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1 Introduction

In the factorized picture of semi-inclusive processes, where the transverse momentum of

the detected hadron P h⊥ is small compared to the photon virtuality Q2, transverse mo-

mentum dependent (TMD) parton distribution functions (PDFs) characterize the spin and

momentum structure of the proton [1–7]. At leading twist there are 8 TMD PDFs. They
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can be studied experimentally by analyzing angular modulations in the differential cross

section, so called spin and azimuthal asymmetries. These modulations are a function of

the azimuthal angles of the final state hadron momentum about the virtual photon direc-

tion, as well as that of the target polarization (see e.g., ref. [8] for a review). TMD PDFs

enter the SIDIS cross section in momentum space convoluted with transverse momentum

dependent fragmentation functions (TMD FFs). However, after a two-dimensional Fourier

transform of the cross section with respect to the transverse hadron momentum P h⊥, these

convolutions become simple products of functions in Fourier bT -space. The usefulness of

Fourier-Bessel transforms in studying the factorization as well as the scale dependence of

transverse momentum dependent cross section has been known for some time [9–15]. In

this paper we exhibit the structure of the cross section in bT -space and demonstrate how

this representation results in model independent observables which are generalizations of

the conventional weighted asymmetries [6, 7]. Further we explore the impact that these

observables have in studying the scale dependence of the SIDIS cross section at small to

moderate transverse momentum where the TMD framework is designed to give a good

description of the cross section. In particular we study how the so called soft factor cancels

from these observables. The soft factor [14–19] is an essential element of the cross section

that emerges in the proofs of TMD factorization [11, 13–15]. It accounts for the collective

effect of soft momentum gluons not associated with either the distribution or fragmentation

part of the process and it is shown to be universal in hard processes [17]. Depending on

the factorization framework, it appears explicitly in the structure functions and thus in the

factorized cross section (see refs. [14, 18]), or it is completely absorbed in the definition

of TMD PDFs and TMD FFs (see refs. [15, 19]). At tree level (zeroth order in αS) the

soft factor is unity, which explains its absence in the factorization formalism considered for

example in ref. [8]. However, for a correct description of the energy scale dependence of

the cross sections and asymmetries involving TMD PDFs, it is essential to include the soft

factor. Yet, it is possible to consider observables where the soft factor is indeed absent or

cancels out, these are precisely the weighted asymmetries.

1.1 Overview on weighted asymmetries

The concept of transverse momentum weighted single spin asymmetries (SSA) was proposed

some time ago in refs. [6, 7]. Using the technique of weighting enables one to disentangle

in a model independent way the cross sections and asymmetries in terms of the transverse

(momentum) moments of TMD PDFs. A comprehensive list of such weights was derived

in ref. [7] for semi-inclusive deep inelastic scattering (SIDIS). A prominent example is the

weighted Sivers asymmetry, obtained from the differential cross section dσ according to

A
w1 sin(φh−φS)
UT,T = (1.1)

2

∫
d|P h⊥| |P h⊥|dφh dφS w1(|P h⊥|) sin(φh − φS)

{
dσ(φh, φS) − dσ(φh, φS + π)

}
∫
d|P h⊥| dφh |P h⊥|dφS w0(|P h⊥|)

{
dσ(φh, φS) + dσ(φh, φS + π)

} ,

where the integrations are performed over the observed transverse hadron momentum

|P h⊥|, the hadron azimuthal angle φh and the spin direction φS of the transversely polar-

ized target, and the weights are w1 = |P h⊥|/zM , w0 = 1. At tree level and leading twist
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the weighted Sivers asymmetry [7] then becomes,

A
|P h⊥|

zM
sin(φh−φs)

UT = − 2

∑
a e

2
a f

⊥(1)a
1T (x) D

(0)a
1 (z)

∑
a e

2
a f

(0)a
1 (x) D

(0)a
1 (z)

, (1.2)

where f
⊥(1)a
1T , f

(0)a
1 and D

(0)a
1 are transverse momentum moments of TMD PDFs and TMD

FFs, and ea is the electric charge for a quark of flavor a. As explained in greater detail

in section 5, the moments in eq. (1.2) are undefined without a subtraction prescription

for the infinite contributions at large transverse momentum. Here, we propose generalized

weights, wn ∝ Jn(|P h⊥|BT ) with Jn denoting Bessel functions of the first kind, and where

BT (in units (GeV/c)−1) is a free parameter that represents the Fourier conjugate to |P h⊥|.
For the Sivers asymmetry, w1 = 2J1(|P h⊥|BT )/zMBT and w0 = J0(|P h⊥|BT ). This gives

rise to the Bessel-weighted Sivers asymmetry, which reads

A
2J1(|P h⊥|BT )

zMBT
sin(φh−φs)

UT = −2

∑
a e

2
a f̃

⊥(1)a
1T (x, z2B2

T ) D̃
(0)a
1 (z,B2

T )
∑

a e
2
a f̃

(0)a
1 (x, z2B2

T ) D̃
(0)a
1 (z,B2

T )
, (1.3)

where f̃
⊥(1)a
1T , f̃

(0)a
1 and D̃

(0)a
1 are TMD PDFs and TMD FFs Fourier transformed with

respect to transverse momentum as defined in the next section. In the asymptotic limit

BT → 0, we recover the conventional weighted asymmetry eq. (1.2), and the Fourier trans-

formed TMD PDFs and FFs can be identified with the moments in that equation. An

advantage of the generalized weight relates to the asymptotic behavior of TMD PDFs (and

TMD FFs). We will see that this provides a regularization of the infinite contributions at

large transverse momentum as long as we keep B2
T non-zero. Moreover, our analysis will

show that soft factors appearing beyond tree level cancel out of the weighted asymmetry.

The rest of the manuscript is organized as follows: In section 2 we write down the

general form of the SIDIS cross section in the TMD factorization framework and show that

the convolutions in momentum space appear as products in Fourier space. For simplicity,

this discussion is presented at tree level. Modifications needed to go beyond tree level are

discussed in section 3. Even though our arguments are quite general, for definiteness we use

the framework of Ji, Ma, Yuan [14, 18], here referred to as the “JMY” framework. TMD

PDFs at the level of matrix elements will be considered in section 4. In section 5 we will

consider Bessel-weighted asymmetries, focusing on the Sivers asymmetry as an explicit ex-

ample. Further asymmetries at leading twist are listed in appendix F. We will also consider

x moments of TMD PDFs and introduce a method to study Fourier transformed moments

in lattice QCD and compare with experiment. Our conclusions are presented in section 7.

2 The SIDIS cross section in Fourier space at tree level

2.1 Elements of the SIDIS cross section

The lepton-hadron cross section of SIDIS ℓ(l) + N(P, S) → ℓ(l) + h(Ph) + X can be ex-

pressed [4, 8, 20, 21] in the notation of ref. [8] as

dσ

dx
B
dy dψ dzh dφh |P h⊥| d|P h⊥|

=
α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW

µν , (2.1)
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Figure 1. Kinematics of the SIDIS process, compare refs. [8, 22].

where we assume one photon exchange. Lµν and W µν are the leptonic and hadronic tensors

respectively, and the vector P h⊥ is the transverse momentum of the produced hadron in

a frame where the virtual photon and the target are collinear, e.g. in the target rest frame

or γ∗P center of mass frame. It makes an azimuthal angle φh with the lepton scattering

plane defined by the momenta of the incoming and the final leptons l and l′ (see figure 1).

We define q ≡ l− l′, and q2 = −Q2 is the virtuality of the photon. ψ is the azimuthal angle

of l′ around the lepton beam axis relative to S⊥, in DIS kinematics dψ ≈ dφS [21]. The

subscript “⊥” denotes transverse projection in the target rest frame while the subscript “T ”

denotes transverse projection in the light-cone frame. We use definitions for the kinematic

variables and the ratio of of longitudinal and transverse photon flux ǫ as in ref. [8],

x
B

=
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , γ =
2Mx

Q
, ε =

1 − y − 1
4 γ

2y2

1 − y + 1
2 y

2 + 1
4 γ

2y2
, (2.2)

where M is the mass of the target nucleon. We employ the standard light-cone decompo-

sition of four-vectors ωµ = ω+nµ
+ + ω−nµ

− + ωµ
T . In the γ∗P center of mass frame with the

proton three-momentum pointing in positive z-direction, the nucleon carries no transverse

momentum, PT = 0, and x ≡ p+/P+ denotes the momentum fraction carried by the quark

(parton) of momentum p. Further definitions of kinematic variables and details on the

leptonic and hadronic tensor are given in appendix A and ref. [8].

At tree-level of the hard photon-quark scattering process, and to leading order in the

1/Q expansion, the hadronic tensor can be written in factorized form as [5, 8, 23]

2MW µν =
∑

a

e2a

∫
d2pT d

2KT δ
(2)(zpT +KT−P h⊥)Tr

{
Φ(x,pT )γµ∆(z,KT )γν

}
. (2.3)

The quark-quark correlator [11, 24] in the above equation is defined as

Φij(p, P, S) ≡
∫

d4b

(2π)4
eip·b 〈P, S|ψ̄j(0)U [Cb]ψi(b)|P, S〉 . (2.4)

In eq. (2.3) an integration has been performed over the small component p− of parton mo-

mentum to obtain a correlator that depends on light-cone fraction x and parton transverse

momentum pT , that is,

Φij(x,pT ) ≡
∫
dp−Φij(p, P, S)

=

∫
db−d2bT

(2π)3
eixP+b−−ipT ·bT 〈P, S|ψ̄j(0)U [Cb]ψi(b)|P, S〉

∣∣∣∣
b+=0

. (2.5)
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The state |P, S〉 represents a nucleon with four-momentum P and spin polarization vector

S, and quark fields are located at position “0” and “b” in coordinate space. The gauge link

U [Cb] ensures gauge invariance of the correlator [23, 25]. It corresponds to a path in b space

which is determined by the color flow in the hard sub-process [26, 27]. We will discuss the

details of the definition of the correlator and the role of the gauge link U [Cb] in section 4.

Analogous expressions define the fragmentation correlator ∆ij(z,pT ) (see e.g. [8]).

2.2 Representation in Fourier space

In this section, we rewrite the SIDIS cross section and its transverse momentum dependent

components in coordinate bT space, similar as previously done in ref. [28]. Here however,

we take advantage of the rotational invariance of TMD PDFs and FFs.

