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S U M M A R Y

Smoothing filters are extremely important tools in seismic imaging and inversion, such as

for traveltime tomography, migration and waveform inversion. For efficiency, and as they

can be used a number of times during inversion, it is important that these filters can easily

incorporate prior information on the geological structure of the investigated medium, through

variable coherent lengths and orientation. In this study, we promote the use of the Bessel

filter to achieve these purposes. Instead of considering the direct application of the filter, we

demonstrate that we can rely on the equation associated with its inverse filter, which amounts

to the solution of an elliptic partial differential equation. This enhances the efficiency of the

filter application, and also its flexibility. We apply this strategy within a spectral-element-based

elastic full waveform inversion framework. Taking advantage of this formulation, we apply

the Bessel filter by solving the associated partial differential equation directly on the spectral-

element mesh through the standard weak formulation. This avoids cumbersome projection

operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit

windowed convolution on the finite-element mesh, which is often used for applying smoothing

operators. The associated linear system is solved efficiently through a parallel conjugate

gradient algorithm, in which the matrix vector product is factorized and highly optimized

with vectorized computation. Significant scaling behaviour is obtained when comparing this

strategy with the explicit convolution method. The theoretical numerical complexity of this

approach increases linearly with the coherent length, whereas a sublinear relationship is

observed practically. Numerical illustrations are provided here for schematic examples, and

for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II

benchmark model. These examples illustrate well the efficiency and flexibility of the approach

proposed.

Key words: Image processing; Inverse theory; Numerical approximations and analysis; Con-

trolled source seismology; Seismic tomography.

1 I N T RO D U C T I O N

Full waveform inversion (FWI) offers the possibility to extract high-resolution quantitative multi-parameters of the subsurface from seismic

data. The majority of these applications are carried out under finite-difference (FD) approximation, due to the numerical efficiency of

this method and its ease of implementation. Standard formulations of this approach are, however, limited on regular grids, which require

significant extra effort in terms of design and computational cost in the presence of surface topography or important geological interfaces

(Robertsson 1996; Bohlen & Saenger 2006; Fuji et al. 2016; Huiskes et al. 2016). Finite-element (FE) methods have become popular for

regional and global problems, especially spectral-element methods (SEMs), where complex geometry can be handled with accurate numerical

calculation of wavefields (Komatitsch & Tromp 1999). In dealing with 3-D elastic FWI, we would like to develop a complete inversion

numerical workflow using a spectral FE scheme while including an efficient smoothing filter implemented directly on the FE mesh.

In most geophysical applications, FWI is introduced as an iterative local optimization problem that attempts to minimize the least-squares

residuals between the observed and the calculated data at the receiver location. This inverse problem is mathematically ill-posed, which thus

leads to the non-uniqueness of the solution. For seismic imaging using either traveltimes or wavefields, the inversion often needs to be stabilized

by applying regularization. This can be performed through model-driven regularization (Menke 1984; Tarantola 2005) or by preconditioning

the gradient through filtering operators (Guitton et al. 2012). This data-driven strategy is sometimes called model preconditioning (Fomel &

Claerbout 2003). These regularization techniques normally assume the particular properties or structure of the model, such as smoothness or

C© The Authors 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1489
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geological features, to guide the problem toward the desired solution. In 3-D elastic FWI, the computational cost remains one of the main

challenges (Virieux & Operto 2009), therefore decimation of the data volume by reducing the number of computed shots, random subsampling

strategies, and/or source-encoding becomes mandatory (Capdeville et al. 2005; Herrmann et al. 2009; Krebs et al. 2009; Warner et al. 2013;

Castellanos et al. 2015). This implies a decrease in the data coverage and the presence of cross-talk and artefacts, which makes the inversion

problem even more ill-posed. In this context, the role of regularization at each iteration becomes crucial and needs to be performed efficiently.

Dealing with complex structures or geological heterogeneity might also require adequate regularization strategies. These issues can

be addressed by attenuation of the wave-number content in a particular direction, such as plane-wave destruction filters (Claerbout 1992;

Fomel 2002), or by imposition of expected structures through directional Laplacian preconditioning in the model space (Hale 2007; Guitton

et al. 2012). This latter highlights the importance of non-stationary filters in complex geology; for example, the Laplace filter can smooth or

drastically reduce local planar events according to a local dip field.

These non-stationary preconditioning filters are expressed as convolution operators, such as Gaussian or Laplacian filters, through

s(x) =
∫

CnD(x − x′)m(x′)dx′. (1)

The vector m(x) is transformed into a new vector s(x) through the convolution operator CnD, where n is the dimension of the problem

(n = 2 or n = 3). In the FD grid, the Gaussian filter (without local rotation) can be applied efficiently to any model or gradient vector,

due to the tensorial property of the function. For long filters, recursive implementation can be used to improve the computing performance

(Deriche 1992; Van Vliet et al. 1998). These approaches can be extended to FE methods by including a projection between the Cartesian

mesh, where the parameters to be reconstructed are located, and the FE mesh. However, this can be limited by the accuracy of the back and

forth projections. Filtering can also be applied as a windowed convolution of the filter and the vector (Tape et al. 2010; Peter et al. 2011), as

for the SPECFEM open-source package

s(x) ≈
∫ αL

−αL

CnD(x − x′)m(x′)dx′, (2)

where L is the coherent length associated with the filter: as the kernel of the filter is decaying, the integration can be limited over the finite

domain expressed by the effective radius αL from the position x. This convolution approach can be relatively computer demanding, because

for each input point to be filtered, contributions of other points of the medium are required in the surrounding volume, which leads to

significant computer manipulation, especially for functions with long tails, such as the Laplace filter.

In this report, we highlight that the inverse of given operators CnD can be relatively sparse. Therefore, it is interesting to consider them

to obtain the contribution of the smoothing operator (Wellington 2016). Instead of performing the convolution in eq. (1), we can consider

solving the following eq. (3), relying on the inverse operator
∫

C−1
nD(x − x′)s(x′)dx′ = m(x), (3)

which requires knowledge of the inverse operator C−1
nD . This leads to the definition of Bessel filters, which are defined by the modified Bessel

functions (Abramowitz & Stegun 1972) and their sparse inverse operators. As the filter is defined through a non-homogeneous elliptic partial

differential equation (PDE) with delta source function, its inverse operator can be expressed as a distribution function. The integral eq. (3)

can then be efficiently solved using any FD or FE method. In 3-D, applying the Bessel filter twice provides an excellent approximation of

the Laplace operator, with negligible mismatch at the origin. This approximation implies that the Bessel filter can be applied either once as a

smoothing filter, or twice to reproduce the decay of the Laplace filter.

This paper is organized as follows. In Section 2, we first define the Bessel filter through a PDE with specific boundary conditions, and

the approximation of the Laplace filter by Bessel functions in 2-D and 3-D geometries. In Section 3, the application of the Bessel sparse

inverse operator on a vector is described by a system of PDEs. The weak formulation of these equations yields a sparse linear system,

which is symmetric positive even for variable coherent lengths, dip and azimuth angles. In Section 4, several numerical illustrations and an

example from the synthetic 3-D SEAM Phase II foothills model are provided of such smoothing processes. In Section 5, efficient numerical

schemes in a high-performance computer environment are presented. We show how a parallel conjugate gradient (CG) iterative solver can be

implemented in a matrix-free fashion. The convergence of this CG iterative solver is analysed with respect to several parameters. Significant

scaling behaviour is also obtained when this strategy is compared with the explicit convolution method. Conclusions and perspectives are

given in Section 6. We highlight that the choice of applying the Bessel filter once or twice depends on the specific application, and this

decision will be case dependent.

2 M E T H O D O L O G Y

Before moving to the mathematical development, we would like to specify some definitions regarding forward and inverse filters. Let us

consider the kernel C(x) as a 2-D or 3-D smoothing filter. The application of this filter to a function g(x) is defined by the convolution

operator, which is denoted by the symbol ‘*’, through

f (x) = C(x) ∗ g(x), which is equivalent to f (x) =
∫

C(x − x′)g(x′)dx′. (4)
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The inverse filter of C(x), namely C(x)−1, is defined through the relation

C−1(x) ∗ C(x) = δ(x). (5)

2.1 Definition of Bessel filters and their sparse inverse operators

Depending on the space dimension, we introduce the normalized Bessel filters

B3D(z, x, y) =
1

(2π )3/2 L z L x L y

r−1/2 K1/2(r ) where r =

√

z2

L2
z

+
x2

L2
x

+
y2

L2
y

, (6)

B2D(z, x) =
1

2π L z L x

K0

(√

z2

L2
z

+
x2

L2
x

)

, (7)

where Lx, Ly and Lz are coherent lengths in the x, y and z directions, and Kν is the modified Bessel function of the second kind, as presented

in Appendix A. While the 2-D Bessel filter is the normalized modified Bessel function Kν(r) with ν = 0, the 3-D Bessel filter is the modified

spherical Bessel function z−1/2Kν + 1/2(r) with ν = 0 (Abramowitz & Stegun 1972). When coherent lengths are uniform over space, these

Bessel filters are unique solutions of the following PDEs

B3D(z, x, y) −
(

L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)

B3D(z, x, y) = δ(z, x, y), (8)

B2D(z, x) −
(

L2
z

∂2

∂z2
+ L2

x

∂2

∂x2

)

B2D(z, x) = δ(z, x), (9)

with radiative boundary conditions BnD(x) → 0 as ‖x‖→∞, and the additional bounded constraint on the integral through 0 <
∫

BnD(x)dx <∞.

The construction of these normalized Bessel filters is developed in Appendix B.

