, we have
(x1 —uy, wa — ug)|| > [[(z1, 22)|| — |[(ur,u2)|| > (21, 22)]/2;
and, for O3, we have
[y v2)ll = (w1, z2)|| = [[(y1 — w1, y2 — u2)|| = [[(ur — @1, u2 — 22)|| > |[(21,22)]|/2.
These facts, respectively, imply that

1
oF; e
27 T (wy, wo) [t

IN

2k1—j1(1—a1) Z 2—l1(1+a1)
l1=j1+1
27’61(17&1)

< CQ*k1a122(}€1*j1) -
- [[(z1, z2)[[*7

and
1
03 <C— Z 272h
— 41—«
[y, z2)|tmer ™ 2=
9—k1(l—ay)

< 09~ Fra192(ki—71) )
- [[(z1, 22) |47

This finishes the proof of case 1.
o Case 2: ||(z1,72)|| <5-27%. In this case, by (25), we have

k1
|Ol| S C Z 24l1—l10¢1—j1 — C2-k1a12k:1—j123k1;

l1:—OO
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by (26), we obtain

i (j1 — ky )2k =T 23k, a; =0,
0zl <C Y 2tmhenmi = og-kioaghi—iigik ar >0,
li=k1+1 02*1610112(]‘51*]-1)(14’041)23]@1’ a1 < 0;

and, finally by (27), we have

|03| < C Z 24k17l1a17l1 — 027]610412(k17j1)(1+a1)23k‘1
l1=j1+1

which are desired estimates. This finishes the proof of case 2 and, hence, the proof
of Lemma 4.4. O

Proof of Proposition 4.3. Let {1/;1(6?}&62 with ¢ = 1,2 and {1,1, }1,,1,ez be the same,
respectively, as in Lemma 4.4 and Lemma 2.4. By Theorem 2.8 and Lemma 2.4, we
have

HI(Oél,OQ)(f)HB;;“(DW)

S C{ Z Z le(‘91+a1)q2k2(32+a2)q

k1=—00 k2=—00

o0

ST kiks * Lagan) * Yinga * Ujrge ¥ f

J1=—00 j2=—00

X

q 1/q
LP(R2)} .

Lemma 4.4 further yields that for all (1, x2) € R?,

|¢1€1k2 * 1(0417(12) * ¢j1j2 (xh 1‘2)|
< 09~ (Finji)ar—lki—ji[(1+a1A0) = (k2Aj2) s — k2 —ja2 | (14+a2A0)

X (14 [k1 — g1)(1 + |k2 — jal)

9= (k1Aj1)(1—a1—er)
X -
{ (2‘(161/\]1) + ||($17x2)||)4—a1—61
2—(k}1/\j1)(1—0¢1—€1) 2—(k2/\j2)(1—a2—€2)
(27(’61/\j1) + ‘xl‘)2fa1761 (27(}62/\]‘2) + |$2|)270¢2762 } (28)

From this, the Minkowski inequality, and the boundedness of M, in LP(R?), it follows

Revista Matemdtica Complutense
289 2009: vol. 22, num. 1, pags. 253-302



Dachun Yang Singular integrals with flag kernels

that, for p € (1, 0],

||Ia1,a2)(f ”B”’“(R?)

E oF1(s1ta1)goka(s2taz)q
k)l——(XJ kz——OO

~ { Z Z 9~ (kiAdi)an—[k1—=j1|(1+a1 A0)— (k2 Ajz) oz —[ka —ja | (142 AO)

J1=—00 j2=—00

q) /4
X (L4 k1 — j1) (1 + k2 — ja) 19,5, * f”LP(Rz):| } - (29)

If p = 1, by the Minkowski inequality and the Fubini theorem, we also obtain the
same estimate. Now the assumptions that |s;| < 1 and |s; + ;| < 1 imply that

sup Z 1+ ‘k'z —ji|)2_(ki/\ji)ai_‘ki_ji|(1+O‘i/\0)+(ki_ji)si+kiai < 00 (30)

ki€Z ; 7

and

sup Z 1+ ‘kz —ji|)2_(kiAji)ai_‘k’i_ji|(1+ai/\O)"F(kqﬂ_ji)s'i"l‘kiai < 00, (31)
jigz S

— 00

where ¢ = 1,2. Combining these estimates (30) and (31) with (29) and using the
Hoélder inequality yield that

%) e’} B 1/q
f(ahaz)(f)”z%;;amaﬁc{ > > 2““’2”8”|wj1j2*fll%p(Rz)}

J1=—00 j2=—00

< C”f”B;q(R?)’

which completes the proof of Proposition 4.3 (i).