First we use the representation of the δ-function

δ(2)(zpT + KT − P h⊥) =

∫
d2bT

(2π)2
eibT (zpT +KT −Ph⊥) , (2.6)

along with the following definitions,

W µν(P h⊥) ≡
∫

d2bT

(2π)2
e−ibT ·Ph⊥ W̃ µν(bT ) , (2.7)

Φ̃ij(x, zbT ) ≡
∫
d2pT e

izbT ·pT Φij(x,pT )

=

∫
db−

(2π)
eixP+b− 〈P, S|ψ̄j(0)U [Cb]ψi(b)|P, S〉

∣∣∣∣
b+=0

, (2.8)

∆̃ij(z, bT ) ≡
∫
d2KT e

ibT ·KT ∆ij(z,KT ) , (2.9)

to re-write the leading term in the hadronic tensor, eq. (2.3), in Fourier space

2MW̃ µν =
∑

a

e2a Tr
(
Φ̃(x, zbT )γµ∆̃(z, bT )γν

)
. (2.10)

The advantage of the bT space representation is clear: the hadronic tensor is no longer

a convolution of pT and KT dependent functions but a simple product of bT -dependent

functions. This motivates us to re-write the entire cross section in terms of the Fourier

transform

dσ

dx
B
dy dψ dzh dφh |P h⊥|d|P h⊥|

=

∫
d2bT

(2π)2
e−ibT ·Ph⊥

{
α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW̃

µν

}
.

(2.11)

Next, we decompose the correlators Φ̃ and ∆̃ into TMD PDFs and FFs in Fourier space.

Using the trace notation (see also eqs. (A.8) and (A.9) in the appendix)

Φ̃[Γ] ≡ 1

2
Tr(Φ̃Γ) , (2.12)
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and restricting ourselves to leading twist projections, we obtain the following structures

for Φ̃

Φ̃[γ+](x, bT ) = f̃1(x, b
2
T ) − i ǫρσ

T bTρSTσ Mf̃
⊥(1)
1T (x, b2

T ) ,

Φ̃[γ+γ5](x, bT ) = SL g̃1L(x, b2
T ) + i bT ·STM g̃

(1)
1T (x, b2

T ) ,

Φ̃[iσα+γ5](x, bT ) = Sα
T h̃1(x, b

2
T ) + i SL b

α
TM h̃

⊥(1)
1L (x, b2

T )

+
1

2

(
bαT b

ρ
T +

1

2
b2

T g
αρ
T

)
M2 STρh̃

⊥(2)
1T (x, b2

T )

−i ǫαρ
T bTρMh̃

⊥(1)
1 (x, b2

T ) , (2.13)

where α = 1, 2 and ρ = 1, 2. Similarly, we obtain the following structures for ∆̃

∆̃[γ−](z, bT ) = D̃1(z, b
2
T ) − i ǫρσ

T bTρShTσ zMhD̃
⊥(1)
1T (x, b2

T ) ,

∆̃[γ−γ5](z, bT ) = ShL G̃1L(z, b2
T ) − i bT ·ShT zMh G̃

(1)
1T (z, b2

T ) ,

∆̃[iσα−γ5](z, bT ) = Sα
hT H̃1(z, b

2
T ) − i ShL b

αzMh H̃
⊥(1)
1L (z, b2

T )

+
1

2

(
bαT b

ρ
T +

1

2
b2

T g
αρ
T

)
z2M2

h ShTρH̃
⊥(2)
1T (z, b2

T ) (2.14)

−i ǫαρ
T bTρzMhH̃

⊥(1)
1 (z, b2

T ) . (2.15)

For future applications, we have written down the latter decomposition for the more general

case of a spin-1
2 hadron; the expression for a spinless hadron is obtained by setting Sh = 0.

The above decompositions can be deduced from the existing expressions for Φ and ∆ in

momentum space [5, 29], or starting from the symmetry properties of the correlators Φ̃

and ∆̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also section 4

and appendix C. The functions f̃1(x, b
2
T ), g̃1L(x, b2

T ), . . . are the Fourier transforms of

the usual TMD PDFs f1(x,p
2
T ), g1L(x,p2

T ), . . .. For a generic TMD PDF called f and a

generic TMD FF called D, this Fourier transform is given by

f̃(x, b2
T )≡

∫
d2pT e

ibT ·pT f(x,p2
T )

= 2π

∫
d|pT ||pT | J0(|bT ||pT |) f(x,p2

T ) , (2.16)

D̃(z, b2
T ) ≡

∫
d2KT e

ibT ·KT D(z,K2
T )=2π

∫
d|KT ||KT |J0(|bT ||KT |)D(z,K2

T ) . (2.17)

Additionally, in eqs. (2.13) and (2.15) not only Fourier transformed TMD PDFs and TMD

FFs, but also their b2
T -derivatives appear, which we denote as

f̃ (n)(x, b2
T ) ≡ n!

(
− 2

M2
∂b2

T

)n

f̃(x, b2
T )

=
2π n!

(M2)n

∫
d|pT ||pT |

( |pT |
|bT |

)n

Jn(|bT ||pT |) f(x,p2
T ) , (2.18)

D̃(n)(z, b2
T ) ≡ n!

(
− 2

z2M2
h

∂b2
T

)n

D̃(z, b2
T )

=
2π n!

(z2M2
h)n

∫
d|KT ||KT |

( |KT |
|bT |

)n

Jn(|bT ||KT |) D(z,K2
T ) . (2.19)
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The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued and f̃ (0) = f̃ , D̃(0) = D̃. Taking the

“asymptotic limit” |bT | → 0 on the right hand side of eqs. (2.19), we formally obtain the

conventional moments of the TMD PDFs and TMD FFs, f (n)(x) and D(n)(z) respectively,

f̃ (n)(x, 0) =

∫
d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =

∫
d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z). (2.20)

Thus we find that the derivatives in bT -space are directly related to moments of TMD

PDFs and FFs. Finally we re-write the SIDIS cross section of ref. [8] in the γ∗P center

of mass frame with the proton three-momentum pointing in the negative z-direction (so

called Trento conventions [22]), as

dσ

dx
B
dy dφS dzh dφh |P h⊥|d|P h⊥|

=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

) ∫
d|bT |
(2π)

|bT |
{
J0(|bT ||P h⊥|)FUU,T + εJ0(|bT ||P h⊥|)FUU,L

+
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Fcos φh

UU + ε cos(2φh)J2(|bT ||P h⊥|)Fcos(2φh)
UU

+ λe

√
2 ε(1 − ε) sinφh J1(|bT ||P h⊥|)F sin φh

LU

+ S‖

[√
2 ε(1 + ε) sinφh J1(|bT ||P h⊥|)F sin φh

UL + ε sin(2φh)J2(|bT ||P h⊥|)F sin 2φh

UL

]

+ S‖λe

[√
1 − ε2 J0(|bT ||P h⊥|)FLL +

√
2 ε(1 − ε) cosφh J1(|bT ||P h⊥|)Fcos φh

LL

]

+ |S⊥|
[
sin(φh − φS)J1(|bT ||P h⊥|)

(
F sin(φh−φS)

UT,T + εF sin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)F sin(φh+φS)
UT

+ ε sin(3φh − φS)J3(|bT ||P h⊥|)F sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sinφS J0(|bT ||P h⊥|)F sin φS

UT

+
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)F sin(2φh−φS)
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)Fcos(φh−φS)

LT

+
√

2 ε(1 − ε) cosφS J0(|bT ||P h⊥|)Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)J2(|bT ||P h⊥|)Fcos(2φh−φS)
LT

]}
(2.21)

The structure of the cross section is what one gets from a multipole expansion in bT -

space followed by a Fourier transform, see appendix B. Each of the structure functions

F ···
XY,Z in bT -space corresponds to the Hankel (or Fourier-Bessel) transform of the corre-

sponding structure function F ···
XY,Z in the usual momentum space representation of the cross

section. The combinations sin(nφh + . . .)Jn(|bT ||P h⊥|) and cos(nφh + . . .)Jn(|bT ||P h⊥|)

– 7 –



J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

act as basis functions of the combined transform to (|P h⊥|, φh)-space. Due to the fact

that the multipole expansion of the physical cross section terminates, only a finite number

of terms appear in the cross section, with J3 being the Bessel function of highest order.

The structures F ···
XY,Z are functions of |bT |, x and z, but no longer depend on the angular

variables. Introducing a short-hand notation for products

P[f̃ (n)D̃(m)] ≡ x
B

∑

a

e2a (zM |bT |)n (zMh|bT |)m f̃a(n)(x, z2b2
T ) D̃a(m)(z, b2

T ) , (2.22)

the leading twist tree level analysis in eqs. (2.10), (2.13) and (2.15) reveals that the Fourier

transformed structures in the cross section are simple products of TMD PDFs and TMD

FFs

FUU,T = P[f̃
(0)
1 D̃

(0)
1 ] , (2.23)

F sin(φh−φS)
UT,T = −P[f̃

⊥(1)
1T D̃

(0)
1 ] , (2.24)

FLL = P[g̃
(0)
1L D̃

(0)
1 ] , (2.25)

Fcos(φh−φs)
LT = P[g̃

(1)
1T D̃

(0)
1 ] , (2.26)

F sin(φh+φS)
UT = P[h̃

(0)
1 H̃

⊥(1)
1 ] , (2.27)

Fcos(2φh)
UU = P[h̃

⊥(1)
1 H̃

⊥(1)
1 ] , (2.28)

F sin(2φh)
UL = P[h̃

⊥(1)
1L H̃

⊥(1)
1 ] , (2.29)

F sin(3φh−φS)
UT =

1

4
P[h̃

⊥(2)
1T H̃

⊥(1)
1 ]. (2.30)

For completeness, we also list the above results in terms of the momentum-space struc-

ture functions F ···
XY,Z of ref. [8] in appendix D. Note that TMD evolution equations are

typically derived in bT -space and are thus obtained in terms of the same (derivatives of)

Fourier transformed TMD PDFs and TMD FFs that appear in the equations above, see,

e.g., ref. [28], where a similar representation of the structure functions in Fourier space has

been employed.

3 Beyond tree level

The formalism becomes more involved once diagrams beyond leading order in αs are taken

into account. Various strategies have been proposed to address extra divergences that

appear at the one loop level and higher order [15–19, 30–34]. The development of these

frameworks for transverse momentum dependent factorization and the establishing of the

corresponding factorization theorems is an active field of research (see e.g., refs. [15, 35]).