According to eqs (8) and (9) and the definition of the inverse filter in eq. (5), the associated sparse inverse of the Bessel filters can be

defined as

B−1
3D (z, x, y) = δ0(z, x, y) −

(

L2
zδ

2(z)δ0(x)δ0(y) + L2
xδ

2(x)δ0(y)δ0(z) + L2
yδ

2(y)δ0(x)δ0(z)
)

(10)

B−1
2D (z, x) = δ0(z, x) −

(

L2
zδ

2(z)δ0(x) + L2
xδ

2(x)δ0(z)
)

, (11)

where δn is defined as
∫

δn(x − x ′) f (x ′)dx ′ = (−1)n dn f (x)

dxn
. (12)

It is important to note that Bessel filters only depend on the radial part (Appendix B), which favours the transformation from Cartesian

coordinates to polar coordinates (r, θ ) in 2-D, or to spherical coordinates (r, θ , φ) in 3-D

(z, x) →
2D

√

z2

L2
z

+
x2

L2
x

; (z, x, y) →
3D

√

z2

L2
z

+
x2

L2
x

+
y2

L2
y

. (13)

Let us consider an original vector m in the model space 	 that we want to smooth. The vector s will be the smoothed vector obtained

by applying the Bessel filter B3D(z, x, y). We can equivalently consider the application of the inverse Bessel filter, which leads to the choice

between the solutions of the following two problems:

s = B3D ∗ m or m = B−1
3D ∗ s. (14)

Both systems are convolution over space. The first one embeds a relatively broad kernel shape, where the computation can be demanding.

Therefore, we are interested in the second equation. According to the definition of the inverse operator B−1
3D (eq. 10), this convolution can be

translated into the following PDE over the domain 	

s(z, x, y) −
(

L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)

s(z, x, y) = m(z, x, y), (15)

in which the vector m appears on the right-hand side. Once discretized by any FD or FE method, this system leads to a sparse operator

and can be solved efficiently, to obtain the smoothed vector s. Our approach is similar in some ways to the structure-oriented smoothing

filter proposed by Williamson et al. (2011), which was derived from the diffusion equation as proposed by Fehmers & Höcker (2003). This

smoothing process is controlled by a symmetric diffusion tensor, without knowing the kernel shape of the forward filter.
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1492 P.T. Trinh et al.

Figure 1. Comparison between the behaviour of the 3-D normalized Laplace filter defined in eq. (20) and the convolution of two 3-D Bessel filters for

Lx = Ly = Lz = 20 m, obtained from the iterative solving of eq. (8), which defines the 3-D Bessel filter.

2.2 Approximation of the Laplace filter by the Bessel operator

The convolution of two Bessel filters can provide an excellent approximation of the Laplace filter in 2-D and 3-D. We first illustrate this for

the 3-D case, as this is our main interest. The double operator B−1
3D ∗ B−1

3D is the inverse filter of the operator B3D ∗ B3D, which is the solution

of the following equation
[

B−1
3D ∗ B−1

3D (z, x, y)
]

∗ f (z, x, y) = δ(z, x, y), (16)

where the function f satisfies the following PDE

[

1 −
(

L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)]2

f (z, x, y) = δ(z, x, y). (17)

Changing parameters from Cartesian coordinates to spherical coordinates, where

r =

√

z2

L2
z

+
x2

L2
x

+
y2

L2
y

, (18)

and knowing that the expected solution, the filter B3D ∗ B3D, only depends on the radial part, eq. (17) now becomes
[

1 −
∂2

∂r 2

]

f (r ) =
δ(r )

4πr 2
+
[

∂2

∂r 2
+

4

r

∂

∂r
−

∂4

∂r 4
−

4

r

∂3

∂r 3
−

4

r 2

∂2

∂r 2

]

f (r )

︸ ︷︷ ︸

M3D [ f (r )]

. (19)

The normalized 3-D Laplace filter L3D(z, x, y) is given by

L3D(z, x, y) =
1

8π L z L x L y

e
−
√

z2

L2
z

+ x2

L2
x

+ y2

L2
y or L3D(r ) =

1

8π L z L x L y

e−r . (20)

This is the solution of eq. (19), for r > 0, provided the residual term M3D[L3D(r)] can be ignored, as

L3D(r ) −
∂2

∂r 2
L3D(r ) = 0. (21)

The residual term M3D for the 3-D Laplace filter satisfies
∥
∥
∥
∥

M3D[L3D(r )]

L3D

∥
∥
∥
∥

=
4

r 2
, (22)

which implies that the residual term becomes smaller when the distance r increases. Fig. 1 presents an excellent match between the 3-D

normalized Laplace filter defined in eq. (20) and the convolution of the two 3-D Bessel filters for Lx = Ly = Lz = 20 m, obtained from solving

the PDE defining the 3-D Bessel filter. The mismatch at zero origin comes from the residual terms M3D[L3D(r)], which are more important at

small distances r. This analysis is also coherent with the 3-D inverse operator of the Laplace filter proposed by Tarantola (2005).

In 2-D, by applying the same workflow, we can find a similar approximation. However, we would like to highlight the flexibility of this

approximation by introducing a scaling parameter a into the definition of the 2-D normalized Laplace filter

L2D(z, x, a) =
1

2πa2 L x L z

e
−
√

z2

a2 L2
z

+ x2

a2 L2
x or L2D(r ) =

1

2πa2 L x L z

e−r . (23)

This 2-D Laplace operator can be well approximated by the application of two 2-D Bessel filters, as shown in Fig. 2, except at the origin

where there is a singularity. By using different values of the scaling factor a, we have different approximations of the Laplace filter, which

mitigates the discrepancies for both the amplitude and the decay.

3 W E A K F O R M U L AT I O N I N F E M E T H O D S

Following the weak formulation, as usual for FE methods, we can discretize eq. (15) and deduce a sparse linear system that can be efficiently

solved using an iterative linear solver. First, we start by introduction of the weak formulation in SEM for homogeneous coherent lengths
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Figure 2. Comparison between the 2-D normalized Laplace filter defined in eq. (23) and the application of two 2-D Bessel filters for Lx = Lz = 20 m at

different values of the scaling parameter a. The Bessel filters are obtained from the iterative solving of eq. (9), which defines the 2-D Bessel filter.

without dip and azimuth, which naturally leads to a symmetric linear system. We then introduce an efficient method to incorporate variable

coherent lengths, and dip and azimuth angles into our linear system, while preserving the symmetry of the left-hand-side matrix. Although

the following was developed for SEM, it can be extended to other FE formulations, and also for FD methods (Wellington 2016).

3.1 Weak formulation of the filter for homogeneous coherent lengths without dip and azimuth

We do not develop the weak formulation of eq. (15) in Cartesian space, but in the dimensionless coordinates in the domain 	̃, as defined by

the following expressions

z̃ =
z

L z

, x̃ =
x

L x

, ỹ =
y

L y

. (24)

As coherent lengths Lz, Lx and Ly are homogeneous, the relationship of eq. (24) is an one-to-one projection from (z, x, y) to (z̃, x̃, ỹ), which

implies that solving eq. (15) in dimensionless or Cartesian coordinates should provide identical results. In the dimensionless coordinates,

eq. (15) can be written in its weak form as
∫∫∫

	̃

[

s − ∇2
z̃,x̃,ỹs

]

v dz̃dx̃d ỹ =
∫∫∫

	̃

mv dz̃dx̃d ỹ, (25)

leading to the weak formulation
∫∫∫

	̃

sv dz̃dx̃d ỹ +
∫∫∫

	̃

∇z̃,x̃,ỹs∇z̃,x̃,ỹv dz̃dx̃d ỹ =
∫∫∫

	̃

mv dz̃dx̃d ỹ, (26)

where the test function v(z̃, x̃, ỹ) is chosen such that it satisfies the homogeneous Dirichlet boundary conditions, which implies that the

boundary terms have vanished.

We introduce the notation of the division of two vectors (x1, x2, x3)t and (y1, y2, y3)t (where ‘t’ stands for the transpose operator)

B =
(y1, y2, y3)t

(x1, x2, x3)t
, (27)

such that B satisfies the relationship

⎡

⎢
⎢
⎣

y1

y2

y3

⎤

⎥
⎥
⎦

= B

⎡

⎢
⎢
⎣

x1

x2

x3

⎤

⎥
⎥
⎦

. (28)
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1494 P.T. Trinh et al.

This matrix B is actually the transformation matrix when the coordinate transformation is performed from the system (x1, x2, x3) to (y1, y2,

y3).

In SEM, the physical domain is decomposed into a set of non-overlapping hexahedral elements. Each element is further discretized by

(N + 1)3 Gauss–Lobatto–Legendre (GLL) points (ξk1
, ηk2

, ζk3
) in the reference space, k1, k2, k3 = 0, . . . , N. The mapping from the reference

space (ξ , η, ζ ) to the Cartesian space (z, x, y) is expressed by the Jacobi matrix, according to the notation in eq. (27),

J =
(∂z, ∂x, ∂y)t

(∂ξ, ∂η, ∂ζ )t
and Je = det(J). (29)

Similarly, the relationship between the reference space and the dimensionless coordinate is defined through

J̃ =
(∂ z̃, ∂ x̃, ∂ ỹ)t

(∂ξ, ∂η, ∂ζ )t
and J̃ e = det(J̃). (30)

In the reference space, the basis functions are defined as Lagrange polynomials over the GLL points. The integrals are then numerically

approximated by GLL quadrature (more details on SEM are given in Appendix C). Due to these ingredients and the property of the Lagrange

polynomials that have values at the GLL nodes of either 0 or 1, the weak formulation in eq. (26) can be written as

(M + K
︸ ︷︷ ︸

A

)s = Mm, (31)

in which the mass matrix M is diagonal, and the stiffness matrix K is symmetric. The impedance matrix A = M + K is then symmetric. For

the mass matrix, its components are given by

Mk̂k̂ = wk1
wk2

wk3
J̃ e(ξk1

, ηk2
, ζk3

) k̂ stands for the triple of indexes {k1, k2, k3}, (32)

and, for the stiffness matrix, by

K k̂ĥ =
N
∑

q̂=0

wq1
wq2

wq3
J̃ e(ξq1

, ηq2
, ζq3

)

⎡

⎣

3
∑

i=1

3
∑

j=1

∂vk̂

∂ri

(
3
∑

d=1

∂ri

∂pd

∂r j

∂pd

)

∂vĥ

∂r j

⎤

⎦ , (33)

where

(p1, p2, p3) := (z̃, x̃, ỹ) and (r1, r2, r3) := (ξ, η, ζ ).

