Besov spaces iu theory of approximation.

JoraeN LérsTroM (Lund, Sweden) (*)

Sammary. - In this paper we apply the theory of interpolation spaces to different parts of
Approximation theory. We study the rale of convergence of summalion processes of
Fourier series and Fourier integrals. The main body of the paper is devoted fo a study
of the rate of convergence of solutions of difference schemes for parabolic initialvalue
problems with constant coefficients and to related problems.

0. - Introduction.

The theory of interpolation spaces has applications to many branches of
Analysis, in particular to Approximation Theory; see in particular LoFsTROM
[16], of which paper the present one is to some extent a sequel. Our main
intention is to apply the techniques of interpolation spaces (actually disguised
as BESOV spaces), to some problems related to finite difference approxima-
tions for partial differential equations. In doing so we extend and comple-
ment previous work by PEErrE-THOMEE [24], HEpstréM (9], WIDLUND [35].

We shall work within a rather general framework, which we shall now
explain. We shall consider two families E,(#) and E{f) (0 <h < 1, ¢ in a given
set Ir, depending on h) of franslation invariant, bounded linear operators on
L, = L,[R*. We consider the generalized LipsoHITZ space A, of all functions
feL,, such that

sup sup b= Ex()f — E@)f [,
0<hZl gl

is finite. Of particular interest to us is the study of A., when s is the least
upper bound for set of numbers ¢ with A; == 0.
We say that Eyf) is a satarated approximation of E(f) with order s if

©0.1) A =0,

0.2) lim sup A= | E'O)f — B(h)f|., = 0 implies f=0,

a0 ET,

In particular A, . =0, ¢ >0 (c.f. FavarDp [8], Burzer [5], BurzEr-BERENS
[7]). The approximation is said to be non-saturated if either (0.1) or (0.2) is
violated. We give simple criterions for saturation, as well as for non-saturation,

(*) Entrata in Redazione il 12 gennaio 1969
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Our main object is however to compare the LIPSCHITZ spaces A, with
the BrEsov spaces introduced by Brsov [4] and PerrRE [19] [22], [23]. These
spaces are usually defined by means of certain moduli of continuity, but
here we shall use the alternative definition of PEErrE [19], [23]. We shall
develop criterions for continuous inclusions of the types B < A, and A, & B,
where B stands for suifable BESOV spaces.

The general results described above will be applied to fwo special cases.
The first one is characterized by the facts, that I, consists of ome single
point 4, that E(fy) is the identity operator and that E), = E,({) is given by
the «singular integral »

Euf) = 1 f k=9 (& — y)dy.
e

Here we get generalizations of precious works by Burzer [6], LoFsTROM [16],
NesseL [18], SHAPIRO [26]. Our results are particularly useful in the non
saturated cases.

We shall also discuss similar problems on the d-dimensional torus I
‘We consider the RISz means operator

By f(x) =£§Zd (1 —RPE1 ") exp @ <m, §>),

where Z is the set of integers, f4&) the FOURIER coefficients of [ and P(E)
any homogenous funection of positive order, which is positive and infinitely
differentiable outside § = 0. Here

1 —u, O<u<l,
I—uy=
0, u> 1.
‘We shall prove that
(O 3) “ Ehf (w) HLP[T‘!] =0 u f ”Lp[Td]

1 1

ifa>(@—1) and discuss the rate of convergence of I to the identity

operator. In doing so we generalize the work of StEIN [29] who proved (0.3)
for PE) =&, and LOFSTROM [16], where the corresponding problems on
R? were considered.
We shall also discuss similar questions for operators FE, defined on
L,[T*| by
Eiftw) = (27~ & ohPE)"(®) exp (@ <a; £>),

tgz



J. LOFSTROM: Besov spaces in theory of approximation 95

where ¢ is a given function, satisfying certain regularity conditions. Here
we get generalizations of some of te results of WaAINGER [33].
In our second application, E(f)f is the solution of the initial value problem

0 g%i:+P(D>u=o, zeR, 0<t<oo,

u=rF, x € Re t=0.

Here P\D) is an elliptic differential operator with constant coefficients.
We assume that (0.4) is correctly posed in L,, so that the operators E(f),
0 <t <oco form a strongly continuous semi-group of operators on L,[R?. For
simplicity we also suppose that the polynomial P(£) is homogenous of order
m and positive for == 0. The operator E({) is formally defined by

Et) = exp (— tP(D)).

Now consider the discrete initial value problem

uy(we, t + k) = Z eu(xe -+ oh, 1), k = Ah™, T = Nk,
0.5) %
sz, 0) = f(x).

Here x € - Z% Z being the set of integers, and 0 < ¢ <oo; A is a constant.
The solution at time % can be written formally

(0.6) Eyk) = exp (— kPyD)),

where Pi(f) is a suitable function. We assume that the difference operator
(0.6) is stable (see RICHTMYER-MorTON [20). We can then define Eu{),
0<t<oco by

Ei(t) = exp (— {Pu(D)), tel,

where I, = {#; t =Nk, N=0, 1, 2, ...}. Now our general theory gives rather
exact information abount the rate of convergence of the solution of the
discrete initial value problem (0.5) to the solution of (0.4). In fact we give
necessary and sufficient conditions for

sup =5 Bt)f — Bi)fl, = Ok,  h—0, 0=6,

0 < t=Nk00

thus generalizing results by HepstroM [9]), PEETRE-THOMEE [24], WIDLUND
[35] and others. In the case p =2 we also discuss briefly the situation when
A =Fkh—™ is a non-konstant function of .
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We shall also treat the case when P) is any function, infinitely diffe-
rentiable and positive for £==0 and homogeneous of order m > 0, and E(#)
is defined by

(0.6) Et) = o(tP(D)),
with a function ¢ satisfying certain regularity assumptions. We suppose that
0.7 Ey(t) == o(¢ Py D)).

where PyD) is an operator of a special type which approximates P(D).
The stability of this operator, i.e. the inequality

0.8) | Bt s, < Clf s,

now represents a new difficulty. On the basis of the theory of interpolation
spaces we shall gfve a simple, but rather restrictive condition for (0.8). By
the same technique we can prove a stability theorem for difference operators,
which is a d-dimensional analogue of a stability thoorem of STRANG [30].

With the aid of the stability theorem for the operator (0,7) we can study
the rate of convergence of (P D) to (P D). Our results are analogous
to those mentioned above. In particular we get a result for the rate of con-
vergence of the resolvent of Py D)

The paper consists of three parts. The first one consists of two intro-
ductory sections. In section 1 we list some basic facts about FoURIER multi-
pliers. Our main source here is HOrMANDER [(2]. Following PrrrrRE [19],
[22], [23] we give in section 2 the necessary preliminaries on BEsov spaces,
and some auxiliary spaces,

The second part of the paper (sections 3 — D) contains the general theory.
After having introduced some notations and definitions in section 3, we give
in section 4 criterions for saturation and non-saturation. In section 5 we
give three simple theorems concerning the comparision of the LipscHITZ
gpaces and the BESOV spaces and certain related spaces.

Qur paper concludes with five sections, containing the applications de-
scribed above. In section 6 we consider singular integrals, while section
7 contains the results on the rate of convergence of the difference scheme
(0.5). Finally, in section 8 we study the stability of the operator ¢((Px(D))
and in section 9 we study its rate of convergence. In section 10 we consider
the Rirsz mean operator and other summation methods for FOURIER series.
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1. = Preliminaries on Fourier multipliers.

Let L, = L (R%, 1<p < oo denote the BANAcH space of all complex-
valued locally integrable functions /' on d-dimensional Euclidian space B¢
for which the norm

: e
1/, = (f{f\ac) ;Pdm) < oo,
Rre
The space of all continuous functions f on B¢ such that
f(x)éo’ "T§'_>OO:
is denoted by L. It is a BANACH space with norm

17l = sup [ fle)].

E7 ré

A function fe L, can be considered as a tempered distribution, and we
can therefore speak about its FoUwriBr transform &f, which is a tempered
distribution. Formally we can define &f by

(F11E) = 1) = f exp (— i < @, £ > fiw)de.

Rd
Here <, £> = ;i 4+ o 4 asfs if @ = (@0, ..., @) and £ = (&1, ..., &)

It g is any tempered distribution we define

ga) = @y f exp (i <, &> )gEdE.

Rd
Then holds the inversion formula

A

flo) = (F'gfx) = g@),  g=1"

In the sequel we shall let @, y, ... denote the variables of the function, while
g v, .. will denote the variables of the FoURIER transform.

If fis any tempered distribution we let supp f be the suapport of /.
The support of the FouriEr transform f* will be called the spectrum of f
and is denoted specf, i.e.

spec [ = supp [".

Annali di Matematica 13



98 J. LorsTROM: Besov spaces in theory of approximation

The space of all infinitely differentiable functions with compaet supports
is denoted by D.

‘We are now ready for the definition of the concept of FOURIER multi-
pliers.

DeFINITION 1.1. — A tempered distribution ¢() on R?is called a FOURIER
multiplier on L, if

(1.1) le*« gl = Clgls,,

for all functions g€ <. The infinum of ihe constant C in (1.1) is deroted

(1.2) 14 s,

)4

and the set of all snch distributions ¢ is denoted M,.
Suppose p € M,. Then the linear operator

Dag—y'rgel,

in bounded with norm [¢&)w,. By closing this operator in L, we get a new
linear operator 7 with the same norm. We shall write

Tg = 4" * g,

for g in L,.

We now collect a few basic facts about the spaces M,. For the details
in the proof we refer the reader to HORMANDER [12]

By means of PARSEVALS relation it follows that

(1.3) M; = Ly
It is also easy to show that
(L4 M,=M,, @ 4+pi=L

The relations (1.3) and (1.4) hold with equal norms. From Riesz-THORIN' S
convexity theorem it follows that

(1.5) M, C M, l<p<<qg=<2

in the sense that

(1-6> ﬂiPﬂM <ﬁ§D“M, 1<p<qg2.
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In particular

(1.7 M,C Lo, 1<p<oco

In view of (1.7) we can form the product of two FoUurIErR multipliers ¢
and ¢ on L,. This product belongs to M, and

(1.8) | P EWE o, <[ 2(E) g, | D) s, »

and since M, is a BANACH space we see that M, is a commutative BaNacu
algebra under pointwise multiplication. It is clear that M, has a unit element
(the constant fauection 1)

A very important fact about the M-spaces is that they are invariant for
homotheties. This means that if ¢(§) e M,, then 9,§) = ¢(f)e M, and

(1.9) 1

PUE) [ar, = | #(E) s, -

This follows easily from
(1.10) or(a) = £ (¢ ).

Le 91 denote the space of bounded measure and FOI the space of
their FouriEr ftransforms. It follows directly from the definition that
M, = &9, Thus, in view of (1.4) and (L.7)

(L.11) FONMN = M, = My;
(1.12) FONEC M, l<<p<<oco.
Since L, & 9l we conclude

(1.13) gL C M,, l=<p<oo.

This holds in the metrical sense, i.e.
(1.14) leB) o, <9, = [o@ 5z, 1<p=oo.

In order to show that a given function » belongs to the space FL; we
shall sometimes use the following simple lemma.

LemMma 1.1. - Suppose that

(.15, [0 raz+ [ 1 Doty paz < a2,
RrRZ RY
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for some L > d/2. Then 9 e FL; and
lolg, = 1% < 04,

where C is a constant depending only on the dimension d.
(Here and in the sequel D* denotes any generalized dervivative of order L).

Proor. - Sappose ¢€9D. By the CAUCHY-SoHWARTZ inequality and
Parsevar’s formula

1z Y2
f‘ ) | dwg(f(l +[x ?”)‘161»“6) (f(l + 4] o) de) <
R4 Rd

Rré

< A( f 1+ lzL»”ldm)llz-

RY

Since the integral on the right hand side converges if 2L > d, the conclusion
follows.
We shall often work with local FouriER multipliers.

DeriNtTION 1.2. -~ Let V be any (open) subset of R? Let two tempered
distributions belong to the same equivalence class if they are equal on V.
Then the space M, (V) of (local) FoUriER multipliers on V is the space of
all equivalence classes of tempered distributions, which agree on V with a
multiplier on L,. For convenience we shall not distinguish between the di-

stribution ¢ and the equivalence class to which it belongs. The norm on
M,V is

(1.16) 195 [,y = 10 | %(E) [, »

%

where y € M, and x = ¢ on V. We denote by FLy(V) the subalgebra of My(V)
consisting of all (equivalence classes of) tempered distributions, which agree
on V with a function y e &L,.

It is clear that M, (V) and FLi(V) are BaNAcH algebras (with unit ele-
ment) under pointwise multiplication. It is also quite clear how the relations
(1.3)~(1.9) are inherited to the spaces M,(V). In particular, (1.9) corresponds to

(1.17) | #(#5) ”MP(V) = [ ¢ ”Mp(tV)a

(1.18) tV={|Ee V]
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1f specf. & V, then clearly
(1.19) oo« Fl, <l e oo 1 Fle,-
It is also obvious that if suppyx & V and y e M,, then x(€p)e M, and
(1.29) 1% E12® o, < 1 x(® s, | #(8) g0y -
If W ir an open subset of V and ¢e M V), then ge M (W) and
(1.21) &) [0y < [ 98 [, -

The following lemma will be very useful to us. (C.f. MICHLIN’S multiplier
theorem, see HORMANDER [12]).

Lemma 1.2. - Let U, denote the annulus 2-'r <|&| < 2r. Suppose that
(1.22) [EV | D/oE)| < 4, 4y <18 < 4, D<J<I,

for some L > d/2. Then e FLi(U,) and consequently ve M(U,), 1<p<occ.
Moreover

| 88 1y ) == O,

where C depends on the dimension d only.

ProOF. - Choose 4 €9 so that $(E)=1 on 2-'<|&|=<2. and $&) =0
outside 4! < |£| < 4. Write

X&) = P(E/r)%(E).

Then x(§) = ¢(§) for £€ U,, so we have only to prove y € FL: and | x|, << CA.
As in the proof of lemma 1.1 we get

f | (o) | de << ( J‘,w'~2Ldm>l/2 ( f%wlulx‘(w) Pdm)mé

[rizr—t a1zt R

102
= Ori=2% max f | DiyE ;ng)
Rd

where the maximum is taken over all derivatives of order L. But Diy(E) is
a finite sum of terms of the type r—/(D/V)E/rDFo(f), and since | DX/g§) | <<
Cdvr'=*5, 4~'r < || < 4r we conclude

| Dy (&) | < Cdr*,
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Thus
12
[ixte)ae = oare( [ agf"< 04
=t Supp x

We also have

12
f (@) | de < Cr—4? ( f] 1) szi) =< CA.

|x[gr_l R4

1t follows that

fl v () | de << CA,
Rd

and the lemma is proved.
We shall also need the following loeal version of a well-known theorem
by WIENER.

Lemma 1.3. - Suppose that ¢ € FLi(V) where V is an open, bounded sef
and () =0 on the closure of V. Then (£~ e FLy(V), and thus ¢(E)1e M (V),
1<<p<Coo.

ProoF. - Let F be any continunous character on FL(V). We shall prove
F(p) == 0, since then follows that ¢ has an inverse in Ly V). Let fe&L1 and
f be the equivalence class of all functions, which agrees on V with f.

Write Gif) = F.f). Then G is a continuous character on &L, thus of the
form f-— f(§). Let x €9 be identically 1 on V. Then

XELE) = Gf) = Ff) = Fif) = G(f) = &),

and we conclude that £ belongs to the closure of V. Thus F(¢) = ¢&) == 0.
We conclude this section with

Lemma 1.4, - Suppose that PE) is a homogeneous function of order
m >0, i.e. PiE)=t"PE), 0 < <oo and that P¢) is positive and infipitely
differentiable for £ 4= 0. Assume that ¢(u) is an infinitely differentiable funec-
tion on 0 < u < oo and that

(1.28) Lo(u) — 90) | << Cous, O<u<l,
(1.24) Fo(u)| << Cou®, 1 <u < oo,

(1.25) | D/g(u) | << Gy min (u*/, u—E~), O<u <o
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where J =1, 2, ..., N, N>g—a,nd @, 3> 0. Then

¢(PE)eFL:.