The proposed strategies require the introduction of new variables that act as regularization

scales, and most importantly as it pertains to the content of this paper, the so called soft

factors coming from soft-gluon radiation. As stated in the introduction, depending on the

framework, the soft factors appear explicitly in the structure functions [14, 18], or are

absorbed into the definition of TMD PDFs and TMD FFs (see e.g., refs. [15, 19]). We will

present general arguments that soft factors cancel in weighted asymmetries, independent
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of the specific factorization framework; however for definiteness we work with the JMY

framework [14, 18], which is based on the ideas of Collins, Soper, and Sterman for the

factorization of e+e− and Drell Yan scattering [13, 30]. Again we consider the structure

function giving rise to the Sivers asymmetry,

F sin(φh−φS)
UT,T = H

sin(φh−φS)
UT,T (Q2, µ2, ρ) S̃(+)(b2

T , µ
2, ρ) P[f̃

(1)
1T D̃

(0)
1 ] + Ỹ

sin(φh−φS)
UT,T (Q2, b2

T ) .

(3.1)

The first term in the following referred to as the “TMD expression”, dominates in the

region where |P h⊥| is small, |P h⊥|/z ≈ QT ≪ Q. The second term is necessary to properly

describe the structure function for large transverse momentum, where QT ∼ Q, and where

fixed order perturbation theory and collinear factorization apply. Here H
sin(φh−φS)
UT,T is the

hard part, and S̃(+) is a soft factor appearing explicitly in the structure function within

the JMY formalism. It is the same in all the structure functions F ···
XY,Z , see ref. [28]. All

other structure functions of eqs. (2.23)–(2.30) need to be modified analogous to eq. (3.1).

The term Ỹ
sin(φh−φS)
UT,T (Q2, b2

T ) represents contributions that are relevant only in the

region of large transverse momentum |P h⊥| [19, 36]. Qualitatively, this corresponds to the

very small bT region, z|bT | . 1/Q. Since our aim is to study TMD PDFs, we want to

focus on the region |P h⊥|/z ≪ Q where we expect them to give the dominant contribution

if z|bT | ≫ 1/Q. Nevertheless, since we are considering weighted integrals of structure

functions, the integrals do include the region of very large |P h⊥|. As a result, the Ỹ term

in eq. (3.1) is non-zero even if z|bT | ≫ 1/Q. We note that the Ỹ term is expected to be

particularly important in the case of a “mismatch” between the tail of the TMD term and

the |P h⊥|-behavior obtained from the collinear formalism in the regime of intermediate

|P h⊥|, i.e., M ≪ QT ≪ Q. Matches and mismatches between the collinear and TMD

formalism have been discussed in detail in ref. [37]. An important example for the case

of a mismatch is the cos(2φh) asymmetry. One possibility to avoid the discussion of the

Ỹ -term is to explicitly cut off the |P h⊥| integrals at some upper value ΛTMD. This cutoff

introduces an error in our extracted TMD expression, for which we give an estimate in

appendix G.3. Another option is to simply ignore the Ỹ term. This amounts to keeping

the TMD term in the large |P h⊥| region, i.e., to include the large-|P h⊥|-tail generated

by the TMD term, which would otherwise be corrected by the Y term. In appendix G.3,

we show that in the z|bT | ≫ 1/Q region of interest this produces an error that falls off

at least as a fractional inverse power with increasing |bT |. It should be mentioned that

this estimate of the behavior of the error applies to the Bessel weighting which we discuss

below. By contrast, no such error estimate exists for conventional weighting with powers

of |P h⊥| since such integrals are divergent. Better error estimates, or equivalently, a better

determination of the TMD region in BT , can be obtained by an explicit treatment of the

Ỹ term, which we will leave for future analyses.

In summary, we find that weighted integrals based on the TMD expression alone are

valid only in a limited range of BT . Finally, beyond tree level, the product notation

P[fD] defined in eq. (2.22) has to be updated to include further dependences on the

renormalization and cutoff parameters µ2, ρ, ζ and ζ̂ appearing in the JMY formalism
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discussed in more detail below:1

P[f̃ (n)D̃(m)] ≡ x
B

∑

a

e2a(zM |bT |)n(zMh|bT |)mf̃a(n)(x, z2b2
T , µ

2, ζ, ρ)D̃a(m)(z, b2
T , µ

2, ζ̂ , ρ) .

(3.2)

4 TMD PDFs at the level of matrix elements

Apart from introducing the parameters ζ, ζ̂ and ρ the purpose of this section is to review

the formalism of Lorentz-invariant amplitudes underlying the decomposition of Φ̃ eq. (2.13).

In the framework of JMY, the TMD correlator Φ itself involves a soft factor S(+) as already

encountered above, i.e., eqs. (2.5) and (2.8) need to be modified. In the following, we label

the unmodified correlators with the subscript “unsub”:

Φ
[Γ]
unsub(p, P, S; v, µ)=

∫
d4b

(2π)4
eip·b

1

2
〈P, S| ψ̄(0)

U [Cb]︷ ︸︸ ︷
U [0,∞v]U [∞v, b] Γψ(b) |P, S〉

︸ ︷︷ ︸
Φ̃

[Γ]
unsub(b, P, S; v, µ)

. (4.1)

The gauge link U [Cb] is essentially given by two parallel straight Wilson lines running out

to infinity in the direction given by the four-vector v and back again. The definition of a

straight Wilson line between two points a and b is

U [a, b] ≡ P exp

(
−ig

∫ b

a
dξµ Aµ(ξ)

)
, (4.2)

where Aµ(ξ) = T cAc
µ(ξ), c = 1 . . . 8 is the (matrix valued) gauge field. A transverse link

connecting these parallel Wilson lines at infinity can be omitted in the covariant gauge

used by JMY. In case of SIDIS, the direction v = [v−, v+, 0] is slightly off the light-cone

direction n−, while for the Drell-Yan process v is slightly off the light cone direction −n−.

The shift away from the light cone is time-like in the JMY framework and specified in a

Lorentz-invariant way by the parameter ζ, defined by ζ2 = (2P · v)2/v2. The parameter ζ

represents a rapidity cutoff parameter [30]. The above correlator can be parameterized in

terms of real-valued Lorentz-invariant amplitudes. Here we restrict ourselves to the case

Γ = γµ. Reference [29] lists the following structures

1

2
Φ

[γµ]
unsub = PµA

(+)
2 + pµA

(+)
3 +

1

M
ǫµναβPνpαSβ A

(+)
12 +

M2

(v·P )
vµB

(+)
1

+
M

v·P ǫ
µναβPνvαSβ B

(+)
7 +

M

v·P ǫ
µναβpνvαSβ B

(+)
8

+
1

M(v·P )
(p·S)ǫµναβPνpαvβ B

(+)
9 +

M

(v·P )2
(v·S)ǫµναβPνpαvβB

(+)
10 . (4.3)

The amplitudes B
(+)
i only appear when the dependence of the correlator on the direction v

is explicitly taken into account, and were not listed in earlier works [1, 5]. Since v represents

1The framework of, e.g., ref. [19], would require analogous modifications within this formalism.
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only a direction, the structures above should remain invariant under re-scaling of v, i.e.,

under the substitution v → ηv, for any positive real number η. This has been ensured by

dividing by powers of v·P in the expression above. The amplitudes can depend on p2, p·P ,

v·p/(v·P ), v2/(v·P )2 = ζ−2 and the sign of v·P , which we denote with the superscript (+)

(SIDIS case). For the Drell-Yan process, v·P has the opposite sign (−).

For our discussion below, we make use of a similar decomposition as in eq. (4.3). How-

ever, instead of parameterizing the p-dependent correlator Φ[Γ], we directly parameterize

the b-dependent matrix elements Φ̃[Γ] of eq. (2.8) in terms of complex-valued amplitudes

Ã
(+)
i and B̃

(+)
i that depend on b2, b·P , v·b/(v·P ) and ζ−2. This parameterization in Fourier-

space has already been employed in [38, 39].2 As shown in appendix C, we can deduce this

parameterization from eq. (4.3) using the substitution rule p→ −iM2b:

1

2
Φ̃

[γµ]
unsub = Pµ Ã

(+)
2 − iM2bµ Ã

(+)
3 − iMǫµναβPνbαSβ Ã

(+)
12 +

M2

(v·P )
vµ B̃

(+)
1

+
M

v·P ǫ
µναβPνvαSβ B̃

(+)
7 − iM3

v·P ǫµναβbνvαSβ B̃
(+)
8

−M
3

v·P (b·S)ǫµναβPνbαvβ B̃
(+)
9 − iM3

(v·P )2
(v·S)ǫµναβPνbαvβB̃

(+)
10 . (4.4)

In order to connect to the framework of TMD PDFs, we integrate the correlator Φ over

the (suppressed) momentum component p−. The integration with respect to p− reduces

the Fourier transform with respect to b+ to the evaluation of Φ̃ at b+ = 0. Moreover, in

the formalism of JMY, the defining correlator of TMD PDFs needs to be modified with a

soft factor. The modified, p−-integrated correlator reads

Φ(+)[Γ](x,pT , P, S, µ
2, ζ, ρ) =

∫
db−

(2π)
eixb−P+

∫
d2bT

(2π)2
e−ipT ·bT (4.5)

× 1

2
〈P, S| ψ̄(0)U [Cb] Γψ(b) |P, S〉

︸ ︷︷ ︸
Φ̃

[Γ]
unsub(b, P, S; v, µ2)

/
S̃(+)(b2

T , µ
2, ρ)

∣∣∣
b+ =0

,

where xP+ = p+. The soft factor is given as

S̃(+)(b2
T , µ

2, ρ) =
1

Nc
〈0|Trc { U [−∞ṽ + b⊥, b⊥] U [b⊥, b⊥ + ∞v] U [∞v, 0] U [0,−∞ṽ] } |0〉

(4.6)

and involves another time-like direction ṽ = (ṽ−, ṽ+, 0) slightly off the light-cone direction

n+, controlled by the parameter ρ ≡
√
v−ṽ+/v+ṽ−. Note that ρ2 +2+ρ−2 = 4(v·ṽ)2/v2ṽ2

is a Lorentz-invariant expression. Here, the superscript (+) specifies the sign of v·ṽ, which

is different for the SIDIS and the Drell-Yan process.