We introduce here the geometric factors Gij associated with the projection between the dimensionless coordinates and the reference

coordinates

G i j (ξq1
, ηq2

, ζq3
) =

3
∑

d=1

∂ri

∂pd

∂r j

∂pd

J̃ e(ξq1
, ηq2

, ζq3
), (34)

which simplifies the expression of the stiffness matrix to

K k̂ĥ =
N
∑

q̂=0

wq1
wq2

wq3

⎡

⎣

3
∑

i=1

3
∑

j=1

∂vk̂

∂ri

G i j

∂vĥ

∂r j

⎤

⎦ . (35)

These expressions of eqs (32), (34) and (35) are used for the implementation of the matrices M and to compute the product of the matrix

A with a given vector in the dimensionless coordinates. To do so, the evaluation of the geometric factors Gij is critical. Note that the linear

system of eq. (31) is constructed and solved in the dimensionless coordinates and not in the Cartesian coordinates. The results are not affected

by this coordinate transformation, due to the bijective correspondence between the two coordinates systems (eq. 24).

When wave-propagation simulation is performed by SEM, all of the elements of the inverse Jacobi matrix J−1 and the volumetric Jacobian

Je associated to this projection are available at no extra cost. It is of great interest to incorporate these ingredients into the construction of

matrices M and geometric factors Gij. According to the definition of the relationship between dimensionless coordinates and Cartesian

coordinates (eq. 24), the determinant J̃ e of the Jacobi matrix J̃ can be estimated from the volumetric Jacobian Je of the Jacobi matrix J

through

J̃ e(ξ, η, ζ ) =
∣
∣
∣
∣

(∂ z̃, ∂ x̃, ∂ ỹ)t

(∂ξ, ∂η, ∂ζ )t

∣
∣
∣
∣
=

1

L z L x L y

∣
∣
∣
∣

(∂z, ∂x, ∂y)t

(∂ξ, ∂η, ∂ζ )t

∣
∣
∣
∣
=

1

L z L x L y

Je(ξ, η, ζ ). (36)

The inverse matrix J̃−1 can be deduced from the elements of the inverse Jacobi matrix J−1 through the identity

⎡

⎢
⎢
⎣

∂z̃ξ ∂x̃ξ ∂ỹξ

∂z̃η ∂x̃η ∂ỹη

∂z̃ζ ∂x̃ζ ∂ỹζ

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

L z∂zξ L x∂xξ L y∂yξ

L z∂zη L x∂xη L y∂yη

L z∂zζ L x∂xζ L y∂yζ

⎤

⎥
⎥
⎦

. (37)
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Bessel filter for spectral-element mesh 1495

Following this framework, the application of the Bessel filter to a model vector, through the solving of the linear system (eq. 31), can

be efficiently achieved in the dimensionless coordinate system, whereas the wave-propagation simulation is still performed in Cartesian

coordinates.

The symmetric matrix A is referred to as the discrete Helmholtz operator, which has been shown to be positive definite (Deville

et al. 2002). The CG method is thus the method of choice to iteratively solve the linear system. In these numerical experiments, the condition

number of the matrix A ranges from 102 to 104, which depends on the value of the coherent lengths. Therefore, the iterative solver converges

rapidly toward the desired solution, as we will see with the numerical implementation.

3.2 Variable coherent lengths, dip and azimuth angles

In the previous section, the weak formulation of the Bessel filter in a dimensionless coordinate system was shown to naturally yield a symmetric

stiffness matrix. When introducing variable parameters—coherent lengths, dip and azimuth angle—we want to preserve the symmetry of

the matrix A, and therefore we develop the weak formulation in a rotated dimensionless coordinate system (ṽ, ũ, w̃). Before defining these

coordinates, let us provide the definition of the azimuth θ and dip ϕ angles for a given vector. The azimuth is the horizontal angle measured

from the North, and the dip is the angle that the vector has with the horizontal (Sheriff 2002). Their values range such that θ ∈ [−π , π ]

and ϕ ∈ [−π/2, π/2]. In 3-D space, a rotation R3D with azimuth θ and dip ϕ transforms the Cartesian coordinates (z, x, y) into the rotated

coordinates (v, u, w), where v is vertical direction, perpendicular to the bedding planes, and the two horizontal directions u and w define the

plane of the geological structure. Considering the previous definitions, we have the following rotational operator

R3D(θ, ϕ) =
(v, u, w)t

(z, x, y)t
=

⎡

⎢
⎢
⎣

cos ϕ − cos θ sin ϕ sin θ sin ϕ

sin ϕ cos θ cos ϕ − sin θ cos ϕ

0 sin θ cos θ

⎤

⎥
⎥
⎦

. (38)

Similar to the last section, we would like to develop the weak formulation of the PDEs associated with the application of the sparse inverse

Bessel filter in the rotated dimensionless coordinates system (ṽ, ũ, w̃), defined by the following relationships

ṽ =
v

Lv(v, u, w)
; ũ =

u

Lu(v, u, w)
; w̃ =

v

Lw(v, u, w)
, (39)

in which Lv , Lu and Lw are coherent lengths in the v, u and w directions, respectively. In this rotated dimensionless coordinate system, the

Bessel filter is defined by the PDE

B(ṽ, ũ, w̃) −
(

∂2

∂ṽ2
+

∂2

∂ ũ2
+

∂2

∂w̃2

)

B(ṽ, ũ, w̃) = δ(ṽ, ũ, w̃). (40)

The rotated dimensionless coordinates are mapped to the Cartesian coordinates through the relationship

(ṽ, ũ, w̃)t

(z, x, y)t
=

(ṽ, ũ, w̃)t

(v, u, w)t
×

(v, u, w)t

(z, x, y)t
=

⎡

⎢
⎢
⎣

1
Lv

0 0

0 1
Lu

0

0 0 1
Lw

⎤

⎥
⎥
⎦

× R3D(θ, ϕ). (41)

As coherent lengths, dip and azimuth (i.e. the parameters of the filter) are non-stationary, eq. (40) does not provide the same structure as

eq. (8) when expressed in the Cartesian coordinate system. The chain rules for derivative estimation introduce spatial derivative terms that

are related to the parameter variations in the PDE, when moving from one to the other set of coordinates, through the relationship of eq. (41).

However, if the filter parameters vary slowly in space, their spatial derivatives can be ignored, which leads to the following approximation

(∂ṽ, ∂ ũ, ∂w̃)t

(∂z, ∂x, ∂y)t
≈

(ṽ, ũ, w̃)t

(z, x, y)t
=

⎡

⎢
⎢
⎣

1
Lv

0 0

0 1
Lu

0

0 0 1
Lw

⎤

⎥
⎥
⎦

× R3D(θ, ϕ). (42)

Within this approximation, the Bessel filters defined in the rotated dimensionless coordinates and in the Cartesian coordinates are almost

identical. In other words, performing the smoothing operation in the dimensionless system or the Cartesian system should provide approxi-

mately the same results. This argument has an important role in this implementation, because it allows the weak formulation to be developed

in dimensionless coordinates, to maintain the symmetry of matrices K and A; this is a key point for numerical efficiency. It should be noted

that this approximation will systematically introduce an error into the amplitude of the filtering operator when rapid variations of the filter

parameters occur. The associated error analysis will be discussed in Section 4.1.

In the rotated dimensionless coordinate system, the differential relationship between the original vector m and the smoothed vector s

that was obtained by filtering with the Bessel filter B3D(ṽ, ũ, w̃) can be written as

s(ṽ, ũ, w̃) − ∇2
ṽ,ũ,w̃s(ṽ, ũ, w̃) = m(ṽ, ũ, w̃). (43)
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1496 P.T. Trinh et al.

Ignoring the derivatives related to variations in the filter parameters allows the same workflow to be applied as for homogeneous parameters.

Let us consider the mapping from reference space (ξ , η, ζ ) to the rotated dimensionless coordinates (ṽ, ũ, w̃), defined by the Jacobi matrix

J̃rot

J̃rot =
(∂ṽ, ∂ ũ, ∂w̃)t

(∂ξ, ∂η, ∂ζ )t
, (44)

and the volumetric Jacobian J̃ rot
e

J̃ rot
e = det(J̃rot). (45)

The weak form of eq. (43) can again be discretized into the linear system of eq. (31), where the mass matrix M is diagonal and the stiffness

matrix K remains symmetric through relations

Mk̂k̂ = wk1
wk2

wk3
J̃ rot

e (ξk1
, ηk2

, ζk3
) where k̂ stands for the triple of indexes {k1, k2, k3}, (46)

and

K k̂ĥ =
N
∑

q̂=0

wq1
wq2

wq3

⎡

⎣

3
∑

i=1

3
∑

j=1

∂vk̂

∂ri

G i j

∂vĥ

∂r j

⎤

⎦ , (47)

where

(p1, p2, p3) := (ṽ, ũ, w̃) and (r1, r2, r3) := (ξ, η, ζ ).

