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ABSTRACT. We construct the Frobenius structure on a rigid connection Bexs on Gy, for a split reductive
group G introduced by Frenkel-Gross. These data form a G-valued overconvergent F-isocrystal BCTG on
Gom,r,, which is the p-adic companion of the Kloosterman G-local system Kl constructed by Heinloth-
Ngo6-Yun. By studying the structure of the underlying differential equation, we calculate the monodromy
group of BcTé when G is almost simple (which recovers the calculation of monodromy group of Kl due

to Katz and Heinloth-Ngo-Yun), and establish functoriality between different Kloosterman G-local systems
as conjectured by Heinloth-Ngé-Yun. We show that the Frobenius Newton polygons of Kl are generically
ordinary for every @ and are everywhere ordinary on |Gm,]}‘p| when G is classical or Go.

CONTENTS

Introduction
Bessel equations and Kloosterman sums
Generalization for reductive groups
Strategy of the proof and the organization of the article
Review and complements on arithmetic Z-modules
Overconvergent (F-)isocrystals and their rigid cohomologies
(Co)specialization morphism for de Rham and rigid cohomologies
Six functors formalism for arithmetic Z-modules
Complements on the cohomology of arithmetic Z-modules
Equivariant holonomic Z-modules
Intermediate extension and the weight theory
Nearby and vanishing cycles
Universal local acyclicity
Local monodromy of an overconvergent F-isocrystal

2.10. Hyperbolic localization for arithmetic Z-modules

3.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
4.

4.1.
4.2.
4.3.
4.4.
4.5.

Geometric Satake equivalence for arithmetic Z-modules
The Satake category
Fusion product
Hypercohomology functor
Semi-infinite orbits
Tannakian structure and the Langlands dual group
The full Langlands dual group

Bessel F-isocrystals for reductive groups
Kloosterman F-isocrystals for reductive groups
Comparison between Kl‘éR and Klgg

Comparison between Kl‘éR and Beg
Bessel F-isocrystals for reductive groups
Monodromy groups

Date: December 20, 2019.

EEE] EEEEEEEEREEREEEREEE mmmmmem


http://arxiv.org/abs/1910.13391v2

2 DAXIN XU, XINWEN ZHU

5. Applications

5.1. Functoriality of Bessel F-isocrystals

5.2. Hypergeometric F-isocrystals

5.3. Bessel F-isocrystals for classical groups

5.4. Frobenius slopes of Bessel F-isocrystals

Appendix A. A 2-adic proof of Carlitz’s identity and its generalization
References

BEERERIEE]

1. INTRODUCTION
1.1. Bessel equations and Kloosterman sums.

1.1.1. The classical Bessel differential equation (of rank n) with a parameter A

(1.1.1.1) (%%>Qﬁ—A%rf=0

has a unique solution which is holomorphic at 0 :

T dz1 - dzp—1 1
1.1.1.2 A n— = A",
( ) ﬁsl)nl P (Zl a2t e Lt Z1 Zn_1> (271'2)"_121 T Zp—1 7;) (T!)n ( x)

One may reinterpret this fact using the language of algebraic Z-modules as follows. Let K be a field of
characteristic zero. The Bessel equation (LI can be converted to a connection Be,, on the rank n trivial
bundle on the multiplicative group G, x

0 1 0 0

00 1 0|
(1.1.1.3) Be,: V=d+| : = - - |Z

S 3 s

0 0 0 ... 1

ANz 00 ... 0

which we call the Bessel connection (of rank n). On the other hand, we consider the following diagram

(1.1.1.4) G™,
G Al

where add (resp. mult) denotes the morphism of taking sum (resp. product) of n coordinates of GI,, and
define the Kloosterman Z-module on G, i as

(1.1.1.5) KI9® .= R™ ! mult, (add* (Ey)),
where
(1.1.1.6) E)\Z(ﬁA}K,VZd—)\dﬁ)

is the exponential Z-module on A}.. With these notations, the fact that (LIL2) is a solution of (LILI)
reflects an isomorphism of algebraic Z-modules on G,

Be, ~ K19}

The connection Be,, is regular singular at 0 with a unipotent monodromy with a single Jordan block, and
is irregular at oo with irregularity = 1. Its differential Galois group was calculated by Katz [55].
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1.1.2. There is a parallel theory in positive characteristic. Let p a prime number. For every finite extension
Fy/Fp and a € F, the Kloosterman sum Kl(n;a) in n-variables is defined by [l

1 n—1 i
R G D I G R )

q 21 Zp1
\/— ZiG]F; "

It admits a sheaf-theoretic interpretation by Deligne [37]. Namely, the analog of the exponential Z-module
in positive characteristic is the Artin-Schreier sheaf ASy, on A]}p associated to a non-trivial character 1) :

Fp, — Q¢(pp) ™. Deligne defined the Kloosterman sheaf Kl,, as the following complex on Gy, F,:

(1.1.2.2) Kl, = R mul;(add* (ASy))[n — 1] (" > 1),

and showed the following properties ([37] 7.4, 7.8):

(i) Fix an embedding ¢ : Q¢(up) — C such that t)(z) = exp(2miz/p) for & € F,. The Frobenius trace
of Kl,, at each closed point a € F is equal to the Kloosterman sum Kl(n; a).
(ii) The complex Kl,, is concentrated in degree 0 and is an irreducible local system of rank n and of
weight 0, which implies the Weil bound of the Kloosterman sum | Kl(n;a)| < n.
(iii) The sheaf Kl,, is tamely ramified at 0, and the monodromy is unipotent with a single Jordan block.
(iv) The sheaf Kl,, is wildly ramified at oo with Swan conductor Sw (Kl,,) = 1.

In ([56] § 11), Katz calculated the (global) geometric and arithmetic monodromy group of Kl,, as follow:

Sp,, n even,

SL,, pn odd,

SO, p=2noddn#T7,
GQ p= 2, n=".

(1123) Ggeo(Kln) = Garith(Kln) =

Surprisingly, the exceptional group G2 appears as the monodromy group.

1.1.3. In 70’s [44], Dwork showed that there exists a Frobenius structure on the Bessel connection (LT3
whose Frobenius traces give the Kloosterman sum. Here a Frobenius structure is a horizontal isomorphism
between the Bessel connection and its pullback by the “Frobenius endomorphism” F' : Gy, k — Gy, x over K
defined by = +— zP. Although the Bessel connection is an algebraic connection, such a horizontal isomorphism
is not algebraic but of p-adic analytic nature.

To explain Dwork’s result, we need to introduce certain ring of p-adic analytic functions. We set K =
Q,(p1p), equipped with a p-adic valuation |-|, normalised by |p|, = p~!, and denote by AT the ring of p-adic
analytic functions with a convergence radius > 1:

+oo
T n . n __
(1.1.3.1) Af = {Zoanx [an € K3 p>1, lim an|pp" = 0}.

This ring is called the ring of p-adic analytic functions on P! overconvergent along {0} by Berthelot [21].
We take an algebraic closure K of K and fix an isomorphism ¢ : K — C. There exists a unique element
7 of K which satisfies 7°~' = —p and corresponds to the character exp 2mi(7) : F — C* (cf. RIH(1)).

Theorem 1.1.4 (Dwork, Sperber [44] [78| [79]). Let n be an integer prime to p and set X = —m as above.
There exists a unique ¢(x) € GL,,(A") such that

IThe sum (IZ) is slightly different from the standard definition by a factor (— %)"’1.
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(i) The matriz ¢ satisfies the differential equation:

0 1 0 ...0 0 1 0 0
) 0 0 1 0 0 0 1 0
xd_sp(p_1 Ty pl=p
X
0o o0 0 ... 1 0 0 0 1
Xtz 000 ... 0 At 00 0

That is, ¢ defines a horizontal isomorphism F*(Be,) — Be,.

(i) For a € Ty, we have 1 Trp, = Kl(n;a), where p, = [Tl o@r') and @ € K denotes the
Teichmdiller lifting of a. »

(iit) If {o1,--- ,an} denote the eigenvalues of pa, then we have ||, = p™= 2 * deg(a) after reordering .

Overconvergent (F-)isocrystals on a variety X over F,, are p-adic analogues of ¢-adic (Weil) local systems.
Roughly speaking, they are vector bundles with an integrable connection and a Frobenius structure on some
rigid analytic space associated to certain lifting of X to characteristic zero. The data (Be,,y) form an
overconvergent F-isocrystal on G, r, (relative to K), which we call the Bessel F'-isocrystal (of rank n) and

denote by Bel. By (ii), BeL is the p-adic companion of the Kloosterman sheaf Kl,, in the sense of [38] [3].
1.2. Generalization for reductive groups.

1.2.1. Recently, there are two generalizations of above results (corresponding to the GL,-case) for reductive
groups from different perspectives. The first one is due to Frenkel and Gross [47] from the viewpoint of the
Bessel equations. Namely, for each (split) reductive group G over a field K of characteristic zero, Frenkel-
Gross wrote down an explicit G-connection Begs on Gy, which specializes to Be,, when G = GL,. We will
call Bey the Bessel connection of G in this paper. Another one, due to Heinloth, Ng6 and Yun [52], is
from the viewpoint of the Kloosterman sums. Namely, the authors explicitly constructed, for each (split)
reductive group G over the rational function field F,(t), a Hecke eigenform of G, and defined Kl as its
Langlands parameter, which is an f-adic G-local system on G,, that specializes to Kl,, if G = GL,. The
authors call Kl the Kloosterman sheaf of G.
The main subject of this article is to study the p-adic aspects of this theory and to unify the previous two
constructions. Our main results can be summarized as follows:
(i) we construct the Frobenius structure on Bes and obtain the Bessel F-isocrystal Beg of G, which is
the p-adic companion of Kl in appropriate sense;
(ii) we calculate its geometric and arithmetic monodromy group;
(iii) we show that the Frobenius Newton polygons of Bes (and therefore Klx) are generically ordinary
and when G is classical or Go they are everywhere ordinary on |Gy, r,,|.
It turns out that our p-adic theory also has applications to the f-adic theory and the arithmetic property of
exponential sums associated to Klx. Namely,
(iv) we obtain a different (and more conceptual) calculation of the monodromy group of Kl ((LLZ3)
and one of the main results of [52]), based on the structure of the connection Be;
(v) we prove a conjecture of Heinloth-Ngd-Yun on the functoriality of Kloosterman sheaves ([52] conjec-
ture 7.3) and therefore obtain identities between different exponential sums.

We discuss these results in more details in the sequel.
1.2.2. Let G be a split almost simple group over a field K of characteristic zero. Fix a Borel subgroup
B C G, and a principal nilpotent element N in the Lie algebra of B. Let E denote a basis vector of the

lowest root space in § = Lie(G). In [47], Frenkel and Gross considered a connection on the trivial G-bundle
over G,

d
(1.2.2.1) V=d+NZ 4 N Ede,
X
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where  is a coordinate of G,,, A € K is a parameter and h is the Coxeter number of G. We may regard it
as a tensor functor from the category of representations of G to the category of connections on the trivial
bundles on G,

v

v d
(1.2.2.2) Bes : Rep(G) — Conn(Gy,), (p: G — GL(V)) = d+ dp(NZ + N Ed).
x
This connection is rigid and has a regular singularity at 0 and an irregular singularity at oco.

1.2.3. Let G be a split almost simple group over F,(t) whose dual group is G. In [52], Heinloth-Ngo-
Yun wrote down a cuspidal Hecke eigenform f on G, and defined the Kloosterman sheaf Kl for G as the
Langlands parameter of f. For simplicity, we assume that G is simply-connected. If we fix opposite Iwahori
subgroups I1(0)°? C G(0p) and I(0) C G(Ox) at 0,00, and a non-degenerate character ¢ : I(1)/1(2) —
Q(pp)™, where I(i) denotes the ith step in the Moy-Prasad filtration of I(0), then f is the unique (up to
scalar) non-zero function on G(F,(¢))\G(A) that is,

e invariant under G(&,) for every place x # 0, oo;

e invariant under I(0)°P at 0;

e (I(1), p)-equivariant at oo.
Then Heinloth-Ngo-Yun defined Kl : Rep(G) — LocSysm(G,, r,) as a tensor functor from the category
of representations of G (over Q) to the category of f-adic local systems on Gm,r,, such that for every

~

V € Rep(G) and every a € |G, F, |,
Tv.a(f) = Tr(Frobg, (Kl y)a) f

where Ty, is the Hecke operator associated to (V,a). The actual construction of Kl uses the geometric
Langlands correspondence (see LI T2).

Our first main result is the existence of a Frobenius structure on Bessel connections for reductive groups.

Theorem 1.2.4 [LZ4 BZL2). Let K = Q,(uyp), K an algebraic closure of K and set A = —7 as in [LT4
(i) There exists a unique o(x) € G(AV) satisfying the differential equation
d
xﬁcp* + Ady(N + N'zE) = p(N + \'a? E)

and such that via a (fived) isomorphism K ~ Q,, for every a € Fx andV € Rep(é)
Tr(pa, V) = Tr(Frob,, (Kléﬁv)g),

where v, = H?i%(a)fl <p(§pi) and a € K denotes the Teichmiiller lifting of a.

In particular, the analytification of the Bessel connection Beg on GJ i is overconvergent and underlies

v

a tensor functor from Rep(G) to the category of overconvergent F-isocrystals on G, v, :
(1.2.4.1) Beg : Rep(G) — F- ISOCT(GWFP/K),
which can be regarded as the p-adic companion of Klg.
(ii) Let p e X*(T) = X, (T) be the half sum of positive roots. When G is of type An, By, Cy, Dy, or Ga, for
every a € |Gy w,|, the set of p-adic order of eigenvalues of ¢, € é(?) (also known as the Frobenius slopes

at a) s same as that of p(p e G(K). en G is of other exceptional type, the same assertion holds
ta)i that deg(0)) ¢ G(K). When G th tional type, th tion hold.
generically on |G, |.

Remark 1.2.5. (i) For a G-valued overconvergent [-isocrystal on a smooth variety X over F,, we say its
Newton polygon is ordinary at a if the Frobenius slopes at a are given by p (in the above sense). We expect
that the Newton polygons of Beg are always ordinary at each closed point of Gy, .

(ii) V. Lafforgue [63] showed that p is the upper bound for the p-adic valuations of Hecke eigenvalues of
Hecke eigenforms (cf. B4l for a precise statement). Drinfeld and Kedlaya [42] proved an analogous result
for the Frobenius slopes of an indecomposable convergent F-isocrystal on a smooth scheme.
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1.2.6. Global monodromy groups. In ([47] Cor. 9,10), Frenkel and Gross calculate the differential Galois
group Gaig of Beg over K, which we list in the following table (up to central isogeny):

~

G Ggal
A2n A2n
A2n—17 Cn Cn
B,,Dpy1(n>4) | By,
(1.2.6.1) o (n>4) o
Es Es
Ee, Fy Fy
Bs, Dy, Go G,

If we denote by Ggco the geometric monodromy group of Beg over K, there exists a canonical homomorphism
(1262) cho — Ggal-

Theorem 1.2.7 (£5.2). (i) If either G is not of type Asy,, orp > 2, the above morphism is an isomorphism.
(ii) If p =2 and G = SLap41, then Ggeo =~ SO2p41 if n # 3 and Ggeo ~ Go if n. = 3.
(iii) The arithmetic monodromy group Gaith of Beg is isomorphic to Ggeo.

In fact, the second part of the theorem follows from the first part and theorem [[28(ii) below. By
companion, this theorem allows us to recover Katz’s result on the monodromy group of Kl,, (LILZ3) and
Heinloth-Ngo-Yun’s result on the geometric monodromy group of Kl ~ [52] in a different way. For instance, the
Go-symmetry on Be; when p = 2 (LI.23)) appears naturally in our approach, compared with Katz’ original
approach via point counting. In addition, we also avoid some difficult geometry related to quasi-minuscule
and adjoint Schubert varieties, as analyzed in [52].

Inspired by the rigidity properties of hypergeometric sheaves proved by Katz [57], Heinloth, Ngé and Yun
conjectured certain functoriality between Kloosterman sheaves for different groups ([52] conjecture 7.3). As
an application of our p-adic theory, we prove this conjecture.

Theorem 1.2.8 (.14 E310). (i) For G' C G appearing in the same line in the left column of the above
diagram, Kl is isomorphic to the push-out of Kls, along G' — G.
(ii) If p = 2, Klsy,,,, is the push-out of Klso,, ., along SO2,11 — SLop1.

1.2.9. The above theorem allows us to identify various exponential sums associated to Kloosterman sheaves

defined by different groups. Here are some examples (cf. corollary B.3.TT]):
(i) When G = SO3 =~ PGLg, we have the following identity for a €

(1.2.9.1) ( 3" G(Tre, jm, (x + %)))2 g

mEF;
1 a
—— 7/1<Tr T+ x2 + >7 p=2,
\/am mZGIFX Fq/FP( fL'leQ)
1,T2€l;

W > 1/’<Trn?q/uvp (z1+ 22 + 23 — y)) P y), p>2

r1x2r3=4ay,T; G]F;<

where (=) = exp %(—), p denotes the quadratic character of F) and G(¢ ™', p~') the associated Gauss
sum. The identity is due to Carlitz [26] when p = 2 and Katz ([58] § 3) when p > 2. Our method is
completely different from these works.
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(ii) For n > 2, via the inclusion SOg,11 — SOg,42, for a € F, we have

(1.2.9.2) Z (( Z Y(Trp, /r, (z + %)))2 - Q) ( Z Y(Trg, jp, (21 + -+ T2n—3 + $))>

€Ty T2n—3

wv=a,u,vEF; ~ zEF} z €F
1 xr1 + X9 n—1
=—— Z Y| Trp, /r, (v1 + 22+ + T2y + a————) | — ¢ :
Vi T1T2 - Tap
:EiG]F;;

One can obtain other identities between different exponential sums, whose sheaf-theoretic incarnations were
obtained by Katz [58].

1.2.10. We have partial results about the local monodromy of Beg (and Klx) at co. Namely, we show that
the nilpotent monodromy operator is trivial and the local Galois representation ¢ : Ioo — Gisa simple
wild parameter in the sense of Gross-Reeder [51] § 6 (see corollary 5.7 (ii)). If p t n, one can even show
that the local monodromy of Bejl at oo coincides with the Galois representations constructed in [51] § 6.2,
by studying the solutions of Bessel differential equation (LTI at co. (The corresponding ¢-adic statement
for Kl,, was proved by Fu and Wan [48] thm. 1.1.)

The above result, together with theorem [[2.8[ii), implies that when p = 2 and n is an odd integer, the
associated local Galois representation for Be;on (and Klgo, ) at oo coincides with the simple wild parameter
constructed in [5I] § 6.3. For example, the image of the inertia group I, in the case G =S0s5 is isomorphic

to Ay. Together with Be;O3 Std = BeLL2 gym2 (ELII), this allows us to recover André’s result on the local

monodromy group of Beg at oo when p = 2 ([9] sections 7, 8).
1.3. Strategy of the proof and the organization of the article.

1.3.1. Now we outline the strategy to prove the above results. Part (i) of theorem [[LZ4]follows by combining
following three ingredients:

(i) We first mimic Heinloth-Ngo-Yun’s construction to produce a G-valued overconvergent F-isocrystal
Klgg on Gy, r, and a G-bundle with connection Kldé,R on G, k (section@T)). A key step is to develop
the geometric Satake equivalence for arithmetic Z-modules, which we will discuss latter (L3.3]).

(ii) Then we show that the overconvergent isocrystal Klgg is isomorphic to the analytification of the
G-connection Kl%R (section 2]) by comparing certain relative de Rham cohomologies and relative

rigid cohomologies.
(iii) We strengthen a result of the second author [89] to identify Kl‘éR with Beg (section E.3)).

1.3.2. The local monodromy of Beg at 0 is principal unipotent, which implies that its geometric monodromy
Ggeo contains a principal SLy. This puts strong restrictions on the possible Dynkin diagrams of Ggeo (cf.
54 for a possible list). A result of Baldassarri [13] (cf. [9] 3.2), which implies that the p-adic slope of Beg
at oo is less or equal to the formal slope of Bes at oo, allows us to exclude the case Ggeo = PGLy (or SLo)
in most cases. Together with certain symmetry on Beg7 this implies theorem [L277(i).

1.3.3. The analogous functoriality for Bessel connections Be (theorem[[.28(i)) follows from their definition.
Then we deduce the functoriality between Beg’s by theorems [[2Z4(i) and [L277)(i). For theorem [LZ8(ii) (and
therefore theorem [CZZ(ii)), we construct an isomorphism between the maximal slope quotients of Bel, 41
and Be;O%H,Std using a refinement of Dwork’s congruences [43] in the 2-adic case. Then we conclude that
BegnJr1 ~ Be;oznﬂ,sm by a recent theorem of Tsuzuki [82] (cf. appendix [A]). Since Beg is the p-adic
companion of Klx, theorem follows.

1.3.4. By functoriality, we reduce theorem [L24(ii) to the corresponding assertion for (Frobenius) Newton
polygon of BengStd and of Be;02n+1,Std7 which are isomorphic to BeL and a hypergeometric overconvergent
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F-isocrystal [67] respectively. In these cases, the assertion follows from the results of Dwork, Sperber and
Wan [44] [79} [84].

1.3.5. As mentioned above, in order to carry through the first step of [L31] we need to establish a version
of the geometric Satake equivalence for arithmetic Z-modules. This is based on the recent development
of the six functors formalism, weight theory and nearby/vanishing cycle functors for arithmetic Z-modules
[28] 291 Bl [6] [4]. We will review these theories in subsections 2.TH2.7

To state our result, we first introduce some notations. Let k be a finite field with ¢ = p® elements and K
a finite extension of Q,. Suppose that there exists a lift 0 : K — K of the ¢-th Frobenius automorphism of
k for some integer t. Let G be a split reductive group over k, G its Langlands dual group over K, Grg the
affine Grassmannian of G, and LG the positive loop group of G.

Given a k-scheme X, one may consider the category Hol(X/K) of holonomic arithmetic Z-modules on X
and the category Hol(X/Kp) of objects of Hol(X/K) with a Frobenius structure, which are the analogues
of the category of f-adic sheaves on X7 and the category of Weil sheaves on X respectively. We denote by
Holy+¢(Grg /K) (resp. Holp+g(Gre /KF)) the category of LT G-equivariant objects in Hol(Grg /K) (resp.
HOl(GI‘G /KF))

The geometric Satake equivalence (for geometric coefficients) states that the category Holy+5(Grg /K) is
a neutral Tannakian category over K whose Tannakian group is G BEJ). The Tannakian structure and the

Frobenius structure on Holy+g(Grg /Kp) allows us to define a homomorphism ¢ : Z — Aut(G(K)) B62)
and hence a semi-direct product G(K) x Z.

Theorem 1.3.6. (i) (Geometric coefficients B5Tl) There exists a natural equivalence of monoidal categories
between Holp+q(Grg /K) and Rep(G).
(ii) (Arithmetic coefficientsB.6.7) There exists an equivalence of monoidal categories between Holp+q(Grg /Kr)

and the category Rep%ﬁg((v}'(K) % Z) of certain o-semi-linear representations of G(K) x Z (cf. BB3).

Although the strategy of the proof of this theorem is same as the f-adic case, we need to establish
some foundational results in the setting of arithmetic Z-modules. We introduce a notion of universal local
acyclicity (ULA) for arithmetic Z-modules and discuss its relation with the nearby/vanishing cycle functors
introduced by Abe-Caro and Abe [5] [] in subsection We also prove a version of Braden’s hyperbolic
localization theorem is this setting in subsection

Recall that there are motivic versions of the geometric Satake equivalence [90, [75]. The above theorem
can be regarded as their p-adic realization. (But as far as we know, there is no general construction of the
realization functor as we need so the above theorem is not a formal consequence of loc. cit..) On the other
hand, there is a very recent work of R. Cass [30] on the geometric Satake equivalence for perverse F,-sheaves.
It would be very interesting to see whether there is a version of the geometric Satake equivalence for some
Z,-coefficient sheaf theory, which after inverting p and mod p specializes to our version and Cass’ version
respectively.

We hope our article will lead further investigation of the p-adic aspect of the geometric Langlands program
in the future.

1.3.7. We briefly go over the organization of this article. Section [2] contains a review of and some comple-
ments on the theory of arithmetic Z-modules and overconvergent (F-)isocrystals. In section Bl we establish
the geometric Satake equivalence for arithmetic Z-modules (L3.6]). Subsections ELINEA are devoted to the
proof of theorem [LZAi) (cf. [L3d). We calculate the monodromy group of Beg in subsection (cf. theo-
rem[[2Z7and [[32). In subsection Bl we prove the functoriality of Bessel F-isocrystals and of Kloosterman
sheaves (cf. theorem [[LZJi) and [[33]). In subsections and [0.3] we identify the Bessel F-isocrystals for
classical groups with certain hypergeometric differential equations studied by Katz and Miyatani [57, [67].
In particular, we obtain identities in In the last subsection (54, we study the Frobenius Newton
polygon of Beg and prove theorem [[24(ii). Appendix [Alis devoted to a proof of theorem [L2.8(ii) from the
perspective of p-adic differential equations.
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1.3.8. In this article, we fix a prime number p. Let s be a positive integer and set ¢ = p°. Let k be a
perfect field of characteristic p, k an algebraic closure of k and R a complete discrete valuation ring with
residue field k. We set K = Frac(R). We fix an algebraic closure K of K. We assume moreover that the
s-th Frobenius endomorphism k =+ k, z + 29 lifts to an automorphism o : R = R.

By a k-scheme (resp. R-scheme), we mean a separated scheme of finite type over k (resp. over R).

Acknowledgement. We would like to thank Benedict Gross, Shun Ohkubo, Daqing Wan, Liang Xiao
and Zhiwei Yun for valuable discussions. X. Z. is partially supported by the National Science Foundation
under agreement Nos. DMS-1902239.

2. REVIEW AND COMPLEMENTS ON ARITHMETIC Z-MODULES

2.1. Overconvergent (F-)isocrystals and their rigid cohomologies. In this subsection, we briefly
recall the definition of overconvergent (resp. convergent) isocrystal following [20].

2.1.1. Let X be a k-scheme. A frame of X is a quadruple (Y, j, 22,14) (written as (Y, &) for short) consisting
of an open immersion j : X — Y of k-schemes, and a closed immersion i : Y — &, where & is a separated
formal R-scheme which is smooth over Spf(R) in a neighborhood of X. We denote by 2" the rigid analytic
space associated to & and by | X[, ]Y |2 the tube of X, Y in &8 respectively ([20] § 1).

A strict neighborhood of | X |2 in |Y[2 is an admissible open subspace V of |Y[g such that VU]Y \ X[
forms an admissible covering of |Y[2 ([20] 1.2). There exists an exact functor j© from the category Ab(V)
of abelian sheaves on V to itself (J20] 2.1.1), defined by

(2.1.1.1) JTE =lim juv.jgy (E),
U

where the inductive limit is taken over all strict neighborhoods jy v : U — V of | X[z in V. It is known
that jT&y is coherent as a sheaf of rings.

The notion of a morphism of frames is naturally defined, and a morphism u : (Y', £’) — (Y, &) of frames
induces a tensor functor:

*

u* : (Coherent j' @y (,,-modules) — (Coherent jTﬁ]y/[y,—modules) .

We denote by Conn(jTﬁ]y[ ) the category of coherent jTﬁ]y[ -modules .# equipped with a K-linear
morphism V : A4 — A Qjtory, jTQ]ly[y satisfying the Leibniz rule and the usual integrability condition.

2.1.2. For n = 1,2,3, we denote by &" the fiber product of n-copies of & over Spf(R). Then (Y, £") is a
frame of X and we have projections p; : (Y, 2?) — (Y, 2) (i =1,2),p;; : (Y, 23) = (Y, 2?) (1 <i<j<3)
and the diagonal morphism A : (Y, 2) — (Y, 2?).

We denote by Isoc! (X,Y/K) the category of pairs (.#,e) consisting of a coherent jTﬁ]Y[@—module M
and an isomorphism

e p3( M) = pi(A)

satisfying A*(e) = id and pj5(g) = pia(e) o p3s(e). Such a pair is called an isocrystal on X overconvergent
along Y — X (relative to K ). This category is independent of the choice of & up to canonical equivalences

(20] 2.3.1).

When Y = X, we have jT@y[@ = 0ix[,- Such a pair is also called a convergent isocrystal on X/K. The
category Isoc' (X, X/K) is simply denoted by Isoc(X/K).

When X is a compactification of X over k, the category ISOCT(X , X/K) is independent of the choice of X
up to canonical equivalences ([20] 2.3.5) and is simply called the category of overconvergent isocrystals on
X/K, denoted by Isoc' (X/K).