2In refs. [38, 39], a different convention for the position of the quark fields in the Fourier transformed

correlator Φ̃ has been used. These references introduce Φ̃ as Φ̃(l, P, S, C) = 1
2
〈P, S| ψ̄(l) U†[Cl] Γ ψ(0) |P, S〉.

In eq. (4.1) we stick to the more common convention of an operator ψ̄(0) . . . ψ(b). From translation invariance

follows that the variable b corresponds to −l in refs. [38, 39]. In particular, our amplitudes Ãi(b
2, b·P, . . .)

correspond to Ãi(l
2,−l·P, . . .) of refs. [38, 39].
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In the formalism of JMY, the definition of the soft factor S̃(+) above both applies to

the occurrence of S̃(+) in the TMD PDF correlator eq. (4.5) and in the structure function

eq. (3.1). In the following, we will consider the case Γ = γ+. The correlator Φ(+)[γ+] can

be decomposed into contributions from two distinct TMD PDFs:

Φ(+)[γ+](x,pT , P, S, µ
2, ζ, ρ) = f1(x,p

2
T ;µ2, ζ, ρ) − ǫijT pT i ST j

M
f⊥1T (x,p2

T ;µ2, ζ, ρ) . (4.7)

Strictly speaking, f⊥1T should also carry the superscript (+) since it has a different sign for

Drell-Yan measurements [40]. We now use

b2
T = −b2

∣∣∣
b+=0

, b− =
b·P
P+

∣∣∣
b+=0

, R(ζ2) ≡ M2

v·P
v+

P+
= 1 −

√

1 − 4M2

ζ2
, (4.8)

and insert the parameterization eq. (4.4) into eq. (4.5). Comparing with eq. (4.7) allows

us to write the TMD PDFs f1 and f⊥1T as

f1(x,p
2
T ;µ2, ζ, ρ) = 2

∫
d(b·P )

(2π)
eix(b·P )

∫ ∞

0

d(−b2)
4π

J0(
√

−b2p2
T )

×
Ã

(+)
2B

(
b2, b·P, (b·P )R(ζ2)

M2 , ζ−2, µ2
)

S̃(+)(−b2, µ2, ρ)
(4.9)

f⊥1T (x,p2
T ;µ2, ζ, ρ) = 4M2 ∂

∂(p2
T )

∫
d(b·P )

(2π)
eix(b·P )

∫ ∞

0

d(−b2)
4π

J0(
√

−b2p2
T )

×
Ã

(+)
12B

(
b2, b·P, (b·P )R(ζ2)

M2 , ζ−2, µ2
)

S̃(+)(−b2, µ2, ρ)

= 2M2

∫
d(b·P )

(2π)
eix(b·P )

∫ ∞

0

d(−b2)
4π

J1(
√

−b2p2
T )

√
−b2p2

T

× b2
Ã

(+)
12B

(
b2, b·P, (b·P )R(ζ2)

M2 , ζ−2, µ2
)

S̃(+)(−b2, µ2, ρ)
, (4.10)

where

Ã
(+)
2B ≡ Ã

(+)
2 +R(ζ2)B̃

(+)
1 , (4.11)

Ã
(+)
12B ≡ Ã

(+)
12 −R(ζ2)B̃

(+)
8 . (4.12)

We observe that the amplitudes B̃i give rise to structures in eqs. (4.9) and (4.10) that are

suppressed by their explicit ζ-dependence as ζ → ∞, i.e., in the limit of light-like v. The

structures also disappear in the limit of vanishing nucleon mass M2 → 0. Notice that the

two independent Fourier transforms in each of eqs. (4.9) and (4.10) naturally connect the

TMD PDFs to a manifestly Lorentz-invariant framework and reveal x↔ b·P and p2
T ↔ b2

to be pairs of conjugate variables.
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The relations of the amplitudes Ã
(+)
2B and Ã

(+)
12B to the bT -Fourier-transformed TMD

PDFs defined in eqs. (2.17) and (2.19) are given by

f̃
(0)
1 (x, b2

T ;µ2, ζ, ρ) =

2

S̃(+)(b2
T , µ

2, ρ)

∫
d(b·P )

(2π)
eix(b·P ) Ã

(+)
2B

(
−b2

T , b·P,
(b·P )R(ζ2)

M2
, ζ−2, µ2

)
, (4.13)

f̃
⊥(1)
1T (x, b2

T ;µ2, ζ, ρ) =

−2

S̃(+)(b2
T , µ

2, ρ)

∫
d(b·P )

(2π)
eix(b·P ) Ã

(+)
12B

(
−b2

T , b·P,
(b·P )R(ζ2)

M2
, ζ−2, µ2

)
. (4.14)

We note that the soft factor would need to remain in the integrand if it were also dependent

on v·b/
√
v2, i.e., the “angle” between the Wilson lines and the vector b separating the quark

fields in the operator. The above result can also be obtained by comparison to the correlator

Φ̃[γ+](x, bT ) in eq. (2.13), where

Φ̃(+)[Γ](x, bT , µ
2, ζ, ρ) ≡

∫
d(b·P )

(2π)P+
eix(b·P ) Φ̃

[Γ]
unsub(b, P, S; v, µ2)

S̃(+)(−b2, µ2, ρ)

∣∣∣
b+ = 0

. (4.15)

5 Bessel-weighted asymmetries

As stated earlier, transverse momentum weighted asymmetries [5–7] provide a means to

disentangle the convolutions in the cross section in a model independent way. Generally,

the conventional weighted asymmetries are given by

AW
XY =





2

∫
d|P h⊥| |P h⊥| dφh dφS W(|P h⊥|, φh) dσXY∫

d|P h⊥| |P h⊥| dφh dφS dσXY
: for XY = UU

2

∫
d|P h⊥| |P h⊥| dφh dφS W(|P h⊥|, φh, φS)

(
dσ↑XY − dσ↓XY

)

∫
d|P h⊥| |P h⊥| dφh dφS

(
dσ↑XY + dσ↓XY

) : else,

(5.1)

where the labels X,Y represent the polarization, “un” (U), longitudinally (L) and trans-

versely (T ) of the beam and target, respectively. The angles φS and φh specify the direc-

tions of the hadron spin polarization and the transverse hadron momentum respectively,

relative to the lepton scattering plane. In case of single or double spin asymmetries dσ↓XY

denotes the cross section with one of the polarizations opposite than for dσ↑XY , such that

the relevant structure function is projected out from eq. (2.21). We have introduced the

short-hand notation W which is a function containing various powers and P h⊥ as well as

angular dependences of the form sin(mφh ±nφS) or cos(mφh ±nφS). For the conventional

weighted Sivers asymmetry, W ≡ w1 sin(φh − φS), where w1 = |P h⊥|/zM as in eq. (1.1).

Based on the expansion of the SIDIS cross section in terms of Bessel functions Jn of

transverse momentum and impact parameter in eq. (2.21), we exploit the orthogonality to
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generalize the weighting procedure. Now the weighting is of the form

AW
XY (BT ) =





2

∫
d|P h⊥| |P h⊥| dφh dφS W(|P h⊥|, φh;BT ) dσXY∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥|BT ) dσXY

: for XY = UU

2

∫
d|P h⊥| |P h⊥| dφh dφS W(|P h⊥|, φh, φS ;BT )

(
dσ↑XY − dσ↓XY

)

∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥|BT )

(
dσ↑XY + dσ↓XY

) : else,

(5.2)

where the weight function W corresponds to that of conventional weighted asymmetries,

except that we replace

|P h⊥|n → Jn(|P h⊥|BT )n!

(
2

BT

)n

. (5.3)

As mentioned earlier, taking the asymptotic form of the Bessel function the conventional

weights [6, 7] which are ∝ |P h⊥|n appear as the leading term of the Taylor expansion

of the right hand side of eq. (5.3). Furthermore we note that the parameter BT > 0

regularizes UV divergences in moments of TMD PDFs and FFs. More importantly, we will

show that the parameter BT > 0 allows us to scan TMD PDFs and TMD FFs in Fourier

space. In fact, the form of eq. (5.2) already indicates that the weighting implements a

Fourier-decomposition of the cross section in transverse momentum space.

Now we summarize the cancellation of the soft factor. We will illustrate this for the

Sivers Bessel-weighted asymmetry (for details see appendix F). One can see from eq. (2.21)

that the appropriate weight for the Sivers asymmetry is

W =
2J1(|P h⊥|BT )

zMBT
sin(φh − φS), i.e., w1 =

2J1(|P h⊥|BT )

zMBT
, (5.4)

corresponding to |P h⊥|/zM in the limit |P h⊥| ≪ 1/BT . Then the Bessel-weighted Sivers

asymmetry is

A
2 J1(|P h⊥|BT )

zMBT
sin(φh−φS)

UT (BT ) =

2

∫
d|P h⊥| |P h⊥| dφh dφS

2 J1(|Ph⊥|BT )
zMBT

sin(φh − φS)
(
dσ↑ − dσ↓

)
∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥| BT ) (dσ↑ + dσ↓)

, (5.5)

where the axially symmetric denominator is given by

2α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥|BT )

×
∫
d|bT |
(2π)

|bT |J0(|bT ||P h⊥|)FUU,T , (5.6)

and from eq. (2.21) the numerator is

2α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)∫
d|P h⊥| |P h⊥|dφh dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φs)

×
∫
d|bT |
(2π)

|bT |J1(|bT ||P h⊥|)F sin(φh−φs)
UT . (5.7)
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Finally, making use of the closure relation of the Bessel function (see appendix E) we

obtain for fixed x, y, z, cancellation of the soft factor S+(0)(µ2, ρ) in eq. (3.1) from the

Bessel-weighted Sivers asymmetry,

A
2 J1(|P h⊥|BT )

zMBT
sin(φh−φs)

UT,T (BT ) =

− 2

∑
a e

2
aH

sin(φh−φS)
UT,T (Q2, µ2, ρ) f̃

⊥(1)a
1T (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂, ρ)
∑

a e
2
aHUU,T (Q2, µ2, ρ) f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
. (5.8)

Some comments are in order. First, if |BT | is large enough, the estimate Ỹ
sin(φh−φS)
UT,T ∼

B−1/2
T can be applied and may indicate that the Ỹ -terms are sufficiently suppressed to

be neglected for practical purposes (see appendix G.3), which is what we have done in

the above equation. The above result for the Sivers asymmetry can be generalized to any

other asymmetry in the SIDIS cross section, eq. (2.21). We summarize those results with

the full kinematic dependences in appendix F. Weighting with Bessel functions at various

values of BT thus allows us to map out, ratios of Fourier-transformed TMD PDFs as well

as azimuthal and spin asymmetries.

