Bessel Functions of Fractional Order

William H. Press and Saul A. Teukolsky

Citation: Computers in Physics 5, 244 (1991); doi: 10.1063/1.4822982
View online: https://doi.org/10.1063/1.4822982
View Table of Contents: https://aip.scitation.org/toc/cip/5/2
Published by the American Institute of Physics

ARTICLES YOU MAY BE INTERESTED IN

Modified Bessel Functions of Fractional Order
Computers in Physics 5, 330 (1991); https://doi.org/10.1063/1.4822991
Continued fraction calculation of spherical Bessel functions
Computers in Physics 4, 403 (1990); https://doi.org/10.1063/1.168382
Accurate recursive generation of spherical Bessel and Neumann functions for a large range of indices
Computers in Physics 2, 62 (1988); https://doi.org/10.1063/1.168296
Adaptive Stepsize Runge-Kutta Integration
Computers in Physics 6, 188 (1992); https://doi.org/10.1063/1.4823060
On the derivation of the Green's function for the Helmholtz equation using generalized functions
American Journal of Physics 78, 181 (2010); https://doi.org/10.1119/1.3253655

Padé Approximants

Computers in Physics 6, 82 (1992); https://doi.org/10.1063/1.4823047

Bessel Functions Of Fractional Order

William H. Press and Saul A. Teukolsky

This is the first of a two-part column on the subject of Bessel functions of fractional order. In this part we will give routines for the ordinary Bessel functions, and (as an application) for spherical Bessel functions. In the next issue, we will conclude with modified Bessel functions and (another application) Airy functions.

Many algorithms have been proposed for numerically computing Bessel functions. For integer orders there are several good ways. ${ }^{1-3}$ Fractional orders, however, present difficulties. Many of the proposed methods are simply inaccurate, especially in regions where the functions are nearly singular. Often the methods involve awkward schemes to find starting points for backward recurrences. By contrast, the routines given here are robust; we recommend them wholeheartedly. If you like, you can use the routines as black boxes and skip the rest of this column, which presents the theory behind them.

The basic idea is Steed's method, ${ }^{4-6}$ which was originally developed for Coulomb wave functions. The method calculates $J_{v}, J_{v}^{\prime}, Y_{v}$, and Y_{ν}^{\prime} simultaneously, and so involves four relations among these functions. Three of the relations come from two continued fractions, one of which is complex. The fourth is provided by the Wronskian relation

$$
\begin{equation*}
W \equiv J_{v} Y_{v}^{\prime}-Y_{v} J_{v}^{\prime}=2 / \pi x . \tag{1}
\end{equation*}
$$

The first continued fraction, CF1, is a standard one that can be derived from the recurrence relation:

$$
\begin{align*}
f \equiv \frac{J_{v}^{\prime}}{J_{v}} & =\frac{v}{x}-\frac{J_{v+1}}{J_{v}} \\
& =\frac{v}{x}-\frac{1}{2(v+1) / x-} \frac{1}{2(v+2) / x-} \cdots . \tag{2}
\end{align*}
$$

Forward evaluation of the continued fraction by one of the methods of Ref. 7 is essentially equivalent to backward recurrence of the recurrence relation. The rate of convergence of CF1 is determined by the position of the turning point $x_{\mathrm{tp}}=\sqrt{v(v+1)} \approx v$, beyond which the Bessel functions become oscillatory. If $x \lesssim x_{\mathrm{tp}}$, convergence is very rapid. If $x \gtrsim x_{\mathrm{tp}}$, then each iteration of the continued fraction effectively increases v by 1 until $x \lesssim x_{\mathrm{tp}}$; thereafter rapid convergence sets in. Thus the number of iterations of CF1 is of order x for large x. In the routine bessjy in Box 1 we set the maximum allowed

[^0]number of iterations to 10000 . For larger x, you can use the usual asymptotic expressions for Bessel functions.

One can show that the sign of J_{v} is the same as the sign of the denominator of CF1 once it has converged.