This lemma is proved in LorsTrOM [15]. We give an alternative proof,
based on lemma 1.2. We need here and on several ocecasions in section 8§,
the following well-known formula for differentiation of composite functions

LemMa 1.5, - Let f be a real valued function on a domain O C E?, let
g be defined on the range of f and suppose f and g are sufficiently diffe-
rentiable. Then

D'g(f&) = Zo. » D)™ ... (D*H(8) 2™ fE)).
Here g&) = D9, & = (a1, .., o), 1 << K<< L and
a2+ o =K,
oy '-I- 2“2 "]"‘ an + LOLL - L.

Lemma 1.5 is easily proved by induction. We leave the details to the
reader.

Proor or LEMMA [4. - We may assume without loss of generality that
¢0) =0. Let ®eD satisfy

(1.26) supp @ = [E|2-1 << |E|=< 2],
(1.27) T 24 =
—o0 0, E=0.

{For the existence of such a function see HORMANDER [12], c.f. lemma 2.3
below). We shall prove that

=G0
2| 0290(P) 5y, < e
Since FL, is a BANACH space this implies that
00
I D2 p(PE) € FLa,
—00

which give the conclusion, in view of (1.27).
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From the invariance under homotheties (1.9 and (1.20) we get

| 2P PE) g, <1 P[5, | #(P8) s -
Since
| D/PE) | < CPEFIm
lemma 1.5 gives

L
| Do PEN | < O T PEFHm ¢ELPE) .

Thus the assumptions and the fact that

= O
gives for L =0, 1, 2, ..,
|E1L| DEp(PE) | < € min (PEy; PE®)
We conclode
| ¢(P(&) Hg;Ll(Uzk] << O min {2abm  Z—fbm),
Thus

-+
DR H)p(PE) g, =< C X min (27kn; I—#em)
—0

(o}
W
=
—30

and since the series on the right hand side converges for «, 3> 0, we get
the conclusion,

Remarx 1.1. - The concept of FOURIER multipliers can be generalized
to other situations than the one described above, We can for instance replace
R? by the d-dimensional torus 7% The FourIER transform should then be
replaced by the operator

(1.28) Fos 1) = f flw) exp (— i < &, @ >,
Td

where £e€Z?, Z being the space of integers. Then the inversion formula
talkes the form

(1.29) fle) = gy = @m)™ I g exp i <E, x>,
ez
where g(§) = ).
The space i, of FOURIER multipliers on L,(79 is defined by the ine-
quality
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Lo * gleat <[ E: [, | 91,9,
where

(s » 9)B) = ¢Bg"E),  Ee e,
i.e.

@ngh=jww—1wWM%

74

A general approach is possible by means of the concept of direct integrals
of HILBERT spaces and the spectral theorem for commating self-adjoint
operators A, .., 4; on a HILBERT space H. (See GARDING'S article in BERs-
JouN-ScHECHTER [3)). In fact we can find a direct integral L(R? o, B), (o
being a positive measure and § a dimension function), and a unitary operator

F.H ->L2(Rdy s, ﬁ)r
such fhat
(FA1E) = ClFNVE).

If H itself is a direct integral; H = Ly, p, ) (Q is a manifold with
density p and « a dimension), we write

Lp = LP(Q: By, @)
and define the space of FoUuriER multipliers on L, by means of the inequality

1440 e, < o s, 1,
where

(FplA)E) = o BNF/)E).

Here ¢(£) is a square matrix with 3() rows and columns.
For

Ak:i—laé;’;, p = da, afw) = 1, Q=R
we get back the situation described in this section. For Q = I¢ the diago-
nalizing operator is given by (1.28) and (1.29). As a final example take d = 1
and let A be a self-adjoint elliptic differential operator on LxQ, p, «),
(¢ = 1). Assume for simplicity that 4 has pure point spectrum consisting of
points denoted §. Let the multiplicity of £ be ()= 1. The corresponding
direct integral is Ls(R, o, 1) where

O’:?Eg,
with 3¢(f) = /(). )

Annali di Matematica 14
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The Fourigr fransform is

where (, ) is the inner product on L:xQ, p, 1), and &E) is the eigenfunction
corresponding to the eigenvalue E;

ADE) = ED(E).

The inversion formula fakes the form

=100,

whice is the eigenfunction expansions of /.
Tn all these cases we have also analogues of lemmata 1.1, 1.2, and 1.4
(See SPANNE [26], c.f. also section 10 below).

2. - Preliminaries on Besov spaces.

Throughout the rest of the paper ® shall denote an infinitely differen-
tiable function with the following properties; @ is positive on the annulus
271 <|E] <2 and vanishes outside. Moreover

Y pe-ty =1, E=0.

(ef. (1.27). We shall write

ByE) = D@-H), k=0, 41, =2 ..

WE =1 — 331 DuE).

k=

By means of the functions W, ®;, @,, ..., we define the BEsov space
BY? (—oo<m<oo, 1 <Cg=<<oo, 1<<p=<_oo) as the BANACH space corre-
sponding to the norm

@1 1 m g = C 2 @ | fill )e,
P k=0 ?
with
(2.2) [ = @} « [, k=1, 2, .., fo=Wrxf.

(See PrETrRE [22], [23)). This definition is rather implicit. However if m >0
it is possible to give a more explicit alternative definition in terms of the
modulus of continuity
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w(t, )= wit, )= sup | Tof — f,,
[h]<e
where

Tifix) = flx + h).

In fact, for m =J 4 a, 0 <a < 1, (J integer =0), the Besov space B, ? can
be defined by the (equivalent) norm

o0

B+l 2oy
0

For 2 =1 one has to modify (2.3). Let us write

wit, )= sup [Twf — 2[4 T/ |z, .
o lhi<t

Then B,™"? is defined by the norm

[ee}

@2.4) £ 1 D5 +U('M)Q%w'

L
K=0 4 %
¢

Thus B;“”"" is defined by means of a ZyeMUND condition, while B;+“’?,
0 <a<1 is defined by a LipscHITZ condition.

We shall denote by H.™ the LPscHITZ space, which corresponds to B %,
This means that Hﬁ is the BANacH space defined by the norm

w,it, D7)

L—1
(2.5) S D5 Iy, + sup P
K==0 0Lt 0

c L .
For p 5= 2, H, is not a BEsov space, but one can show

By’ = Hs5.
However, for 1 <<p<Cco

(2.6) By'CHLCBy®,

with strict inclusions.
Occasionally we shall also work with a space H, " closely connected with

H;. This space is defined in the following way.
Let Gu(f) be the operator on L, defined by

(2.7 (FG.ONE) =exp(—t E"/MNE, >0
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Clearly G.f) is a semi-gruop of operators. By the invariance for homotheties
(1.9)

1 Gntf o, <] exp (— & 8" g, [/ 1, < | exp (— [ &) g, [ £, -

Clearly o(u) = exp(— u) satisfies the assumptions of lemma 1.4, Thus G.(¢)
is a strongly continuous semi-group of operators on I,. The infinitesimal
generator of G.(f) is the operator -— | D |, defined by

(2.8) (F|DI"HE =1E &

(C.f. Burzer-BerENSs [7]).

The space H;", (m > 0) is now defined as the BANACH space correspon-
ding to the norm

(2.9) [ lgsn =171, + sup 6] Guit) — /s, -
P D12

For 1 < p < oo, HS" is the domain of the operator |D{* in L,. For p =1,
p=occ one can characterize H," as an interpolation space between, the

domain of ! D" and L,, (see BUTzZER-BERENS [7], LoFsTrOM [14), [15] and
PerrrE [17]). We have

HY = H;, L integer, 1 <p<oo.
Moreover

(2.10) By CH"CBy®.

It can also be proved that
@10 17, + supl D =Gty

is an equivalent norm on H,", (see BurzEr-BERENS [7], LorstroM [16] and
PErTRE [19]).

For the proof of the alternmative definitions (2.3) and (2.4) of the Bmsov
spaces and of the inequality (2.6) we refer the reader to PrrrrE [19], [22]
and [23], where he also can find a more detailed study of the BESoOV spaces.
See also LIoNs-LizorxIN-NIKoLSKIJ [14] and Brsov [4].

Throughout the paper we shall work mostly with definition (2.1). From
this definition it follows immediately that

(2.12) B *C B, wm <z m”,

(2‘13) B;’r q ; B::. ‘Z”’ ql g q//,
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with continuous injections. We also have the following simple interpolation
ftheorem,

LeMma 2.1. - Suppose that T is a continuous linear operator from I,
into L, and from B, ” into L,, wilh norms M, and M, respectively. Then
T maps Bf,'"’q, (1 << q=occo) continuously into L,, for 0 <0 <1, with norm

(2.14) Mo << Co(0(1 — )=+l MS, 0<b<1.
ReMarx 2.1. - By means of the results of HorLmMstEDT [11] one can prove
(2.15) Mo << C,0-1F1s(1 — Oymin (g=fo; O 50 19

REMARK 2.2, - The conclusion (2.14) also holds if 7 maps H,” into L,
with norm M,. This follows from (2.10). It is also easy to prove that if T
maps BJ’% into L, with norm M; ( =0, 1) then 7 maps B, * into L, with
norm less than Crmom(B(1 — 0=+ M MY, if o = (1 — Opno + Hma, 0 < B < 1.

Lemma 2.1. is a consequence of a general interpolation theorem (see
Perrre [19], [20], [22]), but for the convenience of the reader we give a direct
proof (c.f. PEETRE-THOMEE [24)).

PRroOF. ~ Write /, = @ % /, fo = W’ x f. Then the assumptions give

| Tfile, < min o] file,,  Milfi

Bs' qa)'
I4

Since however f, has its spectrum in the annulus 2 <<|E| << 2t (k=1)
we have

fy = (I); ¥ fr=20
except for j =k — 1, k, k 4+ 1. In the same way

fo,j:q)]v*fo:(), j:i:O, jf—%:l,

froo=W % fi=0, k=0, k4= 1.
Thus easily

o
el = ( S @m ] fy oo < a2 £l
Je=0
since || @u&) [, = [ PE)|x,, by (1.9) and We M,. Consequentiy

| Ifilt, < G min (Mo, 23] fils, -
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Since we can suppose that fe%D, we have

f=Z%n

k=0

(with convergence in L,). Thus

| Tf, < i | Zfels, < Cn S min (Mo, 2M0)] fils, -

s el

From HOLDER'S inequality it follows

H Tf “Lp = Om{ kozoo {2”7‘6’" min (MQ’ 21"'1[‘,11))4’)1/?' H f “Be"" 4 =
s »

S , duo
< C(f(m"om min (Mo, 2"M:1) "E‘l") | f|'Bgm,q-

0
Here (¢ 4 ¢~' = 1. Evaluating the integral we gef

| Tl < CuB(L — )y HeM =M £ o, ¢
[)
which is the desired inequality. )
For technical reasons we shall work certain modified BEsov spaces B, ?,
(—oo < <oo, 1 << p << oo), which are defined by the semi-norm

oo
(2.16) [lm o= (2 @@ x Lo,

(See PERTRE [22], [23]). It is easy to see that all polynomials belong to

B, ? and have semi-norm 0. From the proof above it is clear that lemma
2.1 remains true if we replace all BEsSov spaces by modified BESoV spaces.
Note however that the inequalities (2.12) and (2.13) do not hold for the
modified spaces.

The connection between the modified BESOV spaces Bj'! and the BEsov

q

spaces B,'7 is given by

LeMma 2.2. - For 0 <m < oo we have L, N By = By, ? in the sense that
F=> 11l + 17 o

is an equivalent norm on B’
The proof is trivial and will be omitted.
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‘We shall conclude this section with a brief discussion of definition (2.1).
It is nataral to ask what special role is played by the number 2, which
appears in the conditions on ®. Could it be replaced by any number v > 1?2
MoRE generally, is it possible to replace the annulus 2 <[£|< 2, where
®E) > 0, with a more general type of annulus?

Let ®* €D have the following properties:

i) 0<0%F), CLekR,
(2.17) i) 0¢ supp D%,

iii) there exists a number y > 1, such that for every £e R4, § +0,
we can find an integer k, such that ®*y—%) > 0.
From ii) we easily get that the series

-+20
I Q¥yE,

Jme—00

is finite for every £==0. If £ =0 at least one term in the series is positive,
80 we have

-+00
3 Oy E >0,  E+0.

j=—0

Write

o0
DE) = OHE( I Dy E).

j=—0

Then clearly @€, supp ® = supp ®* and

400
I o) =1, E=+0.

kom0
If we write

DulE) = ®(y~%), k=0, +1

3 very

WE =1— 3 0,

we can define the Bosov spaces E) “(y, ®*) and B} ’(y, @) by means of (2.1)
and (2.16) with 2" replaced by y™*. The annulus 21 < |E| < 2! is replaced
replaced by t*.supp @* = { v*¢ | Ee supp &*}.

We shall prove
(2.18 By “(y, ®* = B!

f4 b

2.19) By, %) = ™,
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with eqivalent norms. In view of lemma 2.2 (which also holds for the modi-
tied spaces By %y, ®% and B %(y, ®*), it is enough to prove (2.19), which
follows from

LeuMa 2.3 - Let ®* and W#* be two functions, satisfying (2 17) with
number ¢ and & Then

(2.20) 170 = C1F s vy

where O is independent p and ¢, and depends continuously on .

Proor. - Let @, and W, £ =0, == 1, ..., be the functions that appear
in the definitions of By %y, ®* and By %3, W#), respectively. Then

(I)Z*f:Z(I)Z*IU;*f, fed.
7
In the sum only a finite number of terms can be non-vanishing, namely
the terms that correspond to such indices j, for which
(2.21) vF o supp ®* N &/« supp W* = 0.

Suppose
supp @* U supp W* C{E| R < || < R}.

Then it is easy to see that (2.21) implies
(2.22) R—% < 37 < Ry,
Consequently
yin | B w1 |, = RR8n | Bw U o f |, <
< CR*E3m | W # f o, << CRPHEDVSEE™ [ WS * [ )90

(summation of j such that (2.22) holds). Since the first sum in the last
expression is bounded by a number N we get

o]
i o< CNYR™ X pX §im || W7 a7 <
7 HBP' tr 9% ¢ (_,OO R—ezy?s<a.?'<g2yh( 15 f”LP) )

= 0NR2m H f HB;':’ ‘I(@v ¥ *

Remagrx 2.3. - The definition of BEsov spaces can be generalized to the
more general situation described is remark 1.1. In fact, suppose
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and

(2.23) 1O b, < C, — oo <k <o,

Then we define Bj[Q, A] by means of the norm

450
if ﬂé;, o4 = ( _ZOO 2| DA {)I,P)?)IIQ.

(Here A = (41, ..., 4.

., @
For instance we can take () = T and 4, = rlé}-‘ Then one can prove
Ak

(2.23) and thus we can form the space BT = B)T? A]. (See SPANNE
[28] and section 8 and 10 below).

Most of the general theory developed in section 3-5 carries over to the
general situation indieated here.

3. - The Lipschitz’ spaces.

The object of the rest of the paper is to study the following situation.
Let Ey#) and E({) be two families of bounded operators on the Bawacm
space L = L,, given by

(31) (gE}z(t)f}(g} = 8;,(&(, g}f‘\(g); eﬁ(ty g) € Mpv
3.2) EFEDOF IS = e, O'E).  elt, HeM,.

Here 0 < 2 <1 and ¢ belongs to a given set I, which depends on k. We
shall assume that E,() and Eif) are uniformly bounded:

(3.3) VB < C|flk, O<h<], tel,

(3.4) VEO < Clf e, O<h<l, tel,,

This is equivalent to

(3.5) Fenld, &u, < C, O<h<l, tel,

(3.6) let, ©)lu, < C, O<h<l, tel.

However the preliminary discussions in this section carries over fo the more

general case, when L is any BAwacm space and Eu(f) and E(f) satisfies (3.3)
and (3.4) (| |- being the norm on L).

Annali di Matematica 13
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The (generalized) LipscrITZ' space A;, (0 << g <oo) is defined as follows.
It is the space of all fe L, such that

sup sup A= | (Eu(f) — E)f | < oo.
0ChSL 1€

It is BANACH space with norm
Vfls, =171+ sup sup b= (But) — E(@)S o
< IRT-718

Exaupre 3.1. - Consider L = L, and let I, consist of one single point
fo and assume

E(fo\fz f.
Suppose that the dimension d = 1 and

Extofixe) = Tuftx) = flx + k).
Then
Vs, =1Fls, + sup A= Tuf — [,
0<hel
so that (in the notations of section 2)
Ay=By%, 0O<o<l,

A =1H,.