Secondly, the hard scattering factor H
sin(φh−φS)
UT,T is expected to be the same as the

unpolarized one HUU,T , because the Sivers effect concerns unpolarized quarks which leads

to unpolarized scattering on the partonic level. This expectation is confirmed in a recent

calculation by Kang, Xiao and Yuan [41] at the one loop level, but should hold to all orders.

Since this feature of the Sivers asymmetry is not shared by the other asymmetries, we will

stick to writing H
sin(φh−φS)
UT,T to avoid potential mistakes.

Thirdly, it is important to note that in the limit BT → 0, the cancellation of the soft

factor becomes trivial, since the soft factor S̃+(bT , µ, ρ) is unity at bT = 0. This has been

shown in ref. [30], but it can also be seen easily from its formal definition in terms of Wilson

lines given in eq. (4.6). Using S̃+(0)(0, µ2, ρ) = 1 shows that the P h⊥-integrated cross

section does not depend on the soft factor, as expected because the collinear factorization

result should in principle be retrieved (after a proper regularization, which is a highly

nontrivial matter as discussed in [31]). Due to the asymptotic properties of Bessel functions

for small arguments, we recover conventional weighted asymmetries in the limit BT → 0

A
|P h⊥|

zM
sin(φh−φs)

UT,T (x
B
, z, y) =

−2

∑
a e

2
a H

sin(φh−φS)
UT,T (Q2, µ2, ρ) f

⊥(1)a
1T (x;µ2, ζ, ρ) D

a(0)
1 (z;µ2, ζ̂ , ρ)

∑
a e

2
a HUU,T (Q2, µ2, ρ) f

a(0)
1 (x;µ2, ζ, ρ) D

a(0)
1 (z;µ2, ζ̂, ρ)

, (5.9)

where f
⊥(1)a
1T , f

a(0)
1 , and D

a(0)
1 are moments of TMD PDFs and fragmentation functions

as defined in eq. (2.20). We caution the reader that these moments are not well-defined,

since the corresponding integrals are known to fall off too slowly at large transverse mo-

mentum [37]. Furthermore, the arguments made earlier that the Ỹ -terms are small are no

longer applicable.
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Lastly, we briefly address what is known about the energy scale dependence of the

conventional weighted asymmetries. The current knowledge on this is limited to the one-

loop level. Choosing the factorization scale µ = Q removes the Q dependence from the hard

scattering functionH that is a function of lnQ2/µ2. This will lead to a Q dependence in the

transverse moments of the TMD PDFs only [15, 19]. The scale dependence of f
(0)
1 (x;Q2)

is known, assuming that a proper definition of the TMD PDF can be used, such that the

zeroth moment corresponds to the collinear function f1(x;Q
2) after the regularization is

removed. The same applies to D
(0)
1 (z;Q2). For the first moment of the Sivers function

one can exploit that it is directly related to the Qiu-Sterman function TF (x, x) [42] as

shown in ref. [23]. The evolution equation of the Qiu-Sterman function has recently been

obtained [43–46] allowing for evolution of the weighted Sivers asymmetry. The evolution

of TF (x, x) is not autonomous, since it depends not just on TF (x, x) itself. This is true

even in the large-Nc limit, but in the large-x limit it does become autonomous [46, 47]. It

indicates that f
⊥(1)
1T (x) evolves logarithmically with Q2 just like f1(x), only falling off faster

at a given x value as Q2 increases. The evolution has also been calculated for moments of

other TMD PDFs such as h
⊥(1)
1 [44, 48, 49] and is similar to that of f

⊥(1)
1T but simpler since

nonsinglet. In addition, the evolution of the first moment of the Collins function, H
⊥(1)
1 is

calculated in [50, 51].

6 Average transverse momentum shift and Bessel-weighted counterpart

In a similar manner to section 5 we now consider the soft factor cancellation in the average

transverse momentum shift of unpolarized quarks in a transversely polarized nucleon for a

given longitudinal momentum fraction x. This shift is considered in [52] and defined by a

ratio of the pT -weighted correlator:

〈py(x)〉TU =

∫
d2pT py Φ(+)[γ+](x,pT , P, S, µ

2, ζ, ρ)∫
d2pT Φ(+)[γ+](x,pT , P, S, µ

2, ζ, ρ)

∣∣∣∣∣
S±=0, ST =(1,0)

=M
f
⊥(1)
1T (x;µ2, ζ, ρ)

f
(0)
1 (x;µ2, ζ, ρ)

,

(6.1)

where f
⊥(1)
1T and f

(0)
1 are the moments defined in eqs. (2.20). Obviously, the average

momentum shift is very similar in structure to the weighted asymmetry eq. (5.9). While

the weighted asymmetries are accessible directly from the P h⊥-weighted cross section, the

average transverse momentum shifts are obtained from the pT -weighted correlator and

could in principle be accessible from weighted jet asymmetries. As already mentioned, the

integrals defining the moments of TMD PDFs on the right hand side of the above equation

are divergent without suitable regularization. In the following, we therefore generalize the

above quantity, weighting with Bessel functions of |pT | instead. In particular, we replace

py = |pT | sin(φp) −→ 2J1(|pT |BT )

BT
sin(φp − φS) , (6.2)
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where φS = 0 for the choice ST = (1, 0) in eq. (6.1). The correlator Φ(+)[γ+] reads in terms

of the amplitudes Ã
(+)
i and B

(+)
i ,

Φ(+)[γ+](x,pT , P, S, µ
2, ζ, ρ) =

∫
X

∫ ∞

0

d|bT |
2π

|bT |
{
J0(|bT | |pT |) 2Ã

(+)
2B /S̃

−M |bT | |ST | sin(φp − φS)J1(|bT | |pT |) 2Ã
(+)
12B/S̃

}
, (6.3)

where we abbreviate

∫
X ≡

∫
d(b·P )

(2π)
eix(b·P ) . (6.4)

The Bessel-weighted analog of eq. (6.1) is thus

〈py(x)〉BT

TU ≡
∫
d|pT | |pT |

∫
dφp

2 J1(|pT |BT )
BT

sin(φp − φS) Φ(+)[γ+](x,pT , P, S, µ
2, ζ, ρ)

∫
d|pT | |pT |

∫
dφpJ0(|pT |BT ) Φ(+)[γ+](x,pT , P, S, µ

2, ζ, ρ)

∣∣∣∣∣
|ST |=1

= −M

∫
X Ã

(+)
12B

(
−B2

T , b·P,
(b·P )R(ζ2)

M2 , ζ−2, µ2
)

∫
X Ã

(+)
2B

(
−B2

T , b·P,
(b·P )R(ζ2)

M2 , ζ−2, µ2
)

= M
f̃
⊥(1)
1T (x,B2

T ;µ2, ζ, ρ)

f̃
(0)
1 (x,B2

T ;µ2, ζ, ρ)
. (6.5)

Again, the soft factors cancel. At this point, the independence of the soft factor on v·b/
√
v2

is crucial. In the limit BT → 0, we recover equation (6.1), 〈py(x)〉0TU = 〈py(x)〉TU , which

we have thus shown to be formally free of any soft factor contribution. However, we caution

the reader again that the expressions at BT = 0 can be ill-defined without an additional

regularization step.

We can go one step further and form ratios that are also integrated in x, with weights

exp(−ixBL). For BL = 0, this is the same as taking the lowest x-moment that appears

in the Burkardt sum rule [52]. The reason it is interesting to look at such quantities

is their renormalization properties. Another motivation to discuss such quantities here

is lattice QCD. Taking x-moments is a standard ingredient in lattice computations of

nucleon structure, see e.g., ref. [53] for a review. First exploratory studies of TMD PDFs

on the lattice [38, 39] focus to a large degree on computations of the lowest x-moment of

distributions, but access to finite values of BL is also possible. By “integration over x” we

mean an integration over the entire support of the correlator; this includes contributions

from negative x which correspond to anti-quark contributions, see e.g., ref. [5, 39] for details.
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In particular, the x-integrals of the two TMD PDFs f1 and f⊥1T can be decomposed as

∫ 1

−1
dx e−ixBL f1(x,p

2
T ;µ2, ζ, ρ) =

∫ 1

0
dx

{
e−ixBLf1(x,p

2
T ;µ2, ζ, ρ) − eixBL f̄1(x,p

2
T ;µ2, ζ, ρ)

}
,

∫ 1

−1
dx e−ixBL f⊥1T (x,p2

T ;µ2, ζ, ρ) =

∫ 1

0
dx

{
e−ixBLf⊥1T (x,p2

T ;µ2, ζ, ρ) + eixBL f̄⊥1T (x,p2
T ;µ2, ζ, ρ)

}
, (6.6)

where f̄1 and f̄⊥1T are anti-quark distributions. In analogy to eq. (6.5), one can consider

〈py〉BL,BT

TU ≡
∫
d|pT ||pT |

∫
dφp

2J1(|pT |BT )
BT

sin(φp − φS)
∫
dxe−ixBLΦ(+)[γ+](x,pT ,P,S,µ2,ζ,ρ)

∫
d|pT ||pT |

∫
dφp J0(|pT |BT )

∫
dxe−ixBLΦ(+)[γ+](x,pT ,P,S,µ2,ζ,ρ)

= M

∫
dxe−ixBL f̃

⊥(1)
1T (x,B2

T ;µ2, ζ, ρ)
∫
dxe−ixBL f̃

(0)
1 (x,B2

T ;µ2, ζ, ρ)

= −M
Ã

(+)
12B

(
−B2

T ,BL,BL
R(ζ2)
M2 , ζ

−2, µ2
)

Ã
(+)
2B

(
−B2

T ,BL,BL
R(ζ2)
M2 , ζ−2, µ2

) . (6.7)

In this case, the cancellation of the soft factor occurs even for a soft factor that has a

dependence on v·b/
√
v2. In the last line of eq. (6.7), the amplitudes in the numerator

and denominator parameterize the same matrix element Φ̃[γ+](b, P, S; v, µ), hence they in-

volve the same bi-local quark-quark operator. The work on renormalization properties

of non-local operators involving Wilson lines in refs. [54–59] suggests that the operator

ψ̄(0)U [Cb]ψ(b) might renormalize multiplicatively for not too small |bT |, compare also [34].

