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BESSEL F -ISOCRYSTALS FOR REDUCTIVE GROUPS

DAXIN XU, XINWEN ZHU

Abstract. We construct the Frobenius structure on a rigid connection Be
Ǧ

on Gm for a split reductive

group Ǧ introduced by Frenkel-Gross. These data form a Ǧ-valued overconvergent F -isocrystal Be†
Ǧ

on

Gm,Fp , which is the p-adic companion of the Kloosterman Ǧ-local system Kl
Ǧ

constructed by Heinloth-
Ngô-Yun. By studying the structure of the underlying differential equation, we calculate the monodromy
group of Be†

Ǧ
when Ǧ is almost simple (which recovers the calculation of monodromy group of Kl

Ǧ
due

to Katz and Heinloth-Ngô-Yun), and establish functoriality between different Kloosterman Ǧ-local systems
as conjectured by Heinloth-Ngô-Yun. We show that the Frobenius Newton polygons of Kl

Ǧ
are generically

ordinary for every Ǧ and are everywhere ordinary on |Gm,Fp | when Ǧ is classical or G2.
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Ǧ
and Klrig

Ǧ
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1. Introduction

1.1. Bessel equations and Kloosterman sums.

1.1.1. The classical Bessel differential equation (of rank n) with a parameter λ

(1.1.1.1)

(
x
d

dx

)n

(f)− λnx · f = 0

has a unique solution which is holomorphic at 0 :

(1.1.1.2)
∮

(S1)n−1

expλ

(
z1 + z2 + · · ·+ zn−1 +

x

z1 · · · zn−1

)
dz1 · · · dzn−1

(2πi)n−1z1 · · · zn−1
=

∑

r≥0

1
(r!)n

(λnx)r .

One may reinterpret this fact using the language of algebraic D-modules as follows. Let K be a field of
characteristic zero. The Bessel equation (1.1.1.1) can be converted to a connection Ben on the rank n trivial
bundle on the multiplicative group Gm,K

(1.1.1.3) Ben : ∇ = d+




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
λnx 0 0 . . . 0




dx

x
,

which we call the Bessel connection (of rank n). On the other hand, we consider the following diagram

(1.1.1.4) Gnm
add

!!❈
❈❈

❈❈
❈❈

mult

}}④④
④④
④④
④④

Gm A1,

where add (resp. mult) denotes the morphism of taking sum (resp. product) of n coordinates of Gnm, and
define the Kloosterman D-module on Gm,K as

(1.1.1.5) KldR
n := Rn−1 mult!(add∗(Eλ)),

where

(1.1.1.6) Eλ = (OA1
K
,∇ = d− λdx)

is the exponential D-module on A1
K . With these notations, the fact that (1.1.1.2) is a solution of (1.1.1.1)

reflects an isomorphism of algebraic D-modules on Gm,K

Ben ≃ KldR
n .

The connection Ben is regular singular at 0 with a unipotent monodromy with a single Jordan block, and
is irregular at ∞ with irregularity = 1. Its differential Galois group was calculated by Katz [55].
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1.1.2. There is a parallel theory in positive characteristic. Let p a prime number. For every finite extension
Fq/Fp and a ∈ F×

q , the Kloosterman sum Kl(n; a) in n-variables is defined by 1

(1.1.2.1) Kl(n; a) =

(
− 1√

q

)n−1 ∑

zi∈F
×
q

exp

(
2πi
p

TrFq/Fp
(
z1 + z2 + · · ·+ zn−1 +

a

z1 · · · zn−1

))
.

It admits a sheaf-theoretic interpretation by Deligne [37]. Namely, the analog of the exponential D-module
in positive characteristic is the Artin-Schreier sheaf ASψ on A1

Fp
associated to a non-trivial character ψ :

Fp → Qℓ(µp)×. Deligne defined the Kloosterman sheaf Kln as the following complex on Gm,Fp:

(1.1.2.2) Kln = R mul!(add∗(ASψ))[n − 1]

(
n− 1

2

)
,

and showed the following properties ([37] 7.4, 7.8):

(i) Fix an embedding ι : Qℓ(µp) → C such that ιψ(x) = exp(2πix/p) for x ∈ Fp. The Frobenius trace
of Kln at each closed point a ∈ F×

q is equal to the Kloosterman sum Kl(n; a).
(ii) The complex Kln is concentrated in degree 0 and is an irreducible local system of rank n and of

weight 0, which implies the Weil bound of the Kloosterman sum |Kl(n; a)| ≤ n.
(iii) The sheaf Kln is tamely ramified at 0, and the monodromy is unipotent with a single Jordan block.
(iv) The sheaf Kln is wildly ramified at ∞ with Swan conductor Sw∞(Kln) = 1.

In ([56] § 11), Katz calculated the (global) geometric and arithmetic monodromy group of Kln as follow:

(1.1.2.3) Ggeo(Kln) = Garith(Kln) =





Spn n even,
SLn pn odd,
SOn p = 2, n odd, n 6= 7,
G2 p = 2, n = 7.

Surprisingly, the exceptional group G2 appears as the monodromy group.

1.1.3. In 70’s [44], Dwork showed that there exists a Frobenius structure on the Bessel connection (1.1.1.3)
whose Frobenius traces give the Kloosterman sum. Here a Frobenius structure is a horizontal isomorphism
between the Bessel connection and its pullback by the “Frobenius endomorphism” F : Gm,K → Gm,K over K
defined by x 7→ xp. Although the Bessel connection is an algebraic connection, such a horizontal isomorphism
is not algebraic but of p-adic analytic nature.

To explain Dwork’s result, we need to introduce certain ring of p-adic analytic functions. We set K =
Qp(µp), equipped with a p-adic valuation |-|p normalised by |p|p = p−1, and denote by A† the ring of p-adic
analytic functions with a convergence radius > 1:

(1.1.3.1) A† =

{ +∞∑

n=0

anx
n | an ∈ K, ∃ ρ > 1, lim

n→+∞
|an|pρn = 0

}
.

This ring is called the ring of p-adic analytic functions on P1 overconvergent along {∞} by Berthelot [21].
We take an algebraic closure K of K and fix an isomorphism ι : K → C. There exists a unique element

π of K which satisfies πp−1 = −p and corresponds to the character exp 2πi(−
p ) : Fp → C× (cf. 2.1.5(i)).

Theorem 1.1.4 (Dwork, Sperber [44, 78, 79]). Let n be an integer prime to p and set λ = −π as above.
There exists a unique ϕ(x) ∈ GLn(A†) such that

1The sum (1.1.2.1) is slightly different from the standard definition by a factor (− 1√
q

)n−1.
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(i) The matrix ϕ satisfies the differential equation:

x
dϕ

dx
ϕ−1 + ϕ




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
λnx 0 0 . . . 0



ϕ−1 = p




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
λnxp 0 0 . . . 0



.

That is, ϕ defines a horizontal isomorphism F ∗(Ben)
∼−→ Ben.

(ii) For a ∈ F×
q , we have ιTrϕa = Kl(n; a), where ϕa =

∏deg(a)−1
i=0 ϕ(ãp

i

) and ã ∈ K denotes the
Teichmüller lifting of a.

(iii) If {α1, · · · , αn} denote the eigenvalues of ϕa, then we have |αi|p = p
n+1−2i

2 deg(a) after reordering αi.

Overconvergent (F -)isocrystals on a variety X over Fp are p-adic analogues of ℓ-adic (Weil) local systems.
Roughly speaking, they are vector bundles with an integrable connection and a Frobenius structure on some
rigid analytic space associated to certain lifting of X to characteristic zero. The data (Ben, ϕ) form an
overconvergent F -isocrystal on Gm,Fp (relative to K), which we call the Bessel F -isocrystal (of rank n) and
denote by Be†

n. By (ii), Be†
n is the p-adic companion of the Kloosterman sheaf Kln in the sense of [38, 3].

1.2. Generalization for reductive groups.

1.2.1. Recently, there are two generalizations of above results (corresponding to the GLn-case) for reductive
groups from different perspectives. The first one is due to Frenkel and Gross [47] from the viewpoint of the
Bessel equations. Namely, for each (split) reductive group Ǧ over a field K of characteristic zero, Frenkel-
Gross wrote down an explicit Ǧ-connection BeǦ on Gm, which specializes to Ben when Ǧ = GLn. We will
call BeǦ the Bessel connection of Ǧ in this paper. Another one, due to Heinloth, Ngô and Yun [52], is
from the viewpoint of the Kloosterman sums. Namely, the authors explicitly constructed, for each (split)
reductive group G over the rational function field Fp(t), a Hecke eigenform of G, and defined KlǦ as its
Langlands parameter, which is an ℓ-adic Ǧ-local system on Gm that specializes to Kln if Ǧ = GLn. The
authors call KlǦ the Kloosterman sheaf of Ǧ.

The main subject of this article is to study the p-adic aspects of this theory and to unify the previous two
constructions. Our main results can be summarized as follows:

(i) we construct the Frobenius structure on BeǦ and obtain the Bessel F -isocrystal Be†

Ǧ
of Ǧ, which is

the p-adic companion of KlǦ in appropriate sense;
(ii) we calculate its geometric and arithmetic monodromy group;

(iii) we show that the Frobenius Newton polygons of BeǦ (and therefore KlǦ) are generically ordinary
and when Ǧ is classical or G2 they are everywhere ordinary on |Gm,Fp |.

It turns out that our p-adic theory also has applications to the ℓ-adic theory and the arithmetic property of
exponential sums associated to KlǦ. Namely,

(iv) we obtain a different (and more conceptual) calculation of the monodromy group of KlǦ ((1.1.2.3)
and one of the main results of [52]), based on the structure of the connection BeǦ;

(v) we prove a conjecture of Heinloth-Ngô-Yun on the functoriality of Kloosterman sheaves ([52] conjec-
ture 7.3) and therefore obtain identities between different exponential sums.

We discuss these results in more details in the sequel.

1.2.2. Let Ǧ be a split almost simple group over a field K of characteristic zero. Fix a Borel subgroup
B̌ ⊂ Ǧ, and a principal nilpotent element N in the Lie algebra of B̌. Let E denote a basis vector of the
lowest root space in ǧ = Lie(Ǧ). In [47], Frenkel and Gross considered a connection on the trivial Ǧ-bundle
over Gm:

(1.2.2.1) ∇ = d+N
dx

x
+ λhEdx,
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where x is a coordinate of Gm, λ ∈ K is a parameter and h is the Coxeter number of Ǧ. We may regard it
as a tensor functor from the category of representations of Ǧ to the category of connections on the trivial
bundles on Gm

(1.2.2.2) BeǦ : Rep(Ǧ)→ Conn(Gm), (ρ : Ǧ→ GL(V ))→ d+ dρ(N
dx

x
+ λhEdx).

This connection is rigid and has a regular singularity at 0 and an irregular singularity at ∞.

1.2.3. Let G be a split almost simple group over Fp(t) whose dual group is Ǧ. In [52], Heinloth-Ngô-
Yun wrote down a cuspidal Hecke eigenform f on G, and defined the Kloosterman sheaf KlǦ for Ǧ as the
Langlands parameter of f . For simplicity, we assume that G is simply-connected. If we fix opposite Iwahori
subgroups I(0)op ⊂ G(O0) and I(0) ⊂ G(O∞) at 0,∞, and a non-degenerate character ϕ : I(1)/I(2) →
Q(µp)×, where I(i) denotes the ith step in the Moy-Prasad filtration of I(0), then f is the unique (up to
scalar) non-zero function on G(Fp(t))\G(A) that is,

• invariant under G(Ox) for every place x 6= 0,∞;
• invariant under I(0)op at 0;
• (I(1), ϕ)-equivariant at ∞.

Then Heinloth-Ngô-Yun defined KlǦ : Rep(Ǧ) → LocSysm(Gm,Fp) as a tensor functor from the category
of representations of Ǧ (over Qℓ) to the category of ℓ-adic local systems on Gm,Fp , such that for every
V ∈ Rep(Ǧ) and every a ∈ |Gm,Fp |,

TV,a(f) = Tr(Froba, (KlǦ,V )a)f

where TV,a is the Hecke operator associated to (V, a). The actual construction of KlǦ uses the geometric
Langlands correspondence (see 4.1.12).

Our first main result is the existence of a Frobenius structure on Bessel connections for reductive groups.

Theorem 1.2.4 (4.4.4, 5.4.2). Let K = Qp(µp), K an algebraic closure of K and set λ = −π as in 1.1.4.

(i) There exists a unique ϕ(x) ∈ Ǧ(A†) satisfying the differential equation

x
dϕ

dx
ϕ−1 + Adϕ(N + λhxE) = p(N + λhxpE)

and such that via a (fixed) isomorphism K ≃ Qℓ, for every a ∈ F×
q and V ∈ Rep(Ǧ)

Tr(ϕa, V ) = Tr(Froba, (KlǦ,V )a),

where ϕa =
∏deg(a)−1
i=0 ϕ(ãp

i

) and ã ∈ K denotes the Teichmüller lifting of a.
In particular, the analytification of the Bessel connection BeǦ on Gan

m,K is overconvergent and underlies

a tensor functor from Rep(Ǧ) to the category of overconvergent F -isocrystals on Gm,Fp:

(1.2.4.1) Be†

Ǧ
: Rep(Ǧ)→ F - Isoc†(Gm,Fp/K),

which can be regarded as the p-adic companion of KlǦ.

(ii) Let ρ ∈ X•(T ) = X•(Ť ) be the half sum of positive roots. When Ǧ is of type An, Bn, Cn, Dn or G2, for

every a ∈ |Gm,Fp |, the set of p-adic order of eigenvalues of ϕa ∈ Ǧ(K) (also known as the Frobenius slopes

at a) is same as that of ρ(pdeg(a)) ∈ Ǧ(K). When Ǧ is of other exceptional type, the same assertion holds
generically on |Gm,Fp |.
Remark 1.2.5. (i) For a Ǧ-valued overconvergent F -isocrystal on a smooth variety X over Fp, we say its
Newton polygon is ordinary at a if the Frobenius slopes at a are given by ρ (in the above sense). We expect
that the Newton polygons of Be†

Ǧ
are always ordinary at each closed point of Gm,Fp .

(ii) V. Lafforgue [63] showed that ρ is the upper bound for the p-adic valuations of Hecke eigenvalues of
Hecke eigenforms (cf. 5.4.1 for a precise statement). Drinfeld and Kedlaya [42] proved an analogous result
for the Frobenius slopes of an indecomposable convergent F -isocrystal on a smooth scheme.
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1.2.6. Global monodromy groups. In ([47] Cor. 9,10), Frenkel and Gross calculate the differential Galois
group Galg of BeǦ over K, which we list in the following table (up to central isogeny):

(1.2.6.1)

Ǧ Ggal

A2n A2n

A2n−1, Cn Cn
Bn, Dn+1(n ≥ 4) Bn
E7 E7

E8 E8

E6, F4 F4

B3, D4, G2 G2.

If we denote by Ggeo the geometric monodromy group of Be†

Ǧ
over K, there exists a canonical homomorphism

(1.2.6.2) Ggeo → Ggal.

Theorem 1.2.7 (4.5.2). (i) If either Ǧ is not of type A2n, or p > 2, the above morphism is an isomorphism.

(ii) If p = 2 and Ǧ = SL2n+1, then Ggeo ≃ SO2n+1 if n 6= 3 and Ggeo ≃ G2 if n = 3.

(iii) The arithmetic monodromy group Garith of Be†

Ǧ
is isomorphic to Ggeo.

In fact, the second part of the theorem follows from the first part and theorem 1.2.8(ii) below. By
companion, this theorem allows us to recover Katz’s result on the monodromy group of Kln (1.1.2.3) and
Heinloth-Ngô-Yun’s result on the geometric monodromy group of KlǦ [52] in a different way. For instance, the
G2-symmetry on Be†

7 when p = 2 (1.1.2.3) appears naturally in our approach, compared with Katz’ original
approach via point counting. In addition, we also avoid some difficult geometry related to quasi-minuscule
and adjoint Schubert varieties, as analyzed in [52].

Inspired by the rigidity properties of hypergeometric sheaves proved by Katz [57], Heinloth, Ngô and Yun
conjectured certain functoriality between Kloosterman sheaves for different groups ([52] conjecture 7.3). As
an application of our p-adic theory, we prove this conjecture.

Theorem 1.2.8 (5.1.4, 5.3.10). (i) For Ǧ′ ⊂ Ǧ appearing in the same line in the left column of the above

diagram, KlǦ is isomorphic to the push-out of KlǦ′ along Ǧ′ → Ǧ.
(ii) If p = 2, KlSL2n+1

is the push-out of KlSO2n+1
along SO2n+1 → SL2n+1.

1.2.9. The above theorem allows us to identify various exponential sums associated to Kloosterman sheaves
defined by different groups. Here are some examples (cf. corollary 5.3.11):

(i) When Ǧ = SO3 ≃ PGL2, we have the following identity for a ∈ F×
q :

( ∑

x∈F
×
q

ψ(TrFq/Fp(x+
a

x
))

)2

− q(1.2.9.1)

=





− 1√
q

∑

x1,x2∈F
×
q

ψ

(
TrFq/Fp(x1 + x2 +

a

x1x2
)

)
, p = 2,

1
G(ψ−1, ρ−1)

∑

x1x2x3=4ay,xi∈F
×
q

ψ

(
TrFq/Fp(x1 + x2 + x3 − y)

)
ρ−1(y), p > 2

where ψ(−) = exp 2πi
p (−), ρ denotes the quadratic character of F×

q and G(ψ−1, ρ−1) the associated Gauss
sum. The identity is due to Carlitz [26] when p = 2 and Katz ([58] § 3) when p > 2. Our method is
completely different from these works.
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(ii) For n ≥ 2, via the inclusion SO2n+1 → SO2n+2, for a ∈ F×
q , we have

∑

uv=a,u,v∈F
×
q

(( ∑

x∈F
×
q

ψ(TrFq/Fp(x +
u

x
))

)2 − q
)( ∑

xi∈F
×
q

ψ(TrFq/Fp(x1 + · · ·+ x2n−3 +
v

x1 · · ·x2n−3
))

)
(1.2.9.2)

= − 1√
q

( ∑

xi∈F
×
q

ψ

(
TrFq/Fp(x1 + x2 + · · ·+ x2n + a

x1 + x2

x1x2 · · ·x2n
)

)
− qn−1

)
.

One can obtain other identities between different exponential sums, whose sheaf-theoretic incarnations were
obtained by Katz [58].

1.2.10. We have partial results about the local monodromy of Be†

Ǧ
(and KlǦ) at ∞. Namely, we show that

the nilpotent monodromy operator is trivial and the local Galois representation ϕ∞ : I∞ → Ǧ is a simple
wild parameter in the sense of Gross-Reeder [51] § 6 (see corollary 4.5.7 (ii)). If p ∤ n, one can even show
that the local monodromy of Be†

n at ∞ coincides with the Galois representations constructed in [51] § 6.2,
by studying the solutions of Bessel differential equation (1.1.1.1) at∞. (The corresponding ℓ-adic statement
for Kln was proved by Fu and Wan [48] thm. 1.1.)

The above result, together with theorem 1.2.8(ii), implies that when p = 2 and n is an odd integer, the
associated local Galois representation for Be†

SOn
(and KlSOn) at∞ coincides with the simple wild parameter

constructed in [51] § 6.3. For example, the image of the inertia group I∞ in the case Ǧ = SO3 is isomorphic
to A4. Together with Be†

SO3,Std ≃ Be†
SL2,Sym2 (4.1.9.1), this allows us to recover André’s result on the local

monodromy group of Be†
2 at ∞ when p = 2 ([9] sections 7, 8).

1.3. Strategy of the proof and the organization of the article.

1.3.1. Now we outline the strategy to prove the above results. Part (i) of theorem 1.2.4 follows by combining
following three ingredients:

(i) We first mimic Heinloth-Ngô-Yun’s construction to produce a Ǧ-valued overconvergent F -isocrystal
Klrig

Ǧ
on Gm,Fp and a Ǧ-bundle with connection KldR

Ǧ
on Gm,K (section 4.1). A key step is to develop

the geometric Satake equivalence for arithmetic D-modules, which we will discuss latter (1.3.5).
(ii) Then we show that the overconvergent isocrystal Klrig

Ǧ
is isomorphic to the analytification of the

Ǧ-connection KldR
Ǧ

(section 4.2) by comparing certain relative de Rham cohomologies and relative
rigid cohomologies.

(iii) We strengthen a result of the second author [89] to identify KldR
Ǧ

with BeǦ (section 4.3).

1.3.2. The local monodromy of Be†

Ǧ
at 0 is principal unipotent, which implies that its geometric monodromy

Ggeo contains a principal SL2. This puts strong restrictions on the possible Dynkin diagrams of Ggeo (cf.
4.5.4 for a possible list). A result of Baldassarri [13] (cf. [9] 3.2), which implies that the p-adic slope of Be†

Ǧ
at ∞ is less or equal to the formal slope of BeǦ at ∞, allows us to exclude the case Ggeo = PGL2 (or SL2)
in most cases. Together with certain symmetry on Be†

Ǧ
, this implies theorem 1.2.7(i).

1.3.3. The analogous functoriality for Bessel connections BeǦ (theorem 1.2.8(i)) follows from their definition.
Then we deduce the functoriality between Be†

Ǧ
’s by theorems 1.2.4(i) and 1.2.7(i). For theorem 1.2.8(ii) (and

therefore theorem 1.2.7(ii)), we construct an isomorphism between the maximal slope quotients of Be†
2n+1

and Be†
SO2n+1,Std using a refinement of Dwork’s congruences [43] in the 2-adic case. Then we conclude that

Be†
2n+1 ≃ Be†

SO2n+1,Std by a recent theorem of Tsuzuki [82] (cf. appendix A). Since Be†

Ǧ
is the p-adic

companion of KlǦ, theorem 1.2.8 follows.

1.3.4. By functoriality, we reduce theorem 1.2.4(ii) to the corresponding assertion for (Frobenius) Newton
polygon of Be†

SLn,Std and of Be†
SO2n+1,Std, which are isomorphic to Be†

n and a hypergeometric overconvergent
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F -isocrystal [67] respectively. In these cases, the assertion follows from the results of Dwork, Sperber and
Wan [44, 79, 84].

1.3.5. As mentioned above, in order to carry through the first step of 1.3.1, we need to establish a version
of the geometric Satake equivalence for arithmetic D-modules. This is based on the recent development
of the six functors formalism, weight theory and nearby/vanishing cycle functors for arithmetic D-modules
[28, 29, 5, 6, 4]. We will review these theories in subsections 2.1–2.7.

To state our result, we first introduce some notations. Let k be a finite field with q = ps elements and K
a finite extension of Qq. Suppose that there exists a lift σ : K → K of the t-th Frobenius automorphism of
k for some integer t. Let G be a split reductive group over k, Ǧ its Langlands dual group over K, GrG the
affine Grassmannian of G, and L+G the positive loop group of G.

Given a k-scheme X , one may consider the category Hol(X/K) of holonomic arithmetic D-modules on X
and the category Hol(X/KF ) of objects of Hol(X/K) with a Frobenius structure, which are the analogues
of the category of ℓ-adic sheaves on Xk and the category of Weil sheaves on X respectively. We denote by
HolL+G(GrG /K) (resp. HolL+G(GrG /KF )) the category of L+G-equivariant objects in Hol(GrG /K) (resp.
Hol(GrG /KF )).

The geometric Satake equivalence (for geometric coefficients) states that the category HolL+G(GrG /K) is
a neutral Tannakian category over K whose Tannakian group is Ǧ (3.5.1). The Tannakian structure and the
Frobenius structure on HolL+G(GrG /KF ) allows us to define a homomorphism ι : Z → Aut(Ǧ(K)) (3.6.2)
and hence a semi-direct product Ǧ(K) ⋊ Z.

Theorem 1.3.6. (i) (Geometric coefficients 3.5.1) There exists a natural equivalence of monoidal categories

between HolL+G(GrG /K) and Rep(Ǧ).
(ii) (Arithmetic coefficients 3.6.7) There exists an equivalence of monoidal categories between HolL+G(GrG /KF )

and the category Rep◦
K,σ(Ǧ(K) ⋊ Z) of certain σ-semi-linear representations of Ǧ(K) ⋊ Z (cf. 3.6.3).

Although the strategy of the proof of this theorem is same as the ℓ-adic case, we need to establish
some foundational results in the setting of arithmetic D-modules. We introduce a notion of universal local
acyclicity (ULA) for arithmetic D-modules and discuss its relation with the nearby/vanishing cycle functors
introduced by Abe-Caro and Abe [5, 4] in subsection 2.8. We also prove a version of Braden’s hyperbolic
localization theorem is this setting in subsection 2.10.

Recall that there are motivic versions of the geometric Satake equivalence [90, 75]. The above theorem
can be regarded as their p-adic realization. (But as far as we know, there is no general construction of the
realization functor as we need so the above theorem is not a formal consequence of loc. cit..) On the other
hand, there is a very recent work of R. Cass [30] on the geometric Satake equivalence for perverse Fp-sheaves.
It would be very interesting to see whether there is a version of the geometric Satake equivalence for some
Zp-coefficient sheaf theory, which after inverting p and mod p specializes to our version and Cass’ version
respectively.

We hope our article will lead further investigation of the p-adic aspect of the geometric Langlands program
in the future.

1.3.7. We briefly go over the organization of this article. Section 2 contains a review of and some comple-
ments on the theory of arithmetic D-modules and overconvergent (F -)isocrystals. In section 3, we establish
the geometric Satake equivalence for arithmetic D-modules (1.3.6). Subsections 4.1-4.4 are devoted to the
proof of theorem 1.2.4(i) (cf. 1.3.1). We calculate the monodromy group of Be†

Ǧ
in subsection 4.5 (cf. theo-

rem 1.2.7 and 1.3.2). In subsection 5.1, we prove the functoriality of Bessel F -isocrystals and of Kloosterman
sheaves (cf. theorem 1.2.8(i) and 1.3.3). In subsections 5.2 and 5.3, we identify the Bessel F -isocrystals for
classical groups with certain hypergeometric differential equations studied by Katz and Miyatani [57, 67].
In particular, we obtain identities in 1.2.9. In the last subsection (5.4), we study the Frobenius Newton
polygon of Be†

Ǧ
and prove theorem 1.2.4(ii). Appendix A is devoted to a proof of theorem 1.2.8(ii) from the

perspective of p-adic differential equations.
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1.3.8. In this article, we fix a prime number p. Let s be a positive integer and set q = ps. Let k be a
perfect field of characteristic p, k an algebraic closure of k and R a complete discrete valuation ring with
residue field k. We set K = Frac(R). We fix an algebraic closure K of K. We assume moreover that the
s-th Frobenius endomorphism k

∼−→ k, x 7→ xq lifts to an automorphism σ : R
∼−→ R.

By a k-scheme (resp. R-scheme), we mean a separated scheme of finite type over k (resp. over R).

Acknowledgement. We would like to thank Benedict Gross, Shun Ohkubo, Daqing Wan, Liang Xiao
and Zhiwei Yun for valuable discussions. X. Z. is partially supported by the National Science Foundation
under agreement Nos. DMS-1902239.

2. Review and complements on arithmetic D-modules

2.1. Overconvergent (F -)isocrystals and their rigid cohomologies. In this subsection, we briefly
recall the definition of overconvergent (resp. convergent) isocrystal following [20].

2.1.1. Let X be a k-scheme. A frame of X is a quadruple (Y, j,P, i) (written as (Y,P) for short) consisting
of an open immersion j : X → Y of k-schemes, and a closed immersion i : Y →P, where P is a separated
formal R-scheme which is smooth over Spf(R) in a neighborhood of X . We denote by Prig the rigid analytic
space associated to P and by ]X [P, ]Y [P the tube of X,Y in Prig respectively ([20] § 1).

A strict neighborhood of ]X [P in ]Y [P is an admissible open subspace V of ]Y [P such that V ∪]Y \X [P
forms an admissible covering of ]Y [P ([20] 1.2). There exists an exact functor j† from the category Ab(V )
of abelian sheaves on V to itself ([20] 2.1.1), defined by

(2.1.1.1) j†E = lim−→
U

jU,V ∗j
−1
U,V (E),

where the inductive limit is taken over all strict neighborhoods jU,V : U → V of ]X [P in V . It is known
that j†OV is coherent as a sheaf of rings.

The notion of a morphism of frames is naturally defined, and a morphism u : (Y ′,P ′)→ (Y,P) of frames
induces a tensor functor:

u∗ : (Coherent j†
O]Y [P -modules) → (Coherent j†

O]Y ′[P′ -modules) .

We denote by Conn(j†O]Y [P ) the category of coherent j†O]Y [P -modules M equipped with a K-linear
morphism ∇ : M →M ⊗j†O]Y [P

j†Ω1
]Y [P

satisfying the Leibniz rule and the usual integrability condition.

2.1.2. For n = 1, 2, 3, we denote by Pn the fiber product of n-copies of P over Spf(R). Then (Y,Pn) is a
frame of X and we have projections pi : (Y,P2)→ (Y,P) (i = 1, 2), pij : (Y,P3)→ (Y,P2) (1 ≤ i < j ≤ 3)
and the diagonal morphism ∆ : (Y,P)→ (Y,P2).

We denote by Isoc†(X,Y/K) the category of pairs (M , ε) consisting of a coherent j†O]Y [P -module M

and an isomorphism
ε : p∗

2(M )
∼−→ p∗

1(M )

satisfying ∆∗(ε) = id and p∗
13(ε) = p∗

12(ε) ◦ p∗
23(ε). Such a pair is called an isocrystal on X overconvergent

along Y −X (relative to K). This category is independent of the choice of P up to canonical equivalences
([20] 2.3.1).

When Y = X , we have j†O]Y [P = O]X[P . Such a pair is also called a convergent isocrystal on X/K. The
category Isoc†(X,X/K) is simply denoted by Isoc(X/K).

When X is a compactification of X over k, the category Isoc†(X,X/K) is independent of the choice of X
up to canonical equivalences ([20] 2.3.5) and is simply called the category of overconvergent isocrystals on

X/K, denoted by Isoc†(X/K).

2.1.3. There exists an exact and fully faithful functor ([20] 2.2.5, 2.2.7)

Isoc†(X,Y/K)→ Conn(j†
O]Y [P ), (M , ε) 7→ (M ,∇).



10 DAXIN XU, XINWEN ZHU

When X = Y (resp. Y = X is a compactification of X), we say that (M ,∇) is convergent (resp.
overconvergent) if it is contained in the essential image of the above functor.

Let M be an overconvergent isocrystal on X relative to K and M ⊗j†O
]X[P

j†Ω•
]X[P

the associated de

Rham complex with respect to a frame (X,P). The rigid cohomology RΓrig(X/K,M ) is defined by

(2.1.3.1) RΓrig(X/K,M ) = RΓ(]X[P ,M ⊗j†O
]X[P

j†Ω•
]X[P

).

2.1.4. The category Isoc†(X/K) is functorial with respect to pullbacks ([20] 2.3.6). The absolute s-th
Frobenius morphism FX : X → X and endomorphism σ : K → K induce the Frobenius pullback functor:

(2.1.4.1) F ∗
X : Isoc†(X/K)→ Isoc†(X/K).

An overconvergent F -isocrystal on X/(K,σ) (or simply X/K) is an overconvergent isocrystal M together
with an isomorphism ϕ : F ∗

X(M )
∼−→M , called (s-th) Frobenius structure of M .

We denote by F - Isoc†(X/K) the category of overconvergent F -isocrystals on X/K and by Isoc††(X/K)
the thick full subcategory of Isoc†(X/K) generated by those that can be endowed with an s′-th Frobenius
structure for some integer s|s′.

2.1.5. In the following, we explain some examples of overconvergent isocrystals.
(i) Dwork F -isocrystal. Let k = Fp (i.e. s = 1), K = Qp(µp), R = OK and σ = id. We choose π ∈ K

such that πp−1 = −p and take P = P̂1
R, Y = P1

k, X = A1
k. Then ]Y [= P̂1,rig

R and ]X [ is the closed unit disc.
If t denotes a coordinate of A1, the connection on j†O]Y [ defined by

∇ = d+ πdt,

is overconvergent and is called Dwork isocrystal, denoted by Aπ.
By considering the lifting of the Frobenius of P1 to R given by t → tp, F ∗

A1
k
(Aπ) is the module j†O]Y [

equipped with the connection ∇σ defined by

∇σ = d+ πptp−1dt.

We define a Frobenius structure ϕ : F ∗
A1
k
(Aπ)→ Aπ by the multiplication by θπ(x) = exp(π(x− xp)), which

is a section of j†O]Y [. This gives Dwork F -isocrystal associated to π on A1
k/K.

There exists a unique nontrivial additive character ψ : Fp → K× satisfying

ψ(1) = 1 + π mod π2.

For each x ∈ Fp, we denote by x̃ the Teichmüller lifting of x in Qp. Then θψ(x̃) = ψ(x) ([18] 1.4). So the
Frobenius trace function of Aπ is equal to ψ ◦ TrFq/Fp(−). We also denote Aπ by Aψ, as it plays a similar
role of Artin-Schreier sheaf associated to ψ in the ℓ-adic theory.