Thus A, is a LipscHIrZ’ space in the classical sense.
We now return to the general case. It is clear that

AQ:-:L,

(with equivalent norms). Obviously A, is continuously embedded in L and
more generally we have

3.7 Ao S A, O=sd <d,

with continuous injections.
‘We also introduce the space N, of all elements fe L for which

lim sup A= (Ex(t) — E)f o = O.

bl @B IR
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Then we have the following inclusions

3.8 N, CA,, 0<o<oo,
(3.9 Ay € Ny, 0<d <0’ <o,
(8.10) Now © Ny, 0=d=d" <co.

From (3.7) we see that the set {o; A, == 0} must be an interval of the form
0<<o<g; or O0<Co =gy, where

Go=sup{o; A;==0}.

In the same way (3.10) shows that {o;, N, =0}, is either empty for all
values of ¢ or of the form o: < 6 < oo or 0 < 5 < co, where

o1 =inf{o; No =0}.
We put o ==oc if N, 3=0 for all o. Then easily
(311) Gp = J1.

In fact, suppose o1 < go. Then we can find ¢ and ¢”, such that o1 < ¢’ < ¢” < ao.
Therefore Ny =0, A;~=£0, which contradicts (3.9). Consequently we must
have o, << 01. But if 9, < o, we take o such that oo < 6 < o;. Then A, =0,
so that by (3.8), N, = 0. This contradicts o < ;.

We now reformulate (3.11) in the following theorem.

THEOREM 3.1. - Let 8 = oo be finite, Then there are three possibilities:

(3.12) A, =0, N, =0,
(3.13) AE0, N, =0,
(3.14) A0, N0

1t (3.13) holds for some s, then s is the largest number for which A, ==0.
In case (3.13) we shall say that E\/f) is a saturated approximation of
E#) and s is called the order of ihe saturation. (See Favarp [8], BurzEr
(5], LorsTrOM [16]). We shall refer to the cases (5.12) and (3.14) as the non-
saturated cases. Note that the order of saturation s is to a certain extent
arbitrary, since if we replace Eif) by E,(f) then s is replaced by s-y.



116 }. LOFsTROM: Besov spaces in theory of approximation

4. -~ A eriterion for saturation.

In fthis section we shall consider L = L, and two families Ey(f), O < h < 1,
tel, and E(}), {e I, of operators defined by (3.1) and (3.2), where the functions
ex(t, € and e(f, &) satisfies (3.5) and (3.6) respectively. We shall give a simple
criterion for saturation, ie. for (3.13) in terms of ey#, &) and e{f, £

‘We shall let U, denote the annulus

(4.1) U =1{§ 27r<|E] < 2r}.
and write
4.2) la® =g “MP(U2n) .

THEOREM 4.1. - Suppose

4.3) lim sup b|eit, &) —e(t, )], < oo

[N T3

for some integer n. Then A, ==0. If the limit (4.3) is zero it also follows
that N, 3= 0.

PROOF. - Let x €9 have its support in the annulus U,. Then yeM,.
Let ge L, and put f = x" x g. Then spec fC U, and by (1.20),

VB ) — B e, < [ealt, &) — ett, ©)x(8) |, [ 9]z, <

<[ xlu,lestts & — ett, Bl gl
Multiplying by A~ we conclude

lim sup k| (Eyt) — E®)f 1, < <.

hey8 1€1

It follows that feA,: If the limit (4.3) is zero we see that feN,. Since we
can assume [ =0, the conclusion follows.

ReMaRx 4.1. - Clearly the conclusions of theorem 4.1 hold if we replace
the annulus U, with any open set V.

TaeoreM 4.2. - Suppose that for every h and every integer n there
exists a numbher {e I, such that

[ext; &) — elt; E)]1 e My(U,,).
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Assume

(4.4) lim inf & [et; &) — e(t; B < oo

for all integers n. Then N, = 0. If the limit (4.4) is zero (for every ), then
A, =0.

Proor. - We have
1D; + 1, << Ok¢||[ealt; &) — elt; D) b= | Ba(t)f — E(tif |1, -

Thus if (4.4) is finite the right hand side fends to zero for all feN,.

Thus @, « f =0 for all integers #, which gives f=0. If the limit (4.4) is
zero the same conclusion holds for all feA,.

COROLLARY 4.1. - Suppose that the limit (4.3) is finite for some integer
n and that (4.4) is finite for all integers n. Then Eu(f) is a saturated appro-
ximation of I(f) and s is the order of the saturation.

5. - Comparision of Lipschitz spaces and Besov spaces.

In this section we shall consider the same general situation as in section

4. Our ohject is now to compare the LipPscHITZ spaces A, with the Bmsov

spaces By ? and the spaces H)".

‘With the notations of section 4 we have

TeEOREM D.1. - Suppose that (3.5) and (3.6) hold. Then a sufficient for
(8.1) [7 s, << Ouf”B;b- %0
is that for some > 0

5.2) [ 3 (h2med; §—et; DLV <C,

hSz‘l’l?%gE

for O<h<l, teli, and (g5 +¢ =1. For go=1 (g =o0), condition
(5.2) is necessary for (5.1).
Proor. - From (3.5) and (3.6) we see that

B k2ot 8 - ats B0 <
hb‘212m>5

<O T (B e (e,

h.92n1n>e



118 J. LOFSTROM: Besov spaces in theory of approximation

Thus
te - a0y1/90
{2 [ B—2= | en(t; E) — e(t; B) ] )0} < C.

—30

It follows that
“+0
W (Bl — B [l < 2 b [ (Buld) — BUb®s + f I, <

=5 B2 | ex(t; B) — e(t; E) 2" | D5 = £z

3

since ®, vanishes outside annulus U,. In view of the definition of B, *
we get from HOLDER'S inequality

= | Eit)f — Etif | < C|f Mi;;, 20

Thus we have

H f”As = Olk“ f UL,, + ” f ”j;;z, 20"

and the conelusion follows from lemma 2.2,

To prove the necessity, assume that (5.1) holds, let x €% be identically
1 on 2'<|E|<2, and suppose that y vanishes outside 4! << |E|<<4.
Write ¥.(&) = x(2—E). Since the operator on L,

f— h=(Ent) — Ed))yn * [
has norm

et & — el E)xatEi |,
we can find a function feL,, [f[, =1, so that
B (en(t; B) — elt; ©2LE) [, << 20— | (Bult) — Bty * £ [,
However ¢ « fe By ' and

|55 # f g n << C20m,

B

Thus by the definition of local FouriER multipliers we get from (5.1)

B edt; &) —e(t; B, < C2m

which gives (5.2) for qo = 1.
We shall also need
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THEOREM b.2. - Suppose (3.5) and (3.6) hold. Then a sufficient condition
for

(5.3) Ifls,<Clf UH;m

is that for some e > 0
(b.4) | o= | & —m™en(t; &) — e(t: &) HMP(Bh’ )= C,

where 0 <h <1, tel; and

By .={l|E"m<e].
(Note that (5.2) o = 1 implies (5.4)).
Proor. - We shall prove that
(5.5) [ tenit; ) — eft; EN[exp (— b |E™) — 1] fn, < C

for this implies (in the notation of section 2)

| Butif — B I, < O Gutlesf — [ s,

To prove (5.5) we note that (5.4) implies
ltextt; &) — e(t; Eplexp (P [E[") — 17 s, o <

< Ol W |[E1"exp (— R [E]") — 11~ [am, -
Using the invariance under homotheties, we see that it suffices to show
(5.6) e [exp(— [ &™) — 117t e M,(B:..).

But this follows from lemma 1.3. In fact, we have (by lemma 1.4)

1

E|{exp(—|EM)—1]= fexp (— 7| & |mdreFLyB, B
and

| E[~{exp(—[EM—1]=+0, EeBb.,
which gives (5.6).
Write
BY, = (E|W

€

Em=>¢e/2}.
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Then it remains to show
Ient; &) — et; ENiexp (— R |8 — 17 fapx ) < C.
Using (3.5) and (3.6) we see however that
len(t; & — e(t; D)l exp (— b [E]") — 1l ) =
< Cllexp(—=m[E[)— 1" umx)-
By the invariance under homotheties it suffices to show

6.7 [exp (— |E") — 1]~ e My(B)

But
[exp(—|E[" —1]7"'=—14[1 —exp|E "]

and from lemma 1.1 (or 1.4) it is easy to see that
(1 —exp| &[]~ & M,(B.).

Now (b.7) follows and theorem 5.2 proved

CorOLLARY D.1. - Suppose that either (5.2) or (5.4) holds. Then follows

(5'8) “f“/’\(js = Cﬁyq“ f"Bem-qa 0<b<1

Here Cy,, << CB(1 — g))—47,
(The estimate of the constant (3, can be improved for certain values of
qo and ¢, if (0.2) holds, by means of the results of HorLmsrepr [11], c.f.

remark 2.1.).

Proor. - Put T = Ext) — E). Then (3.3) and (3.4) gives
VT e, < C F i, -
Theorem H.1 and (2.13) (or theorem 5.2 and (2.10)) gives
L TF s, = OF 7
Using the interpolation lemma (lemma 2.1) we get
[ T1 e, << Co, A% [ f fi,ggm,g,

which is the desired inequality.
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‘We now proceed fo the converse of (b.1).

THEOREM D.3. - A sufficient condition for

(5'9) uf "Bm, © = C anAs’ m=s-v
P
is that there exists a number />0 and a sequence {,€l,, with h =12—,
such that
(5.10) Ient, & —e(t, EN' <Dy, n=1,2 ..,
for t=1¢, h=1.2-m,
Proor. - It is clear that
15 * 1 o, < O |(entty &) — et, E)H ] 7,

for all fel, and O0< h < 1. Thus if we take t =14, h=1.2-%», (ie.
b = 1'2—), we get

Q2 e, < Dub2== | s,  n=1, 2 .,

which gives the conclusion, since |0 x [ |, < C[f1s,.

REMARK. 5.2. - It is clear that we can replace the annulus U, = 2. Uy,
Ur={E|27' <|&| < 2"}, with the generalized annuli y*supp @* ®* satisfying
(2.17). In view of the equivalence of B,’ and By, ®* we get the same
conclusions in theorems 5.1 and 5.3. In theorem 5.3 we shall choose h = Iy—™.

ReMARK D.4. - A sufficient condition for the converse of (5.3), i.e. for
(5.11) If HH;m < CO[f ],
is that for every h there exists #,€ I, such that
|22 | €™ exp (— B | E["enlts; &) — eltr; B ug, < C.
This follows easily from (2.11), but we leave the details to the reader.

6. - Convergence of singular integrals.

Let I consist of one single point #, and suppose that E(fo) is the identity
operator; E(f)f = f. We shall suppose that E, = Eu(f,) is given by the function

en(lo, &) = K(hE).

Annali di Matematica 16
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If K is the FouriER transform of %, then K(hE) is, by (1.10} the FouUriEr
transform of h—?k(h—'x). Thus E: is given by the singular integral

Ef(x) = b j Eh—lyfe — yydy = J Eapfoe — hapdy.

&Y re

(c.f. BurzEr [6]).
Sinee M, is invariant under homotheties the condition (3.5) reduces to

KeM,.
Occasionally we shall assume that

for every annulus U, = [E|2~ < |E|<2r), 0 <r < oo,
First we shall apply theorems 4.1 and 4.2

Toeorem 6.1. - i) Suppose that Ke M, is continuous for €0 and

that there is a fanetion IL(£) such that for J =0, 1, 2, ... N, N>g,

(6.2) D\ h—o(K(hE) — 1) — L(§)) =0, h—0
uniformly on some anunnlus U,. Then A;3=0. If L& =0 on some open
set VC Uy we also have N, == 0,

ii) Suppose that K() == 1, 0 <!E| <e for some ¢ >0, that (6.1) holds
and that for J =0, 1, ..., N,

(6.3) DR (hE) — 1)~ — LE-Y =0, h—0

uniformly on every annulus U,. Then N, =0. If L&) =occ for all £40,
then A, = 0.

COROLLARY 6.1. -~ Suppose (6,1) and that either (6.2) or (6.3) holds for
every annulus U,, and that

(6.4) 0< L8| <eo, E0,

Then E, is a saturated approximation of the identity operator and the order
of the saturation is o,

Proor. - From (6.2) and lemma 1.2 we get L(f)e M,(U,, and

B | K(hE) — 11 > | L(E) [n -
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Thus, by theorem 4.1, A;==0. If L(§) =0 on some open set V, we conclude

lim h—c n K!\h.ﬁ) —1 HMPU/} feeed 0,

k=0

and thus, by remark 4.1, N, == 0.
If (6.3) holds and K() =1, 0 <|E| <e we get in the same way

he | (KhE) — 17 = | LB e

Here we have used that (K(h8) — 1)*e M, U, it h is sufficiently small.

on

This follows from lemma 1.3. In fact, since Ki§i— 1eFL(U,) r=h2"<¢
and K& — 10, for £ in the closure of U, we get (K& — 1) e FL,(U,) and
thus, by (1.17), (K(h§) — 1)1 € M,(U,).

By theorem 4.2 we now conclude No=0. If L) '=0 on all annuli
U,, we get by the same theorem, A, =0.

For the proof of corollary 6.1 we have only to note that if (6.4) holds,
then (6.2) and (6.3) are equivalent.
As an illustration we consider

ExaMpPLE 6.1. - Suppose that yo(u) is infinitely differentiable on O<u<4-oo
and satisfies

I xolu) — 1| << Cour—, O<u<l,
| Diyolw) | << Crur—1, J=1, 2, .., O<u<l,
| Do) | << Cru—F—1, 1<u <oco, J=0,1, 2, ...
Suppose that w,(u) is infinitely differentiable on 0 <u# <co and
w(u) = (log 1/u)y, 0<u<1/4,

w,(u) = (log 1/2)y, 1/2 < u < oo,

(6.5) K& =1+ [&]of & &l
Since uw,(u)yo(u) satisfies the assumptions of lemma 1.4 if «, > 0, we have

KEgFLl.
Now

h—oK(hE) — 1) = == | | (log 1/h | E otk [E]), O <R E|<1/4,
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so that (6.2) holds for p<<0, and (6.3) is satisfied for p =0, with the function
L) given by

oo if o>1

oo if p >0, c=1,
LH= 4 & if p=0, o=1,
0 if p<O, c=1,

0 if o<l
Consequently s =sup{o; A, =0} =1 and
A0, Ni2=0 if and only if ¢ <0,

A0, N: =0 if and only if p=0,

Ar=0, Ny=0 if and only if > 0.
In particular the approximation is saturated if and only if ¢ = 0.

It should be noted, however, that if A{ and N{ are defined by the
condifions

sup h—Ylog 1/h)=¢| Exf — f[le < oo, feL,,
e

lim h=Ylog 1/h)~¢|Eif — fls, =0,  feL,

s 40
then it follows from the proofs of theorems of theorems 4.1 and 4.2 that
Al =0, N{=0.

We now turn to the application of theorems 5.1 and 5.2 to the general
sitnation of this section.

THEOREM 6.2. - Suppose Ke M,. Then
(6.6) B;'C A,
if and only if for some ¢ >0

(6.7) HEEE — Diuy<= 0, O<r=<e
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If moreover for some ¢ > 0

6.8) HEFAR® — 1) sy < o
B.={E]]E]=¢]

then

(6.9) H)' S A,.

If (6.7) or (6.8) holds we have

(6.10) By © C A, 0<oxs,
(Continuous inclusions).

Proor. - For 0 <7 <oc and —oco <@g <+ oo we have by (1.17) and
lemma 1.2.

611) & P lageay = O

where the constant O depends on ¢ and the dimension. Thus, using (1.17)
we get from (6.7)

(h2 )~ | K(h8) — 1] < C| (b | )(K(BE) — 1) |p =
= C[IE[7&KE) — Dy < ¢

it # = h2"<<e. Thus theorem 5.1 gives (6.6). If conversely (6.6) holds we
must have

(h2 | KE) — 1], < C
and thus, by (6.11),
[ | ED—(KRE — 1] < O

Using agaie the invariance under homotheties we get (6.7).
If (6.8) holds we can use theorem 5 2, from which (6.9) follows immediately.
The inclusion (6.10) follows from corollary 5.1.

ReMarx 6.1. - Note that (6.10) holds only in the sense
b, <Colflpo, O<o<s.
P

Here (,=0(c~'s —o)'), ¢—>s according to corollary 5.1 (c.f however
remark 2.1). We also note that if (6.7) holds

UfHA,,éCHfHBg.L 0<o=s,

where C is independent of o.
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The following theorem is a slight generalization of one of the resunlts
in SHAPIRO [24].