The geometric factors Gij associated with the projection between the rotated dimensionless coordinates and the reference coordinates

becomes

G i j (ξq1
, ηq2

, ζq3
) =

3
∑

d=1

∂ri

∂pd

∂r j

∂pd

J̃ rot
e (ξq1

, ηq2
, ζq3

). (48)

The numerical implementation is identical to the case of the homogeneous parameters in eqs (32), (34) and (35), where the linear system of

eq. (31) is again constructed and solved in the reduced coordinates system. However, we need new expressions of the volumetric Jacobian

J̃ rot
e , and the elements of the inverse Jacobi matrix (J̃rot)−1. These quantities can be computed from elements in the mapping between the

reference space and the Cartesian space, knowing that

J̃rot =
(∂ṽ, ∂ ũ, ∂w̃)t

(∂ξ, ∂η, ∂ζ )t
=

(∂ṽ, ∂ ũ, ∂w̃)t

(∂z, ∂x, ∂y)t
×

(∂z, ∂x, ∂y)t

(∂ξ, ∂η, ∂ζ )t
. (49)

Combining eq. (49) with the approximation of eq. (42), we have

J̃rot ≈

⎡

⎢
⎢
⎣

1
Lv

0 0

0 1
Lu

0

0 0 1
Lw

⎤

⎥
⎥
⎦

× R3D(θ, ϕ) × J. (50)

As det [R3D(θ, ϕ)] = 1, the determinant of the Jacobi matrix Jrot is

J̃ rot
e =

det(J)

Lv Lu Lw

=
Je

Lv Lu Lw

. (51)

The inverse of the Jacobi matrix Jrot is

(Jrot)−1 = J−1 × R3D(θ, ϕ)−1 ×

⎡

⎢
⎢
⎣

Lv 0 0

0 Lu 0

0 0 Lw

⎤

⎥
⎥
⎦

, (52)

or

(Jrot)−1 = J−1 ×

⎡

⎢
⎢
⎣

Lv cos ϕ Lu sin ϕ 0

−Lv cos θ sin ϕ Lu cos θ cos ϕ Lw sin θ

Lv sin θ sin ϕ −Lu sin θ cos ϕ Lw cos θ

⎤

⎥
⎥
⎦

. (53)

The volumetric Jacobian J̃ rot
e and elements in the inverse Jacobian matrix J̃rot can be computed from eqs (51) and (53), which completes the

construction of matrix M and geometric factors Gij in the dimensionless coordinates. If the azimuth and dip are zero, and if the coherent

lengths are homogeneous, eqs (51) and (53) are identical to eqs (36) and (37). Finally, we end up with the linear system

As = Mm. (54)
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Bessel filter for spectral-element mesh 1497

4 N U M E R I C A L I L LU S T R AT I O N S

Various 3-D examples that illustrate the numerical efficiency of the workflow are proposed in this section. We will show that the decay of

Laplace filters can be mimicked by using Bessel operators. However, it should be emphasized that there is no obligation to use a Laplace

filter; for example, the software SPECFEM3D uses a 3-D Gaussian smoothing filter (Peter et al. 2011). We will also quantify the numerical

approximation for variable coherent length, dip and azimuth. We first consider an estimation of the Bessel kernel by considering an original

vector m as a delta function at the origin. Then, we will consider the impact of the filter when the input vector only contains random noise,

without any predefined structures. Finally, we show the application of the filter to a gradient obtained from a subset of the synthetic 3-D

SEAM Phase II foothills model (Oristaglio 2012).

4.1 Spike test

When the source term, that is, the original vector m0, is set as a delta function at location (0, 0, 0), the linear system

A s = M m0, (55)

should provide a solution that is identical to the Bessel filter (eq. 6). When we solve the linear system of eq. (55) twice through the following

sequential system

A s∗ = M m0

A s = M s∗, (56)

we should obtain a response similar to the Laplace filter. Let us consider a model of size 1.5 km × 1.5 km× 1.5 km. A delta function is located

at the centre of the model, as shown in Fig. 3.

In this example, the coherent lengths in the x and y directions are homogeneous Lx = Ly = 80 m and the dip and azimuth angle are set to

zero, as there is no specific orientation. The coherent length Lz is either constant or variable in the z direction, as indicated in Figs 3A(a), B(a)

and C(a). In Figs 3A(b), B(b) and C(b), the output of the linear system (blue dashed line) and the theoretical Laplace function (red line) in

the z directions are superimposed. Fig. 3A(b) illustrates that the double application of the Bessel filter provides an excellent approximation of

the Laplace filter for homogeneous coherent lengths, although still with the negligible singularity at the origin. Under the slow variation

of the coherent lengths, ∂ zLz = 0.1 in Fig. 3B(b), this method can correctly follow the shape of the Laplace filter, which implies that ignoring

the spatial derivatives of the coherent lengths is acceptable. This conclusion is further supported by the identical shapes of the zx cross-sections

of the 3-D Laplace filter and the output of the linear system of eq. (55) in Figs 3B(c) and (d). When this variation becomes more important,

as ∂ zLz = 0.2, this approximation cannot exactly reproduce the amplitude of the theoretical filter, but the influence of this approximation still

appears acceptable for the smoothing effect of the model vector m that we consider.

The implementation of constant dip and azimuth is illustrated by the spike test in Fig. 4. The delta function is again located at the

centre of the model. Homogeneous different coherent lengths are used in all directions, but the filters are highly anisotropic, with Lv = 50 m,

Lu = 100 m, and Lw = 200 m. Due to this design, the 3-D filter is a tri-axial ellipsoid with distinct semi-axis length, as indicated in the zx,

xy, and zy cross-sections in Fig. 4(A). After applying the rotation with azimuth θ = 60◦ and dip ϕ = 30◦, the comparison between Figs 4(B)

and (A) shows that the ellipsoid is tilted 30◦ from the x axis in the zx section, and it is also rotated 60◦ from the y axis in the xy cross-section.

When variable dip and azimuth are introduced into the filter, similar amplitude errors as for the variable-coherent-lengths study in Fig. 3(C)

are expected. Furthermore, the amplitude error introduced by the 3-D rotation can be mitigated by careful design of the coherent lengths, as

the rotation has no impact in an isotropic filter. For FWI applications, which are generally limited at low frequency, the approximation of the

slow variation of the filter parameters still appears acceptable for the smoothing effect.

4.2 Random noise tests

The filtering operator normally assumes the particular properties of the structures, which implies that the shape of the smoothed gradient/

model is driven by the imposed variation of coherent lengths, dip, and azimuth. This argument is illustrated in the following examples, when

the input vector m only contains random noise, with no pre-defined structures. Fig. 5 focuses on homogeneous coherent lengths, dip, and

azimuth filters on a model of size 1.5 km × 1.5 km × 1.5 km. The zx, xy, and zy cross-sections of the input vector are shown in Fig. 5(A), which

only contains high frequency variations of random noise. Fig. 5(B) shows the smoothed vector obtained with coherent lengths Lz = Lv = 25 m,

Lx = Lu = 100 m, and Ly = Lw = 25 m, without dip and azimuth. As the filter is strongly anisotropic, with the longest semi-axis length in the

x direction, the zx and xy sections both contain features aligned in the x direction. The patterns in the zy section have no specific orientation

as Lz = Ly, that is, the 3-D filter is isotropic in the zy plane. In Fig. 5(C), after applying a rotation with 45◦ dip, the aligned features are tilted

45◦ from the x axis in the zx section. Note that the apparent coherent length Lx is now almost identical to Ly, with no specific trend in the xy

cross-section. Meanwhile, the apparent Lz becomes greater than Ly, which induces the alignment along the z direction in the zy cross-section.

A similar interpretation can be applied to Fig. 5(D), which shows the application of a filter with azimuth 45◦ to smooth the initial vector.

Compared to Fig. 5(B), the features in the xy section are rotated 45◦ from the y axis, and the patterns presented in the zx cross-section are lost

due to the apparent coherent length in the x direction.
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1498 P.T. Trinh et al.

Figure 3. Comparison of the normalized Laplace filter with the application of two Bessel filters through the spike tests, with homogeneous coherent lengths in

the x and y directions Lx = Ly = 80 m. Coherent length in the z direction: (A) Constant Lz; (B) Lz varies from 50 m to 200 m; (C) Lz varies from 50 to 350 m.

In each panel, (a) shows the variation of Lz in the z direction, and (b) compares the output of applying the 3-D Bessel filter twice (blue dashed line), with the

theoretical Laplace filter (red line). The respective zx cross-section of these filters are shown in (c) and (d).

The example shown in Fig. 6 is a longer gradient/ model with 3 km length in the x direction that is used to illustrate the implementation

of variable coherent lengths, dip and azimuth. We use simple sine variation for these geological properties. Again, the input vector (Fig. 6A)

contains random noise without any predefined structure. In Fig. 6(B), the coherent lengths in the z and y directions are homogeneous

Lz = Ly = 25 m, whereas Lx varies as a sine function in the x direction, from 25 m to 85 m. The zx section of the smoothed vector (Fig. 6B,

left) correctly follows the variation of the coherent length Lx (Fig. 6B, right). Fig. 6(C) shows the zx and xy cross-sections of the smoothed

vector with homogeneous coherent lengths Lz = Lv = 25 m, Lx = Lu = 250 m, and Ly = Lw = 25 m, and no dip and azimuth. An extremely

long Lu was intentionally designed so that the smoothed vector has a layered structure, in parallel with the x direction. Fig. 6(C) will be used

as the reference to compare this with the variable dip and azimuth filters in the next examples. In Fig. 6(D), similar values of homogeneous
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Bessel filter for spectral-element mesh 1499

Figure 4. Spike test to illustrate the kernel of the 3-D Bessel filter with homogeneous coherent lengths Lv = Lz = 50 m, Lx = Lu = 100 m, and Ly = Lw = 200 m.

(A) zx, xy and zy cross-sections of the 3-D Bessel filter without dip and spike. (B) The filter consists of a 3-D rotation with 60◦ azimuth and 30◦ dip.

coherent lengths were use as those for Fig. 6(C). The dip (Fig. 6D, right) varies as a sine function in the x direction from −45◦ to 45◦, which

leads to folding structures in the zx section (Fig. 6D, left). Similar variation in the xy cross-section in Fig. 6(E) is obtained when the azimuth

varies as a sine function in the x direction, from −60◦ to 60◦.

4.3 FWI gradient smoothing

This section illustrates the application of a non-stationary Laplace filter to a realistic gradient vector from FWI, as obtained from a subset of

the 3-D SEAM Phase II foothills model (Oristaglio 2012). Surface acquisition is used with a line of 20 sources, with 350 m between adjacent

sources. The receivers are located in the whole surface, with 12.5 m between receivers. A Ricker wavelet centred at 3 Hz is used as the source

signal. The 2-D cross-section of the shear-wave velocity (Vs) model underneath the source line is shown in Fig. 7(A).

The topography variation is significant in this model, with maximal vertical elevation of 900 m. SEM is used for both forward and

inversion problems. The initial Vs model is shown in Fig. 7(B), which is a smoothed version of the true model. Compared with the true model

in Fig. 7(A), this initial Vs is overestimated at the near surface and underestimated at greater depths. The dip field is extracted from the true

velocity model by manual picking, as illustrated in Fig. 7(C). Fig. 7(D) shows the first scaled gradient without any smoothing filter, which

contains a significant acquisition footprint at the near surface. The horizontal oscillation of the features at greater depths might come from

high wavenumber artefacts.

