
Besov spaces ill theory of approximatioll. 

J()RGEN LSI~'STR~Jht[ (Lund~ Sweden) (*) 

Summary. - In this paper ~e apply the theory of interpolation spaces to diffe~'ent parts of 

Approximation theory. We study the ~'ate of convergence of summation processes of 
Fourier series and Fo*erier integrals. The main body of the paper is devoted to a study 

of the rate of convergence of solutions of difference schemes for parabolic initialvalue 

problems ~vith constant coefficients and to related probletns. 

0 .  - I n t r o d u c t i o n .  

The theory of interpolation spaces has applications to many branches of 

Analysis, in par t icular  to Approximation Theory;  see in par t icular  LiS~S~lltil~ 

[16], of which paper  the present  one is to some extent a sequel. Our main 

intention is to apply the techniques of interpolat ion spaces (actually disguised 

as BESOV spaces), to some problems related to finite difference approxima- 

tions for partial  differential  equations. In doing so we extend and comple. 

merit previous work by PEETRI~]-TttOM]~E [24], HEDSTROM [9], WIDLUND [35]. 

We shall work within a rather  general framework, which we shall now 

explain. We shall consider two families Eh(t) and E(t) (0 < h < 1, t in a given 

set L ,  depending on h) of translation invariant,  bounded l inear  operators on 

Lp- -Lp[Rd] .  We consider the generalized LIpsclzI~z space As of all functions 

f e L p ,  such that 

sup sup h - ~ l l E h ( t ) f -  E(I)fll % 
o<h<l t6I h 

is finite. Of part icular  interest  to us is the study of As, when s is the least 

upper  bound for set of numbers  ~ with A~ ~ 0. 

We say that E~(t) is a saturated approximation of E(t) with order s if 

(0.1) A~ ~ O, 

(0.2) lim sup n -`i! E~(t) f - -  E(t)flt~p = 0 implies f = 0, 
h,-~O tE Ih 

In par t icular  A~+~----0, s > 0 (c.f. FAVARD [8], BUTZER [5], BUTZER-BERD]NS 

[7]~. The approximation is said to be non-sa tura ted  if either (0.1) or (0.2) is 

violated. We give simple criterions for saturation, as well as for non-saturat ion.  

(~) Entrata in Redazione il 12 gennaio 1969. 
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Our main object is however to compare the LIPSCttITZ spaces A~ with 

the BEsov spaces introduced by BESOV [4] and PEETt~E [19], [22], [23]. These 

spaces are usually defined by means of certain moduli of continuity, but 

here we shall use the alternative definition of PEE~r~]~ [19], [23]. We shall 

develop criterions for continuous inclusions of the types B ___ A~ and A~ ~ B, 

where B stands for suitable BESOV spaces. 

The general  results described above will be applied to two special cases. 

The first one is characterized by the facts, that Ih consists of one single 

point to, that E(to) is the identity operator and that E~--Eh(to) is given by 

the • singular integral >~ 

EJ(x) = f k(h-~y)f (x  - -  y )dy .  

R d 

Here we get generalizations of precious works by BUTZER [6], Li~FSTI~6M [16], 

]~ESSEL [[8], SHAPIRO [26]. Our results are part icularly useful in the non 

saturated cases. 
We shall also discuss similar problems on the d-dimensional  torus T ~. 

We consider the RIESZ means operator 

Eft(x) --  E (1 - -  hP(~))?J^(~) exp (i < x, ~ >), 
~ez d 

where Z is the set of integers, f^(~) the FOUmER coefficients of f and P(~) 

any homogenous function of positive order, which is positive and infinitely 

differentiable outside ~ - - 0 .  Here  

We shall prove that 

(I  - -  u ) ÷  ---- t 1 - -  u, 0 < u < 1, 

( 0, u >  1. 

(0 3) 

1 1 
if :¢ > (d --  1) ~9-- 2 and discuss tile rate of convergence of Eh to the identity 

operator. In  doing so we generalize the work of S~nI~¢ [29] who proved (0.3) 

for P(~)-----l~ 12 , and LCiFSTR(iM [16], where the corresponding problems on 

R ~ were considered. 

We shall also discuss similar questions for operators E1~ defined on 
L~[T d] by 

Eft(x) = (2r:~ -d ~ ~(hP~))[^(~) exp (i < x, ~ >)~ 
~¢z d 
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where ~ is a given function, satisfying certain regulari ty conditions. Here  

we get generalizations of some of te results  of WAI~G~t  [33]. 

In our second application, E(l) f  is the solution of the initial value problem 

(0.4) 
~-i + P(D)u - -  O, x~ e R d, 0 < t < c,~, 

f u - - f ,  x e R  d , t ----- O. 

Here  P~D) is an elliptic differential  operator with constant coefficients. 

We  assume that (0.4/ is correctly posed in Lp, so that the operators E(t), 

0 < t < c~ form a strongly continuous semi-group of operators on Lp[Rd]. For  

simplicity we also suppose that the polynomial P(~) is homogenous of order 

m and positive for ~ # 0. The operator  E(t) is formally defined by 

EIt) = exp (--  tP(D)). 

Now consider the discrete initial value problem 

(0.5) t 
ub(x, t "4- k) = E e~u(x + ah, t), 

65 

re(x, O) = f(x). 

k "- Xh ~, T - -  _Nk, 

Here  x e h . Z  ~, Z b e i n g  the set of integers, and 0 < t < c ~ ;  k is a constant. 

The solution at time k can be writ ten formally 

(0.6) Edk) =- exp (--  kPh(D)), 

where Ph(~)is a suitable function. We  assume that the difference operator  

(0.6) is stable (see ][~,ICI~ITMYER-MORTON [25]~. We can then define Eh(t), 

0 < t < ~  by 

E f t )  = exp (-- tP~(D)), t E h ,  

where L -" { t; t~---Nk, N- -"  O, 1, 2, ... }. Now our general theory gives rather  

exact information about the rate of convergence of the solution of the 

discrete initial value problem (0.5) to the solution of (0.4). In fact  we give 

necessary and sufficient conditions for 

sup  t-ollE,~(t)f - -  E(t)fll~p--O(h% h-->O, 0 ~ 0 ,  
0 < t ~ N k < ~  

thus generalizing results  by HEDSTRO:K [9], PEETRE-THOMI~E [24], WIDLU~D 

[35] and others. In the case p - - 2  we also discuss briefly the situation when 

X = kh -'~ is a non-konstant  function of h. 
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We shall also treat the ease when Pt~) is any function, infinitely diffe. 

rentiable and positive for ~ =4=0 and homogeneous of order m > 0, and E(t) 

is defined by 

(0.6) E t) = ~(tP(D)), 

with a function q~ satisfying certain regulari ty assumptions. We suppose that 

(0.7) Et,(t) = ~(tPh(D)). 

where Ph(DI is an operator of a special type which approximates PtD). 
The stabili ty of this operator, i.e. the inequali ty 

(0.8) 

now represents  a new difficulty. On the basis of the theory of interpolation 

spaces we shall gfve a simple, but  rather  restrictive condition for (0.8). By 

the same technique we can prove a stabili ty theorem for difference operators, 

which is a d-dimensional  analogue of a stability thoorem of SmnA~6: [30]. 

With  the aid of the stabili ty theorem for the operator (0,7) we can study 

the rate of convergence of ¢p(tP~(D)) to ~(tPtD)). Our results are analogous 

to those mentioned above. In part icular  we get a result  for the rate of con. 

vergence of the resolvent of t)h(D). 
The paper consists of three parts. The first one consists of two intro- 

ductory sections. In section 1 we list some basic facts about FOURIER multi- 

pliers. Our main source here is I-ISRMANDER [[2]. Following PEETRE [19], 

[22], [23] we give in section 2 the necessary preliminaries on BESOV spaces, 

and some auxil iary spaces. 

The second part  of the paper (sections 3 - -  5) contains the general theory. 

After having introduced some notations and definitions in section 3, we give 

in section 4 criterions for saturation and non-saturat ion.  In section 5 we  

give three simple theorems concerning the comparision of the LIPSCHImz 

spaces and the BESOV spaces and certain related spaces. 

Our paper concludes with five sections, containing the applications de- 

scribed above. In section 6 we consider singular integrals, while section 

7 contains the results on the rate of convergence of the difference scheme 

(0.5). Finally, in section 8 we study the stabili ty of the operator ~(tPh(D)) 
and in section 9 we study its rate of convergence. In section 10 we consider 

the RIES~ mean operator and other summation methods for FOURIER series. 
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1 .  - Pre l iminar ies  on Four ier  mult ipl iers .  

Let  Lp = Lp(Rd), l _ < p  < ~  denote the Bi~ac!4 space of all complex- 

valued locally integrable functions f on d-dimensional  Euclidian space R d 

for which the norm 

II f l t ~  = ( c ~t. 
R d 

The space of all continuous functions f on R d such that 

f ( x ) ->O,  I x i--->oo, 

is denoted by Leo. It  is a BA~AcI~ space with norm 

II f [ ] ~  = sup  I f(x) i. 
x ~, R d 

A function f e L p  can be considered as a tempered distribution, and we 

can therefore speak about its FOURIER transform ~f,  which is a tempered 

distribution. Formal ly  we can define fff by 

(~f)(~) = f~(~) = f e x p  ( -  i < x, ~ > )f(~)dx 

Rd 

Here < x ,  ~> - :Xl~-q- . . .+Xd~d if X:-(Xo . . . .  , Xd) and ~--(~1, ..., ~d). 

If g is any tempered distribution we define 

f 
g~'(x) -" (2r:) -~ ] exp (i < x, ~ > )g(~.)d~. 

. I  
R d 

Then holds the inversion formula 

f,x) = W-~g)(x) = g~(x), g = f^. 

In the sequel we shall let x, y, ... denote the variables of the function, while 

~, ~7, ... will denote the variables of the FOURIER transform. 

I f  f is any tempered distribution we let supp f be the support of f. 

The support of the FOURIER transform f^ will be called the spectrum of f 

and is denoted spee f, i.e. 

spee f = supp f~° 

AnnaIi di Matematica 13 
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The space of alt infinitely differentiable functions wittl compact supports 

is denoted by ~). 

We are now ready for the definition of the concept of Foun1En multi- 

pliers. 

DEFI~Immlv 1.1. - A tempered distribution q~({) on l:g d is called a FOUmER 

mult ipl ier  on Le if 

(1.1) II ~ * gl]~ ~ Ollg[l~,~, 

for all functions g ~ ) .  The infinum of the constant C in (1.1) is deroted 

and the set of all such distributions ~ is denoted Mp. 

Suppose ~ eMp.  Then the l inear operator 

~)~g.--->~" , g e L p  

in bounded with norm [[ ~'~) l]%' By closing this operator in Lp we get a new 

linear operator T with the same norm. We shall write 

T g = ~ ' * g ,  

for g in Lp. 

We now collect a few basic facts about the spaces Mp. 

in the proof we refer  the reader to HiiRNANDER [12]. 

By means of PARSEVALS relation it follows that 

For the details 

(1.3) M2 --  L~ 

It  is also easy to show that 

(1.4) M, = ~1 / ,  (p,)-i  + p - 1  = 1. 

The relations (1 .3)and  (1.4) hold with equal norms. From RIESZ-THo~IN'S 

convexity theorem it follows that 

(1.5) 21lp ~ Mq, l ~ p ~ ff ~ 2, 

in the sense that 

d.6) ll ~ % <- II ~ iIM,, 1 < p < q <_ 2. 
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In part icular  

(1.7) 3I~ ~ L~ ,  l ~ p  ~ x ~ .  

In  view of (1.7) we can form the product of two FOVnlER multipliers 

and + on L~. This product belongs to M~ and 

(1.8) 

and since Mp is a BANACI~ space we see that Mp is a commutat ive BA~Ac]:[ 

algebra under  pointwise multiplication. It is clear that 3Ip has a unit element 

(the constant function 1). 

A very important fact about the M-spaces  is that they are invariant for 

homotheties. This means that if ~(~)eMp, then ?,(~)= ~(t~)eMp and 

This follows easily from 

(1.10) 

Le ~ L  denote 

their FOURIER transforms. It follows directly from the 

M~, = 9-~'5. Thus, in view of (1.4) and [1.7) 

(1.11) 9"~1~. = M1 = ~/[co; 

(1.12) 5!~q~: ~ Mp, t ~ p ~ .  

Since L1 ~ ~|~ we conclude 

(1.13) YL~ ~ M~, 1 ~ p  ~ c~. 

This holds in the metrical  sense, i.e. 

In order to show that a given function :? belongs to the 

shall sometimes use the following simple lemma. 

LEMMA 1.1. - Suppose that 

(1.15) f t ~(~)12d~ -]- 
Rd 

the space of bounded measure  and . f f ~  the space of 

definition that 

f ] DL~(~)t2d~ ~ A 2, 

R d 

space 9:L~ we 
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for some L > d/2. Then :p e fL~ and 

where C is a constant depending only on the dimension d. 

(Here and in the sequel D c denotes any generalized derivative of order 

PRooF. - Suppose ~ E ~ .  By the CAUCg¥-Sc~wA~TZ inequali ty 

P . A R S E V A L  ~ S formula 

L). 

and 

f f ~:/2 / p 
Rd Rd R d 

<__A(f(1-t- [ ~ [~,-ldx) 1/~. 
Rd 

\t]2 

Since the integral on the right hand side converges if 2L > d, the conclusion 

follows. 

We shall often work with local :FOURIER multipliers. 

DEFI~IO~X 1.2. - Let l? be any (open) subset of R ~z. Let two tempered 

distr ibutions belong to the same equivalence class if they are equal on V. 

Then the space Me(V ) of (local) FOURIER multipliers on V is the space of 

M1 equivalence classes of tempered distributions, which agree on V with a 

mult ipl ier  on Lp. For  convenience we shall not distinguish between the di- 

str ibution ~ and the equivalence class to which it belongs. The norm on 

~ / v )  is 

(1.16) It ~(~)I]M/7) = inf II X(~)tNI~, 
X 

where ; (eMp and X = ~  on V. We  denote by f'LI(V) the subalgebra  of MI(V) 

consisting of all (equivalence classes of) tempered distributions, which agree 
on V with a function Xe  9"L1. 

i t  is clear that Mp(V) and YLI(V) are BAI,~ACI~ algebras (with unit ele- 

ment) under pointwise multiplication. It  is also quite clear how the relations 

(1.3)-(1.9) are inherited to the spaces M~(V). In particular,  (1.9)corresponds to 

(1.17) 

where 

[1 v~t~)JIM/,,) = I] ~(~)H~y), 

(1.1s) t v =  {t~[ ~.e v } .  
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If specf. ___ V, then clearly 

(1.19) ~ v ,  f[1Lp -~/l ~ [1M/V)/I fl[Lp" 

It  is also obvious that if supp X -- V and X ~ Mp, then )~(~)¢~(~) s 211p and 

(1.29) [I X(~)?(i)[I% ~ II X(~)ltMp tl V(i)tiM/v). 

If  W ir an open subset of V and ~,eMp(V), then ~?sMp(W) and 

The following lemma will be very useful to us. (C.f. MIC~LI~'S mult ipl ier  

theorem, see HOn)~a~DEa [12]). 

L~,MMA 1.2. - Let  U~ denote the annulus 2-~r < I~i < 2r. Suppose that 

(1.22) I i I:] D:~(~) ] ~ A, 4 -~r < ! f ] < 4r, 0 ~ J ~ L, 

for some L > d/2. Then ~e~L~(Ur) and consequently ~eMp(U~), 1 ~ p ~ .  
Moreover 

where C depends on the dimension d only. 

PROOF. - Choose e e l )  so that +(~)= 1 on 2 - : L ~ [ ~ [ ~ 2 .  and + ~ ) - - 0  

outside 4 - ~ < [ ~ 1 < 4 .  Write  

= 

Then X(~)--~(~) for ~eU~, so we have only to prove x e ~ L ~ a n d [ [ X " I ] L ~ C A .  

As in the proof of lemma 1.1 we get 

!x~>r - 1  !.~ I > r  - Rd 

R d 

where the maximum is taken over all derivatives of order L. But D~)({) is 

a finite sum of terms of the type r-:(D++)!~/r)D~-:~(~), and since I D~-Z~/{)l~ 

CAr +-~, ~-~r < I~t < 4r we conclude 

i D~(~) ] ~-~ CAr-L, 
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Thus 

We also have 

I t  follows that 

/ f \1/2 
f ]  X~(~)j dx ~ CA.r-d[21J d~) ~ C'A. 

[xi>r--1 supp X 

X'(X) ] dx  ~ Cr-d/2 I X(~) i2d~) "~ CA. 

Ix[<r - 1  R d 

f l x~(x) [ dx <_ CA, 

Rd 

and the lemma is proved. 

We shall also need the following local version of a wel l -known theorem 

by  WIENER. 

LEMMA 1.3. - Suppose that ?e~L~(V)  where V is an open, bounded set 

and ?(~) # 0 on the closure of V. Then ?(~)-~ e ~LI(V), and thus ~(~)--1 ~ Mp(V), 
l ~ p ~ .  

PROOF. - Let F be any continuous character  on ~:L~(V). We shall prove 

F(~) 4= 0, since then follows that ~ has an inverse in L~(V). Let f e  ~L~ and 

]" be the equivalence class of all functions, which agrees on V with f. 

Wri te  G(f )=  F~f). Then G is a continuous character  on 9"L1, thus of the 

form f--> f(i). Let  X e ~  be identically 1 on V. Then 

;((~'f(~) = G(xf) = F(xf)  = F(/7) = G(f) = ft~), 

and we conclude that ~ belongs to the closure of V. Thus F ( ? ) =  ?(~)=4=0. 

We  conclude this section with 

LEIg~A 1.4. - Suppose that P ( ~ ) i s  a homogeneous function of order 

m > 0, i.e. P(t~)= t'~P(~), 0 < t < ~ and that P(~) is positive and infinitely 

differentiable for ~ =~ 0. Assume that ~(u) is an infinitely differentiable func- 

tion on 0 < u < c~ and that 

(1.23) ?(u) - -  ?IO)[ ~ Cou% 0 < u < I, 

(1.24) ?(u) I_~ CoU-~, ! < u < ~x~, 

(1.25) DJ~(u) ] ~ Oj rain (u ~-J, u-~-J), 0 < u < oo 
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d 
where J =  1, 2, ..., N, N > ~ a n d  ~, ~ > 0. Then 

~(P(~)) e ~ L ~ .  

This lemma is proved in L(I:FSTRI53:[ [15]. We give an alternative proof, 

based on lemma 1.2. We nee~t here and on several occasions in section 8, 

the following well-known formula for differentiat ion of eomt~osite functions 

LEMMA 1.5. - Let  f be a real valued function on a domain ~ C R d, let 

g be defined on the range of f and suppose f and g are sufficiently diffe. 

rentiable. Then 

D'yIfc~)) = Zcr,. ~, Df(~)[ '~ ,.. (D~Lf(~))~Lg(K)(fl~)). 

Here g(K) = DKg, ~ __ (~1 . . . .  , at), 1 ~ K ~ L and 

~ + ~ + ... + ~ = K ,  

¢¢l "iF 9'~2 @ "'" -~ LatL --" L .  

Lemma 1.5 is easily proved by induction. We leave the details to the 

reader. 

PROOF OF LEMMA 1.4. - We may assume without loss of generality that 

~[0)-" 0. Let (I)E ~ satisfy 

(1.26) 

(1.27) E ~(2-k~) = 
- ~  O, ~ = 0 .  

(For the existence of such a function see HiiRMANDER [12], c.f. lemma 2.3 

below). We shall prove that  

-~00 

- -50  

<cx~. 

Since ~L1 is a BAI%ActI space this implies that 

E O(2-k~/~(P(~): , • ~L~, 
--:2¢ 

which give the conclusion, in view of (1.27). 
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F r o m  the invar i ance  under  homothe t ies  tl.9) and (1.20) we get 

Since 

l emma  1,5 gives 

I DJP(~)I~ C:P,,{? -Jl= 

L 

t DLq°tP({))] ~ C 2 P({)r~-LI"'cf(K)iPt{)) I. 
K ~ I  

Thus  the a s sumpt ions  and the fact  that  

i ~ I L ~ CPt~) LI~ 

gives for L = 0 ,  1, 2, .., 

We  conc lude  

Thus  
-t-oO 

%a 
z.4 

- -Do  

I L I DL~(P([)I 1 < C rain tPt[) , P([)-~) 

tf ¢P(P({))[/~L~(v2,~) ~-- C min (2 ~k', 2 - ~ ) .  

~-:30 

q)(2-k~)~?(Pt~-)) I1~% ~ C rain (2 ~m , 2 - >  ~) 
--210 

and s ince  the ser ies  on the r ight  hand side converges  for  a, 8 > 0, we get 

the conclusion.  