The complex continued fraction CF2 is defined by

$$
\begin{align*}
p+i q & \equiv \frac{J_{v}^{\prime}+i Y_{v}^{\prime}}{J_{v}+i Y_{v}} \\
& =-\frac{1}{2 x}+i+\frac{i}{x} \frac{(1 / 2)^{2}-v^{2}}{2(x+i)+} \frac{(3 / 2)^{2}-v^{2}}{2(x+2 i)+} \cdots . \tag{3}
\end{align*}
$$

(We defer the derivation of CF2 to the analogous case of modified Bessel functions, in our next column.) This continued fraction converges rapidly for $x \gtrsim x_{\mathrm{tp}}$, while convergence fails as $x \rightarrow 0$. We will have to adopt a special method for small x. For x not too small, we can ensure that $x \gtrsim x_{\mathrm{tp}}$ by a stable recurrence of J_{v} and J_{v}^{\prime} downwards to a value $v=\mu \leqslant x$, thus yielding the ratio f_{μ} at this lower value of v. This is the stable direction for the recurrence relation. The initial values for the recurrence are

$$
\begin{equation*}
J_{v}=\text { arbitrary }, \quad J_{v}^{\prime}=f_{v} J_{v}, \tag{4}
\end{equation*}
$$

with the sign of J_{v} chosen from the sign of the denominator of CF1. Choosing the initial value of J_{v} very small minimizes the possibility of overflow during the recurrence. The recurrence relations are

$$
\begin{align*}
& J_{v-1}=(v / x) J_{v}+J_{v}^{\prime}, \\
& J_{v-1}^{\prime}=[(v-1) / x] J_{v-1}-J_{v} . \tag{5}
\end{align*}
$$

Once CF2 has been evaluated at $v=\mu$, then with the Wronskian (1) we have enough relations to solve for all four quantities. The formulas are simplified by introducing the quantity

$$
\begin{equation*}
\gamma \equiv\left(p-f_{\mu}\right) / q . \tag{6}
\end{equation*}
$$

Then

$$
\begin{align*}
& J_{\mu}= \pm\left\{W /\left[q+\gamma\left(p-f_{\mu}\right)\right]\right\}^{1 / 2}, \tag{7}\\
& J_{\mu}^{\prime}=f_{\mu} J_{\mu} \tag{8}\\
& Y_{\mu}=\gamma J_{\mu} \tag{9}\\
& Y_{\mu}^{\prime}=Y_{\mu}(p+q / \gamma) . \tag{10}
\end{align*}
$$

The sign of J_{μ} in (7) is chosen to be the same as the sign of the initial J_{v} in (4).

Once all four functions have been determined at the value $v=\mu$, we can find them at the original value of v.

Box 1

SUBROUTINE bessjy ($x, x n u, r j, r y, x j p, r y p$)
IMTEGER MAXIT
REAL $x j, r j p, r y$, ryp $, x, x n u$, XMIN
PARAMETER (EPS $=1, e-10$, FPMIN $=1 . e-30, M A X I T=10000, X M I N=2$.
PI=3.141592653589793dO)
C USES cheb
Returns the Bessel functions $x j=J_{\nu}, x y=Y_{\nu}$ and their derivatives $r j \mathrm{p}=J_{\nu,}^{\prime}, x y p=Y_{\nu}^{\prime}$,
for positive x and for $x n u=\nu \geq 0$. The relative accuracy is within one or two significant for positive x and for $x n u=\nu \geq 0$. The relative accuracy is within one or two significant
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute accudigits of EPS, except near a zero of one of the functions, where EPS controls its absolute accu-
racy. FPMIN is a number close to the machine's smallest floating point number. All internal racy. FPMIN is a number close to the machine's smallest floating point number. All internal
arithmetic is in double precision. To convert the entire routine to double precision, change the REAL declaration above and decrease EPS to 10^{-16}. Also convert the subroutine cheb.
INTEGER i,isign, $1, n 1$
DOUBLE PRECISION $a, b, b r, b i, c, c r, c i, d, d e l, d e l 1, d e n, d i, d l r, d l i$,
$\mathrm{dr}, \boldsymbol{e}, f$, fact, fact 2, fact $3,11, \operatorname{gam}, \operatorname{gam} 1, \mathrm{gam} 2, \operatorname{gamm}, \operatorname{gamp} 1, h$,
*