As a result, the quantity 〈py〉BT ,BL

TU would be renormalization scheme and scale independent

(up to the evolution with the rapidity cutoff parameter ζ2), since all multiplicative renor-

malization factors would cancel in the ratio. This observation was already made in ref. [39]

and is consistent with TMD factorization, which also involves only multiplicative renor-

malization for |P h⊥| ≪ Q or BT ≫ 1/Q. For smaller BT , mixing with gluonic operators is

expected, as it is known that the Qiu-Sterman function for quarks and gluons (related to

f̃
⊥(1)q,g
1T (x, b2

T = 0)) mix under changes of the scale [43–46], thereby preventing the cancel-

lation of multiplicative factors in the ratio considered here. The properties of quantities

like 〈py〉BT ,BL

TU remain to be studied more thoroughly. They could be interesting objects to

make contact between theory predictions from, e.g., lattice QCD, and experiment.

7 Conclusions

We have shown that rewriting the SIDIS cross-section in coordinate space displays the

important feature that structure functions become simple products of Fourier transformed

TMD PDFs and FFs, or derivatives thereof. The angular structure of the cross section
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naturally suggests weighting with Bessel functions in order to project out these Fourier-

Bessel transformed distributions, which serve as well-defined replacements of the transverse

moments entering conventional weighted asymmetries. In addition, Bessel-weighted asym-

metries provide a unique opportunity to study nucleon structure in a model independent

way due to the absence of the soft factor S+(0), which as we have shown cancels from these

observables. This cancellation is based on the fact that the soft factor is flavor blind in

hard processes, and it depends only on b2
T , µ

2, ρ. Moreover, evolution equations for the

distributions are typically calculated in terms of the (derivatives of) Fourier transformed

TMD PDFs and FFs. As a result the study of the scale dependence of Bessel-weighted

asymmetries should prove more straightforward. For the above stated reasons we propose

Bessel-weighted asymmetries as clean observables to study the scale dependence of TMD

PDFs and FFs at existing (HERMES, COMPASS, JLab) and future facilities (Electron Ion

Collider, JLab 12 GeV). Our results are also easily generalized to other processes where

TMD factorization is valid, such as e+e− annihilation and Drell-Yan processes.
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A Conventions and useful relations

In section 2 we use definitions for the kinematic variables and the ratio of of longitudinal

and transverse photon flux ǫ as in ref. [8],

x
B

=
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , γ =
2Mx

Q
, ε =

1 − y − 1
4 γ

2y2

1 − y + 1
2 y

2 + 1
4 γ

2y2
, (A.1)

where M is the mass of the target nucleon. The off-collinearity of the process is character-

ized by the variable QT introduced through

qT ≡ q + (1 + q2T /Q
2)xP − Ph/z, QT ≡

√
−q2T (A.2)

and for QT ≪ Q, one finds |P h⊥| ≈ zQT , see, e.g. [37]. The leptonic tensor is

Lµν = 2(lµl
′
ν + lν l

′
µ − (l · l′)gµν + iλeǫµναβl

αqβ) , (A.3)
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where we neglected the lepton mass. The hadronic tensor is

2MW µν=
∑

X

∫
d3P X

(2π)32P 0
X

δ(4) (q+P−PX−Ph) 〈P, S| Jµ(0) |PX , Ph〉 〈PX , Ph|Jν(0) |P, S〉 .

(A.4)

For an arbitrary four-vector ω, we introduce the usual light-cone decomposition as

ωµ = ω+nµ
+ + ω−nµ

− + ωµ
T , (A.5)

where ω± = (ω0 ± ω3)/
√

2 and where the basis vectors nµ
+ and nµ

− are

nµ
+ =

1√
2

(1, 0, 0, 1) , nµ
− =

1√
2

(1, 0, 0,−1) , (A.6)

such that n± · n∓ = 1, n± · n± = 0, n± · ωT = 0. Note that ωT · ωT = −ω2
T . In the γ∗P

center of mass frame with the proton three-momentum pointing in positive z-direction, we

can decompose the proton and parton momenta as

Pµ = P+nµ
+ +

M2

2P+
nµ
− ,

pµ = xP+nµ
+ +

p2 + p2
T

2xP+
nµ
− + pµ

T , (A.7)

where x = p+/P+ is the quark light-cone momentum fraction.

Finally, using eq. (2.12) in section 2.2, we write the quark-quark correlator recon-

structed from the trace projections

Φ̃ =
1

2
γ+Φ̃[γ+] − 1

2
γ+γ

5Φ̃[γ+γ5] − 1

4
iσα+γ

5Φ̃[iσα+γ5] +
1

2
γβΦ̃[γβ ]

− 1

2
γβγ

5Φ̃[γβγ5] − 1

4
iσαβγ

5Φ̃[iσαβγ5] +
1

2
1Φ̃[1] , (A.8)

where α = 1, 2 and β = −, 1, 2. Here we have also included twist-3 and twist-4 terms. For

the fragmentation correlator we have the following expression,

∆̃ =
1

2
γ−∆̃[γ−] − 1

2
γ−γ

5∆̃[γ−γ5] − 1

4
iσα−γ

5∆̃[iσα−γ5] +
1

2
γβ∆̃[γβ ]

− 1

2
γβγ

5∆̃[γβγ5] − 1

4
iσαβγ

5∆̃[iσαβγ5] +
1

2
1∆[1] . (A.9)

B Multipole expansion and Fourier transform

This appendix shows the simple underlying mathematical structure of eq. (2.21). Let us

treat all kinematic variables except for P h⊥ and φh as constants. Consider the cross section

σ̃ in Fourier space as some arbitrary function that depends on bT . This dependence can

be formulated in coordinate space (|bT |, φb),

σ̃(|bT |, φb) =

∞∑

n=−∞

einφb σ̃n(|bT |) (B.1)
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which is nothing but a multipole expansion with |bT | dependent coefficients σ̃n. Performing

a Fourier-transform of σ̃ back to momentum space (|P h⊥|, φh), we obtain

σ(|P h⊥|, φh) =

∫
d2bT

(2π)2
e−iPh⊥·bT σ̃(bT )

=

∫
d|bT |
2π

|bT |
∫ 2π

0

dφb

2π
e−i|Ph⊥||bT | cos(φh−φb)

∞∑

n=−∞

einφb σ̃n(|bT |)

=
∞∑

n=−∞

einφh

∫
d|bT |
2π

|bT | (−i)nJn(|P h⊥||bT |) σ̃n(|bT |) . (B.2)

Using einφh = cos(nφh) + i sin(nφh) and Jn = (−1)nJ−n, it is evident that the last line

of the above equation has exactly the form of the cross section eq. (2.21), where a finite

number of the σ̃±n is given by simple linear combinations of the structure functions F ···
XY,Z ,

and the rest is zero. In our case, the Bessel function Jn with the highest n is J3, which

appears in combination with the angular sin(3φh − φS) modulation and turns out to be

associated with the quadrupole deformation of parton densities h⊥1T .

C Parameterization of the correlator in b-space

First, we briefly review the relevant properties of the correlator under symmetry transfor-

mations. Applying Lorentz transformations (L), parity transformation (P ), time-reversal

(T ) and hermitian conjugation (†) to the matrix elements, we find that the correlator fulfills

(L) : Φ
[Γ]
unsub(p, P, S; v, µ) = Φ

[Λ−1
1/2

ΓΛ
1/2

]

unsub (Λp,ΛP,ΛS; Λv, µ) , (C.1)

(P ) : Φ
[Γ]
unsub(p, P, S; v, µ) = Φ

[γ0Γγ0]
unsub (p, P ,−S; v, µ) , (C.2)

(T ) :
[
Φ

[Γ]
unsub(p, P, S; v, µ)

]∗
= Φ

[γ1γ3Γ∗γ3γ1]
unsub (p, P , S;−v, µ) , (C.3)

(†) :
[
Φ

[Γ]
unsub(p, P, S; v, µ)

]∗
= Φ

[γ0Γ†γ0]
unsub (p, P, S; v, µ) . (C.4)

where we denote the sign change of spatial components of a given vector c; that is, c ≡
(c0,−c1,−c2,−c3). From hermiticity (†) follows that the A

(+)
i and B

(+)
i in eq. (4.3) are real

valued. Time reversal (T ) does not constrain the number of allowed structures, because

it changes the sign of v·P . Instead, time reversal (T ) establishes relations between SIDIS

amplitudes A
(+)
i , B

(+)
i and Drell-Yan amplitudes A

(−)
i , B

(−)
i .

For any of the transformations T ∈ {L,P, T, †}, the eqs. (C.1)–(C.4) are of the general

form

TΦ (Φ(p,w)) = Φ (Tp(p),Tw(w)) (C.5)

where we have omitted the subscript “unsub” and the renormalization scale µ, and where

the symbol w summarizes all dependences on Γ, P , S and v. Here TΦ is either the identity

function or complex conjugation. The transformation rule Tp(p) maps onto Λp, p or p

and thus fulfills a·b = Tp(a)·Tp(b) for any two vectors a and b. The Fourier-transformed

correlator

Φ̃(b, w) =

∫
d4p e−ip·bΦ(p,w) (C.6)
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transforms according to

TΦ

(
Φ̃(b, w)

)
=

∫
d4p eTΦ(−i) p·b TΦ (Φ(p,w))

=

∫
d4q eTΦ(−i)T −1

p (q)·b Φ (q,Tw(w))

=

∫
d4q eTΦ(−i) q·Tp(b) Φ (q,Tw(w))

= Φ̃

(TΦ(i)

i
Tp(b),Tw(w)

)
. (C.7)

For example, Φ̃ transforms under hermitian conjugation as

(†) :
[
Φ̃

[Γ]
unsub(b, P, S; v)

]∗
= Φ̃

[γ0Γ†γ0]
unsub (−b, P, S; v) . (C.8)

Let f(p,w) be any of the structures preceding the invariant amplitudes in the param-

eterization of Φ. The structure f(p,w) is a homogeneous function of some degree

n in p, i.e., f(αp,w) = αnf(p,w) for any number α. For example, the structure

f(p,w) = 1
M(v·P )(p·S)ǫµναβPνpαvβ preceding B

(+)
9 in eq. (4.3) has degree n = 2. If we

define f̃(b, w) ≡ f(−iM2b, w), then

TΦ

(
f̃(b, w)