To prove Proposition 4.3 (ii), by Theorem 2.8, Lemma 2.4, the estimates (28),
(30), and (31), and the Holder inequality, we obtain

||I(041,a2) (f)' EST(R2)

- S 1/q
CH{ 2. 2 2k1(51+a1)q2k2(82+a2)qthz*I<a1,a2>(f)|q}
k1

=—00 ka=—00

<
Lr(R?)
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< CH{ Z Z 9k1(s1+a1)goka(sataz)q
k1

=—00 ka=—00

o0 o0
% |: E E 27(’{)1/\]‘1)0(17']@17]‘1‘(lJrOtl/\0)7(/(?2/\j2)0¢27|k27j2‘(lJrOtz/\O)

J1=—00 ja=—00

B ay 1/aq
< (14 [k — ) (L4 [k — o) Ma(y50 % f)] }

00 B 1/q
= OH{ Z 2j131q2j252q|wj1j2 * f|q}

J1=—00 ja=—00 Lr(R?)

Lr(R2)

< Ol iy gy

where, in the second-to-last inequality, we used the vector-valued inequality of
Fefferman-Stein in [1]. This finishes the proof of Proposition 4.3. O

We now establish the converse of Proposition 4.3.

Proposition 4.5. Let |s;| <1, |s; + a;| <1 for i = 1,2, s = (s1,82), and s + o =
(s1+ 1,82+ ). Then there exist a positive constant C and af(s1,s2) € (0,1) such
that, if || < a¥(s1,s2) with i =1,2,

Hf||B;q(R2) < C”I(al,az)(f)HB;f{a(Rz)

for all f € B;Q(Rz) with p,q € [1,00], and for all [ € F;’q(RQ) with p € (1,00)
and g € (1, 0],
1115, 2y < Clilar,a) (Nl g g2y

Proof. The key of the proof is to show that the operator I(_n, _a,)(a;,a,) is invertible
in B;q(Rz) and F;q(RQ) if a1 and ay are small. To this end, we need to prove that
the operator I —I(_a, —a,)l(a;s,a,) is bounded on B;q(]RQ) and F;Q(RQ) with operator
norms less than 1 when « and oy are small, where I is the identity operator. We ob-
tain this by using Theorem 3.1. Let {4k, k, }ky, koez be the same as in Lemma 2.4.
We write

o0 oo

k1o koo
I( ap,—az) I(Oé170é2) Z Z Z Z 2 T 21/)]1]2 *’l/}kl“l’]l ka+j2
J1=—00 ja=—00 k1=—00 ko=—00
and
I— I(—al,—(XQ)I(ahaQ)
o0 (o] o0 o0
—kiagg—koa
DD DD D D e e A [ RS A A S
Jj1=—00 jo=—00 k1 =—00 ka=—00
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We denote the kernel of I — I(_q, _as)l(a1,a0) SIMPly by K, a,)- Noticing that,
for (z1,22) € R?,
2
Yjijo * wk1+J1,k2+]2 (xlva) ('(/) ’L/)k1+jl) (¢( ) ¢k2+]2)($1,x2>,

we then have that

oo

K(ﬁahaz)(xl,fbmﬂfg Z Z Z Z g—kiang—kaaz)

J1=—00 jo=—00 k1=—00 ko=—00
1 1 2 2
x (03D D Y (@, ) (82 % 90 ) (@),

where (21, 22, 3) € R? x R, is the corresponding product kernel on R? x R of K4, a,)-
We only need to show that K}
stant no more than

3 S

klzfoo k2:700

(0,2 satisfies the conditions of Definition 1.1 with a con-

where C' is a positive constant independent of oy and as. First, we point out that
by a modified argument of (7), we can easily to show that for vi,72,v3 € Z4,
(r1,22) € R?, and 23 € R,

07022 (5, i) (0, 22)|
9—Jj1A(k1+j1)

