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ABSTRACT: 

The short focal depth of a Gaussian beam limits the volumetric imaging speed of optical resolution photoacoustic 

microscopy (OR-PAM). A Bessel beam, which is diffraction-free, provides a long focal depth, but its side-lobes 

may deteriorate image quality when the Bessel beam is directly employed to excite photoacoustic signals in OR-

PAM. Here, we present a nonlinear approach based on the Grueneisen relaxation effect to suppress the side-lobe 

artifacts in photoacoustic imaging. This method extends the focal depth of OR-PAM and speeds up volumetric 

imaging. We experimentally demonstrated a 1-mm focal depth with a 7-μm lateral resolution and volumetrically 

imaged a carbon fiber and red blood cell samples.  

Keywords:  Photoacoustic, Bessel beam, Grueneisen relaxation, nonlinear microscopy 

1. INTRODUCTION 

Optical resolution photoacoustic microscopy (OR-PAM), which provides high sensitivity by detecting optical 

absorption contrasts, has been widely used for imaging biological systems, from single cells to organisms [1-5]. A 

conventional OR-PAM setup typically excites molecules using a focused Gaussian laser beam, which can have a 

micron- to sub-micron-sized focal spot but suffers from limited focal depth. In order to acquire mm-thick volumetric 

images with consistent lateral resolution in the depth direction, we need three-dimension raster scanning to 

compensate for the short focal depth, which reduces the imaging speed. In comparison, a Bessel beam is essentially 

diffraction-free, i.e. the focal depth can be extended greatly without compromising the focal spot size, which avoids 

the tradeoff between imaging resolution and focal depth [6-8]. However, Bessel beams have many strong side lobes, 

which generate ghost signals, limiting their application in optical imaging. Similarly in photoacoustic imaging, 

ultrasound transducers usually have large focal diameters (tens to hundreds of microns), and thus they receive most 

of the ghost signals from the side lobes of the Bessel beam [9], which inhibits the direct application of Bessel beams 

in photoacoustic imaging.   

Until recently, nonlinear optical techniques, e.g. two-photon excitation in fluorescence microscopy, have been 

successfully used to suppress the side-lobe effect of Bessel beams and then achieve rapid volumetric imaging with a 

long focal depth [10-14]. Nonlinear effects exist in photoacoustic imaging as well [15-21]. One of them is the 

Grueneisen relaxation effect [20]. a thermally induced nonlinear effect that has been explored to improve both the 

axial and lateral resolution for PAM [20, 21]. Here, we utilize the Grueneisen relaxation effect in Bessel-beam PAM 

to suppress the side-lobe effect and achieve long-focal-depth volumetric imaging.  

2. METHODS 

Grueneisen relaxation photoacoustic microscopy (GR-PAM) employs dual-pulse excitations to obtain nonlinear 

photoacoustic signals [20]. The first laser pulse generates a photoacoustic signal and, at the same time, increases the 

local temperature. The second laser pulse is almost identical to the first laser pulse and excites the same absorber 

within the thermal confinement time. Owing to the temperature rise induced by the first pulse, the local Grueneisen 

parameter is increased, and the second photoacoustic signal is stronger than the first one. The nonlinear 

photoacoustic signal is the amplitude difference between these two signals, and is proportional to the square of the 
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optical fluence, thereby achieving nonlinear effects. Alternatively, we can also realize GR-PAM using a two-step 

measurement scheme. In the first step, one probe laser pulse generates a photoacoustic signal; in the second step, a 

heating laser is applied before firing the second probe laser pulse. The resulting nonlinear photoacoustic signal is the 

difference of the two signals from the two probe laser pulse excitations. In this way, the heating laser could be either 

a continuous-wave (CW) or a pulsed laser, as long as the turn-on time and time delay between the heating and 

probing fulfill the thermal confinement requirement. In the two-step measurement scheme, the first probe laser pulse 

generates an initial pressure rise,  

p
1
(x, y) = Γ

0
η

th
μ

a
(x, y)F

1
(x, y) ,                                                        (1) 

where Γ  is the Grueneisen parameter at the initial temperature,  is the heat conversion efficiency, ( , ) is the 

optical absorption coefficient, and ( , ) is the optical fluence of the probe pulse laser. The photoacoustic signal is 

the spatial integration of ( , ),  
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1
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th
μ

a
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(x, y)dx dy∫∫ ,                                                  (2) 

where k is a coefficient representing the ultrasonic detection sensitivity and is assumed to be spatially invariant 

within the acoustic focus.  

