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NUMERICAL
RECIPES

Bessel functions of fractional order. In this part we

will give routines for the ordinary Bessel functions,
and (as an application) for spherical Bessel functions. In
the next issue, we will conclude with modified Bessel
functions and (another application) Airy functions.

Many algorithms have been proposed for numerically
computing Bessel functions. For integer orders there are
several good ways.'~ Fractional orders, however, present
difficulties. Many of the proposed methods are simply
inaccurate, especially in regions where the functions are
nearly singular. Often the methods involve awkward
schemes to find starting points for backward recurrences.
By contrast, the routines given here are robust; we
recommend them wholeheartedly. If you like, you can use
the routines as black boxes and skip the rest of this
column, which presents the theory behind them.

The basic idea is Steed’s method,*® which was
originally developed for Coulomb wave functions. The
method calculates J,, J ., Y, and Y simultaneously, and
so involves four relations among these functions. Three of
the relations come from two continued fractions, one of
which is complex. The fourth is provided by the
Wronskian relation

w=J, Y, —-YJ.,=2/mx. n

T his is the first of a two-part column on the subject of

The first continued fraction, CF1, is a standard one
that can be derived from the recurrence relation:

fEJ:/ v Jv+]

x J

v

v 1 1

x 20v+ 1)/x— 2(v+2)/x—
(2)

Forward evaluation of the continued fraction by one of the
methods of Ref. 7 is essentially equivalent to backward
recurrence of the recurrence relation. The rate of
convergence of CF1 is determined by the position of the
turning point x,, =yv(v+ 1) =v, beyond which the
Bessel functions become oscillatory. If XS x,,, conver-
gence is very rapid. If xX x,,, then each iteration of the

continued fraction effectively increases v by 1 until
X Sx,,; thereafter rapid convergence sets in. Thus the
number of iterations of CF1 is of order x for large x. In the

routine bessjy in Box 1 we set the maximum allowed

v
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number of iterations to 10 000. For larger x, you can use
the usual asymptotic expressions for Bessel functions.
One can show that the sign of J, is the same as the
sign of the denominator of CF1 once it has converged.
The complex continued fraction CF2 is defined by

+l._J;+z‘Y’V
pri= J, +iY,
_ (/- 32—V
2x x 2(x+i)+ 2(x+2) +

(3)

(We defer the derivation of CF2 to the analogous case of
modified Bessel functions, in our next column.) This
continued fraction converges rapidly for x2 x,,, while
convergence fails as x— 0. We will have to adopt a special
method for small x. For x not too small, we can ensure
that xXx,, by a stable recurrence of J, and J/
downwards to a value v = y S x, thus yielding the ratio Ju
at this lower value of v. This is the stable direction for the
recurrence relation. The initial values for the recurrence
are

J, = arbitrary, J! =FJ,, 4)

with the sign of J, chosen from the sign of the
denominator of CF1. Choosing the initial value of J, very

small minimizes the possibility of overflow during the
recurrence. The recurrence relations are

J,_ =Ww/x)J, +J.,

J, v =lv=1/xlJ, , —J,. (5
Once CF2 has been evaluated at v = u, then with the
Wronskian (1) we have enough relations to solve for all

four quantities. The formulas are simplified by introduc-
ing the quantity

r=@-—1.)/4q (6)
Then

J.=+{W/[g+rvp-£)]1H" (7

S =Ludw (8)

Y, =1 9)

Y, =Y, (p+q/7). (10)

The sign of J,, in (7) is chosen to be the same as the sign of
the initial J, in (4).

Once all four functions have been determined at the
value v = u, we can find them at the original value of v.



if(abs(pimu2).1t.EPS)then
fact3d=1.d0

olse

SUBROUTINE bessjy(x,xnu,rj,ry,rjp.ryp) fact3nsin(pimu2)/pimu2

INTEGER MAXIT endif

Box 1

REAL rj,rjp,ry,ryp,x,xnu, XMIN r=PIspimu2sfact3sfact3
DOUBLE PRECISION EPS,FPMIN,PI c=1.d0
PARAMETER(EPS=1.8-10,FPMIN=1.8-30,MAXIT=10000,XMIN=2. , d=-x2%x2

. PI=3,141592653589793d0) sum=ff+req

C  USES cheb sumi=p

Returns the Bessel functions i = Ju, xy = ¥, and their derivatives xjp = JI. xyp = ¥/,
for positive x and for xnu = ¥ > 0. The relative accuracy is within one or two significant
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute accu-

dois i=1,MAXIT
f=(isff+p+q)/(ivi-xmu2)