)
=TΦ(−iM2)n TΦ (f(b, w))=f

(
TΦ(−iM2)Tp(b),Tw(w)

)
= f̃

(TΦ(i)

i
b, w

)
. (C.9)

This shows that f̃ transforms like Φ̃ in eq. (C.7). We conclude that the parameterization

of Φ̃ can be found by the substitution p→ −iM2b in the structures parameterizing Φ, and

we arrive at eq. (4.4). The amplitudes Ã
(+)
i and B̃

(+)
i introduced this way are no longer

constrained to be real valued functions. Instead, hermitian conjugation eq. (C.8) yields the

relation
[
Ã

(+)
i (b2, b·P, v·b/(v·P ), ζ−2, µ2)

]∗
= Ã

(+)
i (b2,−b·P,−v·b/(v·P ), ζ−2, µ2) . (C.10)

D Structure functions in terms of Fourier transformed TMD PDFs and

FFs

The structure functions of ref. [8] can be expressed in terms of Fourier-transformed TMD

PDFs and FFs as

FUU,T =x
B

∑

a

e2a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) f̃a
1 (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.1)

F
sin(φh−φS)
UT,T =−x

B

∑

a

e2a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz f̃
⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ), (D.2)

FLL =x
B

∑

a

e2a

∫
d|bT |
(2π)

|bT |J0(|bT | |P h⊥|) g̃a
1L(x, z2b2

T ) D̃a
1(z, b2

T ) , (D.3)

F
cos(φh−φs)
LT =x

B

∑

a

e2a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mz g̃
⊥a(1)
1T (x, z2b2

T ) D̃a
1(z, b2

T ) , (D.4)
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F
sin(φh+φS)
UT =x

B

∑

a

e2a

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)Mhz h̃
a
1(x, z

2b2
T ) H̃

⊥a(1)
1 (z, b2

T ) , (D.5)

F
cos(2φh)
UU =x

B

∑

a

e2a

∫
d|bT |
(2π)

|bT |3J2(|bT | |P h⊥|)MMhz
2 h̃

⊥a(1)
1 (x, z2b2

T ) H̃
⊥a(1)
1 (z, b2

T ) ,

(D.6)

F
sin(2φh)
UL =x

B

∑

a

e2a

∫
d|bT |
(2π)

|bT |3 J2(|bT | |P h⊥|)MMhz
2 h̃

⊥a(1)
1L (x, z2b2

T ) H̃
⊥a(1)
1 (z, b2

T ) ,

(D.7)

F
sin(3φh−φS)
UT =x

B

∑

a

e2a

∫
d|bT |
(2π)

|bT |4 J3(|bT | |P h⊥|)
M2Mhz

3

4
h̃
⊥a(2)
1T (x, z2b2

T ) H̃
⊥a(1)
1 (z, b2

T ) .

(D.8)

E Cancellation of the soft factor in the Sivers asymmetry

Making use of the closure relation of the Bessel function

∫ ∞

0
d|P h⊥| |P h⊥|Jn(|P h⊥| |bT |)Jn(|P h⊥| BT ) =

1

BT
δ(|bT | − BT ) , (E.1)

we obtain for the expression in eq. (5.6)

∫
d|P h⊥| |P h⊥| dφh dφS J0(|P h⊥|BT )

∫
d|bT |
(2π)

|bT |J0(|bT ||P h⊥|)FUU,T (E.2)

=x
B

∑

a

e2a HUU,T (Q2, µ2, ρ)

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS J0(|P h⊥|BT )

×
∫
d|bT |
(2π)

|bT |J0(|P h⊥| |bT |)f̃ (0)a
1 (x, z2b2

T ;µ2, ζ, ρ) S̃(+)(b2
T ;µ2, ρ) D̃

(0)a
1 (z, b2

T ;µ, ζ̂, ρ)

=2πx
B

∑

a

e2aHUU,T (Q2, µ2, ρ) f̃
(0)a
1 (x, z2B2

T ;µ2, ζ, ρ)S̃(+)(B2
T ;µ2, ρ)D̃

(0)a
1 (z,B2

T ;µ, ζ̂, ρ)

Next, we consider the following expression in the numerator of the asymmetry, eq. (5.7),

∫
d|P h⊥||P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS)

×
∫
d|bT |
(2π)

|bT |2J1(|bT | |P h⊥|)F sin(φh−φS)
UT,T

=

∫
d|P h⊥| |P h⊥|

∫
dφh

∫
dφS

2J1(|P h⊥|BT )

zMBT
sin2(φh − φS) (E.3)

×x
B

∑

a

e2a H
sin(φh−φS)
UT,T (Q2, µ2, ρ)

∫
d|bT |
(2π)

|bT |2 J1(|bT | |P h⊥|)

×Mzf̃
⊥(1)a
1T (x, z2b2

T , µ
2, ζ, ρ) S̃(+)(b2

T , µ
2, ρ) D̃

(0)a
1 (z, b2

T , µ
2, ζ̂ , ρ)

= 2πx
B

∑

a

e2a H
sin(φh−φS)
UT,T (Q2, µ2, ρ)f̃

⊥(1)a
1T (x, z2B2

T , µ
2, ζ, ρ)

×S̃(+)(B2
T , µ

2, ρ)D̃
(0)a
1 (z,B2

T , µ
2, ζ̂/z, ρ),
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where we have used the closure relation eq. (E.1), and

∫ 2π

0
cos2(mφh + nφS)dφS =

∫ 2π

0
sin2(mφh + nφS)dφS = π , (E.4)

for integer n and m. Thus, we obtain

A
2 J1(|P h⊥|BT )

zMBT
sin(φh−φs)

UT,T (BT ) = −2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

) (E.5)

×
∑

a e
2
aH

sin(φh−φS)
UT,T (Q2, µ2, ρ)f̃

⊥(1)a
1T (x, z2B2

T ;µ2, ζ, ρ)S̃+(B2
T , µ

2, ρ)D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
∑

a e
2
aHUU,T (Q2, µ2, ρ)f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ)S̃+(B2
T , µ

2, ρ)D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
,

F Bessel-weighted asymmetries

Here we introduce the Bessel weights wn

wn ≡ Jn(|P h⊥|BT )n!

(
2

BT

)n

, (F.1)

and summarize the Bessel-weighted asymmetries at leading twist:

Double Spin

A
J0(|Ph⊥|BT )
LL (BT ) = 2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)√
1 − ε2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)

×
∑

a e
2
aHLL(Q2, µ2, ρ) g̃

(0)a
1L (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
∑

a e
2
aHUU,T (Q2, µ2, ρ) f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
, (F.2)

Worm Gear

A
2 J1(|P h⊥|BT )

zMBT
cos(φh−φS)

LT (BT ) = 2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)√
1 − ε2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)

×
∑

a e
2
aH

cos(φh−φS)
LT (Q2, µ2, ρ) g̃

(1)a
1T (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
∑

a e
2
a HUU,T (Q2, µ2, ρ) f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
, (F.3)

Collins

A
2 J1(|P h⊥|BT )

zMhBT
sin(φh+φs)

UT (BT ) = 2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)
ε

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)

×
∑

a e
2
aH

sin(φh+φS)
UT (Q2, µ2, ρ) h̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) H̃
⊥(1)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
∑

a e
2
a HUU,T (Q2, µ2, ρ) f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
, (F.4)
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Boer − Mulders

A

2 J2(|P h⊥|BT )

z2MMhB2
T

cos(2φh)

UU (BT ) = 2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)
ε

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)

×
∑

a e
2
aH

cos(2φh)
UU (Q2, µ2, ρ) h̃

⊥(1)a
1 (x, z2B2

T ;µ2, ζ, ρ) H̃
⊥(1)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
∑

a e
2
aHUU,T (Q2, µ2, ρ) f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
, (F.5)

Kotzinian − Mulders

A

2 J2(|P h⊥|BT )

z2MMhB2
T

sin(2φh)

UL (BT ) = 2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)
ε

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)

×
∑

a e
2
aH

sin(2φh)
UL (Q2, µ2, ρ) h̃

⊥(1)a
1L (x, z2B2

T ;µ2, ζ, ρ) H̃
⊥(1)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
∑

a e
2
aHUU,T (Q2, µ2, ρ) f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
, (F.6)

Pretzelosity

A

8 J3(|P h⊥|BT )

z3M2MhB3
T

sin(3φh−φs)

UT (BT ) = 2

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)
ε

α2

yQ2
y2

(1−ε)

(
1 + γ2

2x
B

)

×
∑

ae
2
aH

sin(3φh−φS)
UT (Q2, µ2, ρ)h̃

⊥(2)a
1T (x, z2B2

T ;µ2, ζ, ρ)H̃
⊥(1)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
∑

a e
2
aHUU,T (Q2, µ2, ρ) f̃

(0)a
1 (x, z2B2

T ;µ2, ζ, ρ) D̃
(0)a
1 (z,B2

T ;µ2, ζ̂ , ρ)
. (F.7)

G Suppression of high transverse momentum

G.1 Suppression of the tail in Bessel-weighted integrals

In this section, we are interested in the contribution from the high-momentum region to

Bessel-weighted integrals. We begin by deriving convergence criteria and upper bounds for

an integral of the form

In,A(ξ,Λω) ≡
∫ ∞

Λω

dω ω Jn(ωξ)A(ω) = ξ−2

∫ ∞

Λωξ
dν ν Jn(ν)A(ν/ξ) . (G.1)

In the subsections to follow, ω will assume the role of a momentum, |pT |, |KT | or |P h⊥|,
while ξ will represent |bT | or BT . In the equation above, A is a placeholder for a given

function of ω. We restrict our discussion of the integral In,A(ξ,Λω) to the region Λωξ ≫ 1,

where the Bessel function in the integrand can be approximated by

Jn(ν) ≈
√

2

πν
sin

(
ν +

π

4
− nπ

2

)
for ν ≫ 1 (G.2)

First, let us consider a function A that fulfills the condition

|A(ω)| ≤ c ω−α for any ω ≥ Λω (G.3)
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where c > 0 and α are two real valued constants. Using the envelope of the Bessel function

|Jn(ν)| .
√

2/πν, we obtain
∣∣∣In,A(ξ,Λω)

∣∣∣ ≤ ξ−2

∫ ∞

Λωξ
dν

∣∣∣νJn(ν)A(ν/ξ)
∣∣∣

. ξ−2

∫ ∞

Λωξ
dν

√
2ν

π
c
ξα

να
=

1

α− 3
2

√
2Λ3

ω

πξ
cΛ−α

ω ∼ ξ−1/2,

(G.4)

where the last equal sign only holds if the integral is convergent, i.e., if α > 3/2.