(ii) Kummer F -isocrystal. Let k be a finite field with q = ps elements. Set K = Qq, R = OK and
σ = id. We choose a ∈ R and take P = P̂1

R, Y = P1
k and X = Gm,k. If x denotes a coordinate of Gm, the

connection on j†O]Y [ defined by

∇ = d− adx
x
,

is overconvergent, denoted by Ka. With the lifting of Frobenius as in (i), F ∗
Gm

(Ka) is the module j†O]Y [

equipped with connection ∇σ defined by

∇σ = d− apdx
x
.

The isocrystal Ka has a Frobenius structure if and only if a ∈ 1
q−1Z. This Frobenius structure is given by

multiplication by t(q−1)a. Then we obtain the Kummer F -isocrystal Ka.
Let χ be a character of k× such that χ(x) = x̃(q−1)a, where x̃ denotes the Teichmüller lifting of x. We

also denote Ka by Kχ because the Frobenius trace function of Ka is equal to χ ◦Nmk′/k.
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2.2. (Co)specialization morphism for de Rham and rigid cohomologies. In this subsection, we re-
view the specialization and cospecialization morphisms between the de Rham and rigid cohomology following
([14] § 1) and show the compatibility of these two morphisms in proposition 2.2.5.

The results of this subsection will mainly be used in subsection 4.2.

2.2.1. In this subsection, X denotes a smooth R-scheme of pure relative dimension d and Xk (resp. XK)
its special (resp. generic) fiber. We use the corresponding calligraphic letter X to denote the rigid analytic
space Xan

K associated to XK and the corresponding gothic letter X to denote the p-adic completion of X .
We denote by Xrig the rigid generic fiber of X. Let ε : X → XK denote the canonical morphism of topoi.

Let (M,∇) be a coherent OXK -module endowed with an integrable connection (relative to K). We
denote by (Man,∇an) its pullback to X along ε. Then the canonical morphism of de Rham complexes
ε−1(M ⊗OXK

Ω•
XK

) → Man ⊗OX
Ω•

X induces a morphism from algebraic de Rham cohomology to analytic
de Rham cohomology

(2.2.1.1) RΓdR(XK , (M,∇)) = RΓ(XK ,M ⊗OXK
Ω•
XK )→ RΓ(X ,Man ⊗OX

Ω•
X ) = RΓan(X , (Man,∇an)).

2.2.2. We assume that there exists a smooth proper R-scheme X and an open immersion j : X → X. Let X
be the p-adic completion of X. Then the two rigid spaces X

rig
and X = X

an

K are isomorphic, and Xrig is the

tube ]Xk[X of Xk in X . In particular, X is a strict neighborhood of Xrig in X
rig

. We denote by Conn(XK)
(resp. Conn(X )) the category of coherent OXK -modules with an integrable connection.

We associate to Man a j†O
X

rig -module M † = j†(Man) (2.1.1.1), endowed with the corresponding connec-
tion. In this setting, we have the following diagram (2.1.3):

(2.2.2.1) Conn(XK)
(−)an

//

(−)†

((
Conn(X )

j†

// Conn(j†O
X

rig)
|
Xrig // Conn(OXrig)

F - Isoc†(X/K) // Isoc††(X/K) �
� // Isoc†(X/K)

|
Xrig //

?�

OO

Isoc(X/K)
?�

OO

where the vertical arrows are fully faithful (2.1.3). When Xk \Xk is a divisor, the functor |Xrig is exact and
faithful ([21] 4.3.10).

2.2.3. In the following, we assume moreover that the connection on M † is overconvergent (see 2.1.3 for the
definition). The rigid cohomology RΓrig(Xk/K,M

†) (2.1.3.1) can be calculated by

(2.2.3.1) RΓrig(Xk/K,M
†)

∼−→ RΓ(X ,M † ⊗OX
Ω•

X ).

The adjoint morphism id→ j† (2.1.1.1) induces a canonical morphism on X
(2.2.3.2) Man ⊗OX

Ω•
X →M † ⊗OX

Ω•
X .

By composing with (2.2.1.1), we deduce a canonical morphism, denoted by ρM and called specialization
morphism for de Rham and rigid cohomologies:

(2.2.3.3) ρM : RΓdR(XK , (M,∇))→ RΓrig(Xk/K,M
†).

Let RΓ]Xk[ be the (derived) functor of local sections supported in the tube ]Xk[X on X (or on X ) ([20]
2.1.6). The rigid cohomology with compact supports and coefficients in M † is defined as:

RΓrig,c(Xk/K,M
†) = RΓ(X ,RΓ]Xk[(M

an ⊗ Ω•
X )).(2.2.3.4)

The canonical morphism

(2.2.3.5) RΓ]Xk[(M
an ⊗ Ω•

X )→Man ⊗ Ω•
X
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and (2.2.3.2) induce a morphism

(2.2.3.6) ιrig : RΓrig,c(Xk/K,M
†)→ RΓrig(Xk/K,M

†).

2.2.4. We recall the definition of de Rham cohomology with compact supports and coefficients in (M,∇)
and the cospecialization morphism, following ([14] 1.8 and [11] Appendix D.2).

Let I be the ideal sheaf of the reduced closed subscheme XK −XK in XK . Take a coherent OXK
-module

M extending M . The connection ∇ extends to a connection on the pro-OXK -module (InM)n ([11] D.2.12).

This allows us to define the de Rham pro-complex I•M ⊗O
XK

Ω•
XK

:= (InM)n ⊗ Ω•
XK

. The algebraic de

Rham cohomology with compact supports and coefficients in (M,∇), denoted by RΓdR,c(XK , (M,∇)), is
defined as ([11] D.2.16)

RΓdR,c(XK , (M,∇)) = RΓ(XK ,R lim←− I
•M ⊗ Ω•

XK
)(2.2.4.1)

≃ R lim←−RΓ(XK , I
•M ⊗ Ω•

XK
).

Let jK denote the open immersion XK → XK . There exists a canonical isomorphism on XK :

(2.2.4.2) j∗
K(R lim←−(I•M ⊗ Ω•

XK
))

∼−→M ⊗ Ω•
XK .

We deduces from its adjoint R lim←−(I•M ⊗ Ω•
XK

)→ RjK∗(M ⊗ Ω•
XK

) a canonical morphism:

(2.2.4.3) ιdR : RΓdR,c(XK , (M,∇))→ RΓdR(XK , (M,∇))

By the rigid GAGA, there are canonical isomorphisms

R lim←−RΓ(XK , I
•M ⊗ Ω•

XK
)

∼−→ R lim←−RΓ(X , I•M
an ⊗ Ω•

X
)

∼−→ RΓ(X ,R lim←− I
•M

an ⊗ Ω•
X

).(2.2.4.4)

We denote the right hand side by RΓan,c(X , (Man,∇an)). Let jan be the inclusion X → X . Similarly, there
exists a canonical morphism

(2.2.4.5) R lim←−(I•M
an ⊗ Ω•

X
)→ Rjan

∗ (Man ⊗ Ω•
X ),

which induces a morphism on analytic de Rham cohomologies

(2.2.4.6) ιan : RΓan,c(X , (Man,∇an))→ RΓan(X , (Man,∇an)).

Since (X , ](X −X)k[X) is an admissible covering of X , the canonical morphisms

(2.2.4.7) RΓ]Xk[(Rj
an
∗ (E))→ Rjan

∗ (RΓ]Xk[(E)), RΓ]Xk[(E)→ RΓ]Xk[Rj
an
∗ (jan ∗(E))

are isomorphic for any complex of abelian sheaves E on X (resp. X ). Then (2.2.4.5) induces an isomorphism

(2.2.4.8) RΓ]Xk[(R lim←−(I•M
an ⊗ Ω•

X
))

∼−→ RΓ]Xk[(Rj
an
∗ (Man ⊗ Ω•

X )).

The cospecialization morphism, denoted by ρc,M , is defined as the composition

ρc,M : RΓrig,c(Xk/K,M
†)

(2.2.4.7)≃ RΓ(X ,RΓ]Xk[Rj
an
∗ (Man ⊗ Ω•

X ))(2.2.4.9)

(2.2.4.8)≃ RΓ(X ,RΓ]Xk[(R lim←−(I•M
an ⊗ Ω•

X
)))

→ RΓ(X ,R lim←−(I•M
an ⊗ Ω•

X
)) (= RΓan,c(X , (Man,∇an)))

≃ RΓdR,c(XK , (M,∇)).

Proposition 2.2.5. With the above notation and assumption, the following diagram is commutative:

RΓrig,c(Xk/K,M
†)

ιrig //

ρc,M

��

RΓrig(Xk/K,M
†)

RΓdR,c(XK , (M,∇))
ιdR // RΓdR(XK , (M,∇)).

ρM

OO
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Proof. The algebraic de Rham cohomology with compact supports is isomorphic to the analytic one (2.2.4.4).
It suffices to show the following diagram is commutative

(2.2.5.1) RΓrig,c(Xk/K,M
†)

ιrig //

ρc,M

��

RΓrig(Xk/K,M
†)

RΓan,c(X , (Man,∇an))
ιan // RΓan(X , (Man,∇an))

OO

where right vertical arrow is induced by (2.2.3.2).
The morphism RΓrig,c(Xk/K,M

†)→ RΓan(X , (Man,∇an)) is induced by the composition on X :

RΓ]Xk[(R lim←−(I•M
an ⊗ Ω•

X
))→ R lim←−(I•M

an ⊗ Ω•
X

)
(2.2.4.5)−−−−−→ Rjan

∗ (Man ⊗ Ω•
X ).

The restriction of the above morphism to X coincides with the canonical morphism (2.2.3.5), which induces
ιrig (2.2.3.6). Then the commutativity of (2.2.5.1) follows. �

2.3. Six functors formalism for arithmetic D-modules. Rigid cohomology theory is a p-adic Weil
cohomology for a variety in characteristic p. Overconvergent F -isocrystals are “local systems” in the coeffi-
cients theory of rigid cohomology. However, the category of overconvergent F -isocrystals is not stable under
certain cohomological operators. Inspired by the theory of algebraic D-modules, Berthelot introduced the
notion of arithmetic D-modules [21, 22]. A six functor formalism for these coefficients is recently achieved
by Caro, Abe and etc.

We use the notation of arithmetic D-modules [22]. For a smooth formal R-scheme X and a divisor Z of
the special fiber of X, let OX,Q(†Z) (resp. D

†
X,Q(†Z)) denote the sheaf of rings of functions (resp. differential

operators) on X with singularities overconvergent along Z ([21] 4.2.4). Note that OX,Q(†Z) is isomorphic to
Sp∗(j†OXrig) for a frame (Xk,X) of Xk − Z (see 2.1.1) ([21] 4.3.2). We omit (†Z) if Z is empty. We denote
D

†
X,Q(†Z) by D

†
X,Q(Z) (or D

†
X,Q(∞)) for short.

2.3.1. Let us begin by recalling basic notions of p-adic coefficients used in [3]. Let L be an extension of K
in K and T = {k,R,K,L} the associated geometric base tuple ([3] 1.4.10, 2.4.14).

We will also work in the arithmetic setting (p-adic coefficients with Frobenius structure). For this purpose,
we need to assume moreover that there exists an automorphism L → L extending σ : K → K that we still
denote by σ, and that there exists a sequence of finite extensions Mn of K in L satisfying σ(Mn) ⊂Mn and
∪nMn = L. Then we obtain an arithmetic base tuple TF = {k,R,K,L, s, σ} ([3] 1.4.10, 2.4.14). We set
L0 = Lσ=1.

Let X be a k-scheme. There exists an L-linear (resp. L0-linear) triangulated category D(X/L) (resp.
D(X/LF )) relative to the geometric base tuple T (resp. arithmetic base tuple TF ). This category is denoted
by Db

hol(X/T) or Db
hol(X/L) (resp. Db

hol(X/TF ) or Db
hol(X/LF )) in ([3] 1.1.1, 2.1.16). When L = K and X is

quasi-projective, there exists a classical description of D(X/K) in terms of arithmetic D-modules introduced
by Berthelot [22]: If X → P is an immersion into a smooth proper formal R-scheme P, then D(X/K) is
a full subcategory of Db

coh(D†
P,Q) with objects satisfy certain finiteness condition called overholonomicity,

certain support condition, and can be equipped with some Frobenius structure 2 (cf. [3] 1.1.1, [5]).
The category D(X/L) (resp. D(X/LF )) is equipped with a t-structure, called holonomic t-structure, whose

heart is denoted by Hol(X/L) (resp. Hol(X/LF )), called category of holonomic modules. These categories
are analogue to the category of perverse sheaves in the ℓ-adic cohomology theory. The category Hol(X/L) is
Noetherian and Artinian ([3] 1.2.7). We denote by H∗ the cohomological functor for holonomic t-structure.

When X = Spec(k), there exists an equivalence of monoidal categories between D(X/L) and the derived
category of bounded complexes of L-vector spaces with finite dimensional cohomology.

2To define Frobenius structure on objects of Db
coh(D†

P,Q
) and the category D(X/L), we need to assume the existence of a

pair (s, σ) (as in 1.3.8). However, the category D(X/L) is independent of the choice of data (s, σ) up to equivalences ([3] 1.1.2).
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2.3.2. The six functor formalism for D(X/L) (resp. D(X/LF )) has been established recently. We refer to
[5, 6] and ([3] 2.3) for details and to ([3] 1.1.3) for a summary. Here we only collect some results needed in
the sequel.

Let f : X → Y be a morphism of k-schemes. For N ∈ {∅, F}, there exist triangulated functors

(2.3.2.1) f+, f! : D(X/LN)→ D(Y/LN), f+, f ! : D(Y/LN)→ D(X/LN),

such that (f+, f+), (f!, f
!) are adjoint pairs. These functors satisfy following properties:

(i) The category D(X/LN) is a closed symmetric monoidal category, namely it is equipped with a tensor
product functor ⊗ and the unit object LX = π+(L), where π : X → Spec(k) is the structure morphism
and L is the constant module in degree 0. The functor ⊗ admits a left adjoint functor H omX , called the
internal Hom. The functor f+ is monoidal.

(ii) There exists a duality functor DX = H omX(−, p!L) : D(X/LN)◦ → D(X/LN) ([3] 1.1.4). The
canonical morphism id→ DX ◦ DX is an isomorphism. We set (−)⊗̃(−) = DX(DX(−)⊗ DX(−)).

(iii) There exists a canonical morphism of functors f! → f+, which is an isomorphism if f is proper.
(iv) (Base change). Consider the following Cartesian diagram of k-schemes

(2.3.2.2) X ′ g′

//

f ′

��

X

f

��
Y ′ g // Y.

Then we have a canonical isomorphism g+f! ≃ f ′
! g

′+. When f is proper, this isomorphism is the base change
homomorphism defined by the adjointness of (f+, f+).

(v) (Berthelot-Kashiwara’s theorem). Let i be a closed immersion. Then i+ is exact and fully faithful.
The restriction of i! to the essential image of i+ is exact and is a quasi-inverse to i+ ([6] 1.3.2(iii)).

(vi) Let i be a closed immersion of k-schemes and j the open immersion defined its complement. There
exists a canonical isomorphism j+ ∼−→ j!. We have distinguished triangles ([3] 1.1.3(10), 2.2.9):

j!j
+ → id→ i+i

+ →, i+i
! → id→ j+j

+ →,
where the first and second morphisms are defined by adjunctions.

(vii) (Poincaré duality) We refer to ([3] 1.4.13) for the definition of Tate twist functor (−). Let f : X → Y

be a smooth morphism of relative dimension d. Then there exists a canonical isomorphism ϕ : f+(d)[2d]
∼−→ f !

([3] 1.5.13). Moreover, the functors f+[d], f ![−d] are exact.
(viii) There exists a canonical equivalence of categories D(X/LN) ≃ Db(Hol(X/LN)) ([5], [3] 2.2.26).
(ix) Let X1, X2 be two k-schemes and pi : X1 × X2 → Xi the projection for i = 1, 2. There exists a

canonical isomorphism of functors p+
1 (−)⊗p+

2 (−) ≃ p!
1(−)⊗̃p!

2(−) (ii), denoted by −⊠− and called external
tensor product. This functor is exact ([6] 1.3.3).

Remark 2.3.3. (i) If L is a finite extension of K, an object of Hol(X/L) is defined as an object of Hol(X/K)
equipped with an L-structure ([3] 1.4.1). In general, Abe used the 2-inductive limit method of Deligne to
construct D(X/L) ([3] 2.4.14). If L′ is an algebraic extension of L in K, we have an extension of scalars
functor ιL′/L : D(X/L)→ D(X/L′), which is exact and commutes with cohomological functors.

(ii) The category D(X/T) does not depend on the choice of the base field k under certain conditions.
More precisely, if T′ = {k′, R′,K ′, L} is another geometric base tuple over T. Then there exists a canonical
equivalence ([3] 1.4.11):

D(X ⊗k k′/T′)
∼−→ D(X/T),

which commutes with cohomological functors.
(iii) Let TF be an arithmetic base tuple. The s-th Frobenius morphism FX : X → X induces a σ-semi-

linear equivalence of categories F ∗
X : D(X/L)

∼−→ D(X/L) commuting with cohomological functors, called
(s-th) Frobenius pullback ([3] 1.1.3 lemma). An object of Hol(X/LF ) is an object E of Hol(X/L) equipped
with a(n s-th) Frobenius structure ϕ : F ∗

X(E )
∼−→ E (cf. [3] 1.4).
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2.3.4. Let X be a smooth k-scheme of dimension d : π0(X)→ N. There exists a full subcategory Sm(X/LN)
of Hol(X/LN)[−d] ⊂ D(X/L) consisting of smooth objects ([3] 1.1.3(12) and 2.4.15). In general, we say a
complex M ∈ D(X/LN) is smooth if Hi(M )[−d] belongs to Sm(X/LN) for every i.

When L = K, there exists an equivalence S̃p∗ between Sm(X/K) (resp. Sm(X/KF )) and Isoc††(X/K)
(resp. F - Isoc†(X/K)) (2.1.4). If X admits a smooth compactification X with a smooth lifting X to Spf(R),

this equivalence is induced by the specialisation morphism Sp∗ : X
rig → X:

(2.3.4.1) S̃p∗ = Sp∗(−d)[−d] : Isoc††(X/K) (resp. F - Isoc†(X/K))
∼−→ Sm(X/KN) ⊂ Db

hol(X/KN).

In the following, we identify these two categories by S̃p∗ and we use alternatively these two notations.
Let f : X → Y be a morphism between smooth k-schemes. Via S̃p∗, we can identify the functor f+ and

the pullback functor of overconvergent (F -)isocrystals f∗ ([3] 2.4.15). If d denotes dim(X) − dim(Y ), for
any object M of Sm(X/LN), there exists a canonical isomorphism:

(2.3.4.2) f !(M) ≃ f+(M)(d)[2d].

2.3.5. Let X be a k-scheme. There exists a constructible t-structure (c-t-structure in short) on D(X/L) (cf.
[3] 1.3, 2.2.23). When X = Spec(k), the constructible t-structure coincides with the holonomic one (2.3.2).
If X a smooth k-scheme, any object of Sm(X/L) is constructible.

The heart of c-t-structure is denoted by Con(X), called the category of constructible modules, and is
analogue to the category of constructible sheaves in the ℓ-adic theory. The cohomology functor of c-t-
structure is denoted by cH∗.

Let f : X → Y be a morphism between k-schemes. The functor f+ is c-t-exact and f+ is left c-t-exact.
If i is a closed immersion, then i+ is c-t-exact. If j is an open immersion, then j! is c-t-exact ([3] 1.3.4).

A constructible module M on X is zero if and only if i+xM = 0 for any closed point ix : x → X ([3]
1.3.7).

2.3.6. In the end, we present a generalization of the specialization morphism (2.2.3.3) in a relative situation
using the direct image of arithmetic D-modules.

Let f : X = Spec(B) → S = Spec(A) be a smooth morphism of affine smooth R-schemes of relative
dimension d and let (M,∇) be a coherent OXK -module endowed with an integrable connection relative to
K. Consider M as a DXK -module. The direct image fdR

+ (M) of D-modules is calculated by the relative de
Rham complex M ⊗ Ω•

X/S . Since f is affine, the above complex is calculated by

(2.3.6.1) Γ(S, fdR
+ (M)) ≃ DRB/A(M,∇) = M →M ⊗B Ω1

B/A → · · · ,
where we denote abusively by M the global section Γ(XK ,M).

2.3.7. We assume moreover that f admits a good compactification, i.e. f can be extended to a smooth
morphism f : X → S of smooth projective R-schemes X,S such that Xk −Xk, Sk − Sk are ample divisors.
We keep the notation of 2.2.2 and assume that M † = j†(Man) is overconvergent as in 2.2.3. We denote
abusively the D

†

X,Q
(∞)-module Sp∗(M †) (2.3.4) by M †. The direct image of M † along fk : Xk → Sk is

calculated by a relative de Rham complex:

fk,+(M †)
∼−→ Rfk,∗(Sp∗(M † ⊗OX

Ω•
X/S)).(2.3.7.1)

The above complex is a complex of overholonomic (and hence coherent) D
†

S,Q
(∞)-modules.

We set A† = Γ(S,O
S,Q(†∞)), B† = Γ(X,O

X,Q(†∞)) and D†

S
(∞) = Γ(S,D†

S,Q
(∞)) (1.3.8). By D†-

affinity ([53] 5.3.3), the complex (2.3.7.1) is equivalent to a complex of coherent D†

S
(∞)-modules:

RΓ(S, fk,+(M †)) ≃ RΓ(X, Sp∗(M † ⊗OX
Ω•

X/S))

≃ (M ⊗BK B†)⊗B Ω•
B/A.
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We denote the complex in the second line by DR†
B/A(M †). Note that this complex is A†-linear.

If we set DSK = Γ(SK ,DSK ), there exists a canonical DSK -linear morphism, called the (relative) special-
isation morphism

(2.3.7.2) DRB/A(M,∇)→ DR†
B/A(M †).

2.4. Complements on the cohomology of arithmetic D-modules.

2.4.1. Let f : X → Spec(k) be a k-scheme and F an object of D(X/L). We set

(2.4.1.1) H∗(X,F ) = H∗f+(F ), H∗
c(X,F ) = H∗f!(F ),

and call them cohomology groups of F , compact support cohomology groups of F , respectively. Note that
they are finite dimensional L-vector spaces. If F is an object of D(X/LF ), then above cohomology groups
are equipped with a Frobenius structure. If there is no confusion, we simply write H∗(X,L) for H∗(X,LX).
We collect some properties that we will use in the following:

(i) If X has dimension≤ d, then for any M ∈ Con(X), the compact support cohomology groups Hi
c(X,M )

are concentrated in degrees 0 ≤ i ≤ 2d ([3] 1.3.8).
(ii) Suppose X admits a smooth compactification X such that X possesses a smooth lifting over R and

that X−X is a divisor. Given an object M of Isoc††(X/K) (resp. F - Isoc†(X/K)) (2.1.4), we have canonical
isomorphisms ([1] 5.9):

(2.4.1.2) H∗
rig(X,M) ≃ H∗(X, S̃p∗(M)), H∗

rig,c(X,M) ≃ H∗
c(X, S̃p∗(M)),

as objects of VecK (resp. F - VecK). Via (2.4.1.2), the canonical morphism H∗
c(X, S̃p∗(M))→ H∗(X, S̃p∗(M))

induced by f! → f+ is compatible with ιrig (2.2.3.6).
In particular, we have H0(An, L) ≃ L, Hi(An, L) = 0 for i 6= 0 and H2n(An, L) ≃ L, Hi(An, L) = 0 for

i 6= 2n.
(iii) If X is smooth over k, then the dimension of H0(X,LX) is equal to the number of geometrically

connected components of X . The Frobenius acts on H0(X,LX) as identity.

2.4.2. Let Y be a closed subscheme of X and F an object of D(X/L). In view of the distinguished triangle
2.3.2(iv), there exists a long exact sequence of cohomology groups:

(2.4.2.1) · · · ∂−→ Hi
c(X − Y,F )→ Hi

c(X,F )→ Hi
c(Y,F )

∂−→ · · ·
In general, suppose that there exists a finite filtration of closed subschemes {Xi}i∈Z of X , with closed

immersions Xi+1 →֒ Xi such that Xi = X for i small enough and Xi = ∅ for i big enough. Then we deduce
a spectral sequence (cf. [37] *2.5)

(2.4.2.2) Eij1 = Hi+j
c (Xi −Xi+1,F )⇒ Hi+j

c (X,F ).

Corollary 2.4.3. Let d be the dimension of X. Then the dimension of the top degree compact support
cohomology H2d

c (X,LX) is equal to the number of geometrically irreducible components of X. The Frobenius

on H2d
c (X,LX) acts by multiplication by qd.

Proof. We denote by Xsm (resp. Xsing) the smooth (resp. singular) locus of X . Then the assertion follows
from the long exact sequence (2.4.2.1) for (Xsm, Xsing, X), Poincaré duality and 2.4.1(iii). �

We show an analogue of ([16] 4.2.5) for arithmetic D-modules.

Proposition 2.4.4. Let f : X → Y be a smooth morphism of k-scheme of relative dimension d with geo-
metrically connected fibers. Then the functor f+[d] induces a fully faithful functor Hol(Y/LN)→ Hol(X/LN)
for N ∈ {∅, F}.
Lemma 2.4.5. Let M be an object of D≤0(X/L) and N an object of D≥0(X/L). Then H omX(M ,N )
belongs to c D≥0(X/L) (2.3.5).
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Proof. We prove by induction on the dimension of X . The assertion is clear if dimX = 0. To prove the
assertion, we can reduce to the case where M ,N ∈ Hol(X/L). Then there exists a dense smooth open
subscheme j : U → X such that M |U ,N |U are smooth. Let i : Z → X be the complement of U and
consider the triangle

i+i
!
H omX(M ,N )→H omX(M ,N )→ j+j

+
H omX(M ,N )→ .

Since i!H omX(M ,N ) ≃H omX(i+M , i!N ) ([3] 1.1.5), the first term belongs to c D≥0(X/L) by induction
hypotheses. Note that H omU (M |U ,N |U ) ≃ DU (M |U⊗DU (N |U )) is a smooth module and of constructible
degree 0. Then j+j

+H omX(M ,N ) belongs to c D≥0(X/L) and the assertion follows. �

2.4.6. Proof of proposition 2.4.4. Since Frobenius pullback induces an equivalence of categories, it suffices
to show the assertion for Hol(−/L). Let M ,N be two objects of Hol(Y/L). Since f is smooth, we deduce
from f !H omY (M ,N ) ≃H omX(f+M , f !N ) ([3] 1.1.5) an isomorphism

f+
H omY (M ,N )

∼−→H omX(f+
M , f+

N ).

By applying cH0f+
cH0(−) to the above isomorphism and lemma 2.4.5, we have

(2.4.6.1) cH0f+f
+

(
cH0(H omY (M ,N ))

) ∼−→ cH0f+
cH0(H omX(f+

M [d], f+
N [d])).

We claim that for any constructible module F on Y , there is a canonical isomorphism

(2.4.6.2) F
∼−→ cH0f+f

+
F .

Then, by 2.4.5, the proposition follows by applying H0(Y,−) to the composition of (2.4.6.1) and (2.4.6.2).
By smooth base change and 2.3.5, to prove (2.4.6.2), we can reduce to the case where Y is a point. After

extending the scalar L and the base field k (2.3.3), we may assume moreover that Y = Spec(k). In this case,
the isomorphism (2.4.6.2) follows from 2.4.1(iii). �

2.5. Equivariant holonomic D-modules. In this subsection, we study the notion of equivariant holonomic
D-modules over a k-scheme (or an ind-scheme). We write simply D(X) (resp. Hol(X)) for D(X/L) or
D(X/LF ) (resp. Hol(X/L) or Hol(X/LF )).

2.5.1. Let X → S be a morphism of k-schemes, H a smooth affine group scheme over S with geometrically
connected fibers and act : H ×S X → X an action of H on X . We denote by pr2 : H ×S X → X the
projection. We define the category HolH(X) of H-equivariant holonomic modules on X as follow. An object
of HolH(X) is a pair consisting of a holonomic module M on X and an isomorphism θ : act+(M )

∼−→ pr+
2 (M )

in D(H ×S X), satisfying:

(i) e+(θ) = id, where e : X → H ×S X is induced by the unit section of H ;
(ii) a cocycle condition on H ×S H ×S X .

A morphism between (M1, θ1) and (M2, θ2) is a morphism ϕ : M1 →M2 of Hol(X) such that

(2.5.1.1) pr+
2 (ϕ) ◦ θ1 ≃ θ2 ◦ act+(ϕ).

It is clear that HolH(X) is an abelian subcategory of Hol(H).
Suppose that [X/H ] is represented by a separated scheme of finite type X over S. By smooth descent of

holonomic modules ([3] 2.1.13), the pullback functor along the canonical morphism q : X → X induces an
equivalence of categories:

(2.5.1.2) q+[dH ] : Hol(X)
∼−→ HolH(X).

Lemma 2.5.2. The canonical functor HolH(X)→ Hol(X) is fully faithful.

Proof. Given two objects (M1, θ1), (M2, θ2) of HolH(X) and a morphism ϕ : M1 → M2 of Hol(X), one
need to show (2.5.1.1)

θ2 ◦ act+(ϕ) ◦ (θ1)−1 ≃ pr+
2 (ϕ).

By proposition 2.4.4, pr+
2 is fully faithful. To show the above isomorphism, it suffices to show e+(θ−1

2 ◦
act+(ϕ) ◦ θ1) ≃ e+(pr+

2 (ϕ)), which follows from 2.5.1(i). �
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Lemma 2.5.3. Let H1 ⊂ H be a closed normal subgroup scheme over S. Suppose that H/H1, H1 are smooth
over S and that the action of H on X factors through H/H1. Then, the canonical functor

(2.5.3.1) HolH/H1
(X)→ HolH(X)

is an equivalence of categories.

Proof. The essential surjectivity follows from smooth descent ([3] 2.1.13). The full faithfulness follows from
2.5.2. �

2.5.4. Keep the notation of 2.5.1. Let Y be a separated S-scheme of finite type and ̟ : E → Y an H-torsor
over S with trivial action of H on Y . We denote by Y ×̃SX the quotient of E ×S X by H , where H acts on
E ×S X diagonally.

Let M be a holonomic module on Y and N anH-equivariant holonomic module onX . Assume that M⊠S

N is a holonomic module on Y ×SX (Note that it is true if the base S = Spec(k)). Then (̟+M [dimH ])⊠S
N is holonomic on E ×S X and is H-equivariant by construction. By (2.5.1.2), it descents to a holonomic
module on Y ×̃SX , denoted by M ⊠̃SN and called the twisted external product of M and N .

2.5.5. We say an fpqc sheaf X on the category of k-algebras is a (strict) ind-scheme over k if there exists
an isomorphism of fpqc-sheaves X ≃ lim−→i∈I

Xi for a filtered inductive system (Xi)i∈I of k-schemes, whose
transition morphisms are closed immersion. The inductive system (Xi)i∈I is called an ind-presentation of
X . We have following properties:

(i) If Z is a k-scheme and u : Z → X is a closed subfunctor, then there exists an index i such that u
factors through Z → Xi.

(ii) If X ≃ lim−→j∈J
X ′
j is another ind-presentation, the for any i, there exists an index j such that Xi is a

closed subscheme of X ′
j and vice versa.

Given an ind-scheme X = lim−→i∈I
Xi, we denote by Xred = lim−→i∈I

Xi,red the reduced ind-subscheme of X .
For a transition morphism ϕ : Xi → Xj , the functor ϕ+ : D(Xi)→ D(Xj) is exact and fully faithful. We

define a triangulated category D(X ) as the 2-inductive limit

D(X ) = lim−→
i∈I

D(Xi).

The definition is independent of the choice of a ind-presentation of X . Since ϕ+ is exact, D(X ) is also
equipped with a t-structure, whose heart is denoted by Hol(X ). Note that Hol(X ) coincides with the full
abelian subcategory lim−→i∈I

Hol(Xi) of D(X ).
Given a morphism f = (fi)i∈I : X = lim−→Xi → S to a k-scheme S, the cohomology functors fi,!’s and

fi,+’s allow us to define f!, f+ : D(X )→ D(S).

2.5.6. Let X = lim−→i∈I
Xi be an ind-scheme and f : X → S a morphism to a k-scheme. Let (Hj)j∈J be a

projective system of smooth affine S-group schemes with geometrically connected fibers, whose transition
morphisms are quotient. We set H = lim←−j∈J Hj its projective limit, which is an affine group scheme over

S. Assume that there exists an action of H on f : X → S such that it stabilizes each subfunctor f |Xi and
that the H-action factors through a quotient Hji on Xi → S for each i ∈ I. Then we define HolH(Xi) to
be HolHji (Xi). By lemma 2.5.3, the category HolH(Xi) is independent of the choice of Hji up to canonical
equivalences. Therefore, for i ≤ j, we have a fully faithful functor HolH(Xi) → HolH(Xj). We define the
category HolH(X ) of H-equivariant holonomic modules on X as the inductive limit:

HolH(X ) = lim−→
i∈I

HolH(Xi).