REMARK 1.1. - The concep t  of FOURIER mul t ip l ie r s  can be genera l ized 

to other  s i tua t ions  than the one descr ibed  above. W e  can for  ins tance  rep lace  

R d by the d - d i m e n s i o n a l  torus  T d. The FOURIER t ransform should  then be 

r ep l aced  by the opera tor  

( L 28) 
/ .  

f--> [^(~) = ~ f ( x )  exp (--  i < ~, > )dx, ,92 

,J 
T d 

where  { e Z  ~, Z being  the space  o[ integers.  Then  the invers ion  formula  

takes  the form 

(1.29) ~x E . [(x) -= g ( ) = (2~) -e  g({)exp i < ~, x >,  
~ Z  d 

where  g({) --  f^t{). 
The  space  mp of FOURIER mul t ip l ie rs  on L~tT d) j s  

qua l i ty  
def ined by the inc. 
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where 

i.e. 

A 

( ~ ,  g)(~) = ~(~)g^{~, ~ e Z ~, 

T d 

A general approach is possible by means of the concept of direct integrals 

of ttILBERT spaces and the spectral theorem for commating se]f-adjoint  
o 

operators A~, ..., Aa on a HILI3ERT space H. (See GAI~DIN~'S article in BERS- 

JOH~-SCHECH~ER [3]). In fact we can find a direct integral L2(R ~, ~, ~), (c~ 

being a positive measure and ~ a dimension function), and a uni tary operator  

such that 

a : H ---> L2(R '~, ~, ~), 

( a A J ) ~ )  = ~(~f)(~). 

If  H itself is a direct integral ;  H - - L 2 ' I 2 ,  ~t, a) (I2 is a manifold with 

density tt and ~¢ a dimension), we write 

Lp --  Le(~2, I ~, a) 

and define the space of FOURIER multipl iers on Lp by means of the inequali ty 

il ,f[I  <--lI il ! tILp, 
where 

~(A)f ) (~)  --  ~(~(~f)(~). 

Here  q~(~) is a square matrix with ~(~) rows and columns. 

For  

Ak --  i - 1 -  ~xk' ~ = dx,  ~(~) - -  1, f~ - -  R ~ 

we get back the si tuation described in this section. For  Ft = T d the diago- 

nalizing operator  is given by (1.28) and (1.29). As a final example take d - "  1 

and let A be a self-adjoint  elliptic differential  operator on L2(f~, ~t, ~), 

( a - -  1). Assume for simplicity that A has pure point spectrum consisting of 

points denoted ~. Let  the multiplicity of ~ be ~(~)--1.  The corresponding 

direct integral is L2(R, c~, 1) where 

with ~(f)  = f(~). 

AnnaIi di Matematica ~4 
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The FOURIER transform is 

(~f ) (~)  = F ( ~ )  = (f, ¢(~)),  

where ( , ) is the inner product on L2(~, p., 1), and q)({) is the eigenfunction 

corresponding to the eigenvalue ~; 

Ao(1 )  = ! ¢ ( i ) .  

The inversion formula takes the form 

f = Z I^(~)(PIi), 

whice is the eigenfunctiou expansions of f. 

Iu  all these cases we have also analogues of lemmata I.i., 1 2. and 

(See SPASr~E [26], c.f. also section 10 below). 

1.4. 

2. - Pre l iminar ies  on Besov spaces. 

Throughout the rest of the paper q) shall denote an infinitely differen- 

tiable function with the following properties; q) is positive on the annulus  

2-~ < [ { I  < 2 and vanishes outside. Moreover 

c o  

2 q)(2-~f)  = 1, f + O. 

(cf. (1.27). We shall write 

• k([) = (I)(2-~{), k = 0, _-(= 1, ± 2, . . . ,  

• t~) = l - -  "2 ck(~). 
k ~ l  

By means of the functions W, ~ i ,  ~2 . . . .  , we define the BESOV space 

B~ ~'q ( - - c < ~ < m  <c~,  1 ~ q ~ c ~ ,  l ~ p ~ c ~ )  as the BANAOH space col're- 

sponding to the norm 
(3O 

p k ~ 0  

with 

(2.2)  fk = ~ ;  • f,  k = 1, 2, . . . ,  fo = q y v ,  f.  

(See PEETRE [22], [23]*. This definition is rather  implicit. However if m > 0 

it is possible to give a more explicit alternative definition in terms of the 

modulus of continuity 
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where 

%(t, f)  - -  @,t, f )  - -  sup iI T~,f - -  ft[%, 

T ~ x )  = f(x, + h). 

In fact, for m = J f f -  :¢, O < ~ < 1, (J integer ~_0), the BEsov space B~" q can 

be defined by the (equivalent) norm 

(2.3) 

oo 

0 

For :¢ = 1 one has to modify (2.3). Let us write 

@(t, f ) =  sup [1Thf-- 2 f +  T_/I1L p. 
o<[hi<~ 

Then -Fn:+~' q is defined by the norm 

(2.4) 

K.~O 
0 

Thus B~ +I'q is defined by means of a ZYGMUND condition, while ~q:+~'~ 

0 < a < 1 is defined by a L~PsCmTz condition. 
/2 J+ l ,  az We shall denote by .~4J+~p the LIPSC~Tz space, which corresponds to _p , 

This means that Hp r is ~he BAZ~AOH space defined by the norm 

L-1 colt, DL- l f )  
(2.5) Y, II DKf + sup 

K=0 o < , < ~  t 

For p ~ 2, H~ is not a B s s o v  space, but one can show 

BL,  2 L " - - H 2 .  

However,  for i ~ p ~_~ 

L L, oo 
(2.6) B~ '1 C H p C  Bp , 

with strict inclusions. 

Occasionally we shall also work wi~h a space Hp *'~ closely connected with 

H~. This space is defined in the following way. 

Let G~(t) be the operator on Lp defined by 

(2.7) (YGm(t)f)(~) = exp ( - -  t] ~ [")f^(~, t > O. 
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Clearly G.JI) is a semi-gruop of operators. By the invariance for homotheties 

(1.9) 

ii G,,(t)f ll~ -< II exp (-- t I ~ t o) i1~ 11 f tl~o ~ II exp (-- I ~ l ~) ll~, II f IIL~, 

Clearly q~(u) = e x p ( - -  u) satisfies the assumptions of lemma 1.4. Thus G=(t) 
is a strongly continuous semi-group of operators on Lp. The infinitesimal 

genera ter  of G~(t) is the operator - - I D  l ", defined by 

(2.8) (~! D I'~f)(~) = i ~ Pf^~). 

(C.f. BUTZ~a-BEan~S [7]). 

The space H *~', (m > 0) is now defined as the BANACK space correspon- 
ding to the norm 

(2.9) 1t fll.,= = il f~Lp 4- sup t -* It e,~(t)f-- fllL~. 
p 0 < t < l  

For 1 < p < c %  H *= is the domain of the operator ]DI'* i n  Lp. For p = l ,  

p = c~ one can characterize He *r~ as an interpolation space between, the 

domain o f ] D  ]= and Lp, (see BUTZER-~BERENS [7], LI3:FSTR(JM [14], [15] and 
PEETRE [17]). We have 

Moreover 

H *L = H i ,  L integer, 1 < p < cx~. 

(2.10) 

It can also be proved that 

B?~ C HF C B; '~. 

(2.1 l) l[ fll~ + sup lltD i=@ t)fll% 
t>0 

is an equivalent  norm on Hp *'~, (see BUTZ1~R-BERE~S [7], L(iFSTR(JM [16] and 
PE~+R~ [19]). 

For the proof of the al ternative definitions (2.3) and (2.4) of the B~sov 

spaces and of the inequali ty (2.6) we refer  the reader  to P~:~mRE [19], [22] 

and [23], where he also can find a more detailed study of the BESOV spaces. 

See also LIObTS-LIZORKIN-TNIKOLSKI.I [14] and BESOV [4]. 

Throughout  the paper we shall work mostly with definition (2.1). From 
this definition it follows immediately that 

(2.12) BT"" q _ By" q, m' ~ m", 

(2.13) B~ q 'C Bp , q ' ~  
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with con t inuous  inject ions.  W e  also have the fol lowing s imple  in te rpo la t ion  

theorem. 

LEMMA 2.1. - Suppose  that T is a con t inuous  l inear  opera tor  f rom Lp 

into Lp and from B'p ~'q° into Le, wilh norms  Mo and 21/1, respec t ive ly .  Then 

T maps  Bp °'~'q, ( l < q ~ o o )  con t inuous ly  into Lp, for 0 < 0 < 1, with norm 

(2.14) Mo ~ C, dO(t - -  O))-*+~/qM~-°M°~ , 0 < 0 < 1. 

REMARK 2.1. - By means  of the resul t s  of I-IOLMSTEDT [11] one can  prove  

(2.15) Mo <__ C~O-~+~/q(1 - -  O) m~'~ ('/~-l/qo; °)M~-°M~. 

REMARK 2.2. - The conc lus ion  (2.14) also holds if T maps  H *r~ into Lp 

with norm M~. This  follows f rom (2.10). I t  is also easy to prove  that if T 

maps  B~J'qJ into Lp with norm Mj ( j  = 0, 1) then T maps  B~ 'q into Lp with 

norm less than Cm°,m~(O(1 --05)-I+~/qM~-°M~, if m =: (1 - -  0)m0 + 0m~, 0 < 0 < 1. 

L e m m a  2.1. is a consequence  of a genera l  in te rpo la t ion  theorem (see 

PEETRE [19], [20], [22]), bu t  for the conven ience  of the r eade r  we give a d i rec t  

proof  (c.f. I:)EETRE-TttOM~E [24]). 

PROOF. - W r i t e  f~ --- ¢~ • [; fo --2 W~ * f. Then  the a s sumpt ions  give 

11 Tfk IItp ~_ min (Mo II ItS, M1 II/  11 , 
P 

Since  however  fk has its spec t rum in the annu lus  2 k-1 ~ I { I ~ 2k+1, ( k ~  1) 

we have 

excep t  for j = k -  1, k, k + 1. In  the same way  

Thus  easi ly  

fo, j = d)},  fo = O, j ~ O ,  j :~: 1, 

f~,o --  W~,  fk - -  O, kq=O, k 4 : l .  

co 

j ~ o  

since ]1 (P~(~)liMp = [I cI)(~)limp, by (1.9) and W e Mp. Consequen t iy  

li Tfk tIL F ~ 0~ min (Mo, 2k"~Ma)tl fk tIL~. 
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Since we can suppose that f ~ ,  we have 

f - - Z f k  
k = O  

(with convergence in Lp). Thus 

oo oo 

From HISLDER'S inequali ty it follows 

fl Tflt~ ~ c.( z <2-~0. min (Me, 2k'3I~))q') ~/</lfll.o,.,~ 
k ~ O  p 

C (w-0"~ rain (Me, ~M~)q'  fll,o~, ~. 
P 

o 

Here  tq,)-:L _{_ q - ~ =  1. Evaluating the integral we get 

I1 Tfll~ ~ <,(oct - 0))-l+,~v~-0:cs 7 I1 ftlBo,~. ~, 
P 

which is the desired inequality. 

For technical reasons we shall work certain modified BESOV spaces ]3~ 'q, 

(-- c~ < m < c~, 1 ~ p ~ c~), which are defined by the semi-norm 

(2.16) 11 flip,., ~ = ( ..2 (2.,~ tl , v ; ,  f l l ~S ,~ ,  
p . ~  

/See PEETRE [22], [23]). It is easy to see that all polynomials belong to 

B~"q and have semi-norm 0. From the proof above it is clear that lemma 

2.1 remains true if we replace all BESOV spaces by modified BEsov spaces. 

Note however that the inequali t ies (2.12) and (2.13) do not hold for the 

modified spaces. 

The connection between the modified BEsov spaces /3~'q and the BESOV 

spaces B~" q is given by 

LE:~MA 2.2. - For  0 < m < ~ we have L~ A/7~' q = B~' q in the sense that 

f - +  P f l!Lp + It f H~.~, q, 
P 

is an equivalent  norm on B~: ~' q 

The proof is trivial and will be omitted. 
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We shall conclude this section with a brief discussion of definition (2.1). 

It is natural  to ask what special role is played by the number  2, which 

appeqrs in the conditions on g9. Could it be replaced by any number  y > 1 ? 

MOnE generally, is it possible to replace the annulus 2 - ~ < i ~ i < 2 7  where 

d)(~) > 0, with a more general  type of annu lus?  

Let 4 ) * e ~  have the following properties:  

i) 0 ~ ~*(~), ~ e R ~, 

(2.17) ii) 0 ~ supp (I)*, 

iii) there exists a number  I"> 1, such that for every ~ R  ~, 
we can find an ia teger  k, such that ~,(,(-k~)> O. 

From ii) we easily get that the series 

,~ ( I )*(7- j~)  

is finite for every ~. ~ 0. If ~ ~ 0 at least one term in the series is positive, 

so we have 
+m 
)3 (P*~y-J~) > 0, ~ ~ 0. 

Write 
--~o0 

j = - - c . ~ o  

Then clearly ~ e ~,  supp ¢ 9 - - s u p p  ¢9" and 

If we write 

q)(r-% = ~, i + o. 

q)~(1) = ¢ (y_kf ) ,  k = o,  

~'(~) = 1 -  ~ ~(~), 
k = l  

m ,  q " m ,  
we can define the Bosov spaces Bp (7, O*) and Bp 9( 7 , O*) by means of (2.1) 

and (.2.16) with 2 "~k replaced by T"L The annulus 2k-1 < I~1 < 2k+1 is replaced 

replaced by T k • supp O* = { "l~ i ~. e supp O* }. 
We shall prove 

(2.18) BT" q(l" , q)*) - -  B~' 9, 

• m ,  

(2.19) Bp 9(.f, d)*) = B~' q, 
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with eqivalcnt  norms. In  view of lemma 2.2 (which also holds for the modi- 
m, q+ " m q 

fled spaces Bp t7, (I)*) and Bp' (7, (I)*)), it is enough to prove (2.19), which 

follows from 

LEMMA 2.3 - Let  q)* and W* be two functions, satisfying (2 17) with 

number  7 and 6. Then 

(2.20) 

where G is independent  p and q, and depends continuously on m. 

I~ROOF. - Let  ~ and ~'~, k = 0, + 1, ..., be the functions that appear  

in the definitions of B~'q[~', d)*) and [7'~'q~8, W*), respectively. Then 

1 ] 

In the sum only a finite number  of terms can be non-vanishing,  namely 

the terms that correspond to such indices j ,  for which 

(2.21) 

Suppose 

7 ~ • supp (I)* A 8J • supp RY* ~ O. 

supp ¢P* U supp ~* C { ~ t R  -1 <]~1 < R} .  

Then it is easy to see that (2.21) implies 

(2.22) 

Consequently 

R-2y k < ~J < R27 ~. 

OR='<Z6J= [i ~)' * f lilt ~ CR2'=(21)liq'(Xc 8j" It ~7 * f llLp)q) wq 

(summation of j such that (2.22) holds). Since the first sum in the last 

expression is bounded by a number  N we get 

co  

i] f l l i,;. % +,~ <- c-~'wR~'~( '" ~' 
--o0 R~2.~k<8,i~R2 y£ 

CNR ~= 11 f liD.,, >,  ~,). 
P 

c~J= I] ~ ;  * f ILL/) 1/q - 

REMARK 2.3. - The definition of BESOV spaces can be generalized to the 

more general situation described is remark 1.1. In fact, suppose 
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and 

(Pk(~) = 1, ~ # O, 
--92~ 

(2.23) 

" s q  
Then we define B~" [~, A] by means of the norm 

II f [l~, qtn, ~J = ( -~z (2 -~ II cD~(A)f (]Ly)~l~. 

(Here A ---- (A1, ..., A~)). 

For instance we can take ~2 = T d and Ak = i - l ~ .  Then one can prove 

(2.23) and thus we can form the space B~'q[T d] --B~'q[T ~, A]. (See SPANNE 
[28] and section 8 and 10 below). 

)~[ost of the general  theory developed in section 3-5 carries over to the 
general  situation indicated here. 

3. - The Lipschitz '  spaces. 

The object of the rest of the paper is to study the following situation. 

Let Eh(t) and E~t) be two families of bounded operators on the BA~ACn 
space L -  Lp, given by 

(3.1) (YEh(t)f)(~) - -  e~t, ~)f^(~), eh(t, ~) e Mp, 

(3.2) (YE(t)f)(~) = e(t, ~)f^(~), e(t, ~) E Mp. 

Here 0 < h <  1 and t belongs to a given set A, which depends on h. 

shall assume that Eh(t) and E(t) are uniformly bounded:  
We 

(3.3) It Eh(t)f IlL ~ C H f IIL, 0 < h < 1, t ~ A,  

(3.4) II E~t)ft!L ~ C II f llL, 0 < h < 1, t e L ,  

This is equivalent  to 

(3.5) [] eh(l, ~)]lMp ~ C, 0 < h < 1, t e A ,  

(3.6) I] e(t, ~)limp ~_ C, 0 < h < 1, t e A .  

However the prel iminary discussions in this section carries over to the more 

general  case, when L is any BA~Ac~ space and Eh(t) and E(t) satisfies (3.3) 

and (3.4) (Ii I~ being the norm on L). 

Annali di Matematica 1~ 



1t4 J. LOFSTROM: Besov  spaces in theory o / a p p r o x i m a t i o n  

The (generalized) LIPSCmTz' space A~, (0 ~ a < co) is defined as follows. 

It  is the space of all f e L ,  such that 

sup sup h -~  il ( E d t )  - -  E( t ) )[  ItL < ~ .  
O<h<1 t~4 

It  is BANAOH space with norm 

tl f []Aa = H f 11 + sup sup h-~ II (E~(t) - -  E(t)~f  ~L. 
o<h<1 ~Er h 

EXAMeL~ 3.1. - Consider L = Lp and let Ih consist of one single point 

to and assume 

E(to~f = f .  

Suppose that the dimension d = 1 and 

E~( to) fx )  - Thf(x)  = f i x  + h). 

Then 

Ii f II~,a = il f 1;~ + sup h-= tl % f  - -  f [T~, 

so that (in the notations of section 2) 

A~ = B~ ' ~ ,  0 < cr < 1~ 

A1 = H~. 

Thus h .  is a LIPSCt-IITZ' space in the classical sense. 

We now return to the general case. It  is clear that 

Ao = L, 

(with equivalent  norms). Obviously A: is continuously embedded in L and 

more generally we have 

(3.7) ha,, -- ha,, 0 ~ d ~ ~", 

with continuous injections. 

We  also introduce the space N~ of all elements f ~ L  for which 

lira sup h -~  II (Eh(t) - -  E i t ) ) f  IIL = o.  
h-->O t~lh  
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T h e n  we have the fol lowing inc lus ions  

(3.8) N~_c A~, 0 < _ z < ~ ,  

(3.9) A~,, c N: , ,  0 ~ ~' < ~" < c<~, 

(3.10) No,, ~_ N~,, 0 ~_~ or' ~ ~" < c o .  

F r o m  (3.7) we see tha t  the set {~; A~ # 0} must  be an  in te rva l  of the form 

0 ~ Z < Z o  or 0 ~ z ~ z o ,  where  

Cro = sup { ~; A ~ + 0 } .  

In  the same way (3.10) shows that  ( z ;  2 ~ - - 0 } ,  is e i ther  empty  for all 

va lues  of ~ or of the form ~ < ~ < ~xD or ~ ~ z < ~ ,  where  

~1 = i n f { o ;  N ~ = O } .  

W e  put  ~ = c~ if N~ 4= 0 for a!i ~. Then  easi ly 

(3.! 1) ~o = ~1. 

In  fact,  suppose ~1 < ~o. Then  we can find v' and ~", such that  ~1 < ~' < d' < ~o. 

There fore  N ~ , - - 0 ,  h~,, 4=0, which cont rad ic t s  I3.9). Consequen t ly  we mus t  

have ~o_-~1. But  if ~o<~1 ,  we take ~ such tha t  ~ o < ~ < ~ .  Then  A ~ - - 0 ,  

so tha t  by (3.8), / g ~ - - 0 .  This  cont rad ic t s  a < ~ .  

W e  now re fo rmula t e  (3.11) in the fol lowing theorem. 

TI~EOttEM: 3.1. - Le t  s = ~o be finite.  Then  there are three possibi l i t ies :  

(3.12) A~ = 0, N~ -- 0, 

(3.13) As 4= 0, /V~ --  0, 

(3.14) & 4= 0, ~7 ~ 0. 

l [  (3.13) holds for some s, then  s is the largest  n u mb e r  for which As 4= 0. 