Next, consider a function B for which
√
ωB(ω) is monotonously falling in the region

ω ≥ Λω and converging to zero for ω → ∞. In this case, we can make use of the oscillatory

behavior of the Bessel function to show convergence of the integral In,B(ξ,Λω). Let N

denote the smallest possible integer such that Λωξ+π/4−nπ/2 ≤ Nπ. We decompose the

integration according to

In,B(ξ,Λω) = ξ−2

∫ Nπ−π/4+nπ/2

Λωξ
dν ν Jn(ν)B(ν/ξ)

︸ ︷︷ ︸
T1

+ ξ−2
∞∑

j=0

∫ (N+j+1)π−π/4+nπ/2

(N+j)π−π/4+nπ/2
dν ν Jn(ν)B(ν/ξ)

︸ ︷︷ ︸
T2

. (G.5)

Applying the mean value theorem, we can find ν̄ ∈ [Λωξ,Nπ − π/4 + 2π/2] such that

T1 = ξ−2
√
ν̄B(ν̄/ξ)

∫ Nπ−π/4+nπ/2

Λωξ
dν

√
ν Jn(ν)

≈ ξ−2
√
ν̄B(ν̄/ξ)

√
2

π

(
cos(Λωξ + π/4 − nπ/4)︸ ︷︷ ︸

∈ [−1, 1]

− cos(Nπ)︸ ︷︷ ︸
(−1)N

)
(G.6)

from which we derive bounds for the first term:

0 ≤ (−1)N+1T1 ≤ 2

√
2

π
ξ−2

√
ν̄B(ν̄/ξ) ≤ 2

√
2

π
ξ−2

√
Λωξ + 2πB(Λω) . (G.7)

Using the mean value theorem again to determine the points ν̄j, the second term becomes

T2 ≈ ξ−2
∞∑

j=0

√
ν̄jB(ν̄j/ξ)

∫ (N+j+1)π−π/4+nπ/2

(N+j)π−π/4+nπ/2
dν

√
2

π
sin(ν + π/4 − nπ/2)

= 2

√
2

π
ξ−2

∞∑

j=0

√
ν̄jB(ν̄j/ξ)(−1)N+j . (G.8)

The expression on the right is an alternating series that fulfills the Leibnitz-test for con-

vergence and is bounded by the size of its first term,

0 ≤ (−1)NT2 ≤ 2

√
2

π
ξ−2√ν̄0B(ν̄0/ξ) ≤ 2

√
2

π
ξ−2

√
Λωξ + 2πB(Λω). (G.9)
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Since T1 and T2 have opposite signs, we arrive at a combined upper bound

∣∣∣In,B(ξ,Λω)
∣∣∣ ≤ 2

√
2

π
ξ−2

√
Λωξ + 2π B(Λω) ≈ 2

√
2Λω

πξ3
B(Λω) ∼ ξ−3/2 . (G.10)

In summary, we find that the integral eq. (G.1) converges for any function A(ω) that

decays faster than ω−3/2 which in turn determines an upper bound of the integral of order

ξ−1/2, eq. (G.4). The requirement for convergence can be relaxed to functions decaying

faster than ω−1/2 if monotony of
√
ω times the function is ensured. In this case, eq. (G.10)

gives an estimate of an upper bound that decays with ξ−3/2. We remind the reader that

these bounds are only valid for ξ ≫ Λ−1
ω , but for all n.

G.2 Fourier-transformed TMD PDFs, TMD FFs and their derivatives

Using the mathematical results from the previous sub-section, we investigate which of the

(derivatives of) Fourier-transformed TMD PDFs f̃ (n)(x, b2
T ) and TMD FFs D̃(n)(x, b2

T ) are

well-defined by the right hand sides of eq. (2.19). Their behavior in the high transverse

momentum region has been studied in detail in ref. [37]. They find power-suppressed tails

of the form

f(x, |p2
T |) ∼

1

|pT |m
× “logarithmic modifications” , (G.11)

for integer powers m. Analogous expressions hold for the TMD FFs. Comparing the right

hand side of eq. (2.19) with the criterion for functions of type B, we find that convergence

is maintained if n < m− 1/2. The logarithmic modifications do not play a significant role

since logarithms grow more slowly than any polynomial.

The analysis of ref. [37] reveals that (up to logarithmic modifications) f1, g1L,

h1, f
⊥, g⊥L , hT , h

⊥
T , fT , gT , hL, h, eL, e, fL, g

⊥, eT , e
⊥
T ,D1,D

⊥, G⊥,H,E ∼ 1/p2
T . For these

functions, the corresponding zero-derivative and single-derivative Fourier-transforms

f̃ (0)(x, b2
T ), f̃ (1)(x, b2

T ), D̃(0)(z, b2
T ) and D̃(1)(z, b2

T ) exist. A second group of distributions

exhibits the high-momentum behavior f⊥1T , g1T , h
⊥
1L, h

⊥
1 , f

⊥
T , g

⊥
T , h

⊥
1T ,H

⊥
1 ∼ 1/p4

T . For these

latter functions, the existence of n-derivative Fourier-transforms f̃ (n)(x, b2
T ) and D̃(n)(z, b2

T )

is ensured up to n = 3. Again, we point out that these results are only valid for |bT | > 0,

while the limiting case |bT | = 0 leads to divergent integrals [37].

G.3 Systematic errors from the region at large P h⊥

TMD frameworks have been designed to give a good description of the cross section at

low transverse momentum, i.e., for |P h⊥|/z ≪ Q. However, in weighted asymmetries we

integrate over the whole range of |P h⊥|. The contributions from high |P h⊥| thus lead to

theoretical errors in the results if one does not have a description of the cross section that

is valid there, even when one restricts to the region z|bT | ≫ 1/Q. The Y term can in

principle be included to eliminate those errors, but its Fourier transform is expected to be

power suppressed in the region z|bT | ≫ 1/Q, because it was shown to be power suppressed

at small |P h⊥| [13, 36]. Dropping the Y term means that we approximate the full result by

the large |P h⊥|-tail of the TMD expression. This in general may be a bad approximation,

but the question is whether it will affect the result much for z|bT | ≫ 1/Q. In addition,
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extending the integrals to arbitrarily large transverse momenta ignores the fact that the

physical cross section should vanish above a certain maximum transverse momentum value

|P h⊥|max (see also refs. [12, 36]). In this appendix we are going to estimate the effect of

these various simplifications.

The Y term will be significant only in a finite region of |P h⊥|: between a scale ΛTMD

and |P h⊥|max. Note that both these scales will depend on Q. We can bound the error from

neglecting the Y term in terms of its maximal value. As long as |bT | ≫ Λ−1
TMD > |P h⊥|−1

max,

we can approximate the Bessel-function as in eq. (G.2) to obtain,

Ỹ
sin/cos(Nφh+...)
XY,Z (Q2, b2

T )≡
∫
d|P h⊥| |P h⊥| 2πJN (|bT ||P h⊥|)Y sin/cos(Nφh+...)

XY,Z (Q2,P 2
h⊥)

≈
∫ |Ph⊥|max

ΛTMD

d|P h⊥||P h⊥|2πJN (|bT ||P h⊥|)Y sin/cos(Nφh+...)
XY,Z (Q2,P 2

h⊥)

. (|P h⊥|max−ΛTMD) 2

√
2π

|bT |ΛTMD

∣∣∣Y sin/cos(Nφh+...)
XY,Z

∣∣∣
max

. (G.12)

Here |Y sin/cos(Nφh+...)
XY,Z |max is the maximum absolute value of Y in the range between ΛTMD

and |P h⊥|max. It can be estimated from the (perturbatively calculable) Y -term. Thus,

eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |bT |−1/2. An explicit treatment of the Y -term in eq. (3.1) could eliminate this

theoretical error to a given order in αs in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel-weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P h⊥|max is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |bT |−3/2. Let [F
sin/cos(Nφh+...)
XY,Z ]TMD denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P h⊥| region can be bounded using that the TMD expression (times

|P h⊥|1/2) is a monotonically decreasing function of |P h⊥|. Thus, applying eq. (G.10),
∫ ∞

|Ph⊥|max

d|P h⊥| |P h⊥| 2πJN (|bT ||P h⊥|) [F
sin/cos(Nφh+...)
XY,Z ]TMD(Q2,P 2

h⊥)

. 4

√
2π|P h⊥|max

|bT |3
∣∣∣[F sin/cos(Nφh+...)

XY,Z ]TMD(Q2, |P h⊥|2max)
∣∣∣ , (G.13)

where the upper bound applies as long as |bT | ≫ |P h⊥|−1
max. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P h⊥|.
Finally, let us consider what error would be introduced if all |P h⊥| integrations of

the experimental data were to be cut off at ΛTMD. In this case, we would be able to use

eq. (G.13) as an error estimate, except that |P h⊥|−1
max would need to be replaced by ΛTMD.

Again the error estimate would be valid provided |bT | ≫ Λ−1
TMD and provided the structure

function times |P h⊥|1/2 is monotonically falling, i.e., in its tail region, beyond ΛTMD. This
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Figure 2. Schematic illustration of important scales for Bessel-weighted asymmetries before and

after the Fourier-transform.

simple cutoff method is expected to be useful when Q2 is very large, such that ΛTMD can

be chosen large with confidence.

In figure 2 we illustrate how the contributions from the TMD and the Y dominated

regions contribute to the Fourier transform. The contributions from the region |P h⊥| >
ΛTMD are only suppressed in the region of large BT > 1/ΛTMD. Therefore, an analysis

without Y term at too low values of BT has to be considered with caution. However, also

the region of large BT has to be treated with care in case of Bessel weighting, as one starts

to probe the oscillations of the Bessel function. This is relevant whenever 1/BT becomes

smaller than the experimental resolution in transverse momentum. A finite transverse

momentum resolution |P h⊥|res can, for example, be a result of binning of the experimental

data, as indicated in the figure.
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