Let Y = lim−→i∈I
Yi an ind-scheme over S and ̟ : E → Y an H-torsor. We can define an ind-scheme

Y×̃SX as follows. For i, l ∈ I, we denote by El,ji the Hji-torsor E|Yl ×H Hji → Yl and by Yl×̃SXi =
El,ji×SXi/Hji the twisted product (2.5.4). For a surjection Hj′ ։ Hji , there exists a canonical isomorphism
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El,j′ ×S Xi/Hj′
∼−→ El,ji ×S Xi/Hji . Then this allows us to represent the fpqc sheaf Y×̃SX as an inductive

limit of Yl×̃SXi.
Let M be an object of Hol(Y) supported in Yl and N an object of HolH(X ) supported in Xi. Assume

that M ⊠S N is a holonomic module on Y ×S X . Then we can define an object M ⊠̃SN in Hol(Yl×̃SXi)
(2.5.4) and then in Hol(Y×̃SX ). The construction is independent of the choice of i, l ∈ I.

2.6. Intermediate extension and the weight theory.

2.6.1. Let u : Y → X be a locally closed immersion. Then the functor u+ (resp. u!) is left exact (resp. right
exact) ([6] 1.3.13). For N ∈ {∅, F} and E ∈ Hol(Y/LN), we consider the homomorphism θ0

u,E : H0(u!E ) →
H0(u+E ) and we define u!+(E ) to be ([6] 1.4.1)

(2.6.1.1) u!+(E ) = Im(θ0
u,E : H0(u!E )→ H0(u+E )).

This defines a functor u!+ : Hol(Y/LN)→ Hol(X/LN), called the intermediate extension functor. We recall
the following results and refer to ([6] §1.4) for general properties of this functor:

(i) ([6] 1.4.7) Suppose E is irreducible. Then, u!+(E ) is the unique irreducible subobject of H0(u+E )
(resp. irreducible quotient of H0(u!E )) in Hol(X/LN).

(ii) ([6] 1.4.9) Let F be an irreducible object of Hol(X/LN). Then there exists a locally closed immersion
u : Y → X from a smooth k-scheme Y and a smooth holonomic module E on Y such that F ≃ u!+(E ).

Corollary 2.6.2. Let j : U → X be an open subscheme of X and i : Z → X its complement.
(i) Given a holonomic module E on U , j!+(E ) is the unique extension F of E to Hol(X/LN) such that

i+F ∈ D≤−1(Z/LN) and that i!F ∈ D≥1(Z/LN).
(ii) If X is smooth and F is a smooth holonomic module on X, then j!+(F |U ) ≃ F .

Proof. (i) Since j!, i
+ are right exact ([6] 1.3.2), H0i+(H0(j!(E ))) = 0. By applying i+ to 0→ Ker(θ0

j,E )→
H0(j!(E ))→ j!+(E )→ 0, we obtain i+(j!+(E )) ∈ D≤−1(Z/L). We prove i!F ∈ D≥1(Z/L) in a dual way.

Conversely, given such an extension F , we can prove that the adjunction morphism H0j!(E )→ F (resp.
F → H0j+(E )) is surjective (resp. injective) by the Berthelot-Kashiwara theorem. The assertion follows.

(ii) The intermediate extension is stable under composition ([6] 1.4.5). Then we can reduce to the case
where Z is smooth over k. In this case, assertion (ii) follows from (i) and (2.3.4.2). �

2.6.3. We briefly recall the theory of weights for holonomic F -complexes developed by Abe and Caro [6].
In the rest of this subsection, we assume k has q = ps elements and we consider the arithmetic base tuple

TF = {k,R,K,L, s, σ = id} (2.3.1). We fix an isomorphism ι : K ≃ C. We refer to ([6] 2.2.2, [3] 2.2.30) for
the notion of being ι-mixed (resp. ι-mixed of weight ≤ w, ι-mixed of weight ≥ w, ι-pure) for M ∈ D(X/LF ).

The weight behaves like the one in the ℓ-adic theory:
(i) ([6] 4.1.3) The six operations preserve weights. More precisely, given a morphism f : X → Y of

k-schemes, f+, f
! send ι-mixed F -complexes of weight ≥ w to those of weight ≥ w, f!, f

+ send ι-mixed
F -complexes of weight ≤ w to those of weight ≤ w. The dual functor DX exchanges ι-mixed F -complexes
of weight ≤ w to ≥ w and ⊗ sends ι-mixed F -complexes of weight (≤ w,≤ w′) to ≤ w + w′.

(ii) ([6] 4.2.4) Intermediate extension functor of an immersion preserves pure F -complexes and weights.
Moreover, we have a decomposition theorem for pure holonomic F -module.

Theorem 2.6.4 ([6] 4.3.1, 4.3.6). Let X be a k-scheme.
(i) An ι-pure F -holonomic module E on X is semisimple in the category Hol(X/L) (not in Hol(X/LF )).
(ii) An ι-pure F -holonomic complex F is isomorphic, in D(X/L) to ⊕n∈ZHn(F )[n].

The original form of ([6] 4.3.1, 4.3.6) states the decomposition in the category of overholonomic modules
(resp. complexes) over X . We remark that the same argument shows the decomposition in the category
Hol(X/L) (resp. D(X/L)).
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2.7. Nearby and vanishing cycles. In a recent preprint [4], Abe formulated the nearby and vanishing
cycle functors for holonomic arithmetic D-modules, based on the unipotent nearby and vanishing cycle
functors introduced by himself and Caro in [5]. We briefly recall these constructions in this subsection.

We write simply D(X) for D(X/L) or D(X/LF ). The construction are parallel in two cases. When
D(X) = D(X/L), the Tate twist (n) denotes the identity functor.

2.7.1. Let f : X → A1
k be a morphism of k-schemes. We denote by j : U = f−1(Gm) → X the open

immersion and by i : X0 = X−U → X its complement. Following Beilinson [15], Abe and Caro constructed
the unipotent nearby and vanishing cycle functors ([5], §2)

(2.7.1.1) Ψun
f : Hol(U)→ Hol(X0), Φun

f : Hol(X)→ Hol(X0).

We briefly recall the definition of Ψun
f . We denote O

P̂1
R
,Q

(†{0,∞}) simply by OGm (see 1.3.8). For n ≥ 0,

we define a free OGm-module Logn of rank n

Logn = ⊕n−1
i=0 OGm · log[i],

generated by the symbols log[i]. There exists a unique D
†

P̂1
R
,Q

({0,∞})-module structure on Logn defined for

i ≥ 0 and g ∈ OGm by

∇∂t(g · log[i]) = ∂t(g) · log[i] +
g

t
· log[i−1],

where t is the local coordinate of Gm and log[j] = 0 for j < 0. There exists a canonical Frobenius structure
on Logn sending log[i] to qi log[i]. This defines an overconvergent F -isocrystal on Gm and then a smooth
object of Hol(Gm/KF ). We still denote by Logn the extension of scalars ιL/K(Logn) in Hol(Gm).

We set Lognf = f+ Logn ∈ Hol(U) and define for F ∈ Hol(U) 3:

(2.7.1.2) Ψun
f (F ) = lim−→

n≥0

Ker(j!(F ⊗ Lognf )→ j+(F ⊗ Lognf )).

This limit is representable in Hol(X0) by ([5] lemma 2.4).
The functors Ψun

f ,Φ
un
f are exact ([5] 2.7) and extend to triangulated categories. There exists a distin-

guished triangle i+[−1]→ Ψun
f → Φun

f
+1−−→.

Proposition 2.7.2 ([5] 2.5). There exist canonical isomorphisms:

(2.7.2.1) (DX0 ◦Ψun
f )(1) ≃ Ψun

f ◦ DU , DX0 ◦ Φun
f ≃ Φun

f ◦ DX .
2.7.3. To define the full nearby/vanishing cycle functors of a morphism over a henselian trait, one need
to extend the definition of holonomic arithmetic D-modules to a larger class of schemes, which are closed
under henselization. We denote by Pro(k) the full subcategory of Noetherian schemes over k which can be
representable by a projective limit of a projective system of k-schemes whose transition morphisms are affine
and étale. In the rest of this subsection, we will work with schemes in the category Pro(k).

Given a morphism of finite type X → S, if S is an object of Pro(k) then so is X . The category Pro(k)
is closed under henselization (resp. strict henselization) ([4] 1.3).

Let X = lim←−i∈I Xi be an object of Pro(k) with a representation by k-schemes Xi. For each transition

morphism ϕ : Xi → Xj (which is affine and étale), we have a canonical isomorphism ϕ+ ≃ ϕ! : D(Xj) →
D(Xi). We define a triangulated category D(X) of arithmetic D-modules on X as an inductive limit D(X) :=
lim−→i∈I◦

D(Xi). Since ϕ+ is exact, D(X) is equipped with a t-structure whose heart is denoted by Hol(X).
Moreover, we can extend the definition of cohomological functors (2.3.2.1) to D(X) (cf. [4] 1.4).

2.7.4. Let (S, s, η) be a strict henselian trait in Pro(k) and f : X → S a morphism of finite type. With
above preparations, we can define the unipotent nearby and vanishing cycles functors for f (cf. [4] 1.7,1.8)

(2.7.4.1) Ψun
f ,Φ

un
f : Hol(X)→ Hol(Xs).

3We adopt the definition of [4], which is different from that of [5] by a Tate twist.



BESSEL F -ISOCRYSTALS FOR REDUCTIVE GROUPS 21

We denote by Hen(S) the category of henselian traits over S which is generically étale over S. Given an
object h : S′ → S of Hen(S), we denote abusively by h the canonical morphism XS′ → X , by hs : Xs′

∼−→ Xs

the isomorphism on the special fibers and by f ′ : XS′ → S′ the base change of f by h.
Using (2.7.4.1), the full nearby and vanishing cycle can be defined as (cf. [4] 1.9):

(2.7.4.2) Ψf = lim−→
(S′,h)∈Hen(S)

hs+ ◦Ψun
f ′ ◦ h+, Φf = lim−→

(S′,h)∈Hen(S)

hs+ ◦ Φun
f ′ ◦ h+.

By [4] 2.2, they are well-defined functors

Ψf ,Φf : Hol(X)→ Hol(Xs).

2.8. Universal local acyclicity.

2.8.1. Following Braverman-Gaitsgory ([25], 5.1), we propose a notion of (universal) local acyclicity for
arithmetic D-modules with respect to a morphism to a smooth target.

For a smooth k-scheme X , we denote by dX : π0(X) → N the dimension of X . Let g : X1 → X2 be a
morphism of k-schemes and F ,F ′ two objects of D(X2). We consider the composition

g!(g
+(F ) ⊗ g!(F ′)) ≃ F ⊗ g!(g

!(F ′))→ F ⊗F
′

and its adjunction:

(2.8.1.1) g+(F ) ⊗ g!(F ′)→ g!(F ⊗F
′).

Now let S be a smooth k-scheme and f : X → S a morphism of k-schemes. We set X1 = X , X2 = X×S,
F ′ = LX2 and take g to be the graph of f . By Poincaré duality, we have LX1 (−dS)[−2dS ]

∼−→ g!(LX2 ).
Then, we obtain a canonical morphism

(2.8.1.2) g+(F )→ g!(F )(dS)[2dS ].

By taking F to be M ⊠ N , we obtain a canonical morphism (2.3.2(ix))

(2.8.1.3) M ⊗ f+(N )→ (M ⊗̃f !(N ))(dS)[2dS ].

Definition 2.8.2. Let S be a smooth k-scheme and f : X → S a morphism of k-schemes. We say that
an object M of D(X) is locally acyclic (LA) with respect to f , if the morphism (2.8.1.3) is an isomorphism
for any object N of D(S). We say that M is universally locally acyclic (ULA) with respect to f , if for any
morphism of smooth k-schemes S′ → S, the +-inverse image of M to X×S S′ is locally acyclic with respect
to X ×S S′ → S′.

Proposition 2.8.3. Keep the notation of 2.8.2 and let M be an object of D(X).
(i) Any object M of D(X) is ULA with respect to the structure morphism X → Spec(k).
(ii) Let g : Y → X be a smooth (resp. smooth surjective) morphism. Then g+(M ) on Y is LA with

respect to f ◦ g if (resp. if and only if) M is LA with respect to f .
(iii) If g : S → S′ is a smooth morphism of smooth k-schemes and M is LA with respect to a morphism

f : X → S, then M is LA with respect to g ◦ f .
(iv) Let h : Y → S be a morphism of finite type and g : X → Y a proper S-morphism (resp. a closed

immersion). Then g+(M ) is LA with respect to h if (resp. if and only if) M is LA with respect to f .
(v) If M is LA with respect to f , then so is its dual DX(M ).

Proof. (i) Let S be a smooth k-scheme and N an object of D(S). We need to show that the canonical
morphism

(idX ×∆)+(M ⊠ p+
2 (N ))→ (idX ×∆)!(M ⊠ p+

2 (N ))(dS)[2dS ]

is an isomorphism, where ∆ : S → S × S is the diagonal map and p2 : S × S → S is the projection in the
second component. Then we reduce to show that the canonical morphism

N → ∆!(p+
2 (N ))(2dS)[2dS ]

is an isomorphism. After taking dual functor, the assertion follows from ([3] 1.5.14).
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Assertions (ii) and (iii) follow from (2.3.2(vii)) and the smooth descent for D(X) ([3] 2.1.13).
Assertion (iv) follows from the projection formula ([3] 1.1.3(9)) and the Berthelot-Kashiwara theorem.
If we apply the dual functor DX to the morphism (2.8.1.3), then we obtain the morphism (2.8.1.3)

DX(M )⊗ f+(DS(N ))→ (DX(M )⊗̃f !(DS(N )))(dS)[2dS ],

for the pair (DX(M ),DS(N )). Then assertion (v) follows. �

Remark 2.8.4. Let S be a smooth k-scheme and f : X → S a morphism from an ind-scheme to S. In view
of proposition 2.8.3(iv), we can define the notion of LA (resp. ULA) with respect to f for objects of D(X ).

Proposition 2.8.5. Keep the notation of 2.8.2 and let D be a smooth effective divisor in S, i : Z =
f−1(D)→ X the closed immersion and j : U → X its complement. Let M be an object of D(X) such that
it is LA with respect to f and that M |U is holonomic.

(i) There exists canonical isomorphisms:

(2.8.5.1) M ≃ j!+(M |U ), i+M [−1]
∼−→ i!M (1)[1].

In particular, M and i+M [−1] are holonomic.
(ii) The holonomic module i+M [−1] is LA with respect to f ◦ i and f |Z : Z → D.

Proof. (i) By étale descent for holonomic modules ([3] 2.1.13), we may assume that there is a smooth
morphism g : S → A1 such that D = g−1(0). By proposition 2.8.3(iii), M is LA with respect to g ◦ f : X →
A1. Then we can reduce to the case f : X → A1 and Z = f−1(0).

We will show that Φun
f (M ) = 0, i.e. the canonical morphism

(2.8.5.2) i+M [−1]→ Ψun
f (M )

is an isomorphism.
We denote by j : Gm → A1 be the canonical morphism and abusively by f the restriction f |U : U → Gm.

By the projection formula, we have

j!(M |U ⊗ f+ Logn)
∼−→M ⊗ j!f

+ Logn ≃M ⊗ f+j! Logn .

On the other hand, by the projection formula and the LA property of M , we have

j+(M |U ⊗ (f+ Logn))
∼−→ j+(M |U ⊗̃(f ! Logn))(dX)[2dX ]
∼−→ M ⊗̃(j+f

! Logn)(dX)[2dX ]

≃ M ⊗̃(f !j+ Logn)(dX)[2dX ]

≃ M ⊗ (f+j+ Logn).

Via the above isomorphisms, the canonical morphism j!(M |U ⊗ (f+ Logn)) → j+(M |U ⊗ (f+ Logn))
coincides with the canonical morphism

M ⊗ (f+(j! Logn → j+ Logn)).

To prove that (2.8.5.2) is an isomorphism, we can reduce to the case where f is the identity map of A1

and M is the constant module LA1 [1] on A1. If we denote by Nn the action induced by t∂t on the fiber
(Logn)0 of Logn at 0 (called residue morphism in [6] 3.2.11), then Ker(j!(Logn)→ j+(Logn)) is isomorphic
to Ker(Nn) (cf. [5] proof of lemma 2.4). In this case, (2.8.5.2) is an isomorphism.

In particular i+M [−1] is holonomic. By propositions 2.7.2 and 2.8.3(v), the second isomorphism of
(2.8.5.1) follows from (2.8.5.2):

(2.8.5.3) Ψun
f (M ) ≃ DX0Ψun

f (DX(M ))(1)
∼−→ i!M (1)[1].

Then we deduce M ≃ j!+(M |U ) by (2.6.2(i)).
Assertion (ii) follows from the six functor formalism. We left the proof to readers. �
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Corollary 2.8.6. If an object M of D(X) is ULA with respect to f , then, for any strict henselian trait T
and any morphism g : T → S, we have Φun

fT
(M |XT ) = 0 and ΦfT (M |XT ) = 0, where fT : XT → T is the

base change of f by g.

Proof. By definition, it suffices to show that the unipotent vanishing cycle Φun
fT

(M |XT ) vanishes.
By ([54] 8.8.2), there exists a smooth k-scheme S′, a smooth effective divisor D of S′ with generic point

ηD and a morphism h : S′ → S such that the strict henselization of S′ at ηD is isomorphic to T and that
g is induced by h. We denote by fS′ : XS′ → S′ the base change of f by h. After shrinking S′, we may
assume that there exists a smooth morphism π : S′ → A1

k with D = π−1(0).
By definition (cf. [4] 1.7-1.8), we reduce to show that Φun

π◦fS′
(M |XS′ ) = 0. But this follows from proposi-

tion 2.8.3(iii) and the proof of (2.8.5.2). Then the assertion follows. �

Corollary 2.8.7. Let X be a smooth k-scheme. If an object M of D(X) is ULA with respect to the identity
morphism, then each constructible cohomology module cHi(M ) is smooth (resp. each cohomology module
Hi(M ) is smooth).

Proof. When M is constructible, it follows from 2.8.6 and ([4] 3.8). We prove the general case by induction
on the cohomological amplitude of M . �

2.8.8. In 4.1, we will use the notion of holonomic modules over a stack and apply cohomological functors of a
schematic morphism of algebraic stacks, that we briefly explain in the following. Let X be an algebraic stack
of finite type over k. We refer to ([3] 2.1.16) for the definition of category Hol(X) of holonomic modules on
X and the category D(X) (corresponds to the category Db

hol(X) in loc. cit). The dual functor DX is defined
in ([3] 2.2). Let f : X→ Y be a schematic morphism, Y• → Y a simplicial algebraic space presentation. By
pullback, we obtain a simplicial presentation X• → X and a Cartesian morphisms f• : X• → Y•. Then the
constructions of ([3] 2.1.10 and 2.2.14) allow us to define cohomological functors:

f+ : D(X) ≃ Db
hol(X•) ⇄ Db

hol(Y•) ≃ D(Y) : f !.

Given a object M of D(X) and a morphism g : X→ S to a smooth k-scheme S, we say M is ULA with
respect to g if its +-pullback to a presentation U → X is ULA with respect to U → S.

Suppose S is moreover a curve. Let s be a closed point of S and S(s) the strict henselian at s.
Since nearby/vanishing cycle functors commute with smooth pullbacks, we can extend the definition of
nearby/vanishing cycle functors for g ×S S(s).

2.9. Local monodromy of an overconvergent F -isocrystal.

2.9.1. We briefly recall the local monodromy group of p-adic differential equations over the Robba ring
following [10, 65].

We denote by RK the Robba ring over K, by MC(RK/K) (resp. MC(R/K)) the category of ∇-modules
of finitely presented over RK (resp. over R = R⊗KK). Each object of MC(R/K) comes from the extension
of scalar of an object of MC(RL/L) for some finite extension L of K. We denote by MCuni(R/K) the full
Tannakian subcategory of MC(R/K) consisting of unipotent objects, i.e. objects which are isomorphic to
successive extension of the trivial object (cf. [65] § 4).

There is an equivalence between the category Vecnil
K

of finite dimensional K-vector space with a nilpotent
endomorphism and MCuni(R/K), given by the functor (V0, N) 7→ (V0⊗KR,∇N ), where the connection ∇N
is defined by ∇N (v ⊗ 1) = Nv ⊗ dx/x ([65] 4.1). In particular, the Tannakian group of MCuni(R/K) over
K is isomorphic to Ga.

We denote by MCF(R/K) the full subcategory of MC(R/K) consisting of objects admitting a Frobenius
structure ([10] 3.4). The category MCF(R/K) is a Tannakian category over K, whose Tannakian group is
denoted by G. Christol and Mebkhout introduce the notion of p-adic slope for objects of MCF(R/K) and
show a Hasse-Arf type result [32]. This allows one to define a Hasse-Arf type filtration on MCF(R/K) and
then a decreasing filtration of closed normal subgroups {G>λ}λ≥0 of G (cf. [10] § 1, 3.4). If we denote by I
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(resp. P ) the inertia (resp. wild inertia) subgroup of Gal(k((t))sep/k((t))), regarded as pro-algebraic groups,
then there exist canonical isomorphisms of affine K-groups ([10] 7.1.1)

(2.9.1.1) G ≃ I ×Ga, G>0 ≃ P.

The local monodromy theorem says that any object of MCF(R/K) is quasi-unipotent [10, 59, 66]. Given
an object M of MCF(R/K), the action of P on M factors through a finite quotient. By a theorem of
Matsuda-Tsuzuki [81, 65] (cf. [10] 7.1.2), the irregularity of M , defined by p-adic slopes, is equal to the Swan
conductor of the representation of I on a fiber of M .

2.9.2. We denote by K{x} the K-algebra of analytic functions on the open unit disc |x| < 1, i.e.

(2.9.2.1) K{x} = {
∑

n≥0

anx
n ∈ KJxK; |an|pρn → 0 (n→∞) ∀ρ ∈ [0, 1)}.

Let Ω1
K{x}(log) be the free K{x}-module of rank 1 with basis dx/x and consider the following canonical

derivation d : K{x} → Ω1
K{x}(log), f 7→ xf ′(x)dx/x. An unipotent object (M,∇) of MC(RK/K) extends

to a log ∇-module over K{x}. Let (V,N) be the object of Vecnil
K associated to (M,∇). In view of 2.9.1,

there exists a canonical isomorphism between Coker(N) and the solution space Sol(M) of (M,∇):

(2.9.2.2) Coker(N)
∼−→ Sol(M) = HomK{x}((M,∇), (K{x}, d))∇=0.

When the connection ∇ is defined by a differential operator D, then Sol(M) is isomorphic to the solution
space of D.

2.9.3. Let X be a smooth curve over k, X a smooth compactification of X and x a k-point in the boundary
X \X . There exists a canonical functor defined by restriction at x:

(2.9.3.1) |x : Isoc†(X/K)→ MC(RK/K).

We refer to [77] and ([60] § 6) for the definition of log convergent (F -)isocrystals on Y = X∪{x} with a log
pole at x. Let E be an object of Isoc††(X/K) (resp. F - Isoc†(X/K)). A log-extenbility criterion of Kedlaya
([60] 6.3.2) says that if E |x is unipotent, then E extends to a log convergent isocrystal (resp. F -isocrystal)
E log on Y with a log pole at x.

The fiber E log
x of E log at x is a K-vector space equipped with a nilpotent operator. If E moreover has

a Frobenius structure, then E log
x is a (ϕ,N)-module, that is a K-vector space V equipped with a nilpotent

operator N : V → V and a σ-semilinear automorphism ϕ : V → V such that ϕ−1Nϕ = qN . We can describe
it in terms of the nearby cycle of E around x.

Proposition 2.9.4. Let X = Gm, X = P1 and x = 0. Suppose that E is unipotent at 0 and let Ψ be the
nearby cycle functor defined by id (2.7.4). Then there exists a canonical isomorphism of K-vector spaces
(resp. K-vector spaces with Frobenius structure):

(2.9.4.1) E
log
0

∼−→ Ψ(E ).

Proof. The argument of ([5] 2.4(1)) implies the assertion, that we briefly explain in the following. Since E

is unipotent at x, we have Ψun(E ) ≃ Ψ(E ). By ([6] 3.4.19, cf. [5] 2.4(1)), we have a Frobenius equivariant
isomorphism of K-vector spaces:

Ψun(E ) ≃ lim−→
n≥0

Ker(Nn : (E log ⊗ Logn)0 → (E log ⊗ Logn)0),

where Logn is the log convergent F -isocrystal on (A1, 0) defeind in 2.7.1 and Nn = N
E

log
0
⊗ id + id⊗NLogn0

is the tensor product of two nilpotent operators. Then the isomorphism (2.9.4.1) follows. �
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2.10. Hyperbolic localization for arithmetic D-modules.

2.10.1. Let X be a quasi-projective k-scheme such that X ⊗k k is connected and normal. We suppose that
there exists an action µ : Gm ×X → X of the torus Gm over k. Following [41], we denote by X0 the closed
subscheme of fixed points of X ([41] 1.3), by X+ (resp. X−) the attractor (resp. repeller) of X ([41] 1.4,
1.8). We have a commutative diagram

(2.10.1.1) X+

π

��

g

!!❇
❇❇

❇❇
❇❇

❇

X0

f

==③③③③③③③③

f ′

!!❉
❉❉

❉❉
❉❉

❉ X

X−
π′

YY

g′

==⑤⑤⑤⑤⑤⑤⑤⑤

where f, f ′ are closed immersions and are sections of π, π′, respectively, the restriction of g (resp. g′) to each
connected component of X+ (resp. X−) is a locally closed immersion ([41] 1.6.8). Note that each connected
component of X+ is the preimage of a connected component of X0 under π.

We define hyperbolic localization functors (−)!+, (−)+! : D(X)→ D(X0), for F ∈ D(X) by:

(2.10.1.2) F
!+ = f !(g+(F )), F

+! = f ′+(g′!(F )).

We say an object F of D(X) is weakly equivariant if there exists an isomorphism µ+(F ) ≃ L [−1] ⊠ F

for some smooth module L on Gm.

Theorem 2.10.2 (Braden [24]). (i) There exists a canonical morphism ιF : F+! → F !+, which is an
isomorphism if F is weakly equivariant.

(ii) The canonical morphisms π! → f !, π′
+ → f ′+ induce morphisms

(2.10.2.1) π!g
+
F → F

!+, π′
+g

′! → F
+!,

which are isomorphisms if F is weakly equivariant.

2.10.3. Recall the construction of ιF . The canonical morphism i = (f, f ′) : X0 → Z = X+ ×X X− is both
an open immersion and a closed one ([41] 1.9.4). We denote by h : Z → X+, h′ : Z → X− the canonical
morphisms.

We set F+ = g+(g+(F )) and denote by β : F → F+ the adjunction morphism. By the base change,
there exists a canonical isomorphism

(2.10.3.1) (F+)+! = f ′+g′!g+g
+(F ) ≃ f ′+h′

+h
!g+(F ) ≃ F

!+.

Then we define the morphism ιF to be the composition of (2.10.3.1) and β+! : F+! → (F+)+!.
By the base change, the morphism ιF is compatible with inverse image by the inclusion of a Gm-

equivariant open subscheme and with direct image by the inclusion of a Gm-equivariant closed subscheme.

2.10.4. To prove canonical morphisms in (2.10.2) are isomorphisms, we can extend the scalar and assume
that L is an extension of the maximal unramified extension of Qp (2.3.3).

Let Y0 be a k-scheme and Y = Y0⊗k k. The category D(Y0/L) is independent of the choice of base field k
(2.3.3) and we denote it by D(Y/L). Given a morphism f : Y → Z of k-schemes, it descents to a morphism
of k′-schemes for some finite extension k′ of k. This allows us to define the cohomological functors between
D(Y/L) and D(Z/L). To prove 2.10.2, we can replace the involved schemes by their base change to k.

By a result of Sumihiro [80], we may assume moreover that X is isomorphic to an affine space over k,
equipped with a linear Gm-action.

2.10.5. Let Y be a k-scheme on which Gm acts trivially and W a Gm-equivariant vector bundle over Y .
Suppose that there exists a decomposition of vector bundles W ≃W+⊕W− such that all the weights of W+

are larger than all the weights of W−.



26 DAXIN XU, XINWEN ZHU

We set E = P(W ) − P(W+) and B = P(W−), where P(−) denotes the associated projective bundle over
Y . We denote by p : E → B the canonical morphism defined by p([w+, w−]) = [0, w−], by i : B → E the
canonical morphism, which is a section of p and by ϕ : B → Y the projection.

Based on the same argument of ([24] lemma 6), we can show a similar result.

Lemma 2.10.6 ([24] lemma 6). Let F be a weakly equivariant object of D(E). There exists canonical
isomorphisms

(2.10.6.1) h+p+F ≃ h+i
+
F , h+p!F ≃ h+i

!
F .

By 2.10.6, we deduce 2.10.2(ii). Using 2.10.6 and [80], we prove 2.10.2(i) in the same way as in ([24] § 4).

3. Geometric Satake equivalence for arithmetic D-modules

In this section, we establish the geometric Satake equivalence for arithmetic D-modules.
We assume that k is a finite field with q = ps elements and keep the assumption and notation in § 2.

We work with holonomic modules (resp. complexes) over the geometric base tuple T = {k,R,K,L} and we
omit /L from the notations Hol(−/L),D(−/L) for simplicity.

Let G denote a split reductive group over k. Let T be the abstract Cartan of G, which is defined up
to a canonical isomorphism as the quotient of a Borel subgroup B by its unipotent radical. We denote by
X• = X•(T ) the weight lattice and by X• = X•(T ) the coweight lattice. Let Φ ⊂ X• (resp. Φ∨ ⊂ X•) the
set of roots (resp. coroots). Let Φ+ ⊂ Φ be the set of positive roots and X•(T )+ ⊂ X•(T ) the semi-group
of dominant coweights, determined by a choice of B. (But they are independent of the choice of B.) Given
λ, µ ∈ X•(T ), we define λ ≤ µ if µ − λ is a non-negative integral linear combinations of simple coroots
and λ < µ if λ ≤ µ and λ 6= µ. This defines a partial order on X•(T ) (and on X•(T )+). We denote by
ρ ∈ X•(T )⊗Q the half sum of all positive roots.

3.1. The Satake category.

3.1.1. We briefly recall affine Grassmannians following ([88] § 1, § 2). The loop group LG (resp. positive
loop group L+G) is the fpqc sheaf on the category of k-algebras associated to the functor R 7→ G(R((t)))
(resp. R 7→ G(RJtK) ). Then L+G is a subsheaf of LG and the affine Grassmannian GrG is defined as the
fpqc-quotient

GrG = LG/L+G.

The sheaf GrG is represented by an ind-projective ind-scheme over k. We write simply Gr instead of GrG,
if there is no confusion.

For any dominant coweight µ ∈ X•(T )+, we denote by Grµ the corresponding (L+G)-orbit, which is
smooth quasi-projective over k of dimension 2ρ(µ) ([88] 2.1.5). Let Gr≤µ be the reduced closure of Grµ in
Gr, which is equal to ∪λ≤µ Grλ. Let jµ : Grµ → Gr≤µ be the open inclusion. We have an ind-presentation
Grred ≃ lim−→µ∈X•(T )+

Gr≤µ. Since we will work with holonomic modules, we can replace Gr by its reduced

ind-subscheme ([3] 1.1.3 lemma), and omit the subscript red to simplify the notation.
For i ≥ 0, let Gi be the i-th jet group defined by the functor R 7→ G(R[t]/ti+1). Then Gi is representable

by a smooth geometrically connected affine group scheme over k and we have L+G ≃ lim←−iGi. If we consider
the left action of L+G on Gr, then the action on Gr≤µ factors through Gi for some i. We can define the
category of (L+G)-equivariant holonomic modules on Gr (see 2.5.6), denoted as SatG and called Satake
category. It is a full subcategory of Hol(Gr) (2.5.2).

Proposition 3.1.2. The category SatG is semisimple with simple objects ICµ := jµ,!+(LGrµ [2ρ(µ)]) (2.6.1).

Lemma 3.1.3. For µ ∈ X•(T )+, the category Sm(Grµ) (2.3.4) is semisimple with simple object LGrµ .

Proof. The (L+G)-orbit Grµ is geometrically connected and satisfies πét
1 (Grµ⊗kk) ≃ {1} (cf. [74] proof

of proposition 4.1). Every irreducible object M of Sm(Grµ) has a Frobenius structure with respect to the
arithmetic base tuple TF = {k,R,K,L, s, id} with finite determinant ([2] 6.1). By the companion theorem
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for overconvergent F -isocrystals over a smooth k-scheme ([7] 4.2) and Čebotarev density ([3] A.4), we deduce
that M ≃ LGrµ in the category Sm(Grµ).

To show the semisimplicity, it suffices to show that H1(Grµ, L) = 0. There exists a morphism π : Grµ →
G/Pµ realizing Grµ as an affine bundle over the partial flag variety G/Pµ, where Pµ is the parabolic subgroup
containing B and associated with {α ∈ Φ, (α, µ) = 0}. In view of (2.3.4.2) and the cohomology of affine
spaces (2.4.1(ii)), the canonical morphism LG/Pµ → π+(LGrµ) is an isomorphism. Then the cohomology
Hi(Grµ, L) is isomorphic to Hi(G/Pµ, L). Since the partial flag variety admits a stratification of affine
spaces, we deduce that Hi(G/Pµ, L) = 0 if i is odd by (2.4.2.2). Then the assertion follows. �

To prove proposition 3.1.2, we need a parity result on the constructible cohomology of ICµ.

Lemma 3.1.4. The constructible module cHi(ICµ) vanishes unless i ≡ dim(Grµ) (mod 2).