In  case (3.13) we shall  say that  E~(t) is a sa tu ra ted  approx ima t ion  of 

E(t) and s is cal led the order  of the sa tura t ion .  (See FAVAnD [8], ]~UTZER 

[5], L(iFSTR6~i [16]). W e  shal l  re fer  to the cases (3.12) and  (3.14) as the non- 

sa tu ra t ed  cases. Note that  the order  of sa tu ra t ion  s is to a cer ta in  extent  

a rb i t ra ry ,  s ince if we rep lace  Egt) by EhvIt ) then s is replaced by s - T .  
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4. - A cri ter ion for  saturat ion.  

In this section we shall censider L --  Lp and two families Eh(t), 0 < h < 1, 

t e l h  and E(t), t e l h  of operators defined by (3.1)and (3.2), where the functions 

eh(t, ~) and e(t, ~) satisfies (3.5t and (3.6) respectively. We shall give a simple 

criterion for saturation, i.e. for I3.13) in terms of eh(t, ~) and e(t, ~). 

We shall let Ur denote the annulus 

(4.U U~-~ [ ~; 2-Jr < [~t < 2 r } .  

and write 

(4.2) I1 g(1)i!° = U g~) [ [ -~%) .  

THEOREM 4.1. - Suppose 

(4.3) tim sup h-~[I e,~(t, ~ ) -  e(t, ~)II° < 
h-)O t ~  l h 

for some integer n. Then A~ ~ 0. If the limit (4.3) is zero it also follows 

that N~ # 0. 

PROOF. - Let  X e ~  have its support  in the annulus U2n. Then X ~M~. 

Let  g e L p  and put f - - X " ,  g, Then spec f C  U2, and by (1.20), 

1] (Eh(t) - -  E(t)) f  l]% ~ II (e,~(t, ~) - e#, ~))X(~) T]Mp llg l]Lp 

Multiplying by h- '  we conclude 

Iim sup h -~ 1} (Eh(t) - -  E(t))f llz~ < oz .  
h..~O tl~ Z h 

It follows that feA~:  If the limit (4.3) is zero we see that f e N ~ .  Since we 

can assume f ~  0, the conclusion follows. 

RE~IARK 4.1. - Clearly the conclusions of theorem 4,1 hold if we replace 

the annulus U2, with any open set V. 

TttEORE~i 4.2. - Suppose that for every h and every integer n there 

exists a number t e L, such that 

[e~Ct; i) - -  e(t; ~)]-1 e Mp(U2o). 
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Assume 

(4.4) lim inf h'[][e~(t; ~ ) -  eft; ~)]-~U. < o~ 

for all integers n. Then 5~ = 0. If the limit (4.4) is zero (for every n), 

M - - 0 .  

PROOF. - We have 

then 

[I ¢ :  * f [t~p ~ Ch~ 11 [eh(t; ~) - -  e(t; ~)]-~ limb-' li Eh(t)f - -  E(t)f HLp. 

Thus if (4.4) is finite the right hand side tends to zero for all f e N , .  

Thus qb:. f =  0 for all integers n, which gives f =  0. If the limit (4,4) is 

zero the same conclusion holds for all f~As .  

COI~OLLARY 4.1. - Suppose that the limit (4.3) is finite for some integer 

n and that (4.4) is finite for all integers n. Then Edt) is a saturated appro- 

ximation of Eft) and s is the order of the saturation. 

5. - Comparision of  Lipschitz spaces and Besov spaces. 

In this section we shall consider the same general situation as in section 

4. Our object is now to compare the LIPSCnITZ spaces h¢ with the BEsov 

spaces B~' q and the spaces H *~. 

With  the notations of section 4 we have 

TKEO~mM 5.1. - Suppose that (3.5) and (3.6) hold. Then a sufficient for 

(5.1) [] f []A~ < eli f I},,~. qo, 
P 

is that for some ~ > 0 

(5.2) { E {h-s2-"'~lleh(t; ~)--e(t; ~)ltn }qg}l]qo~ C, 
hs2nm<e 

for 0 < h < l ,  t e I h ,  and ( q g j - l + q g ~ _ . l .  For  q o - - 1  ( q g = ~ ) ,  

[5.2) is necessary for (5.1). 

PROOF. - From (3,5) and (3.6) we see that 

condition 

{ { h - , 2  . . . .  Ileh(t; f) - e ( t ;  
h,S'2n m > ~. 

h S 2 U m > e  
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Thus  

I t  fol lows that  

2f-~O ! t 

{ z { h-,2-,,',' tl e,,(t; ~) - -  e(t; ~)t1,, }~°t'~° ~ C. 
- - 9 0  

h-,ll (Egt) - E#)) f t~ ~-- :v h-" [] (E,,(t) - -  E(t))~: • f [l~ ~-- 
--OO 

-}-co 

- - (x )  

since (I). van i shes  outs ide  annu lus  U2,,. In v iew of the def in i t ion  of ~ . q o  

we get f rom H(iLDER'S inequa l i ty  

Thus  we have  

h-= 11E~(~)f - E ( t ) f  U ~ C, ~ f lIB=, ~o, 
P 

It f llA, ~ C'~tl f U5 + II f lIB,,, 
.P 

and the conc lus ion  fol lows from lemma 2.2. 

To prove the necessi ty ,  a s sume that  (5.1) holds,  let X~C& be ident ica l ly  

1 on 2 - x ~ ] ~ ] ~ 2 ,  and suppose  that  X van ishes  outs ide  4 - 1 < : I {  --~4. 

Wr i t e  X,,([)- X(2-~) - Since the opera to r  on Lp 

has norm 

f - +  h-'(Eh(t) - -  E(t))x: • f 

h-" li ( e / t ;  ~) - -  e( t ;  ~))Xo(~)[l+, 

we can f ind a funct ion  f E Lp, ll f lid = 1, so that  

h -s !] (eh(t; [) - -  e(t; [))Xg[)tt% ~ 2h-" [I (EL(t) - -  Ett))x; * f [!Lp 

H o w e v e r  X: * f e B  ~'~ and 
P 

[i x; * f I]/,,,, ~ 02"' .  
P 

Thus  by  the def in i t ion of local  FOURIER mul t ip l ie r s  we get f rom (5.1) 

h-'lie°(t; i ) - - e d ;  ~-)I!° ~ C2,-. 

which gives (5.2) for qo---- 1. 

W e  shall  also need 
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TItEORElVl 5.2. - Suppose  (3.5) and (3,6) hold. Then  a svff ic ient  condi t ion 
for 

(5.3) II f ll,,s <- c/I f I1 , 
P 

is that  for some e > 0 

(5.4) 1] h-~ J ~. i-'~(eh(t; ~ ) -  e(t: ~))[l~/,h. ~) ~ C, 

whe re  0 < h < l ,  t e I h  and 

(~Note that  £5.2) q~ - -  1 impl ies  (5.4)). 

P R O O F .  - W e  shall  prove that  

(5.5) [] (eh(t; ~) - -  e(t; 0)[ exp (--  h~t ~ 1'0 - -  1] -~ ][~ ~ C 

for this impl ies  (in the notat ion of sect ion 2) 

ll E;,(tt f  - Ett)f l lL~ ~ el l  V,~(h,)f - -  f [ l~. 

To prove (5.5) we note that  (5.4) implies  

II C eh( t ; ~) - -  e( t ; ~))[exp ( - -  h' l ~ J~) - -  1] -~ [1%(~h ~) 

Us ing  the inva r i ance  unde r  homothet ies ,  we see that  it suffices to show 

(5.6) [ { ]'~[ exp (--  i { [") - -  1] -~ e M/B~ .  ~). 

But  this follows from l e m m a  1.3. In  fact, we have (by l e m m a  1.4) 

1 

i i-'~[ exp ( - -  t ~ I'0 - -  1] - -  I exp ( - -  r i i l=)d r e ~L~(B,, 

/ a  

o 

and 

I ~ i-~[ exp (--  I ~ t") - -  1] :4: O, ~ e B~,~, 

which  gives (5.6). 
Wr i t e  

B *  h s I ~ / 2  }. 
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Then  it r emains  to show 

II(e~(t ; ~) - -  e(t; ~))[exp ( - -  h ' l~  I '~) - -  1]-~ []~±g~h, ) ~ C. 

Us ing  (3.5) and (3.6) we see howeve r  that  

It(eh(t; i) - -  e(t; i))[ exp ( - -  h ' ] i  i "~) - -  1] -~ limp(5* ) 

oil [exp ( -  h'i~ l ~) - -  1]- '  tlMgB * ). 

By  the inva r i ance  under  homothet ies  it suf f ices  to show 

(5.7) [ e ~ p  ( -  I ~ l ~) - 1] -~  e ~ U B J ~ )  

But  

[ e x p  ( - -  I ~ i ~) - -  1] -~  = - 1 + [1 - e x p  i i I~] - '  

and f rom l emma  1.1 (or 1.4) it is easy  to see that  

[1 - -  exp t ~ t"] -~ e Mp(B~*,). 

Now (5.7) fol lows and theorem 5,2 proved 

COROLLARY 5.1. - Suppose  that  e i ther  (5.2) or (5.4) holds. Then  fol lows 

(5.8) 1[ f [[Aos ~ Co, q li f I]Bo~. z , 0 < 0 < 1 
P 

H e r e  Co, q ~ C(0(1 - -  O))-~/q'. 

(The es t imate  of the cons tan t  C0, q 

% and q, if t5.2) holds,  by means  

r e m a r k  2.1.). 

PROOF. - Pu t  T =  E h ( t ) -  Eit). Then  (3.3) and (3.4) gives 

[] T f  [1Lp ~ O II f t]L~ . 

T h e o r e m  5.1 and (2.13) (or theorem 5.2 and (2.10)) gives 

P 

Using  the in te rpo la t ion  l emma  ( lemma 2.1) we get 

il r f  lIL~ <-- Co, qhO~ Ii f tI,0~,, q, 
P 

which is the des i red  inequal i ty .  

can be  improved  for cer ta in  va lues  of 

of the resu l t s  of I:~OLMSTEDT [11], c.f. 
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W e  now proceed  to the converse  of (5.1). 

THEOREM 5.3. - A suf f ic ien t  condi t ion  for 

(5.9) II f []B,~. oo ~_ C I1 f m = s .  v 
P 

is that  there  exis ts  a n u m b e r  l >  0 and a s equence  t ~ e L ,  with h - - 1 2  - ~ ,  

such  that  

(5.10) 11 (eh(t, ~) - -  e(t, ~))-111n ~ D~, 

for  t - -  t , ,  h - -  l .  2 -"~. 

PRooF.  - It  is c lear  that  

for 

n - -  1, 2, ..., 

all t e h  and 0 < h  < 1. Thus  i[ we take  t - - t ~ ,  h - - l . 2 - " ~ ,  (i.e. 
h ~ -~ Is2-n"), we get  

]1 qb: .  f tILe ~ D1 l'2-n~ [I f ~As, n = 1, 2, ..., 

which  gives the conclus ion,  s ince [I W~ * f [[Lp ~ C 1] f !lLp. 

REMARK. 5.2. - I t  is c lear  that  we can rep lace  the annu lus  U2~ - -  2 k • U1, 

U~ --~ { ~ 12 -1 < I ~ I < 21 }, with the genera l ized  annul i  yk supp  q5*, (I)* sa t i s fy ing  

(2.17). In  v iew of the equ iva lence  of /~'q and B~'q(7, ~*) we get the same 

conc lus ions  in theorems  5.1 and 5.3. In theorem 5.3 we shall  choose h - -  Iy -"'~. 

REMARK 5 . 4 . -  A suf f ic ient  condi t ion  for the converse  of (5.3), i.e. for 

(5.11) [] f II,,~ ~ ell fllA, 
P 

is that  for  every  h there  exis ts  t h e l h  such  that  

[] h ' l  i I" exp (--  h'] ~ ]')[eh(th; ~) - -  e(th; ~)]-~ J]M~ ~ C. 

This  fol lows easi ly  f rom (2.11), bu t  we leave the deta i ls  to the reader .  

6. - Convergence o f  s i ngu l a r  in tegra ls .  

Let  Ih consis t  of one single point  to and suppose  that  E(to) is the ident i ty  

ope ra to r ;  E(to)f - -  f. W e  shall  suppose  that  Eh - -  Eh(to) is g iven by the func t ion  

eh(to, ~) - -  K(h~). 

AnnaIi  di Matematica 15 
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If  K is the Fou[~IE:a transform of k, then KIh~) is, by (1.10) the FOURIER 

transform of h-dk(h-@). Thus Eh is given by the singular integral 

hy~dy. 

R d Rd 

(e.f. BUZZER [6]). 

Since Mp is invariant  under homotheties the condition (3.5) reduces to 

K e M p .  

Occasionally we shall assume that 

(6.1) K(~) e ~L~(Ur), 

for every annulus U r : { ~ ] 2 - ~ r < [ ~ ]  < 2 r } ,  O<r<c~z.  

First  we shall apply theorems 4.1 ~nd 4.2 

T~EOREM 6.1. - i) Suppose that K e M p  is continuous for ~ ~ 0  and 

d 
that there is a function L(~) such theft for J - - 0 ,  1, 2, .. N, N > ~ ,  

(6.2) DJ~h-~(K(h~) -- 1) -- L(~)) ---> 0, h --> 0 

uniformly on some annulus U2~. Then A~ ~ 0. If L(~I = 0 on some open 

set VC U2~ we also have Nz ~ 0. 

ii) Suppose that K l ~ ) ~ l ,  0 < ] ~ t < e  for some ~ > 0 ,  that (6.1) holds 

and that for J - ~  0, 1, ..., N, 

(6.3) D:(ho(K(h~) -- 1) -1 - -  L(~I -~) --> 0, h --> 0 

uniformly on every annulus  U2,~. Then N ~ - - 0 .  If L (~)~  ~ for all ~ ~ 0 ,  

then A~ --~ 0. 

COROLLARY 6.1. - Suppose (6.i) and that either (6.2) or [6.3) holds for 

every annulus U2~ and that 

(6.4) 0 < t LC~) [ < ~ ,  ~ =4= 0, 

Then Eh is a saturated approximation of the identity operator and the order 

of the saturation is a. 

PROOF. - From (6.2) and lemma 1.2 we get L(~)eMp(U2.) and 

h - ~  I1 K/h~)  - 1 ll~ --> li L(~) II~. 
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Thus, by theorem 4.1, A~4:0 .  If L(~)= 0 on some open set 

lim h -~ I[ K~h~) -- 1 l}~p(~) ----- O, 
h---~O 

V, we conclude 

and thus, by remark 4.1, _N= ~ 0. 
If (6.3) holds and K(~) 4= 1, 0 < }~ i < z we get in the same way 

Here  we have used that ( K ( h ~ ) -  1)-leM/U2~) if h is sufficiently small. 

This follows from lemma 1.3. In fact, since K(~) - -  1 e~L~(U,) r = h2 ~ < 

and K ( ~ ) -  1 :t= 0, for ~ in the closure of U~ we get ( K ( ~ ) -  1 ) - l e  ~LI(U~) and 

thus, by (1.17), (K (h~ ) -  1)-~eMgU2o). 

By theorem 4.2 we now conclude N ~ - - 0 .  If  L(~) - ~ - 0  on all annuli  

U2~ , we get by the same theorem, h ~ - - 0 .  

For the proof of corollary 6.1 we have only to note that if (6.41 holds, 

then (6.2) and (6.3) are equivalent.  

As an i l lustration we consider 

ExA~[PLE 6.1. - S~lppose that Xo(u) is infinitely differentiable on 0<u<-}-cx~ 

and satisfies 

[ Xo(U) - -  1 t ~__ Cou ~-~, 

] DJ×o(U) ] ~ Cju ~-~-s, 

I DSXo~U) I ~ Csu-~ -~-s, 

O < u < l ,  

J = i ,  2, ..., 

i <U<oo, 

O < u <  1, 

J = 0 ,  1, 2, .... 

Suppose that ¢%(u) is infinitely differentiable on 0 < u < ~ and 

Put  

~%(u) = (log 1/u)P, 

%(u) ---- (log t/2)% 

0 < u < 1/4, 

1/2 < u < ~ .  

(6.5) K<f) = 1 + l ~ t %(~ ~ l>×o!i i tl) 

Since u%(u)Xo(U) satisfies the assumptions of lemma 1.4 if ~, ~ > 0, we have 

Now 

K~ ~L~. 

h-%K(h~)  - -  1) = hI-~ ] ~ ] (log 1 / h l ~  l)exo<h j ~ ]), 0 < h l~ I < 1/4, 
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so that (6.2) holds for p ~ 0 ,  and (6.3) is satisfied for p ~ 0 ,  with the function 

L(~) given by 

L(~) : 

if ~ 1 

cx~ if ,z2>0, 

I~l if p = o ,  

0 if p < 0 ,  

0 if ~ < 1 .  

~ - - 1 ,  

¢~ - -  1 ,  

Consequently s --  sup { a; A~ :4:0 } -- 1 and 

A ~ 0 ,  N~=4=0 if and only if , o ~ 0 ,  

A I ~ 0 ,  N 1 - - 0  if and only if 9 " - 0 ,  

A ~ = 0 ,  N 1 - - 0  if and only if , 0 ~ 0 .  

In  part icular  the approximation is saturated if and only if p -  0. 

It should be noted, however, that if A~ and N~ are defined by the 

conditions 

sup h-l(log 1/h)-P [[ E f t  - -  f [[Lp < ~ ,  f E Lp, 
o < ~ < 1  

lim h-l(log 1/h) - ,  ~ [[ E f t  - -  f Itzp = O, f ~  Lp, 
h ~ + 0  

then it follows from the proofs of theorems of theorems 4.1 and 4.2 that 

A~ 4= O, AT~ = O. 

We now turn to the application of theorems 5.1 and 5.2 to the general  
situation of this section. 

THEOREM 6.2. - Suppose KeMp.  Then 

(6.6) B~ "1 ~ A,, 

if and only if for some ~ > 0 

(6.7./ ~i ~ [-'(K(~I - t)11-/~,) -~ c,  o < r ~ 8 



[. L6FSTR6M: Besov spaces in theory of approximation 125 

If moreover for some ~ > 0 

(6.8) HI ~ 1-~(K(~} - -  1)llMp(,~) < oc 

then 

(6.9) H *~ c A~. 

If  (6.7) or (6.8) holds we have 

(6.10) B;  '~  _ As, 0 < a < s, 

(Continuous inclusions). 

PRoof .  - For  0 < r < o Q  and - - o o < a < + o o  we have by (1.17) and 

1emma 1.2. 

(6.11) 

where the constant  C depends 

we get from (6.7) 

on a and the dimension. Thus, using (1.17) 

if r = h 2 ~ _ _ ~ .  

must have 

(h2~)-sll K(h~) - -  1 II,~ ~ CI] (h l ~ I)-~(K(h~) - 1)]!, = 

Thus theorem 5.1 gives (6.6). If  conversely (6.6) holds we 

(h2~) -~ ]1K(h~) - -  1 []~ ~ C 

and thus, by (6.11), 

I] (h ] ~ l)-~(K(,h~) - -  1)It~ ~ C'. 

Using again the invariance under homotheties we get (6.7). 

If  (6.8) holds we can use theorem 5 2, from which (6.9) follows immediately.  

The inclusion (6.10) follows from corollary 5.l. 

REMARK 6.1. - Note that (6.10) holds only in the sense 

c l[f[l,  
P 

Here  C : = O ( z - l ~ s - - z ) - l ) ,  z - ->s  according to corollary 5.1 (c.f however  

remark 2.1). We  also note that if (6.7) holds 

where C is independent  of ~. 
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l~he following theorem is a slight generalization of one of the results 

in SHAPIRO [24]. 

T~EORE~[ 6 . 3 . -  Suppose that there is a compact set i ~ not containing 

the origin, such that for all ~ / ~ ,  ~ =4= 0 there exists a positive number  C 

such that C~eF.  Assume that there is u 

K(~) e ~LI(0) suppose 

(6.12) 

Then 

neighbourhood 0 of F such that 

P 

where C is independent of v. 

The set F can, for example, be a surface which is homeomorphic to the 

unit sphere 1 ~ [ ~ 1 ,  provided that the interior of P (which exists according 

to JORDAlq-BROWER~S separation theorem) does contain the origin. Note 

also that the assumption on K can be relaxed. It  suffices to assume that 

K is on 0 the limit in Mp of functions in SChWARtZ class S. 

PROOF. - Since K(~)e~LI(O), K(~) is continuous on 0, because the 

FOURIER transform of an integrable function is continuous. Thus K(~)=4= l 

on an open set ~ containing P. 2Now let ~ * e ~  have support  in ~2 and 

suppose ~*(~) = 1, ~ ~ P. We can also assume 0 ~ q)*~), and that 0 ~ supp 4)*. 