* \quad, pimu, pimu2,q, $x, r j 1, r j 11, r j m u, r j p 1, r j p 1, r j t e m p, r y 1$,
rymu, rymup,rytemp, sum, sum1,temp, $y, x 2, x i, x i 2, x m u, x m u 2$
if(x.le.0..or.xnu.lt.0.) pause 'bad arguments in bessjy'
if ($x .1 t$. XMIM) then
n1 is the number of downward recurrences of the J 's and
upard recurrences of Y s, xmu lies between $-1 / 2$ and
$1 / 2$ for $x<X O M N$, while it ix chosen so that x is greater
than the turning point for $x \geq X M I M$.
else
$n 1=\max (0, \operatorname{int}(x n u-x+1.5 d 0))$
ondif
x $\mathrm{m} u=\mathrm{xnu} u-\mathrm{n}$ l
$x \operatorname{mu} 2=x \operatorname{mu*} x \operatorname{cmu}$
xi=1.do/x
$x i 2=2 . d 0 * x i$
$\begin{array}{ll}y=x i 2 / P I & \text { The Wronskian. } \\ \text { isign=1 } & \text { Evaluate CF1 by modified Lentz's method. isign keeps track } \\ h=x n u * x i & \text { of sign changes in the denominator. }\end{array}$
if (h. 1t. FPMIN) h=FPMIN
$b=x i 2 * x n u$
$d=0 . d o$
$\mathrm{c}=\mathrm{h}$
do $1: i=1$, MAXIT
$b=b+x i 2$
$\mathrm{d}=\mathrm{b}-\mathrm{d}$
if (abs (d$) \cdot 1$ t. FPMIN) $\mathrm{d}=$ FPMIN
$c=b-1 . d 0 / c$
if (abs (c) $1 \mathrm{1t}$. FPMIN) $\mathrm{c}=$ FPMIM
$\mathrm{d}=1 . \mathrm{d} 0 / \mathrm{d}$
del=c*d
$h=d e l * h$
if(d.1t.0.do)isign=-isign
if (abs(del-1.d0).1t.EPS)go to 1
enddo
pause 'x too large in bessjy; try asymptotic expansion'
1
$x j 1=i s i g n * F P M I N \quad$ Initialize J_{ν} and J_{ν}^{\prime} for downward recurrence.
rjpl=h*rjl
$x j 11=r j 1$
rjpi=rjpl
rjpi=xjpl
fact $=x n u * x i$
fact $=x n u * x i$
do 12
$l=n l, 1,-1$
rjtemp=fact*rjl+rjpl
fact=fact-xi
rjpl=fact*rjtemp-rjl
$r j=r j t e m p$
onddo 12
if ($x j 1$. eq. $0 . d 0$) $x j 1=$ EPS
$f=r j p 1 / r j 1$
if(x.lt.XMIN) then
Now have unnormalized J_{μ} and J_{μ}^{*}.
$x 2=.5 \mathrm{~d} 0 * x$
pimu=PI*xmu
if(abs (pimu) , 1t. EPS) then