[k
< 0’71’722 (2—j1/\(7€1+j1) + ||($1’$2)”)4+71+2"/2 (32)
d
o ) ko] 9—J2A(k2+j2)
(wh wk2+]2)(x3)’ < 0732 ! (33)

(Q—jz/\(kz-‘rjz) + |a3|)2+7s )

by noticing that (" for i = 1,2 are the Schwartz functions. In fact, we only need
that these estimates are true for v; = 79 = 3 = 1. The estimates (32) and (33) imply
that for v1,72,7v3 € Z, (71,72) € R?, and x3 € R,

|02 33353§K?a1,a2) (z1,72,73)]

oo o0 e} oo
DRD SIS SR DN IEERERE

J1=—00 Jja=—00 k1=—00 koa=—00

<[z (wﬁ)*wéilh)@l,m)af (5 iy, ()|

D T
k1

=—00 ko=—00

1 1
X . .
||($17x2)||3+%+2"/2 |$3‘1+73

(34)
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Let ¢ be a normalized bump function on R and § > 0. We now estimate, by (32)
and (33), that, for vy, 72 € Z, and (21, 22) € R,

‘ / ONORKE, | (wr,w2,w8)0(0ws) das

ED SID DD DNIEE R

J1=—00 ja=—00 k1=—00 ko=—00

[ ooz (f) wm) (w1, 22) (032 + 62, 1) (@3)(05) dry

<Y Y Y 3 perhechep

J1=—00 jo=—00 k1=—00 ko=—00

9—Jj1A(k1+j1)

X @I AREI) { |[(21, 22) ) 202

R(w](‘ wkﬁjz)(@)@(&fs) dxs)|.

We choose 79 € Z such that § < 2-92(k2+33) < 26, For this 49 and any € > 0, by the
vanishing moment of (2 % 12 we have

’/ v« i ) (@3)¢(0ws) dag

J2=—00

9—Jj2A(k2+j2)
k2|
<C Z 2- 2/ BRG] 1 [23])? lp(dw3)| das

J2=—00
2
b [ (02 02, @) et - o0)] g
J2=jg+1
§02|k2{1+56 Z 9—J2A(ka+iz)e }<02 lka|
Ja=j9+1

which yields that

‘/ (9;1 a;/gKﬁal,aﬂ(xl’ T2, l‘3)§0(6$3) d$3

1
—kia;—koa |k1|—|k2|
{k Z Z 1o —ko 2|2 1 2 }|(w17x2)|3+71+2727 (35)
1

=—00 ko=—00

where C is a positive constant independent of (z1,72) € R? and aj,ap € Zj.
Similarly, we can show that for all normalized bump function ¢ on R2?, § > 0,
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and all x3 € R,

/2 8;;1(?&1’&2)(:61, T2, 13)@(6x1, 0%20) dry dag
R

oo o0 1
<ol X 3 popteheprehl) o )
k1

=—00 kg=—00

where C' is a positive constant independent of x5 € R and ay, ag € Z. The esti-
mates (34) and (35), and the special structure of K ?al o) imply that for all normalized

bump functions ¢, and s, respectively, on R? and R, and all 61,65 > 0,

/2 Kfahaz)(xhx%$3)¢1(51$175%$2)¢2(5Q$2)diﬂldxzdmza
R2xR

o0 e 9]
SC{ > |1—2’<1a1’€202|2k1|’“2|} (37)
k1

=—00 ka=—00

with the positive constant C' independent of oy, as € Z. Thus, the estimates (34),
(35), (36), and (37) and Remark 1.3 imply that the kernel K?al o) 18 & product kernel
on R? x R with a constant no more than

C’o{ >y |12’<1a1’“2a2|2’“1|’“2|}, (38)
k1

=—0o0 ko=—00

where Cjy is a positive constant independent of a1,y € Z,. Now, Theorem 3.1
and its proof imply that I — I(_o, —a.)/(a1,a,) 15 bounded on B;q(R2) and Fg’q(R2)
with operator norms no more than the quantity in (38). It is easy to see that we
can choose af(s1,s2) > 0 and a3(s1, s2) > 0 so small that if |a;] < af(s1,s2) and
|aa| < af(s1,52), then