It is easy to see that there exists a number  y > l, such that if ~eP ,  B = p~, 

"(-~-~-~--~'l, then q)*(~/>0.  In fact, if this is not the case we c~n find a 

sequence ~ s P ,  -~,~=,o~,~, Y : - ~ Q , ~ 7 ~ ,  where y,~--->l, ~*(~) --  0. By 

compactness, we can pick out a subsequence n', such that ~,.--->~. Thus 

%,--- ~,~,---> ~. But  ~ s P  implies ~*(~) -- 1 and thus (I)*(~,,,)-- 0 for all n' 

leads to a contradiction. 

2Now ~* satiesfies the condition (2.t7). In fact., take ~ s R  s, ~ 0 .  

Then ~ = ) ~ o ,  for some ~oel:. Choose k so that y-1 _~7-~.  ~--7. Then, aceor. 

diug to what we have just  proved, y-J°~----7-~k. ~0 satisfies ~P*(l,-~)> 0. 

By theorem 5.3 and remark 5.3 we see that it suffices to show 

(6.13) I1 - 1) +.) <-- D 

for n---- 1, 2, ... and h = ~'-=. But  this is equivalent  to 

(6.14) (K(~) - -  1) -1 s M / s u p p  (D*). 

However  K ( ~ / ~  1 on supp 4 )¢. Moreover K ~ ) - -  1 e 5Ll(supp (I)*), because 

supp@* is contained in 0 and the constant functions are in 9-L10). We  

conclude from lemma 1.3 that (6.14) must hold, and the theorem is proved. 
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As an i l lus t ra t ion  we shall  app ly  theorems  6.2 and 6.3 to 

EXAMPLE 6.2. - De[ ine  K by (6 5). Then  

l ~ i - ~ ( K ( ~ ) - - l ) = ( l ° g t /  ~),~Xo(l~[), 0 < [ ~ I < 1 / 4 .  

Suppos ing  e > _  1 we get from l emma  1.5 

{~]JlDJl~l-'(I<(~)--l)l~Cj(loglllil)~, 0<1! I<114,  

so that  for  0 < r < 1/8, 

(6.15) tl]~ i-~(K(~) - 1)I1,~/~,)~ C(log 1/rp. 

There fo re  

Ill ~ I - ' ( K ( ~ )  - 1)11-/~;)--< c, o < r < 118 

for p ~ 0 .  I t  follows that  

B~ '~ ----- At, p < O .  

Us ing  theorem 5.1 this inc lus ion  can  be improved,  for p < 0. W e  have 

B~' q°~A1 if p < - - l / g ~ ,  go < ° c .  

In  fact,  this fol lows from theorem 5.1 if we can prove  

# 

(6.16) 2 ((h2~) -~ ~ K(M) - -  1 b? o _< c. 
h2n<l /2  

But  accord ing  to (6.1t) 

S ince  

(h2n) -~ll K ( h ¢ )  - -  1 II: ~ 0 iII ~ I-~(K(5) - -  1)IIM/,, , , )  ~-- C ( l og  llh2~)e. 

Z (log ll'h2") ~q° 
h2n<l ]4  

if pqd < i 1, we get (6.16). 

Fo r  p - -  0 we have  

1/4 

< C f (log I/x) ~qg dm - ~ < ~  
0 

I { ]-~(K({) - -  1) = Xo([ { ]), I{] < 1/4. 

If  we suppose  that  ~. > 1, we have  Xo(i{l )sg~,  by / emma 1.4. Thus  

[~ t - I ( K ( { )  - 1) s Mp B1/4), 

example  6.1. 
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Thus for ~ = 0  

H / ~  A1. 

For  p > 0 inclusion of this type are impossible, since we know from 

example 6.1, that A~ : O However,  by (6.15) we have for 0 < s < 1 

r l -* l t i { ] - l (K({ ) -  l)llMy~)< C, 0 < r <  1/4 

and thus, by (6.11) 

iii{ i-~(K({) - -  1)[1~,*¢~) <-- C. 

Consequently we get from (6.10) 

B ~ ' m ~ A ~ ,  O <  ~ < 1, 
P 

for all values of o, (a > 0). 

Final ly we see that the condition of theorem 6.3 is 

value of p. Therefore 

h~ C B~,~ 0 < ~ .  

satisfied for any 

For  the set I' in theorem 6.3 we can take l { l m r  for any r, 0 < r <  1/4 if 

X o(r) ~ O. 
We have for p = 0 

h]~] exp (--  h l~!)[K(h,~) - -  1] -1 = e x p ( - -  h i~t)Xo(hi~])-L 

Assuming for instance that Xo(U) satisfies 

;(o(U) ~ ~ exp (--  0u), 

where 0 < 0 < 1, we see that 

exp (-- u)(xo(u)) -1 

satisfies the assumptions of lemma 1.4. Thus 

Ill hi exp ( - -  h~l)[K(h~) --  1] -~ limp <-- C. 

For  remark 5.4 we therefore get 

A1 c_ H3I, (~ = 0). 

We  have proved that, under the assumptions above 

A0.= B ~'~, O < o  < 1, - - o c  < p  < +cx~, 
P 
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A I = B  1,°°, p < - - I  p 

Bl.q C__ A1 ~ B a'~ 1 < p p , - -  _ _ ~ < - - l / q ' ,  

A I = H * p  1, ~ = 0 ,  

A ~ = 0 ,  O> 0. 

A ~ = O ,  a > l ,  - - c ~ < ~ <  q-co,  

For other examples, see Bu~z]~R [6], BUTZER-BERItENS [7], LOFSTR01~ [16] 

and ~-ESSEL [18]. See also section 10 below, where similar problems for FOUR~EI~ 

series are discussed. 

7. - The rate  of  convergence of  difference operators.  

In  this section we shall let E(t) be the solution operator for the initial 

value problem 

(7.1) fit- -q- P(D)u = 0, x E B d., 0 < t < ~ ,  

u = f ,  x e B  ~, t - - 0 .  

We shall assume that the differential  operator P(D) hits constant coeffi- 

cients and that the polynomial P(~) is homogenous of order m and positive 

for ~ 4= 0, i.e. 

(7.2) tP(~) = P(tX/'~). 

It is easy to see that (7.1) is correctly posed, i.e. 

(7.3) [I E(t)fllL,, <_ CI I f i l~ ,  0 < t < o~. 

In  fact, it is clear that E(t) is given by (3.2) with 

(7.4) e(l, ~) ~ exp (-- tP(~)) = exp (-- P(t~/~'~)). 

By the invariance for homotheties (1.9) it suffices to prove 

(7.5) exp (--  P(~)) e ~z,. 

This follows however from lemma 1.4, but it can also be proved by 

means of lemma 1.1. Iu  fact, since P@ is homogenous of order m and po- 

sitive on ~ =~ 0, 

(7.6) A[~ i ~ <_ P(~) .<_ A-~]~ ]". 

Annali di Matematica 1~ 
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It follows 

[D '  exp (--  P(~))[ _< ( / , exp  ( A ) 

and thus by lemma 1.1, (7.5) follows. 

The family E(t), 0 < t < cxD form a strongly continuous semi-group of 

operators on L~, i.e. 

(7.7) E(t + s)f = E(l)(E(s)f), 

(7.8) E ( t ) f  .--> f,  l --> O. 

(See BUTZER-BERE~S [7]). This is true for 1 ~_ p < c~. For p : o~ the same 

statement holds if we let L~  denote the space of continuous functions f for 

which f(x)---> O, I xi-->~<~. The infinitesimal generator  of the semi-group E(t) 
is --  P(D). 

We shall approximate the semi-group EINk), N - - O ,  1, 2, ..., (k--) .h% 
), given > 0) by means of a family of ~ discrete >> semi-group E~(Nk), N - - O ,  
1, 2 . . . .  , 0 < h < 1, defined by 

(7.9) Eh(k)f(x)  = Y~ e~(k)f(x -+- ah), k = ),h", 
o~ 

(7.10) Eh(Nk) = Eh(k) N. 

Here  e~(;~) are given numbers,  independent  of h. The sum can be finite or 

infinite. In the first case Eh(k) is called an explicit  difference operator, 

while it is called implicit in the second case. The function 

u~(x, 5:k)  = Eh(kyvf(x) 

is the solution of the discrete ini t ia l-value problem 

l u~,(x, Nk + k) = ".3 e~(;guh(x, .Nk), 
o~ 

u~(x,  O) = f (~) ,  x ~ h • Z ~, 

E hZ ~, 

where Z denotes the set of integers. 

From (7.9) we get that EdlVk)f  is given by (3.t) with 

Pu t  

eh(k; ~) ----- Y~ e~,(;~) exp i < ~, h~ > ,  

Ph(~) = - - k - :  log eh(k; ~.). 

k - -  ).h ~. 
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We assume that Ph({) is well defined if h I~1 is sufficiently small. Then 

we see from (7.10) that 

where 

eh(t; ~ ) = e x p ( - - t P h ( ~ ) ) ,  h[~ 1 small, t e L ,  

(7.11) I h = i t i t = N k ,  N = 0 ,  1, 2, . . . ! .  

Our condition (3.5) is equivalent  to 

(7.12) ]lEJ,(k)ffllLp < c[If!l~, 2v = 1, 2, ..., o < h < 1. 

This means that Eh(k) is a stable difference operator on L~, (see RIC]c~e- 

MYER-MORTON [24]). We  shall not discuss this condition in detail, but  refer  

the reader  to STRANG [30]. TgOM~E [31], [32], WIDLUND [34]. See however  

theorem 8.1 below. 

REMARK 7.1. - Most of the subsequent  analysis carries over to the case 

when the coefficients e~(),) depend on h too. In this case the stabili ty condi. 

tion (7.12) should be replaced by 

(7.12') llE~(kyVf[l~ ~ CTtlfU~ P , 0 < 2~k < T, 0 < h < 1 

(Cr might tend to o¢ as T--+ ~) .  The set L should then be defined by 

(7.11') Ih = l t; t = Nk ,  0 < N <  T/k } . 

In our case, however  the (7.12) and (7.12) are equivalent.  In fact, (7.12') 

implies with T - -  1 

Iledk; ~)NI]M --< C1, 0 < N < 1/k, 0 < h < 1. 

But now eh(k; ~) is a function of h .  ~ so by (1.9) 

/le~(X; ~)N)ItM P "< C1, 0 < N < I/k,  0 < h < I, 

with k = ),h ~. Thus  

lie/X; i)NI)~ _< C~, 0 < N < c o .  

From the invariance under homotheties we again get 

lIeh(k; ~.)NIIM P ~ Ct, 0 < AT< ~ ,  0 < h < 1 

which implies (7.12). 
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DEFISTITION 7.1. - We say that Ph(~) approximates P(~/with degree s > 0, if 

(7.13) Ph(~) - P(~) -~ h ~] ~ i~+~O(h~), 

where Q is infinitely differentiable on 0 < [ ~ 1 <  zo and has bounded deriva- 

tives there. The approximation is of order exactly s, if, in addition 

(7.1.4) iQ(i)i > ~ o >  o, o < { i ! < ~ o .  

REMARK 7.2. - The conditions of the definition can easily be formulated 

in terms of the functions eh(t; ~ )and  e(l; ~). In fact, Ph(~) approximates  P(~) 

with degree exact ly  s,  if and only if 

where k - - ) . h  "~ for some ), > 0, and R is infinitely differentiable and has 

bounded derivatives for ~ =~: 0 and~ for some z~ > 0, 

Before we apply our general theorems to this situation we give an example. 

EXAMPLE 7.1. - Consider the initial value problem 

¢7.15) 1 
3u ~2u - -  0 ,  ,x e R 1, 0 < t < c ~  , 
~t ~x 2 --  

u - - f ,  ~ e R  1, t - - 0 .  

The clearly P ( ~ ) :  [~]2. Let us approximate  the equation with the diffe- 

rence equation 

(7.16) 
u h ( x ;  t + k) - -  u(x;  t) 0~2u,~(x; t + k) ÷ (1 - -  0)~2uh(x;  t) 

where t~--Nk, k = ) , h  2, 0 ~ 0  ~ 1 and 

Thus 

where 

~2ut~(~:; t) = uzdx + h; t) - -  2uh(x,; t) ÷ u~(x - -  h;  t). 

uh(x; t + k) = L~dk~uh(x; t), 

Z ~ i k ) -  ~ = ),(0E,~(k) + 1 - -  0)~ 2. 

Fourier  t ransforming bot sides of (7.16) we get 

e,~(k; i )  = 1 - -  4),(1 - -  0 ) s i n  2 hi~2 
1 + 4),0 sin 2 h~/2 ' 

k =  )`h 2. 
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For  0 < 0 ~ 1, Eh(k) is an implicit difference operator, but for 
is explicit ; 

E~(k)f(x~ = f(x)  + k~[(x) ,  (0 = 0). 

It  is easy to see that 

I e,~(k; i) l < i, 
if and only if 

(7.17) 

o</h l < 

2),(1 - -  20) ~_ 1. 

0 - - 0  it 

Thus E~(k) is a stable difference operator on L2 if (7.17) holds. It  can 

be proved (for instance by means of the stability theorem by STRA~G [30]), 

that Eh(k) is stable on L~ (1 ~_ p ~ ~ )  if (7.17) holds. See ,qlso theorem 8.1 

below. This is easy to see directly for 0 - - 0 ,  because then Eh(k) means con. 

volution with a measure with total mass 1. By (1.11) therefore have 

[[eh(k; ~) ]]~ < 1, N-=  0, 1 . . . .  , 0 < h < I. 

An easy calculation will show that 

1 12 Ph(~)--- P(~) -- - -  ~ log eh(k; ~) - -  [~ = 

---- C)h21~ i~(1-J-12),(0 - ~))+0(h¢i~16),  

Therefore P~(~) approximates P(~) with order 

s - - 2  if 1 - { - 1 2 ) , ( 0 - - 2 ) : ~ 0  , 

s = 4  if 1 +  122(0 --  ~) = 0. 

h-->0. 

with equivalent  norms. 

(This example is borrowed from RICH~¥]~R-IVIoR~os [25]). 

We now return to the general  case. 

TgEORE~ 7.1. - Suppose that Ph(~) approximates P(~) with degree exactly 

s and suppose Eh(k) is a stable on Lp. Define Ih by (7.11). Then Eh(t) is a 

saturated approximation of E(t) and s is the order  of the saturation. 

Moreover 

A ~ = B  ~,c°, 0 < ~ s ,  
P 
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REMARK 73.  - Our theorem is a ref inement  of a result  (valid also for 

variable coeffieieuts) by PEETR~-TItoM]~E [24]. They proved the inclusion 

B~.~___ h~. For  the par t icular  ini t ia l-value problem (7.15), HEDSTROM [9], 
P 

proved the inclusion H ~  h~, 0 < ~ - - s  (p--- c~). ItEOS~RO~[ also showed 
P 

the existence of a function f~ in H ~ for which fo d A~ z > z. Recent ly  p ,  

HEDSTROM'S results were generalized by WIDLUND [35] tO parabolic systems 

with variable coefficients. However  WIDLUND'S result  holds for intervals 

/h-which are bounded away from the origin. In the special case considered 

here our result  is therefore sharper, since the origin is a limit point of our 

interval Ih as h--->0. We also work with the space B ~,~ which is larger ' p ' 

~han H ~. We  can also prove the converse inclusion h~ ~ B °-~. 
P P 

R E ~ R K  7.4. - Our proo[ carries over to more general parabolic init ial-  

value problems than (7.1) (non-homogenous P) and also to certain systems, 

but  we must insist on constant coefficients. We can also treat the case when 

the coefficients e~(X) in (7.9) depends on h. The unbounded interval 0 <  t <  o¢~ 

must then be replaced by an interval 0 < z <  7, (e.f. remark 7.1). In case 

of systems, Ph(~) and P(~) are matrices. Tile remark 7.2 and theorem 7.1 holds 

true under  the extra assumption that Pt~(~) and P(~) commute. 

PROOF OF T~EORE~[ 7.1. - We begin by proving 

(7.18) ~. 
h 2 ' ~  

for t E L ,  0 <  h <  1 and e 

5.1 this shows 

I[f[l,,<, ~ C<,llflI~,oo, 
P 

(Here C ~ C ~  -~, according to remark  5.1). 

We  need the following lemmata. 

LE~MA 7.1. - There are constants B and B' such that 

(h2~)-~lle~(t; ~ ) -  e(t; ~)11~ ~-- C, 

sufficiently small. By theorem 5.1 and corollary 

0 <  ~<_s.  

(7.19) Uexp (--  tP(~))lt~ ~ B' exp (--  Bt2~'~). 

PROOF OF LEMMA 7.1. - By formula (1.17) we see that 

But  since 

llexp ( -  tP(~))ItM/u~) = !] exp (--  P(~))IIM/V;), r --  tW'~2" 

J~]JtD Jexp  (--  P(i))t ~ C j e x p  (-- Ar m ) 

for 2 - 2 r ~ i ~ i  ~ .22r  we get from lemma 1.2 

llexp (- -  P(~))i!Mp(V~) ~ Cexp (--  ARM), 

which proves (7.19). 
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LEMMA 7.2. - Suppose that H(~) is a homogenons function of order m, 

which is inf imtely differentiable and positive for ~ 4= 0. Then 

(7.20) ll H(~)) I]-F,) = or.,.  

P_tiooF oF LEm~A 7.2. - By (1.17) we have 

[i H(~)I]M/V,) = II H(r[)IIMF~ ) = r'll tl(~)llM/v~) 

and since by lemma 1.2 H(~)e Mp(U~) the conclusion follows. 

L~MMA 7.3. - Suppose that f(~)e M/U2,).  Then 

exp f(~) e Mp(U2n ) 

and 

I1 e:~p r(~)l!. --- exp II t(~)[;. 

PROOF o7~ LE~[~IA 7.3. - The conclusion follows at once from the series 

expansion 

1 
e x p f ( ~ ) =  Y, ~s 

s=o f i  r(O • 

We now proceed with the proof of (7.18). Write 

(7.21) edt; ~) e(t; ~) = exp (=- tP(~))[exp(th~]~t~+~Q(h~)) --  1], 

and 
1 

exp (th'l~ l~+'Q(h[)) - -  1 --  t l ¢ l'~(h [ ~ ] ) 'Q(h [ ) / exp  r(t[[ [~(hi[jyQ(h~))dr 
d 

(7.22) 

By lemma 7.2 (or (6.11)) we have 

tlt I ~ [=U. < ct~o~ 

[ (h l [  [)'[]. <_ C(h2.) ,. 

and 

By the assumptions on Q and lemma 1.2 

(7.23) II Q(D~)~n -- ti Q(~)fIM/vh2~) ~ C, h2 '~ ~ ~, 2~<--So. 
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Using l emma 7.3 we therefore get 

1 

exp (+'t l ~ l~(h l ~ [ )~Q(h~))dr ,!,, ~, 
0 

1 1 

<_ f exp(rAt2om(h2"?)dr <_ f exp ( rAsst2n')dr 
0 0 

and therefore 

(7.24) [t exp (thai5 lm+:'Q(h~)) -- 1 t]~ ~-- 

1 

<_ ct2'-'(hzo/ f exp (rA a~t2"")dr 
0 

<-- Cs-~(h2~)'(exp (A~t2 ~ )  - -  17. 

F rom (7.21) and lemma 7.1 we therefore get 

C~ -~ exp (-- Bt2~)(exp (As't2 '~) - -  1). 

Now we choose s so small  that 

and then we get 
B -= As:----- C >  O, 

(h2°)-~t]egt; ~7 -  e(t; ~-)l]o ~ 

Thus  
Cs-~[exp (-- Cl2 ~) - -  exp (-- Bt2~)]. 

Ca -~ ~ [exp (-- Ct ~ )  - -  exp (-- B t 2 ~ ) ]  

Ca -~ / [exp (-- Ctx ~) --  exp (-- Bloc'O] d x¢ = 

0 

o~ 

C% -s f [exp ( - -  Cy) --  exp ( - -  By)] d_yyy. 
0 

Since the integral  converges we get (7.187. 
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The  nex t  s tep  in the proof  is to show that  for 37 - - ) , -~ l  -~  h - - / 2  - ~ ,  
t - - 3 7 k - - 2  -n,~,  

(7.25) I](eh(t; ~) - -  e(t; ~))-ll]r, _< C1 -~ 

for n --- 1, 2, . . . .  F r o m  this inequa l i ty  we get  by theorem 5.3, that  

llfll,; .~  -< Cllfll,,o, 0 < = < o0 .  