An anisotropic non-stationary Laplace filter with coherent lengths Lz = 0.05λs and Lx = Ly = 0.15λs is applied, where λs is the shear

wavelength at each spatial position. The true dip field, as shown in Fig. 7(C), and the zero azimuth angle are used for 3-D rotation. It should

be noted again here that the Laplace filter is efficiently approximated by application of two Bessel filters. The filters help to remove the

near-surface artefacts due to the acquisition footprint, without degrading the deeper structures. The continuity of the features at greater depths

is actually enhanced because the horizontal-oscillation artefacts are attenuated. In addition, the gradient correctly determines the update

direction of the model: it reduces the Vs at the near surface and increases it at greater depths (knowing that FWI updates the model following

the negative gradient).

In summary, we have illustrated the property of the Bessel filter through various numerical examples in spike and random-noise tests. The

approximation of the Laplace filter by Bessel operators is shown, which indicates prospective applications of this filter, either as a smoothing

filter, or to efficiently mimic the decay of the Laplace filter. We also illustrate the robustness of this method for variable coherent lengths, dip

and azimuth. The numerical example on a realistic gradient highlights the potential application of the filter for FWI.
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1500 P.T. Trinh et al.

Figure 5. Random noise test with a stationary filter to illustrate the implementation of homogeneous coherent lengths, dip and azimuth. (A) zx, xy and zy

cross-sections of the input model. (B) Smoothed model obtained from applying an anisotropic filter, Lv = 25 m, Lu = 100 m, and Lw = 25 m, without dip and

azimuth. (C) Smoothed model when 45◦ dip and 0◦ azimuth are introduced into the filter. (D) Smoothed model when 0◦ dip and 45◦ azimuth are introduced

into the filter. Model size, 1.5 km×1.5 km×1.5 km.

5 N U M E R I C A L I M P L E M E N TAT I O N I N A PA R A L L E L S E M S C H E M E

In FWI, the gradient vector of the misfit function is computed from the correlation of the forward and backward propagation wavefields

(as one per source) at each iteration, due to the adjoint-state method (Plessix 2006). However, the modelling mesh can sometimes be quite

dense compared to the resolution that can be expected from the inversion, which leads to high wave-number noise in many applications.

Consequently, the gradient/ model vector must be smoothed or regularized on this forward-modelling mesh. By doing so, the filtering operation

(i.e. the Bessel operator here) has to be directly and efficiently implemented on the modelling mesh, which can be described by a domain
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Bessel filter for spectral-element mesh 1501

Figure 6. Random noise test with non-stationary filter to illustrate the implementation of variable coherent lengths, dip and azimuth. The size of the model is

1 km in the z and y directions, and 3 km in the x direction. (A) zx and xy cross-section of the input model. (B) Smoothed model (left) obtained from a filter

with variable coherent length Lx (right). (C) zx and xy cross-section of the smoothed model obtained from a highly anisotropic stationary filter. (D) Smoothed

model (left) obtained from a filter with variable dip (right). (E) Smoothed model (left) obtained from a filter with variable azimuth (right).

decomposition for parallel computation. As the application of the Bessel filter is related to a PDE, this can proceed in a similar way as for the

wave-propagation simulation.

Following an analogue of the framework to that designed for the SEM for wave simulation, the linear system associated with the Bessel

filters is constructed and solved by a parallel CG iterative solver

(M + K
︸ ︷︷ ︸

A

) s = M m. (57)

According to Saad (2003), only the matrix-vector product and the inner product of two vectors are required in the CG method. Thus, the most

expensive operator is the product of the matrix A with a given vector. Each subdomain computes its part of the product in parallel, and the

communications between subdomains during the CG iterations share the same strategies as that of wave simulation, which requires no extra
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1502 P.T. Trinh et al.

Figure 7. Example of the filtering operator on the FWI gradient, from a subset of the 3-D SEAM Phase II foothills model. (A) True shear wave velocity

model. (B) Initial shear wave velocity model. (C) Dip field. (D) Original scaled gradient without any smoothing. (E) Smoothed gradient, with an anisotropic

non-stationary Laplace filter (approximated by the application of two Bessel filters) for the dip field as presented in (C). Lz = 0.05λs and Lx = Ly = 0.15λs,

where λs is the local shear wavelength.
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Bessel filter for spectral-element mesh 1503

effort to manage the parallelism. This section presents this implementation and highlights the efficiency of this approach, compared with the

standard 3-D convolution method. The convergence rate of the CG solver for several parameters are then analysed.

5.1 Linear system construction and matrix-vector product evaluation

The mass matrix M is diagonal, and the number of non-zero elements (NNZs) of this matrix is identical to the size of the input gradient/

model vector,

NNZ(M) = SIZE(m). (58)

It is then stored in the same form as the input vector. The dimensions of the matrices K and A are [SIZE(m)]2; thus the full storage is not

reasonable for realistic application. Assuming that the same order of interpolation N is used in each direction, and the inverse of Jacobi matrix

J̃rot is full of non-zero elements, the NNZs in the matrix A can be estimated from the size of the vector m, as

NNZ(A)

SIZE(m)
−→ (3(N + 1)2 + 3(N + 1) + 1). (59)

For example, when 4th order interpolation is used (i.e. each hexahedral element is discretized by 5 × 5 × 5 GLL points)

NNZ(A) ≈ 91 × SIZE(m). (60)

This estimation illustrates that the stiffness matrix is extremely sparse. Therefore, the non-zero elements of this matrix can either be stored

by some efficient compressed storage technique or the matrix-vector product can be directly evaluated without storing the matrix. These two

implementation approaches are discussed in this section.

5.1.1 Coordinate list storage of non-zero elements of matrix A

As the impedance matrix A is sparse, only the non-zero elements of this matrix need to be computed and stored. At each CG iteration, these

non-zero elements are used to evaluate the product of matrix A with a given vector.

The matrix A is computed from the stiffness matrix K. According to eq. (47), the element at row k̂th, column ĥth of matrix K can

be computed through a triple loop over all of the degrees of freedom (q1, q2, q3) inside the current element, which is computationally

expensive. This component can be further developed as a sum of six terms, as shown in eq. (C17) in Appendix C. This development allows

the computation of the left-hand-side matrix A, while minimizing the loops over all of the degrees of freedom inside the current element.

The matrix A can thus be stored using the compressed storage techniques coordinate list (COO) format (Golub 1996), where a list of row

and column indices and the associated values of the non-zero elements are stored. In addition, as the matrix A is symmetric, only the upper

triangular part has to be stored; that is, the elements Aji where i ≥ j. We only store half of the diagonal terms 1
2

A j j . This helps to simplify

the matrix-vector product in the CG algorithm. By applying this triangular storage strategy, and based on several tests carried out with this

implementation on realistic size problems, the required memory for storage of matrix A is reduced by 49 per cent, and the computation time

of the CG by 33 per cent, .

5.1.2 Matrix-free implementation of the matrix-vector product Au

Instead of building explicitly the impedance matrix A by storing its non-zero elements, its product with a given vector u can be directly

estimated inside each CG iteration in a matrix-free fashion. As the product of a vector with the diagonal mass matrix M is trivial, the challenge

is the stiffness matrix-vector product Ku. According to the development of the weak formulation of eq. (26) in Appendix C and the definition

of the geometric factors Gij in eq. (48), this matrix-vector product can be written as

∑

ĥ

K k̂ĥu ĥ =
N
∑

q̂=0

wq1
wq2

wq3

N
∑

ĥ=0

⎡

⎣

3
∑

i=1

3
∑

j=1

∂vk̂

∂ri

G i j

∂vĥ

∂r j

⎤

⎦ u ĥ, (61)

or under the factorized version, as

∑

ĥ

K k̂ĥu ĥ =
3
∑

i=1

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

N
∑

q̂=0

wq1
wq2

wq3

∂vk̂

∂ri

GDu
︷ ︸︸ ︷
⎡

⎢
⎢
⎢
⎢
⎢
⎣

3
∑

j=1

G i j

⎛

⎝

N
∑

ĥ=0

∂vĥ

∂r j

u ĥ

⎞

⎠

︸ ︷︷ ︸

Du

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

︸ ︷︷ ︸

DwGDu

. (62)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
9
/3

/1
4
8
9
/3

0
6
5
6
1
7
 b

y
 g

u
e
s
t o

n
 1

4
 O

c
to

b
e
r 2

0
2
1
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Figure 8. Relative numerical error modulus η and model error modulus γ for smoothing a model vector containing 80 × 80 × 80 elements; that is,

30 × 106 degrees of freedom. The coherent lengths are homogeneous Lz = Lx = Ly = 80 m, without dip and azimuth.

Eq. (62) implies that the product stiffness matrix-vector can be factorized as

Ku = DwGDu, (63)

where the operator D evaluates the spatial derivatives of the vector u in the reference space, G is the geometric matrix, and Dw is equivalent

to a weighted spatial derivatives operator.

The derivatives operators Du and the weighted spatial derivatives Dw

(

GDu
)

can be efficiently estimated using the highly efficient

algorithms developed by Deville et al. (2002), which benefit from the tensorial properties of SEM and the optimization of cache usage by

manual loop unrolling. For each degree of freedom, the geometric matrix G is symmetric and only depends on the projection between the

rotated dimensionless coordinates and the reference coordinates (eq. 48). Therefore, only six vectors, as G11, G12, G13, G22, G23, G33, are

stored in the memory, and they are computed outside the CG loops. Due to the factorization in eq. (62) and the vectorized computation for

the stiffness/vector product, each CG iteration costs about 0.46 times a time-step of wave propagation for deformed elements. Compared with

the explicit matrix-vector product with the COO format of the previous section, this matrix-free implementation decreases the computation

cost by a factor of around 7, and reduces the memory requirement by >20-fold. These numbers have been estimated on the same high-

performance computing architecture for the two implementations, on a model with 33 × 106 degrees of freedom, with decomposition on 64

subdomains (64 computing cores with infiniband interconnections).