Co{ >y |1—2—’f1a1—’“2a2|2—’“1—l’wl}<1,

kl =—0 k:ngoo
where Cj is the same positive constant as in (38). Thus, under this restriction, we
know that (I(_aly_m)l(ahaz))_l exists and is bounded, respectively, on B;q(RQ) with

p,q € [1,00] and F;q(Rz) with p € (1,00) and ¢ € (1,00]. Namely, there exists
a positive constant C' such that

H(I(—ah—az)l(al,az))il(f)||B;Q(R2) < OHf”B;q(RQ)

for all f € B, (R?) with p,q € [1,00], and for all f € F}, (R?) with p € (1,00) and
q € (1,00,

H (I(—a1>—a2)‘l(al»0¢2))_1(f)|

F;q(Rz) < CHf| F;q(]RQ)‘
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Combining these with Proposition 4.3 yields that, if |a1| < af(s1,s2) and |ag| <
aJ(s1, s2), then there exists a positive constant C' such that

”f”B;q(R?) = ||(I(—al,—az)l(ahaz))il(I(—oq,—oz2)I(041702))<f)||B;q(lR2)
< CH(1(7041,*042)1(061,042))(f)‘ B;q(RQ) < C||I(041,az)(f)|

Bjg* (R?)?

for all f € B, (R?) with p,q € [1,00], and for all f € I}, (R?) with p € (1,00) and
q € (1,00],

—1
Il £ Fs (R2) = H(I(—al,—ag)-r(al,az)) (I(—al,—az)I(al,ag))(f)‘ 3, (R?)
< OH(I(—OL17—Q2)I((11,O¢2))(f)||F;q(R2) < C||I(a1,a2)(.f)||F;q+"‘(R2)’
which completes the proof of Proposition 4.5. O

Combining Proposition 4.3 with Proposition 4.5 yields the following lifting prop-
: or 2 ntl 2
erties of By (R?) and £}, (R?).
Theorem 4.6. Let |s;| < 1, [s; + ;| < 1 for i = 1,2, s = (s1,82) and s+ a =
(81 + 1,82+ o). Then there exist a positive constant C and af(s1,s2) € (0,1) such
that, if |a;| < a¥(s1,s2) with i = 1,2,

K2

O™l 2y < o ()

s < O e, )

for all f € B;q(RQ) with p,q € [1,00], and for all f € ng(R2) with p € (1,00) and
q € (1,00],
C_lanF‘;q(lR?) < ||I(a1,a2)(f)|

F;ju(RQ) < C”fHF}fq(]RQ)

5. Embedding theorems and fractional integrals

In this section we first present some embedding theorems for both Besov spaces
B;q(Rz) and Triebel-Lizorkin spaces F;q(RQ). We remark that our embedding theo-
rems for Triebel-Lizorkin spaces are not the same as those for Besov spaces, which re-
flects the difference between these two kinds of spaces. As an application, we then
obtain another boundedness of fractional integrals /4, q,) on B;q(RQ) and F;q(Rz)
again.

Theorem 5.1. Let ¢ € [1,00], p1,p2 € [1,00], |s;| < 1, [3;] < 1, and 3; < s;
with i =1,2. Then

(i) If s1—3/p1 = 51— 3/pa, then B,(,ff,}sg)(R2) C Bgf(’f2)(R2), namely, there exists
a positive constant C such that, for all f € Bzgff(}SZ)(RQ),

Il 5100 @y S Ol g0 oy
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(i) If 851 —s1 =1/ps — 1/p1 = 32 — so, then B]Sflgf”(R?) C B(gl’gz)(RQ), namely,

(s1,52)

there exists a positive constant C' such that, for all f € Bp'y™ (R?),
||f||l'3,(7§21,,}§2>(]1§2) < C||f‘|31()51{;152)(R2)-