But  if (7.25) holds  for all  poss ib le  1 > 0, we also get 

lim inf  hs[](eh(t; ~) - -  e(t; ~))-~lI, - "  
l . - ~ O  t ~ l h  

- -  l im (12-ny[l(e~(/; ~) - -  e(t; ~))-~ll~ ~_ C2 - ~ .  
l . - )0  
t ~ N k  
k ~ t 2  - r ~  

T h u s  theorem 4.2 shows that  N , - - 0  and since we have a l ready  proved 

A, ~ 0, we conc lude  that  the app rox ima t ion  is s a tu ra t ed  of o rder  s .  

I t  r ema ins  to prove  (7.25). F i r s t  we note that  

[l(e~(t; i) - -  e(t; !)) -~ [In 

/I exp  tP(~ill~ ~ (exp (thai ~ I "~+~Q(h~) - -  1)il,.  

W i t h  t - - N k - - - - 2  - ' ~  we get f rom l emma  7. 

Ilexp tP(~)l]o = IiexP P(~)II' = C. 

By the invar i ance  for homothe t i es  (1.17) 

It (exp (th~I~ t'~+~Q(h~)) - -  1) -~ tin "-  II exp  ( / ' i [  I~+~Q(l~)) - -  i) -~ ][~. 

Now the a s sumpt ions  on Q shows that  the  func t ion  

(exp (PI~ ]"~+~Q(ll)) - -  1 ) - '  

is inf in i te ly  d i f fe ren t i ab le  on 4 -a < l~l < 4, if 4.1 < ao, and  

(7.26) l DJ(exp (l~]~ ]~+~Q(I~)) - 1)-~I <_ Cfl  -~.  

But  now l e m m a  1.2 gives the des i red  inequa l i ty .  This  conc ludes  the  proof.  

RE)IARK 7.5. - I t  is c lear  that  the theorem holds also in the fo l lowing 

s l ight ly  more  genera l  case :  let  P(~) be  any h o m o g e n u o u s  funct ion  of o rder  

Annali di Matematica Is 
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m > 0, which  is inf in i te ly  d i f fe ren t iab le  and pos i t ive  for  ,: # 0. Suppose  that  

Ph(D) is any  opera to r  app rox ima t ing  P(D) with order  exac t ly  s and a s sume  

that  the opera tor  

E~(Nk) - -  exp ( - NkP~(D)) 

is stable,  in the sense  that  

Ilexp ( - NkP~(~))t[M P ~ C, Zr = O, 1, . . . ,  0 < h < 1. 

Unt i l l  now we have  supposed  that P(1) is posi t ive  for :, 4= 0 and homoge- 

nous  of order  m > 0. This  fact  led to the es t imate  

[texp (--  tP(~,))ll. <~ exp ( - -  At2~'~), 

which was very  essent ia l  in the proof  of theorem 7,1. If  we a s sume  only 

that  (7.1) is cor rec t ly  posed on Lp: 

(7.27) I[ exp (--  --< C, 0 < t < 

(e.f. (7.3)), then the proof  of theorem 7.l does  not work.  In  the res t  of this 

sec t ion  we shall  suppose  that  P(~) is homogenous  of order  m, bu t  not neces- 

sar i ly  posi t ive outs ide  the origin. W e  shall  also suppose  that (7 .27)holds .  

W e  as sume  that  P~(~) app rox ima te s  P(~) with order  o rder  exac t ly  s in the 

sense  of def in i t ion  7.1. If  Eh is s table  it is poss ib le  to prove  (see theorem 

4.2 in PEETRE-THoM]~E [24]), 

(7.28) tt Eh(t)f - -  E(t)fl]L P <-- Cth ~ S IID~flILp. 

i n  view of (7.28) it is na tura l  to cons ider  the space  A..0, 

to the norm 

ee r re spond ing  

lltl oo = lltlE   + sup 
O < h < l  

t E I  h 

h - : t - °  I1E~(t)f-- Ig (t)f [Iz P 

--I1 f ltLp A- ).-0 sup 
0 < : h < l  
N ~ I ,  2, ... 

N-°h-(~+°'n) l] Eh(k) Nf - -  E (kyV tlLp , 

where  as usual  k --  kh ~. H e r e  0_< 0, 0 <_ a. Note  that  h~,o --  A: .  

W e  have 

(7.29) Ao, 0 : 0  if ~ + 0 m > s J r .  m. 

For  if f ~  A~,0, ~ -4- 0m > s -]- m we get with t - -  k 

!1Eh(k) f -  E(k)ftlL p = a(h~+'~). 
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5Tow the a r g u m e n t  that  led to (7.26) also shows that  

I l l exp(k l~+~l~l~+~Q(l~) -  1 :-~1~ <: C1 . . . .  . 

There fo re  

2~(~+~) tl exp ),l'np(~)t]1/~+~stl I exp 0~l'~+ ~ ] ~ I~+~Q(/~)) - -  1 ! -~ 11~ ~ C..  

Now apply  theorem 4.2 with Ih - -  i to ' ,  E~(to) - -  Eh(k) - -  E(k) ,  E(to) -~ O. 

This  gives f - - 0 .  

In  a s imi lar  way we get 

(7.30) A ~ , 0 - - 0  if ~ >  s. 

In  fact, for a f ixed  t, say t = l, we have  

[}Eh(1)/-- E(1)fll~ p - -  ~(h'). 

But  it is easy to see that  for h - - 1 . 2  -~ ,  1 small  

h~l]ieh(1; ~ ) ~ e ( l ;  i)}-~[l~ ~_ C. .  

Thus,  by theorem 4.2, f - - 0 .  

TH]~ORE~ 7.2. - Suppose  that  P(1) is homogenous  of o rder  m, and that  

(7.1) is cor rec t ly  posed. Assume  that  Ph(~) approx imates  P(~) with order  (exa- 

ctly, s and  that  Eh(k) is stable.  T h e n  for 0 ~ ' ~  g s ,  ~ + O m  = s -~ m 

(7.31) H *('+~) ~ A~.0. 
P 

PROOF. - W e  shall  p rcve  

¢7.32)  llt-Oh-~ t~ k-(~+~)(eh't ;  ~) - e(t; ~))IIM~(,h. ~) <-- C, 

if B h , ~ - - i ~ l t ° h ~ l ~ l m + ~ e } .  By the proof of theorem 5.2 this gives 

t](eh(t; ~) - -  e(t; ~))[exp ( - -  tOh ~ :i t~+9 - -  1] -~ I1M~ ~-- C, 

which  immed ia t e ly  leads to (7.31). 
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To prove  (7.32) we note  that  (7.21), (7.22) and the co r rec tness  of the ini. 

tial va lue  p rob lem gives 

[1 t - °h-~  [~ l-(~+')(eh(t; ~) - -  e(t; ~,))[l~zp(Bh, 0 <- 

1 

Ct~-~h'-~ [t Q(h~)llM p(~, ~) f exp rth ~ II1~ i'~+'Q(h~) [tMp(,h, 0 dr 
o 

But  t = ~ N h  ~ so that  ~eBh,~ implies  (h l~ l? '+~ ~< e ) ~ - o N - o  _ < ~ ) - o .  I f  s is 

smal l  enough  we conc lude  

[] Q(h~)[[Mp(Zh,,)~ C. 

I f  , is suf f ic ien t ly  small  

m + s  M 

where  X(u) is inf in i te ly  d i f fe ren t iab le  on - - c ~ z <  u < + ~ ,  X(u)---1 for 

u < 1 and X(U) - -  0 for  u > 1. Us ing  l e m m a  1.4 on the func t ion  ~(u) = u~+~X(u) 

we conc lude  

×(l l)l i +eaC. 
Thus  fol lows 

[] t - °h  -~ I ~ I~+'(eh(t ; ~) . -  e(t ~ ~))IlMp(Bh, ~) "~ 

1 

"< Ct~-°h '-~ f exp rAt~-°h'-*dr.  

o 

H o w e v e r  t~-Oh ~-° -- )?-+N ~-o and 0 = 1 + ( s - -  ~)/m ~ 1. W e  conc lude  

thet (7.32) holds. 

COROLLARY 7.2. - Let  (7.1) be cor rec t ly  posed and P(i) be homogenous  

of o rder  m > 0. Assume  that  Egk) is s table  and P~(~) a p p r o x i m a t e s  P(;.) with 

order  exac t ly  s. Then  for 0 ~ ~ <~ 0s, 0 < z + 0m < s + m, 

A~,o : B °+°~' ~ 
P 

PROOF. - Let  T be opera to r  E g t ) - - E ( t ) .  Then  we know from the stabi- 

l i ty that  T maps  Lp cou t inuous ly  into Lp wi th  norm Me ~< C. P u t  

v = (~ + 0m)/(s  + m), ao = v - %  Oo = v - ~ 0 .  

Then  0 <_ •o --< s s ince (s + m)z <-- s(z + Om), and  Zo + 0ore - -  s + m. Thus  

we get f rom theorem 7.2 that  T maps  H*(s+ "~) into L~ with norm M~<_Ct°oh% 
P 
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F r o m  the in te rpola t ion  l emma  2.1 follows that  T maps B~('+=) ,~ = B~+O~,p o~ 

into L F with  no:'m M<_ CPOoh'~o--Ctoh o. This  proves 

B.+o~, oo C Az, o . 
P 

To prove the converse  inolus ion  it suff ices  in view of theorem 5.3 and 

r e mark  to show 

[]t°[edt; ~) - -  e(t; [)]-1[1~<_ Ct-" 

for 1 - - 2  . . . .  h - - l . 2  -= n---- 1, 2, Bu t  since t ° - - 2  -=°'*~,1 this follows 

immedia t e ly  from (7.25). 

COROLLARY 7 . 3 .  - Suppose tha t  P(~) is homogenous  of order  m and  posi- 

rice outside ~ - - 0 .  Le t  E~,(k) be stable and  assume that  Ph(~) approx imates  

P(~) wi th  order  exac t ly  s .  Then  for 0 < ~ ~ s, 0 < ~ + 0m < s + m 

A~,o --  B *+0~'~ 
P 

PROOF. - The  opera tor  T - - E h ( t ) -  E(t) maps B : ,~  (or Lp if ~ = 0) into p 
Lp wi th  no rm Me<_ Ch ~ (0<_ ~ <_ s). This  follows f rom theorem 7.1. By theo- 

rem 7.2, 2' maps  H*('+ ~) into Lp with norm Mr<_- Ct°h ~ m ' ~ - = m + s - - o .  
p 

Thus,  by in te rpo la t ion  ( remark  2.2), T maps B ~ + o  -")(s+'o,~° into Lp wi th  

M<_, Ch~tO -~)°.  Since ~ + (1 - -  ~:Om --  ~a + (1 --  ~)(s + m), we conclude  

B~+ o ~ , m ~ A ~ , o ,  0 ~  <_ s, 0 < ~ + O m  < s +  m. 
P 

The converse  inequa l i ty  follows from the proof of corol lary  7.2. 

To i l lus t ra te  the corollaries,  consider  a (~, 0)-plane (fig. 1). 

!o 
0 0 

(o,1) 

A~ 
0 

fig. i 
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In the triangle 5~ we have complete infarmation on A~,o, if we know 

only that the initial value problem is correct ly posed and P(':) homogenous. 

On 52 we know that B~+ 0~,~ ~ A~.0. This follows from the proof of corollary 

7.2. If in addition P(;~) is positiv for ~ ~ 0  then we have a complete  

description of A~,0 on A2, too. 

We shall conclude this section with a few remarks concerning the rela- 

tion between the steplength k in the t-direct ion and the steplength h in the 

<(space direetion~. Above we considered only the case k = )`h ~, where ), is a 

fixed constant. Now we shall let ), be a function of h.  Since we do not want 

to discuss the question of stability in the general Lp case, we consider only 

L2-norm. Let us first look at a simple example.  

Consider again the initial value problem (7.14) and the difference schema 

(7.16), but  now with k -- kh -2 -- ),(h). Then 

eh(k; ,:) --  1 -- 4k(t -- O) sin2h~/~2, 0 <_ 0<_ 1, 
1 +4),0 sin 2 h~/2 

and thus we h~tve stability in L2 if and only if 2),(1 - 2 0 ) ~ 1 .  If we suppose 

1 
that ), - -  ),(h) --> -{- ~ ,  h--> 0 we get 0 ~___ ~ ,  which conversely garantees sta- 

bility in L2. Pa t  

P~(~) = - -  k -~ log eh(k ; ~). 

Expanding P~(~) in TAYLOR series for :¢ small, we get 

(7.33) 
{ 1 ) 

P~(~) -- ~ =. ),h214 0 -- ~ -1- A)` -~ -[- 0(),h2">) , 

where A ~ 0. 

Inspired by this example we consider now the initial value problem (7.1), 

with P(~) homogenous of order m and positive for ! ~ 0. Let eh(k; i) be the 

symbol for a stable difference schema, with k - - ) ` h  "~, )  ̀ --  ).(h) --> <x~, h-->0.  

Suppose that P ~ - - P ~  satisfies 

(7.35) 

where 

(7.36) Q(h, ~) -- ),-qoQo(), -~) -k 0(),(h Ii l Y). 

Here  Qo is a polynomial, Qo(0)=4= 0. In our example we have qo = 0 if 

0 >  1/2 and q o - - 1  if 0 - - ! / 2 .  
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Now it is c lear  that  we can  repea te  the proof of theorem 7.1. Fo r  t = N k  

we have  
[lexp (-- t P ~ ( ~ ) ) -  exp (-- fP(~))]]. <_ 

<_ C,-~kh'2o,(exp (--  tB2  °'*) - -  exp (--  tA2~")), 

if kh'2 "' <_~ s. Thus  

Z (),h'2~') -~ [] exp (--  tP~(¢) - -  exp (--  tP(~))~I~ < C~ -~ 
),h s 2ns~.~ 

and therefore  theorem 5.1 gives 

[] E~(t)f - -  E (t)f IL <-' C~h~ [i f [I, i' ~ .  

and  by in te rpo la t ion  

(7.37) 

for 0 < ~ 1 .  

il Eh(t)f -- E<t)fl!~. <-- Ck',h'~,qlftI<~,.~ , 

For  the converse  of (7.37) we can  use the same a r g u m e n t  as in the 

proof of theorem 7.1. Take  t - - 2  -~'~, ll-qoh'~-~-1'2 -~ ' .  Then  for 2~-1~1~1~2~+1 

Jexp ( - - t~ Ih !~ i )  ~''mlt! Q(h, ~))-- 1 :-1<_ 

<_ C(tkl-qo(h2~)s2n~)-l < Cl - s .  

if l is suf f ic ien t ly  small.  Thus  theorem 5.3 gives 

(7.38) !]tH.~.~<-- C sup >.-~(1-~,,)h-'~,sllE~(t) t - -  E,t)tll~, 
h , t  

and we also see that  

l im ),-~o-~¢,)h-~,ll Ei l ) f  - E(I)flIL ~ = O, 
h - - > 0  

impl ies  t = 0. 

Tak ing  k = h -'~ we get in pa r t i cu la r  

B~, ~ _c h.,(~_~), 0 < ~ ~ I, 

and  converse ly  

- -  2 ' 

In  our  example  we have s := 2 and  qo = 0 if 

and  thus  for 0 < ~ /  <_ 1, 0 < v ~ 2 

A~(2-O = B~,oo, 0 > 1/2, 

A2.q C B~*.~ ~ A~,(2_~), 0 = 1/2, 

O> 1/2, q o = l  if r ~ - - l l 2  
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8. Stability of  function of  P h ( D )  and P ( D ) .  

As an in t roduc t ion  we discuss  the fol lowing d -d imens iona l  ana logue  of 

example  7.1. Consider  the equa t ion  

j=l ~x 2 ' t > O ,  

u = f ,  t - - -0 ,  

where  x ~  R ~. Then  P ( ~ ) -  t~ ]~. Def ine  the d i f fe rence  operator  Eta(k) by the 

re la t ion  

1 
(Eh(k) - -  1)u(~c, t) = J=IE (OEh(k) + (1 - -  0)) ]~ ~u(x, t), 

where  0 ~ 0 ~ 1  and 

~]g(x) = g(x + he]) - -  2g(x) + g(x - -  hej). 

Here  ej is the j ' t h  uni t  vector  

ej = (~1], .... ~dj). 

Then,  wi th  the notat ion of sect ion 7 

]~ (e~(k, ~) - -  1) = E (Oeh(k, ~) + (1 - -  0)) sin 2 h~J2, 

and hence  

d 

1 - -  4k(1 - -  0) Z sin 2 h~]/2 

J=~ k = kh:. eh(k ; ~) = d , 
1 + 4~ Z sin 2 h~]/2 

j ~ l  

Consequent ly  we can wri te  

) e~(k" ~) = f ( -  ~ sin 2 h~J2 
' \ d  j=~ " ' 

with 

1 - -  4d) , (1--0)u 0 ~ 0 ~ 1 .  
f(u) = 1 + 4dkOu ' 
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Wri t ing 

and 

we get 

Note that 

(8.1) 

1 1 t2 

sin h~ /2  - -  (sin h~1/2, . . . ,  sin h~#2) ,  

Ph(~) --  - -  k -~ log e~(k; ~) - -  - -  k -~ log f(H(sin h~/2)). 

sup H(sin x/2) =- 1. 

This is the starting point of this section. We  shall assume that Ph(~) is a 

function of the par t icular  form 

(8.2) Ph(~) ---~ - -  k -~ log f(H(sin h~/2)), 

where  H(~), ~ = ( ~ 1 ,  ..., ~}e) is homogenous of order m > 0, positive and 

infini tely differentiable for ~ @ 0. W e  shall suppose that H is normalized 

by the condition (8.1). We shall s tudy the stabili ty of the operator  

defined by 

exp ( -  tPh(D)), t = N k ,  N = O, 1, ..., 

(S exp (-- tPh(D))g)(~) = exp (-- tPh(O)g^(~). 

This means that we shall give conditions on the function f, which suffices 

for 

[I exp (-- lPh(~) ~Mp <-- C, t - -  N k ,  0 < h < 1. 

However  we shall also consider more general functions of Ph(D) than 

the exponential  function. Thus we shall give conditions on f and % such that 

(8.3) ~( t Ph( D)) 

is stable in Lp. The operator  (8.3) is defined in the natural  way:  

(~( tPKD))g)(~)  - -  ¢KtP~,(~))g^(~), 

and the stabil i ty of (8.3) in Lp means 

AnnaIi di Matematica 19 
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Before ca r ry ing  out the p rogram indica ted  above we note that  l emma 1.4 

impl ies  the s tabi l i ty  of the opera tor  

¢~(tP(D)), 

provided that  ~(u) is in f in i te ly  d i f fe ren t iab le  on 0 < u < ~ and satisfies 

(8.4) I¢~(u) - -  ~(O) l ~ Cou% 0 < u < 1 

(8.5) 

(8.6) t D@(u) I ~-- Cj min (u ~-1, u-~-J), 0 < u < 

for J - - 1 ,  2, ... Here  a, ~ > 0. 

W e  now proceed to the s tudy  of the s tabi l i ty  of the opera tor  c?(tPh(D)). 

We shal l  prove two resul ts .  The f i rs t  one concerns  the case 

and  

Then  

~(x) - e x p  ( - -  x),  

t --" ~ k ,  5 7 = i ,  2, ..., k = Xh ~. 

~(tPt.(D)) - -  f (H(s in  hD/2)) N. 

In  case H is a polynomial ,  this opera tor  is a d i f fe rence  opera tor  and our  

f irst  resul t  reduces  in this case to a s tabi l i ty  theorem of the type used in 

sect ion 7. 

In  our  second theorem, ~ is << a rb i t r a ry  >>. Note that  ~ has  to be def ined  

on the set 

{ z ;  z = - t l o g  f ( u )  }. 

I f  we suppose l f(u) l ~ 1, which  we shal l  do, this is a subset  of { z; Re z ~ 0  }. 

Bu~ if we assume that  f is non-nega t ive ,  the func t ion  - - l o g f ( u )  is non -  

negat ive.  Thus  it suff ices to define ~ on the posit ive real  axis. We shall  

a ssume tha t  f is posit ive in our  second theorem.  However  we shal l  have no 

res t r ic t ion  on t; t runs  th rough  the ent i re  posit ive axis. 

W e  now present  our two results .  

TttEOREM 8.1. - Le t  Pd~) be def ined by (8.2), where  H is normal ized  by 

(8.1), and  assume that  f is in f in i te ly  d i f fe rent iab]e  on 0 < u  < 1 and  has  

bounded  der ivat ives  there,  that  f(0) = 1 and 

(8.7) !f(u) l ~ exp (--  ~u), 0 < u < 1, 
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where $ > 0. Then 

(8.8) i[ exp ( -  NkP~(1)ll~p --< C. 

for N - - 0 ,  1, 2, ... and 0 < h < l .  