racy. FPMIN is a number close to the machine's smallest floating point number. All internal c=ced/i
arithmetic is in double precision. To convert the entire routine to double precision, change the p=p/ (i-xmu)
REAL declaration above and decrease EPS to 1015, Also convert the subroutine cheb. q=q/(i+xmu)
INTEGER i,isign,1,nl del=c*(ff+r+q)
DOUBLE PRECISION a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli, sum=sum+del
dr,e,f,fact,fact2,fact3, 11, gam, gaml , gam?, gamnmi , gampl, h, dell=csp-isdel
pspimu,pimn?,q,r,xj1,rjl,rjou,ripl,cjpl, citenp, ¥y, sumi=gumi+dell
Tymu,rymup,rytemp,sum, sumil,temp,w,x2,xi,x1i2, xmu, xmu2 if(abs(del) .1t.(1.d0+abs(sum))*EPS)go to 2
if{x.le.0..or.xnu.1t.0.) pause 'bad arguments in bessjy’ enddo s
if(x.1t.XMIN)then al is the number of downward recurrences of the J's and pause 'bessy series failed to converge’
a1eint (xnus .500) e L S continue
else than the turning point for x > XMIN, Tymu=-gsum
nl=max(0,int (xnu-x+1.5d0)) ryl=-sumisxi2
endif IYyEuUp=Xmu*zi*rymu-ryl
xmu=xnu-nl rjmu=w/(rymup-feryma) Equation (13).
xmu 2=xmn s xen else Evaluate CF2 by modified Lentz’s method. Complex arith-
zi=1.d0/x a=, 25d0-xmu? metic done with real variables for portability in double preci-
2i2=2.d0%xi p=-.5d0=xi <
w=xi2/PI The Wronskian. q=1.d0
isign=1 Evaluate CF1 by modified Lentz's method. inign keeps track br=2.d0sx
hexnusxi of sign changes in the denominator, bi=2.do
if(h.1t .FPMIN) h=FPMIN fact=asxi/(prp+qeq)
b=xi2sxnu cr=brigsfact
d=0.d0 ci=bitpsfact
g den=brsbr4bisbi
dou i=1,MAXIT dr=br/den
b=b+xi2 di=-bi/den
d=b-d dlr=credr-cisdi
if(abs(d).1t.FPMIN)d=FPMIN dliscredi+cisdr
c=b-1.d0/c temp=pedlr-q=dli
if(abs(c) .1t .FPMIN) c=FPMIN g=pedlitqedlr
d=1.d0/d p=teamp
del=c*d do i=2,MAXIT
h=delsh a=a+2s(i-1)
if(d.1t.0.d0}isign=-disign bi=bi+2.d0
if(abs(del-1.d0).1t.EPS)go to 1 sl
enddou di=asditbi
pause 'x too large in bessjy; try asymptotic expansion’ if(abs(dr)+abs(di) .1t .FPMIN)dr=FPMIN
continue fact=a/(crecricisci)
rjl=isign*FPHIN Initialize J,. and J) for downward recurrence. crabrtcrefact
rjpl=hsrjl cisbi-cisfact
rili=rjl Stare values for Jater rescaling. if(abs(cr)+abs(ci).1t . FPHIN) cr=FPMIN
rjpi=rjpl den=drsdr+disdi
fact=xnusxi dr=dr/den
doiws 1=nl1,1,-1 di=~di/den
rjtemp=factsrjl+rjpl dlr=credr-cisdi
factefact-xi dliscredi+cisdr
rjpl=facterjtemp-rjl temp=pedlr-qedli
rjl=rjtemp q=p*dli+qedlr
enddo s p=temp
if(rjl.eq.0.d0)rj1=EPS if(abs(dlr-1.d0)+abs(dli).1t.EPS)go to 3
f=rjpl/rjl Now have unnormalized J,, and Ji. anats
if(x.1t.XMIN) then Use series, pause 'cf2 failed in bessjy’
x2=.5d0sx continue
pimu=PIsxmy am=(p-f Equations (6) - (10
if(abs(pizu).1t.EPS)then Ejmnfvzqr:i:f((p-f}0gm+q)) . i
fact=1.d0 rjmu=sign(rjmu,rjl)
elso rymu=rjmu*gam
fact=pimu/sin(pimn) rymup=rymus{p+q/gam)
endif ryl=xmusxisrymu-rymup
d=-log(x2) endif
e=xmusd fact=rjmu/rjl
if(abs(e).1t.EPS)then rj=rjlisfact Scale original J,. and JJ..
fact2=1.d0 rjp=rjplsfact
alse douns i=1,nl Upward recurrence of ¥
fact2=sinh(e)/e rytemp=(xmu+i)exi2eryl-rymn
endif rymu=ryl
call cheb(xmu,gani,gam2, gampl,gammi) Chebyshev evaluation of Iy and Tz, ryl=rytemp
1f=2.d0/PIsfact+(gamiscosh(e)+gam2efact2ed) f;. enddo s
e=exp(e) Iy=rymu
p=e/(gampl+PI} Po- rypexnusxisrymu-ryl
q=1.d0/(e*PI*gammi) . Toturn
pimu2=0.5d0*pimu END
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For J, and J |, simply scale the values in (4) by the ratio
of (7) to the value found after applying the recurrence
(5). The quantities Y, and Y can be found by starting
with the values in (9) and (10) and using the stable

upvvards recurrence

Y . =Qv/x)Y,-Y, _, (11)
together with the relation
Y, =Ww/x)Y, -Y,,,. (12)

Now turn to the case of small x, when CF2 is not suit-
able. Temme® has given a good method of evaluating Y,

and Y, ;, and hence Y, from (12}, by series expansions
that accurately handle the singularity as x—0. The
expansions only work for |v|<1/2, and so now the
recurrence (5) is used to evaluate fat a value v = g in this
interval. Then one calculates J, from