Proof. We follow the argument of Gaitsgory ([49] A.7, cf. [12] §4.2 for a detailed exposition) in the ℓ-
adic case, whose proof is based on following ingredients: 1) the decomposition theorem; 2) the fiber of the
Bott-Samelson resolution of a cell in affine flag variety is paved by affine spaces.

In our case, the assertion follows from the same argument using the decomposition theorem (2.6.4),
the spectral sequence (2.4.2.2) and the parity of the compact support p-adic cohomology of affine spaces
(2.4.1(ii)). �

3.1.5. Proof of proposition 3.1.2. We follow the same line as in the ℓ-adic case (cf. [49] prop. 1). By 2.6.1(i),
holonomic modules ICµ are irreducible of SatG. Let E be an irreducible object of SatG. There exists an
(L+G)-orbit Grµ such that E |Grµ is a smooth object. By 2.5.2 and 3.1.3, we deduce that E is isomorphic to
ICµ.

To prove the semisimplicity, it suffices to show that for λ, µ ∈ X•(T )+, we have

(3.1.5.1) Ext1
Hol(Gr)(ICλ, ICµ) = HomD(Gr)(ICλ, ICµ[1]) = 0.

(i) In the case λ = µ, (3.1.5.1) follows from Ext1
Hol(Grµ)(LGrµ , LGrµ) = H1(Grµ, L) = 0 (see the proof of

lemma 3.1.3).
(ii) Then we consider the case either λ < µ or µ < λ. Since the dual functor D induces an anti-equivalence,

we may assume that µ < λ. We denote by i : Gr≤µ → Gr≤λ the close immersion and we have

HomD(Gr)(ICλ, i+ ICµ[1]) ≃ HomD(Gr≤µ)(i
+ ICλ, ICµ[1]).

Note that i+ ICλ has cohomological degrees ≤ −1 (2.6.2(i)). Each (L+G)-equivariant holonomic module
Hi(i+ ICλ |Grµ) is smooth and hence is constant (3.1.3). If there existed a non-zero morphism g : i+ ICλ →
ICµ[1], then it would induce a non-zero morphism h : H−1(i+ ICλ |Grµ)→ LGrµ [2ρ(µ)]. Since i+ is c-t-exact,
it contradicts to 3.1.4. The equality (3.1.5.1) in this case follows.

(iii) In the case λ � µ and µ � λ, we prove (3.1.5.1) by base change in the same way as in ([12] 4.3). �

3.1.6. We consider the action of L+G on LG×Gr defined by a(g, [h]) = (ga−1, [ah]), where [h] denotes the
coset h · L+G of an element h ∈ LG. We denote by Gr ×̃Gr the twisted product LG × Gr /L+G (2.5.4).
The morphism LG×Gr→ Gr, defined by (g, [h]) 7→ [gh], induces an ind-proper morphism

(3.1.6.1) m : Gr ×̃Gr→ Gr,

called the convolution morphism. The morphism m is (L+G)-equivariant with respect to the left (L+G)-
actions.

Given two objects A1,A2 of SatG, we denote by A1⊠̃A2 their external twisted product on Gr ×̃Gr (see
2.5.4 and 2.5.6), and define the convolution product by

(3.1.6.2) A1 ⋆A2 = m+(A1⊠̃A2).

Similarly, there exists an n-fold twisted product Gr ×̃ · · · ×̃Gr and a convolution morphismm : Gr ×̃ · · · ×̃Gr→
Gr ([88] 1.2.15). This allows us to define the n-fold convolution product A1 ⋆ · · · ⋆An.
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We will show that A1 ⋆ A2 is an object of SatG and that ⋆ defines a symmetric monoidal structure
on SatG. To do it, we will interpret the convolution product as the specialization of a fusion product on
Beilinson-Drinfeld Grassmannians in the next subsection.

3.2. Fusion product.

3.2.1. Let X be a smooth, geometrically connected curve over k, n an integer ≥ 1 and Xn the n-folded self
product of X over k. We briefly recall the definition of Beilinson-Drinfeld Grassmannians ([88] § 3).

For any k-algebra R and any point x = (xi)ni=1 ∈ Xn(R), we set Γx = ∪ni=1Γxi the closed subscheme of
XR defined by the union of graphs Γxi →֒ XR of xi : Spec(R) → X . The Beilinson-Drinfeld Grassman-
nian GrG,Xn (associated to G over Xn) is the functor which associates to every k-algebra R the groupoid
GrG,Xn(R) of triples (x,E , β)

{x ∈ Xn(R), E a G-torsor on XR, β : E |XR−Γx
∼−→ E

0 := G× (XR − Γx) a trivialisation}.
The above functor is represented by an ind-projective ind-scheme over Xn ([88] 3.1.3). We denote by
qn : GrG,Xn → Xn the canonical morphism. If there is no confusion, we will write simply GrXn instead of
GrG,Xn . Note that the fiber of GrX at a closed point x of X is isomorphic to the affine Grassmannian.

We refer to ([88] 3.1) the definition of global loop groups (L+G)Xn and (LG)Xn over Xn. The sheaf
(L+G)Xn is represented by a projective limit of smooth affine group scheme overXn. There exists a canonical
isomorphism of fpqc-sheaves (LG)Xn/(L+G)Xn

∼−→ GrG,Xn . We consider the left action of (L+G)Xn on
GrG,Xn over Xn and denote by Hol(L+G)Xn (GrXn) the category of (L+G)Xn -equivariant holonomic modules
on GrXn (2.5.6).

3.2.2. In the following, we take the curve X to be the affine line A1
k. Then there exists an isomorphism

GrX ≃ Gr×X . Given a holonomic module A on Gr, the holonomic module AX = A⊠ LX [1] is ULA with
respect to q : GrX → X (2.8.4). If A is moreover (L+G)-equivariant, then AX is (L+G)X -equivariant.

By proposition 2.4.4, we obtain a fully faithful functor

(3.2.2.1) ι : D(Gr)→ D(GrX), A 7→ AX .
We denote the essential image of SatG via ι by SatX , which is a full subcategory of Hol(L+G)X (GrX).

3.2.3. To define the fusion product on SatX , we will use the factorization structure of Beilinson-Drinfeld
Grassmannians.

The diagonal immersion ∆ : X → X2 a morphism GrX → GrX2 sending (x,E , β) to (∆(x),E , β), which
is compatible with (LG)X -actions. Moreover, it induces a canonical isomorphism

(3.2.3.1) ∆ : GrX
∼−→ GrX2 ×X2,∆X.

Let U be complement of ∆ : X → X2. Then there exists a canonical isomorphism, called the factorization
isomorphism ([88] 3.2.1(iii))

(3.2.3.2) c : GrX2 ×X2U
∼−→ (GrX ×GrX)×X2 U.

The involution σ : X2 → X2, (x, y) 7→ (y, x), induces an involution ∆(σ) : GrX2 → GrX2 . If we consider
the S2-action on GrX ×GrX by the permutation of two factors, then c is moreover S2-equivariant.

3.2.4. The convolution morphism (3.1.6.1) also admits a globalization. The convolution Grassmannian
GrX ×̃GrX is the ind-scheme representing

R 7→
{

(x, (Ei, βi)i=1,2)

∣∣∣∣
x = (x1, x2) ∈ X2(R), E1,E2 are G-torsors on XR

βi : Ei|XR−Γxi

∼−→ Ei−1|XR−Γxi
where E0 = E 0 is trivial

}
.

There exists a convolution morphism

(3.2.4.1) m : GrX ×̃GrX → GrX2 , (x, (Ei, βi)i=1,2) 7→ (x,E2, β1 ◦ β2).

By definition, the restriction of m on U is an isomorphism.
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We can view GrX ×̃GrX as a twisted product (2.5.4) in the following way. There exists a (L+G)X -torsor
E→ GrX ×X classifying

R 7→ E(R) =

{
(x1, β1,E1) ∈ GrX(R); x2 ∈ X(R); η : E

0 ∼−→ E1|Γ̂x2

}
,

where η is a trivialisation of E1 on the formal completion Γ̂x2 of XR along Γx2 . Using the torsor E, we can
identify GrX ×̃GrX with the twisted product (GrX ×X)×̃X GrX (2.5.6). In summary, we have the following
diagram over X2

(3.2.4.2) GrX ×GrX = (GrX ×X)×X GrX ← E×X GrX → GrX ×̃GrX
m−→ GrX2 .

Let A1,A2 be two objects of SatX . Note that (A1 ⊠ LX) ⊠X A2 ≃ A1 ⊠A2 is holonomic. We denote by
A1⊠̃A2 the twisted product of A1 ⊠ LX and A2 on GrX ×̃GrX (2.5.6).

Proposition 3.2.5. (i) There exists a canonical isomorphism of holonomic modules on GrX2 :

(3.2.5.1) m+(A1⊠̃A2) ≃ j!+(A1 ⊠A2|U ).

The left hand side, denoted by A1 �A2, is ULA with respect to q2 : GrX2 → X2 and is (L+G)X2 -equivariant.
(ii) There exists a canonical isomorphism of holonomic modules on GrX :

∆+[−1](A1 �A2)
∼−→ ∆![1](A1 �A2).

We denote one of the above module by A1 ⊛A2 and call it fusion product of A1,A2. This holonomic module
is ULA with respect to q : GrX → X.

Proof. (i) The holonomic module A1 ⊠ A2 on GrX ×GrX is the inverse image of a holonomic module
on Gr×Gr and hence is ULA with respect to the projection GrX ×GrX → X2. Recall that A1⊠̃A2 is
constructed by descent along a quotient by a smooth group scheme over X (2.5.6, 3.2.4.2). Hence it is ULA
with respect to the projection to X2 by proposition 2.8.3(iii). Since m is ind-proper, then m+(A1⊠̃A2) is
ULA with respect to q2 : GrX2 → X2.

Since m|U is an isomorphism, under the isomorphism (3.2.3.2) we have

A1⊠̃A2|U = A1 ⊠A2|U ,
which is holonomic. Then we deduce the isomorphism (3.2.5.1) from proposition 2.8.5(i). The morphism m

is (L+G)X2 -equivariant. By proper base change, we deduce that m+(A1⊠̃A2) is (L+G)X2 -equivariant.
Assertion (ii) follows from proposition 2.8.5. �

Corollary 3.2.6. Let A1,A2 be two objects of SatG.
(i) There exists a canonical isomorphism on GrX (3.1.6.2)

(3.2.6.1) (A1 ⋆A2)X ≃ A1,X ⊛A2,X .

(ii) The convolution product A1 ⋆A2 is still holonomic and belongs to SatG.
(iii) The category SatG (resp. SatX) equipped with the bifunctor ⋆ (resp. ⊛) and the unit object IC0 (resp.

IC0,X) forms a monoidal category.

Proof. (i) There exists a canonical isomorphism

(Gr ×̃Gr)×X ≃ (GrX ×̃GrX)×X2,∆ X,

compatible with projections to GrX . Via the above isomorphism, we have (A1⊠̃A2)X ≃ ∆+[−1](A1,X⊠̃A2,X).
Then the isomorphism of (3.2.6.1) follows.

(ii) Taking a k-point ix : x→ X and applying the functor i+x [−1] to (3.2.6.1), we deduce that A1 ⋆A2 is
holonomic by propositions 2.8.5 and 3.2.5.

(iii) It suffices to show the assertion for SatG. By identifying (A1 ⋆ A2) ⋆ A2 and A1 ⋆ (A2 ⋆ A3) with
A1 ⋆ A2 ⋆ A3, we obtain the associative constraint. We can verify the pentagon axiom and the unit axiom
by n-fold convolution product. �
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3.3. Hypercohomology functor.

3.3.1. We define the hypercohomology functor H∗ by

H∗ : SatG → VecL, A 7→
⊕

n∈Z

Hn(Gr,A).(3.3.1.1)

Since SatG is semisimple (3.1.2), H∗ is exact and faithful.
Let A be an object of SatG and π : Gr→ Spec(k) the structure morphism. By the Künneth formula ([3]

1.1.7), there exists a canonical isomorphism

(3.3.1.2) q+(AX)[−1] ≃ π+(A) ⊠ LX .

Lemma 3.3.2. Given two objects A1,A2 of SatX , there exists a canonical isomorphism

(3.3.2.1) q+(A1 ⊛A2)[−1] ≃ (q+(A1)[−1])⊗ (q+(A2)[−1]).

Proof. It suffices to construct a canonical isomorphism

(3.3.2.2) q2
+(A1 �A2) ≃ q+(A1) ⊠ q+(A2).

By (3.2.5.1) and the Künneth formula ([3] 1.1.7), such an isomorphism exists on U = X2 −∆(X).
Let τ : X2 → X be the morphism sending (x, y) to x − y. Both sides of (3.3.2.2) are ULA with respect

to τ by propositions 2.8.3 and 3.2.5. By proposition 2.8.5, we deduce a canonical isomorphism on X

∆!
(
q2

+(A1 �A2)
)
≃ ∆!

(
q+(A1) ⊠ q+(A2)

)
.

Then the isomorphism (3.3.2.2) follows from the distinguished triangle ∆+∆! → id→ j+j
+ →. �

By (3.2.6.1), (3.3.1.2) and lemma 3.3.2, we deduce that:

Corollary 3.3.3. The functor H∗ is monoidal.

Remark 3.3.4. Let A1,A2 be two objects of SatG, both equipped with a Frobenius structure with respect to
the arithmetic tuple TF = {k,R,K,L, s, idL}. The proof of corollary 3.3.3 applies to arithmetic D-modules
with Frobenius structures. Then we deduce that the following isomorphism is compatible with Frobenius
structure

H∗(A1 ⋆A2) ≃ H∗(A1)⊗H∗(A2).

3.3.5. In the following, we will construct a commutativity constraint on (SatG, ⋆) which makes the functor
H∗ into a tensor functor.

The permutation σ : {1, 2} → {1, 2} induces an involution ∆(σ) : GrX2 → GrX2 over the involution
σ : X2 → X2, (x, y) 7→ (y, x) (3.2.3). Let A1,A2 be two objects of SatG. We deduce from (3.2.3.2) and
(3.2.5.1) a canonical isomorphism

(3.3.5.1) ∆(σ)+(A1,X �A2,X)
∼−→ A2,X �A1,X .

We denote by cgr the isomorphism which fits into the following diagram

σ+(q2
+(A1 �A2)) ∼ //

≀

��

q2
+(∆(σ)+(A1 �A2)) ∼ // q2

+(A2 �A1)

≀

��
σ+(q+(A1) ⊠ q+(A2))

cgr // q+(A2) ⊠ q+(A1)

The cohomology Hn(i+(x,x)(cgr)) of the fiber of cgr at (x, x) ∈ X2 is the composition
⊕

i+j=n

Hi(Gr,A1)⊗Hj(Gr,A2) ≃ Hn(Gr×Gr,A1⊠A2) ≃ Hn(Gr×Gr,A2⊠A1) ≃
⊕

i+j=n

Hj(Gr,A2)⊗Hi(Gr,A1),

where the first and third isomorphisms are given by the Künneth formula and the second one is induced by
the symmetry of external tensor products. It sends s⊗t to (−1)ijt⊗s for s ∈ Hi(Gr,A1) and t ∈ Hj(Gr,A2).
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Taking the fiber of (3.3.5.1) at (x, x), we obtain a canonical isomorphism

(3.3.5.2) c′
A1,A2

: A1 ∗ A2 ≃ A2 ∗ A1,

which fits into a commutative diagram

(3.3.5.3) H∗(A1 ∗ A2)
c′

A1,A2 //

≀

��

H∗(A2 ∗ A1)

≀

��
H∗(A1)⊗H∗(A2)

cgr // H∗(A2)⊗H∗(A1).

We regard H∗ as a functor from SatG to the category Vecgr
L of Z-graded vector spaces over L by considering

the Z-grading on cohomology degree (3.3.1.1). The above diagram means H∗ is compatible with the constraint
c′

A1,A2
on SatG and the supercommutativity constraint cgr on Vecgr

L . In 3.4.7, we will modify the constraint
c′ and make it compatible with the usual constraint on VecL.

3.4. Semi-infinite orbits. In this subsection, we study the p-adic cohomology of objects of SatG on semi-
infinite orbits of GrG following Mirković and Vilonen [68].

3.4.1. Let Bop be the opposite Borel subgroup. The inclusion B,Bop → G and projections B,Bop → T
induce morphisms

(3.4.1.1) GrT
π←− GrB

i−→ GrG, GrT
π′

←− GrBop
i′−→ GrG .

Via i, each connected component of (GrB)red is locally closed in GrG. To simplify the notation, we will
omit the subscript red in the following. The affine Grassmannian GrT is discrete, whose k-points are given
by Lλ = tλT (kJtK)/T (kJtK) ∈ GrT (k), λ ∈ X•(T ). For λ ∈ X•(T ), we define ind-subschemes Sλ and Tλ of
GrG to be

(3.4.1.2) Sλ = i(π−1(Lλ)), Tλ = i′(π′−1(Lλ)).

For i ∈ Z, we set cohomology functors Hi
c(Sλ,−) and Hi

Tλ
(GrG,−) to be

Hi
c(Sλ,−) = Hi((π!i

+(−))λ), Hi
Tλ(GrG,−) = Hi(π′

+i
′!(−))λ).

Proposition 3.4.2 ([68] 3.1, 3.2, [88] 5.3.6). (i) The union S≤λ = ∪λ′≤λSλ′ is closed in GrG and Sλ is
open and dense in S≤λ.

(ii) For µ ∈ X•(T )+, the intersection GrG,µ ∩Sλ (resp. GrG,µ ∩Tλ) is non-empty if and only if Lλ ∈
GrG,≤µ (equivalently there exists w ∈ W such that wλ ≤ µ). In the non-empty case, GrG,µ ∩Sλ (resp.
GrG,µ ∩Tλ) has pure dimension ρ(λ+ µ).

Proposition 3.4.3. (i) For any object A of SatG, there exists a functorial isomorphism

(3.4.3.1) Hi
c(Sλ,A) ≃ Hi

Tλ
(GrG,A).

Both sides vanish if i 6= 2ρ(λ).
(ii) For µ ∈ X•(T )+, the dimension of H2ρ(λ)

c (Sλ, ICµ) is equal to the number of geometrically irreducible
components of Sλ ∩GrG,µ. If we work with the arithmetic base TF = {k,R,K,L, s, idL}, the Frobenius acts

on H2ρ(λ)
c (Sλ, ICµ) by multiplication by qρ(λ+µ).

(iii) For any integer i, there exists a functorial isomorphism

(3.4.3.2) Hi(GrG,A) ≃
⊕

λ∈X•(T )

Hi
c(Sλ,A).

The proposition can be proved in the same way as in ([68] 3.5, 3.6) by Braden’s theorem (2.10.2).
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Proposition 3.4.4. Given two objects A1,A2 of SatG, there exists a canonical isomorphism

(3.4.4.1) H2ρ(λ)
c (Sλ,A1 ∗ A2) ≃

⊕

λ1+λ2=λ

H2ρ(λ1)
c (Sλ1 ,A1)⊗H2ρ(λ2)

c (Sλ2 ,A2).

3.4.5. To prove the above proposition, we need to extend semi-infinite orbits Sλ, Tλ to Beilinson-Drinfeld
Grassmannians GrG,Xn . For simplicity, we only consider the case where X = A1 and n = 1, 2.

When n = 1, we have ind-representation GrG,X ≃ lim−→GrG,≤µ,X , where GrG,≤µ,X ≃ GrG,≤µ×X is
normal for µ ∈ X•(T )+. When n = 2, for µ, ν ∈ X•(T )+, we denote by GrG,≤(µ,ν),X2 the closure of
GrG,≤µ,X ×GrG,≤ν,X |U in GrG,X2 . These closed subschemes form an ind-representation of GrX2 . The
scheme GrG,≤(µ,ν),X2 is flat over X2 and satisfies GrG,≤(µ,ν),X2 ×X2,∆X ≃ GrG,≤µ+ν,X ([86] 1.2, [88] 3.1.14).
The composition GrG,≤(µ,ν),X2 → X2 → X with X2 → X, (x, y) 7→ x − y, is flat with reduced fiber at 0
and is normal on X − {0}. Then we deduce that GrG,≤(µ,ν),X2 is normal (cf. [72] 9.2).

We consider the action of Gm on GrG,Xn induced by 2ρ̌, which is compatible with the action of Gm on
GrG on each fiber of x ∈ |Xn| (3.4.2(i)). Then GrT,Xn is the ind-subscheme of fixed points. For λ ∈ X•(T ),
we set Cλ(X2) = GrT,≤λ,X2 −GrT,<λ,X2 . Its fiber at x = (x, x) ∈ ∆(X) ⊂ X2 is isomorphic to {Lλ} and
its fiber at x = (x, y) ∈ X2 − ∆(X) is isomorphic to

∏
λ1+λ2=λ{Lλ1} × {Lλ2}. Connected components of

GrT,X2 are parametrized by {Cλ(X2)}λ∈X•(T ).
We denote by Sλ(Xn) (resp. Tλ(Xn)) the connected component of Gr+

G,Xn (resp. Gr−
G,Xn) corresponding

to Cλ(X2). (See 2.10.1 for the notation). The fiber of Sλ(X2) (resp. Tλ(X2)) at x = (x, x) ∈ ∆(X) ⊂ X2 is
isomorphic to Sλ (resp. Tλ) and its fiber at x = (x, y) ∈ X2 −∆(X) is isomorphic to

∏
λ1+λ2=λ Sλ1 × Sλ2

(resp.
∏
λ1+λ2=λ Tλ1 × Tλ2).

3.4.6. Proof of proposition 3.4.4. Let A1,A2 be two objects of SatG, A1,X ,A2,X their extensions to GrG,X
(3.2.2.1) and B = A1,X �A2,X . Consider the following diagram of ind-schemes:

(3.4.6.1) Sλ(X2)
j //

iλ

33S≤λ(X2)
iλ // GrG,X2

q2

// X2

For i ∈ Z, we define the constructible module Liλ(A1,A2) on X2 to be

(3.4.6.2) Liλ(A1,A2) = cHi(q2
+(iλ,!(i

+
λB))) ≃ cHi(q2

+(i′λ,+(i′!λB))),

where the second isomorphism follows from Braden’s theorem (2.10.2). By the base change, the stalk of
Liλ(A1,A2) at a k-point (x1, x2) of X2 is isomorphic to

(3.4.6.3) Liλ(A1,A2)(x1,x2) ≃
{

Hi
c(Sλ,A1 ⋆A2) if x1 = x2,⊕
λ1+λ2=λ Hi

c(Sλ1 × Sλ2 ,A1 ⊠A2) if x1 6= x2.

By 3.4.3, Liλ(A1,A2) vanishes unless i = 2ρ(λ) and we deduce from the Künneth formula that

(3.4.6.4) H2ρ(λ)
c (Sλ1 × Sλ2 ,A1 ⊠A2) ≃ H2ρ(λ1)

c (Sλ1 ,A1)⊗H2ρ(λ2)
c (Sλ1 ,A2).

The adjunction morphisms id→ iλ,+i
+
λ and j!j

+ → id (3.4.6.1) induce canonical morphisms

(3.4.6.5) cH2ρ(λ)(q2
+(A1,X �A2,X)) ։ cH2ρ(λ)((q2 ◦ iλ)+i

+
λB)

∼←− L2ρ(λ)(A1,A2),

where the first arrow is an epimorphism and the second arrow is an isomorphism in view of the calculation
of their fibers (3.4.3).

By Braden’s theorem and a dual argument for Tλ(X2), we obtain a section of (3.4.6.5):

L2ρ(λ)(A1,A2)→ cH2ρ(λ)(q2
+(A1,X �A2,X)).

In view of proposition 3.4.3, we deduce a decomposition

(3.4.6.6) cHi(q2
+(A1,X �A2,X) ≃

⊕

2ρ(λ)=i

Liλ(A1,A2).
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The left hand side is a constant module with value Hi(Gr,A1⋆A2) by (3.3.1.2), (3.3.2.2). Then each summand
Liλ(A1,A2) is also a constant module. Hence fibers of Liλ(A1,A2) (3.4.6.3), (3.4.6.4) are isomorphic. The
proposition follows. �

3.4.7. We modify the constraints c′
A1,A2

(3.3.5.2) by a sign as follows (see [68] after Remark 6.2) and make
it compatible with the usual constraint cVec on VecL defined by s⊗ t 7→ t⊗ s.

The morphism p : X•(T )→ Z/2Z, µ 7→ (−1)2ρ(µ) defines a Z/2Z-grading on simple objects of SatG. By
propositions 3.4.2 and 3.4.3, we have

(3.4.7.1) Hi(Gr, ICµ) = 0, if i 6= 2ρ(µ) (mod 2).

Given two simple objects A1,A2 of SatG, we define a new constraint cA1,A2 to be

(3.4.7.2) cA1,A2 = (−1)p(A1)p(A2)c′
A1,A2

.

Since SatG is semisimple, the definition of cA1,A2 extends to any pair (A1,A2) of objects of SatG. By (3.3.5.3)
and (3.4.7.1), the following diagram is commutative

(3.4.7.3) H∗(A1 ∗ A2)
cA1,A2 //

≀

��

H∗(A2 ∗ A1)

≀

��
H∗(A1)⊗H∗(A2)

cVec // H∗(A2)⊗H∗(A1),

where the isomorphism cVec is the usual commutativity constraint on vector spaces, i.e cVec(v⊗w) = w⊗ v.

Proposition 3.4.8 ([88] 5.2.9). The monoidal category SatG equipped with the constraints c forms a sym-
metric monoidal category. The functor H∗ (3.3.1.1) is a tensor functor.

Proof. We need to verify cA1,A2 ◦ cA2,A1 = id and the hexagon axiom. Since the functor H∗ is faithful, it
suffices to prove these assertions after applying H∗. By (3.4.7.3) and the fact that c2

Vec = id, we deduce
that cA1,A2 ◦ cA2,A1 = id. We verify the hexagon axiom in a similar way. The second assertion follows from
corollary 3.3.3 and (3.4.7.3). �

3.5. Tannakian structure and the Langlands dual group.

Theorem 3.5.1. The symmetric monoidal category (SatG, IC0, ∗, c) (3.4.8), equipped the hypercohomology
functor H∗ (3.3.1.1) forms a neutral Tannakian category over L.

We prove it in the same way as in ([88] 5.2.9) using proposition 3.4.3(ii).

Proposition 3.5.2. The Tannakian group G̃ = Aut⊗ H∗ of the Tannakian category SatG is a connected
reductive group scheme over L.

Proof. For µ1, µ2 ∈ X•(T )+, ICµ1 ⋆ ICµ2 is defined by direct image through the birational morphism

Gr≤µ1 ×̃Gr≤µ2 → Gr≤µ1+µ2 .

Hence it is supported on Gr≤µ1+µ2 and is isomorphic to LGrµ1+µ2
[2ρ(µ1 + µ2)] on Grµ1+µ2 . Then by

decomposition theorem (2.6.4), ICµ1+µ2 is a direct summand of ICµ1 ⋆ ICµ2 . Hence the semisimple category
SatG is generated by {ICµi}i∈I with a finite set of generators of X•(T )+. Then G̃ is algebraic by ([40]
2.20). There is no tensor subcategory which contains only direct sums of finite collection of IC’s. Then G̃ is
connected ([40] 2.22). Finally, since SatG is semisimple, G̃ is reductive ([40] 2.23). �

Theorem 3.5.3. The reductive group G̃ is the Langlands dual group of G over L. More precisely, the root

datum of G̃ with respect to a maximal torus T̃ is dual to that of (G, T ).

Since GrT,red is a discrete set of points indexed by X•(T ) (3.4.1), we have:

Lemma 3.5.4. In the case G = T is a torus, theorem 3.5.3 holds.
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3.5.5. We denote by CT : SatG → SatT the functor

(3.5.5.1) A 7→ (H∗
c(Sλ,A))λ∈X•(T ),

and by H∗
G (resp. H∗

T ) the fiber functor of the Tannakian category SatG (resp. SatT ). By 3.4.3, there exists
a canonical isomorphism of functors:

(3.5.5.2) H∗
G ≃ H∗

T ◦CT : SatG → VecL .

By 3.4.4, CT is a tensor functor and therefore induces a homomorphism:

(3.5.5.3) Ť ≃ T̃ → G̃.

By ([40] 2.21(b)), Ť is a closed sub-torus in G̃.
Using 3.4.3, we prove the following in the same way as in the ℓ-adic case (cf. [88] 5.3.17, [12] §9.1).

Lemma 3.5.6. The torus Ť is a maximal torus of G̃.

3.5.7. Proof of theorem 3.5.3. We take a Borel subgroup B̃ ⊂ G̃ containing Ť such that 2ρ ∈ X•(T ) is a
dominant coweight for the choice positive roots of G̃ with respect to B̃. Then we can show that the set
of dominant weights X•(Ť )+ with respect to B̃ is equal to the set of dominant coweights X•(T )+ of T by
proposition 3.4.3(ii) (cf. [88] 5.3, and [12] 9.5 for more details). In particular, B̃ is uniquely determined.

We denote by Q̃+ the semi-subgroup of X•(Ť ) generated by positive roots of G̃. A weight λ belongs to
Q̃+ if and only if there exists a highest weight representation Vµ(= H∗(ICµ)) such that µ−λ is also a weight
of Vµ. By proposition 3.4.3, this is equivalent to Lµ−λ ∈ Gr≤µ, and equivalent to λ being a sum of positive
coroots of G. Therefore the semigroup (Q∨)+ ⊂ X•(T ) = X•(Ť ) generated by positive coroots of G coincides
with the semigroup Q̃+. Then, the set of simple coroots of G coincide with the set of simple roots of G̃.

The theorem follows from the fact that a root datum is uniquely determined by the semigroup (X•)+ of
dominant weights and the set ∆ of simple roots. �

3.6. The full Langlands dual group. For our applications of the geometric Satake equivalence for arith-
metic D-modules, it is important to consider the Frobenius structure on the Satake category. In this subsec-
tion, we study the full Langlands dual group constructed by the Satake category equipped with Frobenius
structures.

3.6.1. We suppose that the geometric base tuple {k,R,K,L} is underlying to an arithmetic base tuple
{k,R,K,L, t, σ}, where t is an integer (which may be different from the degree s of k over Fp) and σ is an
automorphism of L and extends a lifting of t-th Frobenius automorphism on k to K (2.3.1).

The Frobenius pullback functor F ∗
Gr : Hol(Gr /L)

∼−→ Hol(Gr /L) (2.3.3) induces a σ-semi-linear equiva-
lence of tensor categories F ∗

Gr : SatG
∼−→ SatG. We denote by F - SatG the category of pairs (X,ϕ) consisting

of an object X of SatG and a Frobenius structure ϕ : F ∗
GrX

∼−→ X . Morphisms are morphisms of SatG
compatible with ϕ (cf. [3] 1.4.6). We will show that F - SatG is a Tannakian category.

3.6.2. We first study some general constructions in the Tannakian formalism following [76].
For n ∈ Z, we denote abusively by σn the equivalence of categories (−)⊗L,σn L : VecL

∼−→ VecL.
Let (C, ω) be a neutralized Tannakian over L. We suppose that, for each n ∈ Z, there exists a σn-semi-

linear equivalence of tensor categories
τn : C → C

and an isomorphism of tensor functors αn : ω ◦ τn ∼−→ σn ◦ ω. For any pair n,m ∈ Z, we suppose moreover
that there exists an isomorphism of tensor functors ε : τm ◦ τn ≃ τm+n such that

(id ◦αn) ◦ (αm ◦ id) = αm+n ◦ ω(ε) : ω ◦ τm ◦ τn ≃ σm+n ◦ ω.
Since ω is faithful, such an isomorphism ε is unique.

Let H be the Tannakian group of (C, ω). The above structure defines a homomorphism

(3.6.2.1) ι : Z→ Aut(H(L)),
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by letting ι(n) send h : ω → ω to

ω
α−1
n−−→ σ−n ◦ ω ◦ τn h◦id−−−→ σ−n ◦ ω ◦ τn αn−−→ ω.

We define the category CZ of Z-equivariant objects in C as follows. An object (X, {cn}n∈Z) consists of
an object X of C and isomorphisms cn : τn(X)

∼−→ X satisfying cocycle conditions cn+m = cn ◦ τn(cm). A
morphism between (X, {cn}n∈Z) and (X ′, {c′

n}n∈Z) is a morphism of C compatible with cn, c
′
n.

3.6.3. Let Γ be an abstract group and ϕ : Γ→ Z a homomorphism. We say an action of Γ on an L-vector
space V is σ-semi-linear (with respect to ϕ) if it is additive and satisfies γ(av) = σϕ(γ)(a)γ(v) for γ ∈ Γ, a ∈ L
and v ∈ V . We denote by RepL,σ(Γ) the category of σ-semi-linear representations of Γ on finite dimensional
L-vector spaces.

We denote by H(L)⋊Z the semi-direct product of H(L) and Z via ι (3.6.2.1). The short exact sequence
1→ H(L)→ H(L) ⋊ Z→ Z→ 1 allows us to define the category RepL,σ(H(L) ⋊ Z).

Proposition 3.6.4. Let H be a split reductive group over L, RepL(H) the category of algebraic representa-
tions of H and RepL(H(L)) the category of finite dimensional representations of the abstract group H(L).
Then the following canonical functor is fully faithful:

RepL(H)→ RepL(H(L)), ρ 7→ ρ(L).