In the second step, after the heating laser is applied, the Grueneisen parameter increases owing to the local 

temperature rise,  

Γ
2
= [1+αη

th
μ

a
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2
(x, y)]Γ

0
,                                                     (3) 

where  is a constant that relates the absorbed energy to the Grueneisen parameter change, and ( , ) is the 

optical fluence of the heating laser. The initial pressure rise induced by the second probe laser pulse is given by 

p
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The corresponding photoacoustic signal is 

PA
2
= kΓ

0
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Subtracting Eq. (2) from Eq. (5), we obtain a differential photoacoustic signal, ∆PA,  

ΔPA = kΓ
0
αη

th

2 μ 2

a
(x, y)F

2
(x, y)F

1
(x, y)dx dy∫∫ .                                      (6) 

When the heating laser and probe laser have the same optical beam profile, then their optical fluences are linearly 

proportional to each other: ( , ) = ( , ), where g is a constant depending on the power ratio of these two 

lasers. This simplifies Eq. (6) to  

                                      ΔPA = gkΓ
0
αη

th

2 μ 2

a
(x, y)F 2

1
(x, y)dx dy∫∫ ,                                          (7) 

which shows a nonlinear dependence on optical fluence, while the signal PA1 has only a linear dependence as 

expressed in Eq. (2).   

Let the optical fluence follow a Bessel profile,  

                                                             

I(r, z) = I0(z)J0

2 (2.4048
r

r0

)                                                         (8) 

where ( ) is the optical intensity at axial position z,  is the radius of the central lobe,  is the transverse radial 

coordinate ( = + ) and ( ) is the zero-order Bessel function of the first kind. Due to the existence of 

many side-lobes, the point spread function of linear OR-PAM on the transverse plane following the function of 
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( ) also has many side-lobes.  But if we use the nonlinear photoacoustic signal ∆PA to form an image, then the 

point spread function becomes the square of the Bessel beam profile, ( ). Because the amplitudes of side lobes are 

much smaller than that of the central lobe, the contribution of the side lobes is reduced by squaring, as has been 

demonstrated in two-photon Bessel-beam microscopy [10]. The attenuation of side-lobe effects in nonlinear Bessel-

beam PAM can also be interpreted as a result of low heating effect of the side-lobes due to their low optical fluence. 

The further away the side lobe is from the central lobe, the less the nonlinear photoacoustic signal it contributes.  

3. EXPERIMENTAL SETUP 

Fig. 1A is a schematic of a Bessel-beam PAM system. The probe laser is a 532 nm diode-pumped solid-state pulsed 

laser (Innoslab BX2II-E, Edgewave GmbH), which generates 10 ns laser pulses at repetition rates in the range of 

hundreds of Hz. The heating laser beam, from either a CW laser or a pulsed laser, is combined with the probe laser 

beam and then spatially filtered by a 50-µm tungsten pinhole. The filtered laser beam has a 3-mm diameter and a 

near-Gaussian transverse profile. Finally, an axicon lens (Thorlabs AX255-A, 25 mm, 5.0°) transforms the laser 

beam into a Bessel beam. The sample holder, a petri dish filled with water for ultrasound coupling, is mounted on a 

3D scanning stage (PLS-85, PI miCos GmbH) and it is about 7 mm away from the tip of the axicon lens. When the 

sample is irradiated by the Bessel beam, photoacoustic waves are generated through light absorption, and then 

detected by a custom-made focused ultrasonic transducer (48 MHz central frequency, 80% detection bandwidth, 

11.6 mm focal length, and 0.25 NA). The focal zone of this transducer is about 2 mm, encompassing the long focal 

depth of the Bessel beam. The photoacoustic signal from the transducer is further amplified by 40 dB (ZKL-1R5+, 

Minicircuits) and digitized at 500 MHz using a data acquisition card (ATS9350, AlazarTech). A LabVIEW 

programed FPGA card (PCI-7830R, National Instruments) synchronizes the laser triggers, scanner motion, and data 

acquisition for imaging.  

 

Fig. 1. Schematic of Bessel-beam PAM. (A) Experimental system setup. L1, L2: lens. (B) CW-heating scheme. A continuous 

wave (CW) laser is used as the heating laser. The heating duration (∆t) of the CW laser must be less than the thermal relaxation 

time. (C) Pulsed-heating scheme.  Both the heating and probe laser beams are pulsed, and the interpulse delay ranges from 100 ns 

to 10 µs.  