THEOREM 8.2. - Suppose that Ph(~) is defined by (8.2) and H, f satisfy 
the assumptions of theorem 8.1. Assume in addition that f ( u ) >  O, 0 ~ u ~ l, 

and that 

t ~(u) - ~(0) t <_ Cou~ 

for some ~ > 0. Then 

[ D~(u) t ~ C:u~-: 

(8.9) U ~(tPh(~))b,p <_ O, o < t < ~ ,  0 < h <  I. 

Theorem 8.1 is similar to the (one dimensional) stability theorem by 

S~aA~G [30]. For difference operators the result follows from the general 
stability theory developed by WIDLUND [34] and others. We shall present an 

independent proof, based on the theory of interpolation spaces. This techni- 

que will also be used in the proof of theorem 8.2, which does not follow 

from the ordinary stability theory. 

Before we prove our theorems let us however return to the introductory 

example of this section. Then 

Clearly 

with 

)1oreover 

1 - - 4 d ) ~ ( l - - O ) U O ~ u ~ l ,  (0 ~ 0 ~ 1). 
f(u) = 1 + 4dZOu 

4dku  
f(u)  = 1 1 + 4dOu ~ 1 8u < e -s~ O ~ u  ~ 1 

4 d l  
8 _  

1 -4- 4d),0" 

- -  f (u)  ~ e -s" 

if and only if e-~-[ - f ( 1 ) >  0 i.e. 

i.e. 

4dk 

1 + 4d),0 
< l + e  -~ 

4d~ 

for some 5 > 0  

<2 .  
1 + 4d),0 
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This gives 

(8.10) 

It follows that 

2dk(I -- 20) < 1. 

1 [(u) i ~ exp (--  8u), 0 _~ u ~ 1 

if and only if (8.10) holds. Thus (8.10) is a sufficient condition for stability 

of the operator 

f(H(sin hD/2)) N, 0 < h < 1, N --  1, 2, .... 

We also see that f ( u )>O,  0 ~ _ ~ u ~ l  if and only if 

i.e. 

4dku 

1 -{- 4d),Ou 

This gives 

(8.1 l) 

and we get from theorem 8.2, 

stability of the operator 

~(--  tP~(D)), 

<1 ,  0 ~ u ~ l  

4dk 
< 1 .  

1 -~ 4d~0 

4d~(1 - -0 )  < 1 

that (8.10) and (8.1[) are sufficient for the 

0 < h < l ,  0 < t  < c ~ ,  

where ~ satisfies the assumptions of theorem 8.2. and 

- -  kPgD) --  log t(H(sin hD/2)). 

REMARK 8.1. - It can be proved that we have stability in the extremal  

C a s e  

(8.12) 2d:~(1 - -  20) ~ 1, 

(e.f. examplo 7.1). This does not follow directly from theorem 8.1, because 

(tl) --  t, when (8.[2) holds. Note however that in this example 

H(sin ~/2) = 1 ~ sin2 ~]/2 -- 1 - -  H(cos i/2). 
d ]=1 

Note also that the translation invarianee of Mp gives 

(8.13) ll [(H(sin ~/2)/I1+ = U t(H(cos ~/2))~rllu~ --II t(X - -  H(sin ~/2)) N I]M e . 
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If (8.12) holds, I t(1 - -  u) I ~ exp (--  8u), 0 < u < 1/2 and 1 t(u) I ~ cxp (-- 8u), 

0 < u < 1/2. Thus we can write t(u) = to(U) -4- t~(u), where fo~u) and f~(1 - -  u) 
satisfies the assumptions of theorem 8.1. From (8.13) it follows then easily 

that (8.8) holds also in the extremal  ease (8.12), (e.f. Trioxide [32], STRANG [30]). 

For the proof of our theorems we shall need some auxil iary discussions 

and lemmata. The technique in the proof resembles the one used in PlSE~RE 

[20! and L~FSTRii~ [16]. 

Clearly it suffices to prove (8.8) and (8.9) for p = 1. In view of the 

invariance for homotheties it is also enough to consider h - - 1 .  We shall 

therefore consider 

G,(~) - -  ~(tP~(~)) = ¢~(-- tX -~ log t(H(sin ~/2))). 

The G,, being a periodic function, is the 

of the form 

Now (1.11) shows that 

E G ~ ,  
a t~ Z d 

FOURIER t ransform of a measure  

G~ 

Let (I)k be the 

and write 

Put  

standard functions in the definition of the BEso¥ spaces, 

G ~ 

G,,~(~)--~G~ e x p i < ~ ,  ~ >  t, k 
6¢ 

According to remark  2.3 we write 

W e  h a v e  

LEM•A 8.1. - For any t > 0 we have 

and consequent ly 

Gt [IMp ~ C~ll Gt I]B2~J2, 1[~ j, 1 ~ p  ~ .  

PROOF.- We shall prove (8.14). The technique is very similar to the 

one used in lemma 1.1. We have 
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z I G~ i ~  C2J~;~( iS I e~ Ib,/~ < t, k ~,[k 
2 j - - l~ la l<2]+  1 a ~ Z  d 

Cd2id]2 tl G,, k /IL2tra] . 

Since  G, ~k 4 : 0  only if 2 - ~ l ~ l  < 2 ~ < 2 t ~ !  and 

--}-GO 

Z G ~ t, /~ " -"  G t  

we conc lude  

r, 1 G21 <-- c ,  z z 
2/--1~[~1<2J 2J--l <lal<2J-~ -I 2--31~1<2k<21~1 

Cd O~]d/2 ~' [] G. k I]L2trd l 
j--2<k<]--~2 

The conc lus ion  now fo l lows  s ince 

-~20 

ct j : - - ~  ]--2<k<]-1-2 

~-30 

3.2dCd 2 2k~/2 II G,.~ II~=tT~J 
- -02  

W e  now introduce  two aux i l iary  spaces  X and X L, defined by the norm 

and the s e m i - n o r m  

respect ively .  Here  

(8.15) 

t 

0 

L 

~g [IxL = E II Uu--L/'~g(M)(u) [IX, 
M~I  

f d8o d f di. 
w(u) - -  I grad H(s in  ~/2) I - -  d u  

H(stn =/2)<u,  

The first integral  means  integrat ion over  the surface  

It is clear that 

~ "  H(s in  ~/2) = u, ~ e T d. 

1 

re o 
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Using lemma 1.5 and the fact that 

we conclude 

Therefore 

] DJH(sin ~/2)[ ~ CJH(sin ~/2)( m-J)/'~, 

L 

[ DLg(H(sin ~/2)) 1 ~ CL E (H(sin ~/2)f-L/~. g(K)(H(sin ~/2)). 
K ~ I  

II DLg(H ( sin ~/2))tl.~t~j 

L 

CL Z II (H(sin ~/2))x-L/~g(K) • (H(sin ~/2))[I~[rd] -~ 

Let  us write 

L 

= c~ ~ II u~-L/~g(~)(u) II~ - eL II g (1~ 
K ~ I  

I1 g(H(sin ~/2))llh~[vd] = max I1 DLg(H( sin ~/2))IIL=t~dj 

where the maximum is taken over all derivatives D L of order L. Then we 

have showed 

LEMIVIA 8.2. - The linear operator  S, defined by 

(Sg)(~) -- g(H(sin ~/2)), 

"L d maps X into L2[T d] and X L into H2[T ], continuously. 

By means of the two space X and X L, we shall now construct  a new 

space X ~,q. This will be done by means of the following general  device. 

Let Ao and A1 be two (semi-)normed spaces, continuously imbedded in 

a topological vector space. Put  

/~(r, g; Ao, A1)-- inf (llgoll~o+rilgl[]~D, g e A o d - A 1 ,  
g=go2rgl 

J(r, g; Ao, Al)= max([tg[]Ao, r[lg[IA1), g e A o  A A1. 

Then we construct  a new (semi-)normed space ( Ao, A1)o, q (0 < 0 < 1, 1 ~ q ~ ~ )  
defined by each one of the equivalent  (semi-)norms 

0(3 

q dr ~/q 
( f (r-°K(r, g; Ao, ~ 1 ) ) " ~ - - )  ~ 

0 

( .v (20LkK(2--Lk, g; Ao, A1))q) Uq, 
k = - - ~  
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inf 

oo 

(fl,.-0Jlr, 
0 

(infimum ove r  all g(r) such that g-- /g(r )dr -r  i n  A o +  A1), 
0 

"{-CO 

i n f (  Z (2 °Lk, g~; Ao, A1))q) llq, 

(infimum over all gk such that g-.= E gk in A0 + A~). 
--;30 

The spaces (Ao, A1)o,q have the following interpolation property:  If T is a 

bounded linear operator from Ao into Bo with norm Mo and from A~ into 

B1 with norm M~, then T maps (Ao, A~)o.q into (Bo, BOo. q with norm M0 and 

/ I / / ] - - 0  ~l/rO 

(see PEE~I~E [19], [20]). 

Now we define X ',q by 

X ~, q -- (X, XL)s/L, q, 0 < S < L, 1 ~ q ~ ~ .  

One can show by means of the so called stability theorem for interpolation 

spaces (see PEETRE [17], [18]) that X~,q is independent of L. 

From the interpolation property we now get 

COROLLAnY 8 . 1 . -  Let S be the l inear operator defined in lemma 8.2. 

Then S is a bounded operator from X s,q into /~:'q[T+]. In part icular  we have 

if 

g,(u) -- ~(-- tk -~ log f(u)), 

G,([) : ~(tP~([)), 

P~(~) = - -  tk -~ log/(H(sin ~/2)). 

PROOF. - The corollary follows immediate ly  if we can show 

/)~' q[ T ~] -- (Lp[Td], //~[Td])~/~, ~. 

In the Rd-ease this is proved in I:)EETRE [20], but the proof carries over to 

our situation. Since we return to related questions in section 10 we prefer 

to postpone the proof to that section. The reader is thus referred to section 10.1. 
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Before we can start proving our theorems we have to estimate the weight 

to(u), given by (8.15). We shall only need an estimate when u is small. Note 

however that 
I 

0 T d 

LE~MA 8.3. - Suppose that w(u) is given by (8.15). Then 

(8.17) 
d 

- - 1  

w ( u ) ~  Cu '~ , 0 < u < 1 / 2 .  

PROOF. - According to (8.15) we have 

dS~ 

w(u) ---- I grad H(sin ~/2) 1" 

Since H is homogenous we have 

I sin ~/2 ]"~ ~ CH(sin ~/2) -- Cu 

on the surface E~" H ( s i n { / 2 ) =  u. Using that the derivatives 

are homogenous of order m - - 1  and never vanishes simultanously, we get 

m - - 1  

I grad H(sin ~/2)12 = Z (cos ~J2)2(H/sin ~/2)) 2 ~ CH(sin ~/2) 2 ~ .  
] 1 

Consequently 
m - - I  

I grad H(sin ~/2) t ~ C u - ~ ,  ~ ~ Eu, 

provided u < 1/2. Therefore we get 

m - -  l 

w(u) ~ Cu .... ~- t dS°" 
J-__ 

However  
d - - 1  

f dSo ~ Cu "~ 0 < u < 1/2. 

The reader  will easily supply the details in the proof of this fact. Then the 

est imate (8.17) follows. 

AnnaIi di Matematica 2o 
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For conveniance we shall write 

where according to 

d 

.~(u)  = u ~ we(u) ,  

We(U) ~ O, 0 < u < 1/2. 

Clearly we(u) is integrable over the interval 0 < u < 1, (see (8.16)). 

PROOF OF THEOREM 8.1. - We  write t "--/Vk --  N)~, since k --  ;~h "~, h --- 1. 

We  shall use corollary 8.1. We write 

g ~ ( u )  = f ( u )  ~ 

and our proof will consist of the decomposit ion of gN into a sum of two 

functions gNo and g~vl, depending on u and r, such that 

(8.18) 2U/~'~ il gm I/x ~ C rain (1, r~+d/2), 

(8.19) 

d 
with L > m + g .  

As soon as these inequali t ies are proved, theorem 8.1 

K(r, g )=  K(r, g; X, XL). Then (8.18) and (8.20) implies 

follows easilv. Wri te  

NdJ2"~K(N-O'r L, gN) ~ C min (1, r'~+dt2). 

According to the definition of the space Xd/2,1 we get 

( KIs, g_N)d__s _ 

0 

(s = N-Lt~r L) 

o9 

-- L ( Id/2"~K(2v'--L/~rL' gN) dr 
J r al~ r ~ 
0 

CL f min (1, r~+~/2) dr C' 

0 

Using corollary 8.1 we now get the conclusion of theorem 8.1. 

It  remains to define g~vo and gm and to prove (8.18) and (8.19). Let  X be 

infinitely different iable and such that 



J. LOFSTR6M: Besov spaces in theory o] approximation 155 

W e  now def ine  

X(u) = 1, u < 1/4, 

X(U) = 0, u > 1/2 

0 ~ X(u) ~ 1. 

Nu 
gNo(U) - -  X (-r-~-) (gN(u ) - -  ].)~ 

gNI(U) " - - (1 - -X(~) ) (gN(u) - -  I) - b ,  I, 

for  0 < r < l .  Fo r  r ~ l  we wri te  

gNo(U) = gN(u), 

gNl(u) = O, 

W e  leave  to the reader  to ver i fy  that  (8.18) 

cen t ra te  on the case 0 < r  < 1. The  a rgumen t  needed  in the case  r ~  1 

s imi lar  to the one used  below.  

W e  shall  p rove  (3.18) for  0 < r < 1. By  condi t ion  (8.7) we have  

(8.20) I g•(u) - -  1 ] = I f(u) N - -  1 ] ~ 1 - -  exp  ( - -  N~u) ~_ CdNu ). 

Therefore ,  us ing  (8.20), 

l]gNol]x~ C~l j" (NU)2. Ud/~--lWo(u)duli/2<~ C-N--d/Z~rm+d/2, 

O<u<rm/2N 

which  gives (8.18). 

holds in case r ~  1, and con- 

is 

To p rove  (8.19) we have  to es t imate  the der iva t ives  DMg~I, M : 1, ..., L. 
By LEIBNITZ' ru le  we get  

M--1 
DMg~I = + o -  + M -  Z CM, K+K, 

K=I 
(8.21) 

where  

(8.22) 

(8.23) 
N M ~U 

~)M(")--'(r,~ ) x(M)(~-~-)(gN(u) - 1), 

(8.24) N ~ INu\ ~-~(u 

~p~(u) = (r;;~) ; ( (K) iT)g  ). 
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Now condition (8.7) gives 

(8.25) I D:gN(u) l -- [ D:f(u~ ~ [ ~ C:N: exp (-- ~Nu). 

Thus wo have 

~ C N M I f  exp(--2~Nu)u2(~M+u/2-L)/"-~Wo(u)dula/2~ 

rm/4N~a~l 

~ C N M I f  U2(mM-}-d/2--L)/m--ldtl--~-exp(--N~)l 1/2 
rm/4N~u~l/2 

Consequently 

[1 uM--LI~o(U) Ilx ~ C { NCL--d/2)l"rm+dl2--L + 1 )1/2 

CN(L-a/2)/~ . r.~+d/2-L, 

provided that L > m -[- d/2, r < 1. 
In the same way we get 

[, uM--L/'~*M(U) ]lx ~ CNMr--M'~ l f (I g~(u) - -  l l uM-L/~)bV(u)du l 1/2 

rm/4N<u~rm/2N 

~CNNr- -Mml f  (~?~.~M--L/m)2ud/m--ldull/2~ 
rm]N~w~rm[2N 

CN(r-d/Z)/~ . r~+d/2--L 

and similarly 

This gives (8.19) and theorem 8.1 is proved. 

R E ~ R ~  8.2. - The construction of gNo and gN~ and the proof of (8.18) 

and (8.19)is analogous to the proof of theorem 4.4 in LiIFS~B(i~I [16] and 

theorem 2.2 in PEE~nE [20]. 

PROOf' OF T~EOREM 8.2. - Since f(u) is positive for 0 ~ u ~ 1, we have 
by (8.7) 

(8.26) ~u ~ - -  log f(u) ~ pu, 0 ~ u ~ 1, 
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for some ~. Moreover, log/(u) is infinitely differentiable on 0 < u < 1, and 

has bounded derivatives there. 

Put  

g~(u) = ~ ( - -  t log f(u)). 

Without  loss of generality we can assume that ~(0)--0 ,  and 

(8.27) t D:¢:(u) l ~__ Cu ~-:  

Then, using lemma 1.5, (8.26) and (8.27) 

,: J 

I DJg,(~)  i ~ c z t ~ i ~(':)( - t l o g  f(u))l ~ c ~ (tu)~u -'~ 
K~I K ~1 

and therefore 
I DJg:(u) l ~ C(tu)+u-J. 

Let X be the function used in the proof of theorem 8.i and put 

t U  

=(1_ 
for 0 < r ~" < min(1;  t). Then 

J 1 
O<u<rm/2t  

1]2 
< Cr~+dl 2 , 

As in the proof of theorem 8.1 we write 

M--t  

K~I 
CM, K(~K 

where the functions ~ j ,  J = O. 1, . . , ,  M are defined by formulas (8.22), (8.23) 

and (8.24). However we repla.ee N by t and g N ( u ) -  1 by g,(u). We have 

<_ Ci(~I2-L)I.,IJ 
rmj4t~u~l 

( tu ) ~ ~u-~L/ ~d1~-'~v o( u )du I ~ /2 

Ctt(d--2L)/~ f 
1/2 

(tu) 2 ~u-21.l.~+~lm-~du + t(2~+~-2L)/"~ < 

r m4t<u~l[2 

Cra,~+d/2-L 
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d 
since 0 < r"  < t and L > ~ ~ ~m. S imi la r ly  

t (*~-~l"  II u~-~J'~¢~(u)II~ <- Cr~+~J2-~ 

for 1 <_ K ~  M and therefore  

r~(~l~-~)/~ II g,(u)I1~ <_ Cr~+~J ~ , 

for 0 < r"  < min  (1, t). 

In  the case t <  1, t < r ~ <  oc we take 

g,o(U) , -  g,(u), 

g, du )  - -  O, 

td/:" ]l g,o l]x --< C min (1, r~+~12), 

I t  r emains  to def ine g,o and g,1 for r :> 1, when  t > I. We put  

g,oCu) = x(tu)g,Cu), 

g,l(u) - -  (1 - -  x(tu))g,(u). 

Then  the ca lcu la t ions  above shows that  

t~/~° II g,, l;~ <- e 

and 

t(~t2-L)/-llg,, I!~ <- c. 

We have proved that  

rL ~ (d/2-L)/'` tI g~l [[xN <- C rain (1, r ~'~+d/2). 

Using the same a rgumen t  as in the proof of theorem 8.1 we see that  

theorem 8.2 follows. 

and  then  we easi ly get 
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9. - R a t e  o f  c o n v e r g e n c e  o f  f u n c t i o n s  o f  Ph(D). 

In  this section we shall study the rate of convergence of the operator 

to the operator 

E~(t) = r(tP~(D)), 

E(t) = r(tP(D)). 

We shall assume that Eh(t) and E(t) are stable, in the sense that 

(9.1) l[rftP~(~))[1Me ~ C, 0 < h < 1, t e l  

(9.2) 

where 

I =  tt; O < t < c ~ l .  

We assume that P(t) is homogenous of order m > 0 positive and infinitely 

differentiable for ~ ~ 0. We suppose that Ph(~) is positive for ~ =4= 0 and that 

Ph(D) approximates P(D) of order exact ly s, in the sense of definition 7.l. 

We shall prove the following analogue of theorem 7.1. 

TH:EOREM 9.1. - Assume that Eh(t) and E(t) are stable and that Ph(D) 
approximates P(D) with degree exactly s. Suppose moreover that ~ satisfies 

(9.3) 

for J - -  1, 2, ... Nt, 

I DJqo(x)[ ~ C~ rain (z ~-J, ~-~-J) 

d 
N >  ~ ,  and ~, ~ > 0 ,  and that 

(9.4) I ~'(o)} > o. 

Then Eh(t) is a saturated approximation of E(t) with order s and the corre- 

sponding LIPSCHITz spaces A: satisfy 

A~=B ~.~, O < z ~ s .  
P 

P~tooF. - The proof is parallel  to the proof of theorem 7.1, so we shall 

only indicate the main steps in the proof. 