2.1.3. There exists an exact and fully faithful functor ([20] 2.2.5, 2.2.7)
Isoc'(X,Y/K) — Conn(j' Oy ), (M, e) — (M,V).
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When X = Y (resp. Y = X is a compactification of X), we say that (.#,V) is convergent (resp.
overconvergent) if it is contained in the essential image of the above functor.
Let .# be an overconvergent isocrystal on X relative to K and .# ®jtﬁ]§[ jtQ
P

the associated de

X[
Rham complex with respect to a frame (X, &). The rigid cohomology RTyig(X/K,.#) is defined by
. — X . TOe_
(2.1.3.1) RTvig(X/K, A ) = RF(]X[@,JZ®]+5]Y[W J Q]X[@).

2.1.4. The category Isoc'(X/K) is functorial with respect to pullbacks ([20] 2.3.6). The absolute s-th
Frobenius morphism Fx : X — X and endomorphism o : K — K induce the Frobenius pullback functor:

(2.1.4.1) F% : Isoc' (X/K) — Isoc' (X/K).

An overconvergent F-isocrystal on X/(K, o) (or simply X/K ) is an overconvergent isocrystal .# together
with an isomorphism ¢ : 5 (#) = 4, called (s-th) Frobenius structure of . .

We denote by F-Isoc!(X/K) the category of overconvergent F-isocrystals on X/K and by Isoc'T(X/K)

the thick full subcategory of Isoc!(X/K) generated by those that can be endowed with an s'-th Frobenius
structure for some integer s|s’.

2.1.5. In the following, we explain some examples of overconvergent isocrystals.

(i) Dwork F-isocrystal. Let k =F, (i.e. s=1), K = Q,(pp), R = Ok and o = id. We choose 7 € K
such that 77~1 = —p and take & = PL, Y = P}, X = A}l. Then Y= P3"® and | X[ is the closed unit disc.
If ¢t denotes a coordinate of A', the connection on jTﬁ]y[ defined by

V =d + ndt,
is overconvergent and is called Dwork isocrystal, denoted by o7;.
By considering the lifting of the Frobenius of P! to R given by ¢ — 7, F}, () is the module j10y |
k
equipped with the connection V7 defined by

Vo =d + mptP~Ldt.
We define a Frobenius structure ¢ : F}f, (/) — 27/ by the multiplication by 0. (x) = exp(n(x — 2?)), which
k

is a section oijﬁ]y[. This gives Dwork F-isocrystal associated to m on A} /K.
There exists a unique nontrivial additive character ¢ : F, - K* satisfying

Y(1)=1+7m mod 7°.

For each z € F,,, we denote by ¥ the Teichmiiller lifting of # in @,. Then 6, (%) = ¥(x) ([I8] 1.4). So the
Frobenius trace function of o/ is equal to 1 o Trg_r,(—). We also denote @ by o, as it plays a similar
role of Artin-Schreier sheaf associated to ¢ in the f-adic theory.

(ii) Kummer F-isocrystal. Let k be a finite field with ¢ = p® elements. Set K = Q,, R = 0k and
o =id. We choose a € R and take & = @}%, Y =P} and X = G, . If z denotes a coordinate of G,,, the
connection on jTﬁ]y[ defined by

V=d- ad—x,
T

is overconvergent, denoted by . With the lifting of Frobenius as in (i), F (/) is the module Oy

equipped with connection V? defined by
dx

V7 =d—ap—.
x
The isocrystal J#, has a Frobenius structure if and only if a € q_%Z. This Frobenius structure is given by
multiplication by (1%, Then we obtain the Kummer F-isocrystal 4.
Let x be a character of k* such that x(z) = Z(¢=D? where ¥ denotes the Teichmiiller lifting of z. We
also denote %7, by J#, because the Frobenius trace function of J#, is equal to x o Nmy, .
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2.2. (Co)specialization morphism for de Rham and rigid cohomologies. In this subsection, we re-
view the specialization and cospecialization morphisms between the de Rham and rigid cohomology following
([14] § 1) and show the compatibility of these two morphisms in proposition

The results of this subsection will mainly be used in subsection

2.2.1. In this subsection, X denotes a smooth R-scheme of pure relative dimension d and X}, (resp. Xk)
its special (resp. generic) fiber. We use the corresponding calligraphic letter X to denote the rigid analytic
space X% associated to X and the corresponding gothic letter X to denote the p-adic completion of X.
We denote by X™¢ the rigid generic fiber of X. Let ¢ : ¥ — Xk denote the canonical morphism of topoi.

Let (M,V) be a coherent Ox,-module endowed with an integrable connection (relative to K). We
denote by (M?®", V") its pullback to X along . Then the canonical morphism of de Rham complexes
e (M Q6x, Q%) = M* @4, Q% induces a morphism from algebraic de Rham cohomology to analytic
de Rham cohomology

(2.2.1.1) RI4r(Xk,(M,V)) =RI( Xk, M ®@¢y, Q%, ) = RI(X, M™ @4, Q%) = Rlan (X, (M, V).

2.2.2. We assume that there exists a smooth proper R-scheme X and an open immersion j : X — X. Let X
be the p-adic completion of X. Then the two rigid spaces X" and X = 7;? are isomorphic, and X"g is the
tube | Xy [x of Xj in X. In particular, X is a strict neighborhood of X" in X ®. We denote by Conn(Xg)
(resp. Conn(X)) the category of coherent &x,-modules with an integrable connection.
We associate to M a jTﬁErig-module Mt = jT (M) @III), endowed with the corresponding connec-
tion. In this setting, we have the following diagram (ZI1.3):
(-)f

T

(2.2.2.1) Conn(Xg)

[ xrie

Conn(X) — Conn(ﬂﬁ—ng) —— Conn(Ox:ie)

R ————
(7)&1} J \J\
| erie

F-Tsoc' (X/K) — Isoc'T (X / K )—— Isoc' (X / K) ——— Tsoc(X/K)
where the vertical arrows are fully faithful (ZI3). When X}, \ X} is a divisor, the functor |y« is exact and
faithful ([21] 4.3.10).

2.2.3. In the following, we assume moreover that the connection on M is overconvergent (see 23] for the
definition). The rigid cohomology RTyig(Xy/K, MT) (ZI3) can be calculated by

(2.2.3.1) RT i (Xi /K, MT) = RO(X, MT @4, Q%).
The adjoint morphism id — ;7 (ZII1]) induces a canonical morphism on X
(2.2.3.2) M™ R4, Q% = M @6, Q%.

By composing with ([Z211]), we deduce a canonical morphism, denoted by pys and called specialization
morphism for de Rham and rigid cohomologies:

(2.2.3.3) par : RUar(Xk, (M, V)) = RUyu (X5 /K, M1).

Let RIy, be the (derived) functor of local sections supported in the tube ] Xy[x on &' (or on X) ([20]
2.1.6). The rigid cohomology with compact supports and coefficients in M is defined as:

(2.2.34) Rl ig.c(Xk/ K, M") =RI(X, RE]Xk[(Man ® Q%))-
The canonical morphism

(2.2.3.5) Ry, (M™ © Q%) — M © Q%
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and (Z2Z32)) induce a morphism
(2.2.3.6) brig * R yigo(Xp/K, M) — RTyiq( Xy /K, MT).
2.2.4. We recall the definition of de Rham cohomology with compact supports and coefficients in (M, V)

and the cospecialization morphism, following ([14] 1.8 and [I1] Appendix D.2).
Let I be the ideal sheaf of the reduced closed subscheme X i — Xk in X . Take a coherent ﬁyK—module

M extending M. The connection V extends to a connection on the pro-O%, -module (I"M),, ([I1] D.2.12).
This allows us to define the de Rham pro-complex I*M Qo Q.YK = (I"M),, ® Q.YK' The algebraic de
K

Rham cohomology with compact supports and coeflicients in (M, V), denoted by Rlar (X k, (M,V)), is
defined as ([I1] D.2.16)

(2.2.4.1) Rlar,c(Xk, (M, V) = RO(Xg,RImI*M® Q% )
RImRE(X g, I°M ® Q% ).

1

Let jx denote the open immersion X — X k. There exists a canonical isomorphism on X
(2.2.4.2) j}(R@(I'M@Q%K)) = M® Q% .
We deduces from its adjoint R@(I'M ® Q.XK) — Rjx«(M ® Q%, ) a canonical morphism:
(2243) LdR RFdR,C(XKu (M, V)) — RFdR(XK, (M, V))

By the rigid GAGA, there are canonical isomorphisms
(22.4.4) RImRN (X i, I*M @ Q% ) = RImRI (X, I*M ™" © Q%) = RO(X, Rlim M @ 0%).

We denote the right hand side by R,y (X, (M2, V21)). Let 72" be the inclusion X — X. Similarly, there
exists a canonical morphism

(2.2.4.5) Rlm(I*M™ @ Q%) — Rj2(M™ ® Q%),
which induces a morphism on analytic de Rham cohomologies
(2.2.4.6) Lan : RTan o (X, (M™ V™)) = RT,, (X, (M, V™).

Since (X,](X — X)[x) is an admissible covering of X, the canonical morphisms
(2.24.7) RLx, (RE"(E)) = RiZ"(RL)x, (E)),  RLjx, ((E) = ROy, (R7Z (G (E))
are isomorphic for any complex of abelian sheaves F on X' (resp. &). Then [ZZZ35)) induces an isomorphism
(2.2.4.8) RL)x, (RUm(I°M ™ @ Q%)) = ROy, ((Rj2(M™ @ Q%))

The cospecialization morphism, denoted by p. ar, is defined as the composition
(22.4.9) per : RUwgo(Xi /K, MY ZED RT (R, R (M™ © 0%))

E213)

S RN Ry (R (T 5 05)
RT(X, RUm(I* M @ %)) (= RTan o (X, (M, V™))
RTar,o(Xk, (M, V)).

+

1

Proposition 2.2.5. With the above notation and assumption, the following diagram is commutative:

RT sig.o(Xi/ K, M) — 5 > R\, (X,,/ K, M1)

PC,NI\L TPM

RTaro(Xr, (M, V) —2= RTar (X g, (M, V)).
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Proof. The algebraic de Rham cohomology with compact supports is isomorphic to the analytic one (2.2.4.4).
It suffices to show the following diagram is commutative

Lrig

(2.2.5.1) RTyig o (X /K, MT) RTyig (X5 /K, MT)

RT an o(X, (M?",VA)) N RT ., (X, (M2, VAR))
where right vertical arrow is induced by (2232).
The morphism RIyig o ( Xy /K, MT) — RL,, (X, (M, V")) is induced by the composition on X

. o ran ° . o ran ° ZZZ3) -an an °
RLy ., (RUm(I* T © Q%)) — RIm(I* M © %) = Rj2(M™ @ Q%).

The restriction of the above morphism to X coincides with the canonical morphism (Z223.3]), which induces
trig (Z23.0). Then the commutativity of (ZZ5.1]) follows. O

2.3. Six functors formalism for arithmetic Z-modules. Rigid cohomology theory is a p-adic Weil
cohomology for a variety in characteristic p. Overconvergent F-isocrystals are “local systems” in the coeffi-
cients theory of rigid cohomology. However, the category of overconvergent F-isocrystals is not stable under
certain cohomological operators. Inspired by the theory of algebraic Z-modules, Berthelot introduced the
notion of arithmetic Z-modules [21], 22]. A six functor formalism for these coefficients is recently achieved
by Caro, Abe and etc.

We use the notation of arithmetic Z-modules [22]. For a smooth formal R-scheme X and a divisor Z of
the special fiber of X, let Ox o(7Z) (resp. @;‘E)Q(TZ)) denote the sheaf of rings of functions (resp. differential

operators) on X with singularities overconvergent along Z ([21] 4.2.4). Note that ﬁgQ(TZ ) is isomorphic to
Sp, (jT Oxi) for a frame (X, X) of Xj — Z (see L)) ([21] 4.3.2). We omit (Z) if Z is empty. We denote
@;,Q(TZ) by 9;7(@(2) (or @;Q(oo)) for short.

2.3.1. Let us begin by recalling basic notions of p-adic coefficients used in [3]. Let L be an extension of K
in K and T = {k, R, K, L} the associated geometric base tuple ([3] 1.4.10, 2.4.14).

We will also work in the arithmetic setting (p-adic coefficients with Frobenius structure). For this purpose,
we need to assume moreover that there exists an automorphism L — L extending o : K — K that we still
denote by o, and that there exists a sequence of finite extensions M,, of K in L satisfying o(M,,) C M,, and
UnM,, = L. Then we obtain an arithmetic base tuple ¥p = {k, R, K, L,s,c} ([3] 1.4.10, 2.4.14). We set
Lo = Lo~

Let X be a k-scheme. There exists an L-linear (resp. Lo-linear) triangulated category D(X/L) (resp.
D(X/Lp)) relative to the geometric base tuple T (resp. arithmetic base tuple Tr). This category is denoted
by DPoy(X/%) or DR (X/L) (resp. DPy(X/%r) or DP(X/Lr)) in (3] 1.1.1, 2.1.16). When L = K and X is
quasi-projective, there exists a classical description of D(X/K) in terms of arithmetic Z-modules introduced
by Berthelot [22]: If X — & is an immersion into a smooth proper formal R-scheme &, then D(X/K) is
a full subcategory of DP

Coh(.@j;z@) with objects satisfy certain finiteness condition called overholonomicity,
certain support condition, and can be equipped with some Frobenius structure [ (cf. 3] 1.1.1, [A]).

The category D(X/L) (resp. D(X/Lp)) is equipped with a t-structure, called holonomic t-structure, whose
heart is denoted by Hol(X/L) (resp. Hol(X/Lp)), called category of holonomic modules. These categories
are analogue to the category of perverse sheaves in the ¢-adic cohomology theory. The category Hol(X/L) is
Noetherian and Artinian ([3] 1.2.7). We denote by H* the cohomological functor for holonomic t-structure.

When X = Spec(k), there exists an equivalence of monoidal categories between D(X/L) and the derived
category of bounded complexes of L-vector spaces with finite dimensional cohomology.

b

coh

pair (s,0) (as in[[338). However, the category D(X/L) is independent of the choice of data (s, o) up to equivalences ([3] 1.1.2).

2To define Frobenius structure on objects of D (@ng, Q) and the category D(X/L), we need to assume the existence of a
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2.3.2. The six functor formalism for D(X/L) (resp. D(X/LF)) has been established recently. We refer to
[5, [6] and ([3] 2.3) for details and to ([3] 1.1.3) for a summary. Here we only collect some results needed in
the sequel.

Let f: X — Y be a morphism of k-schemes. For A € {{), F'}, there exist triangulated functors

(2.3.2.1) fo, fi:D(X/Ly) = D(Y/Ly),  fH f :D(Y/L,) — D(X/L.),

such that (1, fy), (fi, f') are adjoint pairs. These functors satisfy following properties:

(i) The category D(X/L,) is a closed symmetric monoidal category, namely it is equipped with a tensor
product functor ® and the unit object Lx = 7+ (L), where m : X — Spec(k) is the structure morphism
and L is the constant module in degree 0. The functor ® admits a left adjoint functor s#omx, called the
internal Hom. The functor f* is monoidal.

(ii) There exists a duality functor Dx = Somx(—,p'L) : D(X/L4)° — D(X/L4) (] 1.1.4). The
canonical morphism id — Dy o Dy is an isomorphism. We set (—)®(—) = Dx (Dx(—) @ Dx(—)).

(iii) There exists a canonical morphism of functors f; — f, which is an isomorphism if f is proper.

(iv) (Base change). Consider the following Cartesian diagram of k-schemes

’

(2.3.2.2) x Lox

Jd )

v -y
Then we have a canonical isomorphism g fi ~ f/¢’". When f is proper, this isomorphism is the base change
homomorphism defined by the adjointness of (f, f1).

(v) (Berthelot-Kashiwara’s theorem). Let ¢ be a closed immersion. Then i, is exact and fully faithful.
The restriction of i* to the essential image of i, is exact and is a quasi-inverse to i, ([6] 1.3.2(iii)).

(vi) Let @ be a closed immersion of k-schemes and j the open immersion defined its complement. There
exists a canonical isomorphism j* = j'. We have distinguished triangles ([3] 1.1.3(10), 2.2.9):

gt =id =it =, it —id = jiT -,
where the first and second morphisms are defined by adjunctions.

(vii) (Poincaré duality) We refer to ([3] 1.4.13) for the definition of Tate twist functor (—). Let f : X — YV
be a smooth morphism of relative dimension d. Then there exists a canonical isomorphism ¢ : f+(d)[2d] = f*
([3] 1.5.13). Moreover, the functors f*[d], f'[—d] are exact.

(viii) There exists a canonical equivalence of categories D(X/La) ~ D" (Hol(X/L4)) (I, [B] 2.2.26).

(ix) Let X1, X2 be two k-schemes and p; : X; x X5 — X, the projection for ¢ = 1,2. There exists a
canonical isomorphism of functors pf (=) @ pg (—) =~ p}(—)@p,(—) (ii), denoted by —X — and called external
tensor product. This functor is exact ([6] 1.3.3).

Remark 2.3.3. (i) If L is a finite extension of K, an object of Hol(X/L) is defined as an object of Hol(X/K)
equipped with an L-structure (J3] 1.4.1). In general, Abe used the 2-inductive limit method of Deligne to
construct D(X/L) ([3] 2.4.14). If L’ is an algebraic extension of L in K, we have an extension of scalars
functor v/, : D(X/L) — D(X/L'), which is exact and commutes with cohomological functors.

(ii) The category D(X/¥) does not depend on the choice of the base field k under certain conditions.
More precisely, if T = {k/, R', K’, L} is another geometric base tuple over T. Then there exists a canonical
equivalence ([3] 1.4.11):

D(X @ k'/T) = D(X/%),
which commutes with cohomological functors.

(iii) Let ¥p be an arithmetic base tuple. The s-th Frobenius morphism Fy : X — X induces a o-semi-
linear equivalence of categories F% : D(X/L) = D(X/L) commuting with cohomological functors, called
(s-th) Frobenius pullback ([3] 1.1.3 lemma). An object of Hol(X/Lp) is an object & of Hol(X/L) equipped

with a(n s-th) Frobenius structure ¢ : F5 (&) = & (cf. [3] 1.4).
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2.3.4. Let X be a smooth k-scheme of dimension d : mo(X) — N. There exists a full subcategory Sm(X/L,)
of Hol(X/L,)[—d] C D(X/L) consisting of smooth objects ([3] 1.1.3(12) and 2.4.15). In general, we say a
complex .# € D(X/L,) is smooth if H'(.#)[—d] belongs to Sm(X/L,) for every i.

When L = K, there exists an equivalence Sp, between Sm(X/K) (resp. Sm(X/Kr)) and Isoc'(X/K)

(resp. F-TIsoc'(X/K)) @I4). If X admits a smooth compactification X with a smooth lifting X to Spf(R),
this equivalence is induced by the specialisation morphism Sp, : XS x

(2.3.4.1) Sp, = Sp..(—d)[—d] : Isoc'T(X/K) (resp. F-Isoc!(X/K)) =5 Sm(X/K,) C D2 (X/K,).

In the following, we identify these two categories by §f>* and we use alternatively these two notations.

Let f: X — Y be a morphism between smooth k-schemes. Via §f)*, we can identify the functor £ and
the pullback functor of overconvergent (F-)isocrystals f* ([3] 2.4.15). If d denotes dim(X) — dim(Y"), for
any object M of Sm(X/L,), there exists a canonical isomorphism:

(2.3.4.2) FHM) ~ fH(M)(d)[2d].

2.3.5. Let X be a k-scheme. There exists a constructible t-structure (c-t-structure in short) on D(X/L) (cf.
[3] 1.3, 2.2.23). When X = Spec(k), the constructible t-structure coincides with the holonomic one ([Z3.2]).
If X a smooth k-scheme, any object of Sm(X/L) is constructible.

The heart of c-t-structure is denoted by Con(X), called the category of constructible modules, and is
analogue to the category of constructible sheaves in the f-adic theory. The cohomology functor of c-t-
structure is denoted by “H*.

Let f: X — Y be a morphism between k-schemes. The functor f is c-t-exact and f; is left c-t-exact.
If i is a closed immersion, then i is c-t-exact. If j is an open immersion, then j is c-t-exact ([3] 1.3.4).

A constructible module .# on X is zero if and only if i .# = 0 for any closed point i, : @ — X ([3]
1.3.7).

2.3.6. In the end, we present a generalization of the specialization morphism (2.233) in a relative situation
using the direct image of arithmetic Z-modules.

Let f : X = Spec(B) — S = Spec(A) be a smooth morphism of affine smooth R-schemes of relative
dimension d and let (M, V) be a coherent Oy, -module endowed with an integrable connection relative to
K. Consider M as a Zx,-module. The direct image ff_R(M ) of Z-modules is calculated by the relative de
Rham complex M & Q5% /s Since f is affine, the above complex is calculated by

(2.3.6.1) L(S, f{"(M)) ~DRpja(M,V) = M = M ®@pQp 4 — -+,
where we denote abusively by M the global section I'( Xk, M).

2.3.7. We assume moreover that f admits a good compactification, i.e. f can be extended to a smooth
morphism f : X — S of smooth projective R-schemes X, S such that X, — X, Sx — Sy are ample divisors.
We keep the notation of and assume that MT = jT(M?") is overconvergent as in We denote
abusively the @%Q(oo)-module Sp.(MT) @3d) by MT. The direct image of M along f; : X — Sy is

calculated by a relative de Rham complex:
(2.3.7.1) fos (M) = RFy (S, (M @6, Q% )5))-
The above complex is a complex of overholonomic (and hence coherent) @% Q(oo)—modules.
We set AT = T'(8, 05 o(70)), Bf = T'(E, 05 o(To0)) and DL(c0) = T(§, @T@@(oo)) (C33). By 2'-
affinity ([53] 5.3.3), the complex [Z3T]) is equivalent to a complex of coherent D%(oo)—modules:
RT(S, fr,+(M") = RIO(E,Sp.(M' @0y U/s))
(M ®p, BT) ®B Q.B/A'

R
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We denote the complex in the second line by DRTB / A (MT). Note that this complex is Af-linear.

If we set Dg,, = T'(Sk, Zs, ), there exists a canonical Dg, -linear morphism, called the (relative) special-
isation morphism

(2.3.7.2) DR p/a(M,V) = DR, (MT).
2.4. Complements on the cohomology of arithmetic Z-modules.

2.4.1. Let f: X — Spec(k) be a k-scheme and .% an object of D(X/L). We set
(2.4.1.1) H'(X,2) = Mo (), HIX,F) = H[(F),

and call them cohomology groups of %, compact support cohomology groups of ., respectively. Note that
they are finite dimensional L-vector spaces. If .# is an object of D(X/Lp), then above cohomology groups
are equipped with a Frobenius structure. If there is no confusion, we simply write H* (X, L) for H*(X, Lx).
We collect some properties that we will use in the following:

(i) If X has dimension < d, then for any .# € Con(X), the compact support cohomology groups H, (X, .#)
are concentrated in degrees 0 < i < 2d ([3] 1.3.8).

(ii) Suppose X admits a smooth compactification X such that X possesses a smooth lifting over R and
that X — X is a divisor. Given an object M of Isoc' (X/K) (resp. F-Tsoc'(X/K)) [ZI4), we have canonical
isomorphisms ([I] 5.9):

(2412) ::ig(X7M) ZH*(Xv Sp*(M)), :ig,c(XvM):H:(Xvsp*(M))u
as objects of Vecg (resp. F-Veck). Via (ZA1J), the canonical morphism H* (X, Sp, (M)) — H*(X, Sp, (M))
induced by fi — f1 is compatible with ¢, (Z23.0).

In particular, we have H’(A", L) ~ L, H'(A", L) = 0 for i # 0 and H*"(A" L) ~ L, H'(A", L) = 0 for
i #£ 2n.

(iii) If X is smooth over k, then the dimension of H(X, Lx) is equal to the number of geometrically
connected components of X. The Frobenius acts on H’(X, Lx) as identity.

2.4.2. Let Y be a closed subscheme of X and .# an object of D(X/L). In view of the distinguished triangle
232(iv), there exists a long exact sequence of cohomology groups:

(2.4.2.1) S H(X -V, F) S H(X,F) s H(Y,F) S

In general, suppose that there exists a finite filtration of closed subschemes {X;}icz of X, with closed
immersions X; 1 < X; such that X; = X for 4 small enough and X; = () for i big enough. Then we deduce
a spectral sequence (cf. [37] *2.5)

(2.4.2.2) EY = HY (X, — Xi1,.%) = HY (X, .2).
Corollary 2.4.3. Let d be the dimension of X. Then the dimension of the top degree compact support

cohomology Hgd(X, Lx) is equal to the number of geometrically irreducible components of X. The Frobenius
on Hgd(X, Lx) acts by multiplication by q°.

Proof. We denote by X (resp. Xsing) the smooth (resp. singular) locus of X. Then the assertion follows
from the long exact sequence (ZZA21) for (Xsm, Xsing, X ), Poincaré duality and 2.4T(iii). O

We show an analogue of ([16] 4.2.5) for arithmetic Z-modules.

Proposition 2.4.4. Let f : X — Y be a smooth morphism of k-scheme of relative dimension d with geo-
metrically connected fibers. Then the functor fT[d] induces a fully faithful functor Hol(Y/L,) — Hol(X/L,)
for A € {0, F}.

Lemma 2.4.5. Let .# be an object of DS°(X/L) and AN an object of D=°(X/L). Then S omx (M, N)
belongs to ©D=°(X /L) [Z35).
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Proof. We prove by induction on the dimension of X. The assertion is clear if dim X = 0. To prove the
assertion, we can reduce to the case where .#, .4 € Hol(X/L). Then there exists a dense smooth open
subscheme j : U — X such that .#|y, /|y are smooth. Let i : Z — X be the complement of U and
consider the triangle

iyit Homx (M, N) — Homx (M, N) = jriTHomx (M, N) — .

Since i'. A omx (M, N) ~ Homx (it ,i'N) (B] 1.1.5), the first term belongs to © D=°(X/L) by induction
hypotheses. Note that Zomy (A v, N |v) ~ Dy (A |y @Dy (A |v)) is a smooth module and of constructible
degree 0. Then jjt#omx (#,./) belongs to  D=°(X/L) and the assertion follows. O

2.4.6. Proof of proposition 2244l Since Frobenius pullback induces an equivalence of categories, it suffices
to show the assertion for Hol(—/L). Let .#, .4 be two objects of Hol(Y/L). Since f is smooth, we deduce
from f'oAomy (M, N) = Homx(fra, ) ([B] 1.1.5) an isomorphism

[T #omy (M, V) = Homx (fT M, ftN).
By applying “H" £, °H"(—) to the above isomorphism and lemma 245 we have

(2.4.6.1) Hf [T (CH (Homy (M, N))) = “HOf L HO (A omx (fHa(d], fH[d)).
We claim that for any constructible module .% on Y, there is a canonical isomorphism
(2.4.6.2) F S Hf LT

Then, by 2435 the proposition follows by applying H(Y, —) to the composition of ZZ6.1) and (ZZ6.2).
By smooth base change and 235 to prove [2.4.6.2)), we can reduce to the case where Y is a point. After

extending the scalar L and the base field k (Z3.3]), we may assume moreover that Y = Spec(k). In this case,

the isomorphism (2462 follows from 2ATI(iii). O

2.5. Equivariant holonomic Z-modules. In this subsection, we study the notion of equivariant holonomic
Z-modules over a k-scheme (or an ind-scheme). We write simply D(X) (resp. Hol(X)) for D(X/L) or
D(X/Lp) (resp. Hol(X/L) or Hol(X/LF)).
2.5.1. Let X — S be a morphism of k-schemes, H a smooth affine group scheme over S with geometrically
connected fibers and act : H xg X — X an action of H on X. We denote by pry : H xg X — X the
projection. We define the category Holy (X) of H-equivariant holonomic modules on X as follow. An object
of Hol (X) is a pair consisting of a holonomic module .# on X and an isomorphism 6 : act™(.#) = prj (.#)
in D(H xg X), satisfying:

(i) et (#) = id, where e : X — H x g X is induced by the unit section of H;

(ii) a cocycle condition on H xg H xg X.
A morphism between (.1, 61) and (.#2,02) is a morphism ¢ : .#; — #> of Hol(X) such that
(2.5.1.1) pry () 0 01 =~ 03 0 act™ ().
It is clear that Holy (X) is an abelian subcategory of Hol(H).

Suppose that [X/H] is represented by a separated scheme of finite type X over S. By smooth descent of
holonomic modules ([3] 2.1.13), the pullback functor along the canonical morphism ¢ : X — X induces an
equivalence of categories:

(2.5.1.2) q"[dg] : Hol(X) = Holg (X).
Lemma 2.5.2. The canonical functor Holy (X) — Hol(X) s fully faithful.
Proof. Given two objects (A#1,01), (#2,02) of Holg(X) and a morphism ¢ : .# — .#5 of Hol(X), one
need to show (Z5.1.T])

02 0 actt(p) o (61) 7" = pry ().
By proposition 24, pry is fully faithful. To show the above isomorphism, it suffices to show et (65" o
actT(p) 0 01) ~ et (pry ()), which follows from Z5ILi). O
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Lemma 2.5.3. Let H; C H be a closed normal subgroup scheme over S. Suppose that H/Hy, Hy are smooth
over S and that the action of H on X factors through H/Hy. Then, the canonical functor

(2.5.3.1) Holg g, (X) — Holg (X)
is an equivalence of categories.