Proof. To simplify our proof, based on Theorem 2.8 and Theorem 2.6, we may suppose
that ¢ for i = 1,2 in Lemma 2.4 have compact supports, namely,

supp V) C { (z1,22) € R? : (21, 22)[| < 1}

and supp® C {z3 € R : |z3] < 1}. Let other notation be the same as in
Lemma 2.4. We then easily show that for all j;, k1 € Z, (x1,72) € R?, and 23 € R,

supp ¢\ ) C { (w1, 22) € R? ¢ [[(w, a)|| < 217010 59)
(W) * 0)) (@1,22)| < 27 —Rilgink)

and

supp Y x> C {a5 €R : |za] < 217U2NR) Y W)
(52 # 0i) ) (s)| < Q27 helgnnnta,

The estimates (39) and (40), Lemma 2.4, and the Holder inequality yield that for all
jl,jg € 7 and (1’1,252) S RQ

> / (W5 i) w0 (05 % 2) (21 = 1,22 — o)

k1,k2€Z

|1/JJ1J2 flz1,22)| =

X Yk * f (Y1, y2) dyr dya

<C § 9= lir—kal/py—lj2—k2|/p}
k1,k2€Z

. {/RJ(,(/)J(}) * wl(cl1)) *2 (w ¢(2))(1‘1 — Y1, T2 — y2)‘

1/1?1
X | (Vkykey * ) (Y1, 92) [Pt dyr dy2} .

Noticing that pa > p1, by the above estimate and the Minkowski inequality, we obtain

195,52 * fllLr2 (R2)
<C Z 2—Ij1—k1\/p’1—\j2—k2|/pi||¢klk2 * fllLr g2
k1,ko€Z

P1/p2
{/ ‘ ¢(1) * w *2 (wj(? * Q/J](Cz))(xl,.%‘g)‘pQ/pl de‘l dxg} . (41)
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We now have two ways to estimate the last quantity in (41), which result in the
conclusions (i) and (ii) of Theorem 5.1, respectively.

Proof of (i). The Minkowski inequality and the estimates (39) and (40) imply that

D 50) 4y (2 4 2 pa/p1 .
{/ | %1 *1/) (T/)JQ * Py, )($1,12)| day d$2}
< 2171 =F1193(i1Ak1) (1=p1/p2) 9 —|j2—k2|
Inserting this in (41) leads us to

195152 * fllLr2(r2)

<C Z 2—|jl—k1|—\j2—k2|23(j1Ak1)(1/P1—1/202)||wk1k2 % f||LP1(R2)7
k1,k2€7Z

which together with Lemma 2.4 and the assumption that s; —3/p1 = §1 — 3/p2 yields
that

||f||B£§21,(’152>(]R2)

C{ Z 9715149725249

J1,J2€7Z
qy 1/q
Z 2—\]‘1—kl|—|j2—k2\23(j1/\k1)(1/p1_1/p2)”wklkZ *fLm(]R2):| }
k1,k2€7Z
k k o
{ > 2heatee iy f1, e } < Ol g2 ey
k1,k2€Z ,

where in the second-to-last inequality, we used the assumptions that 51 < 1, s; > —1,
and |sz| < 1. This proves (i) of Theorem 5.1. n

Proof of (ii). Again, the Minkowski inequality and the estimates (39) and (40) yield
that

Pl/pz
{/ | qu wk (1/’ 2 *l/f(z))(%,l’z |p2/p1 dxy dl‘g}

{/ JACRR
p1/P2 p2/P1
{/\ Pt ()| dz} dxg] dxl}

< 020Nk (1=p1/p2) =1 —k1[9(52Ak2) (1=p1/p2) |72 —ka|

P1/p2
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This, Lemma 2.4, and the assumptions that §1 —s; = 1/pa —1/p1 = 52 — s lead us to

Wl < O 3 aroagena] 3 gortatimsimatnsi

J1,J2€Z k1,k2€Z

4 ' ay 1/q
X Q(JzAkz)(l/pl—1/p2)—|12—k2\M}klkz s fllpe (R%} }

1/q
< C{ Z 2k1s1q2k252q”¢k1k2 *quLpl(Rz)}

k1,ko€Z
< C"fllg;i{glﬁ2)(R2)7

where in the second-to-last inequality, we used the assumptions that §; < 1 and
s; > —1 for i« = 1,2, which proves (ii) of Theorem 5.1. This finishes the proof
of Theorem 5.1. O

We now establish an embedding theorem for Triebel-Lizorkin spaces szq (R?).
Theorem 5.2. Let ¢; € (1,00], p; € (1,00), |si] < 1, and |5;| < 1 with i = 1,2.
Assume that so < 52, §1 + 252 < 81 + 282, and s1 + 2s2 — 3/p1 = 81 + 252 — 3/pa.