First  we prove 

A ~ B  ~.~, 0 < ~ s ,  
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using theorem 5.1 and corollary 5.1. Thus we shall prove 

(9.5) Y, 2-'sh-~l]~(tP~(~))- ~.(tP(~))[~ ~ C, 
h2 n ~  

for 0 < t < c %  0 < h < l .  We recall  that 

where O@) is infinitely differentiable and bounded for 0 <  [~l < eo. Conse- 
quently we have 

1 

q~(tPh(~))- ~(tP(~)) = t(Ph(~)- P(~)) I ~'(th-'~S~(h~))dr 
. 2  

0 

where 
St(M) -- P(h~) -~- rh~(Ph(~) -- P(~)) --P(h~) + r(h[~[)~+ ~ Q(h~). 

As in the proof of theorem 7.1 we get for h 2 " <  s, ~ small 

1 

}1 ~(tPh(~)) - -  ~ ( t P  (~))[In ~ Ct  ~tn"(h2'~)~ / l ]  q~'(th-~S~(h~))[1,, d r .  
* 2  

0 

By lemma 1.2 we see that 

[i~'(th-'~Sr(h(i))[[.~ C sup sup ]]~lJJ)]~'(th-mSr(hi))[. 
2n--2< / ~ t<2,,--~2 O< J<iV 

since 

(9.6) I ~ tM[ D~'~S~(h~)I ~ CM h'~ [ ~ I ~ ~ CMe~" 

~ow by (9,3) 

I ~(K+~)( th-  ~S,(h~))l ~ CK rain l(th-"S~(h~)) ~-x-~; (th-"~S~(h~)) -~-*:-~ t. 

If e is small enough 

for ~e U2~. Using this estimate and (9.6) (for M ~  0), we get 

(9.7) t~(K+x)(th -'~S~(h~))[ <_ C~ rain { (t2"'~)~-~; (t2"'~)-~-~ t (t2~m) -~.  

It follows that for ~ U2~, h2 ~ < 

[~ [~[D~'(th -'~S~(h~))[ <_ C: min {(t2~'~)~-~; (/2~'~)-~-~}, 
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and therefore 

Ilc?(tP~(~)){i, "< C(t2"'~)(h2") ~ rain {(t2"~):-~; (/2~-~)-~ -~ } 

for h2~<  ~, s small. This gives 

Y~ (h2'~)-~ II ~(tP~(~))  - -  ~( tP(~)) l l~ < 
k2 n < s  

(/2 ''~) min ((/2-~)~-~; (t2-'~)-~ -~) <_ ~<O Y. 
--OO 

oo o0 

<-- c f ( t m  ~ min ((tx"~)~-l; (/a~"~)-~-l)~ = C f m i n  (ooc~; m-~) dx.y 
0 0 

The integral is finite if a ,  ~t > 0. 
Next we prove that lor t - - z ~ 2  -"'~, h = 12 -'~ (z, 1 small), we have 

ni ~ ( t P , , ( ~ ) ) -  ¢~(tP(~))l-~[1.  < c ' : - '~t-~,  n = 1, 2, . . . .  (9.8) 

From this inequali ty follows 

A ~ B  ° ,~ ,  0 < z ,  
P 

and that the approximation is saturated of order s. 
Now for t = ~ 2  - ~ ,  h = 12 -~ we have 

lPh(~) = t P  (~) -4- th~ I ~ ] ~+~Q(h~.) - "  P(~2-~)  -{- ":'~/~(2-~ l ~ i)'°+~Q(12-~). 

Thus we have (using (1.17)), 

However, the conditions on O shows that for 1 sufficiently small 

Thus 
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Now for ~eU1  

~(P(x~) + "~mls t ~ [ m-~sQ(l~)) ---. ~(p(,.~)) < C  

if z and 1 sufficiently small, since 

l ~'(o) l ~ o > o, 

By induction il is also easy to show that 

D J z'~l*l ~[ 'e-'O(/{) l 
~(P(:{) + x 'T] {l~+~O(l{))-- ~(P(v~)) I < C, J = 0, t, ..., _N, { e V~. 

if • and 1 are sufficiently small. Thus, by lemma 1.2, 

This gives 

~l ~(tPh(~)) -- ~(tP(~))} -~ II~ < c~-  ~g-~ 

<--C. 

if t--~:~l -"'~, h : 1 2 - "  and : and 1 are small enough. This is what we 

wanted to prove. 

As an application we give 

COROLLAt~Y 9.1. - Suppose that Ph(D) is the infinitesimal generator of a 

strongly continuous semi-group E~(t) on Lp, which is uniformly hounded. 

Suppose moreover that Ph(D) approximates  P(I)) with order exactly s. 

Let Rh(~) and R(~) be the resolvents of Ph(D) and P(D), respectivety,  i.e. 

Rh(~) --  (~t + Ph(D)) -~ 

Write 

R(~t) - -  (~ -4- P(D)) -~.  

Fh(t) = ~ Rh = (1 -t- tPh(D)) -~ 

F(t)  --  ~ R - -  (I + tP(D)) -1 .  

Then Fh(t) is a saturated approximation of F(t) with order s and the 

corresponding L~PSC~ITz spaces A: satisfy 

A o - - B  ~'°°, O < z < . s .  
P 
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P~OOF. - F rom our assumpt ions  we deduce that  

This  follows immedia te ly  from the fo rmulas  

O0 

Rh(t~)f = f e-~'.'Eh(t)fdt, 
0 

O9 

R(~t)f -~ f e-~'E(t)fdt, E ( t ) - -  exp (- - tP(D)) ,  

0 ~ 

(See i.g. BUZZER-BEREtS [7]). Thus  

}[Fh(t)fllL~ <--- c011fll  , 0 < t < oo, 

Now 

where 

IlF(t)f[IL~ - -  Cl(tffl~, 0 < t < ~ .  

Fh(t) - -  :p(tPh)), F(t) -- "~(tP(D)) 

¢p(x) = (1 + x> -1 . 

This  func t ion  c lear ly  sat isf ies  the assumpt ions  of theorem 9.1. Therefore  

the conc lus ion  follows. 

10. - Convergence of  summation methods for Fourier series. 

Unt i l  now we have  cons idered  Lp[R~]. In  this  sect ion we shal l  d iscuss  

opera tor  on Lp[Td], where T d is the d - d i me n s i o n a l  torus.  In  doing so we il- 

lus t ra te  how the methods  used above ca r ry  over  to Fo u r i e r  series, (c.f. 

r e m a r k  1.1 and 2.1). W e  shall  d iscuss  opera tors  Eh on Lp = Lp[Td], def ined  by 

where  

Ehf(x) = (27:) -~ Z exp (i < x, ~ >)eh(~)f^(~), 
~ez a 

f 
- -  ~ exp (i, < x, > ) f (x)dx . 

. 2  

T d 
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The function eh(~) will be of the part icular  form 

eh(~) = ¢¢(hP(~)), 

where ~ is a given function on the positive real line and P(~) is again a 

homogeneous funeticn of order m > 0. We  assume that P(~t is defined for 

~ R  d, ~ ~ 0 and that P(~) is infinitely differentiable and positive for ~ ~ 0. 

We  shall consider two quest ions;  the first one is the question of stabi- 

lity i.e. 

llEJll~,~ < c l l f ~ ,  o < h. 

The second one is the question of the rate of convergence of Eh[ to f. 

We want to characterize the space of all function f E Lp, such that 

l i F ~ f -  fl]~ = o(a% k ~ o. 

These two questions are closely related, as we have shown above. The 

object is to carry out an analysis similar to the one developed in LiiFSTRii~[ 

[i6~, PEE~RE [20] and in section 6 in this work. This section has two parts. 

In the first one we consider the question of stability, in the second one we 

deal with the rate of convergence. 

10.1. - S tabi l i ty  theorems.  

We shall denote by mp the space of Four ier  mult ipl iers on Lp = Lp[Td]. 

Thus m s is defined by 

iid~ • fii~,~ -< n~P ̂  i]%llfll~, 

and ~^~), ~ e Z  d are the Four ier  coefficients of ~. The stability in L~ of an 

operator  Ehf given by (Ehf)^(~)--e~(~)f^(~) is clearly equivalent  to 

/lehlt~ -< c. 

Most of the facts about multipliers on Ls[R d] carry over to the mFspaces .  

Iu  pacticular  m s is a BASAC~ algebra under pointwise multiplication. We 

define the space lp by means of the norm 

l lgll ,~- ( ~' lo(~)l~) I/~, (1 ~ p  ~ ) .  
~ez d 

Then m2 --  l~ and m~ ~ mp ~ m2. Clearly 
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and lemma 8.1 shows 

(10.2) 

We define the local mult ipl ier  spaces me(V) 
of Mp(V). Thus 

in analogy with definition 

(10.3) ~ '^I i%(~)--  inf ltX^ll,~p, 

where the infimum is taken over all X v e mp, such that W v =  ~(A on the 

finite subset V of Z d. 

We shall now establish the analogue of lemma 1.2 for the local multi- 

p!ier spaces mp(U~), where U~ is the annulus  2-~r <_ i{I --< 2r, { ~ Z d. The role 

of the differential  opera~or D in lemma 1.2 will be played by the difference 

operator A~ = A~t ... A~e, :¢ = (c¢t, ..., ad), where 

ajg(~) = g(~ + ej) - -  g(1). 

Here e] is ths unit vector (~], ..., 8w). [f g(~) are the Eourier  coefficients 

of the function g'(x), then A~g({) are the Fouries coefficients of 

d 

II 
]=1 

(exp (--  ixj) - -  1)~jg~@). 

Motivated by this formula we define the operator 151 by saying that 

I h[g(~) are the Four ier  coefficients of the function 

1 g*(x), 
( Z [exp ( - - i x j ) - -  lt2)l/2g'(x) = 2 sin x 

where we write 

Note that 

I sm 2 ---= ]=1~ sin-ff 

(10.4) I a l 2 =  512 + ... + A~. 

If  g is a function defined on R e we shall write g e l p  or g ~ m p ,  if the 

restrict ion of g to Z ~, belongs to lp or rap. If g is sufficiently differentiable,  

then hLg can be estimated by the corresponding derivative DLg. In  fact, we 

have 

(to.5) IA~g(i)L _< C~ sup 

~ R  d 

t D~9(~ + ~)t, ~ e Z ~. 
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I t  is c lear ly  suff ic ient  to prove this for L = 1 in the one -d imens iona l  case. 

Bu t  then  (10.5) is obvious. 

Before we fo rmula te  our  basic resul t  on local mul t ipl iers ,  let us also 

write down the ana logue  of LEIBNITZ' fo rmula  for d i f fe ren t ia l ion  of a pro- 

duet.  We def ine the t rans la t ion  opera tor  ~ by x ~ =  "~1 ... '~d  and 

• n(~) = g(i  + ej). 

If  h L denotes  any  d i f fe rence  opera tor  of order  L ,  we then have 

(10.6) ALfg = E CL, M(AL--M'~Mf)AMg. 
M~_L 

LEMMA 10.1. - Le t  L be an even in teger  larger  than  d/2 and let U~ 

the annu lus  2-1r_< I~1 < 2r, ~ e Z  d. Then  

be 

In  pa r t i cu la r  

(10.s) Ilgllm,(U~)--< ed max sup I~ IMI ,XMg(~) I  . 
O~M<L 4--1r<[ ~ ,'<4r 

PROOF. -  By means  of CALTOl:fY-ScRwARz ' inequa l i ty  and PARSEVA_L'S 

re la t ion  we get, j u s t  as in the proof of l emma 1.2. 

(10.9) f 
[ 

Igv(x)ldx ~ CdrL--~J2]lALgll,:, L > d/2, 

(10.10) f 
x 

sin ~ ~r  - I  

Ig'(x) [ dx ~ C~r-~/~[IgI[,. 

Now write 

II gIl~= = = m a x  II A=glk. 
I~I=L 

Then  if L is even we get from (10.4) 

U 1~ I ~gtI,~ ~ Cllgll~, ~. 

Therefore  (10.9) and (10.10) give, combined with (10.1) 

4-1~<1 ~ 1<4 ~ I<_M<L 4--1~<_1 ~ 1<4, ~ 
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for all r > 0. Taking the infimum over all r > 0 we conclude 

d]2L 
_ C 1-e/~ (10 .11)  IlgI/~, < ellgll~, llgtl~ - 

It remain to localize (i0.11). Let  X be an infinitely differentiable function 

on the real line, which is identically 1 on 2 - t  "< st < 2 and vanishes outside 

4 - ~ u ~ 4 .  Then 

<-[IWIIm,, 
if 

= x ( r - l l  

Now LEIBNI~ra' formula and (10.5) gives 

sup  ! 
I ~ M ~ L  ~ R  d 

~-- Ci max ri--LIhMg({)l , 4--~r <_ t{ 
I<M~L 

But it easily seen that 

E 1 <_ Cdr ~. 

,*--lr~ I ~ 1~4, 

<_ 4r. 

In fact, for small values of r there is nothing to prove. But if r is large, 

then the sum is smaller than the volume of the annulus 8-1r<:  [-~] < 8 r ,  

~ e R  d, which is of the order r ~. Thus 

Ill~]t&L<Cdre/2-L max ( sup I~tMIAMg(~)I). 
~ M ~ L  4--~I ~I <4,- 

I n  a similar way 

It ~'~Z~ < Odrd12( sup [g(~) ). 
4-1,<i ~ I _<4~ 

Now (10.7) follows immediately from (10.11), and it is clear that (10.8) 

follows from (10.7). 

I~/EMARK 10.1. - Let  ~k(~) be the standard functions in the definition of 

the BESOV spaces /~' q[T~], i.e. suppose that ~k(~)= ~12-k~), where q~(~) is in- 

finitely differentiable,  supported by 2 -1 "< I~[ < 2 and positive on 2 -1 < [ ~[ < 2. 

Then we get from the proof of lemma 10.1 

By means of (10.12) we can now complete the proof of corollary 8.1. W e  

can show 

(10.13) /~' q[T d] = (Lp[Tq, //~[Tq)~/L. q. 
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For  the conven ience  of the r eade r  we shall br ie f ly  sketch  the proof. 

F r o m  (10.12) we get  

(10.14) (1DL~kIIL,[rdJ < CL2 Lk, 

(10.15) iII ,-L o d D t ~klfLltr ~ <-- CL 2-Lk. 

Suppose  now that  g = g o - f - g l ,  l?hen (10.12) and (10.15) give 

ii ; goil  pETd  _< Cflgoli LFdJ, 

tI g'll LF'I  -< C2--L'llg' li yJ" 
Thus  

I]~ .x. g]lLydJ--~ OK(2 -Lk, g; Lp[T~], H~[T~]), 

and therefore  

(L~[T~], "L d C '~' Hp[T ])~/L. q -- Bp q[Td]. 

The  converse  inc lus ion  follows f rom (10.14), s ince 

1 

which  implies  
1 

g(2 -Lk, g; Lp[Td], t/~[V~])_~ C E ~¢~+j, g[]Lgrdj. 

NOW We are ready  to prove two theorems  on the stabil i ty of the opera tor  
Eh,  def ined  by 

Ehf(x) - -  (2~) -d  E ~(hP(~))f~'(~) exp (i < x, ~ >) ,  
~Ez  d 

where  P(~) is homogenous  of order  m ~ 0, inf in i te ly  d i f fe ren t iab le  and posi. 

t i re  on Rd-/tO}. Our first  theorem is analogous  to l emma  1"4. 

TItEOI~EM 10.1. - Let  ¢~ be inf in i te ly  d i f fe ren t iab le  and suppose that  

t ~ ( u )  - -  ~(0)[  <~ Cou ~, 0 .< u <: 1, 

t ~(u) t <-- Cou-~, 1 <_ u < ~ ,  

ID~(u) t <_ C]u -~ min (u ~, u-~), 0 < u < ~ ,  

for J----1, 2, .... H e r e  a and ~ a re  posit ive numbers .  T h e n  E~ is stable in 
Lp,  l _ ~ p ~ ,  i.e. 

[]T(hP(~))[]~ _< C, 0 < h < ~ .  
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PRoof.  - It is no restrict ion to assume that ~(0)= 0. Let b be a large 

number.  Then (10.1) gives 

ll~(hP(~))l]m~(~t_~) <- ~ l~(h~'(~))i. 
{ ~ {_<2b 

Now the sum on the right hand side is bounded by 

Co ~, rain ((hP(~))% (hP(~))-~), 
}~ 1_<2b 

which is clearly uniformly bounded in 0 < h < 00. Thus it remains to show 

/l~(hP(~))/l~eta~_>~ ) <_ c, o < h < ~ .  

But this follows if we prove 

(10.16) v~ ll~(hp(~))ll~(~ ) < C. 
2 k>b 

~ow the estimate (10.8) of lemma 10,1 and (10.5) give 

By lemma 1.5 we have 

max sup 1~]~'IDM~(hP(~ + ~))I. 
0~<M<L 2k--2< ~ i<2k+2 

=~ fk c 

] < J < M  

<_ C'MP(~ + ~)-m~ min ((hP(~ + ",)))~, (hP(~ + ~))-~), 

(c.f. section 8 and the proof of lemma 1.4). If 1~] is large and ]~li <_ L, then 
there is a constant A > 0 so that 

Thus we get 

21-1 ]~f m "~__ / ) (~  + ~) <:: A i ~ l  m 

tl ~(hP(~))II1,~(v~) ~ C mia ((h2mk) ~, (h2"~k)-~), 

for 2 k > b ,  if b sufficiently large. Now (10.16) follows and the proof is com- 

plete. 

The proof of theorem 10.1 also gives 

COROLLA~:~ 10 .1 . -  Suppose that ~ is infinite]y differentiable on the 
positive real line and 

]D%(u)l <-- C+u-~, J =  O, 1, .... 
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Then for all r >  0 

[I ~(hP(~))l[ ~(v)~-  (7. 

Simple functions satisfying the assumptions of theorem i0.1 are 

~ ( u ) = u  ~ exp (--zu),  R e z > 0 ,  u ~ 0 ,  

~(u) = u-~(exp (-- zu) -- 1), Rez > 0, 0 < ~ ~_ 1, 

~(u) -~ u~(1 + u)-r ,  0 _< ~ < y. 

Clearly any infinitety differentiable f:~nction on the real line, which has 

compact  support,  also satisfies the assumptions of theorem 10.1. 

In our next theorem we shall weaken the condition of ~ at infinity. 

T~EOREM 10.2. - Let  ~ be infinitely differentiable on the real line and 

let  ~ vanish in a neighbourhood of the origin. Assume 

ID:~(u)I < C]u-~, J ' - O ,  I, 2, ..., 

for some ~, such that 

Then 
> d ! p  - I  _ 2-~i. 

PRoo~. - Suppose that ~(u) vanishes for u < 1. We shall first prove the 

result for p ' -  1, using the estimate (10.7) of lemma 10.1. 

As in the proof of theorem 10.1 we see that it suffices to show 

(I¢~(hp(~))ll,~,(u,k) ~ c, 
2 k~b 

where b is a large fixed number.  Now it is clear that 

To estimate 

max t~(hP(~))] _~ C(h2k'~)-~. 
2k--2<<1 ~/_<2~+ 2 

sup ]~[M[AM~(hP(~))I, I < M <_ L ,  
2~-2 <-t ~ I-  <2k+2 

we use again (10.5). Thus  we see that it suffices to estimate 

sup I{IMID%(hI'(~ + ~,)'. 
2~-2_<1 ~ I~2~+ 2 

]~q I_<L 
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But clearly 

ID*t?'hP(~ + ~))] <_. CM ~, P(~ + ~)J-M/"~hSl~p(J)(hP(~ + ~))[ ~ 

<- C~hM/~(hP(~ 4- ~))L-M/"~(hP(~ -]- ~))-~, 

since hP(~ + ~) ~ i. Thus we conclude that if 2 k ~ b, b sufficiently large, then 

sup I~IMt 5 i~(hP(~))t ~ CL(h2~k) L-~, 
2k-2~[ ~ l~2k+ 2 

and thus lemma 10.1 gives 

(10.17) [t~(hP(~))l/,,~(%~) ~ C(h2~k) -(~-d/2), 2 k ~ b. 

Noting that we must have h2 ~ k ~ c  > 0, we get 

Y. [l~(hP(.~))ll~(v~ ) <_ C 2 (h2~k)--(~-d/2). 
2 k>b 2h m k > c  

The sum on the right hand side is bounded if ~ > d/2 and thus the 

conclusion follows in the case p - - 1 .  

To prove the theorem in its general  form we note that RIESZ' interpola. 

tion theorem gives 

(lO.18) IlgIl% <_llgil  lig[iL7 p-~ --  1 q- 2 - ~ ,  0 <  ~ ~ 1 .  

Thus 

1--'~ 

However m 2 - - l ~  and so 

[] ~(hP(f)) [lra2(U2k ) ~--- C(h2mk) -~. 

Consequently (10.17) and (10.18') show 

The gives the conclusion for 1 _<p < 2, and since m~,---m~ for p , - l =  1- -p-~  
the conclusion follows in this full generali ty.  