Proof. The essential surjectivity follows from smooth descent ([3] 2.1.13). The full faithfulness follows from
2.0.2) O

2.5.4. Keep the notation of 257l Let Y be a separated S-scheme of finite type and w : £ — Y an H-torsor
over S with trivial action of H on Y. We denote by Y X gX the quotient of E xg X by H, where H acts on
F xg X diagonally.

Let .4 be a holonomic module on Y and .4 an H-equivariant holonomic module on X. Assume that .ZXg
A is a holonomic module on Y x g X (Note that it is true if the base S = Spec(k)). Then (™. [dim H])Xg
A is holonomic on E xg X and is H-equivariant by construction. By (Z5.1.2)), it descents to a holonomic

module on Y X gX, denoted by MRg. N and called the twisted external product of A and N .

2.5.5. We say an fpqc sheaf X’ on the category of k-algebras is a (strict) ind-scheme over k if there exists
an isomorphism of fpqc-sheaves X' ~ ligl_E ; X; for a filtered inductive system (X;);es of k-schemes, whose
transition morphisms are closed immersion. The inductive system (X;);cs is called an ind-presentation of
X. We have following properties:
(i) If Z is a k-scheme and v : Z — X is a closed subfunctor, then there exists an index ¢ such that u
factors through 7 — X;.
(i) If & ~ ligje] X ]' is another ind-presentation, the for any i, there exists an index j such that X; is a
closed subscheme of X J’ and vice versa.
Given an ind-scheme X = hﬂz‘e s X, we denote by Xyeq = hﬂie ; X red the reduced ind-subscheme of X
For a transition morphism ¢ : X; — X, the functor ¢ : D(X;) — D(Xj) is exact and fully faithful. We
define a triangulated category D(X) as the 2-inductive limit
D(X) =1lim D(Xj;).
(X) fig (X:)
The definition is independent of the choice of a ind-presentation of X. Since ¢y is exact, D(X) is also
equipped with a t-structure, whose heart is denoted by Hol(X'). Note that Hol(X) coincides with the full
abelian subcategory lim, Hol(X;) of D(X).
Given a morphism f = (fi)ier : X = @Xi — S to a k-scheme S, the cohomology functors f;’s and
fi+'s allow us to define fi, f+ : D(X) — D(S).

2.5.6. Let & =lim _ X, be an ind-scheme and f : & — 5 a morphism to a k-scheme. Let (Hj)jes be a
projective system of smooth affine S-group schernes with geometrically connected fibers, whose transition
morphisms are quotient. We set H = L J ;j its projective limit, which is an affine group scheme over
S. Assume that there exists an action of H on f : X — S such that it stabilizes each subfunctor f|x, and
that the H-action factors through a quotient H;, on X; — S for each ¢ € I. Then we define Holy (X;) to
be Holp; (X;). By lemma 53] the category Holpy (X;) is independent of the choice of Hj, up to canonical
equivalences. Therefore, for i < j, we have a fully faithful functor Holy (X;) — Holy (X ) We define the
category Holy (X) of H-equivariant holonomic modules on X as the inductive limit:
HO].H(X) = h_II>1 HOIH(XZ').
icl

Let Y = ligie IYi an ind-scheme over S and w : £ — ) an H-torsor. We can define an ind-scheme
yQSX as follows. For i,l € I, we denote by Ej;, the Hj,-torsor Ely, x H;, — Y; and by YZQSXl- =
E) ;, xs X,/ Hj, the twisted product [Z5.4). For a surjection H; — Hj,, there exists a canonical isomorphism
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By xsX;/Hj = E;;, xs X;/Hj,. Then this allows us to represent the fpqc sheaf VX gX as an inductive
limit of ¥;X ¢.X;.

Let .# be an object of Hol(Y) supported in Y; and .4 an object of Holy (X)) supported in X;. Assume
that .# g .4 is a holonomic module on Y xg X. Then we can define an object ///@5% in Hol(YlQSXi)
(Z54) and then in Hol(Yx g&). The construction is independent of the choice of i,1 € I.

2.6. Intermediate extension and the weight theory.

2.6.1. Let u : Y — X be alocally closed immersion. Then the functor uy (resp. w) is left exact (resp. right
exact) ([6] 1.3.13). For A € {0, F} and & € Hol(Y/L,), we consider the homomorphism 6}, , : H°(uw&) —
HO(uy &) and we define w14 (&) to be ([6] 1.4.1)

(2.6.1.1) (&) =m0 4 : H'(w&) — H(us&)).

This defines a functor w4 : Hol(Y/L,) — Hol(X/L,), called the intermediate extension functor. We recall
the following results and refer to ([6] §1.4) for general properties of this functor:

(i) ([6] 1.4.7) Suppose & is irreducible. Then, w14 (&) is the unique irreducible subobject of H°(u ;&)
(resp. irreducible quotient of H°(w&’)) in Hol(X/L,).

(ii) ([6] 1.4.9) Let .# be an irreducible object of Hol(X/L,). Then there exists a locally closed immersion
u:Y — X from a smooth k-scheme Y and a smooth holonomic module & on Y such that . ~ ui(&).

Corollary 2.6.2. Let j : U — X be an open subscheme of X and i : Z — X its complement.

(i) Given a holonomic module & on U, ji4(&) is the unique extension .F of & to Hol(X/L,a) such that
it # € DS"YZ/L4) and that i*'F € D=1 (Z/L,).

(i) If X is smooth and .F is a smooth holonomic module on X, then ji(F|y) ~ F.

Proof. (i) Since ji, " are right exact ([6] 1.3.2), H%"(H°(j1(£))) = 0. By applying it to 0 — Ker(69 ») —

HO(j1(&)) = 14 (&) — 0, we obtain it (ji(£)) € DS7Y(Z/L). We prove i*.% € D=!(Z/L) in a dual way.
Conversely, given such an extension .%, we can prove that the adjunction morphism H%ji(&) — F (resp.

F — M5 (&)) is surjective (resp. injective) by the Berthelot-Kashiwara theorem. The assertion follows.

(ii) The intermediate extension is stable under composition ([6] 1.4.5). Then we can reduce to the case
where Z is smooth over k. In this case, assertion (ii) follows from (i) and [23.4.2)). O

2.6.3. We briefly recall the theory of weights for holonomic F-complexes developed by Abe and Caro [6].

In the rest of this subsection, we assume k has ¢ = p° elements and we consider the arithmetic base tuple
Tr ={k,R,K,L,s,0 =id} Z31). We fix an isomorphism ¢ : K ~ C. We refer to ([6] 2.2.2, [3] 2.2.30) for
the notion of being t-mized (resp. t-mized of weight < w, t-mized of weight > w, t-pure) for 4 € D(X/LF).

The weight behaves like the one in the ¢-adic theory:

(i) ([6] 4.1.3) The six operations preserve weights. More precisely, given a morphism f : X — Y of
k-schemes, f,,f' send t-mixed F-complexes of weight > w to those of weight > w, fi, f* send t-mixed
F-complexes of weight < w to those of weight < w. The dual functor Dx exchanges (-mixed F-complexes
of weight < w to > w and ® sends -mixed F-complexes of weight (< w, < w') to < w + w'.

(ii) (J6] 4.2.4) Intermediate extension functor of an immersion preserves pure F-complexes and weights.

Moreover, we have a decomposition theorem for pure holonomic F-module.

Theorem 2.6.4 ([6] 4.3.1, 4.3.6). Let X be a k-scheme.
(i) An t-pure F-holonomic module & on X is semisimple in the category Hol(X/L) (not in Hol(X/LF)).
(ii) An t-pure F-holonomic complex F is isomorphic, in D(X/L) to ®nezH™(F)[n).

The original form of ([6] 4.3.1, 4.3.6) states the decomposition in the category of overholonomic modules
(resp. complexes) over X. We remark that the same argument shows the decomposition in the category
Hol(X/L) (resp. D(X/L)).
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2.7. Nearby and vanishing cycles. In a recent preprint [4], Abe formulated the nearby and vanishing
cycle functors for holonomic arithmetic Z-modules, based on the unipotent nearby and vanishing cycle
functors introduced by himself and Caro in [5]. We briefly recall these constructions in this subsection.

We write simply D(X) for D(X/L) or D(X/Lp). The construction are parallel in two cases. When
D(X) =D(X/L), the Tate twist (n) denotes the identity functor.

2.7.1. Let f: X — A} be a morphism of k-schemes. We denote by j : U = f~(G,,) — X the open
immersion and by i : Xo = X —U — X its complement. Following Beilinson [I5], Abe and Caro constructed
the unipotent nearby and vanishing cycle functors ([5], §2)

(2.7.1.1) W Hol(U) — Hol(X), @%" : Hol(X) — Hol(Xo).
We briefly recall the definition of ¥}". We denote 0, Q(T{O, oo}) simply by Og,, (see[[38). For n >0,
=

we define a free Og, -module Log™ of rank n
Log" = ®1~, Og,, - log!”,
(7] : : T _ n
generated by the symbols log!". There exists a unique .@@? 7@({0, o0 })-module structure on Log™ defined for
1>0and g € Og,, by
Vau(g-1og") = 9i(g) -log!! + - 1og" ),

where ¢ is the local coordinate of G, and 1ogm =0 for j < 0. There exists a canonical Frobenius structure
on Log" sending log!” to ¢'logl!. This defines an overconvergent F-isocrystal on Gy, and then a smooth
object of Hol(G,,/KF). We still denote by Log" the extension of scalars 1, /i (Log™) in Hol(G,,).

We set Logy = f* Log" € Hol(U) and define for .# € Hol(U) B:
(2.7.1.2) VN F) = hﬂKer(jg(ﬂ ® Log}y) — j+(F @ Log})).

n>0

This limit is representable in Hol(Xy) by ([5] lemma 2.4).

The functors W}", @Y are exact ([5] 2.7) and extend to triangulated categories. There exists a distin-
guished triangle i*[—1] — W} — ®Y" BN
Proposition 2.7.2 ([3] 2.5). There exist canonical isomorphisms:
(2.7.2.1) (D, 0 TI)(1) = T 0Dy, Dy, 0 BY" =~ O 0 Dy.

2.7.3. To define the full nearby/vanishing cycle functors of a morphism over a henselian trait, one need
to extend the definition of holonomic arithmetic Z-modules to a larger class of schemes, which are closed
under henselization. We denote by Pro(k) the full subcategory of Noetherian schemes over k which can be
representable by a projective limit of a projective system of k-schemes whose transition morphisms are affine
and étale. In the rest of this subsection, we will work with schemes in the category Pro(k).

Given a morphism of finite type X — S, if S is an object of Pro(k) then so is X. The category Pro(k)
is closed under henselization (resp. strict henselization) ([4] 1.3).

Let X = @ie s X; be an object of Pro(k) with a representation by k-schemes X;. For each transition
morphism ¢ : X; — X, (which is affine and étale), we have a canonical isomorphism ¢+ ~ ¢' : D(X;) —
D(X;). We define a triangulated category D(X) of arithmetic Z-modules on X as an inductive limit D(X) :=
lim, D(X;). Since @7 is exact, D(X) is equipped with a t-structure whose heart is denoted by Hol(X).

Moreover, we can extend the definition of cohomological functors (Z321)) to D(X) (cf. [4] 1.4).

2.7.4. Let (S,s,m) be a strict henselian trait in Pro(k) and f : X — S a morphism of finite type. With
above preparations, we can define the unipotent nearby and vanishing cycles functors for f (cf. [4] 1.7,1.8)

(2.7.4.1) un @4 : Hol(X) — Hol(X,).

SWe adopt the definition of [4], which is different from that of [5] by a Tate twist.
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We denote by Hen(S) the category of henselian traits over S which is generically étale over S. Given an
object h : S” — S of Hen(S), we denote abusively by & the canonical morphism Xg/ — X, by hs : Xo > X,
the isomorphism on the special fibers and by f’: Xg — S’ the base change of f by h.

Using (Z7CZT]), the full nearby and vanishing cycle can be defined as (cf. [4] 1.9):

(2.7.4.2) Up= lim Ay oUoht, @p=  lim by o®fohT.
(S’,h)€Hen(S) (8’,h)€Hen(S)
By [4] 2.2, they are well-defined functors
Uy, @y : Hol(X) — Hol(X5s).
2.8. Universal local acyclicity.

2.8.1. Following Braverman-Gaitsgory ([25], 5.1), we propose a notion of (universal) local acyclicity for
arithmetic Z-modules with respect to a morphism to a smooth target.

For a smooth k-scheme X, we denote by dx : mo(X) — N the dimension of X. Let g : X7 — X5 be a
morphism of k-schemes and %, #’ two objects of D(X5). We consider the composition

a(g"(F) 2 g (F) = F @ gld(F) - FoF
and its adjunction:
(2.8.1.1) gH(F) 2 d(F) = ¢'(F 0 F).

Now let S be a smooth k-scheme and f : X — S a morphism of k-schemes. We set X7 = X, Xo = X x 5,
F' = Lx, and take g to be the graph of f. By Poincaré duality, we have Lx, (—ds)[~2ds] = ¢'(Lx,).
Then, we obtain a canonical morphism

(2.8.1.2) 9" (F) = ¢'(F)(ds)[2ds].
By taking .%# to be .# X ./, we obtain a canonical morphism (Z3.2[(ix))
(2.8.1.3) M fHAN) = (MSf(AN))(ds)[2ds).

Definition 2.8.2. Let S be a smooth k-scheme and f : X — S a morphism of k-schemes. We say that
an object .# of D(X) is locally acyclic (LA) with respect to f, if the morphism (281.3)) is an isomorphism
for any object 4" of D(S). We say that .Z is universally locally acyclic (ULA) with respect to f, if for any
morphism of smooth k-schemes S’ — S, the +-inverse image of .Z to X xg S’ is locally acyclic with respect
to X xg 8" — 9.

Proposition 2.8.3. Keep the notation of 282l and let A be an object of D(X).

(i) Any object A of D(X) is ULA with respect to the structure morphism X — Spec(k).

(i) Let g : Y — X be a smooth (resp. smooth surjective) morphism. Then g*(#) on'Y is LA with
respect to f o g if (resp. if and only if) A is LA with respect to f.

(iii) If g : S — S’ is a smooth morphism of smooth k-schemes and # is LA with respect to a morphism
f:X =S, then A is LA with respect to go f.

(iv) Let h : Y — S be a morphism of finite type and g : X — Y a proper S-morphism (resp. a closed
immersion). Then gy () is LA with respect to h if (resp. if and only if) A is LA with respect to f.

(v) If A is LA with respect to f, then so is its dual Dx (A).

Proof. (i) Let S be a smooth k-scheme and .4 an object of D(S). We need to show that the canonical
morphism
(idx xA)F ( ®pg (AN)) — (idx xA) (A Rpg (A))(ds)[2ds]
is an isomorphism, where A : S — S x S is the diagonal map and ps : S x S — S is the projection in the
second component. Then we reduce to show that the canonical morphism
N = N(pf () (2ds)[2ds]

is an isomorphism. After taking dual functor, the assertion follows from ([3] 1.5.14).
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Assertions (ii) and (iii) follow from (Z3Z(vii)) and the smooth descent for D(X) ([3] 2.1.13).
Assertion (iv) follows from the projection formula ([3] 1.1.3(9)) and the Berthelot-Kashiwara theorem.
If we apply the dual functor Dx to the morphism (Z8TI3), then we obtain the morphism ZIT3])

Dx () @ fF(Ds(A)) = (Dx (A)Sf (Ds(A)))(ds)[2ds],
for the pair (Dx (#),Ds(./")). Then assertion (v) follows. O

Remark 2.8.4. Let S be a smooth k-scheme and f: X — S a morphism from an ind-scheme to S. In view
of proposition [Z83|iv), we can define the notion of LA (resp. ULA) with respect to f for objects of D(X).

Proposition 2.8.5. Keep the notation of and let D be a smooth effective divisor in S, i : Z =
YD) — X the closed immersion and j : U — X its complement. Let .# be an object of D(X) such that
it is LA with respect to f and that .# |y is holonomic.

(i) There exists canonical isomorphisms:
(2.8.5.1) M~ Gy (M), it -1 =it (D[]
In particular, # and it #|—1] are holonomic.

(ii) The holonomic module i* . #|—1] is LA with respect to foi and f|z : Z — D.

Proof. (i) By étale descent for holonomic modules ([3] 2.1.13), we may assume that there is a smooth
morphism ¢ : S — A! such that D = ¢g=1(0). By proposition Z8.3(iii), .# is LA with respect to go f : X —
A'. Then we can reduce to the case f: X — Al and Z = f71(0).

We will show that 4" (.4 ) =0, i.e. the canonical morphism
(2.8.5.2) it A1) = O A)

is an isomorphism.
We denote by j : G,,, — Al be the canonical morphism and abusively by f the restriction f|y : U — G,.
By the projection formula, we have

g Ay @ fFLog") = M @ jif  Log" ~ .M @ ] Log" .
On the other hand, by the projection formula and the LA property of .#, we have
Jr( My @ (ffLog") = jy(M|u@(f Log™))(dx)[2dx]
= MB(j1f Log")(dx)[2dx]
~  M3(f'] Log")(dx)[2dx]
~ MR (f+3+ Log").
Via the above isomorphisms, the canonical morphism ji(# |y @ (f* Log")) — j+(A|v @ (fT Log"))
coincides with the canonical morphism
M @ (f*(jLog" — j; Log")).

To prove that ([Z8.5.2)) is an isomorphism, we can reduce to the case where f is the identity map of A!
and .# is the constant module Ly:[1] on Al. If we denote by N,, the action induced by td; on the fiber
(Log™)o of Log™ at 0 (called residue morphism in [6] 3.2.11), then Ker(ji(Log,,) — j+(Log,)) is isomorphic
to Ker(N,,) (cf. [5] proof of lemma 2.4). In this case, (Z85.2) is an isomorphism.

In particular i*.#[—1] is holonomic. By propositions and [Z83(v), the second isomorphism of

E850) follows from (Z85.2):
(2.8.5.3) U () ~ Dx, P (Dx ())(1) = it (1)[1].
Then we deduce A ~ ji; (A |v) by ZG21)).

Assertion (ii) follows from the six functor formalism. We left the proof to readers. O
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Corollary 2.8.6. If an object .# of D(X) is ULA with respect to f, then, for any strict henselian trait T
and any morphism g : T — S, we have @} (M |x,) = 0 and g, (M |xy) = 0, where fr : Xp — T is the
base change of f by g.

Proof. By definition, it suffices to show that the unipotent vanishing cycle ® (M| x, ) vanishes.

By ([54] 8.8.2), there exists a smooth k-scheme S’; a smooth effective divisor D of S" with generic point
np and a morphism h : S’ — S such that the strict henselization of S’ at np is isomorphic to T and that
g is induced by h. We denote by fs: : Xg — S’ the base change of f by h. After shrinking S’, we may
assume that there exists a smooth morphism 7 : S — A} with D = 7=1(0).

By definition (cf. [4] 1.7-1.8), we reduce to show that ®%%, (.#|x,,) = 0. But this follows from proposi-

mofqr

tion 2Z283(iii) and the proof of (Z85.2). Then the assertion follows. O

Corollary 2.8.7. Let X be a smooth k-scheme. If an object A4 of D(X) is ULA with respect to the identity
morphism, then each constructible cohomology module “H'(.#) is smooth (resp. each cohomology module

Hi (M) is smooth,).

Proof. When . is constructible, it follows from [Z8:6 and ([4] 3.8). We prove the general case by induction
on the cohomological amplitude of .Z . ]

2.8.8. In[T] we will use the notion of holonomic modules over a stack and apply cohomological functors of a
schematic morphism of algebraic stacks, that we briefly explain in the following. Let X be an algebraic stack
of finite type over k. We refer to ([3] 2.1.16) for the definition of category Hol(X) of holonomic modules on
X and the category D(X) (corresponds to the category DP,(X) in loc. cit). The dual functor Dy is defined
in ([3] 2.2). Let f: X — 9 be a schematic morphism, Y, — ) a simplicial algebraic space presentation. By
pullback, we obtain a simplicial presentation X, — X and a Cartesian morphisms fo : X¢ — Y,. Then the
constructions of ([3] 2.1.10 and 2.2.14) allow us to define cohomological functors:

f+: D(X) = Dilyy(Xe) = Dy (Ye) ~ D(Y) « f.
Given a object . of D(X) and a morphism g : X — S to a smooth k-scheme S, we say .# is ULA with
respect to g if its +-pullback to a presentation U — X is ULA with respect to U — S.
Suppose S is moreover a curve. Let s be a closed point of S and S the strict henselian at s.

Since nearby/vanishing cycle functors commute with smooth pullbacks, we can extend the definition of
nearby /vanishing cycle functors for g xg S(y).

2.9. Local monodromy of an overconvergent F-isocrystal.

2.9.1. We briefly recall the local monodromy group of p-adic differential equations over the Robba ring
following [10, [65].

We denote by Ry the Robba ring over K, by MC(Rf /K) (resp. MC(R/K)) the category of V-modules
of finitely presented over Ry (resp. over R = R®y K). Each object of MC(R/K) comes from the extension
of scalar of an object of MC(Ry, /L) for some finite extension L of K. We denote by MC"™(R/K) the full
Tannakian subcategory of MC(R/K) consisting of unipotent objects, i.e. objects which are isomorphic to
successive extension of the trivial object (cf. [65] § 4).

There is an equivalence between the category Vecnfil of finite dimensional K-vector space with a nilpotent
endomorphism and MC"™ (R /K), given by the functor (Vy, N) — (Vo ®% R, V), where the connection V
is defined by V(v ® 1) = Nv ® da/x ([65] 4.1). In particular, the Tannakian group of MC"™ (R /K) over
K is isomorphic to G,.

We denote by MCF(R/K) the full subcategory of MC(R/K) consisting of objects admitting a Frobenius
structure ([T0] 3.4). The category MCF(R/K) is a Tannakian category over K, whose Tannakian group is
denoted by G. Christol and Mebkhout introduce the notion of p-adic slope for objects of MCF(R/K) and
show a Hasse-Arf type result [32]. This allows one to define a Hasse-Arf type filtration on MCF(R/K) and
then a decreasing filtration of closed normal subgroups {G>*} >0 of G (cf. [I0] § 1, 3.4). If we denote by I
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(resp. P) the inertia (resp. wild inertia) subgroup of Gal(k((t))P/k((t))), regarded as pro-algebraic groups,
then there exist canonical isomorphisms of affine K-groups ([10] 7.1.1)

(2.9.1.1) G~IxG, G °~P

The local monodromy theorem says that any object of MCF(R/K) is quasi-unipotent [I0, 59, 66]. Given
an object M of MCF(R/K), the action of P on M factors through a finite quotient. By a theorem of
Matsuda-Tsuzuki [8T),[65] (cf. [I0] 7.1.2), the irregularity of M, defined by p-adic slopes, is equal to the Swan
conductor of the representation of I on a fiber of M.

2.9.2. We denote by K{x} the K-algebra of analytic functions on the open unit disc |z| < 1, i.e.

(2.9.2.1) K{z} = {Z anz”™ € Klz]; |an|pp™ — 0 (n — 00) Vp € [0,1)}.

n>0
Let Qj {m}(log) be the free K{z}-module of rank 1 with basis dx/x and consider the following canonical
derivation d : K{z} — Q}({z}(log), f = af'(z)dx/z. An unipotent object (M,V) of MC(Ry/K) extends

to a log V-module over K{z}. Let (V,N) be the object of Vechi associated to (M, V). In view of ZI.1]
there exists a canonical isomorphism between Coker(N) and the solution space Sol(M) of (M, V):

(2.9.2.2) Coker(N) = Sol(M) = Hompg 1 (M, V), (K{z},d))V=".

When the connection V is defined by a differential operator D, then Sol(M) is isomorphic to the solution
space of D.

2.9.3. Let X be a smooth curve over k, X a smooth compactification of X and x a k-point in the boundary
X \ X. There exists a canonical functor defined by restriction at x:

(2.9.3.1) |2 : Isoc! (X/K) — MC(Rk /K).

We refer to [77] and ([60] § 6) for the definition of log convergent (F-)isocrystals on Y = X U{x} with a log
pole at z. Let & be an object of Isoc'T(X/K) (resp. F-Isoc'(X/K)). A log-extenbility criterion of Kedlaya
([60] 6.3.2) says that if &|, is unipotent, then & extends to a log convergent isocrystal (resp. F-isocrystal)
&'°% on Y with a log pole at x.

The fiber £1°% of &1°¢ at z is a K-vector space equipped with a nilpotent operator. If & moreover has
a Frobenius structure, then &1°¢ is a (¢, N)-module, that is a K-vector space V equipped with a nilpotent
operator N : V — V and a o-semilinear automorphism ¢ : V' — V such that ¢ !Ny = ¢N. We can describe
it in terms of the nearby cycle of & around zx.

Proposition 2.9.4. Let X = G,,, X = P! and x = 0. Suppose that & is unipotent at 0 and let ¥ be the
nearby cycle functor defined by id [ZT4). Then there exists a canonical isomorphism of K-vector spaces
(resp. K -vector spaces with Frobenius structure):

(2.9.4.1) E 5 w(E).

Proof. The argument of ([5] 2.4(1)) implies the assertion, that we briefly explain in the following. Since &
is unipotent at z, we have U" (&) ~ ¥(&). By ([6] 3.4.19, cf. [5] 2.4(1)), we have a Frobenius equivariant
isomorphism of K-vector spaces:

U () ~ lim Ker(N™ : (£'°% @ Log™)g — (£'°% @ Log™)o),
n>0

where Log” is the log convergent F-isocrystal on (A!,0) defeind in ZZ7.Jland N" = N gros ® id 4 id @ Npogn
0
is the tensor product of two nilpotent operators. Then the isomorphism (Z947T]) follows. O
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2.10. Hyperbolic localization for arithmetic Z-modules.

2.10.1. Let X be a quasi-projective k-scheme such that X @y, k is connected and normal. We suppose that
there exists an action y : G,, x X — X of the torus G,,, over k. Following [41], we denote by X the closed
subscheme of fixed points of X ([4I] 1.3), by Xt (resp. X ) the attractor (resp. repeller) of X ([41] 1.4,

1.8). We have a commutative diagram

(2.10.1.1)

/\

where f, f” are closed immersions and are sections of 7, 7/, respectively, the restriction of g (resp. ¢’) to each
connected component of X (resp. X ) is a locally closed immersion (J41] 1.6.8). Note that each connected
component of X7 is the preimage of a connected component of X° under .

We define hyperbolic localization functors (=)', (=)™ : D(X) — D(X?), for & € D(X) by:

(2.10.1.2) Fh=flg"(F), F=fT"F).

We say an object .# of D(X) is weakly equivariant if there exists an isomorphism pu* (%) ~ Z[—1| XK .#
for some smooth module . on G,

Theorem 2.10.2 (Braden [24]). (i) There erists a canonical morphism vz : FT — F'F, which is an
isomorphism if F is weakly equivariant.
(ii) The canonical morphisms m — f, 7' — ' induce morphisms

(2.10.2.1) 7T!g+3‘\—>§!+, 7_rfi_g/! o gt
which are isomorphisms if F is weakly equivariant.

2.10.3. Recall the construction of tg. The canonical morphism i = (f, f’): X° - Z = X xx X~ is both
an open immersion and a closed one (J41] 1.9.4). We denote by h : Z — X, b’ : Z — X~ the canonical
morphisms.

We set FT = gy(¢g7(F)) and denote by 8 : .% — FT the adjunction morphism. By the base change,
there exists a canonical isomorphism

(210.3.1) (F) = [y gug " (F) = [P N gH(F) = P

Then we define the morphism t# to be the composition of (ZI03.1) and g : F1 — (FT)+.
By the base change, the morphism tg is compatible with inverse image by the inclusion of a G,,-
equivariant open subscheme and with direct image by the inclusion of a G,,-equivariant closed subscheme.

2.10.4. To prove canonical morphisms in (ZI0.2) are isomorphisms, we can extend the scalar and assume
that L is an extension of the maximal unramified extension of Q, (Z33).

Let Yy be a k-scheme and Y = Yy ®, k. The category D(Yy/L) is independent of the choice of base field &
([Z33) and we denote it by D(Y/L). Given a morphism f : Y — Z of k-schemes, it descents to a morphism
of k’-schemes for some finite extension k' of k. This allows us to define the cohomological functors between
D(Y/L) and D(Z/L). To prove ZI0.2, we can replace the involved schemes by their base change to k.

By a result of Sumihiro [80], we may assume moreover that X is isomorphic to an affine space over k,
equipped with a linear G,,-action.