5.2 Parallel conjugate gradient iterative solver

The parallel CG solver introduced in this section is similar to the standard algorithm, except that the matrix-vector and vector-vector operators

are computed in parallel. As mentioned before, the matrices M and A are evaluated in parallel without assembly over the boundaries between

subdomains. After each matrix-vector product, some point-to-point communications are required to assemble the values on the shared degrees

of freedom.

The modulus of the relative numerical error

η =
‖M.m − A.sk‖

‖M.m‖
(64)

is used for the convergence criteria, where sk is the smoothed model obtained at the kth iteration. In the next paragraphs, we study the

properties of the linear system (eq. 57), as well as the convergence rate based on the values of the error modulus η.

5.2.1 Linear system behaviour

First, we build a reference system with smoothed vector sref and input mref , which is computed as

mref = M−1.A.sref . (65)

The linear system

A.s = M.mref (66)

is then solved iteratively by the CG solver. At each iteration, the modulus of the relative model error γ is computed

γ =
‖sref − sk‖

‖sref‖
. (67)

The numerical error η is defined in eq. (64), and it is compared to this model error γ to characterize the behaviour of the linear system of

eq. (57). An example of this comparison for a model vector that contains 30 × 106 degrees of freedom is shown in Fig. 8. The filter is defined

with homogeneous coherent lengths Lz = Lx = Ly = 80 m, without dip and azimuth. It should be noted that the numerical and model error
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Bessel filter for spectral-element mesh 1505

Figure 9. (A) Dependence of the total number of iterations (obtained from consecutively solving two linear systems associated with the Bessel filter) on

coherent length. The model contains 80 × 80 × 80 elements; that is, 30 × 106 degrees of freedom. (B) Dependence of the total number of iterations on the

size of the problem. For both images, the stopping criterion is η = 10−6.

modulus both decrease with the same speed, which implies that the linear system associated with the Bessel filter is well conditioned. The

system converges relatively rapidly, and attains the numerical limit of 10−6 after 110 iterations, using FORTRAN single-precision arithmetics.

Beyond this limit, the relative model accuracy remains unchanged, so the stopping criteria can be set as η = 10−6. In FWI applications, to

optimize the numerical cost, the CG solver could be stopped before the numerical limit is attained, because the model parameters will be

repetitively modified. Evaluation of this tolerance η should be carefully studied, according to the objective of the application.

5.2.2 Convergence properties

After fixing the stopping criteria as η = 10−6, we investigate the dependence of the convergence rate of the CG solver on several parameters,

including coherent length, size of model vector, and presence of dip and azimuth. As we are approximating the Laplace filter by the Bessel

operators, the linear system associated with the Bessel filter is solved twice to obtain the smoothed vector. The number of iterations shown

in Fig. 9 is then estimated by consecutively solving two linear systems. Obviously, the same conclusions should be draw when solving one

linear system, which corresponds to the direct application of the Bessel filter.

Fig. 9(A) indicates that for a given model the number of iterations required for solving two linear systems increases linearly with the

values of the coherent length. This plot is obtained from a model of size 80 × 80 × 80 elements; that is, 30 × 106 degrees of freedom.

Each point in the plot is obtained from filtering with the isotropic Bessel operator, where the coherent lengths are homogeneous. We carry

out a similar study when the coherent lengths are fixed, and the dip and azimuth angles are introduced into the filter. These parameters

have no influence on the computation time. Therefore, these data are not shown here. In Fig. 9(B), the filter shape is kept unchanged, with

Lz = Lx = Ly = 80 m, but the size of the model vector increases gradually from 20 × 20 × 20 elements to 100 × 100 × 100 elements. The

corresponding number of degrees of freedom in each direction is indicated by the axis at the top of Fig. 9(B). For a pre-defined filter, the total

number of iterations required for smoothing a model vector is independent of the model size.

5.2.3 Numerical performance versus explicit 3-D convolution filtering

As Bessel filters can be efficiently used to approximate the Laplace filter, the efficiency of this method needs to be evaluated with respect to

the 3-D explicit convolution approach. We limit this study to an isotropic and homogeneous Laplace filter

L3D(z, x, y) =
1

8π L3
e

−
√

x2+y2+z2

L2 . (68)

The filter theoretically has infinite tail, but it can be implemented as a truncated 3-D convolution of the filter and the model/ gradient vector.

We then define a sphere 	αL centred at the origin, with radius αL, such that
∫∫∫

	αL

L3D(z, x, y)dzdxdy = 0.99, (69)

which provides α ≈ 8.4 (Fig. 11). This condition is equivalent to 99 per cent energy of the filter. Fig. 10 compares the computation cost of

our approach with the 3-D explicit convolution in a model with 1.77 × 106 degrees of freedom and where the coherent length increases

from 30 to 80 m. The 3-D explicit convolution is the most expensive method, but the comparison is partially biased as our approaches are

highly optimized. However, it should be noted that the numerical cost of the 3-D explicit convolution method is driven by the number of

points within the effective sphere 	αL, thus with the complexity O(L3). Whereas, for a given model size the computational complexity of

the approximation of the Laplace filter by Bessel operators only depends on the number of CG iterations, which increases linearly with the
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Figure 10. Comparison of the numerical performance of this method. The COO storage of non-zero elements in matrix A (black) and the matrix-free

implementation of the product matrix-vector Au (red) are compared to the truncated explicit 3-D convolution of the Laplace filter (blue) for a model with

1.77 × 106 degrees of freedom, with decomposition for two subdomains.

Figure 11. Energy analysis for isotropic Laplace and Bessel filters within the sphere 	αL centred at the origin with the radius αL (L is the coherent length in

the z, x and y directions). E10, E50 and E90 indicate the 10 per cent, 50 per cent and 90 per cent energy.

coherent length (∝ O(L1)), as shown in Fig. 9(A). In Fig. 10, the observed numerical complexity of the explicit convolution method versus

the increase in the coherent length is O(L2.6) due to the limited model size. We obtain a sublinear relationship between the numerical cost

of our approximation and the coherent length (O(L0.7)), for the two implementation approaches mentioned in Section 5.1: COO-storage and

matrix-free implementation. This is due to some calculations that are independent of the coherent length. This property is encouraging for

the application of this approach to large problems.

6 C O N C LU S I O N A N D D I S C U S S I O N

The application of a filter on a given vector is usually described through convolution of the vector by a filter that is a linear operation.

Smoothing will require filters with decaying tails. Thus, the convolution operator might be expensive if it is computed explicitly. We promote

the idea of applying the filter through its inverse operator, which is expected to be a sparse operator. The smooth output is obtained as the

solution of a new linear system, in which the sparse inverse of the filter has been constructed. We introduce the Bessel filters and their

corresponding diffusion-like PDEs to be solved numerically in 2-D and 3-D geometries. We analytically explain why the iterative application

of two Bessel filters provides an excellent approximation of the Laplace operator for smoothing the model, which offers the choice of either

using Bessel filters as smoothing operators or to mimic the decay of the Laplace filter. This argument is well supported by the numerical

illustration of spike tests, where the PDE defining the Bessel filter is solved with a delta source function.

These PDEs can be discretized through a weak formulation that involves SEM, which leads to a symmetric linear system that can be

efficiently solved through a CG method. There are no specific requirements for the mesh, which can be chosen in a suitable way for the

application being considered.

We present a robust and efficient approach to incorporate variable coherent lengths, dip and azimuth into the Bessel filter, without losing

the symmetry of the left-hand-side term of the linear system. To do so, we develop the weak formulation of the PDE associated with the

sparse inverse filter in the rotated dimensionless coordinate system. The construction of this system naturally takes advantage of the available

ingredients in the underlying mesh that are associated to the study problem. All of the information about the geological variations of the

medium is preserved in the Jacobi matrix and its inverse, which does not break the symmetry of the stiffness matrix. The well-behaving

performance of this approximation is illustrated by spike tests, which closely reproduce the shape of analytical Laplace filter when assuming

slow variations of these geological properties. In more complex tests, when random noise is used as the input model, the output vector correctly
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Bessel filter for spectral-element mesh 1507

follows the imposed shape that is described by the filter parameters. When the non-stationary filter is applied to a realistic FWI gradient, it

effectively removes near-surface artefacts due to the acquisition footprint, and further enhances the continuity of the deeper structures.

We propose efficient implementation of the application of the Bessel filter, where the linear system is solved with a parallel CG following

the same domain decomposition as the wave simulation. This parallel computation of the matrix-vector product at each CG iteration can be

achieved either by using explicit building of the local matrix, or in a matrix-free fashion. For the matrix-free implementation, the stiffness

matrix-vector product can be factorized and highly optimized, due to the vectorized computation and the optimizing cache usage developed

by Deville et al. (2002). This strategy significantly reduces the memory requirement and computation time for the CG solver. After each

matrix-vector or vector-vector product, the vectors obtained are spatially communicated to assemble the values on the subdomain boundaries.

Consequently, any projection back and forth from the modelling mesh and the inversion mesh is avoided, as well as any explicit windowed

convolution.

The sparse inverse linear system associated with the Bessel filter is well conditioned, due to the structure of the PDE. The CG solver

applied to this system converges relatively rapidly. The convergence depends on many factors, but it increases linearly with the coherent

length. Other factors, such as the number of elements in the medium and the presence of dip and azimuth angles, appear to have no influence

on the number of iterations required for the system to converge. The approximation of the Laplace filter by the Bessel filter proposed here is

also compared with the windowed explicit 3-D convolution method. The approach here is significantly faster, with a sublinear relationship

between the numerical cost and the coherent length, which promises general applications to various large problems.