J,=W/(Y, —Y.f) (13)

and J,, from (8). The values at the original value of v are

determined by scaling as before, and the Y’s are recurred
up as before.
Temme’s series are

& 2
)’v = - :E: Cr8k>
k=0

Y, 1= —— 2 ch. (14)
X k=0
Here,
¢, = (—x*/4) /k! (15)
while the coefficients g, and 4, are defined in terms of
quantities p,, ¢,, and f, that can be found by recursion:
& =S + (2/v)sin®(vir/2)q,,
hy = — kg + s>

P =DPi 1 /(k—v), (16)

Box 3

SUBROUTINE sphbes(n,x,sj,sy,sjp,syp)
INTEGER n
REAL sj,sjp.sy,syp,=
c USES bessjy
Returns spherical Bessel functions ju(z), ya(z), and their derivatives j}(z), vl (z) for integer
n
REAL factor,order,rj,rjp,ry.ryp,RTPI02
PARAMETER(RTPI02=1.2533141)
if(n.1t.0.or.x.le.0.)panse 'bad arguments in sphbes’
order=n+0.5
call bessjy(x,order,rj,ry,cjp,ryp)
factor=RTPI02/sqrt(x)
sj=factor*rj
sy=factorsry
sjp=factorsrjp-si/(2.*x)
syp=factorsryp-sy/(2.¢x)
return

END

Box 2

SUBROUTINE cheb(x,gami,gam2,gampl, gammi)

INTEGER NUSE1,NUSE2

DOUBLE PRECISION gami,gam2,gammi,gampl,x

PARAMETER(NUSE1=5 ,NUSE2=5)

USES chebev
Evaluates I'y and I’z by Chebyshev expansion for |x| < 1/2. Also returns 1/I'(1 + x) and
1/T(1 — x). If converting to double precision, set NUSEL = 7, NUSE2 = §

REAL xx,c1(7),c2(8),chebev

SAVE ci,c2
DATA c1/-1.142022680371172d0,6.516511267076d4-3,
* 3.08708017308d-4,-3.470626964d-6 ,6.943764d-9,
. 3.8780d-11,-1.36d-13/
DATA ¢2/1.843740587300906d0,~.07685284084478640,
. 1.2719271366554-3,-4.971736704d-6,-3.31261204-38,
. 2.423104-10,-1.70d-13,-1.d-15/

xx=8.d0sx*x-1.d0 Multiply x by 2 to make range be — 1to 1, and then ap-
gami=chebev(-1.,1.,ci,NUSEL,xx) nywlr;::e[:rmallon for evaluating even Cheby-
gam2=chebev(-1.,1.,c2,NUSE2,xx)

gampl=gam2-xsgami

gammisgaml+x*gaml

return

END
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9y =qx 1/ (k+v),
Ji= (K _\ +pi_, +qkAl)/(k2_V2)-

The initial values for the recurrences are

Po= (1/m)(x/2) 'T(1 4+ ),

9o = (1/m)(x/2)"T(1 —v), (17)
f0=—2— _WT [cosh ol (v) + sinh o In (i) Fz(v)] ,
T sinvr o x
with
o=vIn(2/x),
F'(V):':El?(r(ll—v) _F(11—|—v))’ (18)

1 1 !
r = .
2(V) 2(F(1—v)+r(l+v))

The whole point of writing the formulas in this way is that
the potential problems as v—0 can be controlled by
evaluating v7/sin vrr, sinho/0, and T, carefully. In
particular, Temme gives Chebyshev expansions for ", (v)
and I', (v). We have rearranged his expansion for I, to be
explicitly an even series in v. Since the Chebyshev
polynomials satisfy 7>, (x) = T, (2x* — 1), we can evalu-
ate a series of even Chebyshev polynomials in the same
way'™ we evaluate an ordinary series, but with the
argument x replaced by 2x* — 1. The routine is shown in
Box 2.

The routine assumes v>0. For negative v you can use
the reflection formulas

J_,=cosvrJ, —sinvr Y,

Y_,=sinvrJ, +cosvrY,. (19)

The routine also assumes x>0. For x <0 the
functions are in general complex, but expressible in terms
of functions with x>0. For x =0, Y, is singular.




Spherical Bessel Functions
For integer n, these are defined by

jn ('x) Vﬂ./ +1/2 (x)’
V(X)) =Vn/2x Y, (X). (20)

They can be evaluated by a call to bessjy, and the
derivatives can safely be found from the derivatives of
equation (20). This is done in the routine sphbes in Box
3.

Note that in the continued fraction CF2 in (3) just
the first term survives for v = 1/2. Thus one can make a
very simple algorithm for spherical Bessel functions along
the lines of bessjy by always recursing j, down to n =0,
setting p and ¢ from the first term in CF2, and then recurs-
ing y, up. No special series is required near x =0.
However, bessjy is already so efficient that we have not
bothered to provide an independent routine for spherical
Bessels. [ ]

In our next column: Modified Bessel functions and
Airy functions.
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