The axicon lens converts a Gaussian beam to a good approximation of a true Bessel beam [10, 22-24]. According to 

Ref. [25], the radius of the central lobe ( ) is defined as the first zero of the Bessel function: = 2.40 /(2 ), 
where 	is the wavelength, = sin ( sin ) − ,  is the axicon angle and n is the refractive index of the axicon 

lens material. The depth of field is = 0.8 / , where  is the beam diameter of the incident Gaussian beam. In 

our system, the wavelengths of both the CW laser and pulsed lasers are 532 nm, and the beam diameter of the 

incident Gaussian beam is 3 mm. The beam profile, measured by a beam profiler (BeamGage, Ophir) as shown in 

Fig. 2A, is the transverse intensity profile of the Bessel beam taken at a relative axial position z = 2 mm (The axial 

position at z = 0 mm is about 7 mm away from the tip of the axicon lens). The central lobe has a Full Width at Half 

Maximum (FWHM) of 6.5 μm, while the side lobes spread widely beyond a 100-μm-diameter circular area. The 

central lobe diameter varies depending on the axial position relative to the axicon lens. The axial distributions of the 

central lobe diameter (FWHM) and peak intensity of the central lobes are shown in Fig. 2B. In the region z > 0 mm, 

the transverse beam profile can be described as a quasi-Bessel beam, and the central lobe diameter is around 6–7 μm. 

In the region z < 0, i.e., closer to the axicon lens, the central lobe diameter diverges quickly; hence this region 
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should be avoided for imaging, due to its poor resolution. In practice, the peak intensity is also an important factor, 

since a low peak intensity not only attenuates the photoacoustic signal, but also attenuates the heating effect. 

Therefore, for the Bessel beam shown in Fig. 2, only a 2-mm focal depth (0 < z < 2 mm) is used for nonlinear 

Bessel-beam PAM. This focal depth is much larger than that of conventional Gaussian beams, e.g., the focal depth 

of a Gaussian beam with the same focal spot size 6 μm at 532 nm is only about 106 μm.  

 

Fig. 2. Bessel beam profile. (A) Transverse intensity profile taken at z = 2 mm (at z = 0 mm, it is about 7 mm away from the tip 

of the axicon lens). The central lobe diameter (6.5 μm) is the FWHM of the central lobe. White peaks represent intensity profiles 

along white dashed lines respectively. (B) Axial distributions of the central lobe diameter (red solid line, Y-axis is on the left 

side) and peak intensity (green dashed line, Y-axis is on the right side).  

To generate non-linear PA signals, we employ two schemes. In the first scheme, as illustrated in Fig. 1B, a CW laser 

is turned on for a short period of time ∆t to heat the sample, then a pulsed probe laser is triggered at the end of the 

heating. The heating time is within the thermal relaxation time. The pulsed probe laser generates PA signals, while 

the CW laser is only for heating. At each scanning point, we record two PA signals: The first PA signal (PA1) is 

excited by a single laser pulse without CW laser heating, while the second signal (PA2) is excited by another laser 

pulse right after the CW laser heating. Owing to the Grueneisen relaxation effect, the second PA signal is stronger 

than the first one, and their amplitude difference is the non-linear PA signal (∆PA). Due to its low power (<100 mW 

in our system) and the thermal confinement of the target, the CW laser is good for heating highly absorptive samples 

(e.g. carbon fiber, hair). In the second scheme, both the heating laser and the probe laser are pulsed, as shown in Fig. 

1C. The inter-pulse delay is a constant ranging from 100 ns to several µs, which is much shorter than the thermal 

relaxation time. In this scheme, similar to the first scheme, two probe PA signals are recorded with and without the 

pulsed heating. Their computed amplitude difference is the non-linear PA signal (∆PA). The pulsed heating laser, 

possessing higher pulse energy, provides better heating effect for low absorptive samples but is more expensive than 

the CW heating laser. In our experiments, we demonstrated the feasibility of both schemes. We employed the first 

scheme to measure a carbon fiber to quantify the effect of the nonlinear Bessel-beam PAM, and then used the 

second scheme to image red blood cell samples.  

4. RESULTS 

In order to quantify the lateral resolution and effective axial focal depth, we imaged a carbon fiber (6-μm diameter) 

using the nonlinear Bessel-beam PAM system. The thermal relaxation time of a carbon fiber immersed in water with 

a 6.5-μm diameter optical heating spot has been estimated to be 1 ms [26], so we heated the carbon fiber using a 532 

nm CW laser (40 mW power, 300 μs duration, equivalent heating energy 12 μJ), and excited PA signals using a 

pulsed laser (10 ns pulse width, 1200 nJ pulse energy). Because the energy distributes almost equally among the 

central and each side lobe of the Bessel beam, only a small portion of the energy can be absorbed by the thin carbon 

fiber. The carbon fiber was placed horizontally in the petri dish and immersed in water for coupling, and a cross-

sectional photoacoustic image was obtained by one-dimensional mechanical scanning across the carbon fiber. A 

typical measured photoacoustic amplitude profile across the carbon fiber is shown in Fig. 3A, where the red line 