Proposition 3.6.5. Keep the assumption and notation as above.
(i) The category CZ is a Tannakian category over L0 = Lσ=1 neutralized by ω over L ([40] § 3).
(ii) Suppose that the Tannakian group H of (C, ω) is a split reductive group over L. Then ω induces an

equivalence of tensor categories

(3.6.5.1) CZ ∼−→ Rep◦
L,σ(H(L) ⋊ Z),

where Rep◦
L,σ(H(L) ⋊ Z) is the full subcategory of RepL,σ(H(L) ⋊ Z) (3.6.3) consisting of representations

whose restriction to H(L) is algebraic.

Proof. (i) We define a monoidal structure on CZ by letting

(X, {cn})⊗ (X ′, {c′
n}) = (X ′′, {c′′

n}),
where X ′′ = X ⊗X ′ and c′′

n is the composition

τn(X ′′) ≃ τn(X)⊗ τn(X ′)
cn⊗c′

n−−−−→ X ⊗X ′.

This defines a structure of symmetric monoidal category on CZ.
We apply ([39] 2.5) to show that (CΓ,⊗) is rigid. Given an object (X, {cn}) of CZ, we denote by X∨ be

the dual of X in C and then we have τn(X∨) ≃ τn(X)∨. For each n, we have an isomorphism

c∨
n : X∨ ∼−→ (τn(X))∨ ≃ τn(X∨).

Then we define (X∨, {(c∨
n)−1}) to be the dual of (X, {cn}) in CZ. In view of ([40] 1.6.5), the evaluation and

coevaluation morphisms of X and of τn(X) are compatible via τn. Then we obtain the evaluation and the
coevaluation morphisms of (X, {cn}) in CZ satisfying the axiom of ([39] 2.1.2). Hence CZ is a rigid abelian
tensor category.

Since τn is σn-semi-linear, we have End(idCZ) ≃ L0. The forgetful tensor functor CZ → C is exact and
faithful. Hence the fiber functor ω of C defines a fiber functor ω : CΓ → VecL ([40] 3.1). Then the assertion
follows from ([39] 1.10-1.13, see also [40] footnote 12).

(ii) It suffices to construct an equivalence of tensor categories

(3.6.5.2) Ψ : RepL(H)Z
∼−→ Rep◦

L,σ(H(L) ⋊ Z).
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Let ((V, ρ), {cn}) be an object of RepL(H)Z. Then we define a representation (V, ρ̃) of Rep◦
L,σ(H(L) ⋊Z),

for any element (h, n) ∈ H(L) ⋊ Z, by letting ρ̃(h, n) to be the composition

(3.6.5.3) σn(ω(V, ρ))
α−1
n−−→ ω(τn(V, ρ))

h◦id−−−→ ω(τn(V, ρ))
cn−→ ω(V, ρ).

Using the cocycle condition, one checks that the above formula defines a representation. Then we obtain the
functor Ψ (3.6.5.2). By 3.6.4, the canonical morphism

HomH(ρ, ρ′)→ HomH(L)(ρ(L), ρ′(L))

is bijective. In view of (3.6.5.3), we deduce that Ψ is fully faithful. We leave the verification of the essential
surjectivity to readers. �

3.6.6. The Frobenius pullback functor F ∗
Gr = F+

Gr /k ◦σ∗ : SatG
∼−→ SatG satisfies H∗ ◦F ∗

Gr ≃ σ ◦H∗. We take
for every integer n the tensor equivalence τn on SatG to be |n|-th composition of F ∗

Gr (or a quasi-inverse of
F ∗

Gr if n < 0) (3.6.2). These functors satisfy the assumption of 3.6.2. With the notation of 3.6.2, F - SatG is
equivalent to the category SatZG. In this case, we obtain the following result by 3.6.5.

Theorem 3.6.7. (i) The category F - SatG is a Tannakian category over L0, neutralized by the fiber functor
H∗ over L. If t = s and σ = idL, then F - SatG is a neutral Tannakian category.

(ii) There exists a canonical equivalence of tensor categories

(3.6.7.1) F - SatG
∼−→ Rep◦

L,σ(Ǧ(L) ⋊ Z),

compatible with fiber functors.

3.6.8. We work with the arithmetic tuple TF = {k,R,K,L, s, idL} and we suppose there exists a square-
root p1/2 of p in L. This allows to define half Tate twist functor (n2 ) for n ∈ Z by sending each object
M ∈ D(X/LF ), equipped with the Frobenius structure Φ, to (M , p−sn/2 · Φ).

For µ ∈ X•(T ), we denote by ICWeil
µ = jµ,!+(LGrµ)[2ρ(µ)](ρ(µ)) the holonomic module in F - SatG with

weight 0, and by S the full subcategory of F - SatG consisting of direct sums of ICWeil
µ ’s.

The category S is closed under the convolution on F - SatG, i.e. ICWeil
λ ⋆ ICWeil

µ is isomorphic to a direct

sum of ICWeil
ν . Indeed, by proposition 3.4.3(ii), the Frobenius acts on the total cohomology H∗(ICWeil

µ ) by a
diagonalizable automorphism with eigenvalues qn/2, n ∈ Z. Since H∗ is compatible with Frobenius structure
(3.3.4), so is the Frobenius action on H∗(ICWeil

λ ⋆ ICWeil
µ ). We have a decomposition ICλ ⋆ ICµ ≃ ⊕ ICν . Then

the claim follows from the fact that the the action of Frobenius on cohomology determines the isomorphism
class of an object of F - SatG whose underlying holonomic module is isomorphic to a direct sum of ICν ’s.

The canonical functor F - SatG → SatG induces an equivalence of tensor categories S ∼−→ SatG. In
particular, we obtain equivalences of tensor categories

(3.6.8.1) Sat : RepL(Ǧ) ≃ SatG ≃ S.
3.6.9. In the end, we briefly review the action of outer automorphism group of G on the Satake category
SatG (resp. S).

Let (C, ω) be a Tannakian category over L and H the associated Tannakian group. We denote by
Aut⊗(C, ω) the set of isomorphism classes of pairs (τ, α) of a tensor equivalence τ : C ∼−→ C and an isomorphism
of functors α : ω

∼−→ ω ◦ τ . This set has a natural group structure. A similar construction as in 3.6.2 defines
a canonical morphism Aut⊗(C, ω)→ Aut(H), which is an isomorphism ([52] lemma B.1). We apply this to
the Satake category S (or SatG) equipped with the fiber functor H∗. The action of Aut(G) on GrG induces
an action on (S,H∗), and therefore an action of Aut(G) on Ǧ, i.e. a homomorphism ι : Aut(G)→ Aut(Ǧ).

Lemma 3.6.10. There is a natural pinning (B̌, Ť , N) of Ǧ such that that map ι factors as Aut(G) ։

Out(G)
∼−→ Aut†(Ǧ, B̌, Ť , N) ⊂ Aut(Ǧ).

The lemma can be shown in the same way as in ([52] lemma B.2 or [76] lemma A.6). In particular, for
σ ∈ Aut(G) and V ∈ Rep(Ǧ), we have σ∗ Sat(V ) ≃ Sat(ι(σ)V ).
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4. Bessel F -isocrystals for reductive groups

In this section, we construct Bessel F -isocrystals for reductive groups and calculate their monodromy
groups. We use notations from 1.3.8, with k being a finite field of q = ps elements. We assume moreover
that there exists an element π ∈ K satisfying πp−1 = −p and a square root of p in K. We fix an arithmetic
base tuple {k = Fq, R,K,L, s, idL} (2.3.1) and an isomorphism K ≃ C (in order to talk about weight).

We fix {0,∞} ⊂ P1 (over some base that we will specify in each subsection), and set X = P1 − {0,∞}.
Although X ≃ Gm, it is more convenient to regard X as an algebraic curve equipped with a simply transitive
action of Gm.

Throughout this section, let G be a split reductive group (over some base). We fix a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. Let U ⊂ B be the unipotent radical of B, and Uop ⊂ Bop the opposite
Borel and its unipotent radical. Let Tad ⊂ Bad ⊂ Gad denote the quotients of T ⊂ B ⊂ G by the center
Z(G) of G. We denote by (Ǧ, B̌, Ť ) the Langlands dual group of G over L, constructed by the geometric
Satake equivalence (3.5).

4.1. Kloosterman F -isocrystals for reductive groups. In this subsection, we follow the method of
Heinloth-Ngô-Yun [52] to produce overconvergent F -isocrystals on X by applying the geometric Langlands
correspondence.

We work with schemes over k. We will consider with both geometric coefficients and arithmetic coefficients,
but for simplicity, we omit LN from the notation Hol(−/LN),D(−/LN) and L from RepL(−).

4.1.1. Let G = G× P1. For a coordinate x on P1, so y = x−1 is a local coordinate around∞, we denote by

I(0) = {g ∈ G(kJyK) | g(0) ∈ B} the Iwahori subgroup,

I(1) = {g ∈ G(kJyK) | g(0) ∈ U} the unipotent radical of I(0),

Z(G)(1) = {g ∈ Z(G)(kJyK) | g(0) ≡ 1 mod y},
I(2) = Z(G)(1)[I(1), I(1)],

I(i)op ⊂ G(kJxK) the analogous groups obtained by opposite Borel subgroup.

If G is semisimple, I(2) = [I(1), I(1)]. On the other hand, if G is a torus, then I(2) = I(1). (So our definition
of I(2) is slightly different from [52] 1.2 when G is not semisimple, but for G = GLn coincides with the one
in [52] 3.1.) These groups are independent of the choice of x.

By abuse of notations, we use the same notations for the corresponding (ind)-group schemes over k. Then

(4.1.1.1) I(1)/I(2) ≃
⊕

α affine simple

Uα

where Uα(k) ⊂ G(kJsK) is the root subgroup corresponding to α. We also write

Ω = NG(k((x)))(I(0)op)/I(0)op,

which is regarded as a discrete group over k.
We denote by G(m,n) the group scheme over P1 such that ([52] 1.2)

G(m,n)|X = G×X, G(m,n)(O0) = I(m)op ⊂ G(O0), G(m,n)(O∞) = I(n) ⊂ G(O∞).

We denote by BunG(m,n) the moduli stack of G(m,n)-bundles on P1. Let Bun0
G(m,n) denote its connected

component containing the trivial G(m,n)-bundle ⋆ : Spec(k) → BunG(m,n). For each γ ∈ Ω, there is a
canonical isomorphism Hkγ : BunG(0,n) ≃ BunG(0,n) given by the Hecke modification of G(0, n)-bundles at
0 ∈ P1 corresponding to γ ([52] Corollary 1.2). This induces a canonical bijection between Ω and the set
of connected components of BunG(0,n) (and therefore all BunG(m,n)). Let BunγG(m,n) denote the connected
component corresponding to γ under the bijection. For γ ∈ Ω, let iγ = Hkγ(⋆) : Spec(k)→ BunγG(0,n).

There is also the action of I(1)/I(2) on BunG(0,2) by modifying G(0, 2)-bundles at ∞. Let

(4.1.1.2) j : Ω× I(1)/I(2)→ BunG(0,2),
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be the open immersion of the big cell, defined by applying the action of I(1)/I(2)×Ω to the trivial G(0, 2)-
bundle ([52] Corollary 1.3). Let jγ : I(1)/I(2) → BunγG(0,2) denote its restriction to the component corre-
sponding to γ.

4.1.2. The stack of Hecke modifications of G(m,n)-torsors (over X) is:

HeckeXG(m,n)(S) :=

{
(E1,E2, x, β)

∣∣∣∣
Ei ∈ BunG(m,n)(S), x : S → X

β : E1|XS−Γx
∼−→ E2|XS−Γx

}
.

There exist natural morphisms

(4.1.2.1) HeckeXG(m,n)

pr1

xx♣♣♣
♣♣
♣♣
♣♣
♣♣ pr2

''PP
PP

PP
PP

PP
PP

q // X

BunG(m,n) BunG(m,n)×X,

where pr1 (resp. pr2, resp. q) sends (E1,E2, x, β) to E1 (resp. (E2, x), resp. x).
Following [52], we denote by GR the Beilinson-Drinfeld Grassmannian of G(m,n) with modifications on

X . Note that GR ≃ GrG,X ≃ GrG×X and therefore is independent of (m,n). There exists a smooth atlas
̟ : U → BunG(m,n) such that

U ×BunG(m,n),pr1
HeckeXG(m,n) ≃ U ×GR,(4.1.2.2)

(U ×Gm)×(BunG(m,n) ×X),pr2
HeckeXG(m,n) ≃ U ×GR .(4.1.2.3)

For V ∈ Rep(Ǧ), we associate a holonomic module Sat(V ) on GrG by the geometric Satake equivalence
(3.6.8.1). We denote abusively by ICV the holonomic module on HeckeXG(m,n) defined by smooth descent of
KU×X ⊠ Sat(V ) on U ×X ×GrG (supported in a subscheme U ×X ×GrG,V ). Then ICV is supported in a
substack HeckeXG(m,n),V of HeckeXG(m,n).

The geometric Hecke operators is defined as a functor

Hk : Rep(Ǧ)×D(BunG(m,n)) → D(BunG(m,n)×X),(4.1.2.4)

(V,M ) 7→ HkV (M ) := pr2,!

(
pr+

1,V (M )⊗ ICV
)
.

Here pr1,V : HeckeXG(m,n),V → BunG(m,n) and pr2 |HeckeX
G(m,n),V

: HeckeXG(m,n),V → BunG(m,n)×X are

schematic (4.1.2.2, 4.1.2.3), which allows us to apply cohomological functors of pr1,V , pr2 (2.8.8).
We call a tensor functor

E : Rep(Ǧ)→ Sm(X/L) (resp. Sm(X/LF ))

Ǧ-valued overconvergent isocrystal (resp. F -isocrystal) E on X . We denote by EV its value on V ∈ Rep(Ǧ).
A Hecke eigen-module with eigenvalue E is a holonomic module M on BunG(m,n) together with isomorphisms

HkV (M )
∼−→M ⊠ EV , V ∈ Rep(Ǧ),

which are compatible with tensor structure on Rep(Ǧ) and composition of Hecke operator. We refer to [17,
5.4.2] for the precise definition and detailed discussions.

4.1.3. We take a non-trivial additive character ψ : Fp → K× and denote by π ∈ K the associated element
satisfying πp−1 = −p (2.1.5). Let Aψ be the Dwork F -isocrystal on A1 (2.1.5).

We fix a generic linear function φ of I(1)/I(2), that is, a homomorphism φ : I(1)/I(2)→ A1 of algebraic
group over k whose restriction to each Uα is an isomorphism

(4.1.3.1) φα := φ|Uα : Uα ≃ A1.
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Let Aψφ = φ+(Aψ). (Note that our notation is slightly abusive as this sheaf depends only on the character
ψ ◦ trk/Fp ◦φ of I(1)/I(2) as a p-group). We denote by Hol(BunG(0,2))I(1)/I(2),Aψφ the category of holonomic
modules on BunG(0,2) which are (I(1)/I(2),Aψφ)-equivariant.

By repeating the argument of ([52] 2.3), we obtain a parallel result for holonomic modules.

Lemma 4.1.4 ([52] 2.3). (i) The canonical morphism jγ,!(Aψφ)
∼−→ jγ,+(Aψφ) is an isomorphism.

(ii) The functor

Hol(X) → Hol(BunγG(0,2)×X)I(1)/I(2),Aψφ

M 7→ jγ,!(Aψφ) ⊠ M

is an equivalence of categories, with a quasi-inverse given by

N 7→ (iγ × idX)+(N ) ≃ (iγ × idX)!(N ).

We denote by Aψφ the object of Hol(BunG(0,2))I(1),Aψφ defined by (jγ,!(Aψφ)[dim BunG(0,2)])γ∈Ω.

Theorem 4.1.5. (i) For (m,n) = (0, 2), the holonomic module Aψφ (4.1.4) is a Hecke eigen-module with

Hecke eigenvalue a Ǧ-valued overconvergent F -isocrystal

(4.1.5.1) Klrig

Ǧ
(ψφ) : Rep(Ǧ)→ Sm(X/LF ).

(ii) For every representation V of Ǧ, Klrig

Ǧ,V
(ψφ) is pure of weight zero.

If ψ (resp. ψ and φ) is clear from the context, we simply write Klrig

Ǧ
(ψφ) by Klrig

Ǧ
(φ) (resp. Klrig

Ǧ
). In the

remainder of this section, we prove the above theorem by repeating the strategy in the ℓ-adic case, following
[52]. The first step is to show holonomicity.

Lemma 4.1.6. For every V ∈ Rep(Ǧ), the complex HkV (Aψφ)[1] is holonomic.

Proof. For γ ∈ Ω, we denote by jγ : I(1)/I(2)→ BunG(0,2) the open immersion and by j′
γ : pr−1

1,V (I(1)/I(2))→
HeckeXG(0,2) the base change of jγ to Hecke stack. Then the restriction of pr2 to pr−1

1,V (I(1)/I(2))

pr2 : pr−1
1,V (I(1)/I(2))→ BunG(0,2)×X

is affine ([52] remark 4.2). We claim that the canonical morphism

(4.1.6.1) j′
γ,!(pr+

1,V (Aψφ)⊗ ICV )
∼−→ j′

γ,+(pr+
1,V (Aψφ)⊗ ICV )

is an isomorphism. Indeed, since both jγ,! and jγ,+ commute with smooth base change, it suffices to show the
isomorphism after taking inverse image to U×GR (4.1.2.2). In this case, the morphism pr1,V corresponds to

the projection U ×GR → U . Then the isomorphism (4.1.6.1) follows from jγ,!(Aψφ)
∼−→ jγ,+(Aψφ) (4.1.4).

Then we deduce that j′
γ,!(pr+

1,V (Aψφ)⊗ ICV )[1] is holonomic and we have

HkV (Aψφ)|Bunγ
G(0,2)

×X ≃ (pr2 ◦j′
γ)!(pr+

1,V (Aψφ)⊗ ICV )(4.1.6.2)

≃ (pr2 ◦j′
γ)+(pr+

1,V (Aψφ)⊗ ICV ).

Since (pr2 ◦j′
γ) is affine, (pr2 ◦j′

γ)+ (resp. (pr2 ◦j′
γ)!) is right (resp. left) exact ([6] 1.3.13). Then the assertion

follows. �

4.1.7. Proof of 4.1.5(i). The action of I(1)/I(2) on BunG(0,2) extends to an action on the diagram (4.1.2.1).
For each γ ∈ Ω, HkV (Aψφ)|Bunγ

G(0,2)
×X is (I(1)/I(2),Aψφ)-equivariant. By 4.1.4, for each γ ∈ Ω, we have

HkV (Aψφ)|Bunγ
G(0,2)

×X ≃ Aγψφ ⊠ EγV ,

where EγV [1] is a holonomic module on X . By the same argument as in ([52] 4.2), we show that EγV is
canonically isomorphic to E0

V . So we will drop the index γ in the following.
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Since ICV is ULA with respect to the projection GR ≃ GrG,X → X (3.2.2), we have Φ(ICV ) = 0 (2.8.6).
Since taking vanishing cycle functor commutes with smooth pull-back and proper push-forward ([4] 2.6), we
deduce that

Aψφ ⊠ Φ(EV ) ≃ Φ(Aψφ ⊠ EV ) ≃ pr2,!(Φ(pr+
1,V (Aψφ)⊗ ICV )) ≃ pr2,!(pr+

1,V (Aψφ)⊗ Φ(ICV )) = 0.

By 2.8.7, EV is smooth. Then the assertion follows. �

4.1.8. Proof of 4.1.5(ii). In the following, we present a concrete way to calculate the Hecke eigenvalue.
We denote by ⋆ ∈ BunG(0,2) the base point corresponding to the trivial bundle G(0, 2). The base change

of convolution diagram (4.1.2.1) to ⋆×X can be written as

(4.1.8.1) GR
p1

zzttt
tt
tt
tt
t

p2

!!❇
❇❇

❇❇
❇❇

❇

BunG(0,2) X.

We denote by GRV ⊂ GR ≃ Gr×X the support of Sat(V ) ⊠ LX , by GR◦ the inverse image of the big cell
j(I(1)/I(2)× Ω) by p1, and by GR◦

V = GRV ∩GR◦. Consider the following diagram:

(4.1.8.2) GR◦
V

p◦
1,V

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

� �

j′
//

p◦
2

��

GRV

p1,V
zzttt

tt
tt
tt
t

p2
!!❈

❈❈
❈❈

❈❈
❈❈

A1 I(1)/I(2)× Ω
φoo � � j // BunG(0,2) X.

By the base change and (4.1.6.2), we have

(4.1.8.3) EV ≃ p◦
2,!(p

◦,+
1,V (Aψφ)⊗ ICV |GR◦).

By cleanness (4.1.6.1), EV can be calculated by either + or ! pushforward. More precisely, the following
canonical morphism is an isomorphism

(4.1.8.4) p◦
2,!(p

◦,+
1,V (Aψφ)⊗ ICV |GR◦)

∼−→ p◦
2,+(p◦,+

1,V (Aψφ)⊗ ICV |GR◦).

In particular, the overconvergent F -isocrystal EV is pure of weight zero. Theorem 4.1.5(ii) follows. �

4.1.9. There is the following “trivial” functoriality between Kloosterman F -isocrystals. We fix ψ. Let
G′ → G be a homomorphism of reductive groups induces the same adjoint quotient G′

ad ≃ Gad. Then
it induces an isomorphism I ′(1)/I ′(2) ≃ I(1)/I(2), and therefore we can abusively use the notation φ to
denote the “same” linear functions on these spaces under the identification. On the other hand, it induces
a homomorphism of dual groups Ǧ → Ǧ′ and therefore a tensor functor Res : Rep(Ǧ′) → Rep(Ǧ) by
restrictions. Then Klrig

Ǧ′
is the push-out of Klrig

Ǧ
along Ǧ → Ǧ′. Concretely, this means that there is a

canonical isomorphism of tensor functors (we omit both ψ and φ from the notations)

Klrig

Ǧ′
≃ Klrig

Ǧ
◦Res : Rep(Ǧ′)→ Sm(X/LF )

This allows use to reduce certain questions of Klrig

Ǧ
to the case when Ǧ is simply-connected. We also obtain

the following exceptional isomorphisms (due to coincidences of Dynkin diagrams in low rank cases)

Klrig
SL2,Sym2 ≃ Klrig

SO3,Std,(4.1.9.1)

Klrig
Sp4,ker(∧2→1) ≃ Klrig

SO5,Std,(4.1.9.2)

Klrig
SO4,Std ≃ Klrig

SL2 × SL2,Std⊠ Std,(4.1.9.3)

Klrig
SO6,Std ≃ Klrig

SL4,∧2 ,(4.1.9.4)



BESSEL F -ISOCRYSTALS FOR REDUCTIVE GROUPS 41

where 1 denotes the trivial representation, Std the standard representation, Sym• and ∧• the symmetric
powers and wedge powers of the standard representation.

4.1.10. There is a natural action of Gm on X ⊂ P1. On the other hand, the group of automorphisms
Aut(G,B, T ) acts on G(m,n). It follows that Gm × Aut(G,B, T ) acts on (4.1.2.1), and therefore on
(4.1.8.1). It also acts on I(1)/I(2)× Ω as group automorphisms such that the open embedding (4.1.1.2) is
Gm × Aut(G,B, T )-equivariant. Recall that the natural action of Aut(G) on the Satake category induces
a homomorphism ι : Aut(G) → Aut(Ǧ, B̌, Ť , N) (3.6.10). Given δ = (a, σ) ∈ (Gm × Aut(G,B, T ))(k) and
V ∈ Rep(Ǧ), then there is a canonical isomorphism

(4.1.10.1) Klrig

Ǧ,V
(ψ(φ ◦ δ)) ≃ a+ Klrig

Ǧ,ι(σ−1)V
(ψφ),

given by the composition

p2,!(p
+
1,V (j!(φ ◦ δ)+

Aψ)⊗ ICV ) ≃ p2,!(δ+p+
1,V (j!φ

+
Aψ)⊗ ICV )

≃ a+p2,!(p
+
1,V (j!φ

+
Aψ)⊗ (δ−1)+ ICV )

≃ a+p2,!(p
+
1,V (j!φ

+
Aψ)⊗ (ICι(σ−1)V )).

In particular, given t ∈ Tad(k) ⊂ Aut(G,B, T ), the element δ = (1, t) induces an isomorphism

(4.1.10.2) Klrig

Ǧ
(ψ(φ ◦ δ)) ≃ Klrig

Ǧ
(ψφ).

That is, Klrig

Ǧ
(ψφ) depends only on the Tad-orbit of φ. On the other hand, let a be an element of Gm(k), ψa

the additive character defined by ψa(−) = ψ(a−), ta ∈ Tad the unique element such that α(ta) = a for every
simple root α of G and h the Coxeter number of G. By applying δ = (ah, ta) in (4.1.10.1), we deduce that

(4.1.10.3) KlǦ(ψaφ) ≃ KlǦ(ψ(φ ◦ δ)) ≃ (ah)+ KlǦ(ψφ).

In addition, given a generic linear function φ of I(1)/I(2), the collection {φα} from (4.1.3.1) for those
α being simple roots of G, provide a pinning of (G,B, T ), and therefore induces a splitting Out(G) →
Aut(G,B, T ). If G is almost simple, not of type A2n, then every element σ ∈ Out(G) fixes the remaining φα.
If G is of type A2n, the unique non-trivial element σ0 ∈ Out(G) send the remaining φα to −φα. Therefore,
if either Ǧ is almost simple not of type A2n, or if p = 2, then for every σ ∈ Out(G), we have φ ◦ (1, σ) = φ
and a canonical isomorphism

(4.1.10.4) Klrig

Ǧ,V
(ψφ) ≃ Klrig

Ǧ,ι(σ−1)V
(ψφ),

compatible with the tensor structures. On the other hand, if G is almost simple of A2n and if p > 2, then
the element δ = (−1, σ0) induces a canonical isomorphism (4.1.10.1)

(4.1.10.5) Klrig

Ǧ,V
(ψφ) ≃ (−1)+ Klrig

Ǧ,V ∨
(ψφ),

where V ∨ denotes the dual representation of V , compatible with the tensor structures.

4.1.11. There is a variant with multiplicative characters, which slightly generalizes Aψφ. Note that T ≃
I(0)op/I(1)op. Let

T̃ = NG(k((x)))(I(0)op)/I(1)op,

which fits into the exact sequence 1 → T → T̃ → Ω → 1. The group T̃ acts on BunG(1,2) by modifying
G(1, 2)-bundles at 0. Then the analogue of (4.1.1.2) in this case is the open embedding

j : T̃ × I(1)/I(2)→ BunG(1,2) .

We choose a splitting s : T ⋊ Ω
∼−→ T̃ . For γ ∈ Ω, j sends T × γ × I(1)/I(2) to the connected component

BunγG(1,2) and we denote it by

jγ : T × γ × I(1)/I(2)→ BunγG(1,2) .
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A character χ : T (k)→ K× defines a rank one overconvergent F -isocrystal Kχ on the torus T (cf. 2.1.5(ii)).
If χγ : T (k) → K× denotes the character defined by χγ(t) = χ(Adγ(t)), then lemma 4.1.4 also holds for
(T × I(1)/I(2),Kχγ ⊠Aϕ)-equivariant holonomic modules on BunγG(1,2).

We denote by Aψφ,χ,s the holonomic module on BunG(1,2) defined by (jγ,!(Kχγ⊠Aψφ)[dim BunG(1,2)])γ∈Ω.
By replacing (0, 2) by (1, 2) in theorem 4.1.5 and repeating the arguments, we obtain a Ǧ-valued overcon-
vergent F -isocrystal

Klrig

Ǧ
(ψφ, χ, s) : Rep(Ǧ)→ Sm(X/LF ),

such that for every representation V of Ǧ, Klrig

Ǧ,V
(ψφ, χ) is pure of weight zero. Note that by (4.1.8.3),

Klrig

Ǧ
(ψφ) = Klrig

Ǧ
(ψφ,1, s) for the trivial character 1 and does not depend on the choice of the splitting s.

4.1.12. Let ℓ be a prime different from p. We take an isomorphism ι : K ≃ Qℓ. Using the ℓ-adic Artin-
Schreier sheaf ASψ on A1

k associated to ψ, and the Kummer local system on Gm,k associated to χ, Heinloth,
Ngô and Yun construct a ℓ-adic Ǧ local system

(4.1.12.1) Klét,ℓ

Ǧ
(ψφ, χ, s) : Rep(Ǧ)→ LocSysm(X).

By the trace formula ([45], [6] 4.3.9) and Gabber-Fujiwara’s ℓ-independence ([6] 4.3.11), the Frobenius traces
of Klét,ℓ

Ǧ,V
(ψφ, χ, s) and of Klrig

Ǧ,V
(ψφ, χ, s) at each closed point of Xk coincide via ι.

When χ is the trivial character, we omit χ and s from the notation.

4.1.13. There is a variant of Heinloth-Ngô-Yun’s construction using algebraic D-modules instead of ℓ-adic
sheaves to produce a Ǧ-connection on XK in zero characteristic ([52] 2.6). Note that all the geometric
objects used in the above construction can be also defined over K. We choose a generic linear function
φ : I(1)/I(2)→ A1 over K and a linear function χ : Lie(T )→ K. Via an isomorphism TK ≃ Grm,K ,

⊠
r
i=1

(
K〈x, x−1, ∂x〉/(x∂x − χ(1i))

)

defines an algebraic D-module on TK , which is independent of the choice of trivialisation that we denote by
Kχ. We replace the Artin-Schreier sheaf ASψ on A1

k by the exponential D-module

(4.1.13.1) Eλ = K〈x, ∂x〉/(∂x − λ), λ ∈ K,
on A1

K . We choose a splitting s : T ⋊ Ω ≃ T̃ over K. Then we obtain a tensor functor

(4.1.13.2) KldR
Ǧ

(λφ, χ, s) : Rep(Ǧ)→ Conn(XK),

where the target denotes the category of vector bundles with connection on XK . Here we identify homo-
morphisms φ : I(1)/I(2) → A1 of algebraic group over K with HomK(Lie I(1)/I(2),K) via differentiation,
so λφ is regarded as a linear function on Lie(I(1)/I(2)).

When χ = 0, we omit χ and s from the notation and KldR
Ǧ

(λφ) is constructed in the same way as Klrig

Ǧ
(φ)

by Eλ.

4.2. Comparison between KldR
Ǧ

and Klrig

Ǧ
. In this subsection, we work with schemes over R and we keep

the notation of 4.1. We say a linear function φ : I(1)/I(2) → A1 over R is generic, if it is generic modulo
the maximal ideal of R. We take such a function φ and we denote abusively its base change to k (resp. K)
by φ. Let χ : T (k)→ K× be a character. There exists a homomorphism χ : T → Gm such that χ(x̃) = χ(x)
for x ∈ T (k) and some lifting x̃ of x in T (K). We denote abusively χ : Lie(T )→ K the differential of χ. We
choose a splitting s : T × Ω ≃ T̃ over R and we denote abusively its base change to k (resp. K) by s.

We denote the sheaf O
P̂1,Q

(†{0,∞}) (2.3) by OX for short. The following theorem is our main result of
this subsection.

Theorem 4.2.1. We set L = K. For every representation V of Ǧ, there exists a canonical isomorphism of
OX-modules with connection (2.2.2)

(4.2.1.1) ιV : (KldR
Ǧ,V

(−πφ, χ, s))† ∼−→ Klrig

Ǧ,V
(φ, χ, s),
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compatible with tensor structures.

In the following, we will present the proof in the case where χ is trivial for simplicity and the general case
follows from the same argument. We will omit −πφ, χ, φ, χ, s from the notation.

4.2.2. We first consider the case where V is associated to a minuscule coweight λ. In this case, Grλ is
isomorphic to a partial flag variety and is smooth and projective, and ICV is isomorphic to KGrλ [dim Grλ]
supported on GRV ≃ Grλ×X . We show the above theorem by comparing the relative twisted de Rham
cohomologies and the relative twisted rigid cohomologies along the morphism

p◦
2 : GR◦

V → X

in (4.1.8.2). To do it, we first show that the associated de Rham and rigid cohomologies at each fiber of X
are isomorphic.

We regard (4.1.8.2) as a diagram of schemes over Spec(R). We denote M := p+
1 (E−π)[dim Grλ], which is

a line bundle with connection on GR◦
V,K . With the notation of 2.2.2, the bundle with connection M † on

(GR◦
V,K)an is overconvergent and underlies to the arithmetic D-module p+

1 (Aψ)[dim Grλ] on GR◦
V,k, denoted

by M .

Lemma 4.2.3. Let s be a point of X(k). We choose a lifting in X(R) and still denote it by s. The
specialisation morphism (2.2.3.3) on the fiber GR◦

V,s of GR◦
V above s

(4.2.3.1) H∗
dR((GR◦

V,s)K ,Ms)→ H∗
rig((GR◦

V,s)k,Ms)

is an isomorphism. Moreover, these cohomology groups vanish except for the middle degree 0.