THEOREM 6.3. - Suppose that there is a compact set I' not containing
the origin, such that for all £ e B¢, £ =0 there exists a positive number C
such that CZeTl. Assume that there is a neighbourhood O of I' such that
K e F1a(0) suppose

6.12) K& =+1, Eel,

Then
NfBBc,cogcﬂfHAc, O<so

P

where C is independent of o.

The set I' can, for example, be a surface which is homeomorphic to the
unit sphere |£| =1, provided that the interior of I' (which exists according
to JORDAN-BROWER’S separation theorem) does contain the origin. Note
also that the assumption on K can be relaxed. It suffices to assume that
K is on O the limit in M, of functions in ScHWARTZ class 8.

ProorF. - Since K& e&FLi0), KE&) is continuous on 0, because the
Fourier transform of an integrable fanction is continumous. Thms K& =1
on an open set () containing I. Now let ®*€D have support in Q and
sappose ®%E) =1, EeT'. We can also assume 0 << ®*E), and that O ¢ supp O*.
It is easy to see that there exists a nmumber y > 1, such that if £eT, n = g,
vl<<p<v, then @*) > 0. In fact, if this is not the case we can find a
sequence & el, v, =gk, vil < pn<<Y., where v,—>1, &%¥y,)=0. By
com, actness, we can pick out a subsequence n’, such that & —E& Thus
N = pabwr — & But £el' implies ®*E) =1 and thus ®*x,) =0 for all #
leads to a contradiction.

Now @* satiesfies the condition (2.17). In fact, take Ee B¢, E==0.
Then & = A%, for some & eT. Choose & so that y—! <<y—*A <<y. Then, accor-
ding to what we have just proved, y=* = y—*i - £, satisfies ®*y—*) > 0.

By theorem 5.3 and remark 5.3 we see that it suffices to show

(6.13) |(ERE) — U | supp &1y < D
for n =1, 2, ... and f = y—. But this is equivalen} to
(6.14) (K(&) — 1yt e M,(supp O%).

However Ki(i==1 on supp ®*. Moreover K()— 1€ FLy(supp ®*), because
supp ®* is contained in O and the constant functions are in FL.0). We
conclude from lemma 1.3 that (6.14) must hold, and the theorem is proved.
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As an illustration we shall apply theorems 6.2 and 6.3 to example 6.1.

ExampLE 6.2. - Define K by (65). Then
ETHEE — L =(dog !/ E ) ED,  O<|E]l<1/4
Supposing « =1 we get from lemma 1.5
[EV|DVEHEE — )| < Olog 1/ Elr,  O0< E|<1/4
so that for 0 < r < 1/8,

(6.1D) [EHKE — 1) nMP(Ur) =< C(log 1/7)p.

Therefore
[1EI-YKE) — 1)“1149,([},) =< C, O0<r<1/8

for p < 0. It follows that
B; ! (- Al s 4 = O

Using theorem 5.1 this inclusion can be improved, for p < 0. We have
Br*C A if p<—1/qh, qo<oo.

In fact, this follows from theorem 5.1 if we can prove

(6.16) T (W2 | KE) — 1 < C.

n2t<1p2
But according fo (6.11)

=
=

(h2)=H KRG — 1], = O]

“HK(E) — 1] M(Upgn) = C (log 1/h2™pe.

Since
1/4

Y (log 1/’h2")”‘; < Of (log 1/w)pqo'd_;’ < oo

52"’
<1j4 p

if pgs < — 1, we get (6.16).
For p =0 we have

[ E® — 1) = xllE]),  [E] <4k
If we suppose that o > 1, we have yo(|{))€ &, by lemma 1.4. Thus

*"‘E )_1(1((5) h 1) € Mp B1/4)-
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Thus for ¢ = 0
H CA,.

For p > 0 inclusion of this type are impossible, since we know from
example 6.1, that A, = 0. However, by (6.15) we have for 0 <s < 1

P E UK @) — Dy = 6, 0 <r < 1/4

and thus, by (6.11)
HETKE — Diswy = C.

Consequently we get from (6.10)
Br® S Ay, 0< o <1,

for all values of o, (¢ > 0).
Finally we see that the condition of theorem 6.3 is satisfied for any

value of p. Therefore
A S B>, 0<o.

For the set I' in theorem 6.3 we can take [£|=1r for any », O<r < 1/4 if
Xor) &= 0.
We have for p =0
hiE|exp(—h|E|)[KHE) — 117 = exp (— R E])xoh|E])L
Assuming for instance that y.(u) satisfies

Yolu) == 8 exp (— bu),

where 0 < 6 < 1, we see that
exXp (— u)(yo(u))™

satisfies the assumptions of lemma 1.4. Thus
7] exp (— RIEDIKTE) — 1]7 [u, < C.
For remark 5.4 we therefore get
AL S He, (o= 0)
We have proved that, under the assumptions above

Aang’OO,O<G<1,—OO<p<+OO,
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Ay=Bte, p<—1
BriC A C B, —1<p< —1/g,
A1:H;1, e =0,
Av=0, p>0.
A, =0, a>1, —co < p < + oo

For other examples, see BuTrzER [6], BUTZER-BERHENS (7], LOFSTROM [16]
and NESSEL [18]. See also section 10 below, where similar problems for FOURIER
geries are discussed.

7. - The rate of convergence of difference operators.

In this section we shall let E({) be the solution operator for the initial
value problem
ou
— = B4 0
1) at—{—P(D)u 0, ke B, 0 <t < oo,
| u=/f, xel? t=0.

We shall assume that the differential operator P(D) has constant coeffi-
cients and that the polynomial P(£) is homogenous of order m and positive
for £=0, i.e.

(7.2) tP(Z) = P(tmg).
It is easy to see that (7.1) is correctly posed, i.e.
(7.3) VE@f |z, = Clflz,,  0<i < oo
In fact, it is clear that E(#) is given by (3.2) with
(7.4) e(t, § = exp (— P() = exp (— P{V"g)).
By the invariance for homotheties (1.9) it suffices to prove
(7.5) exp (— PE)EF,.

This follows however from lemma 1.4, but it can also be proved by
means of lemma 1.1. In fact, since P£) is homogenous of order m and po-
sitive on £ =0,

(7.6) Az < PE < A7g]
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It follows
IDJ exp (— P(E))[ = CjeXp (—g lélm> ’

and thus by lemma 1.1, (7.5) follows.
The family E(f), 0 < { <oc form a strongly continuous semi-group of
operators on L,, i.e.

(7.7 Bt + s)f = ZE@s)),
(7.8 E@f -, {— 0.

(See Bururr-BrreNs [7]). This is true for 1 < p < oc. For p = oo the same
statement holds if we let Ly denote the space of confinuous funections f for
which f(x)— 0, |#| - oco. The infinitesimal generator of the semi-group E(f)
is — P(D).

We shall approximate the semi-group E(NEk), N=0, 1, 2, ..., (k = Ah~,
A given > 0) by means of a family of «discrete» semi-group EwNE), N =0,
1, 2, .., 0 < k<1, defined by

(7.9) Ewl)f @) = Z e(M)f(® + ah), k= Ih"

Here e¢,()) are given numbers, independent of A. The sum can be finite or
infinite. In the first case FE,(k) is called an explicit difference operator,
while it is called implicit in the second case. The function

wix, NEkY = E kXf(x)
is the solution of the discrete initial-value problem

wiw, Nk -+ k) = X e Nuxxe, Nk, xehrz?,

a

%h(m; O)Zf(m)9 mEh'ZdJ

where Z denotes the set of integers.
From (7.9) we get that Ky NE)f is given by (3.1) with
exl; 8)= 2 e,A)expi < a, hE >, k= \hm.
Put
PuE) = —k* log enk; E)
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We assume that P5) is well defined if A || is sufficiently small. Then
we see from (7.10) that

elt; §) = exp (—tPu(&),  Rh|E| small, fel,,
where

(7.11) I,=itt{= Nk, N=01, 2, ...},
Our condition (3.5) is equivalent to
(7.12) VEwky |z, = C|fz, N=1,2 .., 0<h<l

This means that k) is a stable difference operator on L,, (see Ricmr-
MYER-MorroN [24]). We shall not discuss this condition in detail, but refer
the reader to Strane [30]. TromAEr [31], [32], WIDLUND [34]. See however
theorem 8.1 below.

REMARK 7.1. - Most of the subsequent analysis carries over to the case
when the coefficients e,(A) depend on A too. In this case the stability condi-
tion (7.12) should be replaced by
(7.127 I Eh(k}NfuLp = CTufHLP, O<NE< T, O0<h<t
(Cr might tend to oo as T — oo). The set I, should then be defined by
(7.11") I,={t; t =Nk O < N< T/k\.

In our case, however the (7.12) and (7.12") are equivalent. In fact, (7.12')
implies with T'=1

leatke; &, < Ci, 0 < N <1/, 0<h<1.
But now esk; &) is a function of %« £ so by (1.9)
lesd; &)N)HMP =, 0< N < /%, 0<h <1,
with & = Ak~ Thus
lexd; &%, = Gy, 0<N<ceo,
From the invariance under homotheties we again get

leal; &Vu, = O, 0 < N< oo, O<h<1

which implies (7.12).
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DeriNITION 7.1. - We say that P,(5) approximates P(§) with degree s > 0, if
(7.13) Pi§) — PE) = k| E T QhE),

where @ is infinitely differentiable on 0 <|§| < ¢y and has bounded deriva-
tives there. The approximation is of order exactly s, if, in addition

(7.14) Q&) = Qo> 0, 0<E]<eo.

REMARK 7.2, - The conditions of the definition can easily be formulated
in terms of the functions ef; &) and e(f; £). In fact, P4&) approximates P(E)
with degree exactly s, if and only if

ewle; & — elk; £) = kh*|& "t R(hE),

where k= Ah™ for some 2 >0, and R is infinitely differentiable and has
bounded derivatives for £ == 0 aud, for some &; > 0,

[RE)=Ro>0, 0< E<e;.

Before we apply our general theorems to this situation we give an example.

Exaumpre 7.1. - Consider the initial value problem

ou  Fu L
ﬁ“—'ax—z—o, xER, 0<t<00,

(7.15)
u=f, x e R, 1 =0.

The clearly P(§)=[& % Let us approximate the equation with the diffe-
rence equation

wile; ¢4 k) — w(e; £)  08%uae; ¢ E) + (1 — 0)8%u4x; £
(7.16) > = 72 4

where £ = Nk, k= 2h% 0 <6 <1 and

Srunw; ) = uulae + h; §) — 2unlxe; 6) - usle — h; £).
Thus

u(e; -+ k) = Eluse; §),
where
k) — 1 == MBE k) - 1 — 6)32,

Fourier transforming bot sides of (7.16) we get

. 1— 41 — 6)sin?hg2
elks = T Gismrhee

k= Xh2
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For 0< 8 < 1, Exk) is an implicit difference operator, but for 6 =0 it
is explicit;
Exl)f (@) = f(x) + 23 (x), (0 =0).
It is easy to see that

leak; )] <1,  0<|hE] <2m,
if and only if

(7.17) 21 — 20) < 1.

Thus Fyk) is a stable difference operator on L, if (7.17) holds. It ean
be proved (for instance by means of the stability theorem by Srraxe [30]),
that £y(k) is stable on L, (1 < p < oo) if (7.17) holds. See also theorem 8.1
below. This is easy to see directly for 6 = 0, because then [,(k) means con-
volution with a measure with total mass 1. By (1.11) therefore have

Cedk; Oy <1, N=0,1,..,0<h<1.

An easy calculation will show that

Pyl — PE) = — ;15 log exke; &) — 1&{2 =

- omwggdf@ + 121(@ _ %)) FORHES), RO
Therefore P,£) approximates P(¢) with order

s=2 if 1+12>\(e_%):4:o,

s=4 if 1+121(9__;)=o.

(This exawmple is borrowed from RicurMyYEr-MorTON [25]).
We now return to the general ecase.

THEOREM 7.1. - Suppose that P&) approximates P(§) with degree exactly
s and suppose Euk) is a stable on L,. Define I, by (7.11). Then L) is a
saturated approximation of E({) and s is the order of the saturation.
Moreover
Ang;’co, 0<o=<s,

with equivalent norms.
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ReMark 7.3. - Our theorem is a refinement of a result (valid also for
variable coefficients) by Prrrre-Tmomir [24]. They proved the inclusion
Bo' S A;. For the particular initial-value problem (7.15), HEpsrroM [9),
proved the inclusion H°C A,, 0 < 0 < s (p = o). HEDSTROM also showed
the existence of a function f, in H;, for which f, ¢ A;, T > 0. Recently
HepsTROM’S results were generalized by WiDLUND [35] to parabolic systems
with variable coefficients. However WIDLUND’S result holds for intervals
I-which are bounded away from the origin. In the special case considered
here our result is therefore sharper, since the origin is a limit point of our
interval I,, as h—>0. We also work with the space Bgm, which is larger
than H?. We can also prove the converse inclusion A, & B2,

ReMaRK 7.4, - Our proof carries over to more general parabolic initial-
value problems than (7.1) (non-homogenous P) and also to certain systems,
but we must insist on constant coefficients. We can also treat the case when
the coetficients e,(A) in (7.9) depends on k. The unbounded interval 0 < i< oo
must then be replaced by an interval 0 <<t < 7, (c.f. remark 7.1). In case
of systems, Px€) and P(f) are matrices. The remark 7.2 and theorem 7.1 holds
true under the extra assumption that Pu£) and P(E) commute.

Proor or THEOREM 7.1. - We begin by proving

(7.18) I (B2~ edt; &) —elt; B. = C,

h2™<e

for tel,, 0 < h < 1 and ¢ sufficiently small. By theorem 5.1 and corollary
5.1 this shows
s, = Ocﬁflfsg,OO, 0<o<s.

(Here C,<Co*, according to remark 5.1).
We need the following lemmata.

Lumma 7.1. - There are constants B and B such that
(7.19) lexp (— tPE)]. = B exp (— Bi2™).
Proor or LEmMaA 7.1. - By formula (1.17) we see that

lexp (— ‘tP(g})”Mp(Ur) =|exp (— P§)) HMP(U,), ¢ = {Um2n
But since
|E)V | D7 exp (— PE)| < Crexp (— Arm)

for 2-%r < E| <2% we get from lemma 1.2

lexp (— P() HMP(U,) < Cexp (— A1),
which proves (7.19).
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Leuma 7.2. - Suppose that H() is a homogenons fanction of order m,
which is infinitely differentiable and positive for £ #= 0. Then

(7.20) VH @) oy = Cr.

Proor or Lemma 7.2. - By (1.17) we have
VH ),y = | HOE) oy = 7 HE) g0y

and since by lemma 1.2 H(E)e M (U,) the conclusion follows.

LemMA 7.3. - Suppose that f(§)e M,(U,,). Then

exp (&) e MU,
and
lexp f(E)[» < exp | £(E)]».

Proor or LEMMA 7.3. - The conclusion follows at once from the series
expansion

exp F() = (&),

I b4g

L
=0 J!
We now proceed with the proof of (7.18). Write

(7.21) eit; € — e(t; &) = exp (— tP(E)exp (th*|E[QRE)) — 1],

and
1

(7.22)  exp(th’|E|HQRE) — 1 = t|E|"(h|E| P QRE) f expr(t|Z["(h | E| Y QE)dr

By lemma 7.2 (or (6.11)) we have

1£1Em]. < Ct2mm
and

IR 1] ]. = Ch2my.