CWon is the enhanced PA image with the CW laser heating, while the blue line CWoff is the conventional PA image 

acquired without laser heating. Both the CWon and CWoff images have significant backgrounds, which are produced 

by the side lobes of the Bessel beam. By taking the amplitude difference between CWon and CWoff, we computed the 

differential photoacoustic image ∆PA, which clearly reduces the background and suppresses the side lobe effect. In 
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Fig. 3A, the FWHM of ∆PA is about 6.1 μm, which is close to the value of 6.5 μm estimated from the convolution 

of the carbon fiber cross-section profile and the profile squared of the Bessel beam central lobe. Fig. 3B shows the 

lateral resolution at different axial positions. In the region of 0.6 mm < z < 2.2 mm, the FWHM value is around 6.2 

μm, while it increases quickly for smaller z (< 0.6 mm, closer to the axicon lens) because the central lobe diameter 

becomes large, as shown in the Bessel light beam profile in Fig. 2B. For z > 2.2 mm (further from the axicon lens), 

the FWHM also deteriorates, since the heating light intensity of the central lobe is attenuated significantly in this 

region. In summary, the effective nonlinear Bessel-beam imaging region in Fig. 3B is about 1.6 mm, in which the 

system maintains a lateral resolution finer than ~7 μm.  

 

Fig. 3. Cross-sectional images of a 6-µm-diameter carbon fiber. (A) Red line: 1D photoacoustic image acquired when the CW 

laser is on. Blue line: 1D photoacoustic image acquired when the CW laser is off. Green line: the differential photoacoustic image 

∆PA. Black line: Gaussian fit of ∆PA. The FWHM of the ∆PA image is 6.1 µm. To improve SNR, 20 measurements were 

averaged. (B) Axial distribution of the FWHM of the cross-sectional carbon fiber images. The axial coordinate z is relative to the 

beginning measurement position (z = 0 is about 7 mm away from the tip of the axicon lens). (C) PA amplitude versus time delay 

of the laser pulse after a 0.1 ms CW laser irradiation.  

Besides the carbon fiber, we also imaged red blood cell (RBC) samples, which are relatively low absorptive. Bovine 

RBCs (Quad Five, Ryegate, Montana) were first fixed with methanol and then mixed with agar gel (1% weight ratio 

of agarose and water) at 40 oC. The volume ratio between the RBC and agar gel was 1:500. A single-layer RBC 

sample was prepared by simply smearing the RBC-agar gel onto a cover glass. A thick-layer (0.5 mm to 1.0 mm) 

RBC sample was formed by dropping the gel into a hole in the bottom of a petri dish sealed with a cover glass. 

Finally, the RBC-agar gel was cooled to room temperature (25 oC) to form solid samples. The single-layer RBC 

sample was used to quantify the side-lobe suppression effect. The thick-layer sample was used to demonstrate the 

volumetric imaging capability of nonlinear Bessel-beam PAM. To provide sufficient power to heat the highly 

diluted RBC sample, we exchanged the CW heating laser for a high power pump laser (Innoslab IS8II-E, Edgewave 

GmbH, 20 μJ pulse energy), and triggered a probe laser (Innoslab BX2II-E, Edgewave GmbH, 14 μJ pulse energy) 

to generate photoacoustic signals about 300 ns after triggering the heating pulsed laser.  

 

Fig. 4. Single-layer red blood cell (RBC) imaging. (A) 2D photoacoustic image (PA1) of four RBCs in agar medium. No heating 

laser was applied. (B) 2D thermally enhanced photoacoustic image (PA2) of the same RBCs. The probe laser, triggered at 300 ns 

after the release of pulsed heating laser shot, detected the photoacoustic signal. (C). 2D differential photoacoustic image of the 

same RBCs. ∆PA = PA2 – PA1. All images are normalized to the maximum amplitude of all pixels. The PA amplitude from white 

dashed lines in (A), (B) and (C) is compared in (D). There was no averaging for each image. (S/B: signal-to-background ratio) 
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beam. In linear Bessel-beam PAM, the image quality is poor due to the side-lobe effect, while in nonlinear Bessel-

beam PAM, the side-lobe signals are effectively suppressed, thereby highlighting the main-lobe signal and offering 

optical lateral resolution. The experimental system can be converted to reflective mode for in vivo imaging by 

following the design for previous OR-PAM systems [1]. Although the optical fluence used in this work (195 

mJ/cm2) is higher than the ANSI standard (20 mJ/cm2) but lower than the damage threshold, improving the 

ultrasound transducer’s sensitivity to increase the signal-to-noise ratio can reduce the optical fluence. Nonlinear 

Bessel-beam PAM effectively extends the focal depth of photoacoustic imaging beyond that of conventional 

Gaussian-beam PAM, and therefore reduces the time to image thick samples.  
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