Proof. We set Y = GR◦
V,s and we write M (resp. M ) instead of Ms (resp. Ms). Since Y admits a smooth

compactification Grλ whose boundary is a divisor, we can calculate above cohomology groups by direct image
of corresponding algebraic (resp. arithmetic) D-modules (2.4.1). Note that KldR

Ǧ,V
(resp. Klrig

Ǧ,V
) is a bundle

with connection (resp. overconvergent F -isocrystal) of rank dim V . By the base change, cohomology groups
in (4.2.3.1) vanish except for the middle degree and have dimension dim V in the middle degree. By (4.1.8.4),
the canonical morphism ιrig : H∗

rig,c(Yk,M )→ H∗
rig(Yk,M ) is an isomorphism. In view of proposition 2.2.5,

we deduce that the specialisation morphism (4.2.3.1) is surjective. Then the assertion follows. �

4.2.4. Proof of theorem 4.2.1 in the minuscule case. Now we use the relative specialization morphism
(2.3.7.2) to compare (KldR

Ǧ,V
)† and Klrig

Ǧ,V
. Let GrP1 → P1 be the Beilinson–Drinfeld Grassmannian of G over

P1 and ̟ : Grλ,P1 → P1 the closed subscheme associated to λ. Note that ̟ is a locally trivial fibration over
P1 with smooth projective fibers Grλ and defines a good compactification of p◦

2 (2.3.7).
We take again the notation of 2.3.7 for the smooth R-morphism p◦

2. We set A = Γ(X,OX), AK = A[ 1
p ],

A0 = Â[ 1
p ] the ring of analytic functions on X̂rig and A† = Γ(P1

k,OGm) the ring of analytic functions on

P̂1 overconvergent along {0,∞}. We have inclusions AK ⊂ A† ⊂ A0. If DXK denotes the ring of algebraic
differential operators on XK , there exists a canonical DXK -linear specialization morphism (2.3.7.2)

(4.2.4.1) Γ(XK ,KldR
Ǧ,V

)→ Γ(Xk,Klrig

Ǧ,V
),

where the left (resp. right) hand side is coherent over AK (resp. A†). The above morphism induces a
horizontal A†-linear morphism

ιV : Γ(XK ,KldR
Ǧ,V

)⊗AK A† → Γ(Xk,Klrig

Ǧ,V
),

which gives rise to the morphism (4.2.1.1). Recall that the homomorphism A† → A0 is faithfully flat ([21]
4.3.10). To prove ιV is an isomorphism, it suffices to show that the induced horizontal A0-linear morphism:

(4.2.4.2) ιV ⊗A† A0 : Γ(XK ,KldR
Ǧ,V

)⊗AK A0 → Γ(Xk,Klrig

Ǧ,V
)⊗A† A0
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is an isomorphism. Let Â → R be a continuous homomorphism and s : A → R the associated R-point of
Gm. By (2.3.4.2) and the base change, the fiber ι ⊗A† K coincides with the morphism (4.2.3.1) associated
to the point s ∈ X(R) and is an isomorphism (4.2.3). Since both sides of (4.2.4.2) are coherent A0-modules,
the morphism ιV ⊗A† A0 is an isomorphism and the assertion follows. �

4.2.5. Next, we consider the case where V is associated to the quasi-minuscule coweight λ. In this case,
Gr≤λ contains a smooth open subscheme Grλ whose complement is isomorphic to Spec(R), and admits
a desingularisation G̃r≤λ (cf. [69] § 7). We take an isomorphism GRV ≃ X × Gr≤λ and set GR◦◦

V =
GR◦

V ∩(X × Grλ) to be the smooth locus of GR◦
V (4.1.8). We denote by j : GR◦◦

V → GR◦
V the open

immersion and by

(4.2.5.1) τ = p◦
2 ◦ j : GR◦◦

V → X

the canonical morphism, which admits a good compactification G̃r≤λ × P1 → P1 in the sense of 2.3.7.
We denote by M the line bundle with connection p+

1 (E−π)[dim Grλ]|GR◦◦
V,K

and by M the smooth arith-

metic D-module p+
1 (Aψ)[dim Grλ]|GR◦◦

V,k
. The holonomic module ICV is constant on GR◦◦

V . Then we deduce
that

j!+(M) ≃ p+
1 (E−π)⊗ ICV |GR◦

V,K
, j!+(M ) ≃ p+

1 (Aψ)⊗ ICV |GR◦
V,k
.

Note that j!+(M)[1], j!+(M )[1] are holonomic.

Lemma 4.2.6. (i) The complex τk,+(M )[1] (resp. τK,+(M)[1]) is holonomic.
(ii) Let s be a point of X(k). We choose a lifting in X(R) and still denote it by s. If we denote by Ms

(resp. Ms) the +-pullback of M (resp. M ) along the fiber at s, then the specialisation morphism (2.2.3.3)

(4.2.6.1) H∗
dR((GR◦◦

V,s)K ,Ms)→ H∗
rig((GR◦◦

V,s)k,Ms)

induces an isomorphism

(4.2.6.2) H0
dR((GR◦

V,s)K , j!+(Ms))
∼−→ H0((GR◦

V,s)k, j!+(Ms)).

Proof. (i) Let i : Z → GR◦
V be the complement of GR◦◦

V in GR◦
V , which is isomorphic to X . Consider the

distinguished triangle on GR◦
≤λ,k

j!+(M )[1]→ j+(M )[1]→ C → .

By 2.6.2, C ≃ i!(j!+(M ))[2] has degree ≥ 0 and is supported on Z. Applying p◦
2,+ to the above triangle, we

obtain

p◦
2,+(j!+(M ))[1]→ τ+(M )[1]→ p◦

2,+(C)→,
where the first term is holonomic (cf. 4.1.6), and the second term has cohomological degrees ≤ 0 because τ
is affine and the last term has cohomological degrees ≥ 0 since p◦

2|Z is the identity. Then we deduce that
each term in the above triangle is holonomic.

(ii) We set Y = GR◦
V,s, U = GR◦◦

V,s and we write simply M (resp. M ) instead of Ms (resp. Ms). By apply-
ing the argument of (i), we deduce that the canonical morphism of cohomology groups H0(Yk, j!+(M )) →
H0

rig(Uk,M ) is injective. By a dual argument, we deduce that the canonical morphism H0
rig,c(Uk,M ) →

H0
c(Yk, j!+(M )) is surjective. In summary, we have a sequence:

(4.2.6.3) H0
rig,c(Uk,M ) ։ H0

c(Yk, j!+(M ))
∼−→ H0(Yk, j!+(M )) →֒ H0

rig(Uk,M ),

where the middle isomorphism is due to the cleanness (4.1.8.4) and the composition is the canonical morphism
ιrig.
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We construct an analogue sequence of (4.2.6.3) for de Rham cohomology ofM on UK . These two sequences
fit into a commutative diagram (2.2.5)

H0
dR,c(UK ,M) // // H0

dR,c(YK , j!+(M)) ∼ // H0
dR(YK , j!+(M)) �

� // H0
dR(Uk,M)

ρM

��
H0

rig,c(Uk,M ) // //

ρM,c

OO

H0
c(Yk, j!+(M )) ∼ // H0(Yk, j!+(M )) �

� // H0
rig(Uk,M )

Let E be the image of H0
rig,c(Uk,M ) → H0

dR(YK , j!+(M)). Then the specialisation morphism ρM sends E
surjectively to the subspace H0(Yk, j!+(M )). Since dimE ≤ dim H0

dR(YK , j!+(M)) = dim H0(Yk, j!+(M )),
we deduce that E = H0

dR(YK , j!+(M)) and that ρM induces an isomorphism (4.2.6.2). �

4.2.7. Proof of theorem 4.2.1 in the quasi-minuscule case. By 4.2.6(i), we have a diagram of DXK -modules

(4.2.7.1) Γ(XK ,KldR
Ǧ,V

) // Γ(XK , τK,+(M))

��
Γ(Xk,Klrig

Ǧ,V
) // Γ(Xk, τk,+(M ))

where the vertical arrow is the relative specialization morphism (2.3.7.2). Let U be an open dense subscheme
of Xk such that τk,+(M )|U is smooth, U the corresponding formal open subscheme of X̂ and Z = P1

k \ U .
We denote the sheaf of rings O

P̂1,Q
(†Z) byOU for short. By 4.2.6 and the same argument of 4.2.4, the above

diagram induces an injective morphism of OU -modules with connection (KldR
Ǧ,V

)†⊗OXOU → τ+(M )⊗OXOU
and then induces an isomorphism of OU -modules with connection:

(4.2.7.2) (KldR
Ǧ,V

)† ⊗OX OU
∼−→ Klrig

Ǧ,V
⊗OXOU .

In particular, the left hand side is overconvergent along Z. Since the convergency of an O
X̂rig -module with

connection can be checked by restricting to a dense open subscheme of Xk ([70] 2.16), the O
X̂rig -module with

connection (KldR
Ǧ,V

)†|
X̂rig is convergent. Then we deduce that the OX -module with connection (KldR

Ǧ,V
)† is

overconvergent along {0,∞}. The restriction functor Isoc†(Xk/K) → Isoc†(U/K) is fully faithful (cf. [60]
6.3.2). Then the isomorphism (4.2.7.2) gives rise to an isomorphism (4.2.1.1) and the assertion follows. �

4.2.8. In the end, we show the general case of theorem 4.2.1. Let V1, · · · , Vn be minuscule and quasi-
minuscule representations of Ǧ. Then we have a decomposition of representations

(4.2.8.1) V1 ⊗ V2 ⊗ · · · ⊗ Vn ≃
⊕

W∈Rep(Ǧ)

mWW,

where mW denotes the multiplicity of W . Each representation W of Rep(Ǧ) appears as a summand of the
above decomposition for some minuscule and quasi-minuscule representations V1, · · · , Vn.

Then we obtain the associated decomposition of bundles with connection on XK and overconvergent
F -isocrystals on XK respectively:

n⊗

i=1

KldR
Ǧ,Vi
≃

⊕

W∈Rep(Ǧ)

mW KldR
Ǧ,W

,(4.2.8.2)

n⊗

i=1

Klrig

Ǧ,Vi
≃

⊕

W∈Rep(Ǧ)

mW Klrig

Ǧ,W
.(4.2.8.3)
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Theorem 4.2.1 in the minuscule and quasi-minuscule cases provides an isomorphism of overconvergent
isocrystals

(4.2.8.4) (⊗ni=1 KldR
Ǧ,Vi

)† ∼−→ ⊗ni=1 Klrig

Ǧ,Vi
.

By ([20] 2.2.7(iii)), the connection on left hand side, restricted on each component (KldR
Ǧ,W

)†, is overconver-

gent. We denote abusively the associated overconvergent isocrystal on Xk by (KldR
Ǧ,W

)†.
The isomorphism (4.2.8.4) induces a commutative diagram

(4.2.8.5) End
Rep(Ǧ)(

⊗n
i=1 Vi)

KldR

Ǧ

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥ Klrig

Ǧ

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯

EndConn(XK)(
⊗n

i=1 KldR
Ǧ,Vi

) // EndSm(Xk/K)(
⊗n

i=1 Klrig

Ǧ,Vi
)

Indeed, choose a k-point s of Xk and a lift s̃ to X(K). The isomorphism (4.2.8.4) induces an isomorphism
between fibers (KldR

Ǧ,Vi
)
s̃

and (Klrig

Ǧ,Vi
)s. The composition of the functor KldR

Ǧ
(resp. Klrig

Ǧ
) with the fiber

functor at s̃ (resp. s) is the forgetful functor Rep(Ǧ)→ VecK . Since fiber functors are faithful, we deduce
the commutativity of (4.2.8.5) by considering their fibers.

If e denotes the idempotent of End
Rep(Ǧ)(⊗ni=1Vi) corresponding to a summand W , then its image via

left (resp. right) vertical arrow is the idempotent corresponding to KldR
Ǧ,W

(resp. Klrig

Ǧ,W
) (4.2.8.2, 4.2.8.3).

By (4.2.8.4) and (4.2.8.5), we deduce a canonical isomorphism of overconvergent isocrystals on Xk

ιW : (KldR
Ǧ,W

)† ∼−→ Klrig

Ǧ,W
.

One verifies that the above isomorphism is independent of the choice of idempotent e and then of the choice of
minuscule representations {Vi}ni=1. Isomorphisms ιW are compatible with tensor structures due to (4.2.8.4).
Now theorem 4.2.1 follows. �

4.3. Comparison between KldR
Ǧ

and BeǦ. In this subsection, we recall the Bessel connection BeǦ(ξ̌) on

X constructed by Frenkel and Gross [47] of Ǧ and identify it with KldR
Ǧ

(φ) (4.1.13).

We work with schemes over K. Let (ǧ, b̌, ť) denote the Lie algebras of (Ǧ, B̌, Ť ) over K.

4.3.1. Let AK denote the ring of algebraic functions of X . There exists a grading on the affine Lie algebra
ǧaff := ǧ ⊗ AK , which on ǧ-part is given by Adρ(Gm), and on AK -part is given by the ȟ-multiple of the
grading induced by the natural action of Gm on X . Here as before ρ ∈ X•(T )⊗Q is the half sum of positive
roots of G (and therefore is a cocharacter of Ǧad), and ȟ is the Coxeter number of Ǧ.

Let ǧaff(1) ⊂ ǧaff be the subspace of degree 1. Then

ǧaff(1) =
⊕

α̌ affine simple
ǧaff,α̌,

where ǧaff,α̌ is the root subspace corresponding to the affine simple root α̌ of ǧaff . Let ξ̌ ∈ ǧaff(1) be a generic

element, by which we mean each of its α̌-component ξ̌α̌ 6= 0. In [47], Frenkel and Gross defined a ǧ-valued
connection on the trivial Ǧ-bundle on X by the following formula:

(4.3.1.1) BeǦ(ξ̌) = d+ ξ̌
dx

x
.

Here x is a coordinate x : X ∪ {0} ≃ A1. Note that dx
x itself is independent of the choice of the coordinate

x, and is a generator of the module of log differentials on X ∪ {0} with logarithmic pole at 0.
We may write N =

∑
α̌ ξ̌α̌, where the sum is taken over simple roots of ǧ (instead of ǧaff). This is a

principal nilpotent element of ǧ. The remaining affine root subspaces are of the form xǧ−θ̌i
, where x is a
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coordinate as above and θ̌i is the highest root of the simple factor ǧi of ǧ. So we may write the sum of the
remaining affine root vectors as xE for some E ∈∑

ǧ−θ̌i
. Then the connection can be written as

(4.3.1.2) BeǦ(ξ̌) = d+ (N + xE)
dx

x
,

which is the form as used in [47]. In particular, this connection is regular singular with a principal unipotent
monodromy at 0. On the other hand, it has an irregular singularity at ∞, with maximal formal slope 1/ȟ
([47] §5).

We regard BeǦ(ξ̌) as a tensor functor from the category of representations of Ǧ to the category of bundles
with connection on X :

(4.3.1.3) BeǦ(ξ̌) : Rep(Ǧ)→ Conn(X).

4.3.2. We will identify KldR
Ǧ

(λφ) and BeǦ(ξ̌) as Ǧ-bundles with integrable connections on X . For this
purpose, we need to discuss how these connections depend on parameters. We identify the dual space g∗

aff

of gaff := g⊗AK with g∗ ⊗AK via the canonical residue pairing

(g⊗AK)⊗ (g∗ ⊗ ωX)→ K, (ξ ⊗ f, ξ̌ ⊗ g) = (ξ, ξ̌)Resx=∞fg
dx

x
.

Recall that λφ is a linear function Lie(I(1)/I(2))→ K. We identify HomK(Lie I(1)/I(2),K) with

g∗
aff(1) =

⊕

α affine simple

g∗
α.

where g∗
α ⊂ g∗

aff is the dual of the root subspace corresponding to α.
By (4.1.10.2) (applied to the D-module setting), KldR

Ǧ
(λφ) depends only on the Tad-orbit of this functional.

In addition, Tad-orbits of generic linear functions on Lie(I(1)/I(2)) are parameterized by the GIT quotient
g∗

aff(1)//Tad.
On the other hand, the group Gm × Aut(Ǧ, B̌, Ť ) acts on ǧaff preserving the grading. For δ̌ = (a, σ̌), a

simple gauge transform implies that the analogue of (4.1.10.1) holds, namely

(4.3.2.1) BeǦ,V (δ̌(ξ̌)) ≃ a+ BeǦ,σ̌V (ξ̌).

It follows that the analogue of (4.1.10.2) and of (4.1.10.3) also hold for Bessel connections. In particular,
BeǦ(ξ̌) only depends on the Ťad-orbit of ξ̌. Again, Ťad-orbits of generic ξ̌ are parameterized by the GIT
quotient ǧaff(1)//Ťad.

Here is the main theorem of this subsection.

Theorem 4.3.3. There exists a canonical isomorphism of affine schemes

(4.3.3.1) g∗
aff(1)//T

∼−→ ǧaff(1)//Ť ,

such that if the Tad-orbit through λφ and the Ťad-orbit through ξ̌ match under this isomorphism, then

KldR
Ǧ

(λφ) ≃ BeǦ(ξ̌)

as Ǧ-bundles with connection on X.

If Ǧ is of adjoint type, a weaker version of this theorem was the main result of [89].

4.3.4. We first explain the isomorphism (4.3.3.1). Let ωX denote the canonical bundle on X and by abuse
of notation, we sometimes also use it to denote the space of its global sections. Via the open embedding
jγ : I(1)/I(2) →֒ BunγG(0,2), we identify I(1)/I(2)× g∗

aff(1) with T ∗ BunγG(0,2) |jγ(I(1)/I(2)). The Hitchin map
(e.g. see [17] Sect. 2, and [89])

hcl : T ∗ BunγG(0,2) → Hitch(X) := Γ(X, c∗ ×Gm ωX) 4

4Here Γ(X, c∗ ×Gm ωX) denotes abusively the affine space associated to the K-vector space Γ(X, c∗ ×Gm ωX ).
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induces a closed embedding hcl : g∗
aff(1)//T →֒ Hitch(X), where c∗ := g∗//G is the GIT quotient of g∗ by the

adjoint action of G, equipped with a Gm-action induced by the natural Gm-action on g∗. (For an explicit
description of the image of the map when g is simple, see the discussions before [89] lemma 18).

On the other hand, there exists a canonical morphism

ǧaff(1)
dx

x
⊂ ǧ⊗ ωX → Γ(X, č×Gm ωX)

where č := ǧ//Ǧ, which also induces a closed embedding ǧaff(1)//Ť → Γ(X, č ×Gm ωX). The identifica-
tion (LieT )∗ = Lie Ť induces a canonical isomorphism c∗ ∼−→ č. One checks easily that there is a unique
isomorphism g∗

aff(1)//T
∼−→ ǧaff(1)//Ť that fits into the following commutative diagram

g∗
aff(1)//T ∼ //

� _

��

ǧaff(1)//Ť
� _

��
Γ(X, c∗ ×Gm ωX) ∼ // Γ(X, č×Gm ωX)

where the bottom isomorphism is induced by c∗ ∼−→ č.
In the case G and Ǧ are almost simple, unveiling the definition, we see that λφ and ξ̌ match to each other

if the following holds: Let r be the rank of G and Ǧ. Recall that the ring of invariant polynomials on g∗

(resp. ǧ) has a generator Pr (resp. P̌r), homogeneous of degree h = ȟ. We choose them to match each other
as functions on c∗ ≃ č. Then λφ matches ξ̌ if and only if

(4.3.4.1) λhPr(φ) = Pr(λφ) = P̌r(ξ̌).

This condition is independent of the choice of Pr and P̌r (as soon as they match to each other).
For concrete computations, it is convenient to fix a coordinate x ∈ A1 ⊂ P1, and a pinning N =

∑
α̌∈∆̌ ξ̌α̌

of (Ǧ, B̌, Ť ). Then we may rewrite (4.3.3.1) as an isomorphism

(4.3.4.2) g∗
aff(1)//T ≃ ǧaff(1)//Ť ≃ N + x

∑

i

ǧ−θ̌i
≃ x

∑

i

ǧ−θ̌i
.

4.3.5. We prove theorem 4.3.3 by quantizing (4.3.3.1) and applying the Galois-to-automorphic direction of
geometric Langlands correspondence. For this, we need to review the notion of ǧ-opers ([17] §3). By descent,
it suffices to prove the theorem after base change from K to K. So we assume that all the geometric objects
below are defined over K, and omit the subscript. Let Ǧad denote the adjoint group of Ǧ.

Let Y be a smooth curve over K. Let Opǧ(Y ) denote the moduli spaces of Ǧad-opers on Y ([17] 3.1.11).
By ([17] 3.1.11, 3.4.3), Opǧ(Y ) is an ind-affine scheme. There is a natural free and transitive action of the
(ind)-vector space Γ(Y, č ×Gm ωY ) on Opǧ(Y ) ([17] 3.1.9). This induces a natural filtration on the ring of
regular functions FunOpǧ(Y ), whose associated graded is the ring of regular functions FunΓ(Y, č×Gm ωY ).

Back to our case Y = X . We consider the subscheme of Opǧ := Opǧ(P1)(0,̟(0)),(∞,1/ȟ) ⊂ Opǧ(X), which

is the moduli of Ǧad-opers on X which are

• regular singular with principal unipotent monodromy at 0;
• possibly irregular of maximal formal slope ≤ 1/ȟ at ∞.

See the discussions before ([89] lemma 20) (where slightly different notations were used). In this case, the
action of Γ(X, č×Gm ωX) on Opǧ(X) induces a free and transitive action of x

∑
i ǧ−θ̌i

≃ ǧaff(1)//Ť (4.3.4.2)

on Opǧ. In particular, FunOpǧ has a natural filtration whose associated graded is (Funǧaff(1))Ť .

On the other hand, the space Opǧ has a distinguished point, corresponding to the Ǧad-oper that is tame at

both 0 and ∞. Therefore, we obtain a canonical isomorphism x
∑

i ǧ−θ̌i
∈ ǧaff(1)//Ť ≃ Opǧ(X). Explicitly,

this isomorphism sends xE ∈ x∑
i ǧ−θ̌i

to the connection d+ (N +xE)dxx on the trivial Ǧ-bundle which has
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a natural oper form. Now the quantization of (4.3.3.1) gives a canonical isomorphism of filtered algebras
([89] lemma 21)

(4.3.5.1) U(Lie I(1)/I(2))T ≃ FunOpǧ,

whose associated graded gives back to (4.3.3.1). Here U(V ) is the universal enveloping algebra of V =
Lie I(1)/I(2), equipped with the usual filtration. As V is abelian, it is also canonically isomorphic to
(FunV ∗)T . Putting all the above isomorphisms together, we obtain the following commutative diagram

(Fung∗
aff(1))T ∼ //

∼

��

(Funǧaff(1))Ť

∼

��
U(Lie I(1)/I(2))T ∼ // FunOpǧ

Together with the main result of [89], we obtain the proof of theorem 4.3.3 in the case when Ǧ = Ǧad.

4.3.6. Next, we explain how to extend it to allow G to be a general semisimple group.
One approach is to generalize the work of [17] to allow certain level structures, as what [89] did for simply-

connected groups. In this approach, one must deal with the subtle question of the construction of “square
root” of the canonical bundle on the moduli of G-bundles.

In our special case, we have another short and direct approach, using the isomorphism KldR
Ǧad

(λφ) ≃
BeǦad

(ξ̌) just established.

First, we claim that up to isomorphism, there exists a unique de Rham Ǧ-local system on X , which
induces BeǦad

(ξ̌), and has unipotent monodromy at 0. Indeed, any two such de Rham Ǧ-local systems differ

by a de Rham Ž-local system on X ∪ {0} ≃ A1 (i.e. one is obtained from the other by twisting a de Rham
Ž-local system). As Ž is a finite group, the wild part of the differential Galois group at ∞ of this local
system must be trivial, and therefore this local system itself is trivial.

Now since both KldR
Ǧ

(λφ) and BeǦ(ξ̌) have the property as in the claim (to see that KldR
Ǧ

(λφ) has unipotent
monodromy at 0, one uses the same argument as [52] theorem 1 (2)), they must be isomorphic.

4.4. Bessel F -isocrystals for reductive groups. In this subsection, we construct Bessel F -isocrystals
for reductive groups, by putting the above ingredients together. We keep the notation of 4.2.

4.4.1. We take a non-trivial additive character ψ : Fp → K× and a generic linear function φ : I(1)/I(2)→ A1

over R (4.2). We set λ = −π ∈ K corresponding to ψ (as in 2.1.5). Let ξ̌ ∈ ǧaff(1) match −πφ under the
isomorphism (4.3.3.1).

We write BeǦ(ξ̌) more explicitly as follows. Choose a coordinate x of X ∪ {0} over R, and a pinning
N =

∑
α̌∈∆̌ ξ̌α̌ of (Ǧ, B̌, Ť ). By (4.3.4.2), there is a unique element E = Eφ ∈

∑
i ǧ−θ̌i

such that

(4.4.1.1) KldR
Ǧ

(1 · φ) ≃ d+ (N + xE)
dx

x
,

By (4.3.4.1), we deduce that

(4.4.1.2) KldR
Ǧ

(−πφ) ≃ d+ (N + (−π)hxE)
dx

x
= BeǦ(ξ̌).

Now we can define the object appearing in the title of the paper. Let Be†

Ǧ
(ξ̌) denote the composition

of BeǦ(ξ̌) : Rep(Ǧ) → Conn(XK) with the (−)†-functor from (2.2.2.1). By theorem 4.2.1, a choice of
isomorphism (4.4.1.2) endows Be†

Ǧ
(ξ̌) with a Frobenius structure, i.e. a lifting of Be†

Ǧ
(ξ̌) as a functor

Rep(Ǧ)→ F - Isoc†(Xk/K), or alternatively, an isomorphism of tensor functors

ϕ : F ∗
Xk
◦ Be†

Ǧ
(ξ̌)

∼−→ Be†

Ǧ
(ξ̌) : Rep(Ǧ)→ Isoc†(Xk/K),
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where F ∗
Xk

: Isoc†(Xk/K) → Isoc†(Xk/K) denotes the s-th Frobenius pullback functor (2.1.4.1). From
the calculation of the differential Galois group of BeǦ in [47] coro. 9, coro. 10 (see (1.2.6.1)) that the
automorphism group of BeǦ is ZG(K). Therefore, the Frobenius structure on Be†

Ǧ
(ξ̌) is independent of

the choice of the isomorphism BeǦ(ξ̌) ≃ KldR
Ǧ

(λφ). We use (Be†

Ǧ
(ξ̌), ϕ) (or simply Be†

Ǧ
(ξ̌) if there is no

confusion) to denote the Ǧ-valued overconvergent F -isocrystal

(4.4.1.3) (Be†

Ǧ
(ξ̌), ϕ) : Rep(Ǧ)→ F - Isoc†(Xk/K),

which we call the Bessel F -isocrystal of Ǧ.

4.4.2. For each representation ρ : Ǧ→ GL(V ), the restriction of Be†

Ǧ,V
(ξ̌) at 0 defines an object Be†

Ǧ,V
(ξ̌)|0

of MCF(RK/K) (2.9.1), which is solvable at 1 ([61] 12.6.1). By (4.3.1.1), the p-adic exponents of Be†

Ǧ,V
(ξ̌)|0

are 0. Then it is equivalent to the connection d + dρ(N) over the Robba ring by ([61] 13.7.1). Hence,
Be†

Ǧ,V
(ξ̌)|0 satisfies the Robba condition (i.e. it has zero p-adic slope) and is unipotent.

We denote by F - Isoclog,uni
(
(A1

k, 0)/K
)

the category of log convergent F -isocrystals on A1
k with a log

pole at 0 relative to K and nilpotent residue, and are overconvergent along ∞ (2.9.3). By ([60] 6.3.2), this
category is equivalent to the full subcategory of F - Isoc†(Xk/K) consisting of objects which are unipotent
at 0. Then the Ǧ-valued overconvergent F -isocrystal (Be†

Ǧ
(ξ̌), ϕ) (4.4.1.3) factors through:

(4.4.2.1) (Be†

Ǧ
(ξ̌), ϕ) : Rep(Ǧ)→ Isoclog,uni

(
(A1

k, 0)/K
)
.

4.4.3. Here is a more concrete description of the Frobenius structure on Be†

Ǧ
(ξ̌). Note that its underlying

bundles of Be†

Ǧ,V
(ξ̌) are free O

P̂1,Q
(†{∞})-modules. If we set A† = Γ(P1

k,OP̂1,Q
(†{∞})), by the Tannakian

formalism, the Frobenius structure on Be†

Ǧ
(ξ̌) is equivalent to an element ϕ ∈ Ǧ(A†) satisfying

(4.4.3.1) x
dϕ

dx
ϕ−1 + Adϕ(N + (−π)hxE) = q(N + (−π)hxqE).

Given a point a ∈ |A1
k| and ã : A† → K its Teichmüller lifting, we denote by ϕa =

∏deg(a)−1
i=0 ϕ(ãq

i

). When
a 6= 0, the Frobenius trace of (Be†

Ǧ
(ξ̌), ϕ) at a can be calculated by the trace of ϕa. Now we rephrase the

above discussions as follows, which is the first main result of our article.

Theorem 4.4.4. There is a unique element ϕ ∈ Ǧ(A†) satisfying the differential equation (4.4.3.1) such

that via a (fixed) isomorphism K ≃ Qℓ, for every a ∈ |X | and V ∈ Rep(Ǧ)

(4.4.4.1) Tr(ϕa, V ) = Tr(Froba,Klét,ℓ

Ǧ,V,ā
(ψφ)).

When a = 0, we can describe ϕ0 more precisely.

Proposition 4.4.5. Let 2ρ be the sum of positive coroots in X•(Ť ). Then ϕ0 = 2ρ(
√
q) in the semisimple

conjugacy classes Conjss(Ǧ(K)) of Ǧ(K).

Proof. The Frobenius endomorphism ϕ0 at 0 satisfies ϕ−1
0 Nϕ0 = qN (4.3.1). Since N is a principal nilpotent

element and Adρ(q) N = q−1N , we deduce that ϕ0 = ερ(q) in Conjss(Ǧ(K)) for some element ε in the center
ZǦ(K).

To show ε = id, it suffices to investigate Frobenius eigenvalues of Ψ(Be†

Ǧ,V
) (2.9.4) for V ∈ Rep(Ǧ),

which is same as those of Ψ(Klét,ℓ

Ǧ,V
) by 4.1.13 and Gabber-Fujiwara’s ℓ-independence ([3] 4.3.11). By a result

of Görtz and Haines [50], the ith graded piece of the weight filtration of Ψ(Klét,ℓ

Ǧ,V
) has the same dimension

as the dimension of H2i(GrG, ICV ) and is equipped with a Frobenius action by ×qi (cf. [52] 4.3). Then we
deduce that ε = id. �
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4.5. Monodromy groups.

4.5.1. In this subsection, we keep the notation of 4.4 and we take L to be K. We drop φψ from the notation.
We denote by 〈Be†

Ǧ
〉 (resp. 〈Be†

Ǧ
, ϕ〉, resp. 〈BeǦ〉) the full subcategory of Sm(Xk/K) (resp. Sm(Xk/KF ),

resp. Conn(XK)) whose objects are all the sub-quotients of objects Be†

Ǧ,V
(resp. (Be†

Ǧ,V
, ϕ), resp. BeǦ,V )

for V ∈ Rep(Ǧ). Then 〈Be†

Ǧ
〉 (resp. 〈Be†

Ǧ
, ϕ〉, resp. 〈BeǦ〉) forms a Tannakian category over K and we

denote by Ggeo (resp. Garith, resp. Galg) the associated Tannakian group (with respect to a fiber functor ω,
but is independent of the choice of the fiber functor up to isomorphism [39]). The tensor functors on the
left side of the following diagrams induce closed immersions of algebraic groups on the right side

(4.5.1.1) 〈Be†

Ǧ
, ϕ〉

{{✈✈✈
✈✈
✈✈
✈✈

Garith

  ❅
❅❅

❅❅
❅❅

❅❅

〈Be†

Ǧ
〉 Rep(Ǧ)

yysss
ss
ss
ss
s

dd❏❏❏❏❏❏❏❏❏

Ggeo

""❊
❊❊

❊❊
❊❊

❊❊

==③③③③③③③③③③
Ǧ

〈BeǦ〉

dd■■■■■■■■■

Galg

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤

.

In ([47] Cor. 9 and Cor. 10), Frenkel and Gross showed that the differential Galois group Galg of the
Ǧ-connection BeǦ : Rep(Ǧ)→ Conn(XK) is a connected closed subgroup of Ǧ and explicitly calculated it
when Ǧ is almost simple. The result can be found in (1.2.6.1). The main theorem of this subsection is as
follows.

Theorem 4.5.2. Let G be a split almost simple group over R and Ǧ its Langlands dual group over K. We
denote by Σ the outer automorphism group of Ǧ and by Out(ǧ) the outer automorphism group of ǧ.

(i) If Ǧ is not of type A2n or char(k) > 2, then Ggeo → Galg is an isomorphism. In particular,

• Ggeo
∼−→ ǦΣ,◦, if Ǧ is not type A2n (n ≥ 2) or B3 or D2n (n ≥ 2) with Σ 6= Out(ǧ).

• Ggeo = Ǧ, if Ǧ is of type A2n,

• Ggeo
∼−→ G2, if Ǧ is of type B3 or of type D4.

• Ggeo
∼−→ Spin4n−1 if Ǧ is of type D2n with Σ ≃ {1} (n ≥ 3).

(ii) If Ǧ = SL2n+1 and char(k) = 2, then Ggeo(Be†
SL2n+1

) = Ggeo(Be†
SO2n+1

). In particular,

• Ggeo
∼−→ SO2n+1, if n 6= 3,

• Ggeo
∼−→ G2, if n = 3.