By the assumptions on @ and lemma 1.2

(7.283) | Qe = Q{g}ﬂMP(Uth) = G, hir < e, 2e << gy,
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Using lemma 7.3 we therefore get

1

” f exp (rt| £ ["(h|E| )y QhE)dr

0

I
=
11

1 1
= f exp (rA2=~(h2\dr < f exp (rdesi2»™dr
0 0
and therefore

(7.24) | exp (th |2 " QhE) — 1], <

< C{2»m(h27s f exp (rdet2rmydr <<

0

= Ce—(h2(exp (dei2"™) — 1).
From (7.21) and lemma 7.1 we therefore get
(27~ ex(t; &) —elt; O] =
<= Ue~* exp (— Bi2»™)(exp (desi2"m) — 1).
Now we choose ¢ so small that

B — 4ee=(C> 0,
and then we get
(W27 ealt; E) — elt; B, =

< Ce~{exp (— C12"") — exp (— Bi2"")).
Thus
I (h27enld; B) —elt; B) =

r2"<e

< Ce— X [exp(— Ci*™) — exp (— Bi2"")]| =

r2M<ze

o]
= OE—SI [exp (— Ctx™) — exp (— Btm"‘)]%zf =

0

o0
= (e f fexp (— Cy) — exp (— By)] %}Q
0

Since the integral converges we get (7.18).
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The next step in the proof is to show that for N=)2-1U—" B =12-",
t,= Nk = 2—™,

(1.25) leatt; &) — elt; &)< CI—
for n =1, 2, .... From this inequality we get by theorem 5.3, that
ﬂfﬂgg-w =< O fla,, 0< o< co.
But if (7.25) holds for all possible I > ), we also get

lim inf P |(est; &) — e(t; O) '], =

150 €1

= lim (12-")ent; &) — e(f; &) . << 02—,

I 0
1==Nk
k=2

Thus theorem 4.2 shows that N, =0 and since we have already proved
A, =0, we conclude that the approximation is saturated of order s.
It remains to prove (7.25). First we note that

l(eatt; &) — e(t; BN =

< |exp tPE .| (exp (| 1" QhE) — 1)],.
With ¢ = Nk = 2~ we get from lemma 7.

lexp iPE)|. = |exp P)]: = C.
By the invariance for homotheties (1.17)

l(exp (th*

E[rHQME) — 1)7 = [exp ([T QUE) — D |1
Now the assumptions on Q shows that the function
(exp (1 [E[+Q(g) — 1)~
is infinitely differentiable on 4—' < [£] < 4, if 4.1 < &, and
(7.26) | DY(exp (i |E["HQUE) — 1| < Cui—.

But now lemma 1.2 gives the desired inequality. This concludes the proof.

REMARK 7.5. - 1t is clear that the theorem holds also in the following
slightly more general case; let P() be any homogenuous function of order
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m > 0, which is infinitely differentiable and positive for 3= 0. Suppose that
PyD) is any operator approximating P(D) with order exactly s and assume
that the operator

W Nk) = exp (- NEPWD))

is stable, in the sense that
lexp (— NEP (&) u, < C, N=0, 1, .., O0<h<l1.

Untill now we have supposed that P() is positive for £ == 0 and homoge-
nous of order me > 0. This fact led to the estimate

lexp (— tPE)]. < exp (— Ai2"m),

which was very essential in the proof of theorem 7.1. If we assume only
that (7.1) is correctly posed on L,:

(7.27) lexp (— tP())

MPSC, O< i<

(c.f. (7.3)), then the proof of theorem 7.1 does not work. In the rest of this
section we shall suppose that P() is homogenous of order m, but not neces-
sarily positive outside the origin. We shall also suppose that (7.27) holds.
We assume that P,E) approximates P(¢) with order order exactly s in the
sense of definition 7.1. If F, is stable it is possible to prove {(see theorem
4.2 in PeETRE-THOMER [24]),

(7.28) | Bty — E)f]:, < Cthe ;+ | Do,

|2 <imetos

In view of (7.28) it is natural to consider the space A, 4, cerresponding
to the norm

Vflag.o = Ifle, + sup ket Eyd)f — EQ@)f|., =
0<h<1

€1y

=, + 2= sup  N=OR=CHm|Byk)f — EE)T],,
0<h<L

Ne=1,2, ...

where as usual k= Ah”., Here 0=<<0, 0 < a. Note that A, o, = A,.
We have

(7.29) A,e=0 if o+0bm>s4 m
For if feA,, 6 4+ 0m > s+ m we get with t =%

|Eil)f — E®)f |z, = o(hetm).
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Now the argument that led to (7.26) also shows that

s

Erte Q) — 11y < Gl

[ §exp (At

Therefore
Wtr|ienk; ) — elk; H i <

< 2"tm)exp LmP{)!

L I fexp (M | Q) — 117 < .

Now apply theorem 4.2 with I, = {fy', Eito) = Euk) — Ek), E(fy) = 0.
This gives f= 0.

In a similar way we get
(7.30) Ag =0 if o> s

In fact, for a fixed ¢, say { = 1, we have

| Es(1)f — E()f |, = o(h).
Buf it is easy to see that for h =17.2—, [ small
Pliedl; H)—e(l; 57 [n = Ca.

Thus, by theorem 4.2, f = 0.

THEOREM 7.2. - Suppose that P() is homogenous of order m, and that
(7.1) is correctly posed. Assume that P) approximates P() with order (exa-
ctly, s and that Ek) is stable. Then for 0 <o <s, 0 - m =5 4+ m

(7.31) H+m S A,
Proor. - We shall preve

M
4
K]

(7.52) |4~th—o

—+Xey't; 2) — e(t; E))“MP(B}L, J= C,

lf B},,E:{i

197 | &

m+:<el. By the proof of theorem 5.2 this gives
Ient; ©) — elt; lexp (— 1%k Emt) — 1172y, < C,

which immediately leads to (7.31).
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To prove (7.32) we note that (7.21), (7.22) and the correctness of the ini.
tial value problem gives

[ 0h—o | & |~ (mtXe,(t; &) — e(t; &)

1

< (Op—h—o n Q(hz) nMp[Bh, E}] exp rib B { £ im'f'sQ(kE) BMP(Bh, E)d?‘

0

Mo(Br, o) =

But ¢ = ANk so that é€ Bs,, implies (B]%|)"+ < eh—ON—0 << ed—0. If ¢ is
small enough we conclude
| B3, 0 < C.

If ¢ is sufficiently small
BN 2 ayim, ) S IxCEDE P,

where x(u) is infinitely differentiable on —oc<u < 4 co, y(u) =1 for
u < 1 and y(u) =0 for « > 1. Using lemma 1.4 on the function ¢(u) = u™+A(u)
we conclude
x(ED1Em e M.
Thus follows
[i=0h—2 & |"H(ent; & — elt, E-))HMP(B;I.E) =

1

< C#—Op—o f exp rdi*—0hs—ady.

o

However #'—%—0 = }'—%N'—% and 6 =1+ (s—o)/m=>1. We conclude
thet (7.32) holds.

CorOLLARY 7.2. - Let (7.1) be correctly posed and P¢) be homogenous
of order m > 0. Assume that E,(k) is stable and P,¢) approximates P(§) with
order exactly s. Then for 0o <0s, 0 <o+ O < s -4 m,

Aoo = Botime
’ P

Proor. - Let T be operator Eu(f) — E(f). Then we know from the stabi-
lity that T maps L, continuously into L, with norm M, < C. Put

v = (o + 8m)/(s -+ m), 6o = v~lg, 8o = v—10,

Then 0 < o0,=< s since (s -+ m)o = s{c -} Om), and oo 4 Bym = s 4 m. Thus
we get from theorem 7.2 that T' maps H ¢+™ into L, with norm M,<Olfh=.
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From the interpolation lemma 2.1 follows that T' maps B:(+m):% = Bo+om
into L, with norm M < Cpbhvoe = Cfohe. This proves

Brtom® C A, .

To prove the converse inolusion it suffices in view of theorem 5.3 and
remark to show

beoleat; %) — eft; B )< CL—

for t =2, h=1{.2, n=1, 2, .... But since £% =270 <1 this follows
immediately from (7.25).

COROLLARY 7.3. - Suppose that P() is homogenous of order m and posi-
tive outside £ =0. Let E,k) be stable and assume that P, approximates
P with order exactly s. Then for 0< o <s, O0<o4Om<s+m

Ag g = B;‘l‘e’"'oo.
Proor. - The operator T = E,{) — E(¢) maps Bz (or L, if ¢==0) into
L, with norm M,< Che (0= ¢ < 5). This follows from theorem 7.1. By theo-
rem 7.2, T maps H t+ into L, with norm M, =< Ct%°, m? =m + s —o.
Thus, by interpolation (remark 2.2), 7 maps BrotC—mC+m. into L, with
M < Chott—m9%, Since o + (1 — n,6m = no - (1 — n)(s + m), we conclude

B;+6""°°QAU,9, 0<o=<3s 0<o-bm<s+ m.

The converse inequality follows from the proof of corollary 7.2.
To illustrate the corollaries, consider a (o, O)~plane (fig. 1).

b |
{8,1) A

(0,0) (s0) o

fig. 1
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In the triangle A; we have complete infarmation on A, ,, if we know
only that the initial value problem is correctly posed and P() homogenous.
On A; we know that Bot+m» C A, 4. This follows from the proof of corollary
7.2. It in addition P¢) is positiv for £==0 then we have a complete
description of A, 4 on A;, too.

We shall conclude this section with a few remarks concerning the rela-
tion between the steplength % in the {-direction and the steplength % in the
«space direction». Above we considered only the case £ = Ah™, where X is a
fixed constant. Now we shall let X be a fanction of k. Since we do not want
to discuss the question of stability in the general L, case, we consider only
Ly-norm. Let us first look at a simple example.

Consider again the initial value problem (7.14) and the difference schema
(7.16), but now with 2 = Ah—2 = A(h). Then

1 — 4x1 — ) sin? B%/2

o By e
exk; 3) = 1 4+4X8sin? h52 7

0<6<1,

and thus we have stability in L, if and only if 2X(1 — 20) <1. If we suppose

that X = A(h) = + oo, >0 we get 82%, which conversely garantees sta-
bility in L,. Pat

PYE) = — k' log exlk; %),

Expanding P)¢) in TAYLOR series for « small, we get

(7.38) P — i = 11325.4(8 — % b A4 G(WEZ)) ,
where 4 == 0.

Inspired by this example we consider now the initial value problem (7.1),
with P(}) homogenous of order m and positive for £=3=0. Let euk; %) be the
symbol for a stable difference schema, with k= Ah", A = Ah)=> oo, h—> 0.
Suppose that P = P, satisfies

(7.3D) PiE) — PE =i By [EmQh, &),
where
(7.36) Qh, 5 = 2 QA1) + OOR[E ).

Here @, is a polynomial, @¢0)== 0. In our example we have g, =0 if
6 > 1/2 and qO::I if 0 =1,2.
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Now it is clear that we can repeate the proof of theorem 7.1. For { = Nk
we have
lexp (— IP}(E) — exp (— IPE) | =

< Ce—'Ah2*(exp (— {B2"") — exp (— {42*™),
it A2 < ¢. Thus
z (Me2ry— exp (— EPXE) — exp (— tPE) ], < Ce?

ARS 25
and therefore theorem 5.1 gives

|Exd)f — E (Of |, < ON[f

'B;’ o,

and by interpolation
(1.37) VEwid)f — Ed)fl, < O £ gy 0,

for 0<n=<1.
For the converse of (7.37) we can use the same argument as in the
proof of theorem 7.1. Take § = 2—= Al~wh* = 2=, Then for 2"—! < [| < 28

lexp (— tAR|Z] )y

ErQh, 3)— 1<
= C(irM—oh2ry2rm—t << Cl—s.
if 1 is sufficiently small. Thus theorem 5.3 gives
(7.38) Hf|]B:?s.oo£ C sup A—nl—adp—ss|| Byt)f — Eb)f|z,,
and we also see that

lim A=0—wh—| Eityr — B, =0,

k-0
implies f = 0.
Taking A = h— we gel in particular

B & Ay, 0< vy =1,
and conversely

Ay © Bp»®, O <y =1

In our example we have s =2 and qo=0if 6> 1/2, go=1 if 1 =1,2
and thus for 0<n =1, 0<v <2

A‘Tl(2~v) = Béﬂ‘m; > 1/2,

Asy © B ® C Ay, 6= 1/2,
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8. Stability of function of P,D) and P(D).

As an introduction we discuss the following d-dimensional analogue of
example 7.1. Consider the equation

du < Qu

= — PDu=% — t>0
at ( )u j=law]-2’ > H
u:fy £=O’

where xe R% Then P(f)=|£|% Define the difference operator Eik) by the
relation
d

FUE) — Dutw, = 5 O+ (L — ) oo,

j==

where 0 << 0<C1 and
Biglac) = glw + he;) — 29(x) + glx — hey).
Here ¢; is the j{h unit vector
e = (By, «, Og)

Then, with the notation of section 7

ke

%(eh(k, B —1)= ' (Bep(l, &) + (1 — 8))%sin2 hEi/2,
Je=1
and hence

d
1 — 401 — 6) = sin? kE/2
j=1

elk; &)= yi ) k= AR,
144X % sin? h§/2
j=1

Consequently we can write

1 d

ek; B) = f(—- S sin? h&,-/2),

d j:l

with
1 — 4d\(1 — B
M) =— 1 ggme, > 0=0=t
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Writing

Hn) = L Py = Linpe

() =5 Ply) = —{7]
and
sin hE/2 = (sin hE:/ 2, ..., sin hE./2),
we get
Pif) = — k' log ex(l; &) = — k= log f(H (sin h§/2)).

Note that
8.1) sup H(sin /2) = 1.

This is the starting point of this section. We shall assume that Py§) is a
function of the particular form

(8.2) Py(E) = — k— log f(H(sin kE/2),
where H(v), W = ()1, .., % is homogenous of order m > 0, positive and

infinitely differentiable for % =3=0. We shall suppose that H is normalized
by the condition (8.1). We shall study the stability of the operator

exp(—tPyD), {=Nk N=0, 1,

rer sy

defined by
(§ exp (— tPyD)g)E) = exp (— tP:(E)g"E)-

This means that we shall give conditions on the funection f, which suffices
for

| exp (— tPh('g‘)ﬂMp << C, t = NE, O0<h<l.

However we shall also consider more general functions of PyD) than
the exponential function. Thus we shall give conditions on f and ¢, such that

(8.3) o(tPyD))
is stable in L,. The operator (8.3) is defined in the natural way:

(Fe(tPUD)GIE) = ¢(tPuENG"(®),

and the stability of (8.3) in L, means

| 9 PEN a0, < C.
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Before carrying out the program indicated above we note that lemma 1.4
implies the stability of the operator

P(tP(D)),

provided that ¢(u) is infinitely differentiable on 0 < # < oo and satisfies

(8.4) [ o(u) — 9(0) | << Cou, O<u<t
(8.5) |pu)| << Cou—?, 1<u<oo,
(8.6) | DVo(u) | << C;min (uo—!, u—8), O<u<oo

for J=1, 2, ... Here «, 8> 0.
We now proceed to the study of the stability of the operator o({{Py(D)).
We shall prove two results. The first one concerns the case

¢(x) = exp (— x),
and
t = NE, N=1, 2 .., k=
Then
et Py D)) = f(H(sin hD/2))".

In case H is a polynomial, this operator is a difference operator and our
first result reduces in this case to a stability theorem of the type used in
section 7.
In our second theorem, ¢ is «arbitrary». Note that ¢ has to be defined
on the set
{#; 2= —tlogflu)}.

If we suppose |f(u)| =<1, which we shall do, this is a subsef of {#; Re2=0].
But if we assume that f is non-negative, the function — log f(u) is non-
negative. Thus it suffices to define ¢ on fhe positive real axis. We shall
assume that / is positive in our second theorem. However we shall have no
restriction on #; ¢ runs through the entire positive axis.

‘We now present our two results,

ToeoreM 8.1. - Let Puf) be defined by (8.2), where H is normalized by
(8.1), and assume that f is infinitely differentiable on 0 <u <1 and has
bounded derivatives there, that f(0) = 1 and

8.7 | f(u)| << exp (— Bu), O<u<l,
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where & > 0. Then
8.8) | exp (— NEPA(E) [u, < C.

for N=0,1,2, ..and O<h<1.

THEOREM 8.2. - Suppose that Pi) is defined by (8.2) and H, [ satisfy
the assumptions of theorem 8.1. Assume in addition that f(u) >0, O <<u <1,
and that

| p(u) — 9(0) | << Con?
| Do(u) | << Crw

for some « > (0. Then
8.9) [ 9tPE)]w, <0, O<t<oo, O<h<l

Theorem 8.1 is similar to the (one dimensional) stability theorem by
StraNG [30]. For difference operators the result follows from the general
stability theory developed by WIDLUND [34] and others. We shall present an
independent proof, based on the theory of interpolation spaces. This techni-
que will also be used in the proof of theorem 8.2, which does not follow
from the ordinary stability theory.