One question might be whether we should apply one Bessel filter with longer coherent length or two Bessel filters, to reproduce the

decay of the Laplace filter. Choosing between Bessel and Laplace filters is case dependent, and this should be decided based on the energy

distribution of the filters and the numerical cost. Knowing that the energy distribution of these filters are different (as shown in Fig. 11), they

should result in different smoothing effects. To have the same energy as the Laplace filter at 90 per cent, 50 per cent or 10 per cent energy, the

coherent length in the Bessel filter should be increased by a factor of 1.4, 1.6 or 2.1, respectively. These different scaling factors also imply

that it is not possible to mimic the Laplace filter by simply modifying the coherent length in the Bessel filter. For the same coherent length, the

contributions of the neighbors surrounding the origin are more important in the Bessel kernel, which is indicated by the 10 per cent energy

level. It should also be noted that increasing the coherent length will eventually increase the numerical cost of the iterative solving of the

linear system associated with the Bessel filter.

Only the numerical implementation for SEM is presented here, but the method can be extended to other FE techniques, and also to FD

techniques (Wellington 2016). This study illustrates the potential applications for model preconditioning, but this approach of applying a

filter (or a covariance matrix) can be considered for regularization and for prior-model strategies. As the filter has a robust shape, even with

dip, azimuth and coherent length variations, it can be used to amplify expected geological features, while attenuating features that come from

numerical artefacts in other areas. In this way, the null-space dimension is reduced, to converge to more meaningful models while honouring

the data fit.
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A P P E N D I X A : M O D I F I E D B E S S E L F U N C T I O N S A N D T H E I R I N T E G R A L

R E P R E S E N TAT I O N

In this Appendix, we provide the definition of the modified Bessel function of the second kind Kν(x) for ν ∈ R. This function is defined from

the modified Bessel function of the first kind Iν(x) (Abramowitz & Stegun 1972), written in the power series expansion

Iν(x) =
( x

2

)ν
∞
∑

k=0

1

Ŵ(k + 1)Ŵ(ν + k + 1)

( x

2

)2k

, (A1)

where the gamma function Ŵ(x) is defined as

Ŵ(x) =
∫ ∞

0

t x−1e−t dt. (A2)

When ν is an integer, we have the following property of the function Iν(x)

Iν(x) = I−ν(x). (A3)

According to the definition of the function Iν(x) in eq. (A1), we describe how it behaves when x → 0:

lim
x→0

Iν(x) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 Re(ν) > 0

1 ν = 0

±∞ Re(ν) < 0

. (A4)

This implies that Iν(x) and I−ν(x) are linearly independent if ν is not an integer. The modified Bessel function of the second kind Kν(x) is then

defined as

Kν(x) =
π

2

I−ν − Iν

sin πν
, (A5)

for ν /∈ Z. For n ∈ Z, the function Kn(x) is defined as

Kn(x) := lim
ν→n

Kν(x). (A6)

A P P E N D I X B : D E F I N I T I O N O F B E S S E L F I LT E R S A N D T H E I R N O R M A L I Z E D

FA C T O R S

In this Appendix, we demonstrate that 2-D and 3-D Bessel filters are unique solutions of the PDEs (8) and (9), respectively, when considering

the radiative boundary condition

BnD(x) → 0 as ‖x‖ → ∞ (B1)
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Bessel filter for spectral-element mesh 1509

and the boundness property

0 <

∫

BnD(x)dx < ∞ (B2)

B1 The 2-D case

We look for all possible analytical solutions of eq. (9):

C(z, x) −
(

L2
z

∂2

∂z2
+ L2

x

∂2

∂x2

)

C(z, x) = δ(z, x). (B3)

Changing from Cartesian to dimensionless coordinates

x → x̃ =
x

L x

; z → z̃ =
z

L z

, (B4)

knowing that Lx and Lz are homogeneous, we obtain

C(z̃, x̃) −
(

∂2

∂ x̃2
C(z̃, x̃) +

∂2

∂ z̃2
C(z̃, x̃)

)

= δ(z̃, x̃). (B5)

We first solve the homogeneous form of eq. (B5) for (z̃, x̃) �= (0, 0). Again, we move from dimensionless coordinates (z̃, x̃) to polar coordinates

(r, θ ), and assume that the solution is separated; that is, C(r, θ ) = R(r)A(θ ). The homogeneous form of eq. (B5) now becomes

R(r )A(θ ) −
(

R′′(r )A(θ ) +
1

r
R′(r )A(θ ) +

1

r 2
R(r )A′′(θ )

)

= 0. (B6)

Dividing both sides of this equation by R(r)A(θ )r2:

r 2 R′′(r )

R(r )
+

r R′(r )

R(r )
− r 2 = −

A′′(θ )

A(θ )
. (B7)

As R(r) and A(θ ) are independent, eq. (B7) can be set as a constant V, for r > 0. Note that valid solutions must satisfy the periodicity in the

angular domain; that is, A(θ ) = A(θ + 2π ), which leads to a non-negative value of V.

By considering the angular part of the solution:

A′′(θ )

A(θ )
= −V ⇐⇒ A′′(θ ) + V .A(θ ) = 0. (B8)

Two independent real solutions of this equation are

A1(θ ) = cos(
√

V θ ); A2(θ ) = sin(
√

V θ ). (B9)

As A(θ ) = A(θ + 2π ), V must satisfy V = ν2, where ν is an integer. The radial part now becomes

r 2 R′′(r ) + r R′(r ) − (r 2 + ν2)R(r ) = 0, (B10)

which is actually the modified Bessel differential equation (Polyanin & Nazaikinskii 2002; Abramowitz & Stegun 1972). Two linearly

independent solutions of this equation are the modified Bessel function of the first kind Iν(r), singular at ∞, and the second kind Kν(r),

singular at zero, where ν is a real number.

As we are interested in building a smoothing filter, it must vanish at infinity (a condition of eq. B1):

R(r ) → 0 as r → ∞, (B11)

which implies that the modified Bessel function of the first kind Iν can be excluded, as

lim
r→+∞

Iν(r ) = +∞. (B12)

In the polar coordinates (r, θ ), the condition of eq. (B2) can be re-written as

0 <

∫ π

−π

dθ

∫ ∞

0

rdrC(r, θ ) < ∞. (B13)

As our solution has the form C(r, θ ) = R(r)A(θ ), this condition becomes

0 <

∫ π

−π

dθ A(θ )

∫ ∞

0

rdr R(r ) < ∞. (B14)

The angular part of the forward filter has the form

Aν(θ ) = c1 cos(νθ ) + c2 sin(νθ ) where ν = 0, ±1, ±2... (B15)
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1510 P.T. Trinh et al.

and c1, c2 are constant, which leads to

∫ π

−π

dθ Aν(θ ) =

{

c1 sin(νθ )
∣
∣
π

−π
− c2 cos(νθ )

∣
∣
π

−π
= 0 if ν = ±1, ±2...

2π (c1 + c2) = Cst > 0 if ν = 0.
(B16)

Consequently, the modified Bessel function of the second kind Kν with ν > 0 cannot be our expected filter. In addition,
∫ ∞

0

r K0(r )dr = 1, (B17)

which clearly satisfies the condition

0 <

∫ π

−π

dθ A0(θ )

∫ ∞

0

rdr K0(r ) < ∞. (B18)

The boundary conditions at infinity imply that K0 is the only possible solution of the homogeneous form of eq. (B5). As the function

K0(r) is singular at zero, the normalized function 1
2π Lx Lz

K0(
√

x2

L2
x

+ z2

L2
z
) is also the solution of the non-homogeneous eq. (B3).

B2 The 3-D case

Similar to the 2-D case, we look for all possible solution of eq. (8):

C(z, x, y) −
(

L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)

C(z, x, y) = δ(z, x, y). (B19)

By repeating the same workflow as for the 2-D case, moving from Cartesian coordinates to spherical coordinates, and assuming again that

the solution is separated C(r, θ , φ) = R(r)A(θ )B(φ), where 0 < r < ∞, 0 ≤ θ ≤ π , and −π ≤ φ ≤ π , the homogeneous form of eq. (B19)

becomes

R(r )A(θ )B(φ) −
(

∂2 R(r )

∂r 2
+

2

r

∂ R(r )

∂r

)

A(θ )B(φ) −
1

r 2

(
cos θ

sin θ

∂ A(θ )

∂θ
+

∂2 A(θ )

∂θ 2

)

R(r )B(φ)

−
1

r 2 sin2 θ

∂2 B(φ)

∂φ2
R(r )A(θ ) = 0. (B20)

Multiplying both sides of this equation by r2 sin θ

R(r )A(θ)B(φ)
, assuming it does not vanish, we obtain

sin2 θ

(

r 2 − r 2 R′′(r )

R(r )
− 2r

R′(r )

R(r )

)

−
(

cos θ sin θ
A′(θ )

A(θ )
+ sin2 θ

A′′(θ )

A(θ )

)

−
B ′′(φ)

B(φ)
= 0, (B21)

which should be valid for all different sets of values of (r, θ , φ). By choosing θ = 0, eq. (B21) should hold for any values of r and φ, leading

to

B ′′(φ)

B(φ)
= 0 =⇒ B(φ) = Constant (B22)

(because this function is periodic B(φ) = B(φ + 2π )). Replacing this expression back into eq. (B21), and dividing both sides of the equation

by sin θ , we obtain

sin θ

(

r 2 − r 2 R′′(r )

R(r )
− 2r

R′(r )

R(r )

)

−
(

cos θ
A′(θ )

A(θ )
+ sin θ

A′′(θ )

A(θ )

)

= 0. (B23)

Again, this equation should hold for any values of r and θ = 0, which leads to

A′(θ )

A(θ )
= 0 =⇒ A(θ ) = Constant. (B24)

Replacing this expression back into eq. (B23), we get

r 2 R′′(r ) + 2r R′(r ) − r 2 R(r ) = 0. (B25)

According to Abramowitz & Stegun (1972), this is the modified spherical Bessel function, which has two particular solutions:
√

1

r
I±1/2(r ) and

√

1

r
K1/2(r ). (B26)

Again, we expect that the solution vanishes at infinity, which means that r−1/2I±1/2(r) can be excluded. The function r−1/2K1/2(r) satisfies the

normalizable condition of eq. (B2) in 3-D as
∫ π

−π

dφ

∫ π

0

sin θdθ

∫ ∞

0

r 2
[

r−1/2 K1/2(r )
]

dr = (2π )3/2. (B27)

Again, as the function K0(r) is singular at zero, the normalized function 1

(2π )3/2 Lx L y Lz
r−1/2 K1/2(r ) is also the solution of the non-homogeneous

eq. (B19).
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A P P E N D I X C : W E A K F O R M U L AT I O N D E V E L O P M E N T

This Appendix clarifies the definition of the mesh used in SEM, which consists of Gauss–Lobatto–Legendre (GLL) points, defined in the

reference space. The base functions are Lagrange polynomials. GLL quadrature is used to approximate analytical integrals over collocation

points. Let us recall the weak formulation of eq. (26)

∫∫∫

	̃

s v dz̃dx̃d ỹ +
∫∫∫

	̃

∇z̃,x̃,ỹs ∇z̃,x̃,ỹv dz̃dx̃d ỹ =
∫∫∫

	̃

m v dz̃dx̃d ỹ, (C1)

where v(z̃, x̃, ỹ) is a test function, m and s are the original and the smoothed vectors, respectively.