The result  in theorem 10.2 was proved by W~I~GEa [33] for the special 

function ~(u) --  u-~ exp (iu), u > 1, and with P([) --  l [ [~, 0 < m < 1. WA~GER 

also proved that in this case the lower bound for ~ is the best possible. The 

analogue of theorem 10.2 does also hold in L~[R~]. This has been proved 
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by SJ-~STRAND [27], by the same technique as we have used here. By taking 

? ( u ) - - u - ~  exp (in), P (~ )=  1~1% SJOS~RAY;O proved, that on Lp[R d] it is not 

possible to improve the lower bound for ~ if m 4= 1. 

The theorems 10.i and 10.2 we have considered a function V, which is 

<<irregulars> at 0 and c~. Now we shall consides the case when ? is irregu- 

lar in a certain sense in a point u~, 0 < u~ < ~ .  Since we want to consi- 

der the R~ESZ' mean operator  R],  given by 

(lO. 19) ( $ ~ f ) ^  (~) = (1 - -  h P (~))~_f^(~), 

we want to include the function 

~(u) = (1 - u ) ~ .  

TI~EO~E~ 10.3, - Suppose lhat ~ is infinitely differentiable 

(0 < ul  < ~ )  and has compact support  on 0 < u < c~. Assume 

Oil  U :@ U l , 

[D@(u)t ~ Cj]u --  ull  ~-I, u :#= u~, 

for J - "  0, 1, 2, ..., for some ~, such that 

(10,20) > ( d - -  1)lp - 1 -  2-11. 

Then 
[]~(hP(~))[l~ e ~ C, 0 < h < ~ .  

Clearly we can write (1 M u)~_ as the sum of two functions ~0 and ¢P1, 

where ~o is infinitely differentiable and has compact support  on the real 

line and ~7i satisfies the assumptions of theorem 10.3. Thus we get from 

theorem 10.1 and theorem 10.3. 

COROLLARY 1 0 . 2 . -  The RIESZ' mean operator ~ given by (10.19) is 

stable in Lp if (10.20) holds. 

The corollary was proved ~by STERN [29] for P ( ~ ) -  1~[ 2. STEIN also 

proved that the lower bound for ~ can not be improved if P(~) - -  1 ~t : and p - -  t. 

We also note that the corollary in its general form also follows from 

the work of SPANNE [28], who used the results of H(iR]~IANDER [13] and [13']. 

In  the proof of theorem 10.3 we can not use lemma i0. l ,  but  we shall 

another (more refined) consequence of the estimates (10.9) and (10.10). 

Let  X be infinitely differentiable on the real line and let X vanish out- 

side the interval 2 -1 ~ u _~, 2. Pu t  
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We can assume that 

~. ~F~(x) = 1, ~c ~ 0, y e T ~ . 

Pu t  

qZk(x) = ~+~0(x), k > 0, 

q~oiX)= 1 - -  ~ ~ ( x ) .  
k > o  

is a large integer, which we shall choose in the proof of theorem where ko 

10.3. It is easy to see that 

(lO.21) 

and 

(10.22) ii (I ~ I -  ~'~-"'~ - -  o 2 ~ .  

We now define BESOV space @ q by 

oo 

P k~O 

We also define the space /~  by 

Then b~'q 

(10.23) 

(2- '~  II ~'~ '~ g II~p)~M • 

iig/i~L= max U~gb .  

can be given as an interpolat ion space:  

D~ '~ (lp, "L O < s < L ,  i < q < c ~ ,  = hp)s/L.q, -- -- 

This follows from (10.21) and (10.22),just as in the proof of (10.13) in 

remark t0.1. In particular,  it is easy to see that 

(10.24) 

O0 

llg/]i;'q < C f r - sKr  L, g; lq, / ~ ) ~  = 

2ko 

(DO 

j -- C r-~h~K(rL h-L, g; l q, 1"~) dr .  
r 

h2ko 

The subst i tute for lemma 10.1. which we shall need in the proof of 

theorem 10.3 is the following lemma. 
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LEMMA 10.2. - W e  have 

(10.25) IiglI~ < C[lgli ~d/2, 1 
2 

and if q - ~ > p - ~ - - 2  - 1 ~ 0 ,  2 < q < ~ ,  then 

(10,26) !/gll~ <- Cllg',l ~/~, i .  
q 

(eft. the theorems  of BERNSTEIN and HIRSOHMAN in PEETRE [ 2 0 ] ) .  

PROOF OF LEI~IMA 10.2. - Let  g = go + g~ and apply  (10.9) and (10.10)to 

the func t ions  W~ ~ go and W~ ~ g l .  W i t h  r =  2k+ko we get 

" L  I]W~ ~ g[I,~-< C2--O-~k°)d/2K(2L(~+k°), g; 12, h2) 

and thus (10.25) follows from (10.23). Now the in te rpo la t ion  p roper ty  (see 

sect ion 8) gives 

~ d [ 2 ,  ~ ( I J~2  ~ n l ) O ,  0 - -  2/q ( l ~  ~2 1)0, q - -  , q ,  • (10.27) 

W e  shall  prove  

(10.28) 

and 

(10.29) 

where  

b~/~'1 c ( l~ ,  i, ~l~' - -  ~q  1)0, q .  

This  c lear ly  gives the conclusion.  

To prove  (10,28) suppose  
g - ' 2 g k .  

Then  (10.18) gives 

I I - - ' r l  ~ 

E 2-k~J(2 ~, gk; m2, ml), p-1 = 1 + ~/2, 

J (2  k, gk; m2, m~) - -  max  ([lgkl]m.,, 2k[lgkl[-0 . 

(c.f. sec t ion 8). Thus  (m2, ml)~ 1 C -- rap. But  it is eas i ly  see that  ml-----m2 

implies  

(m~, ml)o. p ----- (m~, m~).~, 1, ~ < O. 

Thus  (10.28) follows, 
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To prove (10.29) we write g k -  lIr~ ~ g .  Then  

1 

[]gk]~a/2,1<_ C2kdl 2 Y~ II  '+j ,~ gll,~ 
2 j=--i 

and thus, by the in te rpo la t ion  p roper ty  

1 

j = - - i  

for 0 = 2/q. This  follows f rom the we l l -known  fact  that  

(l~o, 12)o, q = lp, 0 -- 2/q. 

But  now (10.29) follows at once and the proof is complete.  

(The proof of l emma  10.2 is a word by word t ranscr ip t ion  of the corre- 

sponding  proof for mul t ip l ie rs  on Lp[R a] in I:)EET~E [20]). 
W e  are now ready  for the proof of theorem 10.3. 

PRooF oF TREOI~E~ 1 0 . 3 . -  For  s impl ic i ly  we take U l - "  1. I t  suff ices  

to prove the theorem for m = 1. In  fact, suppose that  the theorem is t rue  in 

this case and  let ~o sat isfy  the assumpt ions .  Wr i t e  ~ ( u ) =  ~(u ~) and Po(~)-"- 

= P(~)~/~, where  P is a given homogenous  func t ion  of order  m. Then  Pc has  

order  1 and ~(hP(~) = ~(h~/~Po(~)). But  is qui te  easy to see that  if q~ has compact  

suppor t  on 0 < u < ~ and sat isf ies  the assumpt ions  of the theorem, then  0m 

has the same propert ies .  Thus  the theorem for m = 1 gives the conclus ion 

for ~(hP~)). 

Take m --  u~ = 1. :By l emma  10.2 and (10.24) it suff ices to show 

(10.30) r-e/qhd/qK(rLh -L) ~- ~ C, 0 < h < eo, 
,,J 
Ah 

where A = 2 ~o is a large costant ,  and 

K(s) = K(s, ~(hP(~)); lq, /Lq). 

I f  we want  to show the conclus ion  of the theorem for p - - 1  we shall  

take 2 a >  d - - 1  and q : 2 ,  thus  us ing  (10.25). I f  we want  to get the resul t  

for 1 ~ p  <_ 2 we take q • a > d - -  1, q-1 > p-1 _ 2-1 and  use (10.26). 

5Tote tha t  K(s) is def ined  by 

K(rLh -~) : inf  (I]~ollzq + rLh-LllCell] ~L), 
q 

where we fake i n f imum over all  ¢po and ~1 such that  

(lo.31) ChP(O) = ~o(~) + ~1(~). 
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Want  we have to do is therefore to define a decomposit ion (10.3t), which 

is near  the optimal one and then try to show (10.30). 

F i rs t  take 71(~)-- O. Let  V be supported by the set a _< u <_ b, (0 < a < 

< 1 < b < o~). Then we get 

K(rLh -t) <_ C E I )l/q < C( ~ 1 )i/q 
~hP(~)<_b a,<h t ~ i <_b, 

where a' and b' are suitable constants. Thus we get (as in the proof of 

lemma 10.1). 

K(rLh -L) <_ Ch-d/q 

and so 

r-d/qhd/qK(rLh -L) < Cr-d/q. 

Consequently we get (10.30) if h is large, and in any case we see that 

it suffices to let h and r be small, but  still r ~ A h .  

Write  

/hP(~) - -  !) 

- -  =(1--x r 1)) 

where X is infinitely differentiable and 

X ( u ) = l ,  u] < 1 / 4 ,  

X(u) = 0, u l <  1/2. 

Then 

]l~O0'!ilq~ ~ Cr~( X 1 )l/q <_ Cr~+~lqM/q, 
hP(~)--1 }<~/2 

since the sum is bounded by the volume of {~ll~qeR ~, I P ( ~ ) - - h - ~ t < 2 r / h }  

if r / h ~ A ,  and A is sufficiently large. 

To est imate lI~dl ~ w e  write 
q 

Then 

I~J<M 
CM, j~'--YhJ)~(J) ( ~ )  hM--Jqg(M--J)(hu) 

M 
---O) M -  ~ 03M_ J. 

J=l 
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Clearly to(P(~)= ,~i(~). Now (10.5) gives 

l ~ ( P ( ~ ) ) l  -< (2 sup tD~o~(p(~ + ~))1 
I~ l- <L 

and by ]emma 1.5 

I ~M<~L O ~ J ~ M  

Thus we see that it suffices to estimate the norms 

.<_hp(~+v,)<~ 

uniformly in [~ I <- L, 0 _< J ~  M <-- L. 

Clearly 

C'hL{ ~' IhP(~ -[- ~2)- 1 l-q(L-~)} l/q, 

summation over the set . ' :  ~ ,'2 : + , ~ i ) - -  1], a<__ hP(~.-~-~'_:-~b, ~ e Z  ~. 

This set has a large distance to t}:e origin, i.e. 1~1 is large, because h -1 alld 

rh  -~ are large number.  But it is easy 1o see that 

(10.32) i hP(x) --  1 [ ~ C'hP(O)--  1] 

if lz is large, i) .... x ~ D  and i P ( z ) - - l [ ~ A h / 4 .  If we ,pply  (10.32) to 

0 = ~ ,  z = ( ~ + ~ ) ,  where 1 ( r - - ~ 1 < 1 / 2  and 1~[ is sufficiently large, we get 

if 

nP(~ + ~) --  1 I ~ C lhP(~)--  11, 

hP(~ + ~ ) - -  1 [ ~ r/4. Thus 

hP(~,+ ~) - -  1] -q(L-~) ~ C I hP(~) - -  1 ] -q(L-~) dcr. 

It is clear that there is a number  Co > 0 so that the union of the spheres 
] a - - ~ ]  < 1/2, where ~ e Z  d and I h P ( ~ + ~ ) - - l [ ~ A r / 4 ,  is contained in the 

set Cot ~ ] h P ~ ) - - l ] ,  ~ e R  d. Thus easily 

N° <--O'hL( Cor__<;~(~)--l[ 'hP(a)--ll-q(L-~)d@l/q<-- 

C ' t h  r - -d /q ,Fa-- (  d--1) /q-l-d[q - L  , 

if q(L--a)  > d. 

Annali di Matematica 23 
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The norms N:,  1 <_J<_M are estimated in a similar way. We have 

Nj<_  Cr-J{ E {P(~ + ~)-L]hP(~ + ~ ) -  1 i~-L+:lqll/q <-- 
r/4_<i hP(~+~)-I [ ~ri2 

~<hP (~+~)<> 

< CMr~-L( v. 1 )l/q. 
rl4~;hP(~+~ ) --11~,"12 

The number  of points ~ e Z  ~, such that r /4h<_iP(~+~l ) - -h  -~ <_r/2h is 

bounded by the volume of a set of the form C-~r/h <~IP(~)~ h-~] <- Cr/h, 
e R d if r/h ~ A, A sufficiently large. Thus 

N j ~ ChL-~/qr a-(d-1)/p+d/q-L. 

We conclude 

[I ~ [I ~,L ~,  ChL--~qr~--(d--~)/q+d/q -L, q 
and so 

r- JtqM/qK (rLh -L) <_ Cr~-(d-~)/q. 

This gives the desired bound for the remaining part  of the integral (10.30). 

The proof is complete. 

10.2. - On the rate of  convergence. 

We shall denote by Dp(P) the domain in Lp = Lp[T a] of the operator 

P(D) given by 

( P (D) f )^  (~) = P (~)/^(~). 

The space Hp(P) is a [BANAO~[ space with the graph norm 

il fti ~/~) = [ifil~p + l} P(b) f [ iLp .  

We denote by /-/~(P) the in te rpo la t ion  space 

H~(P) .= (L~, b / P ) h , ~ .  

The norm on H~(P) is equivalent  to 

If[I-;(~) --[IfI[~, + sup h -~ [l G/h)f -- fll~, 
O<h<l 

where the operator G~(h) is given by 

(G~(h)f)^(~) = exp (--  hP@)f^@. 
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By theorem 10.1 we see that GJh) is a uniformly bounded, strongly 

cont inuuus semi-group on Lp. For 1 < p < cx~ we have 

H~(P) = DF(P ). 

(These facts follows from general, theorems on semi-groups of operators on 

a BA~Ag~ space, see BUTZER-BEREbTS [7], LiJFSTR0~ [16]). 

By means of the so called stability theorem in interpolation theory (see 

PEETRE [19]), we get 

(Lp, H~(P))4.~.q -- B~ 'q = B~' q[ Td]. 

for 0 < s < m ~  l _ < , q ~ o o .  We also note that B;' q can be defined by means 

of moduli of continuity, as in section 2. Put  

%(t, f ) =  snp il(~;~- 1)VII~, 

T~f(x) = f(x + h). 

For s =  L - k ~ ,  0 <  ~ <  1 we have f eBb' q if and only if 

D J f e L p ,  J ~ L  and ( 

1 

1 

i D r ) ,  
.! \ t~ 
0 

and for s - - L - ~ l  we have f e B ~  'q if and only if 

DJ[+ Lp, J <_ L and ( 

1 

t" (4< dfl,.,  
.! \ V ] 7 /  
0 

From general  theorems on semi-groups of operators (see BUTZER-BERENS 
[7], LiiFSTR~i~ [16] and PEE~aE [19]), we also get that the norm on B °,°~ is P 
equivalent  to each one of the norms 

(10.26) !l[l]~p + sup h-:llG~(h)f --f l lLp,  0 < ~ < 1, 
O<h<l 

(lO.27) llfll~ + sup h~-:tlP(D)Gp(h)f{!LF, 0 < z < t.  
O<h<l 

After these prel iminary remarks  we are ready to discuss the rate of con- 

vergence of the operator Eh to the identity operator. Here  E~, is given by 
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We shall assume throughout this section that E~ in stable in Lp,  i.e. 

As in the previous sections we write 

IIf!l~,~--I[ftl~+ sup h-qlE,$--fltL~. 
O < h < l  

TKEOREI~I 10.4. - Supp)sz~ that Eh is stable in Lp. Assume ~(O)= 1 and 

let u - ~ ( ~ ( u ) - - 1 )  satisfy the ~}.~sumptious of corollary 10.1 in a neighborhood 

of the origin. Then 

(10.28) B.,,~ C A1, 
P 

and 

(10.29) 

If in addition ~'(0)~= O, then 

B°~'°~C--A.,  O <  ~ < t. 
P 

(t0.30) A ~ _ B  .... co, O < z .  
p 

PROOF. - It is easy to see that 

Thus corollary t0.1 gives 

~ ( h P ( ~ ) ) -  1 
h - ~ 2 - ~ , ] ~ ( h P ( ~ ) ) -  111%(v2, 0 ~ C - hP(~) ,%(u2n) <-- O', 

if h 2 ~ " <  ~, ~ sufficiently small. But now theorem 5.1 gives (10.28) and 

(10.29) follows by interpolation. 

If ¢/(0) ~ 0 then u(~(u) --  1) -1 satisfies the assumptions of corollary 10.1 

in a neighbourhood of the origin. Thus, if ~ are the standard functions in 

the definition of the BEsov spaces, 

!I ~ o ( f ) ( ~ ( 2  . . . . .  ~P(1)) -- 1) -~  II .> -< ct-~ 

for 1 sufficiently small. Thus, by theorem 5.3 

which gives t he  resulL 

--< C sup 
o<h<1 
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TIIEORE~ 10.5. - Suppose  tha t  u - ~ @ ( u ) - - t )  sat isf ies  the a s sumpt ions  of 

t heo rem 10.1 iu a ne ighbo rhood  of the o r ig in  and  let  ~ be a sum of t h ree  

func t ions  sa t i s fy ing  the a s sumpt ions  of t h e o re m 10.1, 10.2 and  10.3, r e spec t i -  

vely. T h e n  
H;(P)  C_ h~ 

If, in addi t ion  :p'(0)4= 0 and ~ (u )<  1, u > 0, then  

(i0.33) It~;(P) = A t ,  

(lO.34) B T ' ~ '~ - -A~ ,  0 < ~ <  1. 

PROOF. - In  a n e i g h b o u r h o o d  of u - - 0  we wr i te  

W(u) -= ( ~ ( u ) -  1)(exp ( - -  u) - -  1) -1 - -  u - ~ ( ? ( u ) -  1) • u(exp ( - -  exp u ) ~  1) -~ . 

T h u s  we see eas i ly  tha t  W sat isf ies  the a s sumpt ions  of t heo rem 10.1 in 

a n e i g h b o u r h o o d  of u = 0. 

Clear ly  ~'(u) sat isf ies  the a s sumpt ions  of t h e o re m 10.3 in a n e i g h b o u r h o o d  

of u = u l .  F o r  l a rge  va lues  of u we wr i te  

W(u) = 1 - -  (1 - -  exp  u) -1 - -  :p(u) q-- q~(u)(1 - -  exp u) -1 , 

which  sat isf ies  the a s sumpt ions  of t heo rems  10.l and / or 10.2. Th u s  

and  so 

[[ ~(hP(i))ll  % <-- Co 

{ IEhf  - -  f(IL F <--- Coll G ~ ( h ) f  - -  f t iLp .  

This  gives the conc lus ion  in view of (10.26). 

To prove  the second s t a t emen t  we note  that  

ue-u(~(u) - -  1) -1 ' 

sa t isf ies  the a s sumpt ions  of t he o re m 10.1 and 10.3 at 0, oo and u~, respec-  

t ively.  T h u s  

ll h P(D)Gp(h)fll ~p ~_ C II £ \ f  - -  f i] Lp, 

which  gives the resul t ,  in v iew of (10.27). 

As app l i ca t ions  we consides  the cases 

(i) ~(u) = exp  ( - -  zu), Rez > O, 
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(ii) ~(u)-~(1 +u) -~ ,  ~ >0,  

(iii) ~ ( u ) : ( 1 - - u ) ~ _ ,  o ~ > ( d - - 1 )  ip - ~ - 2 - ~ ] .  

The cor responding  opera tors  are 

Gp.:(h)f= (2~) -d ~ exp (- -  zhP(~))f^(~) exp (i < x, ~ > ) ,  
~Ez d 

3~(h)f= (2r:) -~ ~ (1 + hP(~))-~/^(~)exp(i < y, ~ >), 
~ z  d 

8f~(h)f --  (2h) -~ E (1 + hP~))J^(~) exp (i < x, ~ > ), 
~ z  d 

(c.f. Li3~S~B,~5~ [16]). Then  theorem 10.5 shows that the fol lowing condi t ions  

are equ iva len t  : 

f e tt~(P) 

[1 @. :(h)f - -  fll ~ = 0(h). 

113~ (h)f - fll~, = O(h), 

tl a~(h)  f - -  fi] L~ = 0(h). 

In  the same way  we see that  the fo l lowing s t a t ements  are  equ iva len t  for 

each  v, 0 ~ ( ~  1 

f E B ~'' ~ p 

[I Gp. ~(h) f -  f[l~, = o(h~). 

I]~'~ (h) f - -  f l ]~  = 0(h~), 

LI~(h) f -  f [ l~  = 0( h~'  
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