Before we prove our theorems let us however return to the introductory
example of this section. Then

flu) = : _1 ﬁ(j‘lﬁk—e—:)uo <u<l, (0<b<1).
Clearly
fu) =1 ——1%g 1 —bu<e™ O<u<l

with

3= —-———4'd>\ .

14 dane

Moreover

— f(u)<e™™

if and only if e 4- f(1) =0 i.e.

4dx
e —3
1—|—4d16£1+e for some &> 0

i.e.
4dx

15 dan <%
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This gives
(8.10) 2dM(1 — 28) < 1.

It follows that
|fu) <exp(—2du), O<u=<l

it and only if (8.10) holds. Thus (8.10) is a sufficient condition for stability
of the operator

f(HsinhD/2)Y, O<h<l, N=1,2, ...

We also see that flu)>0, 0 <<wu =<1 if and only if

rﬁ% < 1, 0 < U == 1
ie.
4dA {
154008 <
This gives
&.11) 4dM1 —0) < 1

and we get from theorem 8.2, that (8.10) and (8.11) are sufficient for the
stability of the operafor

p(— P D)), O<h<l, O<t <oo,
where ¢ satisfies the assumptions of theorem 8.2. and
— kPyD) = log {(H(sin hD/2)).

REMARK 8.1. - It can be proved that we have stability in the extremal
case
(8.12) 2dM1 — 20) =1,

(c.f. example 7.1). This does not follow directly from theorem 8.1, because
(f1) = 1, when (8.12) holds. Note however that in this example

;} sin?§;/2 = 1 — H(cos §/2).

Jrem

H(sin £/2) =

Q| -

—

Note also that the translation invariance of M, gives

(8.13) [ 1(H(sin§/2)" |, = | [(H(cos E/2))" |, = [ (1 — H(sin §/2)}¥ 31, -
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If (8.12) holds, |f(1 —u)|=<<exp{—&u), O <u<1/2 and |[(u)| < exp (— du),
0 <u < 1/2. Thus we can write f(u) = folu) + Hi(u), where fou) and fi(1 — u)
satisfies the assumptions of theorem 8.1. From (8.13) it follows then easily
that (8.8) holds also in the extremal case (8.12), (c.f. THOMEE [32], STRANG [30]).

For the proof of our theorems we shall need some auxiliary discussions
and lemmata. The technique in the proof resembles the one used in PEETRE
(20! and LoFsTrROM [16].

Clearly it suffices to prove (8.8) and (8.9) for p=1. In view of the
invariance for homotheties it is also enough to consider h=1. We shall
therefore consider

G(8) = 9(tP1(§) = ¢(— th~" log f(H(sin §/2))).

The @., being a periodic function, is the FoURIER ftransform of a measure
of the form
Z G, B,f) = f(a).
agz?
Now (1.11) shows that
CAPESIS
Let @, be the standard functions in the definition of the Bmsov spaces,
and write
Gl = D)@
Put
G )=20G% expi<a, E>.

According to remark 2.3 we write

+v°° ;
HG” ” 3 ‘I[T ] - 25 ” Gt kHL [Td]
We have
Lzmma 8.1, - For any £> 0 we have
(8.14) | G* | < Ci) G, I 4j2. 1y
and consequently
| G ”MP < Ci| G, Héczi/z, Lzdp? 1<<p<oo.

Proor. - We shall prove (8.14). The fechnique is very similar fo the
one used in lemma 1.1. We have
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D G028 |G, <

2/ o/t agZ
< G| Gu il y79)-
Since Gi .30 only if 2-'|a| <2*<2]|a| and
=400
G = a7
—o

we conclude

G =0 Z z |G| <
< Pliglc/ ]l 2 gl<ob<oia) ’
<029 3 Gl e

jea e 2 by

The conclusion now follows since

“+x
2 F|<C & 2% % | G|y, <

a j=—0w 2R 2

40
<3.20Cs 2 299 Gl
—0

We now introduce two auxiliary spaces X and X%, defined by the norm

loke=( | o fvtgdu)

and the semi-norm
L
lgle= 2 [w="mgtw) s,

respectively. Here

as. d 3
(8.15) i) = f [grad H(sin €/2)] ~ du f *

H{sin £j2)<u

The first integral means integration over the surface

T, H(8in&/2) = u, Ee T4

It is clear that
1

f | g(H (sin £/2)) [2dE = f | glu) Pro(u)du.
74

¢
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Using lemma 1.5 and the fact that

| D’H(sin £/2) | << CvH(sin £/2)(n—/)im,
we conclude

| Dig(H(sin E/2)) | < Cu 5 (H(sin £/2)"n . g(H(sin £/2).
K=1

Therefore
u DLg(H(Sln 6/2)) “Lled] é

= 0 3 | (Hsin /205051 (H(sin &/2)], s, =

L
= 0 3 us—tingt )
K=1

[K = C; "g”XL

Let us write

| g(H(sin £/2) |z, = max | Dig(H(sin &/2)],

where the maximum is taken over all derivatives DY of order L. Then we
have showed

Lemuma 8.2. - The linear operator S, defined by
(Sg)® = g(H (sin £/2)),

maps X into Ly[T¢ and X! into H3T4, continuously.

By means of the two space X and X, we shall now construct a new
space X»7. This will be done by means of the following general device.

Let Ao, and 4; be two (semi-)normed spaces, continuously imbedded in
a topological vector space. Put

K(r, g; Ao, 4)= inf ((gols+ r]gi ) g€ do+ 4,

g=¢ot81
J(’I", g; AO: Al) = maX ‘“g []Aw r[]gl[Al), g€ AO N Al-
Then we construct a new (semi-)normed space (4o, A1)p,, (0<0<1, 1<<Tg=o0)
defined by each one of the equivalent (semi-)norms

e o]

1
([, g3 a0, apr ),
0

-0
(3 (2*K(@2™, g; 4o, AN,

k=—00



152 J. LOFSTROM: Besov spaces in theory of approximation

jse)

inf( f (=8I (r, glr); Ao, Ay d—:>

¢

g

<infimum over all g(r) such that g _—:fg(r)%? in Ao -+ A;),
g

4o
inf{ T (20, g,; Ao, 40N,

[/ R—

o0
(infimum over all g, such that g= 2 g, in 4o 4).
-==20

The spaces (4o, 4i)s,, have the following interpolation property: If T is a
bounded linear operator from 4, into B, with norm M, and from 4. info
By with norm M,, then T maps (4o, 41, into (By, Bi,, with norm M, and

My < My™"M1,
(see PEETRE [19], [20]).
Now we define X~¢ by

Xt = (X, X8)y1, 4, O<s< L, 1 <<q=oco.

One can show by means of the so called stability theorem for inferpolation
spaces (see PEETRE [17], [18]) that X*¢ is independent of L.
From the infterpolation property we now get

CoROLLARY 8.1. - Let 8 be the linear operator defined in lemma 8.2.
Then S is a bounded operator from X+*¢ into B;‘T?]. In particular we have
| G. ”Ml = Cll g ”Xd/Z» 1y

if
gdw) = o(— tr7" log f(u)),

G(8) = ¢(tP:(Q),
P\§) = — tA=" log f(H(sin £/2)).

Proor. - The corollary follows immediately if we can show

BT = LfTY,  H (T,

In the R’-case this is proved in PEETRE [20], but the proof carries over to
our situation. Since we return to related questions in section 10 we prefer
to postpone the proof to that section. The reader is thus referred to section 10.1.
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Before we can start proving our theorcms we have to estimate the weight
w(u), given by (8.15). We shall only need an estimate when u is small. Note

however that
i

(8.16) fw(u)du = fd& < oo,
6 i

LeMmA 8.3. - Suppose that w(u) is given by (8.15). Then

4

(8.17) wu) = Cur ", 0<u<1/2
Proor. - According to (8.15) we have

ds,
win) = f | grad H(sin £/2)

Since H is homogenous we have
|sin £/2 " << CH(sin§/2) = Cu
on the surface Z,: H(sin £/2) = u. Using that the derivatives

0

Hn) = %H("I)

are homogenous of order m — 1 and never vanishes simultanously, we get

m—1

s

5 (cos E/2(Hysin £/2)p = CH(sin £/2) ™.

1

Z]

| grad H(sin £/2) ? =

|
i

J

Congequently

m—1

| grad H(sin£/2)| =Cu ", E€Z,,

provided u < 1/2. Therefore we get

However
d—1

deug Cum, O<uc<l/2

The reader will easily supply the details in the proof of this fact. Then the
estimate (8.17) follows.
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For conveniance we shall write

d
W) = wn avou),
where according to
wo(u) < C, O<u<1/2.

Clearly wo(u) is integrable over the interval 0 < u < 1, (see (8.16)).

Proor oF THEOREM 8.1, ~ We write { = Nk == N, since k= A", h = 1.
‘We shall use corollary 8.1. We write

u) = flu)¥

and our proof will consist of the decomposition of gy into a sum of two
functions gy and gm, depending on # and », such that

(8.18) N gaox < Cmin (1, 77+92),
(8.19) rENCE=Din | gy, || < Cmin (1, r™+42),

with L>m—]—g.

As soon as these inequalities are proved, theorem 8.1 follows easilv. Write
K(r, g) = K(r, g; X, X%. Then (8.18) and (8.20) implies

N K(N—Hwl, gy) < Cmin (1, #m+42),

According to the definition of the space X%*' we get

K 1d
191" de/z 2 = :d/ZSL?N ® =@=N —Hmyt)

I fooNdlz’” K(N-HmgL | gy) Cﬁ'

yii? r =

0

m+d/2
gOLf_—mmln @Y ¢ <o
¥

Using corollary 8.1 we now get the conclusion of theorem 8.1.
It remains to define gn and gy and to prove (8.18) and (8.19). Let x be
infinitely differentiable and such that
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y(u) =1, u < 1/4,
x(u) = 0, u>1/2

0 yu)< L.
We now define

o) = X, (lf—,?-) (gn(w) — 1),
gt ={1 —¢ (T)) gatw— 1) + 1,

for O <r< 1. For r=1 we write

Govo(t) = gn(u),

gm(u) = O:

We leave to the reader to verify that (8.18) holds in case r =1, and con-
centrate on the case 0 <7 < 1. The argument needed in the case r =1 is

similar to the one used below.
We shall prove (3.18) for 0 <r < 1. By condition (8.7) we have

(8.20) | ga(u) — 1] = | f)¥ — 1| < 1 — exp (— Nou) < Cs(Nus).

Therefore, using (8.20),

12
L gwolx < C&% (Nup - wdm—lwyuydu | < CN—dmpmtae,

oulr P anN

which gives (8.18).

To prove (8.19) we have to estimate the derivatives D¥gy, M =1, ...

By Lrisnitz’ rule we get

(8.21) D¥gr = o — gu — jil Cu, x¥x,
where
(8.22) Po(u) = ( 1 X(%‘)) g (u),
M
.23) i) = (1) 20 () gt — )

8.24) Delt) = (g)xx‘“ (5 ) m.

, L.
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Now condition (8.7) gives
(8.25) | D/gn(u) | = | D’f(uN | << C;N exp (— 3Nu).
Thus we have

[ ¥ Hmpo(ue) [ <

1/2
< CNMg f eXp (— 28 Nu)udlmH+a2—Din—lyy (1) dy § / =

M AN<u <1

= C'NM§ f u?mi+d2—=Lyn—lgy + exp (— NB) %1/2
rMAN<Cu<C1/2
Consequently
[ =) << O ( NU—iimpmebitpt g1 i

< ONUE—d2)jm | prtdfe—L
provided that L > m 4 d/2, r < 1.
In the same way we get

12

b=ty t) | < GNMr—Mm§ f (| gatn) = L | w="m Fro(udu

r’”/4Ngugrm/2N

< CNN,',‘—Mm

12
(N’& . uM—L/m)Qud/m—ldus é

Y N 2N
= ONUE—d2)m , pmtdz—L
and similarly
| wH=Eim ) ”X < ONU—4j2)jmpmtdf—L

This gives (8.19) and theorem 8.1 is proved.

REMARK 8.2, - The construction of gw and gy and the proof of (8.18)
and (8.19) is analogous to the proof of theorem 4.4 in LorstroM [16] and
theorem 2.2 in PEETRE [20].

Proor or THEOREM 8.2. - Since f(u) is positive for 0 << u << 1, we have
by (8.7)

(8.26) Su << — log f(u) < pu, O<<u<l,
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for some p. Moreover, log f(u) is infinitely ditferentiable on 0 <u <1, and
has bounded derivatives there.
Put

gdu) = ¢(— ¢ log f(u)).
Without loss of generality we can assume that ¢(0) = 0, and
(8.27) | D/olu) | << Cus~

Then, using lemma 1.5, (8.26) and (8.27)

7 7
| D/gu) | << C Z | &) —tlog flu) | << C 2 (tupu*
Kol K—=1

and therefore
| DYgfw) | << C(tu)*u.

Let x be the function used in the proof of theorem 8.1 and put

tw

gnlut) =¥, (;,‘n) g{u),

ot = (1 — (7))t

\

for 0 < v <min(1; £). Then

- 12
P gl < C’édfz’”% j (tu)“u‘ﬂm*lwo{u)du% < Cramtd?,
0<ur™ |2
As in the proof of theorem 8.1 we write

M—=1

DMgu = 4)0 B &PM - K§1 CM, Kq)K

where the functions ¢;, J=20. 1, ..,, M are defined by formulas (8.22), (8.23)
and (8.24). However we replace N by ¢ and gs(u) — 1 by g{u). We have
J(d2—L)jm ” uM=Eind) o) |y <

1/2

=

< cmz—wmg f (e o2 Ly (gl

T et

1/2
< 0; {d—2L)jm f (tu)Zau—ZL/m-i—d/m—ld,u 4 t(Zam—}-d-—ZL)/m} / <
rfacu<1{2

S Cram—{—d/Z—L
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since 0 <y < { and L> g+ am. Similarly

#a2—L)jm | yM—Lind () ”X < Qpomtdp—L

for 1 < K< M and therefore
P glae < Cramier,

for 0 < r* < min(l, ¥.
In the case < 1, t < 7™ < oo we take

guo(u) = g{u),

galu) = O)
and then we easily get

19427 giox < C min (1, remti2),

It remains to define go and g for r > 1, when {> 1. We put
gulw) = (tu)g(w),
gu(u) = (1 — x(tu))gw).

Then the calculations above shows that

| gnlx = O

and
ger=tin | ga [ < C.

We have proved that
{df2m ” g ”X < Cmin (1’ r%m+d/1)’

rLd=Din | gy v < € min (1, r2ete i),

Using the same argument as in the proof of theorem 8.1 we see that
theorem 8.2 follows.
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9. - Rate of convergence of funetions of PuD).

In this section we shall study the rate of convergence of the operator

Ex(l) = o(tPi(D)),
to the operator
E(ty = o(¢P(D)).

‘We shall assume that En(f) and H(f) are stable, in the sense that

(9.1) loPuE) |, < C, 0 <h <1, tel,
9.2) loPENy, < O, te,
where

I=1{t; 0<t<col.

We assume that P(f) is homogenous of order m > 0 positive and infinitely

differentiable for & 4= 0. We suppose that Py£) is positive for § =0 and that

PyD) approximates P(D) of order exactly s, in the sense of definition 7.1.
We shall prove the following analogue of theorem 7.1.

THEOREM 9.1. - Assume that Eif) and E(f) are stable and that PyD)
approximates P(D) with degree exactly s. Suppose moreover that ¢ satisfies

9.3) | D/yl)| << C; min (x~/, =)
for J=1,2, ... N{, N > g, and «, § > 0, and that
9.4 [9'0)} > 0.

Then E() is a saturated approximation of E(f) with order s and the corre-
sponding LIPSCHITZ spaces A, satisfy

AJ:B;‘”, 0<o=<s.

Proor. - The proof is parallel to the proof of theorem 7.1, so we shall
only indicate the main steps in the proof.
First we prove
A, 2B>®, 0<o<s,
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using theorem 5.1 and corollary 5.1. Thus we shall prove

(9.6) I 27mh |t PiE) — (P €D | < C,

K2
for 0 <t < oo, 0 < h < 1. We reeall that
Pi) — PE) = k| §|™QhT),
where Q(n) is infinitely differentiable and bounded for 0 < |%| < e. Conse-

quently we have
i

I PAE) — S(UP(E) = {PyE) — P(E) f o (th—S,(hE))dr

)
where
S/(hE) = P(hE) + r( PyE) — P(E)) =P (hE) + r( |E| )+ Q(RE).