$$
\text { fact }=1 \text {.do }
$$

elso
fact=pimu/sin(pimu)
endif
$d=-\log (x 2)$
e=xmu*d
if (abs(o).1t.EPS) then
fact $2=1$.do
elso
fact $2=\sinh (0) / 0$
ondif
call cheb ($x \mathrm{mu}, \operatorname{gam1} 1, \operatorname{gam} 2$, gampl, gammi) Chebyshev evaluation of Γ_{1} and Γ_{2}
ff=2.do/PI*fact*(gam1* $\cosh (\ominus)+\operatorname{gam} 2 * f a c t 2 * d) \quad f_{0}$.
$e=\exp (e)$
$\mathrm{p}=\mathrm{e} /($ (gampl*PI)
$\mathrm{q}=1 . \mathrm{do} /(\mathrm{e} * \mathrm{PI} * \mathrm{gamm})$
pimu2=0.5d0*pimu
if(abs(pimu2). It EPS) then
fact $3=1$. do
elso
fact3=sin(pimu2)/pimu2
ondif
$r=$ PI*pimu2*fact3*fact3
$c=1$. dO
$d=-x^{2 *} \times 2$
sum=ff+r*q
sum $1=\mathrm{p}$
do 1 i $i=1$, MAXIT fi=(i*ff+p+q)/(i*i-xmu2)
$\mathrm{c}=\mathrm{c} * \mathrm{~d} / \mathrm{i}$
$\mathrm{p}=\mathrm{p} /(\mathrm{i}-\mathrm{xmu})$
$q=q /(i+x n u)$
del=c*($f f+x * q$)
sum=sum+del
dell $=c * p-i * d e l$
sum1=sum1+del1
if (abs (del) $1 t \cdot(1 \cdot d 0+a b s(s u m)) * E P S) g o$ to 2
enddo ${ }^{1 s}$
pause 'bessy series failed to converge'
continue
rymu=-sum
xy1=-sum $1 * x i 2$
rymup"xmu*xi *rymu-ry1
rjmu=v/(rymup-f*rymu)
else
$\mathrm{a}=.25 \mathrm{dO}-\mathrm{xmu} 2$
$\mathrm{p}=-.5 \mathrm{do} 0 * \mathrm{xi}$
Equation (13).
$\mathrm{q}=1$. do
$b_{r}=2$. $d 0 * x$
bi=2. do
fact=a*xi/(p*p+q*q)
cr=br+q*fact
$c i=b i+p * f a c t$
den=br*br+bi*bi
$\mathrm{dr}=\mathrm{br} / \mathrm{den}$
$d i=-b i / d e n$
$\mathrm{d} 1 \mathrm{r}=\mathrm{cr} * \mathrm{dr}-\mathrm{ci} * \mathrm{di}$
$\mathrm{dli}=c r * d i+c i * d r$
temp*p*dlr-q*dli
$q=p^{*} d l i+q * d l r$
$\mathrm{p}=\mathrm{temp}$
do 14 $i=2$, MaXIT
$a=a+2 *(i-1)$
$b i=b i+2$. $d 0$
$d r=a * d r+b r$
$d i=a * d i+b i$
if (abs (dr) +abs(di). 1t. FPMIN)dr=FPMIN
fact=a/(cr*er+ci*ci)
cr=br+cr*fact
ci=bi-ci*fact
if (abs (cr) +abs(ci). 1t. FPMIM) cr=FPMIM
den=dr*dr+di*di
$\mathrm{dr}=\mathrm{dr} / \mathrm{den}$
di=-di/den
$d l_{r=c r * d r-c i * d i}$
$\mathrm{dli}=\mathrm{cr} * \mathrm{di}+\mathrm{ci} * \mathrm{dr}$
temp=p*dlr-q*dli
$q=p * d l i+q * d l x$
$\mathrm{p}=\mathrm{t}$ omp
if (abs(dlr-1.d0) $+\mathrm{abs}(\mathrm{dli}) \cdot 1 t$.EPS) go to 3
enddo
pause 'cf2 failed in bessjy'
continue
$g a m=(p-f) / q \quad$ Equations (6) - (10).
$r j m u=s q r t(w /((p-f) * g a m+q))$
$r j m u=s i g n(r j m u, r j 1)$
rymu=rjmu*gam
rymup $=x y$ mu* $(p+q / g a m)$
ry $1=x$ mu*xi* $r y m u-x y m u p$
endif
fact $=r j m u / r j 1$
$r j=r j 11 * f$ act \quad Scale original J_{v} and J_{v}
$r j p=r j p 1 * f a c t$
Upward recurrence of Y_{k}
rytemp $=(x m u+i) * x i 2 * r y 1-r y m u$
rytemp $=(x$
rymu=ry1
ry1=xytomp
onddo is
ry=rymu
ryp=xnu*xi*rymu-xy1
roturn
END

For J_{v} and J_{v}^{\prime}, simply scale the values in (4) by the ratio of (7) to the value found after applying the recurrence (5). The quantities Y_{v} and Y_{v}^{\prime} can be found by starting with the values in (9) and (10) and using the stable upwards recurrence

$$
\begin{equation*}
Y_{v+1}=(2 v / x) Y_{v}-Y_{v-1} \tag{11}
\end{equation*}
$$

together with the relation

$$
\begin{equation*}
Y_{v}^{\prime}=(v / x) Y_{v}-Y_{v+\mathrm{i}} \tag{12}
\end{equation*}
$$

Now turn to the case of small x, when CF2 is not suitable. Temme ${ }^{8}$ has given a good method of evaluating Y_{v} and Y_{v+1}, and hence Y_{v}^{\prime} from (12), by series expansions that accurately handle the singularity as $x \rightarrow 0$. The expansions only work for $|v| \leqslant 1 / 2$, and so now the recurrence (5) is used to evaluate f at a value $v=\mu$ in this interval. Then one calculates J_{μ} from

$$
\begin{equation*}
J_{\mu}=W /\left(Y_{\mu}^{\prime}-Y_{\mu} f\right) \tag{13}
\end{equation*}
$$

and J_{μ}^{\prime} from (8). The values at the original value of v are determined by scaling as before, and the Y 's are recurred up as before.