In SEM, the physical domain 	 is decomposed into a set of non-overlapping hexahedral elements 	e. This implies that the dimensionless

space 	̃ is also represented by a set of elements 	̃e, which is related to the physical element 	e through the one-to-one mapping (eq. 24).

Each reduced coordinate element 	̃e can be mapped to the unitary reference space of the GLL points, where the cube [−1, 1] ⊗ [−1, 1] ⊗
[−1, 1] is discretized into (N + 1) × (N + 1) × (N + 1) GLL points (ξk1

, ηk2
, ζk3

); k1, k2, k3 = 0, . . . , N. These collocation points define

(N + 1) × (N + 1) × (N + 1) base functions, which are triple products of Lagrange polynomials of degree N, over the element 	̃e

vk̂(ξ, η, ζ ) = ℓk1
(ξ )ℓk2

(η)ℓk3
(ζ ) k̂ stands for the triple of indexes {k1, k2, k3}. (C2)

Lagrange polynomials have the interesting property that their values at GLL nodes are either 0 or 1

ℓ j (ξ ) =
N
∏

i=0
i �= j

ξ − ξi

ξ j − ξi

; ℓ j (ξi ) = δ j i . (C3)

An element of volume dz̃d x̃d ỹ is related to an element of volume dξdηdζ in the reference cube by

dz̃d x̃d ỹ = J̃ edξdηdζ, (C4)

where the volumetric Jacobian J̃ e is the determinant of the Jacobian matrix J̃

J̃ =

⎡

⎢
⎢
⎣

∂ξ z̃ ∂η z̃ ∂ζ z̃

∂ξ x̃ ∂η x̃ ∂ζ x̃

∂ξ ỹ ∂η ỹ ∂ζ ỹ

⎤

⎥
⎥
⎦

. (C5)

We introduce the following notations of the coordinates of the dimensionless physical space and the reference space

(p1, p2, p3) := (z̃, x̃, ỹ) and (r1, r2, r3) := (ξ, η, ζ ), (C6)

to develop the weak formulation in eq. (C1) as

∫∫∫

	̃

s vk̂dz̃dx̃d ỹ +
∫∫∫

	̃

3
∑

d=1

∂vk̂

∂pd

∂s

∂pd

dz̃dx̃d ỹ =
∫∫∫

	̃

m vk̂dz̃dx̃d ỹ. (C7)

When moving to the reference space, according to the chain rule, this equation becomes

∫∫∫ 1

−1

s vk̂ J̃ e(ξ, η, ζ )dξdηdζ +
∫∫∫ 1

−1

3
∑

d=1

[
3
∑

i=1

∂vk̂

∂ri

∂ri

∂pd

]
⎡

⎣

3
∑

j=1

∂s

∂r j

∂r j

∂pd

⎤

⎦ J̃ e(ξ, η, ζ )dξdηdζ =
∫∫∫ 1

−1

m vk̂ J̃ e(ξ, η, ζ )dξdηdζ. (C8)

or

∫∫∫ 1

−1

s vk̂ J̃ e(ξ, η, ζ )dξdηdζ +
∫∫∫ 1

−1

3
∑

i=1

3
∑

j=1

∂vk̂

∂ri

[
3
∑

d=1

∂ri

∂pd

∂r j

∂pd

]

∂s

∂r j

J̃ e(ξ, η, ζ )dξdηdζ =
∫∫∫ 1

−1

m vk̂ J̃ e(ξ, η, ζ )dξdηdζ. (C9)

In the following step, we use the approximation of a field u over the element [−1, 1] ⊗ [−1, 1] ⊗ [−1, 1], as follows

u(ξ, η, ζ ) ≈
N
∑

h1=0

N
∑

h2=0

N
∑

h3=0

u ĥℓh1
(ξ )ℓh2

(η)ℓh2
(ζ ) =:

N
∑

ĥ=0

u ĥvĥ(ξ, η, ζ ), (C10)

where u ĥ = u(ξh1
, ηh2

, ζh3
) for vectors m and s. Therefore, eq. (C9) becomes
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1512 P.T. Trinh et al.

N
∑

ĥ=0

∫∫∫ 1

−1

vk̂vĥsĥ J̃ edξdηdζ +
N
∑

ĥ=0

∫∫∫ 1

−1

3
∑

i=1

3
∑

j=1

∂vk̂

∂ri

[
3
∑

d=1

∂ri

∂pd

∂r j

∂pd

]

∂vĥ

∂r j

sĥ J̃ edξdηdζ =
N
∑

ĥ=0

∫∫∫ 1

−1

vk̂vĥm ĥ J̃ edξdηdζ. (C11)

The integral over the reference cube can be approximated by the GLL quadrature

∫∫∫ 1

−1

f (ξ, η, ζ )dξdηdζ ≈
N
∑

q̂=0

wq1
wq2

wq3
f (ξq1

, ηq2
, ζq3

), (C12)

where wq1
, wq2

, wq3
are quadrature weights. As the test function vk̂ is the triple product of Lagrange polynomials (eq. C2), which is 1 at node

(ξk1
, ηk2

, ζk3
), and 0 at other nodes (eq. C3), the weak formulation developed in eq. (C11) can be transformed into a linear system

Ms + Ks = Mm. (C13)

The mass matrix M is diagonal with

Mk̂k̂ = wk1
wk2

wk3
J̃ e(ξk1

, ηk2
, ζk3

) (C14)

and the stiffness matrix K is symmetric and sparse

K k̂ĥ =
N
∑

q̂=0

wq1
wq2

wq3
J̃ e(ξq1

, ηq2
, ζq3

)

⎡

⎣

3
∑

i=1

3
∑

j=1

∂vk̂

∂ri

(
3
∑

d=1

∂ri

∂pd

∂r j

∂pd

)

∂vĥ

∂r j

⎤

⎦ . (C15)

The property mentioned in eq. (C3) of the test functions can be used again to simplified the spatial derivatives of the test functions as

∂vk̂

∂ξ
(ξq1

, ηq2
, ζq3

) = ℓ′
k1

(ξq1
)δk2,q2

δk3,q3
, (C16)

similar expressions can be written for ∂vk̂/∂η and ∂vk̂/∂ζ at (ξq1
, ηq2

, ζq3
). Therefore, the element at row k̂th, column ĥth of the matrix K

can be explicitly computed as

K k̂ĥ =
N
∑

q1=0

wq1
wk2

wk3
Je(ξq1

, ηk2
, ζk3

)ℓ′
h1

(ξq1
)ℓ′

k1
(ξq1

)

[
3
∑

d=1

(∂pd
ξ (ξq1

, ηk2
, ζk3

)2

]

+
N
∑

q2=0

wk1
wq2

wk3
Je(ξk1

, ηq2
, ζk3

)ℓ′
h2

(ηq2
)ℓ′

k2
(ηq2

)

[
3
∑

d=1

(∂pd
η(ξk1

, ηq2
, ζk3

))2

]

+
N
∑

q3=0

wk1
wk2

wq3
Je(ξk1

, ηk2
, ζq3

)ℓ′
h3

(ζq3
)ℓ′

k3
(ζq3

)

[
3
∑

d=1

(∂pd
ζ (ξk1

, ηk2
, ζq3

))2

]

+ wk1
wh2

wk3
Je(ξk1

, ηh2
, ζk3

)ℓ′
h1

(ξk1
)ℓ′

k2
(ηh2

)

[
3
∑

d=1

∂pd
ξ (ξk1

, ηh2
, ζk3

)∂pd
η(ξk1

, ηh2
, ζk3

)

]

+ wh1
wk2

wk3
Je(ξh1

, ηk2
, ζk3

)ℓ′
h2

(ηk2
)ℓ′

k1
(ξh1

)

[
3
∑

d=1

∂pd
ξ (ξh1

, ηk2
, ζk3

)∂pd
η(ξh1

, ηk2
, ζk3

)

]

+ wk1
wk2

wh3
Je(ξk1

, ηk2
, ζh3

)ℓ′
h1

(ξk1
)ℓ′

k3
(ζh3

)

[
3
∑

d=1

∂pd
ξ (ξk1

, ηk2
, ζh3

)∂pd
ζ (ξk1

, ηk2
, ζh3

)

]

+ wh1
wk2

wk3
Je(ξh1

, ηk2
, ζk3

)ℓ′
h3

(ζk3
)ℓ′

k1
(ξh1

)

[
3
∑

d=1

∂pd
ξ (ξh1

, ηk2
, ζk3

)∂pd
ζ (ξh1

, ηk2
, ζk3

)

]

+ wk1
wk2

wh3
Je(ξk1

, ηk2
, ζh3

)ℓ′
h2

(ηk2
)ℓ′

k3
(ζh3

)

[
3
∑

d=1

∂pd
η(ξk1

, ηk2
, ζh3

)∂pd
ζ (ξk1

, ηk2
, ζh3

)

]

+ wk1
wh2

wk3
Je(ξk1

, ηh2
, ζk3

)ℓ′
h3

(ζk3
)ℓ′

k2
(ηh2

)

[
3
∑

d=1

∂pd
η(ξk1

, ηh2
, ζk3

)∂pd
ζ (ξk1

, ηh2
, ζk3

)

]

. (C17)
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