Then F'}Sffq’fz)(RQ) C Flgf}q’fz)(RQ), namely, there exists a positive constant C such
that, for all f € 55552 (R2),

I 150 ey < O igoneo oy

Proof. By Proposition 2.9 (ii), we may assume that ¢; = oo and g2 = 1. Thus, to prove
the theorem, we only need to show E}\:1:52) (R?) ¢ F(Sl’sz)(RQ) Let f € FSL5(R2)
and ”f”F;Sflo;Q)(]lW)
as in the proof of Corollary 2.22. Using the same notation as in Lemma 2.4,
by Lemma 2.4 and this special choice of 1)(*) for i = 1,2, we then have that

= 1 by homogeneity. We also let 1) for i = 1,2 be the same

00 271+3

xlaxQ Z Z qzbjl]z * l/fma * f(l'l,mQ) (42)

J1=—00 j2=—00

holds with the same meaning as in (4). By (42) and the Hélder inequality, we have
that, for kl,kg € Z and (931,1'2) S R2,

oo 2j1+3 , 1/p}
[k ks * f(21,22)] Z Z {/ (Yrika * ¥jisa) (Y1, 92) [ dyn dyz}

—00 Jo=—00

X |[jy 4o * fllLen g2y (43)
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The estimate (32) and the Minkowski inequality imply that

, 1/p}
{ [ 15 00,7 dy2}
R‘Z

i / 1/p}
< 02j2’“2|2j1’“1{/ 2 o - di dyz} !
= g2 (2701ARD) 4 |(y1, o) |[) 41

< 9~ li2=k2|93(j1Ak) /p1 =i =k |

Combining this estimate with (43) and using the assumption that ||f||F(sl,52)(R2) =1
p1,00
yield that
oo 2j1+3
|wk1k’2 % f($17$2)| <C Z Z 9—liz—k2|=j25293(1 k1) /Pr—|j1—F1[=jis1
J1=—00 jg=—00

From this and the assumptions that S > s, $1 + 2s2 — 3/p1 = 51 + 253 — 3/pa,
and |s;| < 1 for i = 1,2, it follows that, for any fixed N € Z and all (z1,x5) € R?,

N 2k1+3
S 2Ry, + fon )
klz—ookzz—oo
N 2k1+3
<C Z Z 2’61512162(52*82)
k1:700k2:700
[eS) 2j1+3
% Z Z 9(k2—j2)sa—|ja—k2|93(j1Ak1)/P1—|j1—k1|—jis1
J1=—00 ja=—00
< 00231\7/1’)27 (44)

where C is a positive constant independent of N € Z. On the other hand, for all
N € Z and (x1,75) € R2, by the assumptions that s < 55 and §; + 255 < s1 + 259,
we have

0 2k1+3
Z Z 2k1812k232|wk1k2 * f(xbe)l
k1=N+1ko=—c
[e'e) 2k1+3
< Y Y okGimeigke(Bme) qup 201019702 |y g f(w, @)

. —_ J1EZ
FEN ke = oo —00<j2<2j1+3
N(51+259—51—2s 18 jo S
< Cp2VErRsma i) gup 21190252 s g [, @), (45)
J1EL
—00<j2<2j1+3
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where the positive constant C; is independent of N € Z. The estimates (44) and (45)
then imply that

0023(N+1)/p2

o0
P12y i gy = P2 ) / P21
” |F152}1'S2)(R2) N=—c0 C23N/p2

N 2k1+43

{ (.1‘1,.272) S RQ : Z Z 2k1§12k2§2‘¢]€1k2 * f($1,$2)|

k1=—OO k2=—00

o) 2k1+3
+ >y ~~>t}‘dt

k1=N+1ko=—00

oo
Ssz/ -t
0

X

{(xl,xg) €R? : sup 2715120252
J1EL
—00<72<2j1+3

X |wj1j2 * f(xl7$2)| > t}’dt
= C||f1I"

ng}gw(R% = 07

where the positive constant C' is independent of f. This finishes the proof of Theo-

rem 5.2. O
As a corollary of Proposition 4.3 and Theorems 5.1 and 5.2, we have the following

boundedness of I, q,) on B3, (R?) and F75 (R?).