Temme's series are

$$
\begin{equation*}
Y_{v}=-\sum_{k=0}^{\infty} c_{k} g_{k}, \quad Y_{v+1}=-\frac{2}{x} \sum_{k=0}^{\infty} c_{k} h_{k} \tag{14}
\end{equation*}
$$

Here,

$$
\begin{equation*}
c_{k}=\left(-x^{2} / 4\right)^{k} / k! \tag{15}
\end{equation*}
$$

while the coefficients g_{k} and h_{k} are defined in terms of quantities p_{k}, q_{k}, and f_{k} that can be found by recursion:

$$
\begin{align*}
& g_{k}=f_{k}+(2 / v) \sin ^{2}(v \pi / 2) q_{k} \\
& h_{k}=-k g_{k}+p_{k} \\
& p_{k}=p_{k-1} /(k-v) \tag{16}
\end{align*}
$$

Box 2

```
    SUBROUTINE cheb( }x,gam1,gam2,gampl,gammi
    INTEGER NUSE1,NUSE2
    DOUBLE PRECISION gam1,gam2,gammi,gamp1,x
    PARAMETER (NUSE1=5,NUSE2 =5)
    USES chebev
        Evaluates }\mp@subsup{\Gamma}{1}{}\mathrm{ and }\mp@subsup{\Gamma}{2}{}\mathrm{ by Chebyshev expansion for }|x|\leq1/2. Also returns 1/\Gamma(1+x) and
        1/\Gamma(1-x). If converting to double precision, set NOSE1 = 7, NOSE2 = = .
    REAL xx,c1(7),c2(8), chebev
    SAVE c1,c2
    DATA c1/-1.142022680371172d0,6.516511267076d-3,
        3.08709017308d-4,-3.470626964d-6,6.943764d-9,
        3.6780d-11,-1.36d-13/
    DATA c2/1.843740587300906d0,-.076852840844786dO,
        1.271927136655d-3,-4.971736704d-6,-3.3126120d-8,
        2.42310d-10,-1.70d-13,-1.d-15/
    xx=8.d0*x*x-1.do Multiply x by 2 to make range be -1 to 1, and then ap-
    gam1=chebev ( }-1,,1,,c1,NUSE1,xx) ply transformation for evaluating even Cheby-
    gam1=chebev ( -1,,1, ,c1,NUSE1,xx
                l
    gam2=chebev( - 1, ,1, , C2,NUSE2,xx)
    gampl=gam2-x*gam1
    gammi=gam2+x*gam1
    return
    END
```


Box 3

```
    SUBROUTINE sphbes(n,x,sj,sy,sjp,syp)
    IMTEGER A
    REAL sj,sjp,sy,syp,x
USES bessjy
        Returns spherical Bessel functions }\mp@subsup{j}{n}{}(x),\mp@subsup{y}{n}{}(x)\mathrm{ , and their derivatives }\mp@subsup{j}{n}{\prime}(x),\mp@subsup{y}{n}{\prime}(x)\mathrm{ for integer
        n.
        REAL factor,order, rj, rjp,ry, ryp,RTPIO2
    PARAMETER(RTPIO2=1.2533141)
    if(n.lt.0.or.x.le.0.)pause 'bad arguments in sphbes'
    order=n+0.5
    call bessjy(x,order,rj,ry,rjp,ryp)
    factor=RTPI02/sqrt(x)
    sj=factor*rj
    sy=factor*ry
    sjp=factor*rjp-sj/(2.*x)
    syp=factor*ryp-sy/(2.*x)
    return
    END
```

$$
\begin{aligned}
q_{k} & =q_{k-1} /(k+v) \\
f_{k} & =\left(k f_{k-1}+p_{k-1}+q_{k-1}\right) /\left(k^{2}-v^{2}\right)
\end{aligned}
$$

The initial values for the recurrences are

$$
\begin{align*}
& p_{0}=(1 / \pi)(x / 2)^{-v} \Gamma(1+v) \\
& q_{0}=(1 / \pi)(x / 2)^{v} \Gamma(1-v) \tag{17}\\
& f_{0}=\frac{2}{\pi} \frac{v \pi}{\sin v \pi}\left[\cosh \sigma \Gamma_{1}(v)+\frac{\sinh \sigma}{\sigma} \ln \left(\frac{2}{x}\right) \Gamma_{2}(v)\right]
\end{align*}
$$

with

$$
\begin{align*}
& \sigma=v \ln (2 / x) \\
& \Gamma_{1}(v)=\frac{1}{2 v}\left(\frac{1}{\Gamma(1-v)}-\frac{1}{\Gamma(1+v)}\right) \tag{18}\\
& \Gamma_{2}(v)=\frac{1}{2}\left(\frac{1}{\Gamma(1-v)}+\frac{1}{\Gamma(1+v)}\right)
\end{align*}
$$