2.10.5. Let Y be a k-scheme on which G,,, acts trivially and W a G,,-equivariant vector bundle over Y.
Suppose that there exists a decomposition of vector bundles W ~ W, & W_ such that all the weights of W
are larger than all the weights of W_.
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We set E = P(W) —P(W,) and B = P(W_), where P(—) denotes the associated projective bundle over
Y. We denote by p : E — B the canonical morphism defined by p([w;,w_]) = [0,w_], by i : B — E the
canonical morphism, which is a section of p and by ¢ : B — Y the projection.

Based on the same argument of ([24] lemma 6), we can show a similar result.

Lemma 2.10.6 ([24] lemma 6). Let .# be a weakly equivariant object of D(E). There exists canonical
isomorphisms

(2.10.6.1) hipeF ~ hyit 7, hyipF ~ hyi' Z.
By 2106, we deduce ZT02(ii). Using and [80], we prove ZT0.2(i) in the same way as in ([24] § 4).

3. GEOMETRIC SATAKE EQUIVALENCE FOR ARITHMETIC Z-MODULES

In this section, we establish the geometric Satake equivalence for arithmetic Z-modules.

We assume that k is a finite field with ¢ = p® elements and keep the assumption and notation in § 2
We work with holonomic modules (resp. complexes) over the geometric base tuple ¥ = {k, R, K, L} and we
omit /L from the notations Hol(—/L),D(—/L) for simplicity.

Let G denote a split reductive group over k. Let T be the abstract Cartan of G, which is defined up
to a canonical isomorphism as the quotient of a Borel subgroup B by its unipotent radical. We denote by
X® = X*(T) the weight lattice and by Xe = X¢(7') the coweight lattice. Let ® C X*® (resp. ®¥ C X,) the
set of roots (resp. coroots). Let @ C @ be the set of positive roots and Xo(7)* C Xo(7T') the semi-group
of dominant coweights, determined by a choice of B. (But they are independent of the choice of B.) Given
A € Xo(T), we define A < p if g — A is a non-negative integral linear combinations of simple coroots
and A < g if A < pand X\ # p. This defines a partial order on X¢(7') (and on Xe(7)*). We denote by
p € X*(T) ® Q the half sum of all positive roots.

3.1. The Satake category.

3.1.1. We briefly recall affine Grassmannians following ([88] § 1, § 2). The loop group LG (resp. positive
loop group LT@) is the fpqc sheaf on the category of k-algebras associated to the functor R — G(R((t)))
(resp. R — G(R[t]) ). Then L*G is a subsheaf of LG and the affine Grassmannian Grg is defined as the
fpge-quotient

Grg = LG/L*G.
The sheaf Grg is represented by an ind-projective ind-scheme over k. We write simply Gr instead of Grg,
if there is no confusion.

For any dominant coweight 1 € Xo(T')*, we denote by Gr, the corresponding (L*G)-orbit, which is
smooth quasi-projective over k of dimension 2p(y) ([88] 2.1.5). Let Gr<, be the reduced closure of Gr, in
Gr, which is equal to Ux<,, Gry. Let j, : Gr, — Gr<, be the open inclusion. We have an ind-presentation
Grpeq ™~ hﬂuex. (T)+ Gr<,. Since we will work with holonomic modules, we can replace Gr by its reduced

ind-subscheme ([3] 1.1.3 lemma), and omit the subscript req to simplify the notation.
For i > 0, let G; be the i-th jet group defined by the functor R — G(R[t]/t'*!). Then G is representable
by a smooth geometrically connected affine group scheme over k and we have LTG ~ @11 G;. If we consider

the left action of LTG on Gr, then the action on Grc,, factors through G; for some i. We can define the
category of (LT@G)-equivariant holonomic modules on Gr (see Z5.6), denoted as Satg and called Satake
category. Tt is a full subcategory of Hol(Gr) (Z5.2).

Proposition 3.1.2. The category Satg is semisimple with simple objects 1C,, := j,,.14 (Lar, [2p(p)]) E6.T).
Lemma 3.1.3. For € X,(T)", the category Sm(Gr,,) @Z34) is semisimple with simple object Lay, .

Proof. The (LT G)-orbit Gr, is geometrically connected and satisfies 7t (Gr,, ®xk) ~ {1} (cf. [74] proof
of proposition 4.1). Every irreducible object .# of Sm(Gr,) has a Frobenius structure with respect to the
arithmetic base tuple Tp = {k, R, K, L, s,id} with finite determinant ([2] 6.1). By the companion theorem
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for overconvergent F-isocrystals over a smooth k-scheme ([7] 4.2) and Cebotarev density ([3] A.4), we deduce
that .# ~ Lg,, in the category Sm(Gr,,).

To show the semisimplicity, it suffices to show that H* (Gry, L) = 0. There exists a morphism = : Gr, —
G/ P, realizing Gr,, as an affine bundle over the partial flag variety G/P,,, where P, is the parabolic subgroup
containing B and associated with {a € ®, (o, ) = 0}. In view of (Z3.42) and the cohomology of affine
spaces (Z.4.1I[(ii)), the canonical morphism Lg/p, — m4(Lqr,) is an isomorphism. Then the cohomology
H'(Gry, L) is isomorphic to H'(G/P,,L). Since the partial flag variety admits a stratification of affine
spaces, we deduce that H(G/P,,L) = 0 if i is odd by (ZZZZ). Then the assertion follows. O

To prove proposition B. 1.2, we need a parity result on the constructible cohomology of IC,,.
Lemma 3.1.4. The constructible module “H*(IC,,) vanishes unless i = dim(Gr,,) (mod 2).

Proof. We follow the argument of Gaitsgory ([49] A.7, cf. [12] §4.2 for a detailed exposition) in the ¢-
adic case, whose proof is based on following ingredients: 1) the decomposition theorem; 2) the fiber of the
Bott-Samelson resolution of a cell in affine flag variety is paved by affine spaces.

In our case, the assertion follows from the same argument using the decomposition theorem (264,
the spectral sequence (2422) and the parity of the compact support p-adic cohomology of affine spaces

Z4ATNii)). O

3.1.5. Proof of proposition We follow the same line as in the ¢-adic case (cf. [49] prop. 1). By Z2611(i),
holonomic modules IC,, are irreducible of Satg. Let & be an irreducible object of Satg. There exists an
(L*G)-orbit Gry, such that &|q,, is a smooth object. By 252 and BI3, we deduce that & is isomorphic to

IC,,.
To prove the semisimplicity, it suffices to show that for A, u € X¢(T)F, we have
(3.1.5.1) Extioiar) (ICx, IC,) = Homp ) (ICx,1C,[1]) = 0.

(i) In the case A = p, BI5EI) follows from EXt%{ol(Gru)(LerLGru) = H'(Gr,, L) = 0 (see the proof of
lemma BI.3)).

(ii) Then we consider the case either A < p or g < A. Since the dual functor I induces an anti-equivalence,
we may assume that ;1 < A\. We denote by i : Gr<, — Gr<) the close immersion and we have

HomD(Gr) (IC)\, i+ IC#[I]) >~ I{OIDD(G,ISH)(’L'Jr IC)\, IC#[ID

Note that T IC) has cohomological degrees < —1 [Z6.2(i)). Each (LT G)-equivariant holonomic module
Hi(iTICy |Gr,,) is smooth and hence is constant (BI.3). If there existed a non-zero morphism g : i* IC\ —
IC,[1], then it would induce a non-zero morphism h : ' (i*ICy |Gr,) = Lar, [2p(p)]. Since it is c-t-exact,
it contradicts to BZ4l The equality (B-LET]) in this case follows.

(iii) In the case A & p and p £ A, we prove (BL5.1) by base change in the same way as in ([12] 4.3). O

3.1.6. We consider the action of LTG on LG x Gr defined by a(g, [h]) = (ga™!, [ah]), where [h] denotes the
coset h - LTG of an element h € LG. We denote by Gr x Gr the twisted product LG x Gr /LG ([Z54).
The morphism LG x Gr — Gr, defined by (g, [h]) — [gh], induces an ind-proper morphism

(3.1.6.1) m : Gr x Gr — Gr,

called the convolution morphism. The morphism m is (LT G)-equivariant with respect to the left (L*G)-
actions. _

Given two objects A;, Ay of Sateg, we denote by A;XA, their external twisted product on Gr x Gr (see
254 and 25.6)), and define the convolution product by

(3.1.6.2) Ay x Ay = my (AR A).

Similarly, there exists an n-fold twisted product Gr X - - - x Gr and a convolution morphism m : Gr X - - - x Gr —
Gr ([88] 1.2.15). This allows us to define the n-fold convolution product Ay * - - - x A,,.
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We will show that A; x Ay is an object of Satg and that x defines a symmetric monoidal structure
on Satg. To do it, we will interpret the convolution product as the specialization of a fusion product on
Beilinson-Drinfeld Grassmannians in the next subsection.

3.2. Fusion product.

3.2.1. Let X be a smooth, geometrically connected curve over k, n an integer > 1 and X" the n-folded self
product of X over k. We briefly recall the definition of Beilinson-Drinfeld Grassmannians ([88] § 3).

For any k-algebra R and any point © = (z;)1, € X"(R), we set I'; = U ;T';, the closed subscheme of
Xp defined by the union of graphs I'y, < Xp of a; : Spec(R) — X. The Beilinson-Drinfeld Grassman-
nian Grg, xn (associated to G over X™) is the functor which associates to every k-algebra R the groupoid
Grg,x» (R) of triples (x, &, 5)

{z € X"(R), & aG-torsoron Xgr, B:&|xp-r, — & :=G x (Xp—T,) a trivialisation}.

The above functor is represented by an ind-projective ind-scheme over X™ ([88] 3.1.3). We denote by
q" : Grg x» — X" the canonical morphism. If there is no confusion, we will write simply Grx~ instead of
Grg, x». Note that the fiber of Grx at a closed point x of X is isomorphic to the affine Grassmannian.

We refer to ([88] 3.1) the definition of global loop groups (L*G)x» and (LG)x» over X™. The sheaf
(LTG)xn is represented by a projective limit of smooth affine group scheme over X™. There exists a canonical
isomorphism of fpqe-sheaves (LG)xn/(LYG)x» — Grg x». We consider the left action of (LTG)xn on
Grg, x» over X" and denote by Hol(+¢) . (Grxn) the category of (L G)xn-equivariant holonomic modules

on Gry. (Z50).

3.2.2. In the following, we take the curve X to be the affine line A,lc. Then there exists an isomorphism
Grx ~ Gr xX. Given a holonomic module A on Gr, the holonomic module Ax = AKX Lx[1] is ULA with
respect to ¢ : Grx — X (Z84). If A is moreover (LT G)-equivariant, then Ax is (LT G)x-equivariant.

By proposition Z.44] we obtain a fully faithful functor

(3.2.2.1) L D(GI") — D(Gl‘x), A— Ax.
We denote the essential image of Satg via ¢ by Satx, which is a full subcategory of Hol(z+¢), (Grx).

3.2.3. To define the fusion product on Satx, we will use the factorization structure of Beilinson-Drinfeld
Grassmannians.

The diagonal immersion A : X — X2 a morphism Grx — Gry: sending (z, &, 3) to (A(z), &, B), which
is compatible with (LG) x-actions. Moreover, it induces a canonical isomorphism

(3.2.3.1) A Gry = Gryz xx2a X,

Let U be complement of A : X — X2. Then there exists a canonical isomorphism, called the factorization
isomorphism ([88] 3.2.1(iii))

(3.2.3.2) c:Gryz xx2U = (Grx x Gry) xx2 U.

The involution o : X2 — X2, (z,y) — (y, ), induces an involution A(c) : Gry2 — Gryz. If we consider
the Ss-action on Grx x Grx by the permutation of two factors, then ¢ is moreover Ss-equivariant.

3.2.4. The convolution morphism BI6.1) also admits a globalization. The convolution Grassmannian
Gryx x Gry is the ind-scheme representing

_ 2
R {(:1:, (&, B)ic12)] T= (w1, 22) ENX (R), &1,6 are G-torsors.on XR }
Bi: &ilxp-1,, — Ei-1|xz-r,, where & = &9 is trivial

There exists a convolution morphism
(3.2.4.1) m: Grx x Grx — Grxe, (z, (&, Bi)i=1,2) = (2, &, B1 0 Pa).

By definition, the restriction of m on U is an isomorphism.
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We can view Grx x Gry as a twisted product [Z5.4) in the following way. There exists a (L1G) x-torsor
E — Grx xX classifying

R~ E(R) = {(l‘l,ﬂl,(o@l) (S er(R); To € X(R), n: éaO = éall’f },

where 7 is a trivialisation of &1 on the formal completion fmz of Xr along I';,. Using the torsor E, we can
identify Grx x Grx with the twisted product (Grx xX)xx Grx (Z5.6). In summary, we have the following
diagram over X2

(3242) GI‘X X GI‘X = (GI‘X XX) Xx GI‘X +— E Xx GI‘X — GI‘X ; GI‘X £> erz .

Let A;, A2 be two objects of Satx. Note that (A4; X Ly) Kx Az ~ A; K A; is holonomic. We denote by
A1 A the twisted product of A; X Lx and A; on Grx x Gry (Z5.0).

Proposition 3.2.5. (i) There exists a canonical isomorphism of holonomic modules on Grx=:
(3.2.5.1) My (A1 RA) ~ iy (AL B As o).
The left hand side, denoted by Ay 8. A, is ULA with respect to ¢* : Grx: — X2 and is (LT G) x=2 -equivariant.
(ii) There exists a canonical isomorphism of holonomic modules on Grx:
AT[-1](AL B Ay) = A'1](A B Ay).

We denote one of the above module by A1 ® Ay and call it fusion product of Ay, As. This holonomic module
is ULA with respect to q : Grx — X.

Proof. (i) The holonomic module A; K Ay on Grx X Grx is the inverse image of a holonomic module
on Gr x Gr and hence is ULA with respect to the projection Gry x Grx — X?2. Recall that A1®A2 is
constructed by descent along a quotient by a smooth group scheme over X (Z5.6] B-Z4.2). Hence it is ULA
with respect to the projection to X2 by proposition Z83(iii). Since m is ind-proper, then m+(A1®A2) is
ULA with respect to ¢% : Gry2 — X2.

Since m|y is an isomorphism, under the isomorphism [B232) we have

A1R¥A | = A K As |y,
which is holonomic. Then we deduce the isomorphism [B.25.1]) from proposition [Z85]i). The morphism m

is (L @) x2-equivariant. By proper base change, we deduce that m (A4;XAy) is (LT G) x2-equivariant.
Assertion (ii) follows from proposition .85 O

Corollary 3.2.6. Let Ay, Az be two objects of Satq.
(i) There exists a canonical isomorphism on Grx (B1.6.2)

(3261) (Al *A2)X ~ AI,X ) A?,X'

(ii) The convolution product Ay * As is still holonomic and belongs to Sate.
(iii) The category Sate (resp. Satx ) equipped with the bifunctor x (resp. ®) and the unit object ICqy (resp.
ICo x ) forms a monoidal category.

Proof. (i) There exists a canonical isomorphism
(Gr x Gr) x X ~ (Gry x Grx) xx2.a X,

compatible with projections to Grx. Via the above isomorphism, we have (A4 gAQ)X ~ AT[-1)(A; x ®A2,X).
Then the isomorphism of [BZ6.T) follows.

(ii) Taking a k-point 4, : x — X and applying the functor i} [—1] to (261, we deduce that A; x As is
holonomic by propositions and

(iii) It suffices to show the assertion for Satg. By identifying (A; * A2) x A2 and Aj x (As x A3) with
A1 * Az x Az, we obtain the associative constraint. We can verify the pentagon axiom and the unit axiom
by n-fold convolution product. O
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3.3. Hypercohomology functor.

3.3.1. We define the hypercohomology functor H* by

(3.3.1.1) H*:Satg — Vecy, A @OH"(Gr, A).
nez

Since Satg is semisimple (B1.2), H* is exact and faithful.
Let A be an object of Satg and 7 : Gr — Spec(k) the structure morphism. By the Kiinneth formula ([3]
1.1.7), there exists a canonical isomorphism

(3.3.1.2) g+(Ax)[-1] =7 (A) X Lx.

Lemma 3.3.2. Given two objects Ay, As of Satx, there exists a canonical isomorphism
(3.3.2.1) g+ (A1 ® Aa)[—1] = (g4 (A1) [-1]) ® (g+ (A2)[-1]).

Proof. Tt suffices to construct a canonical isomorphism

(3.3.2.2) @2 (A1 B Az) ~ g4 (A1) K gp (Az).

By (BZ50) and the Kiinneth formula ([3] 1.1.7), such an isomorphism exists on U = X2 — A(X).
Let 7: X? — X be the morphism sending (x,y) to x — y. Both sides of [33.22) are ULA with respect
to 7 by propositions and By proposition Z.85 we deduce a canonical isomorphism on X
A2 (A1 B Ar)) = A (g4 (A1) Bgy (A2)).

Then the isomorphism [B3.2.2)) follows from the distinguished triangle A, A' — id — jj+ —. O

By B2560), B312) and lemma B.32, we deduce that:
Corollary 3.3.3. The functor H* is monoidal.

Remark 3.3.4. Let Ay, Ay be two objects of Satg, both equipped with a Frobenius structure with respect to
the arithmetic tuple Tp = {k, R, K, L, s,idy }. The proof of corollary B33 applies to arithmetic Z-modules
with Frobenius structures. Then we deduce that the following isomorphism is compatible with Frobenius
structure

H*(A; x Az) = H* (A1) @ H* (Az).

3.3.5. In the following, we will construct a commutativity constraint on (Satq, ) which makes the functor
H” into a tensor functor.

The permutation o : {1,2} — {1,2} induces an involution A(c) : Grx2 — Gryz over the involution
o:X? = X2 (z,y) = (y,2) BZ3). Let A1, A be two objects of Satg. We deduce from [BZ32) and
B2Z51) a canonical isomorphism

(3.3.5.1) A(U)JF(ALX Azyx) = Azyx -Al,X-

We denote by cgr the isomorphism which fits into the following diagram
ot (g3 (A1 B Az)) ——= ¢} (A(0)T (A1 B Ag)) —— ¢% (A2 B A1)
zl lz
o (q+ (A1) Mgy (A2)) - q+(A2) M g4 (A1)
The cohomology H" (i (cgr)) of the fiber of ¢y, at (z,2) € X? is the composition

(z,)

P H'(Gr, A))@H/ (Gr, Ap) ~ H"(Gr x Gr, A KA,) ~ H"(Gr x Gr, A;¥A;) ~ @) H (Gr, A2)@H'(Gr, Ay),
i+j=n i+j=n
where the first and third isomorphisms are given by the Kiinneth formula and the second one is induced by
the symmetry of external tensor products. It sends s®t to (—1)Yt®s for s € H'(Cr,.A;) and t € H/ (Gr, As).



BESSEL F-ISOCRYSTALS FOR REDUCTIVE GROUPS 31

Taking the fiber of (B351) at (x,x), we obtain a canonical isomorphism
(3.3.5.2) ayoay AL Ag = Ag x Ay,

which fits into a commutative diagram

’
CAL, Ay

(3.3.5.3) H"(Ay % Ay) ————— H"(Az x Ay)

H* (A1) ® H(Az) —> H*(Az) @ H*(A)).

We regard H" as a functor from Sat¢ to the category Vec§' of Z-graded vector spaces over L by considering
the Z-grading on cohomology degree (B:3I1.1)). The above diagram means H* is compatible with the constraint
4.4, ON Satg and the supercommutativity constraint cg, on Vecf' . InBZT we will modify the constraint
¢’ and make it compatible with the usual constraint on Vecy.

3.4. Semi-infinite orbits. In this subsection, we study the p-adic cohomology of objects of Sats on semi-
infinite orbits of Grg following Mirkovié and Vilonen [68].

3.4.1. Let B°P be the opposite Borel subgroup. The inclusion B, B°® — G and projections B, B°® — T
induce morphisms

(3411) GI‘T (l GI‘B i) Grg, GI‘T (i GI‘Bop i) Grg.

Via i, each connected component of (Grp)yeq is locally closed in Grg. To simplify the notation, we will
omit the subscript ,oq in the following. The affine Grassmannian Gry is discrete, whose k-points are given
by Ly = t*T(k[t])/T(k[t]) € Grr(k), A € Xo(T). For A € X¢(T), we define ind-subschemes S, and Ty of
Grg to be

(3.4.1.2) Sy = i(m H(Ly)), Ty =i (771 (Ly)).
For i € Z, we set cohomology functors H.(Sy, —) and Hé& (Grg, —) to be
He(Sx, =) = H'((mi" (=))x), Hp, (Grg,—) = H'(z} " (=))).

Proposition 3.4.2 ([68] 3.1, 3.2, [88] 5.3.6). (i) The union S<x = Ux<aSx s closed in Grg and Sy is
open and dense in S<).

(ii) For p € Xo(T)*, the intersection Grg,, NSy (resp. Grg,, NT\) is non-empty if and only if Ly €
Grg,<, (equivalently there exists w € W such that w\ < p). In the non-empty case, Grg,, NSy (resp.
Grg,,NT\) has pure dimension p(\+ p).

Proposition 3.4.3. (i) For any object A of Satq, there exists a functorial isomorphism
(3.4.3.1) H. (S, A) ~ H, (Grg, A).

Both sides vanish if i # 2p(\).

(ii) For p € Xo(T)T, the dimension of H*™ (S, IC,,) is equal to the number of geometrically irreducible
components of Sx N Greg . If we work with the arithmetic base Tr = {k, R, K, L, s,idr}, the Frobenius acts
on ng()‘) (Sx,IC,) by multiplication by gPAtH)

(iii) For any integer i, there exists a functorial isomorphism

(3.4.3.2) H'(Grg, A) ~ €D HL(Sy, A).

XeXo(T)

The proposition can be proved in the same way as in ([68] 3.5, 3.6) by Braden’s theorem (ZI0.2)).
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Proposition 3.4.4. Given two objects Ay, As of Satg, there exists a canonical isomorphism

(3.4.4.1) HPV (83, Ay Ar) = €D HZPM(Sy,, Ar) @ HZP2)(S),, Ay).

AHA2=A
3.4.5. To prove the above proposition, we need to extend semi-infinite orbits Sy, Ty to Beilinson-Drinfeld
Grassmannians Grg, x». For simplicity, we only consider the case where X = A and n = 1,2.

When n = 1, we have ind-representation Grg x =~ @Grc,gu,x, where Grg <, x ~ Grg,<, xX is
normal for p € Xo(T)T. When n = 2, for u,v € X¢(T)*, we denote by Grg,<(uuw),x2 the closure of
Grg,<u,x X Grg,<u,x |v in Grg x2. These closed subschemes form an ind-representation of Gryxz. The
scheme Grg <(,,.),x2 is flat over X? and satisfies Gra,<(uu),x2 Xx2,aX ~ Grg <0, x ([86] 1.2, [88] 3.1.14).
The composition Grg <(,,.),x2 — X? - X with X? = X, (7,y) — 2 — v, is flat with reduced fiber at 0
and is normal on X — {0}. Then we deduce that Grg <(,,.), x> is normal (cf. [72] 9.2).

We consider the action of G,, on Grg x» induced by 2p, which is compatible with the action of G,, on
Grg on each fiber of x € | X™| BZZ(i)). Then Gry, x» is the ind-subscheme of fixed points. For A € X¢(T),
we set C\(X?) = Grr < x2 — Grr < x2. Its fiber at z = (z,2) € A(X) C X? is isomorphic to {L,} and
its fiber at © = (z,y) € X* — A(X) is isomorphic to [y ,,,—x{Lx} x {Lx,}. Connected components of
Grr x2 are parametrized by {C)(X?)}ex, (T)-

We denote by Sx(X™) (resp. Th(X™)) the connected component of Graxn (resp. Grg y.) corresponding
to O\(X?). (See ZI0dI for the notation). The fiber of Sx(X?) (resp. Th(X?)) at z = (z,2) € A(X) C X% is
isomorphic to Sx (resp. Tx) and its fiber at 2 = (z,y) € X? — A(X) is isomorphic to [Ty ,y,—x Sx, X S,
(resp. TIx, ap=n Try X Tay)-

3.4.6. Proof of proposition B-Z4l Let A;, Az be two objects of Satq, Aj x, A x their extensions to Grg, x
BZZT) and B = Ay x ® Ay x. Consider the following diagram of ind-schemes:

(3.4.6.1) SA(X2) —L S (X2) —2s G x2 > X2
xﬁ/
For i € Z, we define the constructible module £} (A, A2) on X2 to be
(3.4.6.2) L5(A1, Az) = “H'(¢3 (i1 (i1 B))) = “H' (43 (35, 1. (1RB))),

where the second isomorphism follows from Braden’s theorem ([2I0.2). By the base change, the stalk of
L4 (A1, As) at a k-point (z1,22) of X? is isomorphic to

HE(S)\,Al *Ag) if,Tl = X9,
®A1+A2:>\HZ(S>\1 X Sy, A1 K Ag) if 21 # xo.
By BZ3 £i (A, As) vanishes unless i = 2p(\) and we deduce from the Kiinneth formula that

(3.4.6.4) HZM (8, x Sy, A1 K Ay) ~ HZOAD (8, | Ay) @ H2PA2) (8, | A,).

(3.4.6.3) L5(A1, A2) (2 20) = {

The adjunction morphisms id — f,\7+f;\r and j;j7 — id (3460 induce canonical morphisms

(3.4.6.5) 2o (qi (A1 x B Ay x)) — C’HQPO‘)(((f Og)\)_,j;\rlg) &2 (A1, Az),

where the first arrow is an epimorphism and the second arrow is an isomorphism in view of the calculation

of their fibers (34.3)).
By Braden’s theorem and a dual argument for T (X?), we obtain a section of (3.4.6.5):

L2V (Ar, Ag) — “H*PN (@2 (A1 x B Az x)).
In view of proposition B43] we deduce a decomposition

(3.4.6.6) CHi(qi(ALX Ag x) ~ @ Eg\(AhAg).

2p(N)=1
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The left hand side is a constant module with value H'(Gr, A; %Az) by B312), B322). Then each summand
L5 (Ay, As) is also a constant module. Hence fibers of £} (A1, Ay) BZ463), (3£6.4) are isomorphic. The
proposition follows. O

3.4.7. We modify the constraints ¢y, 4, (E35.2) by a sign as follows (see [68] after Remark 6.2) and make
it compatible with the usual constraint cye. on Vecy, defined by s @ t — t ® s.

The morphism p : Xo(T) — Z/27Z, p— (—1)**) defines a Z/27Z-grading on simple objects of Satg. By
propositions and B-4.3] we have

(3.4.7.1) H'(Gr,IC,) = 0, if i # 2p(p) (mod 2).
Given two simple objects A;, Ay of Satg, we define a new constraint c4, 4, to be
(3.4.7.2) Cay A, = (LPAPAD L,

Since Sat is semisimple, the definition of ¢4, 4, extends to any pair (A;, Asz) of objects of Sate. By (B.3.53)
and AT, the following diagram is commutative

CAy, Az

| |
H* (A1) @ H* (Ag) — H*(Ay) @ H*(A)),
where the isomorphism cve. is the usual commutativity constraint on vector spaces, i.e cvec(v @ w) = w @ v.

Proposition 3.4.8 ([88] 5.2.9). The monoidal category Satg equipped with the constraints ¢ forms a sym-
metric monoidal category. The functor H* [B.311) is a tensor functor.

Proof. We need to verify ca, 4, 0 ca, 4, = id and the hexagon axiom. Since the functor H* is faithful, it
suffices to prove these assertions after applying H*. By (BZAT3) and the fact that c¢%,. = id, we deduce
that ca,,4, © c4,,4, =id. We verify the hexagon axiom in a similar way. The second assertion follows from

corollary B33 and (B47.3). O
3.5. Tannakian structure and the Langlands dual group.

Theorem 3.5.1. The symmetric monoidal category (Sate,1Co, *,¢) BAR), equipped the hypercohomology
functor H* B3I forms a neutral Tannakian category over L.

We prove it in the same way as in ([88] 5.2.9) using proposition B.Z3|(ii).

Proposition 3.5.2. The Tannakian group G = Aut® H* of the Tannakian category Satg is a connected
reductive group scheme over L.

Proof. For py,ps € Xo(T)+, IC,,, xIC,,, is defined by direct image through the birational morphism
GrSMl X GrSMz - Gr§M1+M2 :

Hence it is supported on Gr<y,+u, and is isomorphic to Ly, ., [2p(#1 + p2)] on Gry,4p,. Then by
decomposition theorem (ZGA), IC,, +,, is a direct summand of IC,, xIC,,,. Hence the semisimple category
Sate is generated by {IC,, }ic; with a finite set of generators of X¢(7)". Then G is algebraic by (J40]

2.20). There is no tensor subcategory which contains only direct sums of finite collection of IC’s. Then G is
connected ([40] 2.22). Finally, since Sat¢ is semisimple, G is reductive ([40] 2.23). O

Theorem 3.5.3. The reductive group G is the Langlands dual group of G over L. More precisely, the root
datum of G with respect to a maximal torus T is dual to that of (G, T).