In particular, Ggeo 6= Galg in this case.
(iii) The map Ggeo → Garith is always an isomorphism.

Proof. We first study the local monodromy at 0 and ∞.
In view of 4.4.2, the restriction functor at 0 (2.9.3.1) induces

Rep(Ǧ)→ 〈Be†

Ǧ
〉 |0−→ MCuni(R/K)

∼−→ Vecnil
K
,

sending each representation ρ : Ǧ → GL(V ) to (V, dρ(N)) ∈ Vecnil
K

. Then, it induces closed immersions of
Tannakian groups

(4.5.2.1) Ga → Ggeo → Ǧ,

whose composition sends 1 ∈ K ≃ Lie(Ga) to N ∈ ǧ.

Lemma 4.5.3. The restriction functor |∞ : 〈Be†

Ǧ
〉 → MCF(R/K) to ∞ ∈ P1

k induces homomorphisms

I∞ ×Ga → Ggeo which is non-trivial on P∞.
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Proof. If the image P∞ in Ǧgeo were trivial, by the Grothendieck–Ogg–Shafarevich formula, Klét,ℓ

Ǧ
would

also be tame at 0,∞. Then the associated ℓ-adic representation π1(Xk)→ Ǧ would factor through the tame

quotient πtame
1 (Xk), which is isomorphic to Itame

∞ as X ≃ Gm. Since Klét,ℓ

Ǧ,V
is pure of weight zero for every

V ∈ Rep(Ǧ), the geometric monodromy group of KlǦ would be semisimple and then finite. This contradicts
to fact that Klét,ℓ

Ǧ
has a principal unipotent monodromy at 0 ([52] Thm. 1). �

4.5.4. Since every overconvergent F -isocrystal Be†

Ǧ,V
is pure of weight 0 and is therefore geometrically

semi-simple ([6] 4.3.1), the neutral component G◦
geo is semi-simple [34]. Therefore, (4.5.2.1) implies that it

contains a principal unipotent element and hence its projection to the adjoint group Ǧad of Ǧ contains a
principal PGL2. Then it is almost simple and its Lie algebra appears in one of the following chains:

sl2 // sp2n
// sl2n

sl2n+1

sl2 // so2n+1

::tttttttttt

%%❏❏
❏❏

❏❏
❏❏

❏❏

so2n+2

sl7

sl2 // g2
// so7

==④④④④④④④④

!!❉
❉❉

❉❉
❉❉

❉

so8

sl2 // f4 // e6

sl2 // e7

sl2 // e8

Lemma 4.5.5. If Ǧ is not of type A1, and not of type A2 when p = 2, the image Ggeo → Ǧad cannot be

contained in a principal PGL2 of Ǧad.

Proof. The image of the wild inertia group P∞ (resp. I∞) in PGL2 is a finite p-group (resp. a solvable
group). In view of the all possible finite groups contained in PGL2, there are two possibilities:

(a) the image of P∞ is contained in Gm ⊂ PGL2;
(b) p = 2 and the image of I∞ (resp. P∞) is isomorphic to the alternative group A4 (resp. the group

Z/2Z× Z/2Z).
To prove the lemma, we follow a similar argument of ([52] 6.8), but with the quasi-minuscule representation

replaced by the adjoint representation Ad. In any case, by a result of Baldassarri [13] (cf. [9] 3.2), the maximal
p-adic slope of Be†

Ǧ,Ad
is less or equal to the maximal formal slope 1/ȟ of BeǦ,Ad (4.3.1). Let r be the rank

of Ǧ and h the Coxeter number of Ǧ. Then we deduce that

(4.5.5.1) Irr∞(Be†

Ǧ,Ad
) ≤ rank Ad

ȟ
=
ȟ+ 1

ȟ
r < r + 1,

and hence Irr∞(Be†

Ǧ,Ad
) ≤ r.
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On the other hand, we have a decomposition Ad ≃ ⊕ri=1S
2ℓi as representations of principal PGL2, where

{ℓ1 + 1, · · · , ℓr + 1} is the set of exponents of ǧ.
Case (a). Since Irr∞(Be†

Ǧ
) 6= 0, the image of P∞ in PGL2 contains µp and the image of I∞ is contained in

N(Gm). By a similar argument of ([52] 6.8), we deduce Irr∞(S2ℓ) ≥ ℓ− ⌊ℓ/p⌋ ≥ 1. Under our assumption,
maxi{ℓi, p} > 2, so there is least one i such that ℓi − ⌊ℓi/p⌋ > 1. Then Irr∞(Be†

Ǧ,Ad
) > r. Contradiction!

Case (b). Recall that there are four irreducible representations of A4: id, two non-trivial one dimensional
representation V ′

1 , V
′′

1 , the standard representation V3. Via the inclusion A4 → PGL2, we have

S2 ≃ V3, S4 ≃ V ′
1 ⊕ V

′′

1 ⊕ V3, S6 ≃ id⊕V ⊕2
3 , S8 ≃ id⊕V ′

1 ⊕ V
′′

1 ⊕ V ⊕2
3 ,

S10 ≃ V ′
1 ⊕ V

′′

1 ⊕ V ⊕3
3 , S12 ≃ id⊕2⊕V ′

1 ⊕ V
′′

1 ⊕ V ⊕3
3 , S14 ≃ id⊕V ′

1 ⊕ V
′′

1 ⊕ V ⊕4
3 .

In particular, we have Irr∞(S2ℓ) ≥ 2 for ℓ = 3, 4, 5, 6, 7. In general, I∞ acts non-trivially on S2n and we
have Irr∞(S2ℓ) ≥ 1. Then we deduce that Irr∞(Ad) ≥ r(G) + 1. Contradiction! �

Now we prove theorem 4.5.2. By the “trivial” functoriality (4.1.9), it is enough to prove the theorem
when Ǧ is simply-connected, so that ǦΣ is connected.

(a) The case where Ǧ is not of type A2n. In view of lemma 4.5.5, and the calculation of Galg (1.2.6.1),
we deduce that G◦

geo → Ggeo → Galg are isomorphisms. Using 4.1.10, we see Garith ⊂ ǦΣ. This implies that

Garith = Ggeo unless Ǧ is of type B3. In this last case, if Ǧ = Spin7, and Garith ⊂ G2 × Z(Ǧ). Taking into
account of the Frobenius at 0 (4.4.5), we see that Garith = Ggeo.

(b) The case where Ǧ is of type A2n and p > 2. It suffices to exclude that Ggeo is contained in SO2n+1.
Suppose it is true by contrast. Let σ0 be the generator of Σ and δ̌ = (−1, σ0) in Gm ×Aut(G,B, T ). Then
we deduce isomorphisms of overconvergent isocrystals on Xk

Be†
SL2n+1,Std(ξ̌) ≃ (−1)+ Be†

SL2n+1,Std∨ (ξ̌) ≃ (−1)+ Be†
SL2n+1,Std(ξ̌),

where the first isomorphism follows from (4.1.10.5), and the second one is due to Std∨ ≃ Std as represen-
tations of SO2n+1. Since chark > 2, this isomorphism provides a “descent datum” so that Be†

SL2n+1,Std(ξ̌)
descends to Gm/µ2. It follows that its Swan conductor at∞ is at least two, if non-zero. On the other hand,
using lemma 4.5.3 and the result of Baldassarri [13] (cf. [9] 3.2) again, the Swan conductor of Be†

SL2n+1,Std(ξ̌)
at ∞ is 1, contradiction!

(c) The case where Ǧ is of type A2n and p = 2. In appendix (A.1), we will identify Be†
SO2n+1,Std with

Be†
SL2n+1,Std. Then we reduce to the case (a). �

We end this section by some corollaries of our calculation of the monodromy groups.

Corollary 4.5.6. Assume that Ǧ is almost simple. The monodromy groups Gℓgeo, G
ℓ
arith of the Klét,ℓ

Ǧ
(ψφ)

over Qℓ (4.1.12.1) are calculated as in theorem 4.5.2.

Note that this gives a different proof of the main result of [52] theorem 3 (where some explicit small p
are excluded). Our method avoids analyzing some difficult geometry related to quasi-minuscule and adjoint
Schubert varieties.

Proof. The monodromy group Gℓarith (resp. Garith) can be calculated by that of Klét,ℓ

Ǧ,V
(resp. Be†

Ǧ,V
) for a

faithful representation V of Ǧ. The semisimplification of Klét,ℓ

Ǧ,V
and Be†

Ǧ,V
are semi-simple and have same

Frobenius traces. Then by ([36] 4.1.1, 4.3.2), there exists a surjective morphism Gℓarith ։ Garith. Since they
are both closed subgroups of Ǧ, they must be isomorphic to each other and the assertion follows. �

Corollary 4.5.7. Assume that Ǧ is almost simple. Let Ad be the adjoint representation of Ǧ.

(i) We have Hi(P1, j!+(Be†

Ǧ,Ad
)) = 0 for all i.
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(ii) We have Irr∞(Be†

Ǧ,Ad
) = r(Ǧ), the rank of Ǧ. In addition, AdI∞ = 0, and the nilpotent monodromy

operator N∞ = 0 (2.9.1). Therefore, the local Galois representation I∞ → Ǧ is a simple wild parameter in
the sense of Gross-Reeder ([51] § 6).

Proof. The corresponding assertions for the algebraic connection BeǦ,Ad are proved in ([47] §14). Set E =

Be†

Ǧ,Ad
, which is self dual. We have H0(X,E ) = AdGgeo = 0 and H2(X,E ) = 0 by D†-affinity. We obtain

Hi
c(X,E ) = 0 for i = 0, 2 by the Poincaré duality. By the Grothendieck–Ogg–Shafarevich formula and

(4.5.5.1), we have

H1
c(X,E ) = Irr∞(E ) ≤ r(Ǧ).

Let j : X → P1 be the inclusion. We have a distinguished triangle

j!(E )→ j!+(E )→ H0 i+0 j+(E )⊕H0 i+∞j+(E )→,

which induces a long exact sequence:

0→ H0(P1, j!+(E ))→ H0 i+0 j+(E )⊕H0 i+∞j+(E )
d−→ H1

c(X,E )→(4.5.7.1)

H1(P1, j!+(E ))→ 0→ H2
c(X,E ) = 0→ H2(P1, j!+(E ))→ 0.

By the Poincaré duality, we conclude that Hi(P1, j!+(E )) = 0 for i = 0, 2.
For x ∈ {0,∞}, the restriction of E at x gives rise to an action of the inertia group Ix on Ad and a

commuting nilpotent monodromy operator Nx : Ad→ Ad (2.9.1). Then H0 i+x (j+(E )) is calculated by

AdIx,Nx := Ker(Nx : AdIx → AdIx).

The Bessel isocrystal is unipotent at 0 with N0 = [−, N ] (4.4.2). We have AdI0,N0 = AdN , which has
dimension r(Ǧ). Then the morphism d in (4.5.7.1) is both injective and surjective. We deduce that

AdI∞,N∞ = 0, H1(P1, j!+(E )) = 0.

Since N∞ is still a nilpotent operator on AdI∞ , we conclude assertions (i) and (ii). �

Remark 4.5.8. (i) By corollary 4.5.6 and the same arguments, we recover [52] prop. 5.3 on the analogous
statements for KlǦ (and remove the restriction of the characteristic of k in loc. cit.).

(ii) It follows from [51] prop. 5.6 that when p does not divide the order ♯W of Weyl group, the only non-
zero break of Be†

Ǧ,Ad
(and KlǦ) at ∞ is 1/ȟ. Indeed, the local Galois representation I∞ → Ǧ is described

explicitly in [51] prop. 5.6 and § 6.2.
(iii) It is expected that the description in (ii) of the local monodromy of Be†

Ǧ
(and KlǦ) at∞ should hold

when (p, h) = 1. When Ǧ = GLn, this is indeed the case. For Kln, this was proved by Fu and Wan ([48]
theorem 1.1). For Be†

n, the can be shown by studying the solutions of Bessel differential equation (1.1.1.1)
at ∞. We omit details and refer to ([71] 6.7) for a treatment in the case when n = 2.

(iv) Using theorem 4.5.2 (ii), which will be proved in the appendix A.1, we see that when p = 2 and n

is an odd integer, the associated local Galois representation of Be†
SOn

at ∞ coincides with the simple wild
parameter constructed by Gross-Reeder in [51] § 6.3. In particular, the image of the inertia group I∞ in the
case Ǧ = SO3 is isomorphic to A4. Together with Be†

SO3,Std ≃ Be†
SL2,Sym2 (4.1.9.1), this allows us to recover

André’s result on the local monodromy group of Be†
2 at ∞ in the case p = 2 ([9] § 7, 8).

5. Applications

In this section, we give some applications of our study of Bessel F -isocrystals for reductive groups.
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5.1. Functoriality of Bessel F -isocrystals. We may ask all possible Frobenius structure on Be†

Ǧ
(ξ̌) (not

necessarily the one from 4.4.1), i.e. all possible isomorphisms of tensor functors ϕ : F ∗
X ◦ Be†

Ǧ

∼−→ Be†

Ǧ
.

Lemma 5.1.1. The Frobenius structure on Be†

Ǧ
(ξ̌) is unique up to an element in the center ZǦ(K) of Ǧ.

Proof. Given two Frobenius structures ϕ1, ϕ2, u := ϕ2 ◦ϕ−1
1 is an isomorphism of tensor functors Be†

Ǧ
(ξ̌)

∼−→
Be†

Ǧ
(ξ̌). If ω denotes a fiber functor of 〈Be†

Ǧ
(ξ̌)〉, then ω ◦u is an element in Ǧ(K) commuting with Ggeo(K)

by the Tannakian formalism. Then the assertion follows from ZǦ(Ggeo) = ZǦ. �

5.1.2. Let G,G′ be two split, almost simple groups over R whose Langlands dual groups Ǧ′ ⊂ Ǧ over K
appear in the same line in the left column of the (1.2.6.1). Up to conjugation, we can assume that the
inclusion Ǧ′ ⊂ Ǧ preserves the pinning. Then it induces a natural inclusion ǧ′

aff(1) ⊂ ǧaff(1). Let φ′ be
a generic linear function of G′ over R (4.4.1) and ξ̌ the generic element in ǧ′

aff(1) corresponding to −πφ′

(4.4.1). Note that ξ̌ is also a generic element in ǧaff(1).

Proposition 5.1.3. (i) There exists a generic linear function φ of G over R such that −πφ matches ξ̌ ∈
ǧaff(1) under the isomorphism (4.3.3.1).

(ii) Let (Be†

Ǧ′
(ξ̌), ϕ′) (resp. (Be†

Ǧ
(ξ̌), ϕ)) be the Bessel F -isocrystal of Ǧ′ (resp. Ǧ) constructed by φ′

(resp. φ) in 4.4.1. Then (Be†

Ǧ
(ξ̌), ϕ) is the push-out of (Be†

Ǧ′
(ξ̌), ϕ).

Proof. (i) Let φ be the generic linear function of G over K such that −πφ corresponds to ξ̌ under the
isomorphism (4.3.3.1). We will show that φ is naturally integral.

By construction, BeǦ(ξ̌) is the push-out of BeǦ′(ξ̌). In particular, for V ∈ Rep(Ǧ), the connection
(BeǦ,V (ξ̌))† has a Frobenius structure and is overconvergent. Let χ be a generic linear function of G over R
and η̌ ∈ ǧaff(1) the corresponding generic element. Then there exists an element c ∈ K× such that we can
rewrite two Bessel connections for the adjoint representation of Ǧ as follow (4.3.1.2):

(5.1.3.1) BeǦ,Ad(η̌) = d+ (N + xE)
dx

x
, BeǦ,Ad(ξ̌) = d+ (N + cxE)

dx

x
.

Via (4.3.3.1), it suffices to show that c ∈ R×.
Both the above two connections admit Frobenius structures and decompose in the categories Conn(XK),

Sm(Xk/K) and Sm(Xk/KF ) in the same way (according to the decomposition of Ad in Rep(Ǧ′) by theorem
4.5.2). Let V be a non-trivial irreducible component of Ad in Rep(Ǧ′) and V (η̌), V (ξ̌) the corresponding
overconvergent F -isocrystal. Since V (η̌)|0 is unipotent, if {ei} denotes a basis of V , there exists a solution

u : ei 7→ fi(x) ∈ Sol(V (η̌)|0) (2.9.2.2)

whose convergence domain is the open unit disc of radius 1. Then uc : ei 7→ fi(cx) belongs to Sol(V (ξ̌)|0)
and has the same convergent radius. If c is not a p-adic unit, then V (η̌) (or V (ξ̌)) admits the trivial
overconvergent isocrystal on Xk as a quotient, which contracts to their irreducibility. The assertion follows.

(ii) By (i), the Ǧ-valued overconvergent isocrystal Be†

Ǧ
(ξ̌) is the push-out of Be†

Ǧ′
(ξ̌). It remains to

identify two Frobenius structures on Ǧ-valued overconvergent isocrystals Be†

Ǧ
(ξ̌) ≃ Be†

Ǧ′
(ξ̌) ×Ǧ′

Ǧ, which

are different by an element ε in the center ZǦ(K) by (5.1.1). Taking account of the extension of Frobenius
structures to 0 (4.4.5), we deduce that ε = id and the assertion follows. �

Now we can prove the following conjecture of Heinloth-Ngô-Yun ([52] conjecture 7.3).

Theorem 5.1.4. We keep the notation of 5.1.2 and fix a non-trivial additive character ψ. Assume that
Ǧ′ ⊂ Ǧ over Qℓ appear in the same line in the left column of the (1.2.6.1). For every generic linear function

φ′ of G′ over k, there is a generic linear function φ of G over k such that Klét,ℓ

Ǧ
(ψφ) is isomorphic to the

push-out of Klét,ℓ

Ǧ′
(ψφ′) along Ǧ′ ⊂ Ǧ as ℓ-adic Ǧ-local systems on Xk.
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Proof. By the “trivial” functoriality (4.1.9), we may assume that Ǧ is simply connected. We lift φ to
be a generic linear function of G′ over R and take φ′ as in 5.1.3. We need to show that Klét,ℓ

Ǧ
(ψφ) ≃

Klét,ℓ

Ǧ′
(ψφ′) ×Ǧ′

Ǧ as Ǧ-local systems. It follows from theorem 4.4.4 and proposition 5.1.3 that for every

representation V ∈ Rep(Ǧ), regarded as a representation of Ǧ′, and every a ∈ |Xk|, we have

Tr(Froba|Klét,ℓ

Ǧ,V,ā
) = Tr(Froba|Klét,ℓ

Ǧ′,V,ā
).

Note that if Σ is the group of pinned automorphisms of Ǧ, then the closed embedding ǦΣ → Ǧ induces
a surjective homomorphism of K-rings K(Rep(Ǧ)) ⊗ Qℓ → K(Rep(ǦΣ)) ⊗ Qℓ. Then the homomorphism
K(Rep(Ǧ))⊗Qℓ → K(Rep(Ggeo))⊗Qℓ is also surjective. It follows that if we replace V by any represen-
tation W of Ggeo (⊂ Ǧ′ ⊂ Ǧ), the above equality holds. This implies that the Frobenius conjugacy classes
of Klét,ℓ

Ǧ
and of Klét,ℓ

Ǧ′
have the same image in Ggeo//Ggeo. Now, for a faithful representation W of Ggeo,

two representations Klét,ℓ

Ǧ
,Klét,ℓ

Ǧ′
: π1(Xk, x) → Ggeo(Qℓ) are conjugated in GL(W ) by an element g. This

element g induces an automorphism of Ggeo. It fixes every Frobenius conjugacy class and therefore fixes
Ggeo//Ggeo. Then g must be inner. That is these two representations are conjugate in Ggeo and the assertion
follows. �

5.2. Hypergeometric F -isocrystals. To describe Bessel F -isocrystals for classical groups, we need to
review some basic facts about the hypergeometric F -isocrystals.

5.2.1. In ([57] 5.3.1), Katz interpreted hypergeometric D-modules on Gm as the multiplicative convolution
of hypergeometric D-modules of rank one. Besides the hypergeometric D-modules, Katz also studied ℓ-adic
theory of hypergeometric sheaves using multiplicative convolution. The Frobenius traces of these sheaves
are called hypergeometric functions (over finite fields) which generalize Kloosterman sums (1.1.2.1).

Let ψ be a non-trivial additive character on Fp, n an integer ≥ 1 and ρ = (ρ1, · · · , ρm) a sequence of
multiplicative characters on k×. The hypergeometric function Hψ(n, ρ) 5 is defined for any finite extension
k′/k and a ∈ k′× by

(5.2.1.1) Hψ(n, ρ)(a) =
∑

ψ

(
Trk′/Fp(

n∑

i=1

xi −
m∑

j=1

yj)

)
·
m∏

j=1

ρ−1
j (Nmk′/k(yj)),

where the sum take over (x1, · · · , xn, y1, · · · , ym) ∈ (k′×)m+n satisfying
∏n
i=1 xi = a

∏m
j=1 yj .

Recently, Miyatani studied the p-adic counterpart of this theory [67]. Using the multiplicative convolu-
tion of arithmetic D-modules, he constructed the Frobenius structure on hypergeometric D-modules whose
Frobenius traces are hypergeometric sums. In the following, we briefly recall his results in some special cases.

Let M ,N be two objects of D(Gm,k/LN) and µ : Gm ×Gm → Gm the multiplication morphism. Recall
that the (multiplicative) convolution ⋆ is defined by

(5.2.1.2) M ⋆N = µ!(M ⊠ N ).

Let n > m be two non-negative integers, π ∈ K associated to ψ (2.1.5) and β = (β1, · · · , βm) a sequence
of elements of 1

q−1Z− Z. We denote by Hypπ(n, β) the p-adic hypergeometric differential operator on Gm

(5.2.1.3) Hypπ(n, β) = δn − (−1)n+mpπn−mx
m∏

i=1

(δ − βj),

where x is a coordinate of Gm and δ = x d
dx . We denote by H ypπ(n, β) the D

†

P̂1,Q
({0,∞})-module

(5.2.1.4) H ypπ(n, β) = D
†

P̂1,Q
({0,∞})/(D†

P̂1,Q
({0,∞})Hypπ(n, β)).

5It corresponds to the hypergeometric function associated to ψ, n trivial characters χ’s and m characters ρ’s defined in ([57]
8.2.7)
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Theorem 5.2.2 (Miyatani [67]). We fix an isomorphism Qp ≃ C.
(i) The arithmetic D-module H ypπ(n, β) underlies to a pure overconvergent F -isocrystal on Gm,k of rank

n and weight n+m− 1.
(ii) The Frobenius structure on the overconvergent isocrystal H ypπ(n, β) is unique (up to a scalar).

(iii) The Frobenius trace of H ypπ(n, β) on Gm,k is equal to the hypergeometric function (−1)n+m−1 Hψ(n, ρ)

(5.2.1.1), where ρi is defined for ξ ∈ k× and ξ̃ the Teichmüller lifting of ξ, by ρi(ξ) = ξ̃(q−1)βi .

Assertions (i) and (iii) are stated in ([67] Main theorem). One can apply the method of ([67] 4.2.1) to
show that H ypπ(n, β) is irreducible in the category D(Gm,k/K) and hence assertion (ii).

The arithmetic D-module H ypπ(n, β) depends only on ψ and ρ (the class of β modulo Z) that we also
denote by H ypψ(n, ρ).

5.2.3. Normalised Hypergeometric sum. Let F be the hypergeometric ℓ-adic sheaf on Gm,k associated
to ψ, n trivial multiplicative characters and non-trivial multiplicative characters ρ = (ρ1, · · · , ρm). The space
F I0 of I0-invariants is one-dimensional and Frobk acts on it as the monomial in Gauss sums ([58] 2.6.1)

α = (−1)m
m∏

j=1

G(ψ−1, ρ−1
j ),

where G(ψ−1, ρ−1
j ) denotes the Gauss sum associated to ψ−1 and ρ−1

j .
On the other hand, note that the action of I0 is maximal unipotent. Any lifting F0 in the decomposition

group D0 at 0 of the Frobenius automorphism has eigenvalues set {α, qα, · · · , q2nα} (cf. [56] 7.0.7). After
twisting a geometrically constant lisse rank one sheaf (resp. overconvergent F -isocrystal), we denote by F̃

(resp. H̃ ypψ(n, ρ)) the normalised hypergeometric sheaf (resp. F -isocrystal) whose the Frobenius eigen-
values at 0 is {q−(n−1)/2, · · · ., q(n−1)/2}. Its Frobenius trace function, called the normalised hypergeometric

sum H̃ψ(n, ρ) is defined for a ∈ F×
q by

(5.2.3.1) H̃ψ(n, ρ)(a) =
1

(−√q)n−1
∏m
j=1 G(ψ−1, ρ−1)

Hψ(n, ρ)(a).

When m = 0, we have F̃ = Klét
n (1.1.2.2) and H̃ ypψ(n, ∅) = Be†

n (1.1.4).

5.3. Bessel F -isocrystals for classical groups.

5.3.1. The Kloosterman sheaf and the Bessel F -isocrystal for (G = GLn, Ǧ = GLn) have been extensively
studied. As usual, let Eij denote the n× n-matrix with the (i, j)-entry 1 and all other entries 0. We choose
the standard Borel B of the upper triangular matrices and the standard torus T of the diagonal matrices.
We choose a coordinate x of A1. Then there is a canonical isomorphism

Gna ≃ I(1)/I(2), (a1, . . . , an) 7→
n−1∑

i=1

aiEi,i+1 + anx
−1En,1.

We choose φ : Gna → Ga to be the addition map. Under the isomorphism (4.3.3.1) and (4.3.4.1), φ corresponds
to ξ̌ = N + Edx (4.4.1.1) with

(5.3.1.1) N =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0



, E =




0 0 0 . . . 0
0 0 0 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 0
1 0 0 . . . 0



.

On the other hand, by 4.1.9 and ([52] §3), we have

(5.3.1.2) Klét
SLn,Std ≃ Klét

GLn,Std ≃ Klét
n .
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Indeed, diagram (4.1.8.2) reduces to diagram (1.1.1.4) in this case. Therefore, the Kloosterman connection
is isomorphic to the classical Bessel connection (1.1.1, 1.1.4)

(5.3.1.3) KldR
SLn,Std(λφ) ≃ Ben, Klrig

SLn,Std(φ) ≃ Be†
n .

Recall that the connection Ben corresponds to the Bessel differential equation (1.1.1.1).

5.3.2. Consider

G = SO2n+1, Ǧ = Sp2n = {A ∈ SL2n | AJAT = J},
where J is the anti-diagonal matrix with Jij = (−1)iδi,2n+1−j . Then matrices (N,E) as in (5.3.1.1) are in ǧ

and BeǦ(ξ̌) is given by the same formula as GL2n case. Then we deduce an isomorphism of overconvergent
F -isocrystals Be†

Sp2n,Std(ξ̌) ≃ Be†
2n by (5.1.3).

5.3.3. Consider

G = SO2n Ǧ = SO2n = {A ∈ SL2n, AJA
T = J},

where J is the anti-diagonal matrix with Jij = (−1)max{i,j}δi,2n+1−j . There exists a canonical isomorphism

Gn+1
a ≃ I(1)/I(2), (a1, · · · , an+1) 7→

n−1∑

i=1

(Ei,i+1+E2n−i,2n−i+1)+(En−1,n+1+En,n+2)+x−1(E1,2n−1+E2,2n).

Then we take φ : Gn+1
a → Ga to be the addition map. When n ≥ 3, under the isomorphism (4.3.3.1) and

(4.3.4.1), λφ corresponds to ξ̌ = N + λ2n−2Ex (4.4.1.1) with

(5.3.3.1) N =




0 1 0 0 . . . . . . . . . 0

.

.

.
.
.
.

.
.
. . . .

.

.

.

.

.

.
.
.
. 0 1 1 0 . . . 0

. . . 0 0 1

.

.

.

0 1

.

.

.

0 0
.
.
.

.

.

.

0 0
.
.
. 1

0 0 0 . . . . . . 0




, E =




0 0 0 0 . . . . . . . . . 0

.

.

.
.
.
.

.
.
. . . .

.

.

.

.

.

.
.
.
. 0 0 0 0 . . . 0

. . . 0 0 0

.

.

.

0 0

.

.

.

0 0
.
.
.

.

.

.

1 0
.
.
. 0

0 1 0 . . . . . . 0




.

The corresponding Bessel connection is written as

(5.3.3.2) BeSO2n,Std(ξ̌) = d+ (N + λ2n−2Ex)
dx

x
.

If e1, · · · , e2n denote a basis for the above connection matrix, the restriction of the above connection to the
subbundle generated by en − en+1 is trivial. The other horizontal subbundle, generated by en + en+1 and
other basis vectors, is isomorphic to the Bessel connection BeSO2n−1,Std(ξ̌) discussed below (5.3.6.5).

5.3.4. In [64], T. Lam and N. Templier identified the diagram (4.1.8.2) with the Laudau-Ginzburg model
for quadrics [73] and used it to calculate the associated Kloosterman D-modules. We briefly recall this
construction following ([73] § 3). Let Q2n−2 = G/P be the (2n − 2)-dimensional quadric and let (p0 : · · · :
pn−1 : p′

n−1 : pn : · · · : p2n−2) be the Plücker coordinates of Q2n−2 satisfying

(5.3.4.1) pn−1p
′
n−1 − pn−2pn + · · ·+ (−1)n−1p0p2n−2 = 0.

Consider the open subscheme

(5.3.4.2) Q◦
2n−2 = Q2n−2 −D,
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with the complement D = D0 +D1 + · · ·+Dn−1 +D′
n−1, where Di is defined by

(5.3.4.3)

D0 := {p0 = 0}
Dℓ :=

{∑ℓ
k=0(−1)kpℓ−kp2n−2−ℓ+k = 0

}
for 1 ≤ ℓ ≤ n− 3

Dn−2 := {p2n−2 = 0}
Dn−1 := {pn−1 = 0}
D′
n−1 :=

{
p′
n−1 = 0

}

The divisor D is anti-canonical in Q2n−2. For simplicity, we set

δℓ =
ℓ∑

k=0

(−1)kpℓ−kp2n−2−ℓ+k, for 0 ≤ ℓ ≤ n− 3.

If x denotes a coordinate of Gm, we define a regular function W : Q◦
2n−2 ×Gm → A1 to be

(5.3.4.4) W (pi : p′
n−1;x) =

p1

p0
+
n−3∑

ℓ=1

pℓ+1p2n−2−ℓ

δℓ
+

pn
pn−1

+
pn
p′
n−1

+ x
p1

p2n−2
.

The Kloosterman overconvergent F -isocrystal and connection are calculated by

(5.3.4.5) Klrig
SO2n,Std(φ) ≃ pr2,!(W

∗(Aψ))[2(n− 1)](n− 1), KldR
SO2n,Std(λφ) ≃ pr2,!(W

∗(Eλ))[2(n− 1)].

We deduce that the Frobenius trace KlSO2n,Std of Klrig
SO2n,Std(φ) is defined for a ∈ F×

q by
(5.3.4.6)

KlSO2n,Std(a) =
1

qn−1

∑

(pi,p′
n−1

)∈Q◦
2n−2

(Fq)

ψ

(
TrFq/Fp

(
p1

p0
+
n−3∑

ℓ=1

pℓ+1p2n−2−ℓ

δℓ
+

pn
pn−1

+
pn
p′
n−1

+ a
p1

p2n−2

))
.

Proposition 5.3.5. (i) When n = 2, we have

(5.3.5.1) KlSO4,Std(a) = Kl(2; a)2.

(ii) When n ≥ 3, we can simplify above sum as

(5.3.5.2) KlSO2n,Std(a) =
1

qn−1

( ∑

xi∈F
×
q

ψ

(
TrFq/Fp(x1 +x2 + · · ·+x2n−2 +a

x1 + x2

x1x2 · · ·x2n−2
)

)
+(q−1)qn−2

)
.

Proof. Assertion (i) is easy to prove and is left to readers. It also follows from (4.1.9.3).
(ii) The equality follows from subdividing the sum (5.3.4.6) in the following parts:
(a) Case pn, pn+1, · · · , p2n−3 6= 0: we replace pi, p′

n−1 by xi, yi ∈ F×
q as follows:

pk =





1 if k = 0
x1 . . . xk−1 (xk + yk) if 1 ≤ k ≤ n− 2
x1 . . . xn−2xn−1 if k = n− 1
x1 . . . xn−2xn−1yn−1 if k = n
x1 . . . xn−2xn−1yn−1yn−2 . . . y2n−1−k otherwise

p′
n−1 = x1 · · ·xn−2yn−1.

Then the sum (5.3.4.6) becomes the toric exponential sum in (5.3.5.2).
(b) Case pn = 0 and p2n−2−ℓ 6= 0 for some ℓ ∈ {1, · · · , n − 3}: we assume ℓ is maximal. By divid-

ing p′
n−1, we consider the affine coordinates p0, · · · , p2n−2 and we replace pn−1 by the equation (5.3.4.1).

Since pn, · · · , p2n−2−ℓ−1 = 0, pℓ+1 can be taken in Fq regardless of the condition δℓ 6= 0. Then we have∑
pℓ+1∈Fq

ψ(pℓ+1p2n−2−ℓ

δℓ
) = 0 and that the sum (5.3.4.6) equals to zero in this case.