The whole point of writing the formulas in this way is that the potential problems as $v \rightarrow 0$ can be controlled by evaluating $v \pi / \sin v \pi, \sinh \sigma / \sigma$, and Γ_{1} carefully. In particular, Temme gives Chebyshev expansions for $\Gamma_{1}(v)$ and $\Gamma_{2}(v)$. We have rearranged his expansion for Γ_{1} to be explicitly an even series in v. Since the Chebyshev polynomials satisfy $T_{2 n}(x)=T_{n}\left(2 x^{2}-1\right)$, we can evaluate a series of even Chebyshev polynomials in the same way ${ }^{1-3}$ we evaluate an ordinary series, but with the argument x replaced by $2 x^{2}-1$. The routine is shown in Box 2.

The routine assumes $v \geqslant 0$. For negative v you can use the reflection formulas

$$
\begin{align*}
& J_{-v}=\cos v \pi J_{v}-\sin v \pi Y_{v} \\
& Y_{-v}=\sin v \pi J_{v}+\cos v \pi Y_{v} \tag{19}
\end{align*}
$$

The routine also assumes $x>0$. For $x<0$ the functions are in general complex, but expressible in terms of functions with $x>0$. For $x=0, Y_{v}$ is singular.

Spherical Bessel Functions

For integer n, these are defined by

$$
\begin{align*}
& j_{n}(x)=\sqrt{\pi / 2 x} J_{n+1 / 2}(x) \\
& y_{n}(x)=\sqrt{\pi / 2 x} Y_{n+1 / 2}(x) \tag{20}
\end{align*}
$$

They can be evaluated by a call to bessjy, and the derivatives can safely be found from the derivatives of equation (20). This is done in the routine sphbes in Box 3.

Note that in the continued fraction CF2 in (3) just the first term survives for $v=1 / 2$. Thus one can make a very simple algorithm for spherical Bessel functions along the lines of bessjy by always recursing j_{n} down to $n=0$, setting p and q from the first term in CF2, and then recursing y_{n} up. No special series is required near $x=0$. However, bessiy is already so efficient that we have not bothered to provide an independent routine for spherical Bessels.

In our next column: Modified Bessel functions and Airy functions.

References

1. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. P., New York, 1986).
2. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. P., New York, 1988).
3. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing (Cambridge U. P., New York, 1989).
4. A. R. Barnett, D. H. Feng, J. W. Steed, and L. J. B. Goldfarb, Comp. Phys. Comm. 8, 377 (1974).
5. A. R. Barnett, Comp. Phys. Comm. 21, 297 (1981).
6. I. J. Thompson and A. R. Barnett, J. Comp. Phys. 64, 490 (1986).
7. W. H. Press and S. A. Teukolsky, Comput. Phys. 2, 88 (1988).
8. N. M. Temme, J. Comp. Phys. 21, 343 (1976).

In the PHYS database on STN International, more than 1.3 million records cover everything from the giant planets and new computer models to atomic energy research, geophysics, and astronomy.
Produced by the American Institute of Physics and FIZ Karlsruhe, PHYS is the online version of Physics Briefs.
To assist you in obtaining information in PHYS efficiently, you'll find many special features:

- 30% of journal citations available within one month of publication date

- Citations usually appear 8-14 weeks earlier than in major competitor's database
- An online thesaurus for access to additional terms
- Titles are in English but also searchable in their original language
- Astronomical objects are indexed

On STN, qualifying academic institutions receive an 80% discount when searching PHYS. And, if you haven't searched PHYS before, you'll enioy practicing in LPHYS, also available at a significant discount.

As an STN customer, you can receive help from workshops, tutorial diskettes, STN Express ${ }^{\text {® }}$ software, a tollfree Help Desk, newsletters, and online document delivery service. No one supports you like STN!

To zoom in on physics on STN call 1-800-753-4CAS or write to STN, clo Chemical Abstracts Service, Marketing Dept. 34191, P.O. Box 3012, Columbus, OH 43210-0012. We'll rush your FREE information packef.

[^0]: William H. Press is a professor of astronomy and physics at Harvard University. Saul A. Teukolsky is a professor of physics and astronomy at Cornell University.