Since Gry req is a discrete set of points indexed by Xo(7T") (B:41]), we have:
Lemma 3.5.4. In the case G =T is a torus, theorem holds.
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3.5.5. We denote by CT : Satg — Satr the functor
(3.5.5.1) A= (HZ(Sx, A))aexa (1)

and by Hf, (resp. H}) the fiber functor of the Tannakian category Satg (resp. Satr). By B43, there exists
a canonical isomorphism of functors:

(3.5.5.2) H{, ~ H} o CT : Satg — Vecy, .
By B44l CT is a tensor functor and therefore induces a homomorphism:
(3.5.5.3) T~T=G.

By (H0] 2.21(b)), T'is a closed sub-torus in G.
Using B4.3] we prove the following in the same way as in the (-adic case (cf. [88] 5.3.17, [12] §9.1).

Lemma 3.5.6. The torus T' is a mazimal torus of G.

3.5.7. Proof of theorem 3 We take a Borel subgroup BcCG containing T such that 2p € X*(T) is a
dominant coweight for the cho1ce positive roots of G with respect to B. Then we can show that the set
of dominant weights X'(T) with respect to B is equal to the set of dominant coweights Xo(7')™ of T by
proposition BZ3(ii) (cf. [88] 5.3, and [12] 9.5 for more details). In particular, B is uniquely determined.
We denote by @"’ the semi-subgroup of X*® (T) generated by positive roots of G. A weight A belongs to
@"’ if and only if there exists a highest weight representation V,,(= H*(IC,)) such that ;1 — X is also a weight
of V,,. By proposition [3.2.3] this is equivalent to L, € Gr<,, and equivalent to A being a sum of positive
coroots of G. Therefore the semigroup (Q¥)* C X(T) = X*(T') generated by positive coroots of G coincides
with the semigroup @+. Then, the set of simple coroots of G coincide with the set of simple roots of G.
The theorem follows from the fact that a root datum is uniquely determined by the semigroup (X®)* of
dominant weights and the set A of simple roots. O

3.6. The full Langlands dual group. For our applications of the geometric Satake equivalence for arith-
metic Z-modules, it is important to consider the Frobenius structure on the Satake category. In this subsec-
tion, we study the full Langlands dual group constructed by the Satake category equipped with Frobenius
structures.

3.6.1. We suppose that the geometric base tuple {k, R, K, L} is underlying to an arithmetic base tuple
{k,R,K,L,t,0}, where t is an integer (which may be different from the degree s of k over F,) and o is an
automorphism of L and extends a lifting of ¢-th Frobenius automorphism on & to K (23)).

The Frobenius pullback functor Fg, : Hol(Gr /L) = Hol(Gr /L) (Z33) induces a o-semi-linear equiva-
lence of tensor categories Fy;, : Satg — Satg. We denote by F-Satg the category of pairs (X, ¢) consisting
of an object X of Satg and a Frobenius structure ¢ : F X — X. Morphisms are morphisms of Sat¢
compatible with ¢ (cf. [3] 1.4.6). We will show that F-Sat¢ is a Tannakian category.

3.6.2. We first study some general constructions in the Tannakian formalism following [76].

For n € Z, we denote abusively by ¢” the equivalence of categories (—) ®r, o L : Vecy, — Vecy,.

Let (C,w) be a neutralized Tannakian over L. We suppose that, for each n € Z, there exists a o"-semi-
linear equivalence of tensor categories

n:C—C
and an isomorphism of tensor functors v, : w o7, — o™ o w. For any pair n,m € Z, we suppose moreover
that there exists an isomorphism of tensor functors ¢ : 7, o 7, >~ 7),, 4+, such that
(id ocr,) 0 (am 0id) = im0 w(e) two T 0Ty ~ o™ o w.

Since w is faithful, such an isomorphism ¢ is unique.

Let H be the Tannakian group of (C,w). The above structure defines a homomorphism

(3.6.2.1) v Z — Aut(H(L)),
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by letting ¢(n) send h : w — w to

017:1 —n hoid —n Qp
w—>0c "owoT, —> 0 "owoT, — w.

We define the category C% of Z-equivariant objects in C as follows. An object (X, {c,}nez) consists of
an object X of C and isomorphisms ¢, : 7,,(X) = X satisfying cocycle conditions ¢,y = ¢n © Tn(cm). A
morphism between (X, {¢,}nez) and (X', {c},}nez) is a morphism of C compatible with ¢, ¢},.

3.6.3. Let I' be an abstract group and ¢ : I' — Z a homomorphism. We say an action of I on an L-vector
space V' is o-semi-linear (with respect to @) if it is additive and satisfies y(av) = 09 (a)y(v) for vy € T,a € L
and v € V. We denote by Rep,, ,(I") the category of o-semi-linear representations of I" on finite dimensional
L-vector spaces.

We denote by H(L) x Z the semi-direct product of H(L) and Z via ¢ 8.6.2.1). The short exact sequence
1 — H(L) = H(L) X Z — Z — 1 allows us to define the category Repy, ,(H (L) x Z).

Proposition 3.6.4. Let H be a split reductive group over L, Rep; (H) the category of algebraic representa-
tions of H and Rep (H(L)) the category of finite dimensional representations of the abstract group H(L).
Then the following canonical functor is fully faithful:

Rep,(H) = Rep(H(L)),  p p(L).

Proposition 3.6.5. Keep the assumption and notation as above.

(i) The category C% is a Tannakian category over Lo = L°=1 neutralized by w over L ([40] § 3).

(ii) Suppose that the Tannakian group H of (C,w) is a split reductive group over L. Then w induces an
equivalence of tensor categories

(3.6.5.1) C” = Repj ,(H(L) x Z),

where Repy, ,(H(L) x Z) is the full subcategory of Repy, ,(H(L) x Z) B8.3) consisting of representations
whose restriction to H(L) is algebraic.

Proof. (i) We define a monoidal structure on C# by letting

(X, {en}) @ (X' {cl}) = (X" {en}),

where X" = X ® X’ and ¢/ is the composition

Tn(X") =1, (X) @ 7 (X) o8 X o X'

This defines a structure of symmetric monoidal category on CZ.

We apply ([39] 2.5) to show that (C',®) is rigid. Given an object (X, {c,}) of CZ, we denote by X" be
the dual of X in C and then we have 7,(X") ~ 7,,(X)". For each n, we have an isomorphism
eyt XV S (1h(X)Y =7 (XY).

n

Then we define (XY, {(cY)~!}) to be the dual of (X, {c,}) in CZ. In view of (J40] 1.6.5), the evaluation and
coevaluation morphisms of X and of 7,(X) are compatible via 7,,. Then we obtain the evaluation and the
coevaluation morphisms of (X, {c,}) in C% satisfying the axiom of ([39] 2.1.2). Hence CZ is a rigid abelian
tensor category.

Since 7, is o™-semi-linear, we have End(idcz) ~ Lo. The forgetful tensor functor C? — C is exact and
faithful. Hence the fiber functor w of C defines a fiber functor w : C'' — Vecy, ([40] 3.1). Then the assertion
follows from ([39] 1.10-1.13, see also [40] footnote 12).

(ii) It suffices to construct an equivalence of tensor categories

(3.6.5.2) ¥ :Rep,(H)” = Rep}, ,(H(L) x Z).
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Let ((V, p),{cn}) be an object of Repy (H)*. Then we define a representation (V, p) of Rep] ,(H (L) x Z),
for any element (h,n) € H(L) x Z, by letting p(h,n) to be the composition

(3.6.5.3) @V, ) “ w(ra(V: 0)) 22 w(r (V) < w(V, p).

Using the cocycle condition, one checks that the above formula defines a representation. Then we obtain the
functor ¥ B.65.2). By B.6-4] the canonical morphism

Hom (p, o) — Hompyz, (p(L), (L))

is bijective. In view of (B:6.5.3]), we deduce that ¥ is fully faithful. We leave the verification of the essential
surjectivity to readers. O

3.6.6. The Frobenius pullback functor ¢, = F, k00" Satg = Satg satisfies H* oF, ~ 0 o H*. We take
for every integer n the tensor equivalence 7,, on Satg to be |n|-th composition of F{, (or a quasi-inverse of
F¢, if n < 0) B62). These functors satisfy the assumption of With the notation of B.6:2 F-Sat¢ is
equivalent to the category Sat%. In this case, we obtain the following result by B.6.5

Theorem 3.6.7. (i) The category F-Satq is a Tannakian category over Lo, neutralized by the fiber functor
H* over L. Ift = s and o = idy, then F-Satg is a neutral Tannakian category.
(ii) There exists a canonical equivalence of tensor categories

(3.6.7.1) F-Sate = Repj ,(G(L) x Z),
compatible with fiber functors.

3.6.8. We work with the arithmetic tuple T = {k, R, K, L, s,id;,} and we suppose there exists a square-
root p'/2 of p in L. This allows to define half Tate twist functor (5) for n € Z by sending each object
M € D(X/Lp), equipped with the Frobenius structure ®, to (.#,p—*"/? - ®).

For 11 € Xu(T), we denote by ICV! = j,\ (Lay, ) [20()] (p(1)) the holonomicwmlodule in F-Satg with
s of 1€}
The category S is closed under the convolution on F-Satg, i.e. ICXvell *ICXVG‘I is isomorphic to a direct

sum of ICI\,NCH. Indeed, by proposition B.43(ii), the Frobenius acts on the total cohomology H* (ICZVCH) by a
n/2

weight 0, and by S the full subcategory of F-Satg consisting of direct sums of I

diagonalizable automorphism with eigenvalues ¢"/2, n € Z. Since H* is compatible with Frobenius structure
(B34), so is the Frobenius action on H* (IC} ! « Ivae“). We have a decomposition ICy xIC, ~ @IC,.. Then
the claim follows from the fact that the the action of Frobenius on cohomology determines the isomorphism
class of an object of F-Sats whose underlying holonomic module is isomorphic to a direct sum of IC,’s.

The canonical functor F-Satg — Satg induces an equivalence of tensor categories S — Satg. In
particular, we obtain equivalences of tensor categories

(3.6.8.1) Sat : Rep, (G) ~ Satg ~ S.
3.6.9. In the end, we briefly review the action of outer automorphism group of G on the Satake category
Satg (resp. S).

Let (C,w) be a Tannakian category over L and H the associated Tannakian group. We denote by
Aut®(C, w) the set of isomorphism classes of pairs (7, a) of a tensor equivalence 7 : C = C and an isomorphism
of functors a : w = w o 7. This set has a natural group structure. A similar construction as in defines
a canonical morphism Aut®(C,w) — Aut(H), which is an isomorphism ([52] lemma B.1). We apply this to
the Satake category S (or Satg) equipped with the fiber functor H*. The action of Aut(G) on Grg induces
an action on (S, H*), and therefore an action of Aut(G) on G, i.e. a homomorphism ¢ : Aut(G) — Aut(G).

Lemma 3.6.10. There is a natural pinning (E,T,N) of G such that that map t factors as Aut(G) —
Out(G) = Aut’ (G, B, T, N) C Aut(Q).

The lemma can be shown in the same way as in ([52] lemma B.2 or [76] lemma A.6). In particular, for

v

o € Aut(G) and V € Rep(G), we have o* Sat(V) ~ Sat(c(o)V).
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4. BESSEL F-ISOCRYSTALS FOR REDUCTIVE GROUPS

In this section, we construct Bessel F-isocrystals for reductive groups and calculate their monodromy
groups. We use notations from [[38 with k being a finite field of ¢ = p* elements. We assume moreover
that there exists an element 7 € K satisfying 77~! = —p and a square root of p in K. We fix an arithmetic
base tuple {k = F,, R, K, L,s,id;} (Z3d) and an isomorphism K ~ C (in order to talk about weight).

We fix {0,00} C P! (over some base that we will specify in each subsection), and set X = P* — {0, 00}.
Although X ~ G,,, it is more convenient to regard X as an algebraic curve equipped with a simply transitive
action of G,,

Throughout this section, let G be a split reductive group (over some base). We fix a Borel subgroup
B C G and a maximal torus T' C B. Let U C B be the unipotent radical of B, and U°P C B°P the opposite
Borel and its unipotent radical. Let Thq C Bag C Gaq denote the quotients of T C B C G by the center
Z(G) of G. We denote by (&, B,T) the Langlands dual group of G over L, constructed by the geometric
Satake equivalence (B3).

4.1. Kloosterman F-isocrystals for reductive groups. In this subsection, we follow the method of
Heinloth-Ngo-Yun [52] to produce overconvergent F-isocrystals on X by applying the geometric Langlands
correspondence.

We work with schemes over k. We will consider with both geometric coefficients and arithmetic coefficients,
but for simplicity, we omit L, from the notation Hol(—/L,),D(—/L,.) and L from Rep, (-).

4.1.1. Let G = G x PL. For a coordinate x on P, so y = 27! is a local coordinate around oo, we denote by

1(0) {g € G(k[y]) | g(0) € B} the Iwahori subgroup,
I(1) = {ge€G(k[y])|g(0) € U} the unipotent radical of I(0),
2(G)1) = {g€ Z(G)(k[y]) | 9(0)=1 mod y},
1(2) Z(G)(W)[I(1), I(1)],
I(i)°* < G(k[x]) the analogous groups obtained by opposite Borel subgroup.

If G is semisimple, I(2) = [I(1),I(1)]. On the other hand, if G is a torus, then I(2) = I(1). (So our definition
of I(2) is slightly different from [52] 1.2 when G is not semisimple, but for G = GL,, coincides with the one
in [52] 3.1.) These groups are independent of the choice of x.

By abuse of notations, we use the same notations for the corresponding (ind)-group schemes over k. Then

(4.1.1.1) /IR~ @ U
« affine simple

where U, (k) C G(k[s]) is the root subgroup corresponding to . We also write
Q= Nag(ay (I(0)°7)/1(0)*

which is regarded as a discrete group over k.
We denote by G(m,n) the group scheme over P! such that ([52] 1.2)

Gim,n)|x =G x X, G(m,n)(0p) =1I(m)°® C G(Op), G(m,n)(0x)=1I(n)CG(Ox).

We denote by Bung,, ) the moduli stack of G(m, n)-bundles on P'. Let Bung(m)n) denote its connected
component containing the trivial G(m,n)-bundle x : Spec(k) — Bung(n ). For each v € Q, there is a
canonical isomorphism Hk., : Bung ) =~ Bung ) given by the Hecke modification of G(0,7n)-bundles at
0 € P! corresponding to v ([52] Corollary 1.2). This induces a canonical bijection between € and the set
of connected components of Bung ) (and therefore all Bungy,,,)). Let Bung(mm) denote the connected
component corresponding to v under the bijection. For v € , let i, = Hk, (%) : Spec(k) — Bung(oyn).

There is also the action of 1(1)/1(2) on Bungg 2y by modifying G(0,2)-bundles at co. Let

(4.1.1.2) 3 Qx1(1)/1(2) = Bungo,2),
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be the open immersion of the big cell, defined by applying the action of I(1)/I1(2) x €2 to the trivial G(0,2)-
bundle ([52] Corollary 1.3). Let j, : I(1)/1(2) — Bung(oz) denote its restriction to the component corre-
sponding to 7.

4.1.2. The stack of Hecke modifications of G(m,n)-torsors (over X) is
HeCkeg(m,n)(S) = {(@@17 &, x76)’ & € Bung(m,n)(s;), z:8— X}
B: &1 xs-r, = E2|xs-1,

There exist natural morphisms

(4.1.2.1) Heckeg(m n)

/\

Bung(m_,n) Bung(m_,n) x X,

where pr; (resp. pry, resp. q) sends (&1, &2, x,3) to & (resp. (&3,x), resp. x).

Following [52], we denote by GR the Beilinson-Drinfeld Grassmannian of G(m,n) with modifications on
X. Note that GR ~ Grg,x ~ Grg xX and therefore is independent of (m,n). There exists a smooth atlas
@ : U — Bung(,, ) such that

(4.1.2.2) U XBung y.pypr; HeckeG(, ) ~ U x GR,
(4.1.2.3) (U X Grm) X (Bung(m.ny % X).prs Heckeg,, ) ~ U x GR..

m,n)

For V € Rep(é), we associate a holonomic module Sat(V') on Grg by the geometric Satake equivalence
B5RT). We denote abusively by ICy the holonomic module on Heckeé(m)n) defined by smooth descent of
Kyxx ®Sat(V) on U x X x Grg (supported in a subscheme U x X X Grg y). Then ICy is supported in a
substack Heckeé(m)n)y of Heckeé(m)n).

The geometric Hecke operators is defined as a functor
(4.1.2.4) Hk : Rep(G) x D(Bung(,, ) — D(Bung(m, .y xX),

(V,#) — Hky(A):=pry, (priv(///) ®ICy).

X X
Here pryy : Heckeg(,, ) v — Bunggn,) and p1r2|Heckeg(m oy Heckeg ),y — Bungm,,») xX are

schematic (AT.2.2) EET. 23], which allows us to apply cohomological functors of pr; v, pry ([Z.8.8).
We call a tensor functor

E :Rep(@) — Sm(X/L) (resp. Sm(X/Lp))

G-valued overconvergent isocrystal (resp. F-isocrystal) E on X. We denote by Ey its valueon V' € Rep(é).
A Hecke eigen-module with eigenvalue E is a holonomic module .# on Bung,, ,,) together with isomorphisms

Hky (#) = # R Ey, V e Rep(G),

which are compatible with tensor structure on Rep(é) and composition of Hecke operator. We refer to [17,
5.4.2] for the precise definition and detailed discussions.

4.1.3. We take a non-trivial additive character ¢ : F, - K* and denote by m € K the associated element
satisfying 7?1 = —p [ZIH). Let <7, be the Dwork F-isocrystal on A (ZIH).

We fix a generic linear function ¢ of I(1)/1(2), that is, a homomorphism ¢ : I(1)/1(2) — A! of algebraic
group over k whose restriction to each U, is an isomorphism

(4.1.3.1) bo = dlu, : Us ~ AL
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Let s = ¢* (). (Note that our notation is slightly abusive as this sheaf depends only on the character
Yotryp, 0pof I(1)/1(2) as a p-group). We denote by Hol(Bung(oz))1(1)/1(2)’”‘Z¢W the category of holonomic
modules on Bung g oy which are (I(1)/1(2), #4)-equivariant.

By repeating the argument of ([52] 2.3), we obtain a parallel result for holonomic modules.

Lemma 4.1.4 ([52] 2.3). (i) The canonical morphism jo(ys) — joy.+(Hpe) is an isomorphism.
(ii) The functor
Hol(X) — Hol(Bun'gY(Oﬁz)
M= Gy (Fype) WM
is an equivalence of categories, with a quasi-inverse given by
N (i x idx) T (A) = (i x idx) (A).
We denote by Ayg the object of HOl(Bqu(O)Q))I(l)’dwd) defined by (j,1(Aye)[dim Bung (g 2)]),eq-
Theorem 4.1.5. (i) For (m,n) = (0,2), the holonomic module Ay, EILA) is a Hecke eigen-module with

Hecke eigenvalue a G-valued overconvergent F-isocrystal

(4.1.5.1) KIZ5(4¢) : Rep(G) — Sm(X/Lp).

« X ) /1),y

(ii) For every representation V of G, Klggv(@/}qﬁ) is pure of weight zero.

If ¢ (resp. ¥ and ¢) is clear from the context, we simply write Kl’gg (1) by Klgg(¢) (resp. Klgg). In the
remainder of this section, we prove the above theorem by repeating the strategy in the ¢-adic case, following
[52]. The first step is to show holonomicity.

Lemma 4.1.6. For every V € Rep(G), the complex Hky (Ayg)[1] is holonomic.

Proof. For v € , we denote by j, : I(1)/1(2) — Bungq,2) the open immersion and by j’ : pri%/(l(l)/l@)) —
Heckeé{(w) the base change of j, to Hecke stack. Then the restriction of pr, to pri%,([(l)/[(Q))

pry : pryy (1(1)/1(2)) — Bung(o,2) x X
is affine (J52] remark 4.2). We claim that the canonical morphism

(4.1.6.1) 351y v () @ ICy) = i (priy () @ ICy)
is an isomorphism. Indeed, since both j,; and j, + commute with smooth base change, it suffices to show the
isomorphism after taking inverse image to U x GR ([ZI.Z2Z). In this case, the morphism pr, ;- corresponds to

the projection U x GR — U. Then the isomorphism @I follows from j 1(ye) — joy,+(Fype) EL).
Then we deduce that j/ .(prfv(.;szd,) ® ICy)[1] is holonomic and we have

(4.1.6.2) Hky (Ago)lpuns . xx = (pry0f, h(prfy () © 1Cy)

G(0.2)
~ (pry OJ»Y) (Prl v(ye) @ 1Cy).

Since (pr, oj7,) is affine, (pry oj” )+ (vesp. (praojl)) is right (resp. left) exact ([6] 1.3.13). Then the assertion
follows. O

4.1.7. Proof of EET.5Ii). The action of I(1)/I(2) on Bung g 2) extends to an action on the diagram ET.ZT]).
For each v € Q, Hky (Aw¢)|Bung wx 1s (I(1)/1(2), g )-equivariant. By LIl for each v € €2, we have

(0,2)

HkV(/Ll)(ﬁ”Bun“Y xX — A & E'y

G(0,2)

where E{/[1] is a holonomic module on X. By the same argument as in ([52] 4.2), we show that E, is
canonically isomorphic to E‘O/. So we will drop the index v in the following.
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Since ICy is ULA with respect to the projection GR ~ Grg x — X BZ2), we have ®(ICy) = 0 (Z30).
Since taking vanishing cycle functor commutes with smooth pull-back and proper push-forward ([4] 2.6), we
deduce that

Aypy R O(By) = ®(Ayg K Ey) = pry, (®(priy (Aye) @ ICy)) = pry i (priy (Ayg) © (ICv)) =
By 287 Ey is smooth. Then the assertion follows. O

4.1.8. Proof of EETH(ii). In the following, we present a concrete way to calculate the Hecke eigenvalue.
We denote by x € Bung g 2y the base point corresponding to the trivial bundle G(0,2). The base change
of convolution diagram [IZ2T]) to x x X can be written as

(4.1.8.1) / \

Bung 0,2)

We denote by GRy C GR ~ Gr x X the support of Sat(V) X Lx, by GR® the inverse image of the big cell
J(I(1)/I(2) x Q) by p1, and by GR}, = GRy NGR°. Counsider the following diagram:

P3
(4.1.8.2) GRy——— GRy

LT AN

I( ) X Q(H Bung(o 2) X.

A1<L

By the base change and [ I6.2]), we have

(4.1.8.3) Ev =~ p5 (077 () @ ICv |are).

By cleanness ({.1.G.1)), Ey can be calculated by either 4+ or ! pushforward. More precisely, the following
canonical morphism is an isomorphism

(4.1.8.4) P50y (Fys) @ICy |are) = 3 4 (D7 (Hyg) @ ICY |GRo).-

In particular, the overconvergent F-isocrystal Ey is pure of weight zero. Theorem . T5[ii) follows. O

4.1.9. There is the following “trivial” functoriality between Kloosterman F-isocrystals. We fix 1. Let
G’ — G be a homomorphism of reductive groups induces the same adjoint quotient G.; ~ G,q. Then
it induces an isomorphism I'(1)/I'(2) ~ I(1)/1(2), and therefore we can abusively use the notation ¢ to
denote the “same” linear functions on these spaces under the identification. On the other hand, it induces
a homomorphism of dual groups G — G’ and therefore a tensor functor Res : Rep(G') — Rep(G) by
restrictions. Then Klg% is the push-out of Klgg along G — . Concretely, this means that there is a
canonical isomorphism of tensor functors (we omit both 1) and ¢ from the notations)

K1t ~ K17 oRes : Rep(G') — Sm(X/Lr)

This allows use to reduce certain questions of K18 to the case when G is simply-connected. We also obtain
the following exceptional isomorphisms (due to coincidences of Dynkin diagrams in low rank cases)

(4.1.9.1) KIEE oo = KIS g,

(4.1.9.2) KIS ey = KISE, s

(4.1.9.3) KISE, s =~ KISE, SLa,Std ¥ Std?
(4.1.9.4) K, sea = KIGE, pes
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where 1 denotes the trivial representation, Std the standard representation, Sym® and A® the symmetric
powers and wedge powers of the standard representation.

4.1.10. There is a natural action of G,, on X C P'. On the other hand, the group of automorphisms
Aut(G, B,T) acts on G(m,n). It follows that G,, x Aut(G,B,T) acts on [@IZI]), and therefore on
EIRT). Tt also acts on I(1)/1(2) x Q as group automorphisms such that the open embedding [EITI2) is
G x Aut(G, B, T)-equivariant. Recall that the natural action of Aut(G) on the Satake category induces
a homomorphism ¢ : Aut(G) — Aut(G, B, T, N) B610). Given § = (a,0) € (G,, x Aut(G, B, T))(k) and

~

V € Rep(G), then there is a canonical isomorphism
(4.1.10.1) Klg§V(¢(¢ 08)) ~at Klgi(o_fl)v(q/)gb),
given by the composition
P21y (1(p08) ) ®ICy) =~ poi(67piy (1ot ery) @ 1Cy)
~ atpoy(pfy (id" ) ® (67T ICY)
~  apoi(ply (1o ) @ IC, -1)v)).

In particular, given t € Thq(k) C Aut(G, B,T), the element § = (1,¢) induces an isomorphism
(4.1.10.2) KIZE (1(¢ 0 8)) ~ KIZE (1p)).

That is, Klgg(dj(b) depends only on the T,q4-orbit of ¢. On the other hand, let a be an element of G, (k), ¥,
the additive character defined by 1, (—) = ¥(a—), t4 € Taa the unique element such that a(t,) = a for every
simple root o of G and h the Coxeter number of G. By applying 6 = (a”,t,) in (ZLI01), we deduce that

(4.1.10.3) Kl (Va¢) ~ Klg(1h(¢ 0 8)) =~ (") Kl (1)

In addition, given a generic linear function ¢ of I(1)/I(2), the collection {¢} from (EI3T) for those
a being simple roots of G, provide a pinning of (G, B,T), and therefore induces a splitting Out(G) —
Aut(G, B,T). If G is almost simple, not of type As,, then every element o € Out(G) fixes the remaining ¢,,.
If G is of type As,, the unique non-trivial element oy € Out(G) send the remaining ¢, to —¢,. Therefore,
if either G is almost simple not of type Aa,, or if p = 2, then for every o € Out(G), we have ¢ o (1,0) = ¢
and a canonical isomorphism

(4.1.10.4) KIS, (0) ~ KIEE 0 (¥9),

compatible with the tensor structures. On the other hand, if G is almost simple of Ay, and if p > 2, then
the element 6 = (—1,0¢) induces a canonical isomorphism (ZTT0TI)

rig ~ (1)t rig
(4.1.10.5) KIEE (1g) = (—1)F KL (0),
where V'V denotes the dual representation of V', compatible with the tensor structures.

4.1.11. There is a variant with multiplicative characters, which slightly generalizes Ay4. Note that T' ~
I1(0)°P/I(1)°P. Let

T = Ne(i(ay (1(0)°P) /1(1)°7,
which fits into the exact sequence 1 — T — T — Q — 1. The group T acts on Bung;,2) by modifying
G(1,2)-bundles at 0. Then the analogue of T2 in this case is the open embedding

j: T x I(1)/1(2) — Bung(y ) -

We choose a splitting s : T x Q =5 T. For v € €, j sends T x v X I(1)/1(2) to the connected component
Bung(1 5y and we denote it by

Jy Ty x I(1)/1(2) = Bung, 5 -
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A character x : T(k) — K* defines a rank one overconvergent F-isocrystal J¢, on the torus T' (cf. [ZT5(ii)).
If x” : T(k) — K* denotes the character defined by x7(t) = x(Ad,(t)), then lemma BT also holds for
(T x I(1)/1(2), #~ B Ay )-equivariant holonomic modules on Bung(m).

We denote by Ayg y,s the holonomic module on Bung(y oy defined by (j,1( A5~ B Ayg)[dim Bung 2)]) eq-
By replacing (0,2) by (1,2) in theorem and repeating the arguments, we obtain a G-valued overcon-
vergent F-isocrystal . y

KI:# (¥, x, 5) : Rep(G) — Sm(X/Lp),

such that for every representation V of G, Klggv(d)(b, X) is pure of weight zero. Note that by (L33,

Klgg(wgb) = Klgg(wgb, 1, s) for the trivial character 1 and does not depend on the choice of the splitting s.

4.1.12. Let ¢ be a prime different from p. We take an isomorphism ¢ : K ~ Q,. Using the f-adic Artin-
Schreier sheaf AS,, on A} associated to 1, and the Kummer local system on G, ; associated to y, Heinloth,
Ngo6 and Yun construct a ¢-adic G local system

(4.1.12.1) Klg’g(z/}qﬁ, X,s) : Rep(G) — LocSysm(X).

By the trace formula ([45], [6] 4.3.9) and Gabber-Fujiwara’s (-independence ([6] 4.3.11), the Frobenius traces
of Klg’é (Yo, x, s) and of Klggv (¥, x, s) at each closed point of X}, coincide via ¢.
When x is the trivial charécter, we omit x and s from the notation.