(c) Case pn = pn+1 = · · · = p2n−3 = 0: it is easy to show that the sum (5.3.4.6) equals to q−1
q , which is

the constant part of (5.3.5.2). �
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5.3.6. Consider
G = Sp2n, Ǧ = SO2n+1 = {A ∈ SL2n+1 | AJAT = J},

where J is the anti-diagonal matrix with Jij = (−1)iδi,2n+2−j . There exists a canonical isomorphism

Gn+1
a ≃ I(1)/I(2), (a1, · · · , an+1) 7→

n−1∑

i=1

(Ei,i+1 + E2n−i,2n−i+1) + En−1,n + x−1E2n,1.

Then we take φ : Gn+1
a → Ga to be the addition map. Under the isomorphism (4.3.3.1) and (4.3.4.1), λφ

corresponds to ξ̌ = N + λ2nEx (4.4.1.1) with N as in (5.3.1.1), which belongs to ǧ, and

(5.3.6.1) E =




0 0 . . . . . . 0
...

...
...

0 0 . . .
2 0 . . . . . . 0
0 2 0 . . . 0




∈ ǧ.

Then we can write the Bessel connection as

(5.3.6.2) KldR
SO2n+1,Std(λφ) ≃ BeSO2n+1,Std(ξ̌) = d+ (N + λ2nEx)

dx

x
.

After taking a gauge transformation by the matrix



1 0 . . . . . . 0
0 1 . . . . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . . . . . . .

2λ2nx 0 . . . 0 1



.

we obtain the scalar differential equation associated to BeSO2n+1,Std(ξ̌):

(5.3.6.3) (x
d

dx
)2n+1 − λ2nx(4x

d

dx
+ 2) = 0.

When n ≥ 2, we can rewrite ξ̌ as

(5.3.6.4) ξ̌ =




0 1 0 . . . 0 0

0
. . .

. . . 0
... 0

√
2 0

...
... 0 0

√
2

...
... 0 0 0

. . . 0
0 . . . 1
0 0 . . . 0




+ λ2n




0 0 . . . . . . 0
...

...
...

...
...

...
...

0 . . . 0
1 0 . . . . . . 0
0 1 0 . . . 0




x,

where
√

2 is a square root of 2 in K and appears in positions (n, n+ 1) and (n+ 1, n+ 2). Via the natural
inclusion so2n+1 → so2n+2 the above element ξ̌ ∈ (so2n+1)aff(1) corresponds to ξ̌ ∈ (so2n+2)aff(1) defined
in (5.3.3.1). The standard (2n+ 2)-dimensional representation of so2n+2 decomposes as a direct sum of the
trivial representation and the standard (2n+ 1)-dimensional representation of so2n+1 as representations of
so2n+1. Then we obtain decompositions of Bessel connections and Bessel F -isocrystals by proposition 5.1.3

(5.3.6.5) BeSO2n+2,Std(ξ̌) ≃ BeSO2n+1,Std(ξ̌)⊕ (OGm,K , d), Be†
SO2n+2,Std(ξ̌) ≃ Be†

SO2n+1,Std(ξ̌)⊕ (OGm , d).

In the remaining ot this subsection, we omit ξ̌ from the notation.
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Remark 5.3.7. The fact that matrix E in (5.3.6.1) takes value 2 in its non-zero entries is delicate. On the
one hand, it comes from the calculation of invariant polynomials. On the other hand, it ensures the existence
of a Frobenius structure on the differential equation (5.3.6.3) with parameter λ = −π. For instance, for every
prime number p, the convergence domain of the unique solution of (5.3.6.3) (λ = −π) at 0 :

F (x) =
∑

r≥0

(2r − 1)!!
(r!)2n+1

(2π2n)rxr,

is the open unit disc of radius 1. In particular, F (x) belongs to K{x} (2.9.2.1) and it justifies (2.9.2.2).

Proposition 5.3.8. (i) When p > 2, there exists an isomorphism of overconvergent F -isocrystals (5.2.3)

(5.3.8.1) Be†
SO2n+1,Std ≃ [x 7→ 4x]+H̃ ypψ(2n+ 1, ρ),

where ρ denotes the quadratic character of k×.
(ii) When p = 2, there exists an isomorphism of overconvergent F -isocrystals

(5.3.8.2) Be†
SO2n+1,Std ≃ Be†

2n+1 .

Proof. (i) If we rescale x by x 7→ 1
4x, the differential equation (5.3.6.3) turns to the hypergeometric differential

equation Hypψ(2n + 1; ρ) associated to ρ (5.2.1). Frobenius structures on two sides of (5.3.8.1) are of
weight zero and have Frobenius eigenvalues {q−n, · · · , q−1, 0, q, · · · , qn} at 0 (4.4.5, 5.2.3.1). Then these two
Frobenius structures coincide by theorem 5.2.2(ii) and the isomorphism (5.3.8.1) follows.

(ii) We will prove the assertion in Appendix A. �

5.3.9. It follows that there exists an isomorphism of overconvergent F -isocrystals (5.2.1.2)

(5.3.9.1) Be†
SO2n+1,Std ≃ Be†

SO3,Std ⋆Be†
2n−2 .

by the convolution interpretation of hypergeometric overconvergent F -isocrystals ([67] Main theorem (ii)
and 3.3.3).

Corollary 5.3.10. Suppose p = 2. The SL2n+1-valued overconvergent F -isocrystals Be†
SL2n+1

is the push-out

of Be†
SO2n+1

along SO2n+1 → SL2n+1.

It follows from 5.3.8(ii).

Corollary 5.3.11. (i) The Frobenius trace function KlSO2n+1,Std of Be†
SO2n+1,Std is equal to

KlSO2n+1,Std(a) =
∑

x,y∈k×,xy=a

KlSO3,Std(x) Kl(2n− 2; y)(5.3.11.1)

=

{
Kl(2n+ 1; a), p = 2,
H̃ψ(2n+ 1; ρ)(4a), p > 2.

(5.3.11.2)

(ii) We have an identity of exponential sums (5.3.5.2)

(5.3.11.3) KlSO2n+2,Std(a)− 1 = KlSO2n+1,Std(a).

Proof. (i) The first equality follows from (5.3.9.1). The second one follows from 5.3.8(i-ii).
(ii) It follows from proposition 5.3.5 and (5.3.6.5). �

In particular, by (4.1.9.1) and corollary 5.3.11(i), we obtain (1.2.9.1). Using the triviality functoriality
4.1.9 and the exceptional isomorphism for groups of low ranks (4.1.9.1)-(4.1.9.4), one can similarly obtain
other identities between exponential sums, whose sheaf-theoretic incarnations were obtained by Katz [58].
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5.4. Frobenius slopes of Bessel F -isocrystals.

5.4.1. We first recall the definition of the Newton polygon of a conjugacy class in Ǧ(K). Let X•(Ť )+ be the
set of dominant coweights of Ǧ and X•(Ť )+

R the positive Weyl chamber, equipped with the following partial
order ≤: µ ≤ λ if λ − µ can be written as a linear combination of positive coroots of Ǧ with coefficients in
R+. We identify (X•(Ť )⊗Z R)/W and X•(Ť )+

R . Recall that ρ denotes the half sum of positive roots of G

ρ =
1
2

∑

α∈Φ+

α ∈ X•(T ) = X•(Ť ).

Let v : K → Q∪ {∞} be the p-adic order, normalised by v(q) = 1. It induces a homomorphism of groups
v : Ť (K)→ X•(Ť )⊗ZR. By identifying Ť (K)/W and the set of semisimple conjugacy classes Conjss(Ǧ(K))
in Ǧ(K), we deduce a homomorphism:

(5.4.1.1) NP : Conjss(Ǧ(K)) = Ť (K)/W → (X•(Ť )⊗Z R)/W = X•(Ť )+
R .

In the case where Ǧ = GLn, NP is equivalent to the classical p-adic Newton polygon. Indeed, we have

X•(Ť )+
R = {(λ1, · · · , λn) ∈ Rn, λ1 ≤ · · · ≤ λn},

and we can associate to (λ1, · · · , λn) a convex polygon with vertices (i, λ1 + · · ·+ λi) for i ∈ {1, · · · , n}. For
λ = (λ1, · · · , λn), µ = (µ1, · · · , µn) in X•(Ť )+

R , µ ≤ λ if and only if the polygon associated to µ lies above
that of λ with the same endpoint.

Theorem 5.4.2. Let x ∈ |A1
k| be a closed point and ϕx ∈ Ǧ(K) the Frobenius automorphism of (Be†

Ǧ
, ϕ) at

x (4.4.3). Let v be the p-adic order normalised by v(qdeg(x)) = 1 and NP defined as above.
(i) Except for finitely many closed points of |A1

k|, we have NP(ϕx) = ρ.

(ii) Suppose that Ǧ is of type An, Bn, Cn, Dn or G2, then we have NP(ϕx) = ρ for every x ∈ |A1
k|.

Proof. (i) In ([63] 2.1), V. Lafforgue shows that the Newton polygon (5.4.1.1) of the Hecke eigenvalue of a
cuspidal function is ≤ ρ. In particular, we deduce that NP(ϕx) ≤ ρ for all x ∈ |Gm,k|. By 4.4.5, we have
NP(ϕ0) = NP(ρ(q)) = ρ. That is the Newton polygon achieves the upper bound ρ at 0. We take a finite set
of tensor generators {V1, · · · , Vn} of Rep(Ǧ). Then the assertion follows by applying Grothendieck-Katz’
theorem (cf. [33] 1.6) to log convergent F -isocrystals Be†

Ǧ,Vi
.

(ii) (a) The case where Ǧ is of type An, Cn. By functoriality (5.1.3), we reduce to study the Frobenius
slope of Bessel F -isocrystal Be†

n of rank n (1.1.4). After the work of Dwork, Sperber and Wan [44, 79, 84],
the Frobenius slope set of Be†

n (normalised to be weight 0) at each closed point x ∈ |A1
k| is equal to

{−n−1
2 ,−n−3

2 , · · · , n−1
2 }. Then the assertion follows.

(b) The case where Ǧ is of type Bn, Dn, G2. By functoriality (5.1.3), we reduce to show that the Frobenius
slope set of Be†

SO2n+1,Std at each closed point is equal to {−n,−n+1, · · · , n}. If p = 2, it follows from 5.3.8(ii)
and the case (a). If p > 2, in view of 5.2.3 and 5.3.8(i), it follows from the following lemma. �

Lemma 5.4.3. The Frobenius slope set of H ypψ(2n+ 1; ρ) (5.2.2) at each closed point is equal to
{

1
2
,
3
2
, · · · , 2n+

1
2

}
.

Proof. We deduce this fact from Wan’s results on Frobenius slope of certain toric exponential sums [84, 85].
For a ∈ F×

q and a divisor d of p− 1, consider the following Laurent polynomial in Fq[x
±
1 , · · · , x±

2n+1]

fd(x1, · · · , x2n+1) = x1 + · · ·+ x2n − xd2n+1 +
axd2n+1

x1x2 · · ·x2n
.
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For m ≥ 1, we denote by Sm(fd) the exponential sum associated a Laurent polynomial:

Sm(fd) =
∑

xi∈F
×

qm

ψ

(
TrFqm/Fp fd(x1, · · · , x2n+1)

)
.

Then we have an identity

(5.4.3.1) Sm(f2) = Sm(f1) +
∑

x1···x2n+1=ay

xi∈F
×

qm

ψ

(
TrFqm/Fp(x1 + · · ·+ x2n+1 − y)

)
· ρ−1

(
NmFqm/Fq

(y)
)
,

where the last term is the Frobenius trace of H yp(2n+ 1; ρ).
The L-function associated to these exponential sums is a rational function:

L(fd, T ) = exp

( ∑

m≥1

Sm(fd)
Tm

m

)
,

We denote by ∆(fd) the convex closure in R2n+1 generated by the origin and lattices defined by exponents
appeared in fd:

{(0, · · · , 0), (1, · · · , 0), · · · , (0, · · · , 1, 0), (0, · · · , 0, d), (−1, · · · ,−1, d)}.
The polyhedron ∆(fd) is (2n + 1)-dimensional and has volume d

2n! . The Laurent polynomials fd is non-
degenerate (cf. [85] Def. 1.1). After Adolphson-Sperber [8], the L-function L(fd, T ) is a polynomial of degree
d(2n+ 1).

We denote by NP(fd) the (Frobenius) Newton polygon associated to L-functions L(fd, T ) (cf. [85] 1.1)
and by HP(fd) the Hodge polygon defined in term of the polyhedron ∆(fd) (cf. [85] 1.2). The (multi-)set
of slopes of HP(fd) is

(5.4.3.2)

{
0,

1
d
,

2
d
, · · · , 2n+

d− 1
d

}
.

The Newton polygon lies above the Hodge polygon [8]. A Laurent polynomial is called ordinary if these
two polygons coincide. Let δ be a co-dimension 1 face of ∆ which does not contain the origin and f δd the
restriction of fd to δ which is also non-degenerate. The Laurent polynomial f δd is diagonal in the sense of
([85] § 2). If V1, · · · , V2n+1 denote the vertex of δ written as column vectors, the set S(δ) of solutions of

(V1, · · · , V2n+1)




r1

...
r2n+1


 ≡ 0 (mod 1), ri rational, 0 ≤ ri < 1,

forms an abelian group of order d (cf. [85] 2.1). Since d is a divisor of p− 1, we deduce that for each δ, f δd is
ordinary by ([85] Cor. 2.6). By Wan’s criterion for the ordinariness [84] (cf. [85] Thm. 3.1), fd is ordinary.

In view of (5.4.3.1) and the slope sets of HP(f1),HP(f2) (5.4.3.2), the assertion follows. �

Appendix A. A 2-adic proof of Carlitz’s identity and its generalization

As mentioned in introduction, Carlitz [26] proved the following identity between Kloosterman sums:

Kl(3; a) = Kl(2; a)2 − 1, ∀ a ∈ F×
2s .

In this appendix, we reprove and generalize this identity by establishing an isomorphism between two Bessel
F -isocrystals Be†

2n+1 and Be†
SO2n+1,Std. The following is a restatement of proposition 5.3.8(ii).

Proposition A.1. There exists an isomorphism between following two overcovergent F -isocrystals on Gm,F2

(5.3.6.3):

(A.1.1) Be†
2n+1 : (x

d

dx
)2n+1 + 22n+1x = 0, Be†

SO2n+1,Std : (x
d

dx
)2n+1 − 22n+1x(2x

d

dx
+ 1) = 0.
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Our strategy is first to show that their maximal slope quotient convergent F -isocrystals are isomorphic.
Then we conclude the proposition by a dual version of a minimal slope conjecture (proposed by Kedlaya [62]
and recently proved by Tsuzuki [82]) that we briefly recall in the following.

A.2. We keep the notation of section 5. Let X be a smooth k-scheme. Let M † be an overconvergent F -
isocrystal on X/K. We denote the associated convergent F -isocrystal on X/K by M . When the (Frobenius)
Newton polygons of M are constant on X , M admits a slope filtration, that is an increasing filtration

(A.2.1) 0 = M0 ( M1 ( · · · ( Mr−1 ( Mr = M

of convergent F -isocrystals on X/K such that

• Mi/Mi−1 is isoclinic of slope si and
• s1 < s2 < · · · < sr.

By Grothendieck’s specialization theorem, for any convergent F -isocrystal M on X/K, there exists an
open dense subscheme U of X such that the Newton polygons of M are constant.

We remark that for a log convergent F -isocrystal with constant Newton polygons over a smooth k-scheme
with normal crossing divisor, such a slope filtration (of sub log convergent F -isocrystals) also exists.

In a recent preprint, Tsuzuki showed a dual version of Kedlaya’s minimal slope conjecture ([62] 5.14):

Theorem A.3 ([82] theorem 1.3). Let X be a smooth connected curve over k. Let M †,N † be two irreducible
overconvergent F -isocrystals such that the corresponding convergent F -isocrystals M ,N admit the slope
filtrations {Mi}, {Ni} respectively. We renumber the slope filtration by

(A.3.1) M = M
0 ) M

1 ) M
2 ) · · · ) M

r−1 ) M
r = 0

with slopes s0 > s1 > · · · > sr−1. Suppose there exists an isomorphism h : N /N 1 ∼−→M /M 1 of convergent

F -isocrystals between the maximal slope quotients. Then there exists a unique isomorphism g† : N † ∼−→M †

of overconvergent F -isocrystals, which is compatible with h as morphisms of convergent F -isocrystals.

A.4. Following Dwork’s strategy ([43] § 1-3), we study the maximal slope quotients of Be†
2n+1 and of

Be†
SO2n+1,Std in terms of their unique solutions at 0.
In the following, we assume k = Fp. We first recall Dwork’s congruences and show a refinement of his

result in the 2-adic case. Consider for every i ≥ 0, a map B(i)(−) : Z≥0 → K× and the following congruence
relation for 0 ≤ a < p and n,m, s ∈ Z≥0:

(a) B(i)(0) is a p-adic unit for all i ≥ 0,

(b)
B(i)(a+ np)
B(i+1)(n)

∈ R for all i ≥ 0,

(c)
B(i)(a+ np+mps+1)
B(i+1)(n+mps)

≡ B(i)(a+ np)
B(i+1)(n)

mod ps+1 for all i ≥ 0.

(c’) When p = 2,
B(i)(a+ n2 +m2s+1)
B(i+1)(n+m2s)

≡ u(i, s,m)
B(i)(a+ n2)
B(i+1)(n)

mod 2s+1 for all i ≥ 0, where u(i, s,m) =

1 if s 6= 1 and u(i, 1,m) = 1 or −1 depending on i and m.

If conditions (a-c) (or (a,b,c’)) are satisfied, then B(i)(n) ∈ R for all i, n ≥ 0. We set

F (i)(x) =
∑∞

j=0 B
(i)(j)xj ∈ KJxK,

F
(i)
m,s(x) =

∑(m+1)ps−1
j=mps B(i)(j)xj ∈ K[x], s ≥ 0.

We write F (i)
0,s by F (i)

s for simplicity.

Theorem A.5. (i) [[43] theorem 2] If conditions (a-c) are satisfied, then

(A.5.1) F (0)(x)F (1)
m,s(x

p) ≡ F (0)
m,s+1(x)F (1)(xp) mod ps+1B(s+1)(m)JxK.
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(i’) If conditions (a,b,c’) are satisfied (in particular p = 2), then

(A.5.2) F (0)(x)F (1)
m,s(x

2) ≡ F (0)
m,s+1(x)F (1)(x2) mod 2sB(s+1)(m)JxK.

(ii) [[43] theorem 3] Under the assumption of (i) or (i’) and suppose moreover that

(d) B(i)(0) = 1 for i ≥ 0.
(e) B(i+r) = B(i) for all i ≥ 0 and some fixed r ≥ 1.

Let U be the open subscheme of A1
k defined by

(A.5.3) F
(i)
1 (x) 6= 0, for i = 0, 1, · · · , r − 1.

Then the limit

(A.5.4) f(x) = lim
s→∞

F
(0)
s+1(x)/F (1)

s (xp)

defines a global function on the formal open subscheme U of Â1
R associated to U , which takes p-adic unit

value at each rigid point of Urig.

We prove assertion (i’) in the end (A.13). We briefly explain Dwork’s result (ii) in the language of formal
schemes. The condition (A.5.3) implies that F (i)

s 6= 0 on U (cf. [43] 3.4). For s ≥ 1, the congruences (A.5.1)
and (A.5.2) imply that

F
(0)
s+1(x)/F (1)

s (xp) = F (0)
s (x)/F (1)

s−1(xp) ∈ Γ(U,OU/p
s−1

OU).

This allows us to use (A.5.4) to define a global function f of OU.

A.6. Let F (x) =
∑
j≥0 B(j)xj be a formal power series in RJxK. We say F satisfies Dwork’s congruences if

by setting B(i)(j) = B(j) for every i ≥ 0, conditions of theorem A.5(ii) are satisfied.
We take such a function F and then we obtain a function f ∈ Γ(U,OU) coinciding with F (x)/F (xp)

in K{x} (2.9.2.1) (i.e. the open unit disc). Moreover, by ([43] lemma 3.4(ii)), there exists a function
η ∈ Γ(U,OU) coinciding with F ′(x)/F (x) in K{x} defined by

η(x) ≡ F ′
s+1(x)/Fs+1(x) mod ps.

The functions f(x) and η(x) satisfy a differential equation:

f ′(x)
f(x)

+ pxp−1η(xp) = η(x).

Note that f(0) = F (0)/F (0) = 1. Then we deduce that the following corollary.

Corollary A.7. The connection d − η on the trivial bundle OUrig and the function f form a unit-root
convergent F -isocrystal EF on U/K, whose Frobenius eigenvalue at 0 is 1.

A.8. Let M † be an overconvergent F -isocrystal on Gm,k over K of rank r whose underlying bundle is trivial
and the connection is defined by a differential equation:

(A.8.1) P (δ) = δr + prδ
r−1 + · · ·+ p1 = 0,

where δ = x d
dx , pi ∈ Γ(Â1

R,OÂ1
R

)[ 1
p ]. We assume moreover that M † is unipotent at 0 with a maximal

unipotent local monodromy. Then M † extends to a log convergent F -isocrystal M log on (A1, 0) and its
Frobenius slopes at 0 are

s1 < s2 = s1 + 1 < · · · < sr = s1 + r − 1.

Note that M † is indecomposable in F - Isoc†(Gm,k/K) and so is M in F - Isoc(Gm,k/K). Then by Drinfeld-
Kedlaya’s theorem on the generic Frobenius slopes [42], we deduce property (i):

(i) The generic Frobenius slopes (mult-)set is {s1, · · · , sr} with si = s1 + i− 1.
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(ii) In view of (2.9.2.2), the differential equation D = 0 admits a unique solution at 0:

F (x) =
∑

n≥0

A(n)xn ∈ K{x}, with A(0) = 1.

Proposition A.9. Suppose the function F (x) satisfies Dwork’s congruences (A.6) and let EF be the asso-
ciated unit-root convergent F -isocrystal on U ⊂ A1

k. Then
(i) There exists an epimorphism of log convergent isocrystals M log → EF on (U, 0).
(ii) As log convergent isocrystals, EF coincides with the maximal slope quotient M log/M log,1 of M log

(A.3.1).

Proof. (i) We set A = Γ(U,OU)[ 1
p ]. We claim that there exists a decomposition of differential operators:

(A.9.1) P (δ) = Q(δ)(δ − xη), Q(δ) = δr−1 + qr−1δ
r−2 + · · ·+ q1, qi ∈ A.

Indeed, by the Euclidean algorithm ([61] 5.5.2), there exists r ∈ A such that P = Q(δ−xη)+r. By evaluating
the above identity at F (in the ring K{x} containing A), we obtain

P (δ)(F ) = 0 = Q(δ)(δ − xη)(F ) + rF = rF.

Then we deduce r = 0 and (A.9.1) follows.
Let e1, · · · , er be a basis of M such that ∇δ(ei) = ei+1, 1 ≤ i ≤ r− 1 and ∇δ(er) = −(prer + · · ·+ p1e1).

We consider a free OUrig -module with a log connection N with a basis f1, · · · , fr−1 and the connection
defined by ∇δ(fi) = fi+1, ∇δ(fr−1) = −(qr−1fr−1 + · · ·+ q1f1). By (A.9.1), the morphism f1 7→ e2 − xηe1

induces a horizontal monomorphism N →M log whose cokernel is isomorphic to EF .
(ii) Note that Pic(Urig) ≃ Pic(U) ([83] 3.7.4) is trivial. Then the rank one convergent isocrystal M log/M log,1

can be represented as a connection d− λ on the trivial bundle OUrig .
Since M log has a maximal unipotent at 0, the rank one quotient of the restriction M log|0 of M log at the

open unit disc around 0 is unique (2.9.1). In particular, d − λ kills the unique solution F of P (δ) = 0. By
analytic continuation, we have λ = η and the assertion follows. �

Remark A.10. The unique solution F (x) belongs to the ring KJxK0 = RJxK⊗RK of bounded functions on
open unit disc, which is a subring of K{x}. Assertion (ii) can be viewed as an example of Dwork-Chiarellotto-
Tsuzuki conjecture on the comparison between the log-growth filtration (of solutions) and Frobenius slope
filtration [31]. This conjecture was recently proved by Ohkubo [71].

A.11. Proof of proposition A.1. We set k = F2 and apply the above discussions to overconvergent F -
isocrystals M † = Be†

2n+1 and N † = Be†
SO2n+1,Std on Gm,F2/K (A.1.1). Their unique solutions at 0 are:

F (x) =
∑

r≥0

(−2)(2n+1)r

(r!)2n+1
xr, G(x) =

∑

r≥0

2(2n+1)r(2r − 1)!!
(r!)2n+1

xr.

In the following lemma, we show that F and G satisfy Dwork’s congruences and that the associated
maximal slope quotients EF and EG (A.9) are isomorphic. Then proposition A.1 follows from theorem A.3
and the following lemma. �

Lemma A.12. (i) The functions F (x) and G(x) satisfy Dwork’s congruences (A.6) and define unit-root
convergent F -isocrystals EF and EG on A1

k respectively.

(ii) The function F (x)/G(x) extends to a global function of Â1
R and induces an isomorphism EG

∼−→ EF .

Proof. (i) Conditions (a,b,d,e) are easy to verified. The coefficients of F (x) (resp. G(x)) satisfy condition
(c’) (resp. (c)), that is

(−2)(2n+1)(a+ℓ2+m2s+1)/((a+ ℓ2 +m2s+1)!)2n+1

(−2)(2n+1)(ℓ+m2s)/((ℓ +m2s)!)2n+1
≡ u(s,m)

(−2)(2n+1)(a+ℓ2)/((a+ ℓ2)!)2n+1

(−2)(2n+1)ℓ/(ℓ!)2n+1
mod 2s+1,
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where u(1,m) = (−1)m and u(s,m) = 1 if s 6= 1, and

(2(a+ ℓ2 +m2s+1)− 1)!!2(2n+1)(a+ℓ2+m2s+1)/((a+ ℓ2 +m2s+1)!)2n+1

(2(ℓ +m2s)− 1)!!2(2n+1)(ℓ+m2s)/((ℓ +m2s)!)2n+1
≡

(2(a+ ℓ2)− 1)!!2(2n+1)(a+ℓ2)/((a+ ℓ2)!)2n+1

(2ℓ− 1)!!2(2n+1)ℓ/(ℓ!)2n+1
mod 2s+1.

Since F1(x) ≡ G1(x) ≡ 1 mod 2, the F -isocrystals EF ,EG are defined over A1
k.

(ii) We set B(0)(r) = (−2)(2n+1)r

(r!)2n+1 and B(1)(r) = 2(2n+1)r(2r−1)!!
(r!)2n+1 and B(i+2) = B(i). Then these sequences

satisfy conditions (a,b,c’,d,e). For condition (c’), the constants u(i, 1,m) are given by

u(0, 1,m) = 1, u(1, 1,m) = (−1)m, u(i+ 2, 1,m) = u(i, 1,m).

Since F1(x) ≡ G1(x) ≡ 1 mod 2, F (x)/G(x2) extends to a global function of O
Â1
R

by theorem A.5 and so is

F (x)/G(x). Then the assertion follows. �

A.13. Proof of theorem A.5(i’). We prove assertion (i’) by modifying the argument of ([43] theorem 2).
Note that condition (c’) implies the following congruence relation:

(A.13.1)
B(i)(a+ n2 +m2s+1)
B(i+1)(n+m2s)

≡ B(i)(a+ n2)
B(i+1)(n)

mod 2s.

When n < 0, we set B(i)(n) = 0. We set A = B(0), B = B(1) and for a ∈ {0, 1}, j,N ∈ Z, we set

Ua(j,N) = A(a+ 2(N − j))B(j)−B(N − j)A(a+ 2j),

Ha(m, s,N) =
(m+1)2s−1∑

j=m2s

Ua(j,N).

Then the assertion is equivalent to

(A.13.2) Ha(m, s,N) ≡ 0 mod 2sB(s+1)(m), for s ≥ 0,m ≥ 0, N ≥ 0.

By condition (b), we have A(a+ 2m)/B(m) ∈ R and hence

Ua(m,N) ≡ 0 mod B(m).

Then equation (A.13.2) for s = 0 follows from the fact that Ha(m, 0, N) = Ua(m,N).
We now prove by induction on s. We write the induction hypothesis

αs : Ha(m,u,N) ≡ 0 mod 2uB(u+1)(m), for u ∈ [0, s),m,N ≥ 0.

We may assume αs for fixed s ≥ 1. The main step is to show for 0 ≤ t ≤ s that

βt,s : v(s, t,m)Ha(m, s,N +m2s) ≡
2s−t−1∑

j=0

B(t+1)(j +m2s−t)Ha(j, t, N)/B(t+1)(j) mod 2sB(s+1)(m).

where v(s, t,m) = 1 or −1 depending on s, t,m.
We list some elementary facts (cf. [43] 2.5-2.7)

∑T
m=0 Ha(m, s,N) = 0 if (T + 1)2s > N(A.13.3)

Ha(m, s,N) = Ha(2m, s− 1, N) +Ha(1 + 2m, s− 1, N) if s ≥ 1(A.13.4)

B(t) (i+m2s) ≡ 0 mod B(s+t)(m) if 0 ≤ i ≤ 2s − 1, s, t ≥ 0.(A.13.5)

We first prove β0,s. We have

Ha (m, s,N +m2s) =
∑2s−1

j=0 Ua (j +m2s, N +m2s) ,

Ua (j +m2s, N +m2s) = A(a+ 2(N − j))B(j +m2s)−B(N − j)A
(
a+ 2j +m2s+1

)
.(A.13.6)
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By (A.13.1), we have

A
(
a+ 2j +m2s+1

)
= A(a+ 2j)B(j +m2s)/B(j) +Xj2

sB(j +m2s),

where Xj ∈ R. Then the right hand side of (A.13.6) is

B (j +m2s)

(
Ua(j,N)/B(j)− 2sXjB(N − j)

)
.

Since Ua(j,N) = Ha(j, 0, N), we obtain

Ha (m, s,N +m2s) =
2s−1∑

j=0

B (j +m2s)Ha(j, 0, N)/B(j)− 2s
2s−1∑

j=0

XjB (j +m2s)B(N − j).

Since XjB(N − j) ∈ R, it follows from (A.13.5) (B = B(1)) that the second sum is congruent to zero modulo
2sB(s+1)(m). This proves β0,s with v(s, 0,m) = 1.

With s fixed, s ≥ 1, t fixed, 0 ≤ t ≤ s − 1, we show that βt,s together with αs imply βt+1,s. To do this
we put j = µ+ 2i in the right side of βt,s and write it in the form

1∑

µ=0

2s−t−1∑

i=0

B(t+1)
(
µ+ 2i+m2s−i

)
Ha(µ+ 2i, t, N)/B(t+1)(µ+ 2i).

By condition (c’), we have,

B(t+1)
(
µ+ 2i+m2s−t

)

= u(t+ 1, s− t− 1,m)
(
B(t+1)(µ+ 2i)B(t+2)

(
i+m2s−t−1

)
/B(t+2)(i)

)
+Xi,µ2s−tB(t+2)

(
i +m2s−t−1

)
,

where Xi,µ ∈ R. Thus the general term in the above double sum is

u(t+ 1, s− t− 1,m)

(
B(t+2)(i+m2s−t−1)Ha(µ+ 2i, t, N)/B(t+2)(i)

)
+ Yi,µ,

where the error term:

Yi,µ = Xi,µ2s−tB(t+2)
(
i+m2s−t−1

)
Ha(µ+ 2i, t, N)/B(t+1)(µ+ 2i).

For this error term, since t < s, we can apply αs to conclude that

Yi,µ ≡ 0 mod B(t+2)(i+m2s−t−1)2s.

Then we can use (A.13.5) to conclude that

Yi,µ ≡ 0 mod 2sB(s+1)(m).

After modulo 2sB(s+1)(m), the right side of βt,s is equal to

u(t+ 1, s− t− 1,m)
1∑

µ=0

2s−t−1−1∑

i=0

B(t+2)
(
i+m2s−t−1

)
Ha(µ+ 2i, t, N)/B(t+2)(i).

By reversing the order of summation and using (A.13.4), the above sum is the same as

u(t+ 1, s− t− 1,m)
2s−t−1−1∑

i=0

B(t+2)
(
i+m2s−t−1

)
Ha(i, t+ 1, N)/B(t+2)(i),

which proves βt+1,s. In particular, we obtain βs,s, which states

(A.13.7) v(s, s,m)Ha(m, s,N + m2s) ≡ B(s+1)(m)Ha(0, s,N)/B(s+1)(0) mod 2sB(s+1)(m).

We now consider the statement (with s fixed before)

γN : Ha(0, s,N) ≡ 0 mod 2s.
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We know that γN is true for N < 0. Let N ′ (if it exists) be the minimal value of N for which γN ′ fails. For
m ≥ 1, since B(s+1)(0) is a unit, we have by (A.13.7)

Ha(m, s,N ′) ≡ v(s, s,m)B(s+1)(m)Ha(0, s,N ′ −m2s)/B(s+1)(0) ≡ 0 mod 2s.

Applying this to (A.13.3), we obtain that

Ha(0, s,N
′) ≡ 0 mod 2s.

Thus γN is valid for all N and equation (A.13.7) implies αs+1. This proves assertion (i’). �
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