Corollary 5.3. Let |s;] <1, |ay| <1, and |s; + ;| <1 for i =1,2. Then,

(i) If ¢ € 1,00], a1 > 0, p1 € (1,00), and 1/ps = 1/p1 — a1 /3, then (4, q,)
is bounded from Bfﬁf[z&)(Rz) to Béi};f””)(R?), namely, there exists a positive
constant C' such that, for all f € B,(,ff(fQ)(R%,

HI(oq,zm)(f)”Bz(j;lyéseraQ)(Rz) < C||f||B£i{&52)(R2)'

(ii) If g€ [1,00],0 < a1 =az <1,p1 € (1,00), and 1/ps = 1/p1—a1, then I (4, ay)
is bounded from B,(,ff[]s?)(IW) to B;(,zft}SQ)(RQ), namely, there exists a positive

constant C such that, for all f € BS':™ (R?),

1o ca) ()] er o2 (gay < ClF I er oo oy

(i) If ¢1,q2 € (1,00], a2 < 0, a1 > —2a, Jos (1,00), qnd 1/pa = 1/p1 —
(1 +202)/3, then I(q, ay) s bounded from F,gf}(,’f2)(R2) to Féf}q’fz)(RQ), namely,
there exists a positive constant C' such that, for all f € Flﬁf}(;f”(RQ),

||I(a1,a2)(f)”p‘}();}é;z)(Rz) < C”fHFp(ilqu)(RZ)
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Finally, we consider the boundedness of semi-fractional integrals determined
by the kernel K, on Bj, (R?) and F5 (R?).

Theorem 5.4. Let Ky be a distribution kernel on R which coincides with a C™ func-
tion away from {0} and which satisfies:

(i) For any « € Z., there exists a positive constant C,, such that, for all z € R\{0},

|02 Ko(2)| < Calz| 7172

(i1) For any given normalized bump function ¢ on R and any § > 0, there exists
a positive constant C' such that

/KO p(0z)dz

For ~ € (0,3), define the distribution kernel
Ky (x1,22) = ([[(21,)]772 *2 Ko) (22),

where (x1,72) € R%. Let |s;| <1 for i =1,2. If p1 € (1,00) and 1/ps = 1/p1 — /3,
then there exists a positive constant C such that, for all f € Bﬁf[zs?)(Rz) with
q € [1,00],

<C.

”K’Y * f||]'31(752{&32>(R2) < C||f“3£51{&52>(R2)a
and for all f € FS51:52) (R?) with q € (1,00],
||K * f”F(Sl 52)(R2) C”fHF(Sl SQ)(]RZ)

Proof. Let 9@ for i = 1,2 be the same as in the proof of Theorem 3.1. Repeating
the proof of Theorem 3.1 implies that

|(¢’U«1U2 * K’Y * wtth)(xlv ‘T2)|

t U t
<o(Bat)(2a2
tl (5% tg U9
u Vit ug Vg

X dl‘g.
/]R (ur Vit +[[(z1, 22 — 23) )47 (ug V tg + |23])?

Inserting this estimate into (23) yields that

|(wu1u2 *K *f 1‘1,:1,‘2)|

<C/ /( )(1222AUZ)I’YOMQ((whtz*f)(xl"))(IQ)citllCitjv
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where I, is the standard fractional integral on R? when R? is regarded as a space
of homogeneous type, and My is the usual Hardy-Littlewood maximal function on
the second variable. It is well-known that I, is bounded from LP'(R?) into LP2(R?),
where p; € (1,00) and 1/ps = 1/p1 — ~v/3; see [8]. Using this fact and noticing that
1, is a positive operator, by some computation similar to the proof of Theorem 2.6,
we complete the proof of Theorem 5.4. We leave the details to the reader. ]

Finally, we point out that using some discrete Calderén reproducing formulae
as in Theorem 1.8 in [3], we can develop a theory of Besov spaces B3, (R?) and Triebel-
Lizorkin spaces szq(RQ) for full s € R and p, ¢ € (0, 00]. However, to limit the length
of this paper and to simplify its presentation, we restrict ourself to the current case.
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