4.1.13. There is a variant of Heinloth-Ng6-Yun’s construction using algebraic Z-modules instead of ¢-adic
sheaves to produce a G-connection on X in zero characteristic ([52] 2.6). Note that all the geometric
objects used in the above construction can be also defined over K. We choose a generic linear function
¢ :1(1)/1(2) — A" over K and a linear function y : Lie(T') — K. Via an isomorphism Tk ~ G}, 4,

R (K (27", 0:)/(20: — x(14)))
defines an algebraic Z-module on T, which is independent of the choice of trivialisation that we denote by
Ky. We replace the Artin-Schreier sheaf ASy on A} by the ezponential 2-module

(4.1.13.1) Ex=K(x,0,)/(0: — ), M€K,

on Al.. We choose a splitting s : T' x Q ~ T over K. Then we obtain a tensor functor

(4.1.13.2) KIZ (A, X, 5) : Rep(G) — Conn(Xx),

where the target denotes the category of vector bundles with connection on Xx. Here we identify homo-
morphisms ¢ : 1(1)/I(2) — Al of algebraic group over K with Homg (Lie I(1)/1(2), K) via differentiation,
s0 A\ is regarded as a linear function on Lie(I(1)/1(2)).

When y = 0, we omit x and s from the notation and Kl%R()\(b) is constructed in the same way as Klgg(qb)
by Ej.

4.2. Comparison between Kl‘éR and Klgg . In this subsection, we work with schemes over R and we keep
the notation of Il We say a linear function ¢ : 1(1)/I(2) — Al over R is generic, if it is generic modulo
the maximal ideal of R. We take such a function ¢ and we denote abusively its base change to k (resp. K)
by ¢. Let Y : T(k) — K be a character. There exists a homomorphism x : T — G,,, such that x(Z) = ()
for x € T'(k) and some lifting Z of x in T(K). We denote abusively x : Lie(T) — K the differential of x. We
choose a splitting s : T x  ~ T over R and we denote abusively its base change to k (resp. K) by s.

We denote the sheaf @5, _(7{0,00}) @3) by Ox for short. The following theorem is our main result of

PL,Q
this subsection.

Theorem 4.2.1. We set L = K. For every representation V of é, there exists a canonical isomorphism of
Ox -modules with connection (2.2.2))

(4.2.1.1) w (KIES, (=76, x,8)) T = Klgfv(gb,y, s),
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compatible with tensor structures.

In the following, we will present the proof in the case where X is trivial for simplicity and the general case
follows from the same argument. We will omit —7¢, x, ¢, X, s from the notation.

4.2.2. We first consider the case where V is associated to a minuscule coweight A. In this case, Gry is
isomorphic to a partial flag variety and is smooth and projective, and ICy is isomorphic to Kqy, [dim Gr,]
supported on GRy ~ Gry xX. We show the above theorem by comparing the relative twisted de Rham
cohomologies and the relative twisted rigid cohomologies along the morphism

ps: GRy, — X

n [@IIZ2). To do it, we first show that the associated de Rham and rigid cohomologies at each fiber of X
are isomorphic.

We regard [ILL8.2) as a diagram of schemes over Spec(R). We denote M := p; (E_,)[dim Gr,], which is
a line bundle with connection on GRY, ;. With the notation of ZZ2, the bundle with connection M on
(GRY, )™ is overconvergent and underlies to the arithmetic Z-module pf (;)[dim Gry] on GRY, ., denoted
by A .

Lemma 4.2.3. Let s be a point of X (k). We choose a lifting in X(R) and still denote it by s. The
specialisation morphism (ZZ33) on the fiber GRY, , of GRy, above s

(4.2.3.1) Hir ((GRy, )i, Ms) = Hyio ((GRy, )k, A5)

is an isomorphism. Moreover, these cohomology groups vanish except for the middle degree 0.

Proof. We set Y = GRY, ; and we write M (resp. .#) instead of M, (resp. .#;). Since Y admits a smooth
compactification Gry whose boundary is a divisor, we can calculate above cohomology groups by direct image
of corresponding algebraic (resp. arithmetic) Z-modules [24.1]). Note that KldvR (resp. Kl’ﬁlg ) is a bundle

with connection (resp. overconvergent F-isocrystal) of rank dim V. By the base change cohomology groups
in (Z37)) vanish except for the middle degree and have dimension dim V' in the middle degree. By (A1.84),

the canonical morphism trig : Hyjy o (Ye, #) — Hyiy(Yi, #) is an isomorphism. In view of proposition 223

we deduce that the specialisation morphism [Z3T]) is surjective. Then the assertion follows. O
4.2.4. Proof of theorem EZTl in the minuscule case. Now we use the relative specialization morphism

(Z3T2) to compare (KIF )T and Klggv. Let Grpi — P! be the Beilinson—Drinfeld Grassmannian of G over

P! and w : Gr AP — P! the closed subscheme associated to A. Note that w is a locally trivial fibration over
P! with smooth projective fibers Gry and defines a good compactification of p§ ([Z31).
We take again the notation of 2237 for the smooth R-morphism pj. We set A =T'(X,Ox), Ax = A[%],

AV = 2[1—17] the ring of analytic functions on X" and AT = T'(PL,Og,,) the ring of analytic functions on

P overconvergent along {0, 00}. We have inclusions Ax C AT ¢ A°. If Dx,. denotes the ring of algebraic
differential operators on Xk, there exists a canonical Dx . -linear specialization morphism (Z3.7.2)

(4.2.4.1) D(Xk, KIE,) = T(Xx, Klgf‘fv),

where the left (resp. right) hand side is coherent over Ax (resp. A'). The above morphism induces a
horizontal Af-linear morphism

w i DXk, KIGY,) @4, AT = T(X, Kl“g )
which gives rise to the morphism ([EZILI). Recall that the homomorphism AT — A° is faithfully flat ([21]

4.3.10). To prove vy is an isomorphism, it suffices to show that the induced horizontal A%-linear morphism:

(4.2.4.2) w ®ar A% T (X, KIEY) @, A — T(X, Kl“g ) ©ar A°
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is an isomorphism. Let A = R be a continuous homomorphism and s : A — R the associated R-point of
G- By 2342) and the base change, the fiber ¢« ® 4+ K coincides with the morphism ([@Z3T]) associated
to the point s € X (R) and is an isomorphism [@Z3J). Since both sides of [EZZAZ) are coherent A°-modules,
the morphism ¢y ® 41 A° is an isomorphism and the assertion follows. 0

4.2.5. Next, we consider the case where V is associated to the quasi-minuscule coweight A. In this case,
Gr<) contains a smooth open subscheme Gry whose complement is isomorphic to Spec(R), and admits

a desingularisation &9 (cf. [69] § 7). We take an isomorphism GRy ~ X x Gr<y and set GRy® =
GRy N(X x Gry) to be the smooth locus of GRy, (AI3J). We denote by j : GRy, — GRY, the open

immersion and by
(4.2.5.1) T=p50j:GRy - X

the canonical morphism, which admits a good compactification CTrS » X P — P! in the sense of Z3.71

We denote by M the line bundle with connection pi (E_,)[dim Grallgree, and by .# the smooth arith-
metic Z-module p} (7)[dim Gr llaree, - The holonomic module ICy is constant on GRY?. Then we deduce
that ’

g (M) = p{ (E-x) @ ICv |arg, ., s () = pf (o) ® ICy |crs, , -
Note that jiy (M)[1], jir (#)[1] are holonomic.

Lemma 4.2.6. (i) The complex 1y 4 (A )[1] (resp. Tr+(M)[1]) is holonomic.

(ii) Let s be a point of X (k). We choose a lifting in X (R) and still denote it by s. If we denote by M,
(resp. M) the +-pullback of M (resp. .# ) along the fiber at s, then the specialisation morphism ([22.3.3)
(4.2.6.1) Hig ((GRY )k, M) — H;

rig

((GRV. )k, As)
induces an isomorphism
(4.2.6.2) Har ((GRY, o) i, i (M) = HO((GRY, )i, i (A25)).

Proof. (i) Let i : Z — GRy, be the complement of GRy; in GRy,, which is isomorphic to X. Consider the
distinguished triangle on GRZ,

Ji (O] = G ()] = C =

By 262, C ~ i'(jiy (#))[2] has degree > 0 and is supported on Z. Applying p3 4 to the above triangle, we
obtain

Po+ (i ()] = 74 (A)[1] = p3, 4 (C) =,

where the first term is holonomic (cf. ELI6), and the second term has cohomological degrees < 0 because 7
is affine and the last term has cohomological degrees > 0 since p3|z is the identity. Then we deduce that
each term in the above triangle is holonomic.

(ii) We set Y = GRY, ;, U = GRY/, and we write simply M (resp. .# ) instead of M, (resp. .#). By apply-
ing the argument of (i), we deduce that the canonical morphism of cohomology groups HO(Yk, g (A)) —
H?ig(Uk, A) is injective. By a dual argument, we deduce that the canonical morphism H?igC(Uk,/// ) —
H(Yy, jis (A)) is surjective. In summary, we have a sequence:

(4.2.6.3) Hiig o (Uny ) = W (Yie, jug () =5 B (Yie, i (A)) = HY,

(Uk;%)a

where the middle isomorphism is due to the cleanness ([.1.84]) and the composition is the canonical morphism
Lrig-
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We construct an analogue sequence of (£2.6.3) for de Rham cohomology of M on Uk . These two sequences
fit into a commutative diagram (Z2.5])

Hig Uk, M) —= Hig o (Yie, jis (M) == Hag (Y, ji4 (M) = H{g (Ur, M)

TPM,C lpM

(Up, M) ——= H)(Yi, jiy (M) ——= H° (Yi, jry (M)~ B, (U, A )

rig

HO

rig,c

Let E be the image of H?ig,c(Uka M) — HOg (Y, jiy (M)). Then the specialisation morphism pys sends E

surjectively to the subspace H’(Yg, jiy (.#)). Since dim E < dim Hg (Yic, jis (M) = dim H(Yy, jiy (4)),
we deduce that F = Hg (Yx, jis (M)) and that pys induces an isomorphism EZ6.2). O

4.2.7. Proof of theorem 21l in the quasi-minuscule case. By EEZ0li), we have a diagram of Dx, -modules

(4.2.7.1) D(X5e, KIgY,) — T(Xk, 7+ (M)

I'(Xz, Klggv) — I( X, 7,4 (A))

where the vertical arrow is the relative specialization morphism ([23.7.2)). Let U be an open dense subscheme
of X}, such that 75, 4 (.4 )|y is smooth, $l the corresponding formal open subscheme of X and Z =P}, \ U.
We denote the sheaf of rings 05, Q(T Z) by Oy for short. By2Z:6and the same argument of [.2.4], the above

diagram induces an injective morphism of Oy -modules with connection (KldéRV)T ®ox Ov = 74 (M) R0, Ou
and then induces an isomorphism of Oy -modules with connection:

(4.2.7.2) (KIg)T ®ox Ov = KIZE ©0, O

In particular, the left hand side is overconvergent along Z. Since the convergency of an 0, -module with
connection can be checked by restricting to a dense open subscheme of Xy, ([70] 2.16), the 0'¢,,,-module with

connection (K%}i{vw is convergent. Then we deduce that the Ox-module with connection (Klgfv)T is

A;(\rig
overconvergent along {0,c0}. The restriction functor Isoc' (X} /K) — Isoc' (U/K) is fully faithful (cf. [60]
6.3.2). Then the isomorphism [IZ72) gives rise to an isomorphism [@2I1]) and the assertion follows. [

4.2.8. In the end, we show the general case of theorem ELZIl Let Vi,---,V, be minuscule and quasi-
minuscule representations of G. Then we have a decomposition of representations
(4.2.8.1) Vieghe--aVu~ @ mwW,

WERep(G)

~

where my, denotes the multiplicity of W. Each representation W of Rep(G) appears as a summand of the
above decomposition for some minuscule and quasi-minuscule representations Vi, --- , V.

Then we obtain the associated decomposition of bundles with connection on Xx and overconvergent
F-isocrystals on X respectively:

dR dR
(4.2.8.2) QKL ~ P mwKE,,
=1 WeRep(G)
rig rig
(4.2.8.3) ®Klé)vi ~ B mw KIE, -
i=1

WeRep(G)
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Theorem [£2.7] in the minuscule and quasi-minuscule cases provides an isomorphism of overconvergent
isocrystals

4.2.8.4 ®r, KIF )T 5 @ Kl“g
i=1 G,V; i=1

By (]20] 2.2.7(iii)), the connection on left hand side, restricted on each component (KldéRW)T, is overconver-

gent. We denote abusively the associated overconvergent isocrystal on Xj by (Kl‘éRW)T.
The isomorphism (Z2Z84) induces a commutative diagram

Rep (®z 1 V
/ \

Endoonn(xx) (i K%RVZ Endgm(x,/5) (@7 Klgg% )

Indeed, choose a k-point s of X}, and a lift s to X (K'). The isomorphism (Z284) induces an isomorphism
between fibers (KldéRV_ )7 and (Klggv_)s. The composition of the functor Kl‘éR (resp. Klgg) with the fiber

functor at 3 (resp. s) is the forgetful functor Rep(G) — Vecg. Since fiber functors are faithful, we deduce
the commutativity of (£283) by considering their fibers.
If e denotes the idempotent of EndRep(é)(@)?:lVi) corresponding to a summand W, then its image via

: . : : . dR
left (resp. right) vertical arrow is the idempotent corresponding to Kl (resp. Klrlg ) @232 H283).
By (@234 and [EZJ3F), we deduce a canonical isomorphism of overconvergent 1socrystals on Xy

. dR \f ™~ rig

(4.2.8.5)

One verifies that the above isomorphism is independent of the choice of idempotent e and then of the choice of
minuscule representations {V;}" ;. Isomorphisms ¢ty are compatible with tensor structures due to (L2Z84).
Now theorem H.2.T] follows. 0

4.3. Comparison between Kl%R and Bex. In this subsection, we recall the Bessel connection Be (5) on

X constructed by Frenkel and Gross [47] va VC:' and identify it with Kl%R(qS)v(m).
We work with schemes over K. Let (g, b,t) denote the Lie algebras of (G, B,T) over K.

4.3.1. Let Ak denote the ring of algebraic functions of X. There exists a grading on the affine Lie algebra
Jat == § © A, which on §-part is given by Adp(G,,), and on Ag-part is given by the h-multiple of the
grading induced by the natural action of G,,, on X. Here as before p € X*(T) ® Q is the half sum of positive
roots of G (and therefore is a cocharacter of éad), and h is the Coxeter number of G.

Let gag(1) C gagr be the subspace of degree 1. Then

ﬁaﬂ(l) = @ ﬁaﬂ,da

& affine simple

where gagr ¢ is the root subspace corresponding to the affine simple root & of gag. Let §V € Gar(1) be a generic
element, by which we mean each of its &-component éd # 0. In [47], Frenkel and Gross defined a g-valued
connection on the trivial G-bundle on X by the following formula:

(4.3.1.1) Beg(§) =d+€d—x.

Here z is a coordinate = : X U {0} ~ A!. Note that d—”” itself is independent of the choice of the coordinate
x, and is a generator of the module of log dlfferentlals on X U {0} with logarithmic pole at 0.

We may write N = 3", €4, where the sum is taken over simple roots of § (instead of gag). This is a
principal nilpotent element of g. The remaining affine root subspaces are of the form xﬁféi, where z is a



BESSEL F-ISOCRYSTALS FOR REDUCTIVE GROUPS 47

coordinate as above and 6; is the highest root of the simple factor g; of §. So we may write the sum of the
remaining affine root vectors as zE for some F € > ﬁféi. Then the connection can be written as

~

(4.3.1.2) Bey (§) = d + (N+xE)d§,

which is the form as used in [47]. In particular, this connection is regular singular with a principal unipotent
monodromy at 0. On the other hand, it has an irregular singularity at co, with maximal formal slope 1/ h
(7] §5). ] )

We regard Beg (&) as a tensor functor from the category of representations of G to the category of bundles
with connection on X:

v v

(4.3.1.3) Bex(€) : Rep(G) — Conn(X).

4.3.2. We will identify KldéR()\¢) and Beé(g) as G-bundles with integrable connections on X. For this
purpose, we need to discuss how these connections depend on parameters. We identify the dual space g}
of gar := g ® Ax with g* ® Ak via the canonical residue pairing

. . v dx
(60 AK) ® (6" Dwx) » K, (€0 [,£@g) = (€6)Resemnc fo"
Recall that A\¢ is a linear function Lie(1(1)/1(2)) — K. We identify Hom g (Lie I(1)/1(2), K) with
Garr(1) = D 9o
o affine simple

where g}, C g% is the dual of the root subspace corresponding to a.

By (@II02) (applied to the Z-module setting), K%R(/\gb) depends only on the T,q4-orbit of this functional.
In addition, T,q4-orbits of generic linear functions on Lie(I(1)/I(2)) are parameterized by the GIT quotient
92¢(1)/ T o V

On the other hand, the group G,, x Aut(G, B,T) acts on g.g preserving the grading. For § = (a,5), a
simple gauge transform implies that the analogue of (ZI.I0.1]) holds, namely

(4.3.2.1) Beg 1 (3(€)) ~ a™ Beg 4y ().

It follows that the analogue of (III0.2) and of (ZII03)) also hold for Bessel connections. In particular,
Bes(§) only depends on the Tha-orbit of & Again, Toq-orbits of generic £ are parameterized by the GIT

quotient gag(1)/ Toa.
Here is the main theorem of this subsection.
Theorem 4.3.3. There exists a canonical isomorphism of affine schemes
(4.3.3.1) ghr (DT = Garr(1) /1,
such that if the Thq-orbit through A¢ and the Toa-orbit through 5 match under this isomorphism, then
KIZ* (Ag) ~ Bes ()
as G-bundles with connection on X .
If (¢ is of adjoint type, a weaker version of this theorem was the main result of [89].

4.3.4. We first explain the isomorphism [@331]). Let wx denote the canonical bundle on X and by abuse
of notation, we sometimes also use it to denote the space of its global sections. Via the open embedding
gy I(1)/1(2) — Bung(0)2), we identify I(1)/1(2) x glq(1) with T* Bung(oz) lj, (z(1)/1(2))- The Hitchin map
(e.g. see [I7] Sect. 2, and [89])

R . T* Bun?

20,2 — Hiteh(X) := T(X, ¢ x®r wx) [l

4Here (X, ¢* x®m wx) denotes abusively the affine space associated to the K-vector space I'(X, ¢* x®m wx).
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induces a closed embedding k¢ : g¥4(1) /T < Hitch(X), where ¢* := g* /G is the GIT quotient of g* by the
adjoint action of G, equipped with a G,,-action induced by the natural G,,-action on g*. (For an explicit
description of the image of the map when g is simple, see the discussions before [89] lemma 18).

On the other hand, there exists a canonical morphism

. d . .
gaff(l)% CiRuwy — D(X, e x% wy)

where ¢ := §/G, which also induces a closed embedding §ag(1)/T — D(X,¢ xE wy). The identifica-
tion (LieT)* = LieT induces a canonical isomorphism ¢* — ¢. One checks easily that there is a unique
isomorphism g’ (1) /T = §ag(1)/T that fits into the following commutative diagram

0D )T ——— gaa (1) /T

i

I(X,c* xbn wy) —"=T(X, ¢ x

m

WX

where the bottom isomorphism is induced by ¢* = ¢.

In the case G and G are almost simple, unveiling the definition, we see that A\¢ and §V match to each other
if the following holds: Let r be the rank of G and G. Recall that the ring of invariant polynomials on g*
(resp. g) has a generator P, (resp. PT), homogeneous of degree h = h. We choose them to match each other
as functions on ¢* ~ ¢. Then A¢ matches é if and only if

(4.3.4.1) N'P.(¢) = Pr(Ag) = Pr(§).

This condition is independent of the choice of P, and P (as soon as they match to each other).
For concrete computations, it is convenient to fix a coordinate z € A! € P!, and a pinning N = ZdeA &s
of (G, B,T). Then we may rewrite [@3.3.1) as an isomorphism

(4.3.4.2) 05 )T ~ gap(1)JT ~ N + Z §g ~a Z g,

4.3.5. We prove theorem by quantizing ([£.3.31]) and applying the Galois-to-automorphic direction of
geometric Langlands correspondence. For this, we need to review the notion of g-opers ([I7] §3). By descent,
it suffices to prove the theorem after base change from K to K. So we assume that all the geometric objects
below are defined over K, and omit the subscript. Let Gaa denote the adjoint group of G.

Let Y be a smooth curve over K. Let Op;(Y) denote the moduli spaces of Gag-opers on Y ([17) 3.1.11).
By ([I7] 3.1.11, 3.4.3), Opy(Y') is an ind-affine scheme. There is a natural free and transitive action of the
(ind)-vector space I'(Y, ¢ x®m wy) on Opy(Y) ([I7] 3.1.9). This induces a natural filtration on the ring of
regular functions FunOpy (Y), whose associated graded is the ring of regular functions FunT'(Y, ¢ x®m wy).

Back to our case Y = X. We consider the subscheme of Op; := Opé(Pl)(o,w(o)),(oo,l/ﬁ) C Opg(X), which
is the moduli of G,4-opers on X which are

e regular singular with principal unipotent monodromy at 0;
e possibly irregular of maximal formal slope < 1/h at oco.

See the discussions before ([89] lemma 20) (where slightly different notations were used). In this case, the
action of I'(X, ¢ x®m wy) on Opy(X) induces a free and transitive action of 23, g 5 =~ Ga (1) )T @E3Z2)
on Opy. In particular, FunOpj has a natural filtration whose associated graded is (Funﬁaff(l))f.

On the other hand, the space Opy has a distinguished point, corresponding to the Gag-oper that is tame at
both 0 and oco. Therefore, we obtain a canonical isomorphism ). § é € Garr(1) )T ~ Opg( ). Explicitly,
this isomorphism sends 2E € x ), §_g. to the connection d+ (N + zE)% on the trivial G-bundle which has
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a natural oper form. Now the quantization of (£33]) gives a canonical isomorphism of filtered algebras

([89] lemma 21)
(4.3.5.1) U(Lie(1)/1(2))" = FunOpy,

whose associated graded gives back to (Z331]). Here U(V) is the universal enveloping algebra of V' =
Lie I(1)/1(2), equipped with the usual filtration. As V is abelian, it is also canonically isomorphic to
(FunV*)T. Putting all the above isomorphisms together, we obtain the following commutative diagram

(Fung?g(1))” —— (Fungae(1))”

U(Lie I(1)/1(2))T —=— FunOp;

Together with the main result of [89], we obtain the proof of theorem EE33 in the case when G = Gaq.

4.3.6. Next, we explain how to extend it to allow G to be a general semisimple group.

One approach is to generalize the work of [I7] to allow certain level structures, as what [89] did for simply-
connected groups. In this approach, one must deal with the subtle question of the construction of “square
root” of the canonical bundle on the moduli of G-bundles.

In our special case, we have another short and direct approach, using the isomorphism Kldéf; (A\p) =~

v

Beg,  (€) just established.

First, we claim that up to isomorphism, there exists a unique de Rham G-local system on X, which
induces Beg, | (5 ), and has unipotent monodromy at 0. Indeed, any two such de Rham G-local systems differ
by a de Rham Z-local system on X U {0} ~ A! (i.e. one is obtained from the other by twisting a de Rham
Z-local system). As Z is a finite group, the wild part of the differential Galois group at oo of this local
system must be trivial, and therefore this local system itself is trivial.

Now since both Kl‘éR()\qﬁ) and Be (€) have the property as in the claim (to see that Kl‘éR()\qﬁ) has unipotent
monodromy at 0, one uses the same argument as [52] theorem 1 (2)), they must be isomorphic.

4.4. Bessel F-isocrystals for reductive groups. In this subsection, we construct Bessel F-isocrystals
for reductive groups, by putting the above ingredients together. We keep the notation of

4.4.1. We take a non-trivial additive character ¢ : F,, — K and a generic linear function ¢ : 1(1)/1(2) — Al
over R @Z). We set A = —m € K corresponding to ¢ (as in ZLH). Let £ € §ag(1) match —r¢ under the
isomorphism [@3.3.1]).

v

We write Bex (§) more explicitly as follows. Choose a coordinate z of X U {0} over R, and a pinning
N=>ca s of (G,B,T). By @3432), there is a unique element £ = Ey €32, 8_4, such that

dx
(4.4.1.1) KIS (1 ¢) ~d+(N+zE)—,
By [@341), we deduce that
dx v
(4.4.1.2) KIS (—7¢) = d + (N + (—w)th)? = Beg(é).

Now we can define the object appearing in the title of the paper. Let Beg ({V) denote the composition

of Beé(g) . Rep(G) — Conn(Xg) with the (—)f-functor from ZZZI). By theorem EZI] a choice of
isomorphism ([@ZT2) endows Beg(g) with a Frobenius structure, i.e. a lifting of Beg(fv) as a functor

Rep(G) — F-Isoc’ (X} /K), or alternatively, an isomorphism of tensor functors

:Fx, o Beg(g) = Beg(fv) : Rep(G) — Isoc! (X /K),
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where Fg Isoc! (X} /K) — Tsoc'(Xy/K) denotes the s-th Frobenius pullback functor ZILZI). From
the calculation of the differential Galois group of Bey in [47] coro. 9, coro. 10 (see (LZE.I)) that the

automorphism group of Bey is Zg(K). Therefore, the Frobenius structure on Beg(fv) is independent of
the choice of the isomorphism Beé(g) ~ Kl‘éR()\qS). We use (Beg(fv), ¢) (or simply Beg(fv) if there is no
confusion) to denote the G-valued overconvergent F-isocrystal

(4.4.1.3) (Bel(€), ¢) : Rep(G) — F-Tsoc! (X4 /K),

which we call the Bessel F'-isocrystal of G.

4.4.2. For each representation p : G — GL(V), the restriction of BeG V(f) at 0 defines an object Beg V(§)|0

of MCF(Rk/K) (291, which is solvable at 1 ([61] 12.6.1). By (@311, the p-adic exponents of Beg V(§)|0
are 0. Then it is equivalent to the connection d 4+ dp(N) over the Robba ring by ([61] 13.7.1). Hence,
Beg V(§)|0 satisfies the Robba condition (i.e. it has zero p-adic slope) and is unipotent.

We denote by F- Isoclog’“ni((A}C,O)/K) the category of log convergent F-isocrystals on A} with a log
pole at 0 relative to K and nilpotent residue, and are overconvergent along oo (Z93). By ([60] 6.3.2), this
category is equwalent to the full subcategory of F-Isoc! (Xk /K) consisting of objects which are unipotent

at 0. Then the G-valued overconvergent F-isocrystal (Be (€), ) @EZEILI) factors through:
(4.4.2.1) (Beé(fv), ¢) : Rep(G) — Isoclog’“ni((A,lc, 0)/K).

4.4.3. Here is a more concrete description of the Frobenius structure on Beg (5) Note that its underlying
bundles of Beg)v(g) are free 0%, Q(T{oo})—modules. If we set AT = I'(P}, ﬁﬁl7Q(T{oo})), by the Tannakian
formalism, the Frobenius structure on Beg (€) is equivalent to an element ¢ € G(AT) satisfying

(4.4.3.1) xj—‘;gfl + Ady(N + (—m)"zE) = ¢(N + (—n)"z?E).

Given a point a € |A}| and @ : AT — K its Teichmiiller lifting, we denote by ¢, = H?i%(a)_l ©(@4'). When
a # 0, the Frobenius trace of (Beg (€),¢) at a can be calculated by the trace of ¢,. Now we rephrase the
above discussions as follows, which is the first main result of our article.

Theorem 4.4.4. There is a unique element ¢ € G(AT) satisfying the dzﬁerentzal equation ([EAL3T) such
that via a (fized) isomorphism K ~ Q,, for every a € |X| and V € Rep(Q)

(4.4.4.1) Tt(¢a, V) = Tr(Frobg, KIE (1)),

When a = 0, we can describe ¢y more precisely.
Proposition 4.4.5. Let 2p be the sum of positive coroots in X.(T) Then o = 2p(,/q) in the semisimple
conjugacy classes Conj** (G(K)) of G(K).

Proof. The Frobenius endomorphism ¢ at 0 satisfies ¢ N o = ¢N [3T). Since N is a principal nilpotent
element and Ad,,) N = ¢ ' N, we deduce that ¢y = ep(q) in Conj**(G(K)) for some element ¢ in the center
Za(K). ]
To show ¢ = id, it suffices to investigate Frobenius eigenvalues of \I/(BeTv ) EZI) for V' € Rep(G),
which is same as those of \I/(KlCt £ ) by LT3 and Gabber-Fujiwara’s /- mdependence ([3] 4.3.11). By a result
of Gortz and Haines [50], the zth graded piece of the weight filtration of (K lCt ok 1) has the same dimension

as the dimension of H* (Grg,ICy) and is equipped with a Frobenius action by xq"' (cf. [52] 4.3). Then we
deduce that € = id. O
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4.5. Monodromy groups.