As in the proof of theorem 7.1 we get for h2" < ¢, ¢ small

[ p(tPHE)) — (¢ P (8))]n << Ci2"(h2"y f |’ (th="S,(hE)) | dr.

By lemma 1.2 we see that

| th— S{REN | < C sup sup | |E /D7 (th= SRE)|.
! =2 g |can b2 0TV
since
(9.6) 1&%“4[ DMS(hE)| << Oyl |E|™ << Cue™.

Now by (9.3)
| =S RE) | < Ci min {(th="S{REN—E—T; (th= S RE) =K1},
If ¢ is small enough
| S(hE)| = Clh|E| i — Det) = C'(h2nyr
for £€ U,,. Using this estimate and (9.6) (for M = 0), we get
©.7) | QU Eh= S, (RE)| < Ci min {(#2)e=; (827)—F=1| (2.
It follows that for e U,,, h2" < ¢

|E1Y| DIy (¢h—mS(RE)| < C; min {({2m)e=; (20—},
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and therefore
loPuE)l. < C(2™)(h2™y min { ({21 (E2rm)—F—1)
for h2" < e, e small. This gives

Z (W29 et PuE) — ¢tPE)]. <

h2 Mg

= C Z ({2) min (({2»)e-1; (2N <

[e ] xR
< Of(tm’" min ((fam)e—?,; (tmmr@—l)%: Cfmin {c*; x“ﬁ)%c.
0 0

The integral is finite if «, § > 0.
Next we prove that lor { = t2-"" h =12 (z, [ small), we have

9.8) 1ot Pu®) — o((PEN} < Cr™i—, n=1, 2, ... .
From this inequality follows

AGQB;"’OO,O<U,

and that the approximation is saturated of order s.
Now for t = v"2—, h = I2-" we have

IPW(E) = tP(E) + th* |E| " QhE) = P (x:2-"E) + b2~ | E|y+Q2E).
Thus we have (using (1.17)),
1 (P wE) — otP (&)} . =
= [ { (P (x&) + v& [§[ " QUIE) — (P (8)} s
However, the conditions on @ shows that for 1 sufficiently small

H(E|QuEy—h < C.
Thus

H{oEPAE) — StPEY} ] <

- w1 £ Q)
= o nao(P(rE)+»cmlfl&lm+sa(15>>—-<p<P(ra>

.
1
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Now for £e U,
| B[ Que)
PRE) + | £ " QUE) — 9(P ()

it = and [ sufficiently small, since
[9'0)| = C > 0.
By induction il is also easy to show that

| E| s QIE)

AP F |8 U= P | S O =0 L B E T

R
if = and ! are sufficiently small. Thus, by lemma 1.2,

H | B QUE)
o(P(E) + w0 | § [ "HQUE) — 9(P () |

This gives
1 9lPyE) — @tPE)) ], < Co i

if {=wl~, h=12"" and < and ! are small enough. This is what we
wanted to prove.
As an application we give

CoroLLARY 9.1. - Suppose that P.D) is the infinitesimal generator of a
strongly confinuous semi-group E;{§) on L,, which is uniformly bounded.

Sappose moreover that P,(D) approximates P(D) with order exactly s.
Let Ri(n) and R{p) be the resolvents of P.(D) and P(D), respectivety, i.e.

Ri(p) = (n + Pu(D))~
R = (1 + P(D)~
Write
1 1
Fit)=; B (t) = (1 4+ tPyD)~

1

Fi)= R G-) = (1 + tP(D)".

Then Fu{f) is a saturated approximation of F(f) with order s and the
corresponding LIPSCHITZ spaces A, satisfy

AG:Bg’w,0<G£8.
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Proor. - From our assumptions we deduce that
H‘Rh(p')fan = OOI*_IH/:]\LI,: > 07
B flz, < Cup™tlf]s,, 0> 0.

This follows immediately from the formulas

Rh(}x)f:fe*l“Eh(t)fdt,

R(uf = f e~V E(bfdt, E() = oxp (— tP(D),

(See i.g. BurzER-BERENS [7]). Thus
th(t)f“Lp = OO“f"LP; 0<t<oo,

1FBOf|e, < Cilf]z,, 0 <f<oo.
Now
Fyt) = 9(tPw), F(t) = «(tP (D)
where
o(x) = (1 + a)~*.

This function clearly satisfies the assnmptions of theorem 9.1. Therefore
the conclusion follows.

10. - Convergenee of summation methods for Fourier series.

Until now we have considered L, [R¢. In this section we shall discuss
operator on L,[T9, where T¢ is the d-dimensional torus. In doing so we il-
lustrate how the methods used above carry over to Fourier series, (c.f.
remark 1.1 and 2.1). We shall discuss operators E, on L, = L,[T?], defined by

Eifey=02m)~" ¥ exp (¢ <z, £ >)e5)f"(),
tgz?
where
@ = f exp (i, <wm, £>)f(x)de.

i
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The function ex(§) will be of the particular form

en§) = o(hP (),

where ¢ is a given fanction on the positive real line and P(§) is again a
homogeneous fancticn of order m > 0. We assume that P(§, is defined for
Ee R? £+ 0 and that P(§) is infinitely differentiable and positive for § == 0.
We shall cousider two questions; fhe first one is the question of stabi-
lity i.e.
1E:f |z, = Clifls,, 0 <h.

The second one is the question of the rate of convergence of E,f to f.
We wanf to characterize the space of all function fe L,, such that

VFof — [, = Ohs), k= 0.

These two questions are closely related, as we have shown above. The
object is fo carry out an analysis similar to the one developed in LOFSTROM
[16], PEETRE [20] and in section 6 in this work. This section has two parts.
In the first one we consider the question of stability, in the second one we
deal with the rate of convergence.

10.1. - Stability theorems.

We shall denote by m, the space of Fourier multipliers on L, = L,[T"].
Thus m, is defined by

1o * Flz, <19 1 1,

and ¢"&), £e€Z? are the Fourier coefficients of ¢. The stability in L, of an
operator Euf given by (Eif)"(§) = e.§)f"(§) is clearly equivalent fo

nehnm < C.

P

Most of the facts about multipliers on L,[E? carry over to the m,-spaces.
In pacticular m, is a BavacH algebra under pointwise multiplication. We
define the space /, by means of the norm

lgl, =C 2 |g@o)F, 1 <p <o)

¥4
Then ms =l and m; S m, & m,. Clearly

(10.1) [ < [Wha =[P4y
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and lemma 8.1 shows
(10.2) [Ty = Ca] W) 5,02 1r4.

We define the local muliiplier spaces m,(V) in analogy with definition
of M (V). Thus
(10.3) 12 = inf "]~

(V) P!

where the infimum is taken over all xYem,, such that WY =" on the
finite subset V of Z<.

We shall now establish the analogue of lemma 1.2 for the local multi-
plier spaces m,(U,), where U, is the annulus 27r < |§]| < 2r, £€ Z° The role
of the differential operator D in lemma 1.2 will be played by the difference
operator A = A% .. A%, a =(a, .., ag), where

2,9(8) = g€ + &) — g(8).

Here ¢; is ths unif vector (3;, ..., 8). If g(§) are the Eourier coefficients
of the function g*), then A%g(f) are the Fouries coefficients of

d
I (exp (— i) — 1)ig*(e)

Je=1

Motivated by this formula we define the operator |A| by saying that
|A|g@) are the Fourier coefficients of the function

d
(3 lexp (—ia)— 1[5¥%w) = 2| sins | g,
J.‘.—_—
where we write
) , & 2_ ;l, . % z
lsmé = ,-:1 (8111—2—) .
Note that
(10.4) [A]2 =A% 4+ ... + A%

If g is a function defined on R? we shall write ge&l, or gem,, if the
restriotion of g to Z¢, belongs to 7, or m,. If g is sufficiently differentiable,
then Alg can be estimated by the corresponding derivative D'g. In fact, we
have

(10.5) |A%g(5)| < Cr sap, | D€ + )|, SeZ”.

neR?
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It is clearly sufficient to prove this for L = 1 in the one-dimensional case.
But then (10.5) is obvious.

Before we formulate our basic result on local mulfipliers, let us also
write down the analogue of LmrBNirz’ formula for differentialion of a pro-
duct. We define the translation operator 1* by t* =1x ... 1% and

59(8) = g€ + ¢).
It AL denotes any difference operator of order L, we then have

(106) ALfg = X OL, M(AL_M‘EMf)AMg.
M<<L

Lemma 10.1, - Let L be an even integer larger than d/2 and let U, be
the annulus 2= < |E| < 2r, E€Z?. Then

(10.7) |9y =< Cal sup  |g®[)~¥* max  sup  |E[¥]AYg(E)]| Y

4l g | tr =ML 4=l § 1<t

In particular

(10.8) lglm@w,y < Cs max sup  |§]M|AMg(E)|.

0<M<L 4~1r§| £ <dr

Proor. - By means of CAUCHY-SCHWARZ inequality and PARSEVAL’S
relation we get, just as in the proof of lemma 1.2

(10.9) [ lgwlas= ca—ejagl, 1> a2,
i gin ; ! =1
(10.10) [ lgwiass caeigl.
sin = ‘ e
| <
Now write

lglis = max [A%g],.
Then if L is even we get from (10.4)

AT gl =< Clglit-
Therefore (10.9) and (10.10) give, combined with (10.1)

“g“"'x = Gdr—dlz(“-gﬂlz—l" TL“g“ﬁsL),
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for all r > 0. Taking the infimum over all » > 0 we conclude

4j2L

(10.11) 190w < Callgls ™ gl

It remain to localize (10.11). Let y be an infinitely differentiable function
on the real line, which is identically 1 on 2= =<<u < 2 and vanishes outside
41 < u < 4. Then

[glmw) =[Flm,
if
WE) = x(r—E1g(®).

Now LeiBNiTz' formula and (10.5) gives

AT 0 B sup DG )] | Ag(H)| <

I ML 'r,eRd

= 7 max r¥L|AMgE)|, 4 < || <= 4r.
1M=L

But it easily seen that
Z 1 =<0l

adrar| & |car

In fact, for small values of r there is nothing to prove. But if r is large,
then the sum is smaller than the volume of the annulus 8-'# < |7| <8,
n € B¢, which is of the order »¢. Thus

| Wiz < Car®®=t max ( sup  [E]¥|AYg(E)]).

l=M<L =L & <ar
In a similar way

| Wly < Car®®( sup  [g() ).

= bt <ar

Now (10.7) follows immediately from (10.11), and it is clear that (10.8)
follows from (10.7).

ReMARK 10.1. - Let ¢4%) be the standard functions in the definition of
the Besov spaces Bj ‘[T, i.e. suppose that ¢,(n) = p12—*), where ¢E&) is in-
finitely differentiable, supported by 2-! < |E| <2 and positive on 2-' < [E| < 2.
Then we get from the proof of lemma 10.1

(10.12) H CP;Q i = C.

By means of (10.12) we can now complete the proof of corollary 81. We
can show

(10.13) By [T = (L[ T, Hy{T)z, ,-
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For the convenience of the reader we shall briefly sketch the proof.
From (10.12) we get

(10.14) [D*¢ ] ry < Ci28%,
(10.15) I D) —2er]| yyrdy = 025,
Suppose now that g = go -+ g,. T'hen (10.12) and (10.15) give
l9; # gol,ire = Clgo] 2,174,

lop # grlrry =< O2=*gnla s
Thus
[ % glurn < OK@H, g5 LT, HJTY),
and therefore
(LJAT4, H{T)e. , S By [T,

The converse ineclusion follows from (10.14), since

" l F
Ioix glizry = 02 B Jobts » gloirs,
which implies

. 1 "
J@, g; LT, HITD<C T |oby» gl

el

Now we are ready to prove two theorems on the stability of the operator
E,, defined by

Eifw)=@2r)~ X ¢RPE)"E) exp (@ <w, E>),

tgzd

where P () is homogenous of order m > 0, infinitely differentiable and posi-
tive on R?/{0}. Our first theorem is analogous to lemma 14,

TreEorEM 10.1. - Let ¢ be infinitely differentiable and suppose that
[p() — ¢(0)| < Cou, 0 <m <1,
lom)| < Cout, 1 <u < oo,
| DIy < Cru= min (u*, u8), 0 <u < oo,

for J=1, 2, .... Here « and § are positive numbers. Then E, is stable in
LP? 1S-p£00, i.e.
le BPE)|m < C, 0 < h < oco.
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Proor. - It is no restriction to assume that «(0)= 0. Let b be a large
number. Then (10.1) gives

lohPE) | me=m= I |ohP(&),.

1€ |<2b
Now the sum on the right hand side is bounded by

Co X min (hPE)*, (hP(E)~*),

&<
which is clearly uniformly bounded in O < 2 < oo. Thus it remains to show
leRPE)|mgi=n = 0, 0 <h <oo.
But this follows if we prove

(10.16} kE HQO(hP(E» Hmz(Uzk) =0

2k=p

Now the estimate (10.8) of lemma 10.1 and (10.5) give

[¢APE) | mwn = Cs max sup  [E{M| DMy P(E + ).
O ML Zk“zgi £ ]S2k+2
[ql=<L

By lemma 1.5 we have

| DYMPE+ < Cn E  PEF ) ="rh! [¢ORPE + )| <

1<J=<M

< OuP G+ =" min (BPE + ), (APE+ )9,

(c.f. section 8 and the proof of lemma 1.4). If |E| is large and |v| <L, then
there is a constant 4 > O so that

A E[P S PE4 ) < 4|
Thus we get

H (P(hl) {g)) ﬂ my {(Usk) = C min ((hzmk)a 3 (hgmk)——ﬁ)’

for 2F =1, if b sufficiently large. Now (10.16) follows and the proof is com-
plete.
The proof of theorem 10.1 also gives

CoroLLARY 10.1. - Suppose that ¢ is infinitely differentiable on the
positive real line and

incp(u)l = 0]%""], J = O, 1, vee s
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Then for all r> 0
“:P(hP(E)) n m(U,) < C.

Simple functions satisfying the assumptions of theorem 10.1 are
o(u) = u* exp (— zu), Rez >0, 0 =0,
o) = u—Hexp (—eu) — 1), Rez >0, 0 < < 1,
o(u) = uxl 4 uyr, 0=a <vy.

Clearly any infinitety differentiable function on the real line, which has
compact support, also satisfies the assumptions of theorem 10.1.
In our next theorem we shall weaken the condition of ¢ at infimity.

TuEoREM 10.2. - Let ¢ be infinitely differentiable on the real line and
let ¢ vanish in a neighbourhood of the origin. Assume

| D/w)l < Cu—8, J=0, 1, 2, ...,

for some B, such that
B> dlip—t— 21,
Then
B PEN]m, < C, 0 <h < co.

Proor. - Suppose that ¢(u) vanishes for v < 1. We shall first prove the
result for p = 1, using the estimate (10.7) of lemma 10.1.

As in the proof of theorem 10.1 we see that it suffices to show

E | @hPE)|mun = C,

2k
where b is a large fixed number. Now if is clear that

max lohPE)] < C(h2F—E,

2k~2£! £ 1£2k+2
To estimate
sup [E[¥|AYpPE)], 1 = M < L,
2

22t | <2

we use again (10.5). Thus we see that it suffices to estimate

sup [E|M[ DB P (§ -+ m)'.

21:——2£i £ %Szk—{-z
|ni<L
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But clearly

| D" hPE+ )< COu T PG+ n)/~Mh/|gVNRPE + 7)| <

l<gJ<<M
< CihM"(h P E + n)y—""hPE + )P,
since hP(§ 4 v) = 1. Thus we conclude that if 2* >, b sufficiently large, then

sup S| AMRPE)] < Culh2")E,

ok § | <okt
and thus lemma 10.1 gives

(10.17) ;

oh P£) ” my(Uy,) < Clh2riy— G4 | 2% =,
Noting that we must have h2"* =¢ > 0, we get

E o0l Emuy =C - Z (b2,

2k=p 2pmE—(

The sum on the right hand side is bounded if 8> d/2 and thus the
conclusion follows in the case p = 1.

To prove the theorem in its general form we note that RiEsz interpola-
tion theorem gives

(10.18) lgl, <lgllols",  p=1+42-9, oO0=<n<1
Thus
(10.18) 19 by < 19 T L9 by, -

However m; = I, and so
” zp(hP(E)) nmz(Uzk) = G(h2Mk)_B

Consequently (10.17) and (10.18) show
” Pk P(E» “’"P(ng) = G(hzm‘f‘)"(?'d{f’“lz—ln.

The gives the conclusion for 1 <p <2, and since m, =m, for p—'=1—p—!
the conclusion follows in this full generality.

The result in theorem 10.2 was proved by WainNGer [33] for the special
function ¢(u) = u—F exp (fu), u > 1, and with PE)=||", 0 <m << 1. WAINGER
also proved that in this case the lower bound for § is the best possible. The
analogue of theorem 10.2 does also hold in L,[R?. This has been proved
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by SsosTRAND [27], by the same technique as we have used here. By taking
ofu) = u—f exp (iu), P§) = [E|™, SI6STRAND proved, that on L, (R it is not
possible to improve the lower bound for § if m == 1.

The theorems 10.t and 10.2 we have considered a funetion ¢, which is
«irregular» at O and oo. Now we shall consides the case when ¢ is irregu-
lar in a certain sense in a point #,, 0 <u; << oo. Since we want to consi-
der the RiEsz’ mean operator B%, given by

(10.19) @)@ = (1 — hPERLE),

we want to include the funciion

p) = (1 —u) .

TrEOorEM 10.3, - Suppose lhat ¢ is infinitely differentiable on u == u,,
(0 < u3 << oo) and has compact support on 0 < # < co. Assume

| D7ow)| = Crlu — ur|*~, u == u.,
for J=0, 1, 2, ..., for some «, such that
(10.20) @ > (d— 1)|p=t — 2],

Then
Je(hPEN |, < C, 0 < b < o0

Clearly we can write (1 —u)?% as the sum of two functions ¢, and v,

where ¢, is infinitely differentiable and has compact support on the real
line and ¢; satisfies the assumptious of theorem 10.3. Thus we get from
theorem 10.1 and theorem 10.3.

CororraRy 10.2. - The RiEszZ mean operator #¢ given by (10.19) is
stable in L, if (10.20) holds.

The corollary was proved by StEIN [29] for P(§) = |£|% SrEIN also
proved that the lJower bound for « can not be improved if P(§) =[{|? and p = 1.

We also note that the corollary in its general form also follows from
the work of SpaN~E [28], who used the results of HORMANDER [13] and [13').

In the proof of theorem 10.3 we can nof use lemma 10.1, but we shall
another (more refined) consequence of the estimates (10.9) and (10.10).

Let x be infinitely differentiable on the real line and let y vanish out-
side the interval 2! < u < 2. Put

W) = (2k

. T .
sin 5 ), xe T,
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‘We can assume that

T Wix)=1, =0, ye T.
Put
Wyw) = Wipnfx), k>0,

IIJ'Q(%) =1 — 1:20 wk(m).

where k, is a large integer, which we shall choose in the proof of fheorem
10.3. It is easy to see that

(10.21) [ARWAY gy < 025,
and
(10.22} H (I A I’_ 1}?;‘;‘)” HM]{TGI] é 02'“ .

We now define BEsov space by ¢ by

(o]

lglis o= 2 @[ Wi« glye.

k=0

We also define the space k, by

lgl = max lsogs,.

Then by ¢ can be given as an interpolation space:
(10.28) byt =(l,, My, 4, 0<s <L, 1<g <oo,

This follows from (10.21) and (10.22) just as in the proof of (10.13) in
remark 10.1. In particular, it is easy to see that

(10.24) ][gﬂz;;-q = OfT_SKTL, g; 1, h;)%r =
ko
e
= OJ r~WK@¥h-t, g; 1,, Iiz) Ug
n2%

The substitute for lemma 10.1. which we shall need in the proof of
theorem 10.3 is the following lemma,
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TLemma 10.2. - We have
(10.25) lgln = Clglige
and if ¢7'>p' — 271 =0, 2 < ¢ < oo, then
(10.26) 191, = Clgi e .

(c.f. the theorems of BERNSTEIN and HIRSCHMAN in PEETRE [20)).

Proor or Lemma 10.2. - Let g = go + ¢1 and apply (10.9) and (10.10) to
the functions W} = go and W} # g1. With » = 2% we gef

[Wh e gla, < O3C4H02 K (@140, gi Ly, W)

and thus (10.25) follows from (10.23). Now the interpolation property (see
section 8) gives

(1027) (looy ‘glz’ 1)0, q - (""2; 'ml)e, g = 2/Q'

We shall prove

(10.28) (M2, M)y, , & W,
and
(10.29) b S (U, B e

This clearly gives the conclusion.
To prove (10.28) suppose

W

g= « g:-
Then (10.18) gives

[gln, = T 2% gu -n@H g m)0 <

= X 2= J @2k, gi; ma, my), pt =1 4+ /2,
where

J(2%, gi; ma, m1) = max (|gem, 2% gilm)

(c.f. section 8). Thus (s, m1), 1 & m,. But it is easily see that mi, & m,
implies

(W2, M)y, , S (M2, M)y, 1, M <0,

Thus (10.28) follows,



]. LoFsTROM: Besov spaces in theory of approximation 175

To prove (10.29) we write g, = W)+ g. Then

1
lgslsgn 1< C2 3 WLy, g,
J

A1

and thus, by the interpolation property

1

1940 g 3% Do, o =< C29092 T Wiy, = g,

j=—1

for 0 = 2/q. This follows from the well-known fact that
(ZOO, lZ)G, g — lpv b= 2/Q'

But now (10.29) follows at once and the proof is complete.

{The proof of lemma 10.2 is a word by word transcription of the corre-
sponding proof for multipliers on L, (B¢ in PEETRE [20]).

We are now ready for the proof of theorem 10.3.

Proor or TarOREM 10.3. - For simplicity we take u;=1. It snffices
to prove the theorem for m — 1. In fact, suppose that the theorem is true in
this case and let ¢ satisfy the assumptions. Write o¢.(u) = @(u") and Pf) =
= P(E)Y", where P is a given homogenous function of order m. Then P, has
order 1 and @(hP(E) = ¢.(h'/"Py(E)). But is quite easy to see that if ¢ has compact
support on 0 < # < oo and satisfies the assumptions of the theorem, then 6,
has the same properties. Thus the theorem for m =1 gives the conclusion
for ¢(hP&)).

Take m = u; = 1. By lemma 10.2 and (10.24) it suffices to show

(10.30) f = IhA K (- h—r) %’ <0 O<h<oo

Ak

where 4 = 2% is a large costant, and
K(s)=K(s, ol E); 1y, k).

If we want fto show the conclusion of the theorem for p =1 we shall
take 22 > d—1 and ¢ = 2, thus using (10.25). If we want to get the result
for 1<p =<2 we take g-a>d—1, ¢' > p~' — 2! and use (10.26).

Note that K(s) is defined by

K(th=) = inf (|gofs, + r*h=" 1] is),
where we take infimum over all ¢o and @1 such that

(10.31) o(hP () = ¢olf) + #1(8).
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Want we have to do is therefore to define a decomposition (10.31), which
is near the optimal one and then try to show (10.30).

First take ¢i(§) = 0. Let ¢ be supported by the set a < u <5, 0<a<
<1< b < oo). Then we get

Keth-hy<=C X 1 W< CO % 1 )
asshP(E)<b a’<ch| & |<cb’
where a’ and b’ are suitable constants. Thus we get (as in the proof of
lemma 10.1),
K(@rih—rt) < Ch—dl
and so
r—dahie K (rth—t) < Cr—e,

Consequently we get (10.30) if h is large, and in any case we see that
it suffices to let & and r be small, but still » > 45.
Write
hP(E —1
oo = 1 [T 4P ),

710 =(1—x (212 snr o)

where y is infinitely differentiable and
xw =1, |u| <1/4,

x(w) =0, !u} < 1/2.
Then
il < O S 1 Pt Ora+apen,
[RP{E)— (<2
since the sum is bounded by the volume of {7|vneR¢, |Pn)— h™'| < 2r/h]
if r/h =4, and A is sufficiently large.
To estimate ¢ i We write

o(n) = <1 — ¥ (hu— 1)) ¢(hu).

r

Then
hu—1
r

oot = 1= (B2 o —

huw — 1\ u
— B CurhI (‘3‘7— W= = g — B s

1=SJ<<M J=1
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Clearly w(P (&) = 2x(&). Now (10.5) gives
| Mo(PE)| < (. sup |[D*o(P(E+ 7))

[mi=L
and by lemma 1.5

ID'o(PE+ )| = 0, X PE+ D" ol(PE+ )<

1M=L
<0 2 PEHp"" 2 Jou_dlE+ ).
I<M<L 0 J=M

Thus we see that it suffices to estimate the norms

Ny={ s {PE A+ ) oug(PE 4 )] ]7i e
aChP(E+)<b
uniformly in [y =L, 0<J< M<L.
Olearly
No < C{E{PE+ g B hPE+m) — 1| o")r) <
< OBH[Z P E 4 ) — 1),
summation over the set . < -7 »I": 4w — 1|, a< hPE4--"=b, EeZ’.

This set has a large distance to tke origin, i.e. |Z| is large, because h—! and
rh— are large number. But it is easy to see that

(10.32) \hP(x)— 1|= ClhP(®)—1]

if |t is large, 00— <<D and |P(x)— 1|=A4h/4. If we wpnply (10.32) to
=0, t={E-+1), where |6 —£|<<1/2 and |£]| is sufficiently large, we get

(WPE+ ) — 1| =C[hPe)— 1],
if |RP(E 4+ ) —1|=r/4 Thus

|hPE 4 —1]|-l—a < C f |hP(5) — 1|~1—) dg.
lo—E£ <12

It is clear that there is a number Co >0 so that the union of the spheres
lo—¢&| < 1/2, where £€Z¢ and |[hP (E+ n)— 1| = Ar/4, is contained in the
set Cor < |hPo)— 1|, ce R?. Thus easily

Ny < (/hL( j |RP(c) — 1|=sti—2) dc)llq =<
Cors<) WP (o)1

< Q'hi—dapo—(a—) jo+da—L

it (L. — &) > d.
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The norms N,, 1 <J <M are estimated in a similar way. We have

N,< Or— z {PE 4 gt hDE 4+ m) — 12— a1l <
7| BP (S )1 <2
ashP (Em)=b

< OWy—4 S 1 Y
HAhP (§n)— <2

The number of points £e€Z¢, such that r/4h < |PE - v)— b1 < r/2h is
bounded by the volume of a set of the form C—'r/h <|PE — b= Cr/h,
ce B¢ if r/h = 4, A sufficiently large. Thus

N, < Chi—dapa—{d—1)p+djo—L,

We conclude
loi1] it = Chi—dapo—(d—Dlatdig—L
q

and so
r=dahHi K (r*h—t) < Cro—td—Djg,

This gives the desired bound for the remaining part of the integral (10.30).
The proof is complete.

10.2. - On the rate of convergence.
We shall denote by D,(P) the domain in L, = L,[79 of the operator
P(D) given by
(LD E) = PEME).
The space H,(P) is a BANACH space with the graph norm
1o, =1lz, + 1 PD)f s, -
‘We denote by Hi(P) the interpolation space
H;;(P):(Lp’ Dp(P))l,oc-

The norm on Hji(P) is equivalent to

\f

wyey = |z, + Sup = | Gof — [z,
where the operator G,(h) is given by

(GAMF)'E) = exp (— WL E)FE)
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By theorem 10.1 we see that G,h) is a uniformly bounded, strongly
continuuuns semi-group on L,. For 1 < p < oc we have

Hi(P)= D,P).

(These facts follows from general theorems on semi-groups of operators on
a BANAOH space, see BUrzER-BERENS [7], LorsTROM [16]).

By means of the so called stability theorem in interpolation theory (see
PEETRE [19)), we get

(Lp, Hy(P)ym.q = By = B, "[T°.

for 0<s <, 1=<qg <oo. We also note that B,’ can be defined by means
of moduli of continuity, as in section 2. Put

wylt, )= sup |(Ts — 1]z,
[hi=t
Tuf () = f(x + R).

For s=L+a, 0 < a< 1 we have fe B,? if and only if

1

o ,
D'feL,, J<L and ( /(M)q% oo
o

and for s= L 4 1 we have fe B;! if and only if
1

; 2 L /
/ (“"”“}f f)y d_;) -

D’feL,, J<L and (

b/

From general theorems on semi-groups of operators (see BUTZER-BERENS

[7], LorstroM [16] and PEETRE [19]), we also get that the norm on B>* is
equivalent to each ome of the norms

(10.26) 1], + sup B | @h)f —[lr,, 0< o <1,
(10.27) 1z, + sup W PG5, 0 < o < 1.

After these preliminary remarks we are ready to discuss the rate of con-
vergence of the operator E, to the identity operator. Here K, is given by

(Ef)' () = 2B P ENE)
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We shall assume throughout this section that E; in stable in L,, i.e.
| Eif |z, = Clf]z,-

As in the previous sections we write
I7ls, =01, + sup B[ Ef — [,
0<h<1

TeeoreM 10.4. - Supp»rse that K, is stable in L,. Assume 9(3) =1 and
let u'p(u) — 1) satisty the assumptions of corollary 10.1 in a neighborhood
of the origin. Then

(10.28) B;”’l C Ay,
and
(10.29) Bg’"’oo C A, 0<o <.

If in addition ¢'(0) <=0, then
(10.30) A, & B, 0<o.
Proor. - 1t is easy to see that
VP E vy < C207, Uy = {207 = [§| = 201

Thus corollary 10.1 gives

ohP(E) — 1
WP

h=12=m | o(h P (§) — 1mwm = C ”

m(Ugn) = c,

if B2 < e, e sufficiently small. But now theorem 5.1 gives (10.28) and
(10.29) follows by interpolation.

If ¢'(0) =0 then wu(p(u) — 1)~' satisfies the assumptions of corollary 10.1
in a neighbourhood of the origin. Thus, if &, are the siundard funections in
the definition of the BEsov spaces,

Qe (o2 P E) — 1), < O17
for ! sufficiently small. Thus, by theorem 5.3

20| @y # flz, < C sup B Enf—f]z,,
(P e!

which gives the resuls,
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TrrEorEM 10.5. - Suappose that u—(p(u) — 1) satisfies theo assumptions of
theorem 10.1 in a neighborhood of the origin and let ¢ be a sum of three
functions satisfying the assumptions of theorem 10.1, 10.2 and 10.3, respecti-
vely. Then

HiP)C A,
By C A, 0<o< 1.

If, in addition #(0)==0 and ¢u) <1, u > 0, then
(10.33) HyP)y=A,,

(10.34) B =A,,0<0o< 1.

Proor. - In a neighbourhood of u = 0 we write

W) = (9(u) — 1)(exp (— u) — 1)~ = u~(p{u) — 1) « u(exp (— exp u) — 1)=".

Thus we see easily that W satisfies the assumptions of theorem 10.1 in
a neighbourhood of # = 0.

Clearly W(u) satisfies the assumptions of theorem 10.3 in a neighbourhood
of u = u:. For large values of u we write

W) =1 — (1 — exp uy~ — 9(u) + g(u)l — exp u)~",
which satisfies the assumptions of theorems 10.1 and / or 10.2. Thus

|COPEN ., < O
and so

Bof — flr, = Col Gol)f — [, -

This gives the conclusion in view of (10.26).
To prove the second statement we note that

we=(p(u) — 1),
satisfies the assumptions of theorem 10.1 and 10.3 at 0,00 and u., respec-
tively. Thus
10 LWDIG s, < CLES —fs,

which gives the resuls, in view of (10.27).
As applications we consides the cases

(i) p(u) = exp (— 2u), Rez > 0,
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(i) e =1 +u?, §>0,
(i)  glu) = (1 — wy, «>(@d—1jp~t — 2.
The corresponding operators are

G (Wf = 2r)=* I exp(—zhPENGexp(<w & >),

tezd

S¥uf = (2m)~* I (L +RPE?Cexp <y, 5>)

cgz?

KA = 2h) Z , (L +hPOR@explE <x, £>)
-4
(c.f. LorstroM [16]). Then theorem 10.5 shows that the following conditions
are equivalent:
feHyP)
|G 0F — 12, == O,
188 () f — fl, = O,

|&REBYf — 1z, = OCh).

In the same way we see that the following statements are equivalent for

each o, 0 <o <1
feBym=

| Gy, W) — £z, = OCh).
182 (k) f — 111, = O(h),
|RERY [ — [, = O .
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