4.5.1. In this subsection, we keep the notation of Edland we take L to be K. We drop ¢ from the notation.
We denote by <Beg> (resp. (Beg7 ©), resp. (Beg)) the full subcategory of Sm(Xj,/K) (resp. Sm(Xy/Kp),

resp. Conn(X4)) whose objects are all the sub-quotients of objects Beg)v (resp. (BeG v #), resp. Beg 1)

for V € Rep(G). Then (Beg> (resp. (Beg, ©), resp. (Bes)) forms a Tannakian category over K and we
denote by Ggeo (resp. Garith, resp. Galg) the associated Tannakian group (with respect to a fiber functor w,
but is independent of the choice of the fiber functor up to isomorphism [39]). The tensor functors on the
left side of the following diagrams induce closed immersions of algebraic groups on the right side

(4511) <B€ ,(p> drlth

AN 0/

/ Rep(Q) . \
\ (Beg) / alg/

In ([47] Cor. 9 and Cor. 10), Frenkel and Gross showed that the differential Galois group Gaig of the
G-connection Bes : Rep(é’) — Conn(X3) is a connected closed subgroup of G and explicitly calculated it

when ( is almost simple. The result can be found in (CZGT). The main theorem of this subsection is as
follows.

Theorem 4.5.2. Let G be a split almost szmple group over R and G its Langlands dual group over K. We
denote by Y the outer automorphism group ofG and by Out(g) the outer automorphism group of g.
(i) IfG is not of type Asy, or char(k) > 2, then Ggeo — Gaig is an isomorphism. In particular,
Ggeo = CVJE"O, zfé is mot type Aay, (n > 2) or Bz or Da, (n > 2) with ¥ # Out(g).
Ggeo = é, zfé is of type Aa,,,
Ggeo —> Ga, if G is of type Bs or of type Dy.
Ggeo = Spiny,, ; zfé is of type Day, with ¥~ {1} (n>3).
(ii) If G = SLony1 and char(k) = 2, then Ggeo(Be;L%H) = Ggeo(Bego%H). In particular,

L4 Ggeo l> 80271-1-1; an 7& 3;
o Gpgeo = G, if n = 3.
In particular, Ggeo # Galg in this case.
(ili) The map Ggeo — Garith s always an isomorphism.

Proof. We first study the local monodromy at 0 and oco.
In view of LA2, the restriction functor at 0 (Z331]) induces

Rep(G) — <Bet> - MC"™(R/K) = Vect,

sending each representation p : G — GL(V) to (V,dp(N)) € Vecm1 Then, it induces closed immersions of
Tannakian groups

(4.5.2.1) Ga — Ggeo = G,
whose composition sends 1 € K ~ Lie(G,) to N € §.

Lemma 4.5.3. The restriction functor | : (Beéj — MCF(R/K) to co € P} induces homomorphisms
Io X G4 = Ggeo which is non-trivial on Pu.
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Proof. If the image P in égco were trivial, by the Grothendieck-Ogg—Shafarevich formula, KléGf’E would
also be tame at 0, 00. Then the associated (-adic representation m (X3) — G would factor through the tame
quotient w{amC(X%), which is isomorphic to I'*™¢ as X ~ G,,. Since Klég’é is pure of weight zero for every

v

V € Rep(G), the geometric monodromy group of Kl would be semisimple and then finite. This contradicts
to fact that Kléét’g has a principal unipotent monodromy at 0 ([52] Thm. 1). O

4.5.4. Since every overconvergent F-isocrystal Beg v is pure of weight 0 and is therefore geometrically
semi-simple ([6] 4.3.1), the neutral component G¢., is semi-simple [34]. Therefore, (52ZT]) implies that it

geo
contains a principal unipotent element and hence its projection to the adjoint group G,.q of G contains a
principal PGLsy. Then it is almost simple and its Lie algebra appears in one of the following chains:

sly 5Pay, slay,

slopy1

A

5ly —— 509,11

N

502p42

5[7

5ly —— go — s07

N

8
sly ——f4 —— ¢
5[2 —¢7

5[2 —> €3

Lemma 4.5.5. If G is not of type A1, and not of type A when p = 2, the image Ggeo — Gaa cannot be
contained in a principal PGLy of éad.

Proof. The image of the wild inertia group Py (resp. I ) in PGLs is a finite p-group (resp. a solvable
group). In view of the all possible finite groups contained in PGLa, there are two possibilities:

(a) the image of Py is contained in G,,, C PGLo;

(b) p = 2 and the image of I (resp. P ) is isomorphic to the alternative group A4 (resp. the group
7/27 x 7./27).

To prove the lemma, we follow a similar argument of ([52] 6.8), but with the quasi-minuscule representation
replaced by the adjoint representation Ad. In any case, by a result of Baldassarri [13] (cf. [9] 3.2), the maximal
p-adic slope of Beg,Ad is less or equal to the maximal formal slope 1/71 of Beé)Ad @3T). Let r be the rank

of G and h the Coxeter number of (. Then we deduce that

rank Ad h+1

T
(4.5.5.1) Irroo(BeéyAd) < T 7 r<r+1,

and hence Irroo(BeTé)Ad) <r.
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On the other hand, we have a decomposition Ad ~ @!_; 5% as representations of principal PGLa, where
{¢1+1,--,£.+ 1} is the set of exponents of g.

Case (a). Since Irroo(Beg) # 0, the image of P, in PGLy contains p,, and the image of I is contained in
N(G,,). By a similar argument of ([52] 6.8), we deduce Irro,(S**) > ¢ — |¢/p] > 1. Under our assumption,
max;{¢;,p} > 2, so there is least one 7 such that ¢; — |¢;/p| > 1. Then Irrm(Beg Aq) > 7 Contradiction!

Case (b). Recall that there are four irreducible representations of A4: id, two non-trivial one dimensional
representation VY, Vln, the standard representation V5. Via the inclusion A4 — PGLso, we have

SPxVy, StxVieV @Vs, SC~ideVy?, SS~ideVi eV e Vi
SO~ViaoV eV S2~id®oV oV, oVd3, SH~ideV oV, o VP

In particular, we have Irra, (S?¢) > 2 for £ = 3,4,5,6,7. In general, I, acts non-trivially on S$2" and we
have Irro, (S2) > 1. Then we deduce that Irro(Ad) > 7(G) + 1. Contradiction! O

Now we prove theorem By the “trivial” functoriality ([EI.9), it is enough to prove the theorem
when G is simply-connected, so that G= is connected.

(a) The case where G is not of type Ag,. In view of lemma EE5.5] and the calculation of Gy, (CZG.1),
we deduce that Ggeo — Ggeo — Glalg are isomorphisms. Using L TT0, we see Giarith C G=. This implies that
Garith = Ggeo unless G is of type Bs. In this last case, if G = Spin,, and Garith C G2 X Z(é) Taking into
account of the Frobenius at 0 (LZ1H), we see that Garith = Ggeo-

(b) The case where G is of type Az, and p > 2. It suffices to exclude that Ggeo is contained in SOgy41.

Suppose it is true by contrast. Let og be the generator of ¥ and 5= (—=1,00) in G, x Aut(G, B,T). Then
we deduce isomorphisms of overconvergent isocrystals on Xy

T &Y~ T &Y ~ g
BeSL2n+1,Std(§) - (_1)+ BeSL2n+1,Sth (5) - (_1)+ Be;L2n+1,Std(§)7

where the first isomorphism follows from ([EII0.5), and the second one is due to Std” ~ Std as represen-
tations of SOg,41. Since chark > 2, this isomorphism provides a “descent datum” so that Be;L2n+17Std(§v)
descends to G, /2. It follows that its Swan conductor at oo is at least two, if non-zero. On the other hand,
using lemma 53 and the result of Baldassarri [I3] (cf. [9] 3.2) again, the Swan conductor of Be;L%H,St d({ )
at oo is 1, contradiction!

(¢) The case where G is of type As, and p = 2. In appendix (&), we will identify Beg02n+17Std with

Be;L%H)Std. Then we reduce to the case (a). O
We end this section by some corollaries of our calculation of the monodromy groups.

Coroilary 4.5.6. Assume that G is almost simple. The monodromy groups Géco,Gﬁmh of the Klg’l(i/}¢)
over Q, (ELIZI) are calculated as in theorem EH2L.
Note that this gives a different proof of the main result of [52] theorem 3 (where some explicit small p

are excluded). Our method avoids analyzing some difficult geometry related to quasi-minuscule and adjoint
Schubert varieties.

Proof. The monodromy group G* .., (resp. Gartn) can be calculated by that of Klztf/ (resp. BeTé,v) for a

faithful representation V' of G. The semisimplification of Klg’f/ and Beg v are semi-simple and have same

Frobenius traces. Then by ([36] 4.1.1, 4.3.2), there exists a surjective morphism Ggmh — Glarith- Since they
are both closed subgroups of G, they must be isomorphic to each other and the assertion follows. 0

Corollary 4.5.7. Assume that G is almost simple. Let Ad be the adjoint representation of G.

(i) We have Hi(]P)l,j!Jr(Beg)Ad)) =0 for all i.
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(ii) We have Irroo(BeG Ad) = (@), the rank of G. In addition, Ad™= =0, and the nilpotent monodromy

operator Noo = 0 Z9). Therefore, the local Galois representation I, — Gisa simple wild parameter in
the sense of Gross-Reeder ([51] § 6).

Proof The corresponding assertions for the algebraic connection Beg ,, are proved in ([47] §14). Set & =

Be! A’ which is self dual. We have H’(X, &) = Ad% = 0 and H*(X, &) = 0 by Z'-affinity. We obtain

H!(X,&) = 0 for i = 0,2 by the Poincaré duality. By the Grothendieck Ogg-Shafarevich formula and
EB5TD), we have
HY(X, &) = Irroe (&) < r(G).
Let j : X — P! be the inclusion. We have a distinguished triangle
J(E) = jua () = MO0 (6) @ HOiLj (£) -

which induces a long exact sequence:

(4.5.7.1) 0= HO(PY, jip(€)) = HO it j (&) @ HOiljy (&) S HY(X, &) —
H' (P!, 14 (6)) = 0 = HAX, &) = 0 = HA(P', iy (£)) — 0.

By the Poincaré duality, we conclude that H' (P!, ji, (&)) = 0 for i = 0, 2.
For x € {0,00}, the restriction of & at x gives rise to an action of the inertia group I, on Ad and a
commuting nilpotent monodromy operator NV, : Ad — Ad @3Z). Then H i} (5, (&)) is calculated by

Ad" N = Ker(N, : A" — Ad"").

The Bessel isocrystal is unipotent at 0 with Ay = [—, N] @ZZ). We have Ad™° = Ad™, which has
dimension 7(G). Then the morphism d in [@B5.2.1)) is both injective and surjective. We deduce that

Adl=N= =0, HY(P',ji (&) =0.
Since N is still a nilpotent operator on Ad’>, we conclude assertions (i) and (ii). O

Remark 4.5.8. (i) By corollary L5.6] and the same arguments, we recover [52] prop. 5.3 on the analogous
statements for Kl (and remove the restriction of the characteristic of k in loc. cit.).
(ii) It follows from [51] prop. 5.6 that when p does not divide the order W of Weyl group, the only non-

zero break of Be & Ad (and Kly) at oo is 1/ h. Indeed, the local Galois representation I, — (& is described

explicitly in [51] prop. 5.6 and § 6.2.

(iif) It is expected that the description in (ii) of the local monodromy of BeTé (and Kl) at oo should hold
when (p,h) = 1. When G = GL,, this is indeed the case. For Kl,, this was proved by Fu and Wan (48]
theorem 1.1). For Be], the can be shown by studying the solutions of Bessel differential equation (LILI)
at co. We omit details and refer to ([71] 6.7) for a treatment in the case when n = 2.

(iv) Using theorem (ii), which will be proved in the appendix [AJ] we see that when p = 2 and n
is an odd integer, the associated local Galois representation of Begon at oo coincides with the simple wild
parameter constructed by Gross-Reeder in [51] § 6.3. In particular the image of the inertia group I, in the
case G = SOs is isomorphic to Ay. Together with BeSO Std = BeSL2 Sym? (@I, this allows us to recover

André’s result on the local monodromy group of B62 at oo in the case p=2 ([9] § 7, 8).

5. APPLICATIONS

In this section, we give some applications of our study of Bessel F-isocrystals for reductive groups.
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5.1. Functoriality of Bessel F-isocrystals. We may ask all possible Frobenius structure on Beg(g ) (not

necessarily the one from Z4T]), i.e. all possible isomorphisms of tensor functors ¢ : F o BeTv = BeTv.

Lemma 5.1.1. The Frobenius structure on Be. (é) is unique up to an element in the center Zx(K) of G.

~

Proof. Given two Frobenius structures ¢y, ¢a, u := g2 0] - is an isomorphism of tensor functors Be! & (5 ) —

Beg (€). If w denotes a fiber functor of (Beg(g», then wow is an element in G(K) commuting with Gyeo ()
by the Tannakian formalism. Then the assertion follows from Zx(Ggeo) = Z .

O

5.1.2. Let G, G be two split, almost simple groups over R whose Langlands dual groups G' C Gover K
appear in the same line in the left column of the (CZGI). Up to conjugation, we can assume that the
inclusion G’ C G preserves the pinning. Then it induces a natural inclusion 9.4(1) C Ganr(1). Let ¢ be
a generic linear function of G/ over R @A) and ¢ the generic element in 9.4(1) corresponding to —m¢’
([@ZI). Note that £ is also a generic element in Fag(1).

Proposition 5.1.3. (i) There exists a generic linear function ¢ of G over R such that —m¢ matches 5 €
Gasr (1) under the isomorphism (IEEII)
(i) Let (Be (E), ") (resp. (Be (€),¢)) be the Bessel F-isocrystal of G' (resp. G) constructed by ¢'

(resp. ¢) in ATl Then (Beé(ﬁ), ©) is the push-out of (Beé, (€), ).

Proof. (i) Let ¢ be the generic linear function of G over K such that —m¢ corresponds to 5 under the
isomorphism [@33T]). We will show that ¢ is naturally integral.

By construction, Beé(g) is the push-out of Begx, (€). In particular, for V € Rep(G), the connection
(Beéy({Z )T has a Frobenius structure and is overconvergent. Let Y be a generic linear function of G over R
and 7] € gag (1) the corresponding generic element. Then there exists an element ¢ € K* such that we can
rewrite two Bessel connections for the adjoint representation of G as follow [EZ12):

dz - dz
(5.1.3.1) Beg () =d+ (N +xE) , Beg aq(§) =d+ (N—l—c;vE)?

Via @337, it suffices to show that ¢ € R*.
Both the above two connections admit Frobenius structures and decompose in the categories Conn(X),
Sm(X}/K) and Sm(X; /K r) in the same way (according to the decomposition of Ad in Rep(G') by theorem

I52). Let V be a non-trivial irreducible component of Ad in Rep(G’) and V (1)), V(€) the corresponding
overconvergent F-isocrystal. Since V (17)]o is unipotent, if {e;} denotes a basis of V', there exists a solution

w: e fi(z) € Sol(V(n)lo) RIZZ)

whose convergence domain is the open unit disc of radius 1. Then u. : e; — fi(cz) belongs to Sol(V (€)]o)
and has the same convergent radius. If ¢ is not a p-adic unit, then V(1) (or V(§)) admits the trivial
overconvergent isocrystal on X, as a quotient, which contracts to their irreducibility. The assertion follows.

(ii) By (i), the G-valued overconvergent isocrystal Beg(f) is the push-out of Beg, (€). Tt remains to
identify two Frobenius structures on G-valued overconvergent isocrystals Beg () ~ Beg, (€) x¢ @, which
are different by an element ¢ in the center Z(K) by (GL1)). Taking account of the extension of Frobenius
structures to 0 (L4A3H]), we deduce that ¢ = id and the assertion follows. O

Now we can prove the following conjecture of Heinloth-Ngo6-Yun ([52] conjecture 7.3).

Theorem 5.1.4. We keep the notation of B2 and fix a non-trivial additive character . Assume that
G' C G over Q, appear in the same line in the left column of the (L2G.1). For every generic linear function
@' of G' over k, there is a generic linear function ¢ of G over k such that Klg’g(ww is isomorphic to the

push-out of Klég,’é(w¢') along G C G as l-adic G-local systems on Xj.
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Proof. By the “trivial” functoriality ([{I19), we may assume that G is simply connected. We lift ¢ to
be a generic linear function of G’ over R and take ¢’ as in B3 We need to show that Klg’é(z/}(b) ~

Klg;e(d)qﬁ’ ) x& G as G-local systems. It follows from theorem [£Z.4] and proposition that for every

representation V' € Rep(é), regarded as a representation of /, and every a € | X k|, we have
Tr(Froba| KIZ, ) = Tr(Frob,, |K1et £ -

Note that if ¥ is the group of pinned automorphisms of G, then the closed embedding G® = @ induces
a surjective homomorphism of K-rings K(Rep(@)) ® Q, — K(Rep(Gz)) ® Q. Then the homomorphism
K(Rep(()) @ Q, — K(Rep(Ggeo)) ® Qy is also surjective. It follows that if we replace V by any represen-
tation W of Ggeo (C G c G) the above equality holds. This implies that the Frobenius conjugacy classes
of Klevt * and of Klevt ¥ have the same image in Ggeo//Ggeo- Now, for a faithful representation W of Ggeo,

two representatlons Klet o Klet L (X, T) — Ggeo(Qy) are conjugated in GL(W) by an element g. This
element ¢ induces an automorphlsm of Ggeo. It fixes every Frobenius conjugacy class and therefore fixes
Geo / Ggeo- Then g must be inner. That is these two representations are conjugate in Gge, and the assertion
follows. O

5.2. Hypergeometric F-isocrystals. To describe Bessel F-isocrystals for classical groups, we need to
review some basic facts about the hypergeometric F-isocrystals.

5.2.1. In ([57] 5.3.1), Katz interpreted hypergeometric Z-modules on G,,, as the multiplicative convolution
of hypergeometric Z-modules of rank one. Besides the hypergeometric Z-modules, Katz also studied ¢-adic
theory of hypergeometric sheaves using multiplicative convolution. The Frobenius traces of these sheaves
are called hypergeometric functions (over finite fields) which generalize Kloosterman sums (CLT21).

Let 1 be a non-trivial additive character on Fy, n an integer > 1 and p = (p1,---, pm) a sequence of
multiplicative characters on £*. The hypergeometric function Hy(n, p) ﬁ is defined for any finite extension
k' /k and a € k'™ by

n m m
(5.2.1.1) Hy(n, p)(a) = Z¢<Tfk1/wp(z T — Zyg)) : H p; (Nmy (1)),
i=1 j=1 j=1
where the sum take over (1, -+, Zn, Y1, ,ym) € (K)™ " satisfying [[[, z; = a [}~ y;.

Recently, Miyatani studied the p-adic counterpart of this theory [67]. Using the multiplicative convolu-
tion of arithmetic Z-modules, he constructed the Frobenius structure on hypergeometric Z-modules whose
Frobenius traces are hypergeometric sums. In the following, we briefly recall his results in some special cases.

Let 4,/ be two objects of D(G,, /L) and p : G, X G,y — Gy, the multiplication morphism. Recall
that the (multiplicative) convolution * is defined by

(5.2.1.2) MK N = (AR N).

Let n > m be two non-negative integers, 7 € K associated to ¢ [ZL3) and § = (51,---, Bm) a sequence
of elements of qulZ — Z. We denote by Hyp, (n, ) the p-adic hypergeometric differential operator on G,

(5.2.1.3) Hyp,(n, ) = 6" — (=1)"t"Px = [ (6 - 8)),
i=1
where x is a coordinate of G,, and § = x%. We denote by yp~(n,3) the @11 ({0, 0o })-module

(5.2.1.4) A yp=(n, B) = ({0, OO})/( 0,00} Hyp, (1, B)).

1@

51t corresponds to the hypergeometric function associated to 1, n trivial characters x’s and m characters p’s defined in ([57]
8.2.7)
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Theorem 5.2.2 (Miyatani [67]). We fiz an isomorphism Q, ~ C.

(i) The arithmetic Z-module 7€ ypr(n, B) underlies to a pure overconvergent F-isocrystal on Gy, i of rank
n and weight n +m — 1. B

(ii) The Frobenius structure on the overconvergent isocrystal 7 ypx(n, () is unique (up to a scalar).

(iii) The Frobenius trace of 7ypx(n, ) on G, i, is equal to the hypergeometric function (—1)"+*™ =1 Hy(n, p)
G210, where p; is defined for € € k* and € the Teichmiiller lifting of £, by pi(§) = gla=DBi

Assertions (i) and (iii) are stated in ([67] Main theorem). One can apply the method of ([67] 4.2.1) to
show that JZypx(n, ) is irreducible in the category D(G,, /K ) and hence assertion (ii).

The arithmetic Z-module SZyp, (n,8) depends only on ¢ and p (the class of 8 modulo Z) that we also
denote by SZypy(n, p). - - B

5.2.3. Normalised Hypergeometric sum. Let .# be the hypergeometric /-adic sheaf on G,,  associated
to ¢, n trivial multiplicative characters and non-trivial multiplicative characters p = (p1,-- -, pm). The space

Flo of Iy-invariants is one-dimensional and Froby, acts on it as the monomial in Gauss sums ([58] 2.6.1)
m
a=(0" TG,
j=1

where G(z/J_l,pjfl) denotes the Gauss sum associated to 1~ and p;l.

On the other hand, note that the action of Iy is maximal unipotent. Any lifting Fy in the decomposition
group Dy at 0 of the Frobenius automorphism has eigenvalues set {«, qa, - - ,¢*"a} (cf. [56] 7.0.7). After
twisting a geometrically constant lisse rank one sheaf (resp. overconvergent F-isocrystal), we denote by F
(resp. Ay ypy(n, p)) the normalised hypergeometric sheaf (resp. F-isocrystal) whose the Frobenius eigen-
values at 0 is {q_("_l)/2, cee q("_l)/2}. Its Frobenius trace function, called the normalised hypergeometric
sum ﬁw(n,g) is defined for a € F by

1
(—\/ﬁ)"*l H;nzl G(d)*l, pfl) HTZ’ (nvf_))(a)

When m = 0, we have .Z = KI¢ (LIZZ) and #ypy(n,0) = Be! ([CIF).

5.3. Bessel F-isocrystals for classical groups.

(5.2.3.1) Hy(n, p)(a) =

5.3.1. The Kloosterman sheaf and the Bessel F-isocrystal for (G = GL,,, G= GL,,) have been extensively
studied. As usual, let E;; denote the n x n-matrix with the (7, j)-entry 1 and all other entries 0. We choose
the standard Borel B of the upper triangular matrices and the standard torus 7' of the diagonal matrices.
We choose a coordinate x of A'. Then there is a canonical isomorphism

n—1

Gy ~I()/1(2), (a1,....an) = Y _ aiBiif1+anz  Eny.

i=1
We choose ¢ : G — G, to be the addition map. Under the isomorphism [@3.31]) and [@E347]), ¢ corresponds
to £ = N + Ede (@ZLI) with

01 0 0 00 0 ... 0
0 1 ... 0 00 0 ... 0
(5.3.1.1) N=|: : -~ . |, BE=|: : . .
00 0 ...1 00 0 ... 0
00 0 ...0 10 0 ...0

On the other hand, by .9 and ([52] §3), we have
(5.3.1.2) KIS, ga @ KIS gq @ KIS
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Indeed, diagram (ZI82) reduces to diagram (LI in this case. Therefore, the Kloosterman connection
is isomorphic to the classical Bessel connection (LTI [LTA)

(5.3.1.3) KIS ga(A@) ~ Ben, KIS ¢ 4(¢) ~ Bef,.
Recall that the connection Be,, corresponds to the Bessel differential equation (CITITI).

5.3.2. Consider
G =S09,11, G=8p,, ={A€SLy, | AJAT = J},
where J is the anti-diagonal matrix with J;; = (—1)%0; 2,4+1—j. Then matrices (N, E) as in (E3.1]) are in g

v,

and Beg(¢) is given by the same formula as GLs, case. Then we deduce an isomorphism of overconvergent
F-isocrystals Be;p2 Std (€) ~ Bel by I3).
5.3.3. Counsider
G =80y, G =S50y, = {A € SLy,, AJAT = J},
where J is the anti-diagonal matrix with J;; = (—1)max{i’j } 0i2n+1—;. There exists a canonical isomorphism

n—1

Gl ~1(1)/1(2), (a1, -+ ,ant1) = Z(Ei,i-l-l+E2n—i,2n—i+1)+(En—l,n+1+En,n+2)+x_l(E1,2n—1+E2,2n)-
i=1

Then we take ¢ : G — G, to be the addition map. When n > 3, under the isomorphism @33.0]) and

E3ZT), Ao corresponds to £ = N + A2 By (AT with

0 1 0 0 ... ... ... 0 00 0 0 ... ... ... 0
o 1 1 o 0 o o o o 0
(5.3.3.1) N= E E= o o0 0
o 1 o o0
0 o 0 0
0o 0 S 1 0 0
0 0 0 ... .. 0 o 1 o 0

The corresponding Bessel connection is written as

. dx
(5.3.3.2) Beso,, sta(§) =d+ (N + AQ"*QEx)?.
If €1, -+, es, denote a basis for the above connection matrix, the restriction of the above connection to the

subbundle generated by e,, — e, 41 is trivial. The other horizontal subbundle, generated by e, + e,41 and

v

other basis vectors, is isomorphic to the Bessel connection Bego,, , std(§) discussed below (2.3.6.0]).

5.3.4. In [64], T. Lam and N. Templier identified the diagram [{I82) with the Laudau-Ginzburg model
for quadrics [73] and used it to calculate the associated Kloosterman #Z-modules. We briefly recall this
construction following ([73] § 3). Let Q2,—2 = G/P be the (2n — 2)-dimensional quadric and let (pg : - - :
Prn—1:Ph_1:Pn i i Pan—2) be the Pliicker coordinates of Q2,2 satisfying

(5.3.4.1) Pr-1Pp_1 — Pn—2Pn + -+ + (=1)" ' popan—2 = 0.

Consider the open subscheme

(5.3.4.2) Q32 = Q2n—2— D,
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with the complement D = Dy + Dy + -+ + D,,—1 + D!,_;, where D; is defined by

Dy := {po = 0}
Dy := {Ei:o(_l)kpf—kp2n—2—é+k = 0} for1<f<n-3
(5.3.4.3) Dy_2 = {pan_2 =0}

anl = {pnfl = 0}
Dy = {P;z—l = O}
The divisor D is anti-canonical in ()2,,—2. For simplicity, we set
‘

oy = Z(—l)kpszpznfzfuk, for 0 </ <n-—3.
k=0

If z denotes a coordinate of G,,, we define a regular function W : Q3,5 x G,,, — A! to be

Pé+1]92n 2—¢ Pn Pn D1
5.3.4.4 w n_1;T + + +x .
( ) (p p ! Z Pn—1 p;l_l P2n—2

The Kloosterman overconvergent F—lsocrystal and connection are calculated by
(5.3.4.5) Klggzn sta(®) = pro (W*(y))[2(n — 1)](n — 1), Klsozn,sm()@) =~ pry  (W*(Ex))[2(n — 1)].

We deduce that the Frobenius trace Klgo,, sta of K15102 sta(®) is defined for a € Fy by
(5.3.4.6)

1 De pn 4 Pn Pn p
Klsos, sial@) = > ¢(TYFQ/FP< Z B e e e e B

(Pixp;,l)Ean,g(]Fq) Pn—1 Pr—1 Po2n—2

Proposition 5.3.5. (i) When n = 2, we have
(5.3.5.1) Klso, su(a) = K1(2;a)*.

(ii) When n > 3, we can simplify above sum as

1 1+ n—
(5.3.5.2) Klso,, sta(a) = e ( > w(mqmp(:vl +$2+---+x2n_2+a#)>—i—(q—l)q 2>.

« L1X2 - Tan—2
miE]Fq

Proof. Assertion (i) is easy to prove and is left to readers. It also follows from ([ZT.9.3).
(ii) The equality follows from subdividing the sum (B3.40) in the following parts:
(a) Case pp,Pnt1,- -+ > Pan—3 # 0: we replace p;, p,_q by z;,y; € F* as follows:

1 ifk=0
1. k-1 (Tk + Yk) fl<k<n-2
pE = T1 ... Tp—9Tn—1 fk=n-1
L1 Tp9Tn_1Yn—1 ifk=n
Tl Tp—9Tn—1Yn—1Yn—2---Yan—1—k Otherwise
p'/n,—l = X1 Tp-2Yn—1-
Then the sum (BE346]) becomes the toric exponential sum in (2.3.5.2).

(b ) Case p, = 0 and p2,—2—¢ # 0 for some ¢ € {1,--- ,n — 3}: we assume ¢ is maximal. By divid-
ing p/,_;, we consider the affine coordinates pg,- - ,pan_2 and we replace p,—1 by the equation (E34T]).
Since pp,- -+ ,pan—2-¢-1 = 0, prr1 can be taken in F, regardless of the condition §, # 0. Then we have
D operer, Y(FEEEE) = 0 and that the sum (EBEEI) equals to zero in this case.

(c) Case pp = ppy1 = -+ = pan—3 = 0: it is easy to show that the sum (B340 equals to %1, which is

the constant part of (.3.5.2). O
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5.3.6. Consider
G = Sp2n7 é = SOQn+1 - {A S SL2n+1 | AJAT = J}7
where J is the anti-diagonal matrix with J;; = (—1)i5i12n+27j_ There exists a canonical isomorphism

n—1

Gt ~I(1)/1(2), (a1, ,ans1) — Z(Ei,i-i-l + Banign—it1) + En1n + 27 By
i=1
Then we take ¢ : G — G, to be the addition map. Under the isomorphism @330 and @E3AI), \¢
corresponds to £ = N + A\?"Ex [@ZLI) with N as in (53.1.1), which belongs to g, and

00 ... ... 0
(5.3.6.1) E=| ¢ o €
2 0 0
0 2 0 0
Then we can write the Bessel connection as
. dx
(5.3.6.2) KIS, 151 (A0) 2 Beso,, s () = d + (N + X" Ba)—
After taking a gauge transformation by the matrix
1 0 0
0 1 0
20"z 0 ... 0 1
we obtain the scalar differential equation associated to Beso%H,Std(g ):
(5.3.6.3) (:ci)%+1 - A2":c(4:vi +2)=0
o dx dx '
When n > 2, we can rewrite é as
o 1 0 .. 0 0 0 0 ... .. 0
o . 0
0 v2 0 : : :
g _ . 2n ' '
(5.3.6.4) &= 0 0 32 : + A : : x,
0 ... 1 10 ... ... 0
0o o ... 0 o 1 0 ... 0

where /2 is a square root of 2 in K and appears in positions (n,n + 1) and (n + 1,n 4 2). Via the natural
inclusion 509,11 — $02,12 the above element 5 € ($025,41)a (1) corresponds to §v € (502142)am (1) defined
in (B337)). The standard (2n + 2)-dimensional representation of s02,,4+2 decomposes as a direct sum of the
trivial representation and the standard (2n + 1)-dimensional representation of s02,41 as representations of
5092,4+1. Then we obtain decompositions of Bessel connections and Bessel F-isocrystals by proposition

v v

(5365) BesozwrzyStd(g) = Besozwrl,Std(g) D (ﬁGm,K ) d)a Be;027l+2,5td(g) = Be;02n+1,Std(g) D (Ova d)

In the remaining ot this subsection, we omit é from the notation.
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Remark 5.3.7. The fact that matrix F in (Z36.1]) takes value 2 in its non-zero entries is delicate. On the
one hand, it comes from the calculation of invariant polynomials. On the other hand, it ensures the existence
of a Frobenius structure on the differential equation (53.6.3]) with parameter A = —m. For instance, for every
prime number p, the convergence domain of the unique solution of (E3.6.3) (A = —m) at 0 :

Fa)=Y" %(%%)W,
r>0 ’
is the open unit disc of radius 1. In particular, F'(z) belongs to K{z} Z9.2ZT) and it justifies (2.9.22)).
Proposition 5.3.8. (i) When p > 2, there exists an isomorphism of overconvergent F-isocrystals (B2Z3])
(5.3.8.1) Belo, s = [1 = 42" A ypy(2n+1,p),

where p denotes the quadratic character of k™.
(ii) When p = 2, there exists an isomorphism of overconvergent F-isocrystals

(5.3.8.2) Be§02n+1,5td = Be£n+1 :

Proof. (i) If we rescale z by « — +x, the differential equation (5.3.6.3) turns to the hypergeometric differential
equation Hyp, (2n + 1;p) associated to p (ZZI). Frobenius structures on two sides of (L3I are of
weight zero and have Frobenius eigenvalues {¢~",--- ,¢~1,0,q,- -+ ,¢"} at 0 (45 B2Z31). Then these two
Frobenius structures coincide by theorem B.2.2(ii) and the isomorphism (5381 follows.

(ii) We will prove the assertion in Appendix [Al O

5.3.9. It follows that there exists an isomorphism of overconvergent F-isocrystals (5.2Z1.2))
(5.3.9.1) Belo, . s ~ Belo, sia*Bel, .

by the convolution interpretation of hypergeometric overconvergent F-isocrystals ([67] Main theorem (ii)
and 3.3.3).

Corollary 5.3.10. Suppose p = 2. The SLay, 41 -valued overconvergent F-isocrystals Be;LM+1 is the push-out
of Be;O%+1 along SO2y,+1 — SLoj41.

It follows from BE38(ii).

Corollary 5.3.11. (i) The Frobenius trace function Klso,, ., , stda of Begoznﬂ,sm is equal to

(5.3.11.1) KlSOgn+1,Std (a) = Z KlSOg,Std (:E) K1(2n -2 y)

z,yekX xy=a

Kl(2n + 1; a), p=2,
5.3.11.2 = ~
(5:311.2) {0, oo

(if) We have an identity of exponential sums (B3.5.2)

(53113) Klsozywz)sm (a) —1= K1802n+1,Std(0J)-
Proof. (i) The first equality follows from (E3.9.1)). The second one follows from B38(i-ii).
(ii) Tt follows from proposition B30 and (B3.6.5). O

In particular, by (ZI91)) and corollary E3T1i), we obtain (LZI1). Using the triviality functoriality
119 and the exceptional isomorphism for groups of low ranks [IIO9.1)-(@I1.94), one can similarly obtain
other identities between exponential sums, whose sheaf-theoretic incarnations were obtained by Katz [58].
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5.4. Frobenius slopes of Bessel F-isocrystals.

5.4.1. We first recall the definition of the Newton polygon of a conjugacy class in G(K). Let Xo(T)" be the
set of dominant coweights of G and X, (T)ﬁ{ the positive Weyl chamber, equipped with the following partial

order <: p < A if A — u can be written as a linear combination of positive coroots of G with coefficients in
R.. We identify (Xo(7) ®z R)/W and Xo(7');. Recall that p denotes the half sum of positive roots of G

p= % > aeX (1) =X.(T).

aedt

Let v: K — QU {oc} be the p-adic order, normalised by v(g) = 1. It induces a homomorphism of groups
v:T(K) = Xo(T) ®zR. By identifying 7'(K)/W and the set of semisimple conjugacy classes Conj™ (G(K))
in G(K), we deduce a homomorphism:

(5.4.1.1) NP : Conj*(G(K)) = T(K)/W — (Xe(T) @2 R)/W = Xo(T);.
In the case where G = GL,,, NP is equivalent to the classical p-adic Newton polygon. Indeed, we have
Xe(D)f = {(\s--- ha) €RM A <o < A,

and we can associate to (A1, -+, Ay) a convex polygon with vertices (i, A\; +---+ X;) fori € {1,--- ,n}. For
A=A, An) = (1, ) in Xo(T)ih, < X if and only if the polygon associated to p lies above
that of A\ with the same endpoint.

Theorem 5.4.2. Let x € |AL| be a closed point and o, € G(K) the Frobenius automorphism of (Beg, ©) at

x @Z3). Let v be the p-adic order normalised by v(q8®)) =1 and NP defined as above.
(i) Ezcept for finitely many closed points of |A}|, we have NP (p,) = p.
(ii) Suppose that G is of type An, Bn,Cp, Dy, or Ga, then we have NP (@) = p for every = € |AL].

Proof. (i) In ([63] 2.1), V. Lafforgue shows that the Newton polygon (&ATIT]) of the Hecke eigenvalue of a
cuspidal function is < p. In particular, we deduce that NP(p,) < p for all z € |G, x|. By 43 we have
NP(po) = NP(p(q)) = p. That is the Newton polygon achieves the upper bound p at 0. We take a finite set

of tensor generators {V1,---,V,} of Rep(G). Then the assertion follows by applying Grothendieck-Katz’
theorem (cf. [33] 1.6) to log convergent F-isocrystals Beg v

(i) (a) The case where G is of type A,,C,. By functoriality (513), we reduce to study the Frobenius
slope of Bessel F-isocrystal Bejl of rank n (LI4). After the work of Dwork, Sperber and Wan [44] [79] [84],
the Frobenius slope set of Be! (normalised to be weight 0) at each closed point = € |AL| is equal to

—"T_l, —"T_?’, cee "T_l} Then the assertion follows.

(b) The case where G is of type By, Dy, G2. By functoriality (F.13), we reduce to show that the Frobenius

slope set of Begognﬂ,sm at each closed point is equal to {—n, —n+1,--- ;n}. If p = 2, it follows from F.3.[(ii)

and the case (a). If p > 2, in view of and [.3.8(i), it follows from the following lemma. O

Lemma 5.4.3. The Frobenius slope set of 7ypy(2n + 1;p) (22) at each closed point is equal to

13 9 +1
—_ — s e n — .
2727 7 2

Proof. We deduce this fact from Wan’s results on Frobenius slope of certain toric exponential sums [84] [85].
For a € F; and a divisor d of p — 1, consider the following Laurent polynomial in F, [xf, e ,inn +1)
axgnJrl

d
fd($17"' ,$2n+1):$1+"'+$2n_$2n+1+7'
T1X2 " T2n
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For m > 1, we denote by S,,(f4) the exponential sum associated a Laurent polynomial:

Sm(fa) = > ¢(Tf1qu/1Fp fa@, - ,$2n+1))'

Ty E]F:nl
Then we have an identity

(5.4.3.1) Sm(f2) = Sm(f1) + Z ¢<Trmqm/mp(:c1 + o Topg — y)) 'P_l(Nqum/Fq v)),

Ty T2n41=aY
X
wiE]Fqnl

where the last term is the Frobenius trace of #yp(2n + 1; p).
The L-function associated to these exponential sums is a rational function:

L(fa, T) = exp (m; Sm(fd)%)

We denote by A(f;) the convex closure in R2" ™1 generated by the origin and lattices defined by exponents
appeared in fy:

{(0,---,0),(1,---,0),---,(0,---,1,0),(0,---,0,d), (=1,--- , —1,d)}.
The polyhedron A(fy) is (2n + 1)-dimensional and has volume %. The Laurent polynomials f; is non-

degenerate (cf. [85] Def. 1.1). After Adolphson-Sperber [§], the L-function L(f4,T) is a polynomial of degree
d2n +1).

We denote by NP(f4) the (Frobenius) Newton polygon associated to L-functions L(fq,T) (cf. [85] 1.1)
and by HP(f;) the Hodge polygon defined in term of the polyhedron A(f;) (cf. [85] 1.2). The (multi-)set
of slopes of HP(f4) is

1 2 d—1
4.3.2 — =y, 2 — .
(6.4.3.2) {055 m+ 22
The Newton polygon lies above the Hodge polygon [8]. A Laurent polynomial is called ordinary if these

two polygons coincide. Let & be a co-dimension 1 face of A which does not contain the origin and fg the
restriction of fg to d which is also non-degenerate. The Laurent polynomial fg is diagonal in the sense of

([85] § 2). If V4, -+, Vo, 41 denote the vertex of § written as column vectors, the set S(d) of solutions of
1
Vi, Vapg) =0 (mod 1), r; rational, 0 <r; <1,
T2n+1

forms an abelian group of order d (cf. [85] 2.1). Since d is a divisor of p — 1, we deduce that for each 4, fJ is
ordinary by ([85] Cor. 2.6). By Wan’s criterion for the ordinariness [84] (cf. [85] Thm. 3.1), f4 is ordinary.
In view of (BA3T]) and the slope sets of HP(f1), HP(f2) (43.2), the assertion follows. O

APPENDIX A. A 2-ADIC PROOF OF CARLITZ’S IDENTITY AND ITS GENERALIZATION
As mentioned in introduction, Carlitz [26] proved the following identity between Kloosterman sums:
K1(3;a) = KI(2;a)* — 1, VaeFS.

In this appendix, we reprove and generalize this identity by establishing an isomorphism between two Bessel
F-isocrystals Begn+1 and Beg02n+173td. The following is a restatement of proposition E.3.8]ii).

Proposition A.1. There exists an isomorphism between following two overcovergent F-isocrystals on G, r,
E363):

d 2n+1 2n+1 d 2n+1 2n+1 d
(A.1.1) Be;nJrl:(x%) g2ty — o, Bego2n+hstd:(:z:%) 9 +x(2x%+1)20.
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Our strategy is first to show that their maximal slope quotient convergent F-isocrystals are isomorphic.
Then we conclude the proposition by a dual version of a minimal slope conjecture (proposed by Kedlaya [62]
and recently proved by Tsuzuki [82]) that we briefly recall in the following.

A.2. We keep the notation of section Bl Let X be a smooth k-scheme. Let .#' be an overconvergent F-
isocrystal on X/K. We denote the associated convergent F-isocrystal on X/K by .#. When the (Frobenius)
Newton polygons of .# are constant on X, .# admits a slope filtration, that is an increasing filtration

(A.2.1) 0=ty C M C - C Mer C My =M
of convergent F-isocrystals on X/K such that
o ;| M;—1 is isoclinic of slope s; and
0 51 < Sg < -+ < Sy
By Grothendieck’s specialization theorem, for any convergent F-isocrystal .# on X/K, there exists an
open dense subscheme U of X such that the Newton polygons of .# are constant.
We remark that for a log convergent F-isocrystal with constant Newton polygons over a smooth k-scheme

with normal crossing divisor, such a slope filtration (of sub log convergent F-isocrystals) also exists.
In a recent preprint, Tsuzuki showed a dual version of Kedlaya’s minimal slope conjecture ([62] 5.14):

Theorem A.3 ([82] theorem 1.3). Let X be a smooth connected curve over k. Let 4T, AT be two irreducible
overconvergent F-isocrystals such that the corresponding convergent F-isocrystals 4,/ admit the slope
filtrations { A}, {N;} respectively. We renumber the slope filtration by

(A.3.1) M=HD MDD MDD DM M =0

~

with slopes s° > s' > .- > s"~1. Suppose there exists an isomorphism h: N | N =5 H | #* of convergent
F-isocrystals between the mazximal slope quotients. Then there exists a unique isomorphism gt : ¥ T =5 41
of overconvergent F'-isocrystals, which is compatible with h as morphisms of convergent F-isocrystals.

A.4. Following Dwork’s strategy ([43] § 1-3), we study the maximal slope quotients of Begn 41 and of
Be;O2n+1,Std in terms of their unique solutions at 0.

In the following, we assume k£ = FF,,. We first recall Dwork’s congruences and show a refinement of his
result in the 2-adic case. Consider for every i > 0, a map B (i)(—) : Z>o — K and the following congruence
relation for 0 < a < p and n,m, s € Z>y:

(a) B™(0) is a p-adic unit for all i > 0,

(b) B9 (a 4 np)
B(i+1)(n)

B®

(c) (a+np+mpt?) _ BY(a+np)

€ Rforalli>0,

mod p5+1 for all 7 > 0.

B+ (n + mp®) B(i+1)(n)
B® 2 AR B 2
() Whenp =2, B((?i)?n 1225) ) = u(i,s, m)B(Z.(filT(:)) mod 2+ for all > 0, where u(i, s, m) =

1if s # 1 and u(i,1,m) =1 or —1 depending on ¢ and m.
If conditions (a-c) (or (a,b,c’)) are satisfied, then B(*)(n) € R for all i,n > 0. We set
F(Z( ) =252 BVl € K[al,
ws() = ZW“P* BOG)a)  €K[), 520

j=mp*
We write Fézs) by Fs(i) for simplicity.

Theorem A.5. (i) [[43] theorem 2] If conditions (a-c) are satisfied, then

(A.5.1) FO (@) B, (a7) = FY) oy (@)FO(a?)  mod p** B+ (m)[a].

m
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(") If conditions (a,b,c’) are satisfied (in particular p =2), then
(A.5.2) FO@FY (22 = FY (@) FD(@?)  mod 2° BE+Y (m)[a].
(ii) [[43] theorem 3] Under the assumption of (i) or (i’) and suppose moreover that
(d) BD(0) =1 fori>0.
(e) BU*T) = B for all i > 0 and some fized r > 1.
Let U be the open subscheme of AL defined by

A5.3 FO@)#0, fori=0,1,--,r—1.
1

Then the limit

(A5.4) fla) = lim Y (2)/F (2?)

defines a global function on the formal open subscheme L of 1&}% associated to U, which takes p-adic unit
value at each rigid point of L8,

We prove assertion (i’) in the end (A-13]). We briefly explain Dwork’s result (ii) in the language of formal
schemes. The condition (A5.3) implies that F{” # 0 on U (cf. [43] 3.4). For s > 1, the congruences (A5.)
and (A52) imply that

Fiy(@)/FD @) = FO @)/ FPy 7)€ T(%, 0u/p* ™ 0).
This allows us to use (A54) to define a global function f of Oy.

A.6. Let Fi(z) =) ;5 B(j)z7 be a formal power series in R[x]. We say F satisfies Dwork’s congruences if
by setting B (j) = B(4) for every i > 0, conditions of theorem [A5|ii) are satisfied.

We take such a function F' and then we obtain a function f € I'(Y, Oy) coinciding with F(z)/F(aP)
in K{z} Z921) (i.e. the open unit disc). Moreover, by ([43] lemma 3.4(ii)), there exists a function
n € I'(U, Oy) coinciding with F'(x)/F(z) in K{z} defined by

n(xz) = Fy 1 (x)/Fey1(z) mod p°.
The functions f(x) and n(z) satisfy a differential equation:
f'(x)
f(x)
Note that f(0) = F(0)/F(0) = 1. Then we deduce that the following corollary.

+ pa?~y(aP) = n(x).

Corollary A.7. The connection d — n on the trivial bundle Oysie and the function [ form a unit-root
convergent F-isocrystal &g on U/ K, whose Frobenius eigenvalue at 0 is 1.

A.8. Let .41 be an overconvergent F-isocrystal on G,  over K of rank r whose underlying bundle is trivial
and the connection is defined by a differential equation:

(A.8.1) P()=6"+p 8" '+ +p1 =0,
p

unipotent local monodromy. Then .#" extends to a log convergent F-isocrystal .#'°% on (A'!,0) and its
Frobenius slopes at 0 are

where § = zL p; € 1"(1&}%, Z) )[2]. We assume moreover that .1 is unipotent at 0 with a mawimal
R

s$1<Sy=8+1<---<s.=s1+r—1.

Note that .21 is indecomposable in F-Tsoc' (G, x/K) and so is .# in F-Tsoc(Gyy, /K ). Then by Drinfeld-
Kedlaya’s theorem on the generic Frobenius slopes [42], we deduce property (i):
(i) The generic Frobenius slopes (mult-)set is {s1,---,s,} with s; =51 +i — 1.
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(ii) In view of 2022, the differential equation D = 0 admits a unique solution at 0:

F(z) =Y A(m)a" € K{z}, with A(0)=1.
n>0

Proposition A.9. Suppose the function F(z) satisfies Dwork’s congruences (A6) and let & be the asso-
ciated unit-root convergent F-isocrystal on U C Aj.. Then

(i) There exists an epimorphism of log convergent isocrystals #'°% — & on (U,0).

(ii) As log convergent isocrystals, & coincides with the maximal slope quotient '8 ). 4% of .48
(A3T).
Proof. (i) We set A =T'(4, ﬁu)[%]. We claim that there exists a decomposition of differential operators:
(A.9.1) P(©) = Q@)@ —zn), QE@)=08""+g 10"+ +aq, @€A

Indeed, by the Euclidean algorithm ([61] 5.5.2), there exists € A such that P = Q(d—an)+r. By evaluating
the above identity at F' (in the ring K{x} containing A), we obtain

P)F)=0=Q()(0 —an)(F) +rF =rF.

Then we deduce r = 0 and (A.9.7]) follows.

Let eq,- -, e, be a basis of .# such that Vs(e;) = e;41,1 <i<r—1and Vs(e,) = —(pre, + -+ pre1).
We consider a free Oypie-module with a log connection .4 with a basis fi1,---, fr—1 and the connection
defined by Vs(fi) = fiz1, Vs(fro1) = —(@r_1fr—1+ -+ + qi.f1). By (AQI), the morphism f; — es — x1e1
induces a horizontal monomorphism .4 — .#'°% whose cokernel is isomorphic to &p.

(ii) Note that Pic(U"®8) ~ Pic(U) (|83] 3.7.4) is trivial. Then the rank one convergent isocrystal .8 / #/1°%:*
can be represented as a connection d — A on the trivial bundle Opie.

Since .#'°% has a maximal unipotent at 0, the rank one quotient of the restriction .#'°¢|y of .#'°% at the
open unit disc around 0 is unique (29.1]). In particular, d — A kills the unique solution F' of P(§) = 0. By
analytic continuation, we have A = 1 and the assertion follows. O

Remark A.10. The unique solution F(z) belongs to the ring K [z]o = R]z] ® g K of bounded functions on
open unit disc, which is a subring of K{x}. Assertion (ii) can be viewed as an example of Dwork-Chiarellotto-
Tsuzuki conjecture on the comparison between the log-growth filtration (of solutions) and Frobenius slope
filtration [3I]. This conjecture was recently proved by Ohkubo [71].

A.11. Proof of proposition [A1l We set k = Fy and apply the above discussions to overconvergent F-
isocrystals .21 = Begn+1 and AT = Be;O%+1 stq o0 Gy p, /K (ALI). Their unique solutions at 0 are:

-9 (2n+1)r 2(2n+1)r 2 — 1)
F(z) = Z ((H))T.HIT’ G(z) = Z (T!)gn—i-l ) @’

>0 r>0

In the following lemma, we show that F' and G satisfy Dwork’s congruences and that the associated
maximal slope quotients & and &g ([(A9) are isomorphic. Then proposition [AT] follows from theorem
and the following lemma. O

Lemma A.12. (i) The functions F(x) and G(x) satisfy Dwork’s congruences (A6) and define unit-root
convergent F-isocrystals & and &g on A}, respectively.

(ii) The function F(x)/G(x) extends to a global function of 1&}% and induces an isomorphism &g — &p.

Proof. (i) Conditions (a,b,d,e) are easy to verified. The coefficients of F(x) (resp. G(x)) satisfy condition
(¢) (resp. (c)), that is

(_2)(2n+1)(a+42+m25+1)/((a 402 + m2s+1)!)2n+1
(—2)@ntD)(E+m29) /(0 4 m2s)1)2n+1

(_2)(2n+1)(a+€2)/((a 4 £2)!)2n+1
(_2)(2n+1)€/(£!)2n+1

= u(s,m mod 25T,
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where u(1,m) = (=1)™ and u(s,m) =1 if s # 1, and
(2(a + €2 + m2s+1) — 1)”2(2n+1)(a+£2+m25+1)/((a + 02 + m2sth1)2ntl
(2([ + m2s) _ 1)”2(2n+1)(€+m23)/((g + m2s)!)2n+1
(2(a + £2) — 1)112Cn+1)(a+62) /(g 4 p2)1)2n+1
(2¢ — 1)NN2@n+1)E/(p1)2n+1
ince Fi(z) = Gi(z) =1 mod 2, the F-isocrystals &r, & are defined over Aj.
Si F G 1 d 2, the F-i Is &, & defined Al
(ii) We set BO)(r) = % and BM(r) = W and BU+2) = B Then these sequences
satisty conditions (a,b,c’,d,e). For condition (c¢’), the constants u(z, 1, m) are given by
isf diti b,c’,d F diti '), th , 1 i b
w(0,1,m)=1, u(l,1,m)=(-1)", wu(i+2,1,m)=u(i,1,m).
Since F1(z) = Gi(x) =1 mod 2, F(x)/G(2?) extends to a global function of ¢4, by theorem [A5and so is
R
F(2)/G(z). Then the assertion follows. O

mod 25+,

A.13. Proof of theorem [AE|i’). We prove assertion (i’) by modifying the argument of ([43] theorem 2).
Note that condition (¢’) implies the following congruence relation:

B (a +n2 +m25t1h) _ B (a + n2)

A.13.1 - = - d 2°.
( ) B(z+1)(n + m25) B(Hl)(n) mo
When n < 0, we set B (n) =0. Weset A= B, B=B® and for a € {0,1}, 5, N € Z, we set
Ua(jN) = Ala+2(N —34))B(j) — B(N — j)A(a + 2j),
(m+1)2° -1
Ha(maSaN) = Z Ua(ij)'
Jj=m?2s

Then the assertion is equivalent to
(A.13.2) Hy(m,s,N)=0 mod 2°BET(m), fors>0,m >0,N >0.
By condition (b), we have A(a 4+ 2m)/B(m) € R and hence

Us(m,N)=0 mod B(m).

Then equation (AT3.2) for s = 0 follows from the fact that H,(m,0, N) = U,(m, N).
We now prove by induction on s. We write the induction hypothesis

o Hy(m,u,N) =0 mod 2*B™“*Y(m), forue0,s),m, N >0.
We may assume «y for fixed s > 1. The main step is to show for 0 < ¢ < s that
287t 1
Bi,s = v(s,t,m)H,(m, s, N + m2°) = Z BYY (G 4+ m2° Y H,(j,t, N)/BUY () mod 2°BE+Y (m).
§=0
where v(s,t,m) =1 or —1 depending on s, t, m.
We list some elementary facts (cf. [43] 2.5-2.7)

(A.13.3) S o Ha(m,s,N)=0 if (T+1)2°>N
(A.13.4) H,(m,s,N)=Hq,(2m,s —1,N)+ Hy(1 4+ 2m,s —1,N) ifs>1
(A.13.5) B® (i4+m2%) =0 mod BEH(m) if0<i<2%—1,s,t>0.

We first prove 5y . We have

Hy (m,s, N +m2°) = 527 MU, (j +m2°, N +m2°),

(A13.6)  Uq(j+m2%, N +m2°%) = A(a+ 2(N — j))B(j + m2%) — B(N — j)A (a + 2j + m2°1) .
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By (AI37), we have
A (a+2j +m2°TY) = A(a +24)B(j + m2°)/B(j) + X;2°B(j +m2°),
where X; € R. Then the right hand side of (AI3.6) is
B+ m2?) (V. N)/BG) - 2 X80V =) ).

Since Uy (j, N) = H,(7,0, N), we obtain

2% -1 29 -1
Hg (m,s,N+m2%) = > B(j+m2*) Ha(j,0,N)/B(j) = 2° > X;B(j +m2°) B(N — j).
=0 3=0

Since X;B(N —j) € R, it follows from (AI3.5) (B = BM") that the second sum is congruent to zero modulo
25 B+ (m). This proves By s with v(s,0,m) = 1.

With s fixed, s > 1, ¢ fixed, 0 <t < s — 1, we show that ; ; together with a, imply B¢11,s. To do this
we put j = g + 2¢ in the right side of 8; s and write it in the form

1 2sft71
SN BUY (4 20+ m2°) Ho(p+ 26, t, N) /B (u + 2i).
u=0 1i=0

By condition (¢’), we have,
BUFY (1 + 21+ m2°~")
=u(t+1,5—t—1,m) (B<t+1>(u +2i) B2 (j + m2s~t1) /BUF2) (i)) + X257 BUFY (i 4 m2s Tt

where X; , € R. Thus the general term in the above double sum is
u(t+1,5 —t—1,m) (B“*Q) (i +m25 Y Hy (u + 2i,t, N)/B(t”)(i)) + Y,

where the error term:
Vi = X227 B (i 4 m25= ) Hy (o + 26, ¢, N) /B (1 + 2i).
For this error term, since ¢ < s, we can apply «as to conclude that
Vi, =0 mod B (j 4 m2s7t71)2s,
Then we can use (AI3.0) to conclude that
Vi, =0 mod 2°BEH (m).
After modulo 2° B®*Y (m), the right side of f; , is equal to

1 257t
ut+1,s—t—1,m) Y Y BUF (i m2v 1) Hy(p + 2i,t,N)/BUT2) ().
n=0  i=0

By reversing the order of summation and using (A13.4), the above sum is the same as
2sft7171
ult+1,s—t—1,m) > BU (i4m2 1) Hy(i,t +1,N)/BU2)(i),
i=0
which proves fi41,s. In particular, we obtain 3 s, which states
(A.13.7) v(s,s,m)Hy(m, s, N + m2%) = B+t (m)H,(0,s, N)/B*TY(0) mod 2°BE+V (m).
We now consider the statement (with s fixed before)

y~ : Ha (0,8, N) =0 mod 2°.
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We know that vy is true for N < 0. Let N’ (if it exists) be the minimal value of N for which ~yx- fails. For
m > 1, since B+ (0) is a unit, we have by (AI3.7)

H,(m, s, N') = v(s,s,m)BE+Y) (m)H,(0,s, N' —m2°)/BETV(0) =0 mod 2°.
Applying this to (AI33]), we obtain that
H,(0,5,N')=0 mod 2°.
Thus vy is valid for all N and equation (AI3.7) implies as11. This proves assertion (i’). |
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